xref: /linux-6.15/include/linux/usb.h (revision 2b8232ce)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 
24 struct usb_device;
25 struct usb_driver;
26 
27 /*-------------------------------------------------------------------------*/
28 
29 /*
30  * Host-side wrappers for standard USB descriptors ... these are parsed
31  * from the data provided by devices.  Parsing turns them from a flat
32  * sequence of descriptors into a hierarchy:
33  *
34  *  - devices have one (usually) or more configs;
35  *  - configs have one (often) or more interfaces;
36  *  - interfaces have one (usually) or more settings;
37  *  - each interface setting has zero or (usually) more endpoints.
38  *
39  * And there might be other descriptors mixed in with those.
40  *
41  * Devices may also have class-specific or vendor-specific descriptors.
42  */
43 
44 struct ep_device;
45 
46 /**
47  * struct usb_host_endpoint - host-side endpoint descriptor and queue
48  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49  * @urb_list: urbs queued to this endpoint; maintained by usbcore
50  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51  *	with one or more transfer descriptors (TDs) per urb
52  * @ep_dev: ep_device for sysfs info
53  * @extra: descriptors following this endpoint in the configuration
54  * @extralen: how many bytes of "extra" are valid
55  * @enabled: URBs may be submitted to this endpoint
56  *
57  * USB requests are always queued to a given endpoint, identified by a
58  * descriptor within an active interface in a given USB configuration.
59  */
60 struct usb_host_endpoint {
61 	struct usb_endpoint_descriptor	desc;
62 	struct list_head		urb_list;
63 	void				*hcpriv;
64 	struct ep_device 		*ep_dev;	/* For sysfs info */
65 
66 	unsigned char *extra;   /* Extra descriptors */
67 	int extralen;
68 	int enabled;
69 };
70 
71 /* host-side wrapper for one interface setting's parsed descriptors */
72 struct usb_host_interface {
73 	struct usb_interface_descriptor	desc;
74 
75 	/* array of desc.bNumEndpoint endpoints associated with this
76 	 * interface setting.  these will be in no particular order.
77 	 */
78 	struct usb_host_endpoint *endpoint;
79 
80 	char *string;		/* iInterface string, if present */
81 	unsigned char *extra;   /* Extra descriptors */
82 	int extralen;
83 };
84 
85 enum usb_interface_condition {
86 	USB_INTERFACE_UNBOUND = 0,
87 	USB_INTERFACE_BINDING,
88 	USB_INTERFACE_BOUND,
89 	USB_INTERFACE_UNBINDING,
90 };
91 
92 /**
93  * struct usb_interface - what usb device drivers talk to
94  * @altsetting: array of interface structures, one for each alternate
95  * 	setting that may be selected.  Each one includes a set of
96  * 	endpoint configurations.  They will be in no particular order.
97  * @num_altsetting: number of altsettings defined.
98  * @cur_altsetting: the current altsetting.
99  * @intf_assoc: interface association descriptor
100  * @driver: the USB driver that is bound to this interface.
101  * @minor: the minor number assigned to this interface, if this
102  *	interface is bound to a driver that uses the USB major number.
103  *	If this interface does not use the USB major, this field should
104  *	be unused.  The driver should set this value in the probe()
105  *	function of the driver, after it has been assigned a minor
106  *	number from the USB core by calling usb_register_dev().
107  * @condition: binding state of the interface: not bound, binding
108  *	(in probe()), bound to a driver, or unbinding (in disconnect())
109  * @is_active: flag set when the interface is bound and not suspended.
110  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
111  *	capability during autosuspend.
112  * @dev: driver model's view of this device
113  * @usb_dev: if an interface is bound to the USB major, this will point
114  *	to the sysfs representation for that device.
115  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
116  *	allowed unless the counter is 0.
117  *
118  * USB device drivers attach to interfaces on a physical device.  Each
119  * interface encapsulates a single high level function, such as feeding
120  * an audio stream to a speaker or reporting a change in a volume control.
121  * Many USB devices only have one interface.  The protocol used to talk to
122  * an interface's endpoints can be defined in a usb "class" specification,
123  * or by a product's vendor.  The (default) control endpoint is part of
124  * every interface, but is never listed among the interface's descriptors.
125  *
126  * The driver that is bound to the interface can use standard driver model
127  * calls such as dev_get_drvdata() on the dev member of this structure.
128  *
129  * Each interface may have alternate settings.  The initial configuration
130  * of a device sets altsetting 0, but the device driver can change
131  * that setting using usb_set_interface().  Alternate settings are often
132  * used to control the use of periodic endpoints, such as by having
133  * different endpoints use different amounts of reserved USB bandwidth.
134  * All standards-conformant USB devices that use isochronous endpoints
135  * will use them in non-default settings.
136  *
137  * The USB specification says that alternate setting numbers must run from
138  * 0 to one less than the total number of alternate settings.  But some
139  * devices manage to mess this up, and the structures aren't necessarily
140  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
141  * look up an alternate setting in the altsetting array based on its number.
142  */
143 struct usb_interface {
144 	/* array of alternate settings for this interface,
145 	 * stored in no particular order */
146 	struct usb_host_interface *altsetting;
147 
148 	struct usb_host_interface *cur_altsetting;	/* the currently
149 					 * active alternate setting */
150 	unsigned num_altsetting;	/* number of alternate settings */
151 
152 	/* If there is an interface association descriptor then it will list
153 	 * the associated interfaces */
154 	struct usb_interface_assoc_descriptor *intf_assoc;
155 
156 	int minor;			/* minor number this interface is
157 					 * bound to */
158 	enum usb_interface_condition condition;		/* state of binding */
159 	unsigned is_active:1;		/* the interface is not suspended */
160 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
161 
162 	struct device dev;		/* interface specific device info */
163 	struct device *usb_dev;		/* pointer to the usb class's device, if any */
164 	int pm_usage_cnt;		/* usage counter for autosuspend */
165 };
166 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
167 #define	interface_to_usbdev(intf) \
168 	container_of(intf->dev.parent, struct usb_device, dev)
169 
170 static inline void *usb_get_intfdata (struct usb_interface *intf)
171 {
172 	return dev_get_drvdata (&intf->dev);
173 }
174 
175 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
176 {
177 	dev_set_drvdata(&intf->dev, data);
178 }
179 
180 struct usb_interface *usb_get_intf(struct usb_interface *intf);
181 void usb_put_intf(struct usb_interface *intf);
182 
183 /* this maximum is arbitrary */
184 #define USB_MAXINTERFACES	32
185 #define USB_MAXIADS		USB_MAXINTERFACES/2
186 
187 /**
188  * struct usb_interface_cache - long-term representation of a device interface
189  * @num_altsetting: number of altsettings defined.
190  * @ref: reference counter.
191  * @altsetting: variable-length array of interface structures, one for
192  *	each alternate setting that may be selected.  Each one includes a
193  *	set of endpoint configurations.  They will be in no particular order.
194  *
195  * These structures persist for the lifetime of a usb_device, unlike
196  * struct usb_interface (which persists only as long as its configuration
197  * is installed).  The altsetting arrays can be accessed through these
198  * structures at any time, permitting comparison of configurations and
199  * providing support for the /proc/bus/usb/devices pseudo-file.
