1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_USB_H 3 #define __LINUX_USB_H 4 5 #include <linux/mod_devicetable.h> 6 #include <linux/usb/ch9.h> 7 8 #define USB_MAJOR 180 9 #define USB_DEVICE_MAJOR 189 10 11 12 #ifdef __KERNEL__ 13 14 #include <linux/errno.h> /* for -ENODEV */ 15 #include <linux/delay.h> /* for mdelay() */ 16 #include <linux/interrupt.h> /* for in_interrupt() */ 17 #include <linux/list.h> /* for struct list_head */ 18 #include <linux/kref.h> /* for struct kref */ 19 #include <linux/device.h> /* for struct device */ 20 #include <linux/fs.h> /* for struct file_operations */ 21 #include <linux/completion.h> /* for struct completion */ 22 #include <linux/sched.h> /* for current && schedule_timeout */ 23 #include <linux/mutex.h> /* for struct mutex */ 24 #include <linux/pm_runtime.h> /* for runtime PM */ 25 26 struct usb_device; 27 struct usb_driver; 28 29 /*-------------------------------------------------------------------------*/ 30 31 /* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47 struct ep_device; 48 49 /** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 54 * @urb_list: urbs queued to this endpoint; maintained by usbcore 55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 56 * with one or more transfer descriptors (TDs) per urb 57 * @ep_dev: ep_device for sysfs info 58 * @extra: descriptors following this endpoint in the configuration 59 * @extralen: how many bytes of "extra" are valid 60 * @enabled: URBs may be submitted to this endpoint 61 * @streams: number of USB-3 streams allocated on the endpoint 62 * 63 * USB requests are always queued to a given endpoint, identified by a 64 * descriptor within an active interface in a given USB configuration. 65 */ 66 struct usb_host_endpoint { 67 struct usb_endpoint_descriptor desc; 68 struct usb_ss_ep_comp_descriptor ss_ep_comp; 69 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 70 struct list_head urb_list; 71 void *hcpriv; 72 struct ep_device *ep_dev; /* For sysfs info */ 73 74 unsigned char *extra; /* Extra descriptors */ 75 int extralen; 76 int enabled; 77 int streams; 78 }; 79 80 /* host-side wrapper for one interface setting's parsed descriptors */ 81 struct usb_host_interface { 82 struct usb_interface_descriptor desc; 83 84 int extralen; 85 unsigned char *extra; /* Extra descriptors */ 86 87 /* array of desc.bNumEndpoints endpoints associated with this 88 * interface setting. these will be in no particular order. 89 */ 90 struct usb_host_endpoint *endpoint; 91 92 char *string; /* iInterface string, if present */ 93 }; 94 95 enum usb_interface_condition { 96 USB_INTERFACE_UNBOUND = 0, 97 USB_INTERFACE_BINDING, 98 USB_INTERFACE_BOUND, 99 USB_INTERFACE_UNBINDING, 100 }; 101 102 int __must_check 103 usb_find_common_endpoints(struct usb_host_interface *alt, 104 struct usb_endpoint_descriptor **bulk_in, 105 struct usb_endpoint_descriptor **bulk_out, 106 struct usb_endpoint_descriptor **int_in, 107 struct usb_endpoint_descriptor **int_out); 108 109 int __must_check 110 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 111 struct usb_endpoint_descriptor **bulk_in, 112 struct usb_endpoint_descriptor **bulk_out, 113 struct usb_endpoint_descriptor **int_in, 114 struct usb_endpoint_descriptor **int_out); 115 116 static inline int __must_check 117 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 118 struct usb_endpoint_descriptor **bulk_in) 119 { 120 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 121 } 122 123 static inline int __must_check 124 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 125 struct usb_endpoint_descriptor **bulk_out) 126 { 127 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 128 } 129 130 static inline int __must_check 131 usb_find_int_in_endpoint(struct usb_host_interface *alt, 132 struct usb_endpoint_descriptor **int_in) 133 { 134 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 135 } 136 137 static inline int __must_check 138 usb_find_int_out_endpoint(struct usb_host_interface *alt, 139 struct usb_endpoint_descriptor **int_out) 140 { 141 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 142 } 143 144 static inline int __must_check 145 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 146 struct usb_endpoint_descriptor **bulk_in) 147 { 148 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 149 } 150 151 static inline int __must_check 152 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 153 struct usb_endpoint_descriptor **bulk_out) 154 { 155 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 156 } 157 158 static inline int __must_check 159 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 160 struct usb_endpoint_descriptor **int_in) 161 { 162 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 163 } 164 165 static inline int __must_check 166 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 167 struct usb_endpoint_descriptor **int_out) 168 { 169 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 170 } 171 172 enum usb_wireless_status { 173 USB_WIRELESS_STATUS_NA = 0, 174 USB_WIRELESS_STATUS_DISCONNECTED, 175 USB_WIRELESS_STATUS_CONNECTED, 176 }; 177 178 /** 179 * struct usb_interface - what usb device drivers talk to 180 * @altsetting: array of interface structures, one for each alternate 181 * setting that may be selected. Each one includes a set of 182 * endpoint configurations. They will be in no particular order. 183 * @cur_altsetting: the current altsetting. 184 * @num_altsetting: number of altsettings defined. 185 * @intf_assoc: interface association descriptor 186 * @minor: the minor number assigned to this interface, if this 187 * interface is bound to a driver that uses the USB major number. 188 * If this interface does not use the USB major, this field should 189 * be unused. The driver should set this value in the probe() 190 * function of the driver, after it has been assigned a minor 191 * number from the USB core by calling usb_register_dev(). 192 * @condition: binding state of the interface: not bound, binding 193 * (in probe()), bound to a driver, or unbinding (in disconnect()) 194 * @sysfs_files_created: sysfs attributes exist 195 * @ep_devs_created: endpoint child pseudo-devices exist 196 * @unregistering: flag set when the interface is being unregistered 197 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 198 * capability during autosuspend. 199 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 200 * has been deferred. 201 * @needs_binding: flag set when the driver should be re-probed or unbound 202 * following a reset or suspend operation it doesn't support. 