1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb/ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/errno.h> /* for -ENODEV */ 14 #include <linux/delay.h> /* for mdelay() */ 15 #include <linux/interrupt.h> /* for in_interrupt() */ 16 #include <linux/list.h> /* for struct list_head */ 17 #include <linux/kref.h> /* for struct kref */ 18 #include <linux/device.h> /* for struct device */ 19 #include <linux/fs.h> /* for struct file_operations */ 20 #include <linux/completion.h> /* for struct completion */ 21 #include <linux/sched.h> /* for current && schedule_timeout */ 22 #include <linux/mutex.h> /* for struct mutex */ 23 24 struct usb_device; 25 struct usb_driver; 26 struct wusb_dev; 27 28 /*-------------------------------------------------------------------------*/ 29 30 /* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * - a SuperSpeed endpoint has a companion descriptor 40 * 41 * And there might be other descriptors mixed in with those. 42 * 43 * Devices may also have class-specific or vendor-specific descriptors. 44 */ 45 46 struct ep_device; 47 48 /* For SS devices */ 49 /** 50 * struct usb_host_ss_ep_comp - Valid for SuperSpeed devices only 51 * @desc: endpoint companion descriptor, wMaxPacketSize in native byteorder 52 * @extra: descriptors following this endpoint companion descriptor 53 * @extralen: how many bytes of "extra" are valid 54 */ 55 struct usb_host_ss_ep_comp { 56 struct usb_ss_ep_comp_descriptor desc; 57 unsigned char *extra; /* Extra descriptors */ 58 int extralen; 59 }; 60 61 /** 62 * struct usb_host_endpoint - host-side endpoint descriptor and queue 63 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 64 * @urb_list: urbs queued to this endpoint; maintained by usbcore 65 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 66 * with one or more transfer descriptors (TDs) per urb 67 * @ep_dev: ep_device for sysfs info 68 * @ss_ep_comp: companion descriptor information for this endpoint 69 * @extra: descriptors following this endpoint in the configuration 70 * @extralen: how many bytes of "extra" are valid 71 * @enabled: URBs may be submitted to this endpoint 72 * 73 * USB requests are always queued to a given endpoint, identified by a 74 * descriptor within an active interface in a given USB configuration. 75 */ 76 struct usb_host_endpoint { 77 struct usb_endpoint_descriptor desc; 78 struct list_head urb_list; 79 void *hcpriv; 80 struct ep_device *ep_dev; /* For sysfs info */ 81 struct usb_host_ss_ep_comp *ss_ep_comp; /* For SS devices */ 82 83 unsigned char *extra; /* Extra descriptors */ 84 int extralen; 85 int enabled; 86 }; 87 88 /* host-side wrapper for one interface setting's parsed descriptors */ 89 struct usb_host_interface { 90 struct usb_interface_descriptor desc; 91 92 /* array of desc.bNumEndpoint endpoints associated with this 93 * interface setting. these will be in no particular order. 94 */ 95 struct usb_host_endpoint *endpoint; 96 97 char *string; /* iInterface string, if present */ 98 unsigned char *extra; /* Extra descriptors */ 99 int extralen; 100 }; 101 102 enum usb_interface_condition { 103 USB_INTERFACE_UNBOUND = 0, 104 USB_INTERFACE_BINDING, 105 USB_INTERFACE_BOUND, 106 USB_INTERFACE_UNBINDING, 107 }; 108 109 /** 110 * struct usb_interface - what usb device drivers talk to 111 * @altsetting: array of interface structures, one for each alternate 112 * setting that may be selected. Each one includes a set of 113 * endpoint configurations. They will be in no particular order. 114 * @cur_altsetting: the current altsetting. 115 * @num_altsetting: number of altsettings defined. 116 * @intf_assoc: interface association descriptor 117 * @minor: the minor number assigned to this interface, if this 118 * interface is bound to a driver that uses the USB major number. 119 * If this interface does not use the USB major, this field should 120 * be unused. The driver should set this value in the probe() 121 * function of the driver, after it has been assigned a minor 122 * number from the USB core by calling usb_register_dev(). 123 * @condition: binding state of the interface: not bound, binding 124 * (in probe()), bound to a driver, or unbinding (in disconnect()) 125 * @is_active: flag set when the interface is bound and not suspended. 126 * @sysfs_files_created: sysfs attributes exist 127 * @ep_devs_created: endpoint child pseudo-devices exist 128 * @unregistering: flag set when the interface is being unregistered 129 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 130 * capability during autosuspend. 131 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 132 * has been deferred. 133 * @needs_binding: flag set when the driver should be re-probed or unbound 134 * following a reset or suspend operation it doesn't support. 135 * @dev: driver model's view of this device 136 * @usb_dev: if an interface is bound to the USB major, this will point 137 * to the sysfs representation for that device. 138 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 139 * allowed unless the counter is 0. 140 * @reset_ws: Used for scheduling resets from atomic context. 141 * @reset_running: set to 1 if the interface is currently running a 142 * queued reset so that usb_cancel_queued_reset() doesn't try to 143 * remove from the workqueue when running inside the worker 144 * thread. See __usb_queue_reset_device(). 145 * 146 * USB device drivers attach to interfaces on a physical device. Each 147 * interface encapsulates a single high level function, such as feeding 148 * an audio stream to a speaker or reporting a change in a volume control. 149 * Many USB devices only have one interface. The protocol used to talk to 150 * an interface's endpoints can be defined in a usb "class" specification, 151 * or by a product's vendor. The (default) control endpoint is part of 152 * every interface, but is never listed among the interface's descriptors. 153 * 154 * The driver that is bound to the interface can use standard driver model 155 * calls such as dev_get_drvdata() on the dev member of this structure. 156 * 157 * Each interface may have alternate settings. The initial configuration 158 * of a device sets altsetting 0, but the device driver can change 159 * that setting using usb_set_interface(). Alternate settings are often 160 * used to control the use of periodic endpoints, such as by having 161 * different endpoints use different amounts of reserved USB bandwidth. 162 * All standards-conformant USB devices that use isochronous endpoints 163 * will use them in non-default settings. 164 * 165 * The USB specification says that alternate setting numbers must run from 166 * 0 to one less than the total number of alternate settings. But some 167 * devices manage to mess this up, and the structures aren't necessarily 168 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 169 * look up an alternate setting in the altsetting array based on its number. 170 */ 171 struct usb_interface { 172 /* array of alternate settings for this interface, 173 * stored in no particular order */ 174 struct usb_host_interface *altsetting; 175 176 struct usb_host_interface *cur_altsetting; /* the currently 177 * active alternate setting */ 178 unsigned num_altsetting; /* number of alternate settings */ 179 180 /* If there is an interface association descriptor then it will list 181 * the associated interfaces */ 182 struct usb_interface_assoc_descriptor *intf_assoc; 183 184 int minor; /* minor number this interface is 185 * bound to */ 186 enum usb_interface_condition condition; /* state of binding */ 187 unsigned is_active:1; /* the interface is not suspended */ 188 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 189 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 190 unsigned unregistering:1; /* unregistration is in progress */ 191 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 192 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 193 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 194 unsigned reset_running:1; 195 196 struct device dev; /* interface specific device info */ 197 struct device *usb_dev; 198 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 199 struct work_struct reset_ws; /* for resets in atomic context */ 200 }; 201 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 202 #define interface_to_usbdev(intf) \ 203 container_of(intf->dev.parent, struct usb_device, dev) 204 205 static inline void *usb_get_intfdata(struct usb_interface *intf) 206 { 207 return dev_get_drvdata(&intf->dev); 208 } 209 210 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 211 { 212 dev_set_drvdata(&intf->dev, data); 213 } 214 215 struct usb_interface *usb_get_intf(struct usb_interface *intf); 216 void usb_put_intf(struct usb_interface *intf); 217 218 /* this maximum is arbitrary */ 219 #define USB_MAXINTERFACES 32 220 #define USB_MAXIADS USB_MAXINTERFACES/2 221 222 /** 223 * struct usb_interface_cache - long-term representation of a device interface 224 * @num_altsetting: number of altsettings defined. 