200  */
201 struct usb_interface_cache {
202 	unsigned num_altsetting;	/* number of alternate settings */
203 	struct kref ref;		/* reference counter */
204 
205 	/* variable-length array of alternate settings for this interface,
206 	 * stored in no particular order */
207 	struct usb_host_interface altsetting[0];
208 };
209 #define	ref_to_usb_interface_cache(r) \
210 		container_of(r, struct usb_interface_cache, ref)
211 #define	altsetting_to_usb_interface_cache(a) \
212 		container_of(a, struct usb_interface_cache, altsetting[0])
213 
214 /**
215  * struct usb_host_config - representation of a device's configuration
216  * @desc: the device's configuration descriptor.
217  * @string: pointer to the cached version of the iConfiguration string, if
218  *	present for this configuration.
219  * @intf_assoc: list of any interface association descriptors in this config
220  * @interface: array of pointers to usb_interface structures, one for each
221  *	interface in the configuration.  The number of interfaces is stored
222  *	in desc.bNumInterfaces.  These pointers are valid only while the
223  *	the configuration is active.
224  * @intf_cache: array of pointers to usb_interface_cache structures, one
225  *	for each interface in the configuration.  These structures exist
226  *	for the entire life of the device.
227  * @extra: pointer to buffer containing all extra descriptors associated
228  *	with this configuration (those preceding the first interface
229  *	descriptor).
230  * @extralen: length of the extra descriptors buffer.
231  *
232  * USB devices may have multiple configurations, but only one can be active
233  * at any time.  Each encapsulates a different operational environment;
234  * for example, a dual-speed device would have separate configurations for
235  * full-speed and high-speed operation.  The number of configurations
236  * available is stored in the device descriptor as bNumConfigurations.
237  *
238  * A configuration can contain multiple interfaces.  Each corresponds to
239  * a different function of the USB device, and all are available whenever
240  * the configuration is active.  The USB standard says that interfaces
241  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
242  * of devices get this wrong.  In addition, the interface array is not
243  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
244  * look up an interface entry based on its number.
245  *
246  * Device drivers should not attempt to activate configurations.  The choice
247  * of which configuration to install is a policy decision based on such
248  * considerations as available power, functionality provided, and the user's
249  * desires (expressed through userspace tools).  However, drivers can call
250  * usb_reset_configuration() to reinitialize the current configuration and
251  * all its interfaces.
252  */
253 struct usb_host_config {
254 	struct usb_config_descriptor	desc;
255 
256 	char *string;		/* iConfiguration string, if present */
257 
258 	/* List of any Interface Association Descriptors in this
259 	 * configuration. */
260 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
261 
262 	/* the interfaces associated with this configuration,
263 	 * stored in no particular order */
264 	struct usb_interface *interface[USB_MAXINTERFACES];
265 
266 	/* Interface information available even when this is not the
267 	 * active configuration */
268 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
269 
270 	unsigned char *extra;   /* Extra descriptors */
271 	int extralen;
272 };
273 
274 int __usb_get_extra_descriptor(char *buffer, unsigned size,
275 	unsigned char type, void **ptr);
276 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
277 	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
278 		type,(void**)ptr)
279 
280 /* ----------------------------------------------------------------------- */
281 
282 /* USB device number allocation bitmap */
283 struct usb_devmap {
284 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
285 };
286 
287 /*
288  * Allocated per bus (tree of devices) we have:
289  */
290 struct usb_bus {
291 	struct device *controller;	/* host/master side hardware */
292 	int busnum;			/* Bus number (in order of reg) */
293 	char *bus_name;			/* stable id (PCI slot_name etc) */
294 	u8 uses_dma;			/* Does the host controller use DMA? */
295 	u8 otg_port;			/* 0, or number of OTG/HNP port */
296 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
297 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
298 
299 	int devnum_next;		/* Next open device number in
300 					 * round-robin allocation */
301 
302 	struct usb_devmap devmap;	/* device address allocation map */
303 	struct usb_device *root_hub;	/* Root hub */
304 	struct list_head bus_list;	/* list of busses */
305 
306 	int bandwidth_allocated;	/* on this bus: how much of the time
307 					 * reserved for periodic (intr/iso)
308 					 * requests is used, on average?
309 					 * Units: microseconds/frame.
310 					 * Limits: Full/low speed reserve 90%,
311 					 * while high speed reserves 80%.
312 					 */
313 	int bandwidth_int_reqs;		/* number of Interrupt requests */
314 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
315 
316 #ifdef CONFIG_USB_DEVICEFS
317 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
318 #endif
319 	struct class_device *class_dev;	/* class device for this bus */
320 
321 #if defined(CONFIG_USB_MON)
322 	struct mon_bus *mon_bus;	/* non-null when associated */
323 	int monitored;			/* non-zero when monitored */
324 #endif
325 };
326 
327 /* ----------------------------------------------------------------------- */
328 
329 /* This is arbitrary.
330  * From USB 2.0 spec Table 11-13, offset 7, a hub can
331  * have up to 255 ports. The most yet reported is 10.
332  *
333  * Current Wireless USB host hardware (Intel i1480 for example) allows
334  * up to 22 devices to connect. Upcoming hardware might raise that
335  * limit. Because the arrays need to add a bit for hub status data, we
336  * do 31, so plus one evens out to four bytes.
337  */
338 #define USB_MAXCHILDREN		(31)
339 
340 struct usb_tt;
341 
342 /*
343  * struct usb_device - kernel's representation of a USB device
344  *
345  * FIXME: Write the kerneldoc!
346  *
347  * Usbcore drivers should not set usbdev->state directly.  Instead use
348  * usb_set_device_state().
349  *
350  * @authorized: (user space) policy determines if we authorize this
351  *              device to be used or not. By default, wired USB
352  *              devices are authorized. WUSB devices are not, until we
353  *              authorize them from user space. FIXME -- complete doc
354  */
355 struct usb_device {
356 	int		devnum;		/* Address on USB bus */
357 	char		devpath [16];	/* Use in messages: /port/port/... */
358 	enum usb_device_state	state;	/* configured, not attached, etc */
359 	enum usb_device_speed	speed;	/* high/full/low (or error) */
360 
361 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
362 	int		ttport;		/* device port on that tt hub */
363 
364 	unsigned int toggle[2];		/* one bit for each endpoint
365 					 * ([0] = IN, [1] = OUT) */
366 
367 	struct usb_device *parent;	/* our hub, unless we're the root */
368 	struct usb_bus *bus;		/* Bus we're part of */
369 	struct usb_host_endpoint ep0;
370 
371 	struct device dev;		/* Generic device interface */
372 
373 	struct usb_device_descriptor descriptor;/* Descriptor */
374 	struct usb_host_config *config;	/* All of the configs */
375 
376 	struct usb_host_config *actconfig;/* the active configuration */
377 	struct usb_host_endpoint *ep_in[16];
378 	struct usb_host_endpoint *ep_out[16];
379 
380 	char **rawdescriptors;		/* Raw descriptors for each config */
381 
382 	unsigned short bus_mA;		/* Current available from the bus */
383 	u8 portnum;			/* Parent port number (origin 1) */
384 	u8 level;			/* Number of USB hub ancestors */
385 
386 	unsigned can_submit:1;		/* URBs may be submitted */
387 	unsigned discon_suspended:1;	/* Disconnected while suspended */
388 	unsigned have_langid:1;		/* whether string_langid is valid */
389 	unsigned authorized:1;		/* Policy has determined we can use it */
390 	unsigned wusb:1;		/* Device is Wireless USB */
391 	int string_langid;		/* language ID for strings */
392 
393 	/* static strings from the device */
394 	char *product;			/* iProduct string, if present */
395 	char *manufacturer;		/* iManufacturer string, if present */
396 	char *serial;			/* iSerialNumber string, if present */
397 
398 	struct list_head filelist;
399 #ifdef CONFIG_USB_DEVICE_CLASS
400 	struct device *usb_classdev;
401 #endif
402 #ifdef CONFIG_USB_DEVICEFS
403 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
404 #endif
405 	/*
406 	 * Child devices - these can be either new devices
407 	 * (if this is a hub device), or different instances
408 	 * of this same device.
