1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb/ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/errno.h> /* for -ENODEV */ 14 #include <linux/delay.h> /* for mdelay() */ 15 #include <linux/interrupt.h> /* for in_interrupt() */ 16 #include <linux/list.h> /* for struct list_head */ 17 #include <linux/kref.h> /* for struct kref */ 18 #include <linux/device.h> /* for struct device */ 19 #include <linux/fs.h> /* for struct file_operations */ 20 #include <linux/completion.h> /* for struct completion */ 21 #include <linux/sched.h> /* for current && schedule_timeout */ 22 #include <linux/mutex.h> /* for struct mutex */ 23 24 struct usb_device; 25 struct usb_driver; 26 27 /*-------------------------------------------------------------------------*/ 28 29 /* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44 struct ep_device; 45 46 /** 47 * struct usb_host_endpoint - host-side endpoint descriptor and queue 48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 49 * @urb_list: urbs queued to this endpoint; maintained by usbcore 50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 51 * with one or more transfer descriptors (TDs) per urb 52 * @ep_dev: ep_device for sysfs info 53 * @extra: descriptors following this endpoint in the configuration 54 * @extralen: how many bytes of "extra" are valid 55 * @enabled: URBs may be submitted to this endpoint 56 * 57 * USB requests are always queued to a given endpoint, identified by a 58 * descriptor within an active interface in a given USB configuration. 59 */ 60 struct usb_host_endpoint { 61 struct usb_endpoint_descriptor desc; 62 struct list_head urb_list; 63 void *hcpriv; 64 struct ep_device *ep_dev; /* For sysfs info */ 65 66 unsigned char *extra; /* Extra descriptors */ 67 int extralen; 68 int enabled; 69 }; 70 71 /* host-side wrapper for one interface setting's parsed descriptors */ 72 struct usb_host_interface { 73 struct usb_interface_descriptor desc; 74 75 /* array of desc.bNumEndpoint endpoints associated with this 76 * interface setting. these will be in no particular order. 77 */ 78 struct usb_host_endpoint *endpoint; 79 80 char *string; /* iInterface string, if present */ 81 unsigned char *extra; /* Extra descriptors */ 82 int extralen; 83 }; 84 85 enum usb_interface_condition { 86 USB_INTERFACE_UNBOUND = 0, 87 USB_INTERFACE_BINDING, 88 USB_INTERFACE_BOUND, 89 USB_INTERFACE_UNBINDING, 90 }; 91 92 /** 93 * struct usb_interface - what usb device drivers talk to 94 * @altsetting: array of interface structures, one for each alternate 95 * setting that may be selected. Each one includes a set of 96 * endpoint configurations. They will be in no particular order. 97 * @num_altsetting: number of altsettings defined. 98 * @cur_altsetting: the current altsetting. 99 * @intf_assoc: interface association descriptor 100 * @driver: the USB driver that is bound to this interface. 101 * @minor: the minor number assigned to this interface, if this 102 * interface is bound to a driver that uses the USB major number. 103 * If this interface does not use the USB major, this field should 104 * be unused. The driver should set this value in the probe() 105 * function of the driver, after it has been assigned a minor 106 * number from the USB core by calling usb_register_dev(). 107 * @condition: binding state of the interface: not bound, binding 108 * (in probe()), bound to a driver, or unbinding (in disconnect()) 109 * @is_active: flag set when the interface is bound and not suspended. 110 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 111 * capability during autosuspend. 112 * @dev: driver model's view of this device 113 * @usb_dev: if an interface is bound to the USB major, this will point 114 * to the sysfs representation for that device. 115 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 116 * allowed unless the counter is 0. 117 * 118 * USB device drivers attach to interfaces on a physical device. Each 119 * interface encapsulates a single high level function, such as feeding 120 * an audio stream to a speaker or reporting a change in a volume control. 121 * Many USB devices only have one interface. The protocol used to talk to 122 * an interface's endpoints can be defined in a usb "class" specification, 123 * or by a product's vendor. The (default) control endpoint is part of 124 * every interface, but is never listed among the interface's descriptors. 125 * 126 * The driver that is bound to the interface can use standard driver model 127 * calls such as dev_get_drvdata() on the dev member of this structure. 128 * 129 * Each interface may have alternate settings. The initial configuration 130 * of a device sets altsetting 0, but the device driver can change 131 * that setting using usb_set_interface(). Alternate settings are often 132 * used to control the use of periodic endpoints, such as by having 133 * different endpoints use different amounts of reserved USB bandwidth. 134 * All standards-conformant USB devices that use isochronous endpoints 135 * will use them in non-default settings. 136 * 137 * The USB specification says that alternate setting numbers must run from 138 * 0 to one less than the total number of alternate settings. But some 139 * devices manage to mess this up, and the structures aren't necessarily 140 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 141 * look up an alternate setting in the altsetting array based on its number. 142 */ 143 struct usb_interface { 144 /* array of alternate settings for this interface, 145 * stored in no particular order */ 146 struct usb_host_interface *altsetting; 147 148 struct usb_host_interface *cur_altsetting; /* the currently 149 * active alternate setting */ 150 unsigned num_altsetting; /* number of alternate settings */ 151 152 /* If there is an interface association descriptor then it will list 153 * the associated interfaces */ 154 struct usb_interface_assoc_descriptor *intf_assoc; 155 156 int minor; /* minor number this interface is 157 * bound to */ 158 enum usb_interface_condition condition; /* state of binding */ 159 unsigned is_active:1; /* the interface is not suspended */ 160 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 161 162 struct device dev; /* interface specific device info */ 163 struct device *usb_dev; /* pointer to the usb class's device, if any */ 164 int pm_usage_cnt; /* usage counter for autosuspend */ 165 }; 166 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 167 #define interface_to_usbdev(intf) \ 168 container_of(intf->dev.parent, struct usb_device, dev) 169 170 static inline void *usb_get_intfdata (struct usb_interface *intf) 171 { 172 return dev_get_drvdata (&intf->dev); 173 } 174 175 static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 176 { 177 dev_set_drvdata(&intf->dev, data); 178 } 179 180 struct usb_interface *usb_get_intf(struct usb_interface *intf); 181 void usb_put_intf(struct usb_interface *intf); 182 183 /* this maximum is arbitrary */ 184 #define USB_MAXINTERFACES 32 185 #define USB_MAXIADS USB_MAXINTERFACES/2 186 187 /** 188 * struct usb_interface_cache - long-term representation of a device interface 189 * @num_altsetting: number of altsettings defined. 190 * @ref: reference counter. 191 * @altsetting: variable-length array of interface structures, one for 192 * each alternate setting that may be selected. Each one includes a 193 * set of endpoint configurations. They will be in no particular order. 194 * 195 * These structures persist for the lifetime of a usb_device, unlike 196 * struct usb_interface (which persists only as long as its configuration 197 * is installed). The altsetting arrays can be accessed through these 198 * structures at any time, permitting comparison of configurations and 199 * providing support for the /proc/bus/usb/devices pseudo-file. 200 */ 201 struct usb_interface_cache { 202 unsigned num_altsetting; /* number of alternate settings */ 203 struct kref ref; /* reference counter */ 204 205 /* variable-length array of alternate settings for this interface, 206 * stored in no particular order */ 207 struct usb_host_interface altsetting[0]; 208 }; 209 #define ref_to_usb_interface_cache(r) \ 210 container_of(r, struct usb_interface_cache, ref) 211 #define altsetting_to_usb_interface_cache(a) \ 212 container_of(a, struct usb_interface_cache, altsetting[0]) 213 214 /** 215 * struct usb_host_config - representation of a device's configuration 216 * @desc: the device's configuration descriptor. 