203 * @authorized: This allows to (de)authorize individual interfaces instead 204 * a whole device in contrast to the device authorization. 205 * @wireless_status: if the USB device uses a receiver/emitter combo, whether 206 * the emitter is connected. 207 * @wireless_status_work: Used for scheduling wireless status changes 208 * from atomic context. 209 * @dev: driver model's view of this device 210 * @usb_dev: if an interface is bound to the USB major, this will point 211 * to the sysfs representation for that device. 212 * @reset_ws: Used for scheduling resets from atomic context. 213 * @resetting_device: USB core reset the device, so use alt setting 0 as 214 * current; needs bandwidth alloc after reset. 215 * 216 * USB device drivers attach to interfaces on a physical device. Each 217 * interface encapsulates a single high level function, such as feeding 218 * an audio stream to a speaker or reporting a change in a volume control. 219 * Many USB devices only have one interface. The protocol used to talk to 220 * an interface's endpoints can be defined in a usb "class" specification, 221 * or by a product's vendor. The (default) control endpoint is part of 222 * every interface, but is never listed among the interface's descriptors. 223 * 224 * The driver that is bound to the interface can use standard driver model 225 * calls such as dev_get_drvdata() on the dev member of this structure. 226 * 227 * Each interface may have alternate settings. The initial configuration 228 * of a device sets altsetting 0, but the device driver can change 229 * that setting using usb_set_interface(). Alternate settings are often 230 * used to control the use of periodic endpoints, such as by having 231 * different endpoints use different amounts of reserved USB bandwidth. 232 * All standards-conformant USB devices that use isochronous endpoints 233 * will use them in non-default settings. 234 * 235 * The USB specification says that alternate setting numbers must run from 236 * 0 to one less than the total number of alternate settings. But some 237 * devices manage to mess this up, and the structures aren't necessarily 238 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 239 * look up an alternate setting in the altsetting array based on its number. 240 */ 241 struct usb_interface { 242 /* array of alternate settings for this interface, 243 * stored in no particular order */ 244 struct usb_host_interface *altsetting; 245 246 struct usb_host_interface *cur_altsetting; /* the currently 247 * active alternate setting */ 248 unsigned num_altsetting; /* number of alternate settings */ 249 250 /* If there is an interface association descriptor then it will list 251 * the associated interfaces */ 252 struct usb_interface_assoc_descriptor *intf_assoc; 253 254 int minor; /* minor number this interface is 255 * bound to */ 256 enum usb_interface_condition condition; /* state of binding */ 257 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 258 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 259 unsigned unregistering:1; /* unregistration is in progress */ 260 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 261 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 262 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 263 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 264 unsigned authorized:1; /* used for interface authorization */ 265 enum usb_wireless_status wireless_status; 266 struct work_struct wireless_status_work; 267 268 struct device dev; /* interface specific device info */ 269 struct device *usb_dev; 270 struct work_struct reset_ws; /* for resets in atomic context */ 271 }; 272 273 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev) 274 275 static inline void *usb_get_intfdata(struct usb_interface *intf) 276 { 277 return dev_get_drvdata(&intf->dev); 278 } 279 280 /** 281 * usb_set_intfdata() - associate driver-specific data with an interface 282 * @intf: USB interface 283 * @data: driver data 284 * 285 * Drivers can use this function in their probe() callbacks to associate 286 * driver-specific data with an interface. 287 * 288 * Note that there is generally no need to clear the driver-data pointer even 289 * if some drivers do so for historical or implementation-specific reasons. 290 */ 291 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 292 { 293 dev_set_drvdata(&intf->dev, data); 294 } 295 296 struct usb_interface *usb_get_intf(struct usb_interface *intf); 297 void usb_put_intf(struct usb_interface *intf); 298 299 /* Hard limit */ 300 #define USB_MAXENDPOINTS 30 301 /* this maximum is arbitrary */ 302 #define USB_MAXINTERFACES 32 303 #define USB_MAXIADS (USB_MAXINTERFACES/2) 304 305 bool usb_check_bulk_endpoints( 306 const struct usb_interface *intf, const u8 *ep_addrs); 307 bool usb_check_int_endpoints( 308 const struct usb_interface *intf, const u8 *ep_addrs); 309 310 /* 311 * USB Resume Timer: Every Host controller driver should drive the resume 312 * signalling on the bus for the amount of time defined by this macro. 313 * 314 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 315 * 316 * Note that the USB Specification states we should drive resume for *at least* 317 * 20 ms, but it doesn't give an upper bound. This creates two possible 318 * situations which we want to avoid: 319 * 320 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 321 * us to fail USB Electrical Tests, thus failing Certification 322 * 323 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 324 * and while we can argue that's against the USB Specification, we don't have 325 * control over which devices a certification laboratory will be using for 326 * certification. If CertLab uses a device which was tested against Windows and 327 * that happens to have relaxed resume signalling rules, we might fall into 328 * situations where we fail interoperability and electrical tests. 329 * 330 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 331 * should cope with both LPJ calibration errors and devices not following every 332 * detail of the USB Specification. 333 */ 334 #define USB_RESUME_TIMEOUT 40 /* ms */ 335 336 /** 337 * struct usb_interface_cache - long-term representation of a device interface 338 * @num_altsetting: number of altsettings defined. 339 * @ref: reference counter. 340 * @altsetting: variable-length array of interface structures, one for 341 * each alternate setting that may be selected. Each one includes a 342 * set of endpoint configurations. They will be in no particular order. 