409 	 *
410 	 * Each instance needs its own set of data structures.
411 	 */
412 
413 	int maxchild;			/* Number of ports if hub */
414 	struct usb_device *children[USB_MAXCHILDREN];
415 
416 	int pm_usage_cnt;		/* usage counter for autosuspend */
417 	u32 quirks;			/* quirks of the whole device */
418 	atomic_t urbnum;		/* number of URBs submitted for the whole device */
419 
420 #ifdef CONFIG_PM
421 	struct delayed_work autosuspend; /* for delayed autosuspends */
422 	struct mutex pm_mutex;		/* protects PM operations */
423 
424 	unsigned long last_busy;	/* time of last use */
425 	int autosuspend_delay;		/* in jiffies */
426 
427 	unsigned auto_pm:1;		/* autosuspend/resume in progress */
428 	unsigned do_remote_wakeup:1;	/* remote wakeup should be enabled */
429 	unsigned reset_resume:1;	/* needs reset instead of resume */
430 	unsigned persist_enabled:1;	/* USB_PERSIST enabled for this dev */
431 	unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
432 	unsigned autoresume_disabled:1;  /*  disabled by the user */
433 	unsigned skip_sys_resume:1;	/* skip the next system resume */
434 #endif
435 };
436 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
437 
438 extern struct usb_device *usb_get_dev(struct usb_device *dev);
439 extern void usb_put_dev(struct usb_device *dev);
440 
441 /* USB device locking */
442 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
443 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
444 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
445 extern int usb_lock_device_for_reset(struct usb_device *udev,
446 				     const struct usb_interface *iface);
447 
448 /* USB port reset for device reinitialization */
449 extern int usb_reset_device(struct usb_device *dev);
450 extern int usb_reset_composite_device(struct usb_device *dev,
451 		struct usb_interface *iface);
452 
453 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
454 
455 /* USB autosuspend and autoresume */
456 #ifdef CONFIG_USB_SUSPEND
457 extern int usb_autopm_set_interface(struct usb_interface *intf);
458 extern int usb_autopm_get_interface(struct usb_interface *intf);
459 extern void usb_autopm_put_interface(struct usb_interface *intf);
460 
461 static inline void usb_autopm_enable(struct usb_interface *intf)
462 {
463 	intf->pm_usage_cnt = 0;
464 	usb_autopm_set_interface(intf);
465 }
466 
467 static inline void usb_autopm_disable(struct usb_interface *intf)
468 {
469 	intf->pm_usage_cnt = 1;
470 	usb_autopm_set_interface(intf);
471 }
472 
473 static inline void usb_mark_last_busy(struct usb_device *udev)
474 {
475 	udev->last_busy = jiffies;
476 }
477 
478 #else
479 
480 static inline int usb_autopm_set_interface(struct usb_interface *intf)
481 { return 0; }
482 
483 static inline int usb_autopm_get_interface(struct usb_interface *intf)
484 { return 0; }
485 
486 static inline void usb_autopm_put_interface(struct usb_interface *intf)
487 { }
488 static inline void usb_autopm_enable(struct usb_interface *intf)
489 { }
490 static inline void usb_autopm_disable(struct usb_interface *intf)
491 { }
492 static inline void usb_mark_last_busy(struct usb_device *udev)
493 { }
494 #endif
495 
496 /*-------------------------------------------------------------------------*/
497 
498 /* for drivers using iso endpoints */
499 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
500 
501 /* used these for multi-interface device registration */
502 extern int usb_driver_claim_interface(struct usb_driver *driver,
503 			struct usb_interface *iface, void* priv);
504 
505 /**
506  * usb_interface_claimed - returns true iff an interface is claimed
507  * @iface: the interface being checked
508  *
509  * Returns true (nonzero) iff the interface is claimed, else false (zero).
510  * Callers must own the driver model's usb bus readlock.  So driver
511  * probe() entries don't need extra locking, but other call contexts
512  * may need to explicitly claim that lock.
513  *
514  */
515 static inline int usb_interface_claimed(struct usb_interface *iface) {
516 	return (iface->dev.driver != NULL);
517 }
518 
519 extern void usb_driver_release_interface(struct usb_driver *driver,
520 			struct usb_interface *iface);
521 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
522 					 const struct usb_device_id *id);
523 extern int usb_match_one_id(struct usb_interface *interface,
524 			    const struct usb_device_id *id);
525 
526 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
527 		int minor);
528 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
529 		unsigned ifnum);
530 extern struct usb_host_interface *usb_altnum_to_altsetting(
531 		const struct usb_interface *intf, unsigned int altnum);
532 
533 
534 /**
535  * usb_make_path - returns stable device path in the usb tree
536  * @dev: the device whose path is being constructed
537  * @buf: where to put the string
538  * @size: how big is "buf"?
539  *
540  * Returns length of the string (> 0) or negative if size was too small.
541  *
542  * This identifier is intended to be "stable", reflecting physical paths in
543  * hardware such as physical bus addresses for host controllers or ports on
544  * USB hubs.  That makes it stay the same until systems are physically
545  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
546  * controllers.  Adding and removing devices, including virtual root hubs
547  * in host controller driver modules, does not change these path identifers;
548  * neither does rebooting or re-enumerating.  These are more useful identifiers
549  * than changeable ("unstable") ones like bus numbers or device addresses.
550  *
551  * With a partial exception for devices connected to USB 2.0 root hubs, these
552  * identifiers are also predictable.  So long as the device tree isn't changed,
553  * plugging any USB device into a given hub port always gives it the same path.
554  * Because of the use of "companion" controllers, devices connected to ports on
555  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
556  * high speed, and a different one if they are full or low speed.
557  */
558 static inline int usb_make_path (struct usb_device *dev, char *buf,
559 		size_t size)
560 {
561 	int actual;
562 	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
563 			dev->devpath);
564 	return (actual >= (int)size) ? -1 : actual;
565 }
566 
567 /*-------------------------------------------------------------------------*/
568 
569 /**
570  * usb_endpoint_num - get the endpoint's number
571  * @epd: endpoint to be checked
572  *
573  * Returns @epd's number: 0 to 15.
574  */
575 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
576 {
577 	return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
578 }
579 
580 /**
581  * usb_endpoint_type - get the endpoint's transfer type
582  * @epd: endpoint to be checked
583  *
584  * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
585  * to @epd's transfer type.