217 * @string: pointer to the cached version of the iConfiguration string, if 218 * present for this configuration. 219 * @intf_assoc: list of any interface association descriptors in this config 220 * @interface: array of pointers to usb_interface structures, one for each 221 * interface in the configuration. The number of interfaces is stored 222 * in desc.bNumInterfaces. These pointers are valid only while the 223 * the configuration is active. 224 * @intf_cache: array of pointers to usb_interface_cache structures, one 225 * for each interface in the configuration. These structures exist 226 * for the entire life of the device. 227 * @extra: pointer to buffer containing all extra descriptors associated 228 * with this configuration (those preceding the first interface 229 * descriptor). 230 * @extralen: length of the extra descriptors buffer. 231 * 232 * USB devices may have multiple configurations, but only one can be active 233 * at any time. Each encapsulates a different operational environment; 234 * for example, a dual-speed device would have separate configurations for 235 * full-speed and high-speed operation. The number of configurations 236 * available is stored in the device descriptor as bNumConfigurations. 237 * 238 * A configuration can contain multiple interfaces. Each corresponds to 239 * a different function of the USB device, and all are available whenever 240 * the configuration is active. The USB standard says that interfaces 241 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 242 * of devices get this wrong. In addition, the interface array is not 243 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 244 * look up an interface entry based on its number. 245 * 246 * Device drivers should not attempt to activate configurations. The choice 247 * of which configuration to install is a policy decision based on such 248 * considerations as available power, functionality provided, and the user's 249 * desires (expressed through userspace tools). However, drivers can call 250 * usb_reset_configuration() to reinitialize the current configuration and 251 * all its interfaces. 252 */ 253 struct usb_host_config { 254 struct usb_config_descriptor desc; 255 256 char *string; /* iConfiguration string, if present */ 257 258 /* List of any Interface Association Descriptors in this 259 * configuration. */ 260 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 261 262 /* the interfaces associated with this configuration, 263 * stored in no particular order */ 264 struct usb_interface *interface[USB_MAXINTERFACES]; 265 266 /* Interface information available even when this is not the 267 * active configuration */ 268 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 269 270 unsigned char *extra; /* Extra descriptors */ 271 int extralen; 272 }; 273 274 int __usb_get_extra_descriptor(char *buffer, unsigned size, 275 unsigned char type, void **ptr); 276 #define usb_get_extra_descriptor(ifpoint,type,ptr)\ 277 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 278 type,(void**)ptr) 279 280 /* ----------------------------------------------------------------------- */ 281 282 /* USB device number allocation bitmap */ 283 struct usb_devmap { 284 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 285 }; 286 287 /* 288 * Allocated per bus (tree of devices) we have: 289 */ 290 struct usb_bus { 291 struct device *controller; /* host/master side hardware */ 292 int busnum; /* Bus number (in order of reg) */ 293 char *bus_name; /* stable id (PCI slot_name etc) */ 294 u8 uses_dma; /* Does the host controller use DMA? */ 295 u8 otg_port; /* 0, or number of OTG/HNP port */ 296 unsigned is_b_host:1; /* true during some HNP roleswitches */ 297 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 298 299 int devnum_next; /* Next open device number in 300 * round-robin allocation */ 301 302 struct usb_devmap devmap; /* device address allocation map */ 303 struct usb_device *root_hub; /* Root hub */ 304 struct list_head bus_list; /* list of busses */ 305 306 int bandwidth_allocated; /* on this bus: how much of the time 307 * reserved for periodic (intr/iso) 308 * requests is used, on average? 309 * Units: microseconds/frame. 310 * Limits: Full/low speed reserve 90%, 311 * while high speed reserves 80%. 312 */ 313 int bandwidth_int_reqs; /* number of Interrupt requests */ 314 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 315 316 #ifdef CONFIG_USB_DEVICEFS 317 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 318 #endif 319 struct class_device *class_dev; /* class device for this bus */ 320 321 #if defined(CONFIG_USB_MON) 322 struct mon_bus *mon_bus; /* non-null when associated */ 323 int monitored; /* non-zero when monitored */ 324 #endif 325 }; 326 327 /* ----------------------------------------------------------------------- */ 328 329 /* This is arbitrary. 330 * From USB 2.0 spec Table 11-13, offset 7, a hub can 331 * have up to 255 ports. The most yet reported is 10. 332 * 333 * Current Wireless USB host hardware (Intel i1480 for example) allows 334 * up to 22 devices to connect. Upcoming hardware might raise that 335 * limit. Because the arrays need to add a bit for hub status data, we 336 * do 31, so plus one evens out to four bytes. 337 */ 338 #define USB_MAXCHILDREN (31) 339 340 struct usb_tt; 341 342 /* 343 * struct usb_device - kernel's representation of a USB device 344 * 345 * FIXME: Write the kerneldoc! 346 * 347 * Usbcore drivers should not set usbdev->state directly. Instead use 348 * usb_set_device_state(). 349 * 350 * @authorized: (user space) policy determines if we authorize this 351 * device to be used or not. By default, wired USB 352 * devices are authorized. WUSB devices are not, until we 353 * authorize them from user space. FIXME -- complete doc 354 */ 355 struct usb_device { 356 int devnum; /* Address on USB bus */ 357 char devpath [16]; /* Use in messages: /port/port/... */ 358 enum usb_device_state state; /* configured, not attached, etc */ 359 enum usb_device_speed speed; /* high/full/low (or error) */ 360 361 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 362 int ttport; /* device port on that tt hub */ 363 364 unsigned int toggle[2]; /* one bit for each endpoint 365 * ([0] = IN, [1] = OUT) */ 366 367 struct usb_device *parent; /* our hub, unless we're the root */ 368 struct usb_bus *bus; /* Bus we're part of */ 369 struct usb_host_endpoint ep0; 370 371 struct device dev; /* Generic device interface */ 372 373 struct usb_device_descriptor descriptor;/* Descriptor */ 374 struct usb_host_config *config; /* All of the configs */ 375 376 struct usb_host_config *actconfig;/* the active configuration */ 377 struct usb_host_endpoint *ep_in[16]; 378 struct usb_host_endpoint *ep_out[16]; 379 380 char **rawdescriptors; /* Raw descriptors for each config */ 381 382 unsigned short bus_mA; /* Current available from the bus */ 383 u8 portnum; /* Parent port number (origin 1) */ 384 u8 level; /* Number of USB hub ancestors */ 385 386 unsigned can_submit:1; /* URBs may be submitted */ 387 unsigned discon_suspended:1; /* Disconnected while suspended */ 388 unsigned have_langid:1; /* whether string_langid is valid */ 389 unsigned authorized:1; /* Policy has determined we can use it */ 390 unsigned wusb:1; /* Device is Wireless USB */ 391 int string_langid; /* language ID for strings */ 392 393 /* static strings from the device */ 394 char *product; /* iProduct string, if present */ 395 char *manufacturer; /* iManufacturer string, if present */ 396 char *serial; /* iSerialNumber string, if present */ 397 398 struct list_head filelist; 399 #ifdef CONFIG_USB_DEVICE_CLASS 400 struct device *usb_classdev; 401 #endif 402 #ifdef CONFIG_USB_DEVICEFS 403 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 404 #endif 405 /* 406 * Child devices - these can be either new devices 407 * (if this is a hub device), or different instances 408 * of this same device. 