343 * 344 * These structures persist for the lifetime of a usb_device, unlike 345 * struct usb_interface (which persists only as long as its configuration 346 * is installed). The altsetting arrays can be accessed through these 347 * structures at any time, permitting comparison of configurations and 348 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 349 */ 350 struct usb_interface_cache { 351 unsigned num_altsetting; /* number of alternate settings */ 352 struct kref ref; /* reference counter */ 353 354 /* variable-length array of alternate settings for this interface, 355 * stored in no particular order */ 356 struct usb_host_interface altsetting[]; 357 }; 358 #define ref_to_usb_interface_cache(r) \ 359 container_of(r, struct usb_interface_cache, ref) 360 #define altsetting_to_usb_interface_cache(a) \ 361 container_of(a, struct usb_interface_cache, altsetting[0]) 362 363 /** 364 * struct usb_host_config - representation of a device's configuration 365 * @desc: the device's configuration descriptor. 366 * @string: pointer to the cached version of the iConfiguration string, if 367 * present for this configuration. 368 * @intf_assoc: list of any interface association descriptors in this config 369 * @interface: array of pointers to usb_interface structures, one for each 370 * interface in the configuration. The number of interfaces is stored 371 * in desc.bNumInterfaces. These pointers are valid only while the 372 * configuration is active. 373 * @intf_cache: array of pointers to usb_interface_cache structures, one 374 * for each interface in the configuration. These structures exist 375 * for the entire life of the device. 376 * @extra: pointer to buffer containing all extra descriptors associated 377 * with this configuration (those preceding the first interface 378 * descriptor). 379 * @extralen: length of the extra descriptors buffer. 380 * 381 * USB devices may have multiple configurations, but only one can be active 382 * at any time. Each encapsulates a different operational environment; 383 * for example, a dual-speed device would have separate configurations for 384 * full-speed and high-speed operation. The number of configurations 385 * available is stored in the device descriptor as bNumConfigurations. 386 * 387 * A configuration can contain multiple interfaces. Each corresponds to 388 * a different function of the USB device, and all are available whenever 389 * the configuration is active. The USB standard says that interfaces 390 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 391 * of devices get this wrong. In addition, the interface array is not 392 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 393 * look up an interface entry based on its number. 394 * 395 * Device drivers should not attempt to activate configurations. The choice 396 * of which configuration to install is a policy decision based on such 397 * considerations as available power, functionality provided, and the user's 398 * desires (expressed through userspace tools). However, drivers can call 399 * usb_reset_configuration() to reinitialize the current configuration and 400 * all its interfaces. 401 */ 402 struct usb_host_config { 403 struct usb_config_descriptor desc; 404 405 char *string; /* iConfiguration string, if present */ 406 407 /* List of any Interface Association Descriptors in this 408 * configuration. */ 409 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 410 411 /* the interfaces associated with this configuration, 412 * stored in no particular order */ 413 struct usb_interface *interface[USB_MAXINTERFACES]; 414 415 /* Interface information available even when this is not the 416 * active configuration */ 417 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 418 419 unsigned char *extra; /* Extra descriptors */ 420 int extralen; 421 }; 422 423 /* USB2.0 and USB3.0 device BOS descriptor set */ 424 struct usb_host_bos { 425 struct usb_bos_descriptor *desc; 426 427 struct usb_ext_cap_descriptor *ext_cap; 428 struct usb_ss_cap_descriptor *ss_cap; 429 struct usb_ssp_cap_descriptor *ssp_cap; 430 struct usb_ss_container_id_descriptor *ss_id; 431 struct usb_ptm_cap_descriptor *ptm_cap; 432 }; 433 434 int __usb_get_extra_descriptor(char *buffer, unsigned size, 435 unsigned char type, void **ptr, size_t min); 436 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 437 __usb_get_extra_descriptor((ifpoint)->extra, \ 438 (ifpoint)->extralen, \ 439 type, (void **)ptr, sizeof(**(ptr))) 440 441 /* ----------------------------------------------------------------------- */ 442 443 /* USB device number allocation bitmap */ 444 struct usb_devmap { 445 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 446 }; 447 448 /* 449 * Allocated per bus (tree of devices) we have: 450 */ 451 struct usb_bus { 452 struct device *controller; /* host side hardware */ 453 struct device *sysdev; /* as seen from firmware or bus */ 454 int busnum; /* Bus number (in order of reg) */ 455 const char *bus_name; /* stable id (PCI slot_name etc) */ 456 u8 uses_pio_for_control; /* 457 * Does the host controller use PIO 458 * for control transfers? 459 */ 460 u8 otg_port; /* 0, or number of OTG/HNP port */ 461 unsigned is_b_host:1; /* true during some HNP roleswitches */ 462 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 463 unsigned no_stop_on_short:1; /* 464 * Quirk: some controllers don't stop 465 * the ep queue on a short transfer 466 * with the URB_SHORT_NOT_OK flag set. 467 */ 468 unsigned no_sg_constraint:1; /* no sg constraint */ 469 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 470 471 int devnum_next; /* Next open device number in 472 * round-robin allocation */ 473 struct mutex devnum_next_mutex; /* devnum_next mutex */ 474 475 struct usb_devmap devmap; /* device address allocation map */ 476 struct usb_device *root_hub; /* Root hub */ 477 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 478 479 int bandwidth_allocated; /* on this bus: how much of the time 480 * reserved for periodic (intr/iso) 481 * requests is used, on average? 482 * Units: microseconds/frame. 483 * Limits: Full/low speed reserve 90%, 484 * while high speed reserves 80%. 485 */ 486 int bandwidth_int_reqs; /* number of Interrupt requests */ 487 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 488 489 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 490 491 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 492 struct mon_bus *mon_bus; /* non-null when associated */ 493 int monitored; /* non-zero when monitored */ 494 #endif 495 }; 496 497 struct usb_dev_state; 498 499 /* ----------------------------------------------------------------------- */ 500 501 struct usb_tt; 502 503 enum usb_port_connect_type { 504 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 505 USB_PORT_CONNECT_TYPE_HOT_PLUG, 506 USB_PORT_CONNECT_TYPE_HARD_WIRED, 507 USB_PORT_NOT_USED, 508 }; 509 510 /* 511 * USB port quirks. 