586  */
587 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
588 {
589 	return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
590 }
591 
592 /**
593  * usb_endpoint_dir_in - check if the endpoint has IN direction
594  * @epd: endpoint to be checked
595  *
596  * Returns true if the endpoint is of type IN, otherwise it returns false.
597  */
598 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
599 {
600 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
601 }
602 
603 /**
604  * usb_endpoint_dir_out - check if the endpoint has OUT direction
605  * @epd: endpoint to be checked
606  *
607  * Returns true if the endpoint is of type OUT, otherwise it returns false.
608  */
609 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
610 {
611 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
612 }
613 
614 /**
615  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
616  * @epd: endpoint to be checked
617  *
618  * Returns true if the endpoint is of type bulk, otherwise it returns false.
619  */
620 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
621 {
622 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
623 		USB_ENDPOINT_XFER_BULK);
624 }
625 
626 /**
627  * usb_endpoint_xfer_control - check if the endpoint has control transfer type
628  * @epd: endpoint to be checked
629  *
630  * Returns true if the endpoint is of type control, otherwise it returns false.
631  */
632 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
633 {
634 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
635 		USB_ENDPOINT_XFER_CONTROL);
636 }
637 
638 /**
639  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
640  * @epd: endpoint to be checked
641  *
642  * Returns true if the endpoint is of type interrupt, otherwise it returns
643  * false.
644  */
645 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
646 {
647 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
648 		USB_ENDPOINT_XFER_INT);
649 }
650 
651 /**
652  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
653  * @epd: endpoint to be checked
654  *
655  * Returns true if the endpoint is of type isochronous, otherwise it returns
656  * false.
657  */
658 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
659 {
660 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
661 		USB_ENDPOINT_XFER_ISOC);
662 }
663 
664 /**
665  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
666  * @epd: endpoint to be checked
667  *
668  * Returns true if the endpoint has bulk transfer type and IN direction,
669  * otherwise it returns false.
670  */
671 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
672 {
673 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
674 }
675 
676 /**
677  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
678  * @epd: endpoint to be checked
679  *
680  * Returns true if the endpoint has bulk transfer type and OUT direction,
681  * otherwise it returns false.
682  */
683 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
684 {
685 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
686 }
687 
688 /**
689  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
690  * @epd: endpoint to be checked
691  *
692  * Returns true if the endpoint has interrupt transfer type and IN direction,
693  * otherwise it returns false.
694  */
695 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
696 {
697 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
698 }
699 
700 /**
701  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
702  * @epd: endpoint to be checked
703  *
704  * Returns true if the endpoint has interrupt transfer type and OUT direction,
705  * otherwise it returns false.
706  */
707 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
708 {
709 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
710 }
711 
712 /**
713  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
714  * @epd: endpoint to be checked
715  *
716  * Returns true if the endpoint has isochronous transfer type and IN direction,
717  * otherwise it returns false.
718  */
719 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
720 {
721 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
722 }
723 
724 /**
725  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
726  * @epd: endpoint to be checked
727  *
728  * Returns true if the endpoint has isochronous transfer type and OUT direction,
729  * otherwise it returns false.
730  */
731 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
732 {
733 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
734 }
735 
736 /*-------------------------------------------------------------------------*/
737 
738 #define USB_DEVICE_ID_MATCH_DEVICE \
739 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
740 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
741 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
742 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
743 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
744 #define USB_DEVICE_ID_MATCH_DEV_INFO \
745 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
746 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
747 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
748 #define USB_DEVICE_ID_MATCH_INT_INFO \
749 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
750 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
751 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
752 
753 /**
754  * USB_DEVICE - macro used to describe a specific usb device
755  * @vend: the 16 bit USB Vendor ID
756  * @prod: the 16 bit USB Product ID
757  *
758  * This macro is used to create a struct usb_device_id that matches a
759  * specific device.
760  */
761 #define USB_DEVICE(vend,prod) \
762 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
763 			.idProduct = (prod)
764 /**
765  * USB_DEVICE_VER - macro used to describe a specific usb device with a
766  *		version range
767  * @vend: the 16 bit USB Vendor ID
768  * @prod: the 16 bit USB Product ID
769  * @lo: the bcdDevice_lo value
770  * @hi: the bcdDevice_hi value
771  *
772  * This macro is used to create a struct usb_device_id that matches a
773  * specific device, with a version range.
774  */
775 #define USB_DEVICE_VER(vend,prod,lo,hi) \
776 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
777 	.idVendor = (vend), .idProduct = (prod), \
778 	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
779 
780 /**
781  * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb
782  *		device with a specific interface protocol
783  * @vend: the 16 bit USB Vendor ID
784  * @prod: the 16 bit USB Product ID
785  * @pr: bInterfaceProtocol value
786  *
787  * This macro is used to create a struct usb_device_id that matches a
788  * specific interface protocol of devices.
789  */
790 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \
791 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
792 	.idVendor = (vend), \
793 	.idProduct = (prod), \
794 	.bInterfaceProtocol = (pr)
795 
796 /**
797  * USB_DEVICE_INFO - macro used to describe a class of usb devices
798  * @cl: bDeviceClass value
799  * @sc: bDeviceSubClass value
800  * @pr: bDeviceProtocol value
801  *
802  * This macro is used to create a struct usb_device_id that matches a
803  * specific class of devices.
804  */
805 #define USB_DEVICE_INFO(cl,sc,pr) \
806 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
807 	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
808 
809 /**
810  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
811  * @cl: bInterfaceClass value
812  * @sc: bInterfaceSubClass value
813  * @pr: bInterfaceProtocol value
814  *
815  * This macro is used to create a struct usb_device_id that matches a
816  * specific class of interfaces.
817  */
818 #define USB_INTERFACE_INFO(cl,sc,pr) \
819 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
820 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
821 
822 /**
823  * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device
824  * 		with a class of usb interfaces
825  * @vend: the 16 bit USB Vendor ID
826  * @prod: the 16 bit USB Product ID
827  * @cl: bInterfaceClass value
828  * @sc: bInterfaceSubClass value
829  * @pr: bInterfaceProtocol value
830  *
831  * This macro is used to create a struct usb_device_id that matches a
832  * specific device with a specific class of interfaces.
833  *
834  * This is especially useful when explicitly matching devices that have
835  * vendor specific bDeviceClass values, but standards-compliant interfaces.
836  */
837 #define USB_DEVICE_AND_INTERFACE_INFO(vend,prod,cl,sc,pr) \
838 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
839 		| USB_DEVICE_ID_MATCH_DEVICE, \
840 	.idVendor = (vend), .idProduct = (prod), \
841 	.bInterfaceClass = (cl), \
842 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
843 
844 /* ----------------------------------------------------------------------- */
845 
846 /* Stuff for dynamic usb ids */
847 struct usb_dynids {
848 	spinlock_t lock;
849 	struct list_head list;
850 };
851 
852 struct usb_dynid {
853 	struct list_head node;
854 	struct usb_device_id id;
855 };
856 
857 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
858 				struct device_driver *driver,
859 				const char *buf, size_t count);
860 
861 /**
862  * struct usbdrv_wrap - wrapper for driver-model structure
863  * @driver: The driver-model core driver structure.