225 * @ref: reference counter. 226 * @altsetting: variable-length array of interface structures, one for 227 * each alternate setting that may be selected. Each one includes a 228 * set of endpoint configurations. They will be in no particular order. 229 * 230 * These structures persist for the lifetime of a usb_device, unlike 231 * struct usb_interface (which persists only as long as its configuration 232 * is installed). The altsetting arrays can be accessed through these 233 * structures at any time, permitting comparison of configurations and 234 * providing support for the /proc/bus/usb/devices pseudo-file. 235 */ 236 struct usb_interface_cache { 237 unsigned num_altsetting; /* number of alternate settings */ 238 struct kref ref; /* reference counter */ 239 240 /* variable-length array of alternate settings for this interface, 241 * stored in no particular order */ 242 struct usb_host_interface altsetting[0]; 243 }; 244 #define ref_to_usb_interface_cache(r) \ 245 container_of(r, struct usb_interface_cache, ref) 246 #define altsetting_to_usb_interface_cache(a) \ 247 container_of(a, struct usb_interface_cache, altsetting[0]) 248 249 /** 250 * struct usb_host_config - representation of a device's configuration 251 * @desc: the device's configuration descriptor. 252 * @string: pointer to the cached version of the iConfiguration string, if 253 * present for this configuration. 254 * @intf_assoc: list of any interface association descriptors in this config 255 * @interface: array of pointers to usb_interface structures, one for each 256 * interface in the configuration. The number of interfaces is stored 257 * in desc.bNumInterfaces. These pointers are valid only while the 258 * the configuration is active. 259 * @intf_cache: array of pointers to usb_interface_cache structures, one 260 * for each interface in the configuration. These structures exist 261 * for the entire life of the device. 262 * @extra: pointer to buffer containing all extra descriptors associated 263 * with this configuration (those preceding the first interface 264 * descriptor). 265 * @extralen: length of the extra descriptors buffer. 266 * 267 * USB devices may have multiple configurations, but only one can be active 268 * at any time. Each encapsulates a different operational environment; 269 * for example, a dual-speed device would have separate configurations for 270 * full-speed and high-speed operation. The number of configurations 271 * available is stored in the device descriptor as bNumConfigurations. 272 * 273 * A configuration can contain multiple interfaces. Each corresponds to 274 * a different function of the USB device, and all are available whenever 275 * the configuration is active. The USB standard says that interfaces 276 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 277 * of devices get this wrong. In addition, the interface array is not 278 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 279 * look up an interface entry based on its number. 280 * 281 * Device drivers should not attempt to activate configurations. The choice 282 * of which configuration to install is a policy decision based on such 283 * considerations as available power, functionality provided, and the user's 284 * desires (expressed through userspace tools). However, drivers can call 285 * usb_reset_configuration() to reinitialize the current configuration and 286 * all its interfaces. 287 */ 288 struct usb_host_config { 289 struct usb_config_descriptor desc; 290 291 char *string; /* iConfiguration string, if present */ 292 293 /* List of any Interface Association Descriptors in this 294 * configuration. */ 295 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 296 297 /* the interfaces associated with this configuration, 298 * stored in no particular order */ 299 struct usb_interface *interface[USB_MAXINTERFACES]; 300 301 /* Interface information available even when this is not the 302 * active configuration */ 303 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 304 305 unsigned char *extra; /* Extra descriptors */ 306 int extralen; 307 }; 308 309 int __usb_get_extra_descriptor(char *buffer, unsigned size, 310 unsigned char type, void **ptr); 311 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 312 __usb_get_extra_descriptor((ifpoint)->extra, \ 313 (ifpoint)->extralen, \ 314 type, (void **)ptr) 315 316 /* ----------------------------------------------------------------------- */ 317 318 /* USB device number allocation bitmap */ 319 struct usb_devmap { 320 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 321 }; 322 323 /* 324 * Allocated per bus (tree of devices) we have: 325 */ 326 struct usb_bus { 327 struct device *controller; /* host/master side hardware */ 328 int busnum; /* Bus number (in order of reg) */ 329 const char *bus_name; /* stable id (PCI slot_name etc) */ 330 u8 uses_dma; /* Does the host controller use DMA? */ 331 u8 otg_port; /* 0, or number of OTG/HNP port */ 332 unsigned is_b_host:1; /* true during some HNP roleswitches */ 333 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 334 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 335 336 int devnum_next; /* Next open device number in 337 * round-robin allocation */ 338 339 struct usb_devmap devmap; /* device address allocation map */ 340 struct usb_device *root_hub; /* Root hub */ 341 struct list_head bus_list; /* list of busses */ 342 343 int bandwidth_allocated; /* on this bus: how much of the time 344 * reserved for periodic (intr/iso) 345 * requests is used, on average? 346 * Units: microseconds/frame. 347 * Limits: Full/low speed reserve 90%, 348 * while high speed reserves 80%. 349 */ 350 int bandwidth_int_reqs; /* number of Interrupt requests */ 351 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 352 353 #ifdef CONFIG_USB_DEVICEFS 354 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 355 #endif 356 357 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 358 struct mon_bus *mon_bus; /* non-null when associated */ 359 int monitored; /* non-zero when monitored */ 360 #endif 361 }; 362 363 /* ----------------------------------------------------------------------- */ 364 365 /* This is arbitrary. 366 * From USB 2.0 spec Table 11-13, offset 7, a hub can 367 * have up to 255 ports. The most yet reported is 10. 368 * 369 * Current Wireless USB host hardware (Intel i1480 for example) allows 370 * up to 22 devices to connect. Upcoming hardware might raise that 371 * limit. Because the arrays need to add a bit for hub status data, we 372 * do 31, so plus one evens out to four bytes. 373 */ 374 #define USB_MAXCHILDREN (31) 375 376 struct usb_tt; 377 378 /** 379 * struct usb_device - kernel's representation of a USB device 380 * @devnum: device number; address on a USB bus 381 * @devpath: device ID string for use in messages (e.g., /port/...) 