409 * 410 * Each instance needs its own set of data structures. 411 */ 412 413 int maxchild; /* Number of ports if hub */ 414 struct usb_device *children[USB_MAXCHILDREN]; 415 416 int pm_usage_cnt; /* usage counter for autosuspend */ 417 u32 quirks; /* quirks of the whole device */ 418 atomic_t urbnum; /* number of URBs submitted for the whole device */ 419 420 #ifdef CONFIG_PM 421 struct delayed_work autosuspend; /* for delayed autosuspends */ 422 struct mutex pm_mutex; /* protects PM operations */ 423 424 unsigned long last_busy; /* time of last use */ 425 int autosuspend_delay; /* in jiffies */ 426 427 unsigned auto_pm:1; /* autosuspend/resume in progress */ 428 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */ 429 unsigned reset_resume:1; /* needs reset instead of resume */ 430 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */ 431 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */ 432 unsigned autoresume_disabled:1; /* disabled by the user */ 433 unsigned skip_sys_resume:1; /* skip the next system resume */ 434 #endif 435 }; 436 #define to_usb_device(d) container_of(d, struct usb_device, dev) 437 438 extern struct usb_device *usb_get_dev(struct usb_device *dev); 439 extern void usb_put_dev(struct usb_device *dev); 440 441 /* USB device locking */ 442 #define usb_lock_device(udev) down(&(udev)->dev.sem) 443 #define usb_unlock_device(udev) up(&(udev)->dev.sem) 444 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 445 extern int usb_lock_device_for_reset(struct usb_device *udev, 446 const struct usb_interface *iface); 447 448 /* USB port reset for device reinitialization */ 449 extern int usb_reset_device(struct usb_device *dev); 450 extern int usb_reset_composite_device(struct usb_device *dev, 451 struct usb_interface *iface); 452 453 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 454 455 /* USB autosuspend and autoresume */ 456 #ifdef CONFIG_USB_SUSPEND 457 extern int usb_autopm_set_interface(struct usb_interface *intf); 458 extern int usb_autopm_get_interface(struct usb_interface *intf); 459 extern void usb_autopm_put_interface(struct usb_interface *intf); 460 461 static inline void usb_autopm_enable(struct usb_interface *intf) 462 { 463 intf->pm_usage_cnt = 0; 464 usb_autopm_set_interface(intf); 465 } 466 467 static inline void usb_autopm_disable(struct usb_interface *intf) 468 { 469 intf->pm_usage_cnt = 1; 470 usb_autopm_set_interface(intf); 471 } 472 473 static inline void usb_mark_last_busy(struct usb_device *udev) 474 { 475 udev->last_busy = jiffies; 476 } 477 478 #else 479 480 static inline int usb_autopm_set_interface(struct usb_interface *intf) 481 { return 0; } 482 483 static inline int usb_autopm_get_interface(struct usb_interface *intf) 484 { return 0; } 485 486 static inline void usb_autopm_put_interface(struct usb_interface *intf) 487 { } 488 static inline void usb_autopm_enable(struct usb_interface *intf) 489 { } 490 static inline void usb_autopm_disable(struct usb_interface *intf) 491 { } 492 static inline void usb_mark_last_busy(struct usb_device *udev) 493 { } 494 #endif 495 496 /*-------------------------------------------------------------------------*/ 497 498 /* for drivers using iso endpoints */ 499 extern int usb_get_current_frame_number (struct usb_device *usb_dev); 500 501 /* used these for multi-interface device registration */ 502 extern int usb_driver_claim_interface(struct usb_driver *driver, 503 struct usb_interface *iface, void* priv); 504 505 /** 506 * usb_interface_claimed - returns true iff an interface is claimed 507 * @iface: the interface being checked 508 * 509 * Returns true (nonzero) iff the interface is claimed, else false (zero). 510 * Callers must own the driver model's usb bus readlock. So driver 511 * probe() entries don't need extra locking, but other call contexts 512 * may need to explicitly claim that lock. 513 * 514 */ 515 static inline int usb_interface_claimed(struct usb_interface *iface) { 516 return (iface->dev.driver != NULL); 517 } 518 519 extern void usb_driver_release_interface(struct usb_driver *driver, 520 struct usb_interface *iface); 521 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 522 const struct usb_device_id *id); 523 extern int usb_match_one_id(struct usb_interface *interface, 524 const struct usb_device_id *id); 525 526 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 527 int minor); 528 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 529 unsigned ifnum); 530 extern struct usb_host_interface *usb_altnum_to_altsetting( 531 const struct usb_interface *intf, unsigned int altnum); 532 533 534 /** 535 * usb_make_path - returns stable device path in the usb tree 536 * @dev: the device whose path is being constructed 537 * @buf: where to put the string 538 * @size: how big is "buf"? 539 * 540 * Returns length of the string (> 0) or negative if size was too small. 541 * 542 * This identifier is intended to be "stable", reflecting physical paths in 543 * hardware such as physical bus addresses for host controllers or ports on 544 * USB hubs. That makes it stay the same until systems are physically 545 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 546 * controllers. Adding and removing devices, including virtual root hubs 547 * in host controller driver modules, does not change these path identifers; 548 * neither does rebooting or re-enumerating. These are more useful identifiers 549 * than changeable ("unstable") ones like bus numbers or device addresses. 550 * 551 * With a partial exception for devices connected to USB 2.0 root hubs, these 552 * identifiers are also predictable. So long as the device tree isn't changed, 553 * plugging any USB device into a given hub port always gives it the same path. 554 * Because of the use of "companion" controllers, devices connected to ports on 555 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 556 * high speed, and a different one if they are full or low speed. 557 */ 558 static inline int usb_make_path (struct usb_device *dev, char *buf, 559 size_t size) 560 { 561 int actual; 562 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 563 dev->devpath); 564 return (actual >= (int)size) ? -1 : actual; 565 } 566 567 /*-------------------------------------------------------------------------*/ 568 569 /** 570 * usb_endpoint_num - get the endpoint's number 571 * @epd: endpoint to be checked 572 * 573 * Returns @epd's number: 0 to 15. 574 */ 575 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) 576 { 577 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 578 } 579 580 /** 581 * usb_endpoint_type - get the endpoint's transfer type 582 * @epd: endpoint to be checked 583 * 584 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according 585 * to @epd's transfer type. 586 */ 587 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) 588 { 589 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 590 } 591 592 /** 593 * usb_endpoint_dir_in - check if the endpoint has IN direction 594 * @epd: endpoint to be checked 595 * 596 * Returns true if the endpoint is of type IN, otherwise it returns false. 597 */ 598 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 599 { 600 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 601 } 602 603 /** 604 * usb_endpoint_dir_out - check if the endpoint has OUT direction 605 * @epd: endpoint to be checked 606 * 607 * Returns true if the endpoint is of type OUT, otherwise it returns false. 608 */ 609 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd) 610 { 611 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 612 } 613 614 /** 615 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 616 * @epd: endpoint to be checked 617 * 618 * Returns true if the endpoint is of type bulk, otherwise it returns false. 619 */ 620 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd) 621 { 622 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 623 USB_ENDPOINT_XFER_BULK); 624 } 625 626 /** 627 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 628 * @epd: endpoint to be checked 629 * 630 * Returns true if the endpoint is of type control, otherwise it returns false. 