864  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
865  */
866 struct usbdrv_wrap {
867 	struct device_driver driver;
868 	int for_devices;
869 };
870 
871 /**
872  * struct usb_driver - identifies USB interface driver to usbcore
873  * @name: The driver name should be unique among USB drivers,
874  *	and should normally be the same as the module name.
875  * @probe: Called to see if the driver is willing to manage a particular
876  *	interface on a device.  If it is, probe returns zero and uses
877  *	dev_set_drvdata() to associate driver-specific data with the
878  *	interface.  It may also use usb_set_interface() to specify the
879  *	appropriate altsetting.  If unwilling to manage the interface,
880  *	return a negative errno value.
881  * @disconnect: Called when the interface is no longer accessible, usually
882  *	because its device has been (or is being) disconnected or the
883  *	driver module is being unloaded.
884  * @ioctl: Used for drivers that want to talk to userspace through
885  *	the "usbfs" filesystem.  This lets devices provide ways to
886  *	expose information to user space regardless of where they
887  *	do (or don't) show up otherwise in the filesystem.
888  * @suspend: Called when the device is going to be suspended by the system.
889  * @resume: Called when the device is being resumed by the system.
890  * @reset_resume: Called when the suspended device has been reset instead
891  *	of being resumed.
892  * @pre_reset: Called by usb_reset_composite_device() when the device
893  *	is about to be reset.
894  * @post_reset: Called by usb_reset_composite_device() after the device
895  *	has been reset, or in lieu of @resume following a reset-resume
896  *	(i.e., the device is reset instead of being resumed, as might
897  *	happen if power was lost).  The second argument tells which is
898  *	the reason.
899  * @id_table: USB drivers use ID table to support hotplugging.
900  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
901  *	or your driver's probe function will never get called.
902  * @dynids: used internally to hold the list of dynamically added device
903  *	ids for this driver.
904  * @drvwrap: Driver-model core structure wrapper.
905  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
906  *	added to this driver by preventing the sysfs file from being created.
907  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
908  *	for interfaces bound to this driver.
909  *
910  * USB interface drivers must provide a name, probe() and disconnect()
911  * methods, and an id_table.  Other driver fields are optional.
912  *
913  * The id_table is used in hotplugging.  It holds a set of descriptors,
914  * and specialized data may be associated with each entry.  That table
915  * is used by both user and kernel mode hotplugging support.
916  *
917  * The probe() and disconnect() methods are called in a context where
918  * they can sleep, but they should avoid abusing the privilege.  Most
919  * work to connect to a device should be done when the device is opened,
920  * and undone at the last close.  The disconnect code needs to address
921  * concurrency issues with respect to open() and close() methods, as
922  * well as forcing all pending I/O requests to complete (by unlinking
923  * them as necessary, and blocking until the unlinks complete).
924  */
925 struct usb_driver {
926 	const char *name;
927 
928 	int (*probe) (struct usb_interface *intf,
929 		      const struct usb_device_id *id);
930 
931 	void (*disconnect) (struct usb_interface *intf);
932 
933 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
934 			void *buf);
935 
936 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
937 	int (*resume) (struct usb_interface *intf);
938 	int (*reset_resume)(struct usb_interface *intf);
939 
940 	int (*pre_reset)(struct usb_interface *intf);
941 	int (*post_reset)(struct usb_interface *intf);
942 
943 	const struct usb_device_id *id_table;
944 
945 	struct usb_dynids dynids;
946 	struct usbdrv_wrap drvwrap;
947 	unsigned int no_dynamic_id:1;
948 	unsigned int supports_autosuspend:1;
949 };
950 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
951 
952 /**
953  * struct usb_device_driver - identifies USB device driver to usbcore
954  * @name: The driver name should be unique among USB drivers,
955  *	and should normally be the same as the module name.
956  * @probe: Called to see if the driver is willing to manage a particular
957  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
958  *	to associate driver-specific data with the device.  If unwilling
959  *	to manage the device, return a negative errno value.
960  * @disconnect: Called when the device is no longer accessible, usually
961  *	because it has been (or is being) disconnected or the driver's
962  *	module is being unloaded.
963  * @suspend: Called when the device is going to be suspended by the system.
964  * @resume: Called when the device is being resumed by the system.
965  * @drvwrap: Driver-model core structure wrapper.
966  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
967  *	for devices bound to this driver.
968  *
969  * USB drivers must provide all the fields listed above except drvwrap.
970  */
971 struct usb_device_driver {
972 	const char *name;
973 
974 	int (*probe) (struct usb_device *udev);
975 	void (*disconnect) (struct usb_device *udev);
976 
977 	int (*suspend) (struct usb_device *udev, pm_message_t message);
978 	int (*resume) (struct usb_device *udev);
979 	struct usbdrv_wrap drvwrap;
980 	unsigned int supports_autosuspend:1;
981 };
982 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
983 		drvwrap.driver)
984 
985 extern struct bus_type usb_bus_type;
986 
987 /**
988  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
989  * @name: the usb class device name for this driver.  Will show up in sysfs.
990  * @fops: pointer to the struct file_operations of this driver.
991  * @minor_base: the start of the minor range for this driver.
992  *
993  * This structure is used for the usb_register_dev() and
994  * usb_unregister_dev() functions, to consolidate a number of the
995  * parameters used for them.
996  */
997 struct usb_class_driver {
998 	char *name;
999 	const struct file_operations *fops;
1000 	int minor_base;
1001 };
1002 
1003 /*
1004  * use these in module_init()/module_exit()
1005  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1006  */
1007 extern int usb_register_driver(struct usb_driver *, struct module *,
1008 			       const char *);
1009 static inline int usb_register(struct usb_driver *driver)
1010 {
1011 	return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1012 }
1013 extern void usb_deregister(struct usb_driver *);
1014 
1015 extern int usb_register_device_driver(struct usb_device_driver *,
1016 			struct module *);
1017 extern void usb_deregister_device_driver(struct usb_device_driver *);
1018 
1019 extern int usb_register_dev(struct usb_interface *intf,
1020 			    struct usb_class_driver *class_driver);
1021 extern void usb_deregister_dev(struct usb_interface *intf,
1022 			       struct usb_class_driver *class_driver);
1023 
1024 extern int usb_disabled(void);
1025 
1026 /* ----------------------------------------------------------------------- */
1027 
1028 /*
1029  * URB support, for asynchronous request completions
1030  */
1031 
1032 /*
1033  * urb->transfer_flags:
1034  *
1035  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1036  */
1037 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1038 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
1039 					 * ignored */
1040 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1041 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
1042 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1043 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1044 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1045 					 * needed */
1046 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1047 
1048 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1049 #define URB_DIR_OUT		0
1050 #define URB_DIR_MASK		URB_DIR_IN
1051 
1052 struct usb_iso_packet_descriptor {
1053 	unsigned int offset;
1054 	unsigned int length;		/* expected length */
1055 	unsigned int actual_length;
1056 	int status;
1057 };
1058 
1059 struct urb;
1060 
1061 struct usb_anchor {
1062 	struct list_head urb_list;
1063 	wait_queue_head_t wait;
1064 	spinlock_t lock;
1065 };
1066 
1067 static inline void init_usb_anchor(struct usb_anchor *anchor)
1068 {
1069 	INIT_LIST_HEAD(&anchor->urb_list);
1070 	init_waitqueue_head(&anchor->wait);
1071 	spin_lock_init(&anchor->lock);
1072 }
1073 
1074 typedef void (*usb_complete_t)(struct urb *);
1075 
1076 /**
1077  * struct urb - USB Request Block
1078  * @urb_list: For use by current owner of the URB.