382 * @route: tree topology hex string for use with xHCI 383 * @state: device state: configured, not attached, etc. 384 * @speed: device speed: high/full/low (or error) 385 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 386 * @ttport: device port on that tt hub 387 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 388 * @parent: our hub, unless we're the root 389 * @bus: bus we're part of 390 * @ep0: endpoint 0 data (default control pipe) 391 * @dev: generic device interface 392 * @descriptor: USB device descriptor 393 * @config: all of the device's configs 394 * @actconfig: the active configuration 395 * @ep_in: array of IN endpoints 396 * @ep_out: array of OUT endpoints 397 * @rawdescriptors: raw descriptors for each config 398 * @bus_mA: Current available from the bus 399 * @portnum: parent port number (origin 1) 400 * @level: number of USB hub ancestors 401 * @can_submit: URBs may be submitted 402 * @discon_suspended: disconnected while suspended 403 * @persist_enabled: USB_PERSIST enabled for this device 404 * @have_langid: whether string_langid is valid 405 * @authorized: policy has said we can use it; 406 * (user space) policy determines if we authorize this device to be 407 * used or not. By default, wired USB devices are authorized. 408 * WUSB devices are not, until we authorize them from user space. 409 * FIXME -- complete doc 410 * @authenticated: Crypto authentication passed 411 * @wusb: device is Wireless USB 412 * @string_langid: language ID for strings 413 * @product: iProduct string, if present (static) 414 * @manufacturer: iManufacturer string, if present (static) 415 * @serial: iSerialNumber string, if present (static) 416 * @filelist: usbfs files that are open to this device 417 * @usb_classdev: USB class device that was created for usbfs device 418 * access from userspace 419 * @usbfs_dentry: usbfs dentry entry for the device 420 * @maxchild: number of ports if hub 421 * @children: child devices - USB devices that are attached to this hub 422 * @pm_usage_cnt: usage counter for autosuspend 423 * @quirks: quirks of the whole device 424 * @urbnum: number of URBs submitted for the whole device 425 * @active_duration: total time device is not suspended 426 * @autosuspend: for delayed autosuspends 427 * @autoresume: for autoresumes requested while in_interrupt 428 * @pm_mutex: protects PM operations 429 * @last_busy: time of last use 430 * @autosuspend_delay: in jiffies 431 * @connect_time: time device was first connected 432 * @do_remote_wakeup: remote wakeup should be enabled 433 * @reset_resume: needs reset instead of resume 434 * @autosuspend_disabled: autosuspend disabled by the user 435 * @skip_sys_resume: skip the next system resume 436 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 437 * specific data for the device. 438 * @slot_id: Slot ID assigned by xHCI 439 * 440 * Notes: 441 * Usbcore drivers should not set usbdev->state directly. Instead use 442 * usb_set_device_state(). 443 */ 444 struct usb_device { 445 int devnum; 446 char devpath [16]; 447 u32 route; 448 enum usb_device_state state; 449 enum usb_device_speed speed; 450 451 struct usb_tt *tt; 452 int ttport; 453 454 unsigned int toggle[2]; 455 456 struct usb_device *parent; 457 struct usb_bus *bus; 458 struct usb_host_endpoint ep0; 459 460 struct device dev; 461 462 struct usb_device_descriptor descriptor; 463 struct usb_host_config *config; 464 465 struct usb_host_config *actconfig; 466 struct usb_host_endpoint *ep_in[16]; 467 struct usb_host_endpoint *ep_out[16]; 468 469 char **rawdescriptors; 470 471 unsigned short bus_mA; 472 u8 portnum; 473 u8 level; 474 475 unsigned can_submit:1; 476 unsigned discon_suspended:1; 477 unsigned persist_enabled:1; 478 unsigned have_langid:1; 479 unsigned authorized:1; 480 unsigned authenticated:1; 481 unsigned wusb:1; 482 int string_langid; 483 484 /* static strings from the device */ 485 char *product; 486 char *manufacturer; 487 char *serial; 488 489 struct list_head filelist; 490 #ifdef CONFIG_USB_DEVICE_CLASS 491 struct device *usb_classdev; 492 #endif 493 #ifdef CONFIG_USB_DEVICEFS 494 struct dentry *usbfs_dentry; 495 #endif 496 497 int maxchild; 498 struct usb_device *children[USB_MAXCHILDREN]; 499 500 int pm_usage_cnt; 501 u32 quirks; 502 atomic_t urbnum; 503 504 unsigned long active_duration; 505 506 #ifdef CONFIG_PM 507 struct delayed_work autosuspend; 508 struct work_struct autoresume; 509 struct mutex pm_mutex; 510 511 unsigned long last_busy; 512 int autosuspend_delay; 513 unsigned long connect_time; 514 515 unsigned do_remote_wakeup:1; 516 unsigned reset_resume:1; 517 unsigned autosuspend_disabled:1; 518 unsigned skip_sys_resume:1; 519 #endif 520 struct wusb_dev *wusb_dev; 521 int slot_id; 522 }; 523 #define to_usb_device(d) container_of(d, struct usb_device, dev) 524 525 extern struct usb_device *usb_get_dev(struct usb_device *dev); 526 extern void usb_put_dev(struct usb_device *dev); 527 528 /* USB device locking */ 529 #define usb_lock_device(udev) down(&(udev)->dev.sem) 530 #define usb_unlock_device(udev) up(&(udev)->dev.sem) 531 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 532 extern int usb_lock_device_for_reset(struct usb_device *udev, 533 const struct usb_interface *iface); 534 535 /* USB port reset for device reinitialization */ 536 extern int usb_reset_device(struct usb_device *dev); 537 extern void usb_queue_reset_device(struct usb_interface *dev); 538 539 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 540 541 /* USB autosuspend and autoresume */ 542 #ifdef CONFIG_USB_SUSPEND 543 extern int usb_autopm_get_interface(struct usb_interface *intf); 544 extern void usb_autopm_put_interface(struct usb_interface *intf); 545 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 546 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 547 548 static inline void usb_autopm_get_interface_no_resume( 549 struct usb_interface *intf) 550 { 551 atomic_inc(&intf->pm_usage_cnt); 552 } 553 static inline void usb_autopm_put_interface_no_suspend( 554 struct usb_interface *intf) 555 { 556 atomic_dec(&intf->pm_usage_cnt); 557 } 558 559 static inline void usb_mark_last_busy(struct usb_device *udev) 560 { 561 udev->last_busy = jiffies; 562 } 563 564 #else 565 566 static inline int usb_autopm_get_interface(struct usb_interface *intf) 567 { return 0; } 568 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 569 { return 0; } 570 571 static inline void usb_autopm_put_interface(struct usb_interface *intf) 572 { } 573 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 574 { } 575 static inline void usb_autopm_get_interface_no_resume( 576 struct usb_interface *intf) 577 { } 578 static inline void usb_autopm_put_interface_no_suspend( 579 struct usb_interface *intf) 580 { } 581 static inline void usb_mark_last_busy(struct usb_device *udev) 582 { } 583 #endif 584 585 /*-------------------------------------------------------------------------*/ 586 587 /* for drivers using iso endpoints */ 588 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 589 590 /* used these for multi-interface device registration */ 591 extern int usb_driver_claim_interface(struct usb_driver *driver, 592 struct usb_interface *iface, void *priv); 593 594 /** 595 * usb_interface_claimed - returns true iff an interface is claimed 596 * @iface: the interface being checked 597 * 598 * Returns true (nonzero) iff the interface is claimed, else false (zero). 599 * Callers must own the driver model's usb bus readlock. So driver 600 * probe() entries don't need extra locking, but other call contexts 601 * may need to explicitly claim that lock. 602 * 603 */ 604 static inline int usb_interface_claimed(struct usb_interface *iface) 605 { 606 return (iface->dev.driver != NULL); 607 } 608 609 extern void usb_driver_release_interface(struct usb_driver *driver, 610 struct usb_interface *iface); 611 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 612 const struct usb_device_id *id); 613 extern int usb_match_one_id(struct usb_interface *interface, 614 const struct usb_device_id *id); 615 616 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 617 int minor); 618 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 619 unsigned ifnum); 620 extern struct usb_host_interface *usb_altnum_to_altsetting( 621 const struct usb_interface *intf, unsigned int altnum); 622 extern struct usb_host_interface *usb_find_alt_setting( 623 struct usb_host_config *config, 624 unsigned int iface_num, 625 unsigned int alt_num); 626 627 628 /** 629 * usb_make_path - returns stable device path in the usb tree 630 * @dev: the device whose path is being constructed 631 * @buf: where to put the string 632 * @size: how big is "buf"? 