631 */ 632 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd) 633 { 634 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 635 USB_ENDPOINT_XFER_CONTROL); 636 } 637 638 /** 639 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 640 * @epd: endpoint to be checked 641 * 642 * Returns true if the endpoint is of type interrupt, otherwise it returns 643 * false. 644 */ 645 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd) 646 { 647 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 648 USB_ENDPOINT_XFER_INT); 649 } 650 651 /** 652 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 653 * @epd: endpoint to be checked 654 * 655 * Returns true if the endpoint is of type isochronous, otherwise it returns 656 * false. 657 */ 658 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd) 659 { 660 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 661 USB_ENDPOINT_XFER_ISOC); 662 } 663 664 /** 665 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 666 * @epd: endpoint to be checked 667 * 668 * Returns true if the endpoint has bulk transfer type and IN direction, 669 * otherwise it returns false. 670 */ 671 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd) 672 { 673 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 674 } 675 676 /** 677 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 678 * @epd: endpoint to be checked 679 * 680 * Returns true if the endpoint has bulk transfer type and OUT direction, 681 * otherwise it returns false. 682 */ 683 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd) 684 { 685 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 686 } 687 688 /** 689 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 690 * @epd: endpoint to be checked 691 * 692 * Returns true if the endpoint has interrupt transfer type and IN direction, 693 * otherwise it returns false. 694 */ 695 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd) 696 { 697 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 698 } 699 700 /** 701 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 702 * @epd: endpoint to be checked 703 * 704 * Returns true if the endpoint has interrupt transfer type and OUT direction, 705 * otherwise it returns false. 706 */ 707 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd) 708 { 709 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 710 } 711 712 /** 713 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 714 * @epd: endpoint to be checked 715 * 716 * Returns true if the endpoint has isochronous transfer type and IN direction, 717 * otherwise it returns false. 718 */ 719 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd) 720 { 721 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 722 } 723 724 /** 725 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 726 * @epd: endpoint to be checked 727 * 728 * Returns true if the endpoint has isochronous transfer type and OUT direction, 729 * otherwise it returns false. 730 */ 731 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd) 732 { 733 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 734 } 735 736 /*-------------------------------------------------------------------------*/ 737 738 #define USB_DEVICE_ID_MATCH_DEVICE \ 739 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 740 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 741 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 742 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 743 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 744 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 745 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 746 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 747 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 748 #define USB_DEVICE_ID_MATCH_INT_INFO \ 749 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 750 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 751 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 752 753 /** 754 * USB_DEVICE - macro used to describe a specific usb device 755 * @vend: the 16 bit USB Vendor ID 756 * @prod: the 16 bit USB Product ID 757 * 758 * This macro is used to create a struct usb_device_id that matches a 759 * specific device. 760 */ 761 #define USB_DEVICE(vend,prod) \ 762 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 763 .idProduct = (prod) 764 /** 765 * USB_DEVICE_VER - macro used to describe a specific usb device with a 766 * version range 767 * @vend: the 16 bit USB Vendor ID 768 * @prod: the 16 bit USB Product ID 769 * @lo: the bcdDevice_lo value 770 * @hi: the bcdDevice_hi value 771 * 772 * This macro is used to create a struct usb_device_id that matches a 773 * specific device, with a version range. 774 */ 775 #define USB_DEVICE_VER(vend,prod,lo,hi) \ 776 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 777 .idVendor = (vend), .idProduct = (prod), \ 778 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 779 780 /** 781 * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb 782 * device with a specific interface protocol 783 * @vend: the 16 bit USB Vendor ID 784 * @prod: the 16 bit USB Product ID 785 * @pr: bInterfaceProtocol value 786 * 787 * This macro is used to create a struct usb_device_id that matches a 788 * specific interface protocol of devices. 789 */ 790 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \ 791 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 792 .idVendor = (vend), \ 793 .idProduct = (prod), \ 794 .bInterfaceProtocol = (pr) 795 796 /** 797 * USB_DEVICE_INFO - macro used to describe a class of usb devices 798 * @cl: bDeviceClass value 799 * @sc: bDeviceSubClass value 800 * @pr: bDeviceProtocol value 801 * 802 * This macro is used to create a struct usb_device_id that matches a 803 * specific class of devices. 804 */ 805 #define USB_DEVICE_INFO(cl,sc,pr) \ 806 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 807 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 808 809 /** 810 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 811 * @cl: bInterfaceClass value 812 * @sc: bInterfaceSubClass value 813 * @pr: bInterfaceProtocol value 814 * 815 * This macro is used to create a struct usb_device_id that matches a 816 * specific class of interfaces. 817 */ 818 #define USB_INTERFACE_INFO(cl,sc,pr) \ 819 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 820 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 821 822 /** 823 * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device 824 * with a class of usb interfaces 825 * @vend: the 16 bit USB Vendor ID 826 * @prod: the 16 bit USB Product ID 827 * @cl: bInterfaceClass value 828 * @sc: bInterfaceSubClass value 829 * @pr: bInterfaceProtocol value 830 * 831 * This macro is used to create a struct usb_device_id that matches a 832 * specific device with a specific class of interfaces. 833 * 834 * This is especially useful when explicitly matching devices that have 835 * vendor specific bDeviceClass values, but standards-compliant interfaces. 836 */ 837 #define USB_DEVICE_AND_INTERFACE_INFO(vend,prod,cl,sc,pr) \ 838 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 839 | USB_DEVICE_ID_MATCH_DEVICE, \ 840 .idVendor = (vend), .idProduct = (prod), \ 841 .bInterfaceClass = (cl), \ 842 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 843 844 /* ----------------------------------------------------------------------- */ 845 846 /* Stuff for dynamic usb ids */ 847 struct usb_dynids { 848 spinlock_t lock; 849 struct list_head list; 850 }; 851 852 struct usb_dynid { 853 struct list_head node; 854 struct usb_device_id id; 855 }; 856 857 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 858 struct device_driver *driver, 859 const char *buf, size_t count); 860 861 /** 862 * struct usbdrv_wrap - wrapper for driver-model structure 863 * @driver: The driver-model core driver structure. 864 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 865 */ 866 struct usbdrv_wrap { 867 struct device_driver driver; 868 int for_devices; 869 }; 870 871 /** 872 * struct usb_driver - identifies USB interface driver to usbcore 873 * @name: The driver name should be unique among USB drivers, 874 * and should normally be the same as the module name. 875 * @probe: Called to see if the driver is willing to manage a particular 876 * interface on a device. If it is, probe returns zero and uses 877 * dev_set_drvdata() to associate driver-specific data with the 878 * interface. It may also use usb_set_interface() to specify the 879 * appropriate altsetting. If unwilling to manage the interface, 880 * return a negative errno value. 