1079  * @anchor_list: membership in the list of an anchor
1080  * @anchor: to anchor URBs to a common mooring
1081  * @ep: Points to the endpoint's data structure.  Will eventually
1082  *	replace @pipe.
1083  * @pipe: Holds endpoint number, direction, type, and more.
1084  *	Create these values with the eight macros available;
1085  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1086  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1087  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1088  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1089  *	is a different endpoint (and pipe) from "out" endpoint two.
1090  *	The current configuration controls the existence, type, and
1091  *	maximum packet size of any given endpoint.
1092  * @dev: Identifies the USB device to perform the request.
1093  * @status: This is read in non-iso completion functions to get the
1094  *	status of the particular request.  ISO requests only use it
1095  *	to tell whether the URB was unlinked; detailed status for
1096  *	each frame is in the fields of the iso_frame-desc.
1097  * @transfer_flags: A variety of flags may be used to affect how URB
1098  *	submission, unlinking, or operation are handled.  Different
1099  *	kinds of URB can use different flags.
1100  * @transfer_buffer:  This identifies the buffer to (or from) which
1101  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1102  *	is set).  This buffer must be suitable for DMA; allocate it with
1103  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1104  *	of this buffer will be modified.  This buffer is used for the data
1105  *	stage of control transfers.
1106  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1107  *	the device driver is saying that it provided this DMA address,
1108  *	which the host controller driver should use in preference to the
1109  *	transfer_buffer.
1110  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1111  *	be broken up into chunks according to the current maximum packet
1112  *	size for the endpoint, which is a function of the configuration
1113  *	and is encoded in the pipe.  When the length is zero, neither
1114  *	transfer_buffer nor transfer_dma is used.
1115  * @actual_length: This is read in non-iso completion functions, and
1116  *	it tells how many bytes (out of transfer_buffer_length) were
1117  *	transferred.  It will normally be the same as requested, unless
1118  *	either an error was reported or a short read was performed.
1119  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1120  *	short reads be reported as errors.
1121  * @setup_packet: Only used for control transfers, this points to eight bytes
1122  *	of setup data.  Control transfers always start by sending this data
1123  *	to the device.  Then transfer_buffer is read or written, if needed.
1124  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1125  *	device driver has provided this DMA address for the setup packet.
1126  *	The host controller driver should use this in preference to
1127  *	setup_packet.
1128  * @start_frame: Returns the initial frame for isochronous transfers.
1129  * @number_of_packets: Lists the number of ISO transfer buffers.
1130  * @interval: Specifies the polling interval for interrupt or isochronous
1131  *	transfers.  The units are frames (milliseconds) for for full and low
1132  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
1133  * @error_count: Returns the number of ISO transfers that reported errors.
1134  * @context: For use in completion functions.  This normally points to
1135  *	request-specific driver context.
1136  * @complete: Completion handler. This URB is passed as the parameter to the
1137  *	completion function.  The completion function may then do what
1138  *	it likes with the URB, including resubmitting or freeing it.
1139  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1140  *	collect the transfer status for each buffer.
1141  *
1142  * This structure identifies USB transfer requests.  URBs must be allocated by
1143  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1144  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1145  * are submitted using usb_submit_urb(), and pending requests may be canceled
1146  * using usb_unlink_urb() or usb_kill_urb().
1147  *
1148  * Data Transfer Buffers:
1149  *
1150  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1151  * taken from the general page pool.  That is provided by transfer_buffer
1152  * (control requests also use setup_packet), and host controller drivers
1153  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1154  * mapping operations can be expensive on some platforms (perhaps using a dma
1155  * bounce buffer or talking to an IOMMU),
1156  * although they're cheap on commodity x86 and ppc hardware.
1157  *
1158  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1159  * which tell the host controller driver that no such mapping is needed since
1160  * the device driver is DMA-aware.  For example, a device driver might
1161  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1162  * When these transfer flags are provided, host controller drivers will
1163  * attempt to use the dma addresses found in the transfer_dma and/or
1164  * setup_dma fields rather than determining a dma address themselves.  (Note
1165  * that transfer_buffer and setup_packet must still be set because not all
1166  * host controllers use DMA, nor do virtual root hubs).
1167  *
1168  * Initialization:
1169  *
1170  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1171  * zero), and complete fields.  All URBs must also initialize
1172  * transfer_buffer and transfer_buffer_length.  They may provide the
1173  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1174  * to be treated as errors; that flag is invalid for write requests.
1175  *
1176  * Bulk URBs may
1177  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1178  * should always terminate with a short packet, even if it means adding an
1179  * extra zero length packet.
1180  *
1181  * Control URBs must provide a setup_packet.  The setup_packet and
1182  * transfer_buffer may each be mapped for DMA or not, independently of
1183  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1184  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1185  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1186  *
1187  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1188  * or, for highspeed devices, 125 microsecond units)
1189  * to poll for transfers.  After the URB has been submitted, the interval
1190  * field reflects how the transfer was actually scheduled.
1191  * The polling interval may be more frequent than requested.
1192  * For example, some controllers have a maximum interval of 32 milliseconds,
1193  * while others support intervals of up to 1024 milliseconds.
1194  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1195  * endpoints, as well as high speed interrupt endpoints, the encoding of
1196  * the transfer interval in the endpoint descriptor is logarithmic.
1197  * Device drivers must convert that value to linear units themselves.)
1198  *
1199  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1200  * the host controller to schedule the transfer as soon as bandwidth
1201  * utilization allows, and then set start_frame to reflect the actual frame
1202  * selected during submission.  Otherwise drivers must specify the start_frame
1203  * and handle the case where the transfer can't begin then.  However, drivers
1204  * won't know how bandwidth is currently allocated, and while they can
1205  * find the current frame using usb_get_current_frame_number () they can't
1206  * know the range for that frame number.  (Ranges for frame counter values
1207  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1208  *
1209  * Isochronous URBs have a different data transfer model, in part because
1210  * the quality of service is only "best effort".  Callers provide specially
1211  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1212  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1213  * URBs are normally queued, submitted by drivers to arrange that
1214  * transfers are at least double buffered, and then explicitly resubmitted
1215  * in completion handlers, so
1216  * that data (such as audio or video) streams at as constant a rate as the
1217  * host controller scheduler can support.
1218  *
1219  * Completion Callbacks:
1220  *
1221  * The completion callback is made in_interrupt(), and one of the first
1222  * things that a completion handler should do is check the status field.
1223  * The status field is provided for all URBs.  It is used to report
1224  * unlinked URBs, and status for all non-ISO transfers.  It should not
1225  * be examined before the URB is returned to the completion handler.
1226  *
1227  * The context field is normally used to link URBs back to the relevant
1228  * driver or request state.
1229  *
1230  * When the completion callback is invoked for non-isochronous URBs, the
1231  * actual_length field tells how many bytes were transferred.  This field
1232  * is updated even when the URB terminated with an error or was unlinked.
1233  *
1234  * ISO transfer status is reported in the status and actual_length fields
1235  * of the iso_frame_desc array, and the number of errors is reported in
1236  * error_count.  Completion callbacks for ISO transfers will normally
1237  * (re)submit URBs to ensure a constant transfer rate.