633 * 634 * Returns length of the string (> 0) or negative if size was too small. 635 * 636 * This identifier is intended to be "stable", reflecting physical paths in 637 * hardware such as physical bus addresses for host controllers or ports on 638 * USB hubs. That makes it stay the same until systems are physically 639 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 640 * controllers. Adding and removing devices, including virtual root hubs 641 * in host controller driver modules, does not change these path identifers; 642 * neither does rebooting or re-enumerating. These are more useful identifiers 643 * than changeable ("unstable") ones like bus numbers or device addresses. 644 * 645 * With a partial exception for devices connected to USB 2.0 root hubs, these 646 * identifiers are also predictable. So long as the device tree isn't changed, 647 * plugging any USB device into a given hub port always gives it the same path. 648 * Because of the use of "companion" controllers, devices connected to ports on 649 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 650 * high speed, and a different one if they are full or low speed. 651 */ 652 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 653 { 654 int actual; 655 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 656 dev->devpath); 657 return (actual >= (int)size) ? -1 : actual; 658 } 659 660 /*-------------------------------------------------------------------------*/ 661 662 #define USB_DEVICE_ID_MATCH_DEVICE \ 663 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 664 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 665 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 666 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 667 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 668 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 669 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 670 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 671 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 672 #define USB_DEVICE_ID_MATCH_INT_INFO \ 673 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 674 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 675 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 676 677 /** 678 * USB_DEVICE - macro used to describe a specific usb device 679 * @vend: the 16 bit USB Vendor ID 680 * @prod: the 16 bit USB Product ID 681 * 682 * This macro is used to create a struct usb_device_id that matches a 683 * specific device. 684 */ 685 #define USB_DEVICE(vend,prod) \ 686 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 687 .idVendor = (vend), \ 688 .idProduct = (prod) 689 /** 690 * USB_DEVICE_VER - describe a specific usb device with a version range 691 * @vend: the 16 bit USB Vendor ID 692 * @prod: the 16 bit USB Product ID 693 * @lo: the bcdDevice_lo value 694 * @hi: the bcdDevice_hi value 695 * 696 * This macro is used to create a struct usb_device_id that matches a 697 * specific device, with a version range. 698 */ 699 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 700 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 701 .idVendor = (vend), \ 702 .idProduct = (prod), \ 703 .bcdDevice_lo = (lo), \ 704 .bcdDevice_hi = (hi) 705 706 /** 707 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 708 * @vend: the 16 bit USB Vendor ID 709 * @prod: the 16 bit USB Product ID 710 * @pr: bInterfaceProtocol value 711 * 712 * This macro is used to create a struct usb_device_id that matches a 713 * specific interface protocol of devices. 714 */ 715 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 716 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 717 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 718 .idVendor = (vend), \ 719 .idProduct = (prod), \ 720 .bInterfaceProtocol = (pr) 721 722 /** 723 * USB_DEVICE_INFO - macro used to describe a class of usb devices 724 * @cl: bDeviceClass value 725 * @sc: bDeviceSubClass value 726 * @pr: bDeviceProtocol value 727 * 728 * This macro is used to create a struct usb_device_id that matches a 729 * specific class of devices. 730 */ 731 #define USB_DEVICE_INFO(cl, sc, pr) \ 732 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 733 .bDeviceClass = (cl), \ 734 .bDeviceSubClass = (sc), \ 735 .bDeviceProtocol = (pr) 736 737 /** 738 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 739 * @cl: bInterfaceClass value 740 * @sc: bInterfaceSubClass value 741 * @pr: bInterfaceProtocol value 742 * 743 * This macro is used to create a struct usb_device_id that matches a 744 * specific class of interfaces. 745 */ 746 #define USB_INTERFACE_INFO(cl, sc, pr) \ 747 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 748 .bInterfaceClass = (cl), \ 749 .bInterfaceSubClass = (sc), \ 750 .bInterfaceProtocol = (pr) 751 752 /** 753 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 754 * @vend: the 16 bit USB Vendor ID 755 * @prod: the 16 bit USB Product ID 756 * @cl: bInterfaceClass value 757 * @sc: bInterfaceSubClass value 758 * @pr: bInterfaceProtocol value 759 * 760 * This macro is used to create a struct usb_device_id that matches a 761 * specific device with a specific class of interfaces. 762 * 763 * This is especially useful when explicitly matching devices that have 764 * vendor specific bDeviceClass values, but standards-compliant interfaces. 765 */ 766 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 767 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 768 | USB_DEVICE_ID_MATCH_DEVICE, \ 769 .idVendor = (vend), \ 770 .idProduct = (prod), \ 771 .bInterfaceClass = (cl), \ 772 .bInterfaceSubClass = (sc), \ 773 .bInterfaceProtocol = (pr) 774 775 /* ----------------------------------------------------------------------- */ 776 777 /* Stuff for dynamic usb ids */ 778 struct usb_dynids { 779 spinlock_t lock; 780 struct list_head list; 781 }; 782 783 struct usb_dynid { 784 struct list_head node; 785 struct usb_device_id id; 786 }; 787 788 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 789 struct device_driver *driver, 790 const char *buf, size_t count); 791 792 /** 793 * struct usbdrv_wrap - wrapper for driver-model structure 794 * @driver: The driver-model core driver structure. 795 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 796 */ 797 struct usbdrv_wrap { 798 struct device_driver driver; 799 int for_devices; 800 }; 801 802 /** 803 * struct usb_driver - identifies USB interface driver to usbcore 804 * @name: The driver name should be unique among USB drivers, 805 * and should normally be the same as the module name. 806 * @probe: Called to see if the driver is willing to manage a particular 807 * interface on a device. If it is, probe returns zero and uses 808 * usb_set_intfdata() to associate driver-specific data with the 809 * interface. It may also use usb_set_interface() to specify the 810 * appropriate altsetting. If unwilling to manage the interface, 811 * return -ENODEV, if genuine IO errors occured, an appropriate 812 * negative errno value. 813 * @disconnect: Called when the interface is no longer accessible, usually 814 * because its device has been (or is being) disconnected or the 815 * driver module is being unloaded. 816 * @ioctl: Used for drivers that want to talk to userspace through 817 * the "usbfs" filesystem. This lets devices provide ways to 818 * expose information to user space regardless of where they 819 * do (or don't) show up otherwise in the filesystem. 820 * @suspend: Called when the device is going to be suspended by the system. 821 * @resume: Called when the device is being resumed by the system. 822 * @reset_resume: Called when the suspended device has been reset instead 823 * of being resumed. 824 * @pre_reset: Called by usb_reset_device() when the device 825 * is about to be reset. 826 * @post_reset: Called by usb_reset_device() after the device 827 * has been reset 828 * @id_table: USB drivers use ID table to support hotplugging. 