512 */ 513 514 /* For the given port, prefer the old (faster) enumeration scheme. */ 515 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 516 517 /* Decrease TRSTRCY to 10ms during device enumeration. */ 518 #define USB_PORT_QUIRK_FAST_ENUM BIT(1) 519 520 /* 521 * USB 2.0 Link Power Management (LPM) parameters. 522 */ 523 struct usb2_lpm_parameters { 524 /* Best effort service latency indicate how long the host will drive 525 * resume on an exit from L1. 526 */ 527 unsigned int besl; 528 529 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 530 * When the timer counts to zero, the parent hub will initiate a LPM 531 * transition to L1. 532 */ 533 int timeout; 534 }; 535 536 /* 537 * USB 3.0 Link Power Management (LPM) parameters. 538 * 539 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 540 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 541 * All three are stored in nanoseconds. 542 */ 543 struct usb3_lpm_parameters { 544 /* 545 * Maximum exit latency (MEL) for the host to send a packet to the 546 * device (either a Ping for isoc endpoints, or a data packet for 547 * interrupt endpoints), the hubs to decode the packet, and for all hubs 548 * in the path to transition the links to U0. 549 */ 550 unsigned int mel; 551 /* 552 * Maximum exit latency for a device-initiated LPM transition to bring 553 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 554 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 555 */ 556 unsigned int pel; 557 558 /* 559 * The System Exit Latency (SEL) includes PEL, and three other 560 * latencies. After a device initiates a U0 transition, it will take 561 * some time from when the device sends the ERDY to when it will finally 562 * receive the data packet. Basically, SEL should be the worse-case 563 * latency from when a device starts initiating a U0 transition to when 564 * it will get data. 565 */ 566 unsigned int sel; 567 /* 568 * The idle timeout value that is currently programmed into the parent 569 * hub for this device. When the timer counts to zero, the parent hub 570 * will initiate an LPM transition to either U1 or U2. 571 */ 572 int timeout; 573 }; 574 575 /** 576 * struct usb_device - kernel's representation of a USB device 577 * @devnum: device number; address on a USB bus 578 * @devpath: device ID string for use in messages (e.g., /port/...) 579 * @route: tree topology hex string for use with xHCI 580 * @state: device state: configured, not attached, etc. 581 * @speed: device speed: high/full/low (or error) 582 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 583 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 584 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 585 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 586 * @ttport: device port on that tt hub 587 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 588 * @parent: our hub, unless we're the root 589 * @bus: bus we're part of 590 * @ep0: endpoint 0 data (default control pipe) 591 * @dev: generic device interface 592 * @descriptor: USB device descriptor 593 * @bos: USB device BOS descriptor set 594 * @config: all of the device's configs 595 * @actconfig: the active configuration 596 * @ep_in: array of IN endpoints 597 * @ep_out: array of OUT endpoints 598 * @rawdescriptors: raw descriptors for each config 599 * @bus_mA: Current available from the bus 600 * @portnum: parent port number (origin 1) 601 * @level: number of USB hub ancestors 602 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 603 * @can_submit: URBs may be submitted 604 * @persist_enabled: USB_PERSIST enabled for this device 605 * @reset_in_progress: the device is being reset 606 * @have_langid: whether string_langid is valid 607 * @authorized: policy has said we can use it; 608 * (user space) policy determines if we authorize this device to be 609 * used or not. By default, wired USB devices are authorized. 610 * WUSB devices are not, until we authorize them from user space. 611 * FIXME -- complete doc 612 * @authenticated: Crypto authentication passed 613 * @lpm_capable: device supports LPM 614 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 615 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 616 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 617 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 618 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 619 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 620 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 621 * @string_langid: language ID for strings 622 * @product: iProduct string, if present (static) 623 * @manufacturer: iManufacturer string, if present (static) 624 * @serial: iSerialNumber string, if present (static) 625 * @filelist: usbfs files that are open to this device 626 * @maxchild: number of ports if hub 627 * @quirks: quirks of the whole device 628 * @urbnum: number of URBs submitted for the whole device 629 * @active_duration: total time device is not suspended 630 * @connect_time: time device was first connected 631 * @do_remote_wakeup: remote wakeup should be enabled 632 * @reset_resume: needs reset instead of resume 633 * @port_is_suspended: the upstream port is suspended (L2 or U3) 634 * @slot_id: Slot ID assigned by xHCI 635 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 636 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 637 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 638 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 639 * to keep track of the number of functions that require USB 3.0 Link Power 640 * Management to be disabled for this usb_device. This count should only 641 * be manipulated by those functions, with the bandwidth_mutex is held. 642 * @hub_delay: cached value consisting of: 643 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 644 * Will be used as wValue for SetIsochDelay requests. 645 * @use_generic_driver: ask driver core to reprobe using the generic driver. 646 * 647 * Notes: 648 * Usbcore drivers should not set usbdev->state directly. Instead use 649 * usb_set_device_state(). 