1238  *
1239  * Note that even fields marked "public" should not be touched by the driver
1240  * when the urb is owned by the hcd, that is, since the call to
1241  * usb_submit_urb() till the entry into the completion routine.
1242  */
1243 struct urb
1244 {
1245 	/* private: usb core and host controller only fields in the urb */
1246 	struct kref kref;		/* reference count of the URB */
1247 	void *hcpriv;			/* private data for host controller */
1248 	atomic_t use_count;		/* concurrent submissions counter */
1249 	u8 reject;			/* submissions will fail */
1250 	int unlinked;			/* unlink error code */
1251 
1252 	/* public: documented fields in the urb that can be used by drivers */
1253 	struct list_head urb_list;	/* list head for use by the urb's
1254 					 * current owner */
1255 	struct list_head anchor_list;	/* the URB may be anchored by the driver */
1256 	struct usb_anchor *anchor;
1257 	struct usb_device *dev; 	/* (in) pointer to associated device */
1258 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint struct */
1259 	unsigned int pipe;		/* (in) pipe information */
1260 	int status;			/* (return) non-ISO status */
1261 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1262 	void *transfer_buffer;		/* (in) associated data buffer */
1263 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1264 	int transfer_buffer_length;	/* (in) data buffer length */
1265 	int actual_length;		/* (return) actual transfer length */
1266 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1267 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1268 	int start_frame;		/* (modify) start frame (ISO) */
1269 	int number_of_packets;		/* (in) number of ISO packets */
1270 	int interval;			/* (modify) transfer interval
1271 					 * (INT/ISO) */
1272 	int error_count;		/* (return) number of ISO errors */
1273 	void *context;			/* (in) context for completion */
1274 	usb_complete_t complete;	/* (in) completion routine */
1275 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1276 					/* (in) ISO ONLY */
1277 };
1278 
1279 /* ----------------------------------------------------------------------- */
1280 
1281 /**
1282  * usb_fill_control_urb - initializes a control urb
1283  * @urb: pointer to the urb to initialize.
1284  * @dev: pointer to the struct usb_device for this urb.
1285  * @pipe: the endpoint pipe
1286  * @setup_packet: pointer to the setup_packet buffer
1287  * @transfer_buffer: pointer to the transfer buffer
1288  * @buffer_length: length of the transfer buffer
1289  * @complete_fn: pointer to the usb_complete_t function
1290  * @context: what to set the urb context to.
1291  *
1292  * Initializes a control urb with the proper information needed to submit
1293  * it to a device.
1294  */
1295 static inline void usb_fill_control_urb (struct urb *urb,
1296 					 struct usb_device *dev,
1297 					 unsigned int pipe,
1298 					 unsigned char *setup_packet,
1299 					 void *transfer_buffer,
1300 					 int buffer_length,
1301 					 usb_complete_t complete_fn,
1302 					 void *context)
1303 {
1304 	urb->dev = dev;
1305 	urb->pipe = pipe;
1306 	urb->setup_packet = setup_packet;
1307 	urb->transfer_buffer = transfer_buffer;
1308 	urb->transfer_buffer_length = buffer_length;
1309 	urb->complete = complete_fn;
1310 	urb->context = context;
1311 }
1312 
1313 /**
1314  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1315  * @urb: pointer to the urb to initialize.
1316  * @dev: pointer to the struct usb_device for this urb.
1317  * @pipe: the endpoint pipe
1318  * @transfer_buffer: pointer to the transfer buffer
1319  * @buffer_length: length of the transfer buffer
1320  * @complete_fn: pointer to the usb_complete_t function
1321  * @context: what to set the urb context to.
1322  *
1323  * Initializes a bulk urb with the proper information needed to submit it
1324  * to a device.
1325  */
1326 static inline void usb_fill_bulk_urb (struct urb *urb,
1327 				      struct usb_device *dev,
1328 				      unsigned int pipe,
1329 				      void *transfer_buffer,
1330 				      int buffer_length,
1331 				      usb_complete_t complete_fn,
1332 				      void *context)
1333 {
1334 	urb->dev = dev;
1335 	urb->pipe = pipe;
1336 	urb->transfer_buffer = transfer_buffer;
1337 	urb->transfer_buffer_length = buffer_length;
1338 	urb->complete = complete_fn;
1339 	urb->context = context;
1340 }
1341 
1342 /**
1343  * usb_fill_int_urb - macro to help initialize a interrupt urb
1344  * @urb: pointer to the urb to initialize.
1345  * @dev: pointer to the struct usb_device for this urb.
1346  * @pipe: the endpoint pipe
1347  * @transfer_buffer: pointer to the transfer buffer
1348  * @buffer_length: length of the transfer buffer
1349  * @complete_fn: pointer to the usb_complete_t function
1350  * @context: what to set the urb context to.
1351  * @interval: what to set the urb interval to, encoded like
1352  *	the endpoint descriptor's bInterval value.
1353  *
1354  * Initializes a interrupt urb with the proper information needed to submit
1355  * it to a device.
1356  * Note that high speed interrupt endpoints use a logarithmic encoding of
1357  * the endpoint interval, and express polling intervals in microframes
1358  * (eight per millisecond) rather than in frames (one per millisecond).
1359  */
1360 static inline void usb_fill_int_urb (struct urb *urb,
1361 				     struct usb_device *dev,
1362 				     unsigned int pipe,
1363 				     void *transfer_buffer,
1364 				     int buffer_length,
1365 				     usb_complete_t complete_fn,
1366 				     void *context,
1367 				     int interval)
1368 {
1369 	urb->dev = dev;
1370 	urb->pipe = pipe;
1371 	urb->transfer_buffer = transfer_buffer;
1372 	urb->transfer_buffer_length = buffer_length;
1373 	urb->complete = complete_fn;
1374 	urb->context = context;
1375 	if (dev->speed == USB_SPEED_HIGH)
1376 		urb->interval = 1 << (interval - 1);
1377 	else
1378 		urb->interval = interval;
1379 	urb->start_frame = -1;
1380 }
1381 
1382 extern void usb_init_urb(struct urb *urb);
1383 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1384 extern void usb_free_urb(struct urb *urb);
1385 #define usb_put_urb usb_free_urb
1386 extern struct urb *usb_get_urb(struct urb *urb);
1387 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1388 extern int usb_unlink_urb(struct urb *urb);
1389 extern void usb_kill_urb(struct urb *urb);
1390 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1391 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1392 extern void usb_unanchor_urb(struct urb *urb);
1393 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1394 					 unsigned int timeout);
1395 
1396 /**
1397  * usb_urb_dir_in - check if an URB describes an IN transfer
1398  * @urb: URB to be checked
1399  *
1400  * Returns 1 if @urb describes an IN transfer (device-to-host),
1401  * otherwise 0.
1402  */
1403 static inline int usb_urb_dir_in(struct urb *urb)
1404 {
1405 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1406 }
1407 
1408 /**
1409  * usb_urb_dir_out - check if an URB describes an OUT transfer
1410  * @urb: URB to be checked
1411  *
1412  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1413  * otherwise 0.