829 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 830 * or your driver's probe function will never get called. 831 * @dynids: used internally to hold the list of dynamically added device 832 * ids for this driver. 833 * @drvwrap: Driver-model core structure wrapper. 834 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 835 * added to this driver by preventing the sysfs file from being created. 836 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 837 * for interfaces bound to this driver. 838 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 839 * endpoints before calling the driver's disconnect method. 840 * 841 * USB interface drivers must provide a name, probe() and disconnect() 842 * methods, and an id_table. Other driver fields are optional. 843 * 844 * The id_table is used in hotplugging. It holds a set of descriptors, 845 * and specialized data may be associated with each entry. That table 846 * is used by both user and kernel mode hotplugging support. 847 * 848 * The probe() and disconnect() methods are called in a context where 849 * they can sleep, but they should avoid abusing the privilege. Most 850 * work to connect to a device should be done when the device is opened, 851 * and undone at the last close. The disconnect code needs to address 852 * concurrency issues with respect to open() and close() methods, as 853 * well as forcing all pending I/O requests to complete (by unlinking 854 * them as necessary, and blocking until the unlinks complete). 855 */ 856 struct usb_driver { 857 const char *name; 858 859 int (*probe) (struct usb_interface *intf, 860 const struct usb_device_id *id); 861 862 void (*disconnect) (struct usb_interface *intf); 863 864 int (*ioctl) (struct usb_interface *intf, unsigned int code, 865 void *buf); 866 867 int (*suspend) (struct usb_interface *intf, pm_message_t message); 868 int (*resume) (struct usb_interface *intf); 869 int (*reset_resume)(struct usb_interface *intf); 870 871 int (*pre_reset)(struct usb_interface *intf); 872 int (*post_reset)(struct usb_interface *intf); 873 874 const struct usb_device_id *id_table; 875 876 struct usb_dynids dynids; 877 struct usbdrv_wrap drvwrap; 878 unsigned int no_dynamic_id:1; 879 unsigned int supports_autosuspend:1; 880 unsigned int soft_unbind:1; 881 }; 882 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 883 884 /** 885 * struct usb_device_driver - identifies USB device driver to usbcore 886 * @name: The driver name should be unique among USB drivers, 887 * and should normally be the same as the module name. 888 * @probe: Called to see if the driver is willing to manage a particular 889 * device. If it is, probe returns zero and uses dev_set_drvdata() 890 * to associate driver-specific data with the device. If unwilling 891 * to manage the device, return a negative errno value. 892 * @disconnect: Called when the device is no longer accessible, usually 893 * because it has been (or is being) disconnected or the driver's 894 * module is being unloaded. 895 * @suspend: Called when the device is going to be suspended by the system. 896 * @resume: Called when the device is being resumed by the system. 897 * @drvwrap: Driver-model core structure wrapper. 898 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 899 * for devices bound to this driver. 900 * 901 * USB drivers must provide all the fields listed above except drvwrap. 902 */ 903 struct usb_device_driver { 904 const char *name; 905 906 int (*probe) (struct usb_device *udev); 907 void (*disconnect) (struct usb_device *udev); 908 909 int (*suspend) (struct usb_device *udev, pm_message_t message); 910 int (*resume) (struct usb_device *udev, pm_message_t message); 911 struct usbdrv_wrap drvwrap; 912 unsigned int supports_autosuspend:1; 913 }; 914 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 915 drvwrap.driver) 916 917 extern struct bus_type usb_bus_type; 918 919 /** 920 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 921 * @name: the usb class device name for this driver. Will show up in sysfs. 922 * @devnode: Callback to provide a naming hint for a possible 923 * device node to create. 924 * @fops: pointer to the struct file_operations of this driver. 925 * @minor_base: the start of the minor range for this driver. 926 * 927 * This structure is used for the usb_register_dev() and 928 * usb_unregister_dev() functions, to consolidate a number of the 929 * parameters used for them. 930 */ 931 struct usb_class_driver { 932 char *name; 933 char *(*devnode)(struct device *dev, mode_t *mode); 934 const struct file_operations *fops; 935 int minor_base; 936 }; 937 938 /* 939 * use these in module_init()/module_exit() 940 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 941 */ 942 extern int usb_register_driver(struct usb_driver *, struct module *, 943 const char *); 944 static inline int usb_register(struct usb_driver *driver) 945 { 946 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 947 } 948 extern void usb_deregister(struct usb_driver *); 949 950 extern int usb_register_device_driver(struct usb_device_driver *, 951 struct module *); 952 extern void usb_deregister_device_driver(struct usb_device_driver *); 953 954 extern int usb_register_dev(struct usb_interface *intf, 955 struct usb_class_driver *class_driver); 956 extern void usb_deregister_dev(struct usb_interface *intf, 957 struct usb_class_driver *class_driver); 958 959 extern int usb_disabled(void); 960 961 /* ----------------------------------------------------------------------- */ 962 963 /* 964 * URB support, for asynchronous request completions 965 */ 966 967 /* 968 * urb->transfer_flags: 969 * 970 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 971 */ 972 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 973 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 974 * ignored */ 975 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 976 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 977 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 978 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 979 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 980 * needed */ 981 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 982 983 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 984 #define URB_DIR_OUT 0 985 #define URB_DIR_MASK URB_DIR_IN 986 987 struct usb_iso_packet_descriptor { 988 unsigned int offset; 989 unsigned int length; /* expected length */ 990 unsigned int actual_length; 991 int status; 992 }; 993 994 struct urb; 995 996 struct usb_anchor { 997 struct list_head urb_list; 998 wait_queue_head_t wait; 999 spinlock_t lock; 1000 unsigned int poisoned:1; 1001 }; 1002 1003 static inline void init_usb_anchor(struct usb_anchor *anchor) 1004 { 1005 INIT_LIST_HEAD(&anchor->urb_list); 1006 init_waitqueue_head(&anchor->wait); 1007 spin_lock_init(&anchor->lock); 1008 } 1009 1010 typedef void (*usb_complete_t)(struct urb *); 1011 1012 /** 1013 * struct urb - USB Request Block 1014 * @urb_list: For use by current owner of the URB. 1015 * @anchor_list: membership in the list of an anchor 1016 * @anchor: to anchor URBs to a common mooring 1017 * @ep: Points to the endpoint's data structure. Will eventually 1018 * replace @pipe. 1019 * @pipe: Holds endpoint number, direction, type, and more. 1020 * Create these values with the eight macros available; 1021 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1022 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1023 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1024 * numbers range from zero to fifteen. Note that "in" endpoint two 1025 * is a different endpoint (and pipe) from "out" endpoint two. 1026 * The current configuration controls the existence, type, and 1027 * maximum packet size of any given endpoint. 1028 * @dev: Identifies the USB device to perform the request. 1029 * @status: This is read in non-iso completion functions to get the 1030 * status of the particular request. ISO requests only use it 1031 * to tell whether the URB was unlinked; detailed status for 1032 * each frame is in the fields of the iso_frame-desc. 1033 * @transfer_flags: A variety of flags may be used to affect how URB 1034 * submission, unlinking, or operation are handled. Different 1035 * kinds of URB can use different flags. 