881 * @disconnect: Called when the interface is no longer accessible, usually 882 * because its device has been (or is being) disconnected or the 883 * driver module is being unloaded. 884 * @ioctl: Used for drivers that want to talk to userspace through 885 * the "usbfs" filesystem. This lets devices provide ways to 886 * expose information to user space regardless of where they 887 * do (or don't) show up otherwise in the filesystem. 888 * @suspend: Called when the device is going to be suspended by the system. 889 * @resume: Called when the device is being resumed by the system. 890 * @reset_resume: Called when the suspended device has been reset instead 891 * of being resumed. 892 * @pre_reset: Called by usb_reset_composite_device() when the device 893 * is about to be reset. 894 * @post_reset: Called by usb_reset_composite_device() after the device 895 * has been reset, or in lieu of @resume following a reset-resume 896 * (i.e., the device is reset instead of being resumed, as might 897 * happen if power was lost). The second argument tells which is 898 * the reason. 899 * @id_table: USB drivers use ID table to support hotplugging. 900 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 901 * or your driver's probe function will never get called. 902 * @dynids: used internally to hold the list of dynamically added device 903 * ids for this driver. 904 * @drvwrap: Driver-model core structure wrapper. 905 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 906 * added to this driver by preventing the sysfs file from being created. 907 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 908 * for interfaces bound to this driver. 909 * 910 * USB interface drivers must provide a name, probe() and disconnect() 911 * methods, and an id_table. Other driver fields are optional. 912 * 913 * The id_table is used in hotplugging. It holds a set of descriptors, 914 * and specialized data may be associated with each entry. That table 915 * is used by both user and kernel mode hotplugging support. 916 * 917 * The probe() and disconnect() methods are called in a context where 918 * they can sleep, but they should avoid abusing the privilege. Most 919 * work to connect to a device should be done when the device is opened, 920 * and undone at the last close. The disconnect code needs to address 921 * concurrency issues with respect to open() and close() methods, as 922 * well as forcing all pending I/O requests to complete (by unlinking 923 * them as necessary, and blocking until the unlinks complete). 924 */ 925 struct usb_driver { 926 const char *name; 927 928 int (*probe) (struct usb_interface *intf, 929 const struct usb_device_id *id); 930 931 void (*disconnect) (struct usb_interface *intf); 932 933 int (*ioctl) (struct usb_interface *intf, unsigned int code, 934 void *buf); 935 936 int (*suspend) (struct usb_interface *intf, pm_message_t message); 937 int (*resume) (struct usb_interface *intf); 938 int (*reset_resume)(struct usb_interface *intf); 939 940 int (*pre_reset)(struct usb_interface *intf); 941 int (*post_reset)(struct usb_interface *intf); 942 943 const struct usb_device_id *id_table; 944 945 struct usb_dynids dynids; 946 struct usbdrv_wrap drvwrap; 947 unsigned int no_dynamic_id:1; 948 unsigned int supports_autosuspend:1; 949 }; 950 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 951 952 /** 953 * struct usb_device_driver - identifies USB device driver to usbcore 954 * @name: The driver name should be unique among USB drivers, 955 * and should normally be the same as the module name. 956 * @probe: Called to see if the driver is willing to manage a particular 957 * device. If it is, probe returns zero and uses dev_set_drvdata() 958 * to associate driver-specific data with the device. If unwilling 959 * to manage the device, return a negative errno value. 960 * @disconnect: Called when the device is no longer accessible, usually 961 * because it has been (or is being) disconnected or the driver's 962 * module is being unloaded. 963 * @suspend: Called when the device is going to be suspended by the system. 964 * @resume: Called when the device is being resumed by the system. 965 * @drvwrap: Driver-model core structure wrapper. 966 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 967 * for devices bound to this driver. 968 * 969 * USB drivers must provide all the fields listed above except drvwrap. 970 */ 971 struct usb_device_driver { 972 const char *name; 973 974 int (*probe) (struct usb_device *udev); 975 void (*disconnect) (struct usb_device *udev); 976 977 int (*suspend) (struct usb_device *udev, pm_message_t message); 978 int (*resume) (struct usb_device *udev); 979 struct usbdrv_wrap drvwrap; 980 unsigned int supports_autosuspend:1; 981 }; 982 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 983 drvwrap.driver) 984 985 extern struct bus_type usb_bus_type; 986 987 /** 988 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 989 * @name: the usb class device name for this driver. Will show up in sysfs. 990 * @fops: pointer to the struct file_operations of this driver. 991 * @minor_base: the start of the minor range for this driver. 992 * 993 * This structure is used for the usb_register_dev() and 994 * usb_unregister_dev() functions, to consolidate a number of the 995 * parameters used for them. 996 */ 997 struct usb_class_driver { 998 char *name; 999 const struct file_operations *fops; 1000 int minor_base; 1001 }; 1002 1003 /* 1004 * use these in module_init()/module_exit() 1005 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1006 */ 1007 extern int usb_register_driver(struct usb_driver *, struct module *, 1008 const char *); 1009 static inline int usb_register(struct usb_driver *driver) 1010 { 1011 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 1012 } 1013 extern void usb_deregister(struct usb_driver *); 1014 1015 extern int usb_register_device_driver(struct usb_device_driver *, 1016 struct module *); 1017 extern void usb_deregister_device_driver(struct usb_device_driver *); 1018 1019 extern int usb_register_dev(struct usb_interface *intf, 1020 struct usb_class_driver *class_driver); 1021 extern void usb_deregister_dev(struct usb_interface *intf, 1022 struct usb_class_driver *class_driver); 1023 1024 extern int usb_disabled(void); 1025 1026 /* ----------------------------------------------------------------------- */ 1027 1028 /* 1029 * URB support, for asynchronous request completions 1030 */ 1031 1032 /* 1033 * urb->transfer_flags: 1034 * 1035 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1036 */ 1037 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1038 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1039 * ignored */ 1040 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1041 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1042 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1043 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1044 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1045 * needed */ 1046 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1047 1048 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1049 #define URB_DIR_OUT 0 1050 #define URB_DIR_MASK URB_DIR_IN 1051 1052 struct usb_iso_packet_descriptor { 1053 unsigned int offset; 1054 unsigned int length; /* expected length */ 1055 unsigned int actual_length; 1056 int status; 1057 }; 1058 1059 struct urb; 1060 1061 struct usb_anchor { 1062 struct list_head urb_list; 1063 wait_queue_head_t wait; 1064 spinlock_t lock; 1065 }; 1066 1067 static inline void init_usb_anchor(struct usb_anchor *anchor) 1068 { 1069 INIT_LIST_HEAD(&anchor->urb_list); 1070 init_waitqueue_head(&anchor->wait); 1071 spin_lock_init(&anchor->lock); 1072 } 1073 1074 typedef void (*usb_complete_t)(struct urb *); 1075 1076 /** 1077 * struct urb - USB Request Block 1078 * @urb_list: For use by current owner of the URB. 1079 * @anchor_list: membership in the list of an anchor 1080 * @anchor: to anchor URBs to a common mooring 1081 * @ep: Points to the endpoint's data structure. Will eventually 1082 * replace @pipe. 1083 * @pipe: Holds endpoint number, direction, type, and more. 1084 * Create these values with the eight macros available; 1085 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1086 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1087 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1088 * numbers range from zero to fifteen. Note that "in" endpoint two 1089 * is a different endpoint (and pipe) from "out" endpoint two. 1090 * The current configuration controls the existence, type, and 1091 * maximum packet size of any given endpoint. 