1414  */
1415 static inline int usb_urb_dir_out(struct urb *urb)
1416 {
1417 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1418 }
1419 
1420 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1421 	gfp_t mem_flags, dma_addr_t *dma);
1422 void usb_buffer_free (struct usb_device *dev, size_t size,
1423 	void *addr, dma_addr_t dma);
1424 
1425 #if 0
1426 struct urb *usb_buffer_map (struct urb *urb);
1427 void usb_buffer_dmasync (struct urb *urb);
1428 void usb_buffer_unmap (struct urb *urb);
1429 #endif
1430 
1431 struct scatterlist;
1432 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1433 		      struct scatterlist *sg, int nents);
1434 #if 0
1435 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1436 			   struct scatterlist *sg, int n_hw_ents);
1437 #endif
1438 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1439 			 struct scatterlist *sg, int n_hw_ents);
1440 
1441 /*-------------------------------------------------------------------*
1442  *                         SYNCHRONOUS CALL SUPPORT                  *
1443  *-------------------------------------------------------------------*/
1444 
1445 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1446 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1447 	void *data, __u16 size, int timeout);
1448 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1449 	void *data, int len, int *actual_length, int timeout);
1450 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1451 	void *data, int len, int *actual_length,
1452 	int timeout);
1453 
1454 /* wrappers around usb_control_msg() for the most common standard requests */
1455 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1456 	unsigned char descindex, void *buf, int size);
1457 extern int usb_get_status(struct usb_device *dev,
1458 	int type, int target, void *data);
1459 extern int usb_string(struct usb_device *dev, int index,
1460 	char *buf, size_t size);
1461 
1462 /* wrappers that also update important state inside usbcore */
1463 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1464 extern int usb_reset_configuration(struct usb_device *dev);
1465 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1466 
1467 /* this request isn't really synchronous, but it belongs with the others */
1468 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1469 
1470 /*
1471  * timeouts, in milliseconds, used for sending/receiving control messages
1472  * they typically complete within a few frames (msec) after they're issued
1473  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1474  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1475  */
1476 #define USB_CTRL_GET_TIMEOUT	5000
1477 #define USB_CTRL_SET_TIMEOUT	5000
1478 
1479 
1480 /**
1481  * struct usb_sg_request - support for scatter/gather I/O
1482  * @status: zero indicates success, else negative errno
1483  * @bytes: counts bytes transferred.
1484  *
1485  * These requests are initialized using usb_sg_init(), and then are used
1486  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1487  * members of the request object aren't for driver access.
1488  *
1489  * The status and bytecount values are valid only after usb_sg_wait()
1490  * returns.  If the status is zero, then the bytecount matches the total
1491  * from the request.
1492  *
1493  * After an error completion, drivers may need to clear a halt condition
1494  * on the endpoint.
1495  */
1496 struct usb_sg_request {
1497 	int			status;
1498 	size_t			bytes;
1499 
1500 	/*
1501 	 * members below are private: to usbcore,
1502 	 * and are not provided for driver access!
1503 	 */
1504 	spinlock_t		lock;
1505 
1506 	struct usb_device	*dev;
1507 	int			pipe;
1508 	struct scatterlist	*sg;
1509 	int			nents;
1510 
1511 	int			entries;
1512 	struct urb		**urbs;
1513 
1514 	int			count;
1515 	struct completion	complete;
1516 };
1517 
1518 int usb_sg_init (
1519 	struct usb_sg_request	*io,
1520 	struct usb_device	*dev,
1521 	unsigned		pipe,
1522 	unsigned		period,
1523 	struct scatterlist	*sg,
1524 	int			nents,
1525 	size_t			length,
1526 	gfp_t			mem_flags
1527 );
1528 void usb_sg_cancel (struct usb_sg_request *io);
1529 void usb_sg_wait (struct usb_sg_request *io);
1530 
1531 
1532 /* ----------------------------------------------------------------------- */
1533 
1534 /*
1535  * For various legacy reasons, Linux has a small cookie that's paired with
1536  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1537  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1538  * an unsigned int encoded as:
1539  *
1540  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1541  *					 1 = Device-to-Host [In] ...
1542  *					like endpoint bEndpointAddress)
1543  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1544  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1545  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1546  *					 10 = control, 11 = bulk)
1547  *
1548  * Given the device address and endpoint descriptor, pipes are redundant.
1549  */
1550 
1551 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1552 /* (yet ... they're the values used by usbfs) */
1553 #define PIPE_ISOCHRONOUS		0
1554 #define PIPE_INTERRUPT			1
1555 #define PIPE_CONTROL			2
1556 #define PIPE_BULK			3
1557 
1558 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1559 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1560 
1561 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1562 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1563 
1564 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1565 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1566 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1567 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1568 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1569 
1570 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1571 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1572 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1573 #define usb_settoggle(dev, ep, out, bit) \
1574 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1575 		 ((bit) << (ep)))
1576 
1577 
1578 static inline unsigned int __create_pipe(struct usb_device *dev,
1579 		unsigned int endpoint)
1580 {
1581 	return (dev->devnum << 8) | (endpoint << 15);
1582 }
1583 
1584 /* Create various pipes... */
1585 #define usb_sndctrlpipe(dev,endpoint)	\
1586 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1587 #define usb_rcvctrlpipe(dev,endpoint)	\
1588 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1589 #define usb_sndisocpipe(dev,endpoint)	\
1590 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1591 #define usb_rcvisocpipe(dev,endpoint)	\
1592 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1593 #define usb_sndbulkpipe(dev,endpoint)	\
1594 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1595 #define usb_rcvbulkpipe(dev,endpoint)	\
1596 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1597 #define usb_sndintpipe(dev,endpoint)	\
1598 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1599 #define usb_rcvintpipe(dev,endpoint)	\
1600 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1601 
1602 /*-------------------------------------------------------------------------*/
1603 
1604 static inline __u16
1605 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1606 {
1607 	struct usb_host_endpoint	*ep;
1608 	unsigned			epnum = usb_pipeendpoint(pipe);
1609 
1610 	if (is_out) {
1611 		WARN_ON(usb_pipein(pipe));
1612 		ep = udev->ep_out[epnum];
1613 	} else {
1614 		WARN_ON(usb_pipeout(pipe));
1615 		ep = udev->ep_in[epnum];
1616 	}
1617 	if (!ep)
1618 		return 0;
1619 
1620 	/* NOTE:  only 0x07ff bits are for packet size... */
1621 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1622 }
1623 
1624 /* ----------------------------------------------------------------------- */
1625 
1626 /* Events from the usb core */
1627 #define USB_DEVICE_ADD		0x0001
1628 #define USB_DEVICE_REMOVE	0x0002
1629 #define USB_BUS_ADD		0x0003
1630 #define USB_BUS_REMOVE		0x0004
1631 extern void usb_register_notify(struct notifier_block *nb);
1632 extern void usb_unregister_notify(struct notifier_block *nb);
1633 
1634 #ifdef DEBUG
1635 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1636 	__FILE__ , ## arg)
1637 #else
1638 #define dbg(format, arg...) do {} while (0)
1639 #endif
1640 
1641 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1642 	__FILE__ , ## arg)
1643 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1644 	__FILE__ , ## arg)
1645 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1646 	__FILE__ , ## arg)
1647 
1648 
1649 #endif  /* __KERNEL__ */
1650 
1651 #endif
1652