1036 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1037 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1038 * (however, do not leave garbage in transfer_buffer even then). 1039 * This buffer must be suitable for DMA; allocate it with 1040 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1041 * of this buffer will be modified. This buffer is used for the data 1042 * stage of control transfers. 1043 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1044 * the device driver is saying that it provided this DMA address, 1045 * which the host controller driver should use in preference to the 1046 * transfer_buffer. 1047 * @sg: scatter gather buffer list 1048 * @num_sgs: number of entries in the sg list 1049 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1050 * be broken up into chunks according to the current maximum packet 1051 * size for the endpoint, which is a function of the configuration 1052 * and is encoded in the pipe. When the length is zero, neither 1053 * transfer_buffer nor transfer_dma is used. 1054 * @actual_length: This is read in non-iso completion functions, and 1055 * it tells how many bytes (out of transfer_buffer_length) were 1056 * transferred. It will normally be the same as requested, unless 1057 * either an error was reported or a short read was performed. 1058 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1059 * short reads be reported as errors. 1060 * @setup_packet: Only used for control transfers, this points to eight bytes 1061 * of setup data. Control transfers always start by sending this data 1062 * to the device. Then transfer_buffer is read or written, if needed. 1063 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1064 * device driver has provided this DMA address for the setup packet. 1065 * The host controller driver should use this in preference to 1066 * setup_packet, but the HCD may chose to ignore the address if it must 1067 * copy the setup packet into internal structures. Therefore, setup_packet 1068 * must always point to a valid buffer. 1069 * @start_frame: Returns the initial frame for isochronous transfers. 1070 * @number_of_packets: Lists the number of ISO transfer buffers. 1071 * @interval: Specifies the polling interval for interrupt or isochronous 1072 * transfers. The units are frames (milliseconds) for full and low 1073 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1074 * @error_count: Returns the number of ISO transfers that reported errors. 1075 * @context: For use in completion functions. This normally points to 1076 * request-specific driver context. 1077 * @complete: Completion handler. This URB is passed as the parameter to the 1078 * completion function. The completion function may then do what 1079 * it likes with the URB, including resubmitting or freeing it. 1080 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1081 * collect the transfer status for each buffer. 1082 * 1083 * This structure identifies USB transfer requests. URBs must be allocated by 1084 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1085 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1086 * are submitted using usb_submit_urb(), and pending requests may be canceled 1087 * using usb_unlink_urb() or usb_kill_urb(). 1088 * 1089 * Data Transfer Buffers: 1090 * 1091 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1092 * taken from the general page pool. That is provided by transfer_buffer 1093 * (control requests also use setup_packet), and host controller drivers 1094 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1095 * mapping operations can be expensive on some platforms (perhaps using a dma 1096 * bounce buffer or talking to an IOMMU), 1097 * although they're cheap on commodity x86 and ppc hardware. 1098 * 1099 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1100 * which tell the host controller driver that no such mapping is needed since 1101 * the device driver is DMA-aware. For example, a device driver might 1102 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1103 * When these transfer flags are provided, host controller drivers will 1104 * attempt to use the dma addresses found in the transfer_dma and/or 1105 * setup_dma fields rather than determining a dma address themselves. 1106 * 1107 * Note that transfer_buffer must still be set if the controller 1108 * does not support DMA (as indicated by bus.uses_dma) and when talking 1109 * to root hub. If you have to trasfer between highmem zone and the device 1110 * on such controller, create a bounce buffer or bail out with an error. 1111 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1112 * capable, assign NULL to it, so that usbmon knows not to use the value. 1113 * The setup_packet must always be set, so it cannot be located in highmem. 1114 * 1115 * Initialization: 1116 * 1117 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1118 * zero), and complete fields. All URBs must also initialize 1119 * transfer_buffer and transfer_buffer_length. They may provide the 1120 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1121 * to be treated as errors; that flag is invalid for write requests. 1122 * 1123 * Bulk URBs may 1124 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1125 * should always terminate with a short packet, even if it means adding an 1126 * extra zero length packet. 1127 * 1128 * Control URBs must provide a setup_packet. The setup_packet and 1129 * transfer_buffer may each be mapped for DMA or not, independently of 1130 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1131 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1132 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1133 * 1134 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1135 * or, for highspeed devices, 125 microsecond units) 1136 * to poll for transfers. After the URB has been submitted, the interval 1137 * field reflects how the transfer was actually scheduled. 1138 * The polling interval may be more frequent than requested. 1139 * For example, some controllers have a maximum interval of 32 milliseconds, 1140 * while others support intervals of up to 1024 milliseconds. 1141 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1142 * endpoints, as well as high speed interrupt endpoints, the encoding of 1143 * the transfer interval in the endpoint descriptor is logarithmic. 1144 * Device drivers must convert that value to linear units themselves.) 1145 * 1146 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1147 * the host controller to schedule the transfer as soon as bandwidth 1148 * utilization allows, and then set start_frame to reflect the actual frame 1149 * selected during submission. Otherwise drivers must specify the start_frame 1150 * and handle the case where the transfer can't begin then. However, drivers 1151 * won't know how bandwidth is currently allocated, and while they can 1152 * find the current frame using usb_get_current_frame_number () they can't 1153 * know the range for that frame number. (Ranges for frame counter values 1154 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1155 * 1156 * Isochronous URBs have a different data transfer model, in part because 1157 * the quality of service is only "best effort". Callers provide specially 1158 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1159 * at the end. Each such packet is an individual ISO transfer. Isochronous 1160 * URBs are normally queued, submitted by drivers to arrange that 1161 * transfers are at least double buffered, and then explicitly resubmitted 1162 * in completion handlers, so 1163 * that data (such as audio or video) streams at as constant a rate as the 1164 * host controller scheduler can support. 1165 * 1166 * Completion Callbacks: 1167 * 1168 * The completion callback is made in_interrupt(), and one of the first 1169 * things that a completion handler should do is check the status field. 