650 */ 651 struct usb_device { 652 int devnum; 653 char devpath[16]; 654 u32 route; 655 enum usb_device_state state; 656 enum usb_device_speed speed; 657 unsigned int rx_lanes; 658 unsigned int tx_lanes; 659 enum usb_ssp_rate ssp_rate; 660 661 struct usb_tt *tt; 662 int ttport; 663 664 unsigned int toggle[2]; 665 666 struct usb_device *parent; 667 struct usb_bus *bus; 668 struct usb_host_endpoint ep0; 669 670 struct device dev; 671 672 struct usb_device_descriptor descriptor; 673 struct usb_host_bos *bos; 674 struct usb_host_config *config; 675 676 struct usb_host_config *actconfig; 677 struct usb_host_endpoint *ep_in[16]; 678 struct usb_host_endpoint *ep_out[16]; 679 680 char **rawdescriptors; 681 682 unsigned short bus_mA; 683 u8 portnum; 684 u8 level; 685 u8 devaddr; 686 687 unsigned can_submit:1; 688 unsigned persist_enabled:1; 689 unsigned reset_in_progress:1; 690 unsigned have_langid:1; 691 unsigned authorized:1; 692 unsigned authenticated:1; 693 unsigned lpm_capable:1; 694 unsigned lpm_devinit_allow:1; 695 unsigned usb2_hw_lpm_capable:1; 696 unsigned usb2_hw_lpm_besl_capable:1; 697 unsigned usb2_hw_lpm_enabled:1; 698 unsigned usb2_hw_lpm_allowed:1; 699 unsigned usb3_lpm_u1_enabled:1; 700 unsigned usb3_lpm_u2_enabled:1; 701 int string_langid; 702 703 /* static strings from the device */ 704 char *product; 705 char *manufacturer; 706 char *serial; 707 708 struct list_head filelist; 709 710 int maxchild; 711 712 u32 quirks; 713 atomic_t urbnum; 714 715 unsigned long active_duration; 716 717 unsigned long connect_time; 718 719 unsigned do_remote_wakeup:1; 720 unsigned reset_resume:1; 721 unsigned port_is_suspended:1; 722 723 int slot_id; 724 struct usb2_lpm_parameters l1_params; 725 struct usb3_lpm_parameters u1_params; 726 struct usb3_lpm_parameters u2_params; 727 unsigned lpm_disable_count; 728 729 u16 hub_delay; 730 unsigned use_generic_driver:1; 731 }; 732 733 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev) 734 735 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 736 { 737 return to_usb_device(intf->dev.parent); 738 } 739 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 740 { 741 return to_usb_device((const struct device *)intf->dev.parent); 742 } 743 744 #define interface_to_usbdev(intf) \ 745 _Generic((intf), \ 746 const struct usb_interface *: __intf_to_usbdev_const, \ 747 struct usb_interface *: __intf_to_usbdev)(intf) 748 749 extern struct usb_device *usb_get_dev(struct usb_device *dev); 750 extern void usb_put_dev(struct usb_device *dev); 751 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 752 int port1); 753 754 /** 755 * usb_hub_for_each_child - iterate over all child devices on the hub 756 * @hdev: USB device belonging to the usb hub 757 * @port1: portnum associated with child device 758 * @child: child device pointer 759 */ 760 #define usb_hub_for_each_child(hdev, port1, child) \ 761 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 762 port1 <= hdev->maxchild; \ 763 child = usb_hub_find_child(hdev, ++port1)) \ 764 if (!child) continue; else 765 766 /* USB device locking */ 767 #define usb_lock_device(udev) device_lock(&(udev)->dev) 768 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 769 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 770 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 771 extern int usb_lock_device_for_reset(struct usb_device *udev, 772 const struct usb_interface *iface); 773 774 /* USB port reset for device reinitialization */ 775 extern int usb_reset_device(struct usb_device *dev); 776 extern void usb_queue_reset_device(struct usb_interface *dev); 777 778 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 779 780 #ifdef CONFIG_ACPI 781 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 782 bool enable); 783 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 784 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index); 785 #else 786 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 787 bool enable) { return 0; } 788 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 789 { return true; } 790 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index) 791 { return 0; } 792 #endif 793 794 /* USB autosuspend and autoresume */ 795 #ifdef CONFIG_PM 796 extern void usb_enable_autosuspend(struct usb_device *udev); 797 extern void usb_disable_autosuspend(struct usb_device *udev); 798 799 extern int usb_autopm_get_interface(struct usb_interface *intf); 800 extern void usb_autopm_put_interface(struct usb_interface *intf); 801 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 802 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 803 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 804 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 805 806 static inline void usb_mark_last_busy(struct usb_device *udev) 807 { 808 pm_runtime_mark_last_busy(&udev->dev); 809 } 810 811 #else 812 813 static inline int usb_enable_autosuspend(struct usb_device *udev) 814 { return 0; } 815 static inline int usb_disable_autosuspend(struct usb_device *udev) 816 { return 0; } 817 818 static inline int usb_autopm_get_interface(struct usb_interface *intf) 819 { return 0; } 820 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 821 { return 0; } 822 823 static inline void usb_autopm_put_interface(struct usb_interface *intf) 824 { } 825 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 826 { } 827 static inline void usb_autopm_get_interface_no_resume( 828 struct usb_interface *intf) 829 { } 830 static inline void usb_autopm_put_interface_no_suspend( 831 struct usb_interface *intf) 832 { } 833 static inline void usb_mark_last_busy(struct usb_device *udev) 834 { } 835 #endif 836 837 extern int usb_disable_lpm(struct usb_device *udev); 838 extern void usb_enable_lpm(struct usb_device *udev); 839 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 840 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 841 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 842 843 extern int usb_disable_ltm(struct usb_device *udev); 844 extern void usb_enable_ltm(struct usb_device *udev); 845 846 static inline bool usb_device_supports_ltm(struct usb_device *udev) 847 { 848 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 849 return false; 850 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 851 } 852 853 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 854 { 855 return udev && udev->bus && udev->bus->no_sg_constraint; 856 } 857 858 859 /*-------------------------------------------------------------------------*/ 860 861 /* for drivers using iso endpoints */ 862 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 863 864 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 865 extern int usb_alloc_streams(struct usb_interface *interface, 866 struct usb_host_endpoint **eps, unsigned int num_eps, 867 unsigned int num_streams, gfp_t mem_flags); 868 869 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 870 extern int usb_free_streams(struct usb_interface *interface, 871 struct usb_host_endpoint **eps, unsigned int num_eps, 872 gfp_t mem_flags); 873 874 /* used these for multi-interface device registration */ 875 extern int usb_driver_claim_interface(struct usb_driver *driver, 876 struct usb_interface *iface, void *data); 877 878 /** 879 * usb_interface_claimed - returns true iff an interface is claimed 880 * @iface: the interface being checked 881 * 882 * Return: %true (nonzero) iff the interface is claimed, else %false 883 * (zero). 