1092 * @dev: Identifies the USB device to perform the request. 1093 * @status: This is read in non-iso completion functions to get the 1094 * status of the particular request. ISO requests only use it 1095 * to tell whether the URB was unlinked; detailed status for 1096 * each frame is in the fields of the iso_frame-desc. 1097 * @transfer_flags: A variety of flags may be used to affect how URB 1098 * submission, unlinking, or operation are handled. Different 1099 * kinds of URB can use different flags. 1100 * @transfer_buffer: This identifies the buffer to (or from) which 1101 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1102 * is set). This buffer must be suitable for DMA; allocate it with 1103 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1104 * of this buffer will be modified. This buffer is used for the data 1105 * stage of control transfers. 1106 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1107 * the device driver is saying that it provided this DMA address, 1108 * which the host controller driver should use in preference to the 1109 * transfer_buffer. 1110 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1111 * be broken up into chunks according to the current maximum packet 1112 * size for the endpoint, which is a function of the configuration 1113 * and is encoded in the pipe. When the length is zero, neither 1114 * transfer_buffer nor transfer_dma is used. 1115 * @actual_length: This is read in non-iso completion functions, and 1116 * it tells how many bytes (out of transfer_buffer_length) were 1117 * transferred. It will normally be the same as requested, unless 1118 * either an error was reported or a short read was performed. 1119 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1120 * short reads be reported as errors. 1121 * @setup_packet: Only used for control transfers, this points to eight bytes 1122 * of setup data. Control transfers always start by sending this data 1123 * to the device. Then transfer_buffer is read or written, if needed. 1124 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1125 * device driver has provided this DMA address for the setup packet. 1126 * The host controller driver should use this in preference to 1127 * setup_packet. 1128 * @start_frame: Returns the initial frame for isochronous transfers. 1129 * @number_of_packets: Lists the number of ISO transfer buffers. 1130 * @interval: Specifies the polling interval for interrupt or isochronous 1131 * transfers. The units are frames (milliseconds) for for full and low 1132 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1133 * @error_count: Returns the number of ISO transfers that reported errors. 1134 * @context: For use in completion functions. This normally points to 1135 * request-specific driver context. 1136 * @complete: Completion handler. This URB is passed as the parameter to the 1137 * completion function. The completion function may then do what 1138 * it likes with the URB, including resubmitting or freeing it. 1139 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1140 * collect the transfer status for each buffer. 1141 * 1142 * This structure identifies USB transfer requests. URBs must be allocated by 1143 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1144 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1145 * are submitted using usb_submit_urb(), and pending requests may be canceled 1146 * using usb_unlink_urb() or usb_kill_urb(). 1147 * 1148 * Data Transfer Buffers: 1149 * 1150 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1151 * taken from the general page pool. That is provided by transfer_buffer 1152 * (control requests also use setup_packet), and host controller drivers 1153 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1154 * mapping operations can be expensive on some platforms (perhaps using a dma 1155 * bounce buffer or talking to an IOMMU), 1156 * although they're cheap on commodity x86 and ppc hardware. 1157 * 1158 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1159 * which tell the host controller driver that no such mapping is needed since 1160 * the device driver is DMA-aware. For example, a device driver might 1161 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1162 * When these transfer flags are provided, host controller drivers will 1163 * attempt to use the dma addresses found in the transfer_dma and/or 1164 * setup_dma fields rather than determining a dma address themselves. (Note 1165 * that transfer_buffer and setup_packet must still be set because not all 1166 * host controllers use DMA, nor do virtual root hubs). 1167 * 1168 * Initialization: 1169 * 1170 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1171 * zero), and complete fields. All URBs must also initialize 1172 * transfer_buffer and transfer_buffer_length. They may provide the 1173 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1174 * to be treated as errors; that flag is invalid for write requests. 1175 * 1176 * Bulk URBs may 1177 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1178 * should always terminate with a short packet, even if it means adding an 1179 * extra zero length packet. 1180 * 1181 * Control URBs must provide a setup_packet. The setup_packet and 1182 * transfer_buffer may each be mapped for DMA or not, independently of 1183 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1184 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1185 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1186 * 1187 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1188 * or, for highspeed devices, 125 microsecond units) 1189 * to poll for transfers. After the URB has been submitted, the interval 1190 * field reflects how the transfer was actually scheduled. 1191 * The polling interval may be more frequent than requested. 1192 * For example, some controllers have a maximum interval of 32 milliseconds, 1193 * while others support intervals of up to 1024 milliseconds. 1194 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1195 * endpoints, as well as high speed interrupt endpoints, the encoding of 1196 * the transfer interval in the endpoint descriptor is logarithmic. 1197 * Device drivers must convert that value to linear units themselves.) 1198 * 1199 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1200 * the host controller to schedule the transfer as soon as bandwidth 1201 * utilization allows, and then set start_frame to reflect the actual frame 1202 * selected during submission. Otherwise drivers must specify the start_frame 1203 * and handle the case where the transfer can't begin then. However, drivers 1204 * won't know how bandwidth is currently allocated, and while they can 1205 * find the current frame using usb_get_current_frame_number () they can't 1206 * know the range for that frame number. (Ranges for frame counter values 1207 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1208 * 1209 * Isochronous URBs have a different data transfer model, in part because 1210 * the quality of service is only "best effort". Callers provide specially 1211 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1212 * at the end. Each such packet is an individual ISO transfer. Isochronous 1213 * URBs are normally queued, submitted by drivers to arrange that 1214 * transfers are at least double buffered, and then explicitly resubmitted 1215 * in completion handlers, so 1216 * that data (such as audio or video) streams at as constant a rate as the 1217 * host controller scheduler can support. 