1170 * The status field is provided for all URBs. It is used to report 1171 * unlinked URBs, and status for all non-ISO transfers. It should not 1172 * be examined before the URB is returned to the completion handler. 1173 * 1174 * The context field is normally used to link URBs back to the relevant 1175 * driver or request state. 1176 * 1177 * When the completion callback is invoked for non-isochronous URBs, the 1178 * actual_length field tells how many bytes were transferred. This field 1179 * is updated even when the URB terminated with an error or was unlinked. 1180 * 1181 * ISO transfer status is reported in the status and actual_length fields 1182 * of the iso_frame_desc array, and the number of errors is reported in 1183 * error_count. Completion callbacks for ISO transfers will normally 1184 * (re)submit URBs to ensure a constant transfer rate. 1185 * 1186 * Note that even fields marked "public" should not be touched by the driver 1187 * when the urb is owned by the hcd, that is, since the call to 1188 * usb_submit_urb() till the entry into the completion routine. 1189 */ 1190 struct urb { 1191 /* private: usb core and host controller only fields in the urb */ 1192 struct kref kref; /* reference count of the URB */ 1193 void *hcpriv; /* private data for host controller */ 1194 atomic_t use_count; /* concurrent submissions counter */ 1195 atomic_t reject; /* submissions will fail */ 1196 int unlinked; /* unlink error code */ 1197 1198 /* public: documented fields in the urb that can be used by drivers */ 1199 struct list_head urb_list; /* list head for use by the urb's 1200 * current owner */ 1201 struct list_head anchor_list; /* the URB may be anchored */ 1202 struct usb_anchor *anchor; 1203 struct usb_device *dev; /* (in) pointer to associated device */ 1204 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1205 unsigned int pipe; /* (in) pipe information */ 1206 int status; /* (return) non-ISO status */ 1207 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1208 void *transfer_buffer; /* (in) associated data buffer */ 1209 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1210 struct usb_sg_request *sg; /* (in) scatter gather buffer list */ 1211 int num_sgs; /* (in) number of entries in the sg list */ 1212 u32 transfer_buffer_length; /* (in) data buffer length */ 1213 u32 actual_length; /* (return) actual transfer length */ 1214 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1215 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1216 int start_frame; /* (modify) start frame (ISO) */ 1217 int number_of_packets; /* (in) number of ISO packets */ 1218 int interval; /* (modify) transfer interval 1219 * (INT/ISO) */ 1220 int error_count; /* (return) number of ISO errors */ 1221 void *context; /* (in) context for completion */ 1222 usb_complete_t complete; /* (in) completion routine */ 1223 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1224 /* (in) ISO ONLY */ 1225 }; 1226 1227 /* ----------------------------------------------------------------------- */ 1228 1229 /** 1230 * usb_fill_control_urb - initializes a control urb 1231 * @urb: pointer to the urb to initialize. 1232 * @dev: pointer to the struct usb_device for this urb. 1233 * @pipe: the endpoint pipe 1234 * @setup_packet: pointer to the setup_packet buffer 1235 * @transfer_buffer: pointer to the transfer buffer 1236 * @buffer_length: length of the transfer buffer 1237 * @complete_fn: pointer to the usb_complete_t function 1238 * @context: what to set the urb context to. 1239 * 1240 * Initializes a control urb with the proper information needed to submit 1241 * it to a device. 1242 */ 1243 static inline void usb_fill_control_urb(struct urb *urb, 1244 struct usb_device *dev, 1245 unsigned int pipe, 1246 unsigned char *setup_packet, 1247 void *transfer_buffer, 1248 int buffer_length, 1249 usb_complete_t complete_fn, 1250 void *context) 1251 { 1252 urb->dev = dev; 1253 urb->pipe = pipe; 1254 urb->setup_packet = setup_packet; 1255 urb->transfer_buffer = transfer_buffer; 1256 urb->transfer_buffer_length = buffer_length; 1257 urb->complete = complete_fn; 1258 urb->context = context; 1259 } 1260 1261 /** 1262 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1263 * @urb: pointer to the urb to initialize. 1264 * @dev: pointer to the struct usb_device for this urb. 1265 * @pipe: the endpoint pipe 1266 * @transfer_buffer: pointer to the transfer buffer 1267 * @buffer_length: length of the transfer buffer 1268 * @complete_fn: pointer to the usb_complete_t function 1269 * @context: what to set the urb context to. 1270 * 1271 * Initializes a bulk urb with the proper information needed to submit it 1272 * to a device. 1273 */ 1274 static inline void usb_fill_bulk_urb(struct urb *urb, 1275 struct usb_device *dev, 1276 unsigned int pipe, 1277 void *transfer_buffer, 1278 int buffer_length, 1279 usb_complete_t complete_fn, 1280 void *context) 1281 { 1282 urb->dev = dev; 1283 urb->pipe = pipe; 1284 urb->transfer_buffer = transfer_buffer; 1285 urb->transfer_buffer_length = buffer_length; 1286 urb->complete = complete_fn; 1287 urb->context = context; 1288 } 1289 1290 /** 1291 * usb_fill_int_urb - macro to help initialize a interrupt urb 1292 * @urb: pointer to the urb to initialize. 1293 * @dev: pointer to the struct usb_device for this urb. 1294 * @pipe: the endpoint pipe 1295 * @transfer_buffer: pointer to the transfer buffer 1296 * @buffer_length: length of the transfer buffer 1297 * @complete_fn: pointer to the usb_complete_t function 1298 * @context: what to set the urb context to. 1299 * @interval: what to set the urb interval to, encoded like 1300 * the endpoint descriptor's bInterval value. 1301 * 1302 * Initializes a interrupt urb with the proper information needed to submit 1303 * it to a device. 1304 * Note that high speed interrupt endpoints use a logarithmic encoding of 1305 * the endpoint interval, and express polling intervals in microframes 1306 * (eight per millisecond) rather than in frames (one per millisecond). 1307 */ 1308 static inline void usb_fill_int_urb(struct urb *urb, 1309 struct usb_device *dev, 1310 unsigned int pipe, 1311 void *transfer_buffer, 1312 int buffer_length, 1313 usb_complete_t complete_fn, 1314 void *context, 1315 int interval) 1316 { 1317 urb->dev = dev; 1318 urb->pipe = pipe; 1319 urb->transfer_buffer = transfer_buffer; 1320 urb->transfer_buffer_length = buffer_length; 1321 urb->complete = complete_fn; 1322 urb->context = context; 1323 if (dev->speed == USB_SPEED_HIGH) 1324 urb->interval = 1 << (interval - 1); 1325 else 1326 urb->interval = interval; 1327 urb->start_frame = -1; 1328 } 1329 1330 extern void usb_init_urb(struct urb *urb); 1331 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1332 extern void usb_free_urb(struct urb *urb); 1333 #define usb_put_urb usb_free_urb 1334 extern struct urb *usb_get_urb(struct urb *urb); 1335 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1336 extern int usb_unlink_urb(struct urb *urb); 1337 extern void usb_kill_urb(struct urb *urb); 1338 extern void usb_poison_urb(struct urb *urb); 1339 extern void usb_unpoison_urb(struct urb *urb); 1340 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1341 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1342 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1343 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1344 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1345 extern void usb_unanchor_urb(struct urb *urb); 1346 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1347 unsigned int timeout); 1348 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1349 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1350 extern int usb_anchor_empty(struct usb_anchor *anchor); 1351 1352 /** 1353 * usb_urb_dir_in - check if an URB describes an IN transfer 1354 * @urb: URB to be checked 1355 * 1356 * Returns 1 if @urb describes an IN transfer (device-to-host), 1357 * otherwise 0. 1358 */ 1359 static inline int usb_urb_dir_in(struct urb *urb) 1360 { 1361 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1362 } 1363 1364 /** 1365 * usb_urb_dir_out - check if an URB describes an OUT transfer 1366 * @urb: URB to be checked 1367 * 1368 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1369 * otherwise 0. 