884 * 885 * Note: 886 * Callers must own the driver model's usb bus readlock. So driver 887 * probe() entries don't need extra locking, but other call contexts 888 * may need to explicitly claim that lock. 889 * 890 */ 891 static inline int usb_interface_claimed(struct usb_interface *iface) 892 { 893 return (iface->dev.driver != NULL); 894 } 895 896 extern void usb_driver_release_interface(struct usb_driver *driver, 897 struct usb_interface *iface); 898 899 int usb_set_wireless_status(struct usb_interface *iface, 900 enum usb_wireless_status status); 901 902 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 903 const struct usb_device_id *id); 904 extern int usb_match_one_id(struct usb_interface *interface, 905 const struct usb_device_id *id); 906 907 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 908 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 909 int minor); 910 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 911 unsigned ifnum); 912 extern struct usb_host_interface *usb_altnum_to_altsetting( 913 const struct usb_interface *intf, unsigned int altnum); 914 extern struct usb_host_interface *usb_find_alt_setting( 915 struct usb_host_config *config, 916 unsigned int iface_num, 917 unsigned int alt_num); 918 919 /* port claiming functions */ 920 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 921 struct usb_dev_state *owner); 922 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 923 struct usb_dev_state *owner); 924 925 /** 926 * usb_make_path - returns stable device path in the usb tree 927 * @dev: the device whose path is being constructed 928 * @buf: where to put the string 929 * @size: how big is "buf"? 930 * 931 * Return: Length of the string (> 0) or negative if size was too small. 932 * 933 * Note: 934 * This identifier is intended to be "stable", reflecting physical paths in 935 * hardware such as physical bus addresses for host controllers or ports on 936 * USB hubs. That makes it stay the same until systems are physically 937 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 938 * controllers. Adding and removing devices, including virtual root hubs 939 * in host controller driver modules, does not change these path identifiers; 940 * neither does rebooting or re-enumerating. These are more useful identifiers 941 * than changeable ("unstable") ones like bus numbers or device addresses. 942 * 943 * With a partial exception for devices connected to USB 2.0 root hubs, these 944 * identifiers are also predictable. So long as the device tree isn't changed, 945 * plugging any USB device into a given hub port always gives it the same path. 946 * Because of the use of "companion" controllers, devices connected to ports on 947 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 948 * high speed, and a different one if they are full or low speed. 949 */ 950 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 951 { 952 int actual; 953 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 954 dev->devpath); 955 return (actual >= (int)size) ? -1 : actual; 956 } 957 958 /*-------------------------------------------------------------------------*/ 959 960 #define USB_DEVICE_ID_MATCH_DEVICE \ 961 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 962 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 963 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 964 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 965 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 966 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 967 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 968 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 969 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 970 #define USB_DEVICE_ID_MATCH_INT_INFO \ 971 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 972 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 973 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 974 975 /** 976 * USB_DEVICE - macro used to describe a specific usb device 977 * @vend: the 16 bit USB Vendor ID 978 * @prod: the 16 bit USB Product ID 979 * 980 * This macro is used to create a struct usb_device_id that matches a 981 * specific device. 982 */ 983 #define USB_DEVICE(vend, prod) \ 984 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 985 .idVendor = (vend), \ 986 .idProduct = (prod) 987 /** 988 * USB_DEVICE_VER - describe a specific usb device with a version range 989 * @vend: the 16 bit USB Vendor ID 990 * @prod: the 16 bit USB Product ID 991 * @lo: the bcdDevice_lo value 992 * @hi: the bcdDevice_hi value 993 * 994 * This macro is used to create a struct usb_device_id that matches a 995 * specific device, with a version range. 996 */ 997 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 998 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 999 .idVendor = (vend), \ 1000 .idProduct = (prod), \ 1001 .bcdDevice_lo = (lo), \ 1002 .bcdDevice_hi = (hi) 1003 1004 /** 1005 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 1006 * @vend: the 16 bit USB Vendor ID 1007 * @prod: the 16 bit USB Product ID 1008 * @cl: bInterfaceClass value 1009 * 1010 * This macro is used to create a struct usb_device_id that matches a 1011 * specific interface class of devices. 1012 */ 1013 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 1014 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1015 USB_DEVICE_ID_MATCH_INT_CLASS, \ 1016 .idVendor = (vend), \ 1017 .idProduct = (prod), \ 1018 .bInterfaceClass = (cl) 1019 1020 /** 1021 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 1022 * @vend: the 16 bit USB Vendor ID 1023 * @prod: the 16 bit USB Product ID 1024 * @pr: bInterfaceProtocol value 1025 * 1026 * This macro is used to create a struct usb_device_id that matches a 1027 * specific interface protocol of devices. 1028 */ 1029 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1030 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1031 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1032 .idVendor = (vend), \ 1033 .idProduct = (prod), \ 1034 .bInterfaceProtocol = (pr) 1035 1036 /** 1037 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1038 * @vend: the 16 bit USB Vendor ID 1039 * @prod: the 16 bit USB Product ID 1040 * @num: bInterfaceNumber value 1041 * 1042 * This macro is used to create a struct usb_device_id that matches a 1043 * specific interface number of devices. 