1218 * 1219 * Completion Callbacks: 1220 * 1221 * The completion callback is made in_interrupt(), and one of the first 1222 * things that a completion handler should do is check the status field. 1223 * The status field is provided for all URBs. It is used to report 1224 * unlinked URBs, and status for all non-ISO transfers. It should not 1225 * be examined before the URB is returned to the completion handler. 1226 * 1227 * The context field is normally used to link URBs back to the relevant 1228 * driver or request state. 1229 * 1230 * When the completion callback is invoked for non-isochronous URBs, the 1231 * actual_length field tells how many bytes were transferred. This field 1232 * is updated even when the URB terminated with an error or was unlinked. 1233 * 1234 * ISO transfer status is reported in the status and actual_length fields 1235 * of the iso_frame_desc array, and the number of errors is reported in 1236 * error_count. Completion callbacks for ISO transfers will normally 1237 * (re)submit URBs to ensure a constant transfer rate. 1238 * 1239 * Note that even fields marked "public" should not be touched by the driver 1240 * when the urb is owned by the hcd, that is, since the call to 1241 * usb_submit_urb() till the entry into the completion routine. 1242 */ 1243 struct urb 1244 { 1245 /* private: usb core and host controller only fields in the urb */ 1246 struct kref kref; /* reference count of the URB */ 1247 void *hcpriv; /* private data for host controller */ 1248 atomic_t use_count; /* concurrent submissions counter */ 1249 u8 reject; /* submissions will fail */ 1250 int unlinked; /* unlink error code */ 1251 1252 /* public: documented fields in the urb that can be used by drivers */ 1253 struct list_head urb_list; /* list head for use by the urb's 1254 * current owner */ 1255 struct list_head anchor_list; /* the URB may be anchored by the driver */ 1256 struct usb_anchor *anchor; 1257 struct usb_device *dev; /* (in) pointer to associated device */ 1258 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint struct */ 1259 unsigned int pipe; /* (in) pipe information */ 1260 int status; /* (return) non-ISO status */ 1261 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1262 void *transfer_buffer; /* (in) associated data buffer */ 1263 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1264 int transfer_buffer_length; /* (in) data buffer length */ 1265 int actual_length; /* (return) actual transfer length */ 1266 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1267 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1268 int start_frame; /* (modify) start frame (ISO) */ 1269 int number_of_packets; /* (in) number of ISO packets */ 1270 int interval; /* (modify) transfer interval 1271 * (INT/ISO) */ 1272 int error_count; /* (return) number of ISO errors */ 1273 void *context; /* (in) context for completion */ 1274 usb_complete_t complete; /* (in) completion routine */ 1275 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1276 /* (in) ISO ONLY */ 1277 }; 1278 1279 /* ----------------------------------------------------------------------- */ 1280 1281 /** 1282 * usb_fill_control_urb - initializes a control urb 1283 * @urb: pointer to the urb to initialize. 1284 * @dev: pointer to the struct usb_device for this urb. 1285 * @pipe: the endpoint pipe 1286 * @setup_packet: pointer to the setup_packet buffer 1287 * @transfer_buffer: pointer to the transfer buffer 1288 * @buffer_length: length of the transfer buffer 1289 * @complete_fn: pointer to the usb_complete_t function 1290 * @context: what to set the urb context to. 1291 * 1292 * Initializes a control urb with the proper information needed to submit 1293 * it to a device. 1294 */ 1295 static inline void usb_fill_control_urb (struct urb *urb, 1296 struct usb_device *dev, 1297 unsigned int pipe, 1298 unsigned char *setup_packet, 1299 void *transfer_buffer, 1300 int buffer_length, 1301 usb_complete_t complete_fn, 1302 void *context) 1303 { 1304 urb->dev = dev; 1305 urb->pipe = pipe; 1306 urb->setup_packet = setup_packet; 1307 urb->transfer_buffer = transfer_buffer; 1308 urb->transfer_buffer_length = buffer_length; 1309 urb->complete = complete_fn; 1310 urb->context = context; 1311 } 1312 1313 /** 1314 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1315 * @urb: pointer to the urb to initialize. 1316 * @dev: pointer to the struct usb_device for this urb. 1317 * @pipe: the endpoint pipe 1318 * @transfer_buffer: pointer to the transfer buffer 1319 * @buffer_length: length of the transfer buffer 1320 * @complete_fn: pointer to the usb_complete_t function 1321 * @context: what to set the urb context to. 1322 * 1323 * Initializes a bulk urb with the proper information needed to submit it 1324 * to a device. 1325 */ 1326 static inline void usb_fill_bulk_urb (struct urb *urb, 1327 struct usb_device *dev, 1328 unsigned int pipe, 1329 void *transfer_buffer, 1330 int buffer_length, 1331 usb_complete_t complete_fn, 1332 void *context) 1333 { 1334 urb->dev = dev; 1335 urb->pipe = pipe; 1336 urb->transfer_buffer = transfer_buffer; 1337 urb->transfer_buffer_length = buffer_length; 1338 urb->complete = complete_fn; 1339 urb->context = context; 1340 } 1341 1342 /** 1343 * usb_fill_int_urb - macro to help initialize a interrupt urb 1344 * @urb: pointer to the urb to initialize. 1345 * @dev: pointer to the struct usb_device for this urb. 1346 * @pipe: the endpoint pipe 1347 * @transfer_buffer: pointer to the transfer buffer 1348 * @buffer_length: length of the transfer buffer 1349 * @complete_fn: pointer to the usb_complete_t function 1350 * @context: what to set the urb context to. 1351 * @interval: what to set the urb interval to, encoded like 1352 * the endpoint descriptor's bInterval value. 1353 * 1354 * Initializes a interrupt urb with the proper information needed to submit 1355 * it to a device. 1356 * Note that high speed interrupt endpoints use a logarithmic encoding of 1357 * the endpoint interval, and express polling intervals in microframes 1358 * (eight per millisecond) rather than in frames (one per millisecond). 1359 */ 1360 static inline void usb_fill_int_urb (struct urb *urb, 1361 struct usb_device *dev, 1362 unsigned int pipe, 1363 void *transfer_buffer, 1364 int buffer_length, 1365 usb_complete_t complete_fn, 1366 void *context, 1367 int interval) 1368 { 1369 urb->dev = dev; 1370 urb->pipe = pipe; 1371 urb->transfer_buffer = transfer_buffer; 1372 urb->transfer_buffer_length = buffer_length; 1373 urb->complete = complete_fn; 1374 urb->context = context; 1375 if (dev->speed == USB_SPEED_HIGH) 1376 urb->interval = 1 << (interval - 1); 1377 else 1378 urb->interval = interval; 1379 urb->start_frame = -1; 1380 } 1381 1382 extern void usb_init_urb(struct urb *urb); 1383 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1384 extern void usb_free_urb(struct urb *urb); 1385 #define usb_put_urb usb_free_urb 1386 extern struct urb *usb_get_urb(struct urb *urb); 1387 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1388 extern int usb_unlink_urb(struct urb *urb); 1389 extern void usb_kill_urb(struct urb *urb); 1390 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1391 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1392 extern void usb_unanchor_urb(struct urb *urb); 1393 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1394 unsigned int timeout); 1395 1396 /** 1397 * usb_urb_dir_in - check if an URB describes an IN transfer 1398 * @urb: URB to be checked 1399 * 1400 * Returns 1 if @urb describes an IN transfer (device-to-host), 1401 * otherwise 0. 1402 */ 1403 static inline int usb_urb_dir_in(struct urb *urb) 1404 { 1405 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1406 } 1407 1408 /** 1409 * usb_urb_dir_out - check if an URB describes an OUT transfer 1410 * @urb: URB to be checked 1411 * 1412 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1413 * otherwise 0. 