1370 */ 1371 static inline int usb_urb_dir_out(struct urb *urb) 1372 { 1373 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1374 } 1375 1376 void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1377 gfp_t mem_flags, dma_addr_t *dma); 1378 void usb_buffer_free(struct usb_device *dev, size_t size, 1379 void *addr, dma_addr_t dma); 1380 1381 #if 0 1382 struct urb *usb_buffer_map(struct urb *urb); 1383 void usb_buffer_dmasync(struct urb *urb); 1384 void usb_buffer_unmap(struct urb *urb); 1385 #endif 1386 1387 struct scatterlist; 1388 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1389 struct scatterlist *sg, int nents); 1390 #if 0 1391 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1392 struct scatterlist *sg, int n_hw_ents); 1393 #endif 1394 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1395 struct scatterlist *sg, int n_hw_ents); 1396 1397 /*-------------------------------------------------------------------* 1398 * SYNCHRONOUS CALL SUPPORT * 1399 *-------------------------------------------------------------------*/ 1400 1401 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1402 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1403 void *data, __u16 size, int timeout); 1404 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1405 void *data, int len, int *actual_length, int timeout); 1406 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1407 void *data, int len, int *actual_length, 1408 int timeout); 1409 1410 /* wrappers around usb_control_msg() for the most common standard requests */ 1411 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1412 unsigned char descindex, void *buf, int size); 1413 extern int usb_get_status(struct usb_device *dev, 1414 int type, int target, void *data); 1415 extern int usb_string(struct usb_device *dev, int index, 1416 char *buf, size_t size); 1417 1418 /* wrappers that also update important state inside usbcore */ 1419 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1420 extern int usb_reset_configuration(struct usb_device *dev); 1421 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1422 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1423 1424 /* this request isn't really synchronous, but it belongs with the others */ 1425 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1426 1427 /* 1428 * timeouts, in milliseconds, used for sending/receiving control messages 1429 * they typically complete within a few frames (msec) after they're issued 1430 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1431 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1432 */ 1433 #define USB_CTRL_GET_TIMEOUT 5000 1434 #define USB_CTRL_SET_TIMEOUT 5000 1435 1436 1437 /** 1438 * struct usb_sg_request - support for scatter/gather I/O 1439 * @status: zero indicates success, else negative errno 1440 * @bytes: counts bytes transferred. 1441 * 1442 * These requests are initialized using usb_sg_init(), and then are used 1443 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1444 * members of the request object aren't for driver access. 1445 * 1446 * The status and bytecount values are valid only after usb_sg_wait() 1447 * returns. If the status is zero, then the bytecount matches the total 1448 * from the request. 1449 * 1450 * After an error completion, drivers may need to clear a halt condition 1451 * on the endpoint. 1452 */ 1453 struct usb_sg_request { 1454 int status; 1455 size_t bytes; 1456 1457 /* private: 1458 * members below are private to usbcore, 1459 * and are not provided for driver access! 1460 */ 1461 spinlock_t lock; 1462 1463 struct usb_device *dev; 1464 int pipe; 1465 struct scatterlist *sg; 1466 int nents; 1467 1468 int entries; 1469 struct urb **urbs; 1470 1471 int count; 1472 struct completion complete; 1473 }; 1474 1475 int usb_sg_init( 1476 struct usb_sg_request *io, 1477 struct usb_device *dev, 1478 unsigned pipe, 1479 unsigned period, 1480 struct scatterlist *sg, 1481 int nents, 1482 size_t length, 1483 gfp_t mem_flags 1484 ); 1485 void usb_sg_cancel(struct usb_sg_request *io); 1486 void usb_sg_wait(struct usb_sg_request *io); 1487 1488 1489 /* ----------------------------------------------------------------------- */ 1490 1491 /* 1492 * For various legacy reasons, Linux has a small cookie that's paired with 1493 * a struct usb_device to identify an endpoint queue. Queue characteristics 1494 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1495 * an unsigned int encoded as: 1496 * 1497 * - direction: bit 7 (0 = Host-to-Device [Out], 1498 * 1 = Device-to-Host [In] ... 1499 * like endpoint bEndpointAddress) 1500 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1501 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1502 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1503 * 10 = control, 11 = bulk) 1504 * 1505 * Given the device address and endpoint descriptor, pipes are redundant. 1506 */ 1507 1508 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1509 /* (yet ... they're the values used by usbfs) */ 1510 #define PIPE_ISOCHRONOUS 0 1511 #define PIPE_INTERRUPT 1 1512 #define PIPE_CONTROL 2 1513 #define PIPE_BULK 3 1514 1515 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1516 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1517 1518 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1519 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1520 1521 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1522 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1523 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1524 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1525 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1526 1527 static inline unsigned int __create_pipe(struct usb_device *dev, 1528 unsigned int endpoint) 1529 { 1530 return (dev->devnum << 8) | (endpoint << 15); 1531 } 1532 1533 /* Create various pipes... */ 1534 #define usb_sndctrlpipe(dev,endpoint) \ 1535 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1536 #define usb_rcvctrlpipe(dev,endpoint) \ 1537 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1538 #define usb_sndisocpipe(dev,endpoint) \ 1539 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1540 #define usb_rcvisocpipe(dev,endpoint) \ 1541 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1542 #define usb_sndbulkpipe(dev,endpoint) \ 1543 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1544 #define usb_rcvbulkpipe(dev,endpoint) \ 1545 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1546 #define usb_sndintpipe(dev,endpoint) \ 1547 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1548 #define usb_rcvintpipe(dev,endpoint) \ 1549 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1550 1551 /*-------------------------------------------------------------------------*/ 1552 1553 static inline __u16 1554 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1555 { 1556 struct usb_host_endpoint *ep; 1557 unsigned epnum = usb_pipeendpoint(pipe); 1558 1559 if (is_out) { 1560 WARN_ON(usb_pipein(pipe)); 1561 ep = udev->ep_out[epnum]; 1562 } else { 1563 WARN_ON(usb_pipeout(pipe)); 1564 ep = udev->ep_in[epnum]; 1565 } 1566 if (!ep) 1567 return 0; 1568 1569 /* NOTE: only 0x07ff bits are for packet size... */ 1570 return le16_to_cpu(ep->desc.wMaxPacketSize); 1571 } 1572 1573 /* ----------------------------------------------------------------------- */ 1574 1575 /* Events from the usb core */ 1576 #define USB_DEVICE_ADD 0x0001 1577 #define USB_DEVICE_REMOVE 0x0002 1578 #define USB_BUS_ADD 0x0003 1579 #define USB_BUS_REMOVE 0x0004 1580 extern void usb_register_notify(struct notifier_block *nb); 1581 extern void usb_unregister_notify(struct notifier_block *nb); 1582 1583 #ifdef DEBUG 1584 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1585 __FILE__ , ## arg) 1586 #else 1587 #define dbg(format, arg...) do {} while (0) 1588 #endif 1589 1590 #define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \ 1591 format "\n" , ## arg) 1592 1593 /* debugfs stuff */ 1594 extern struct dentry *usb_debug_root; 1595 1596 #endif /* __KERNEL__ */ 1597 1598 #endif 1599