1044 */ 1045 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1046 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1047 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1048 .idVendor = (vend), \ 1049 .idProduct = (prod), \ 1050 .bInterfaceNumber = (num) 1051 1052 /** 1053 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1054 * @cl: bDeviceClass value 1055 * @sc: bDeviceSubClass value 1056 * @pr: bDeviceProtocol value 1057 * 1058 * This macro is used to create a struct usb_device_id that matches a 1059 * specific class of devices. 1060 */ 1061 #define USB_DEVICE_INFO(cl, sc, pr) \ 1062 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1063 .bDeviceClass = (cl), \ 1064 .bDeviceSubClass = (sc), \ 1065 .bDeviceProtocol = (pr) 1066 1067 /** 1068 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1069 * @cl: bInterfaceClass value 1070 * @sc: bInterfaceSubClass value 1071 * @pr: bInterfaceProtocol value 1072 * 1073 * This macro is used to create a struct usb_device_id that matches a 1074 * specific class of interfaces. 1075 */ 1076 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1077 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1078 .bInterfaceClass = (cl), \ 1079 .bInterfaceSubClass = (sc), \ 1080 .bInterfaceProtocol = (pr) 1081 1082 /** 1083 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1084 * @vend: the 16 bit USB Vendor ID 1085 * @prod: the 16 bit USB Product ID 1086 * @cl: bInterfaceClass value 1087 * @sc: bInterfaceSubClass value 1088 * @pr: bInterfaceProtocol value 1089 * 1090 * This macro is used to create a struct usb_device_id that matches a 1091 * specific device with a specific class of interfaces. 1092 * 1093 * This is especially useful when explicitly matching devices that have 1094 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1095 */ 1096 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1097 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1098 | USB_DEVICE_ID_MATCH_DEVICE, \ 1099 .idVendor = (vend), \ 1100 .idProduct = (prod), \ 1101 .bInterfaceClass = (cl), \ 1102 .bInterfaceSubClass = (sc), \ 1103 .bInterfaceProtocol = (pr) 1104 1105 /** 1106 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1107 * @vend: the 16 bit USB Vendor ID 1108 * @cl: bInterfaceClass value 1109 * @sc: bInterfaceSubClass value 1110 * @pr: bInterfaceProtocol value 1111 * 1112 * This macro is used to create a struct usb_device_id that matches a 1113 * specific vendor with a specific class of interfaces. 1114 * 1115 * This is especially useful when explicitly matching devices that have 1116 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1117 */ 1118 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1119 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1120 | USB_DEVICE_ID_MATCH_VENDOR, \ 1121 .idVendor = (vend), \ 1122 .bInterfaceClass = (cl), \ 1123 .bInterfaceSubClass = (sc), \ 1124 .bInterfaceProtocol = (pr) 1125 1126 /* ----------------------------------------------------------------------- */ 1127 1128 /* Stuff for dynamic usb ids */ 1129 struct usb_dynids { 1130 spinlock_t lock; 1131 struct list_head list; 1132 }; 1133 1134 struct usb_dynid { 1135 struct list_head node; 1136 struct usb_device_id id; 1137 }; 1138 1139 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1140 const struct usb_device_id *id_table, 1141 struct device_driver *driver, 1142 const char *buf, size_t count); 1143 1144 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1145 1146 /** 1147 * struct usbdrv_wrap - wrapper for driver-model structure 1148 * @driver: The driver-model core driver structure. 1149 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1150 */ 1151 struct usbdrv_wrap { 1152 struct device_driver driver; 1153 int for_devices; 1154 }; 1155 1156 /** 1157 * struct usb_driver - identifies USB interface driver to usbcore 1158 * @name: The driver name should be unique among USB drivers, 1159 * and should normally be the same as the module name. 1160 * @probe: Called to see if the driver is willing to manage a particular 1161 * interface on a device. If it is, probe returns zero and uses 1162 * usb_set_intfdata() to associate driver-specific data with the 1163 * interface. It may also use usb_set_interface() to specify the 1164 * appropriate altsetting. If unwilling to manage the interface, 1165 * return -ENODEV, if genuine IO errors occurred, an appropriate 1166 * negative errno value. 1167 * @disconnect: Called when the interface is no longer accessible, usually 1168 * because its device has been (or is being) disconnected or the 1169 * driver module is being unloaded. 1170 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1171 * the "usbfs" filesystem. This lets devices provide ways to 1172 * expose information to user space regardless of where they 1173 * do (or don't) show up otherwise in the filesystem. 1174 * @suspend: Called when the device is going to be suspended by the 1175 * system either from system sleep or runtime suspend context. The 1176 * return value will be ignored in system sleep context, so do NOT 1177 * try to continue using the device if suspend fails in this case. 1178 * Instead, let the resume or reset-resume routine recover from 1179 * the failure. 1180 * @resume: Called when the device is being resumed by the system. 1181 * @reset_resume: Called when the suspended device has been reset instead 1182 * of being resumed. 1183 * @pre_reset: Called by usb_reset_device() when the device is about to be 1184 * reset. This routine must not return until the driver has no active 1185 * URBs for the device, and no more URBs may be submitted until the 1186 * post_reset method is called. 1187 * @post_reset: Called by usb_reset_device() after the device 1188 * has been reset 1189 * @id_table: USB drivers use ID table to support hotplugging. 1190 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1191 * or your driver's probe function will never get called. 1192 * @dev_groups: Attributes attached to the device that will be created once it 1193 * is bound to the driver. 1194 * @dynids: used internally to hold the list of dynamically added device 1195 * ids for this driver. 1196 * @drvwrap: Driver-model core structure wrapper. 1197 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1198 * added to this driver by preventing the sysfs file from being created. 1199 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1200 * for interfaces bound to this driver. 