1414 */ 1415 static inline int usb_urb_dir_out(struct urb *urb) 1416 { 1417 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1418 } 1419 1420 void *usb_buffer_alloc (struct usb_device *dev, size_t size, 1421 gfp_t mem_flags, dma_addr_t *dma); 1422 void usb_buffer_free (struct usb_device *dev, size_t size, 1423 void *addr, dma_addr_t dma); 1424 1425 #if 0 1426 struct urb *usb_buffer_map (struct urb *urb); 1427 void usb_buffer_dmasync (struct urb *urb); 1428 void usb_buffer_unmap (struct urb *urb); 1429 #endif 1430 1431 struct scatterlist; 1432 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1433 struct scatterlist *sg, int nents); 1434 #if 0 1435 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1436 struct scatterlist *sg, int n_hw_ents); 1437 #endif 1438 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1439 struct scatterlist *sg, int n_hw_ents); 1440 1441 /*-------------------------------------------------------------------* 1442 * SYNCHRONOUS CALL SUPPORT * 1443 *-------------------------------------------------------------------*/ 1444 1445 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1446 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1447 void *data, __u16 size, int timeout); 1448 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1449 void *data, int len, int *actual_length, int timeout); 1450 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1451 void *data, int len, int *actual_length, 1452 int timeout); 1453 1454 /* wrappers around usb_control_msg() for the most common standard requests */ 1455 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1456 unsigned char descindex, void *buf, int size); 1457 extern int usb_get_status(struct usb_device *dev, 1458 int type, int target, void *data); 1459 extern int usb_string(struct usb_device *dev, int index, 1460 char *buf, size_t size); 1461 1462 /* wrappers that also update important state inside usbcore */ 1463 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1464 extern int usb_reset_configuration(struct usb_device *dev); 1465 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1466 1467 /* this request isn't really synchronous, but it belongs with the others */ 1468 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1469 1470 /* 1471 * timeouts, in milliseconds, used for sending/receiving control messages 1472 * they typically complete within a few frames (msec) after they're issued 1473 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1474 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1475 */ 1476 #define USB_CTRL_GET_TIMEOUT 5000 1477 #define USB_CTRL_SET_TIMEOUT 5000 1478 1479 1480 /** 1481 * struct usb_sg_request - support for scatter/gather I/O 1482 * @status: zero indicates success, else negative errno 1483 * @bytes: counts bytes transferred. 1484 * 1485 * These requests are initialized using usb_sg_init(), and then are used 1486 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1487 * members of the request object aren't for driver access. 1488 * 1489 * The status and bytecount values are valid only after usb_sg_wait() 1490 * returns. If the status is zero, then the bytecount matches the total 1491 * from the request. 1492 * 1493 * After an error completion, drivers may need to clear a halt condition 1494 * on the endpoint. 1495 */ 1496 struct usb_sg_request { 1497 int status; 1498 size_t bytes; 1499 1500 /* 1501 * members below are private: to usbcore, 1502 * and are not provided for driver access! 1503 */ 1504 spinlock_t lock; 1505 1506 struct usb_device *dev; 1507 int pipe; 1508 struct scatterlist *sg; 1509 int nents; 1510 1511 int entries; 1512 struct urb **urbs; 1513 1514 int count; 1515 struct completion complete; 1516 }; 1517 1518 int usb_sg_init ( 1519 struct usb_sg_request *io, 1520 struct usb_device *dev, 1521 unsigned pipe, 1522 unsigned period, 1523 struct scatterlist *sg, 1524 int nents, 1525 size_t length, 1526 gfp_t mem_flags 1527 ); 1528 void usb_sg_cancel (struct usb_sg_request *io); 1529 void usb_sg_wait (struct usb_sg_request *io); 1530 1531 1532 /* ----------------------------------------------------------------------- */ 1533 1534 /* 1535 * For various legacy reasons, Linux has a small cookie that's paired with 1536 * a struct usb_device to identify an endpoint queue. Queue characteristics 1537 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1538 * an unsigned int encoded as: 1539 * 1540 * - direction: bit 7 (0 = Host-to-Device [Out], 1541 * 1 = Device-to-Host [In] ... 1542 * like endpoint bEndpointAddress) 1543 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1544 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1545 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1546 * 10 = control, 11 = bulk) 1547 * 1548 * Given the device address and endpoint descriptor, pipes are redundant. 1549 */ 1550 1551 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1552 /* (yet ... they're the values used by usbfs) */ 1553 #define PIPE_ISOCHRONOUS 0 1554 #define PIPE_INTERRUPT 1 1555 #define PIPE_CONTROL 2 1556 #define PIPE_BULK 3 1557 1558 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1559 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1560 1561 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1562 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1563 1564 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1565 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1566 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1567 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1568 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1569 1570 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1571 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1572 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1573 #define usb_settoggle(dev, ep, out, bit) \ 1574 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1575 ((bit) << (ep))) 1576 1577 1578 static inline unsigned int __create_pipe(struct usb_device *dev, 1579 unsigned int endpoint) 1580 { 1581 return (dev->devnum << 8) | (endpoint << 15); 1582 } 1583 1584 /* Create various pipes... */ 1585 #define usb_sndctrlpipe(dev,endpoint) \ 1586 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1587 #define usb_rcvctrlpipe(dev,endpoint) \ 1588 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1589 #define usb_sndisocpipe(dev,endpoint) \ 1590 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1591 #define usb_rcvisocpipe(dev,endpoint) \ 1592 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1593 #define usb_sndbulkpipe(dev,endpoint) \ 1594 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1595 #define usb_rcvbulkpipe(dev,endpoint) \ 1596 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1597 #define usb_sndintpipe(dev,endpoint) \ 1598 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1599 #define usb_rcvintpipe(dev,endpoint) \ 1600 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1601 1602 /*-------------------------------------------------------------------------*/ 1603 1604 static inline __u16 1605 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1606 { 1607 struct usb_host_endpoint *ep; 1608 unsigned epnum = usb_pipeendpoint(pipe); 1609 1610 if (is_out) { 1611 WARN_ON(usb_pipein(pipe)); 1612 ep = udev->ep_out[epnum]; 1613 } else { 1614 WARN_ON(usb_pipeout(pipe)); 1615 ep = udev->ep_in[epnum]; 1616 } 1617 if (!ep) 1618 return 0; 1619 1620 /* NOTE: only 0x07ff bits are for packet size... */ 1621 return le16_to_cpu(ep->desc.wMaxPacketSize); 1622 } 1623 1624 /* ----------------------------------------------------------------------- */ 1625 1626 /* Events from the usb core */ 1627 #define USB_DEVICE_ADD 0x0001 1628 #define USB_DEVICE_REMOVE 0x0002 1629 #define USB_BUS_ADD 0x0003 1630 #define USB_BUS_REMOVE 0x0004 1631 extern void usb_register_notify(struct notifier_block *nb); 1632 extern void usb_unregister_notify(struct notifier_block *nb); 1633 1634 #ifdef DEBUG 1635 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1636 __FILE__ , ## arg) 1637 #else 1638 #define dbg(format, arg...) do {} while (0) 1639 #endif 1640 1641 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1642 __FILE__ , ## arg) 1643 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1644 __FILE__ , ## arg) 1645 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1646 __FILE__ , ## arg) 1647 1648 1649 #endif /* __KERNEL__ */ 1650 1651 #endif 1652