1201 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1202 * endpoints before calling the driver's disconnect method. 1203 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1204 * to initiate lower power link state transitions when an idle timeout 1205 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1206 * 1207 * USB interface drivers must provide a name, probe() and disconnect() 1208 * methods, and an id_table. Other driver fields are optional. 1209 * 1210 * The id_table is used in hotplugging. It holds a set of descriptors, 1211 * and specialized data may be associated with each entry. That table 1212 * is used by both user and kernel mode hotplugging support. 1213 * 1214 * The probe() and disconnect() methods are called in a context where 1215 * they can sleep, but they should avoid abusing the privilege. Most 1216 * work to connect to a device should be done when the device is opened, 1217 * and undone at the last close. The disconnect code needs to address 1218 * concurrency issues with respect to open() and close() methods, as 1219 * well as forcing all pending I/O requests to complete (by unlinking 1220 * them as necessary, and blocking until the unlinks complete). 1221 */ 1222 struct usb_driver { 1223 const char *name; 1224 1225 int (*probe) (struct usb_interface *intf, 1226 const struct usb_device_id *id); 1227 1228 void (*disconnect) (struct usb_interface *intf); 1229 1230 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1231 void *buf); 1232 1233 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1234 int (*resume) (struct usb_interface *intf); 1235 int (*reset_resume)(struct usb_interface *intf); 1236 1237 int (*pre_reset)(struct usb_interface *intf); 1238 int (*post_reset)(struct usb_interface *intf); 1239 1240 const struct usb_device_id *id_table; 1241 const struct attribute_group **dev_groups; 1242 1243 struct usb_dynids dynids; 1244 struct usbdrv_wrap drvwrap; 1245 unsigned int no_dynamic_id:1; 1246 unsigned int supports_autosuspend:1; 1247 unsigned int disable_hub_initiated_lpm:1; 1248 unsigned int soft_unbind:1; 1249 }; 1250 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1251 1252 /** 1253 * struct usb_device_driver - identifies USB device driver to usbcore 1254 * @name: The driver name should be unique among USB drivers, 1255 * and should normally be the same as the module name. 1256 * @match: If set, used for better device/driver matching. 1257 * @probe: Called to see if the driver is willing to manage a particular 1258 * device. If it is, probe returns zero and uses dev_set_drvdata() 1259 * to associate driver-specific data with the device. If unwilling 1260 * to manage the device, return a negative errno value. 1261 * @disconnect: Called when the device is no longer accessible, usually 1262 * because it has been (or is being) disconnected or the driver's 1263 * module is being unloaded. 1264 * @suspend: Called when the device is going to be suspended by the system. 1265 * @resume: Called when the device is being resumed by the system. 1266 * @choose_configuration: If non-NULL, called instead of the default 1267 * usb_choose_configuration(). If this returns an error then we'll go 1268 * on to call the normal usb_choose_configuration(). 1269 * @dev_groups: Attributes attached to the device that will be created once it 1270 * is bound to the driver. 1271 * @drvwrap: Driver-model core structure wrapper. 1272 * @id_table: used with @match() to select better matching driver at 1273 * probe() time. 1274 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1275 * for devices bound to this driver. 1276 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1277 * resume and suspend functions will be called in addition to the driver's 1278 * own, so this part of the setup does not need to be replicated. 1279 * 1280 * USB drivers must provide all the fields listed above except drvwrap, 1281 * match, and id_table. 1282 */ 1283 struct usb_device_driver { 1284 const char *name; 1285 1286 bool (*match) (struct usb_device *udev); 1287 int (*probe) (struct usb_device *udev); 1288 void (*disconnect) (struct usb_device *udev); 1289 1290 int (*suspend) (struct usb_device *udev, pm_message_t message); 1291 int (*resume) (struct usb_device *udev, pm_message_t message); 1292 1293 int (*choose_configuration) (struct usb_device *udev); 1294 1295 const struct attribute_group **dev_groups; 1296 struct usbdrv_wrap drvwrap; 1297 const struct usb_device_id *id_table; 1298 unsigned int supports_autosuspend:1; 1299 unsigned int generic_subclass:1; 1300 }; 1301 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1302 drvwrap.driver) 1303 1304 /** 1305 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1306 * @name: the usb class device name for this driver. Will show up in sysfs. 1307 * @devnode: Callback to provide a naming hint for a possible 1308 * device node to create. 1309 * @fops: pointer to the struct file_operations of this driver. 1310 * @minor_base: the start of the minor range for this driver. 1311 * 1312 * This structure is used for the usb_register_dev() and 1313 * usb_deregister_dev() functions, to consolidate a number of the 1314 * parameters used for them. 1315 */ 1316 struct usb_class_driver { 1317 char *name; 1318 char *(*devnode)(const struct device *dev, umode_t *mode); 1319 const struct file_operations *fops; 1320 int minor_base; 1321 }; 1322 1323 /* 1324 * use these in module_init()/module_exit() 1325 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1326 */ 1327 extern int usb_register_driver(struct usb_driver *, struct module *, 1328 const char *); 1329 1330 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1331 #define usb_register(driver) \ 1332 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1333 1334 extern void usb_deregister(struct usb_driver *); 1335 1336 /** 1337 * module_usb_driver() - Helper macro for registering a USB driver 1338 * @__usb_driver: usb_driver struct 1339 * 1340 * Helper macro for USB drivers which do not do anything special in module 1341 * init/exit. This eliminates a lot of boilerplate. Each module may only 1342 * use this macro once, and calling it replaces module_init() and module_exit() 1343 */ 1344 #define module_usb_driver(__usb_driver) \ 1345 module_driver(__usb_driver, usb_register, \ 1346 usb_deregister) 1347 1348 extern int usb_register_device_driver(struct usb_device_driver *, 1349 struct module *); 1350 extern void usb_deregister_device_driver(struct usb_device_driver *); 1351 1352 extern int usb_register_dev(struct usb_interface *intf, 1353 struct usb_class_driver *class_driver); 1354 extern void usb_deregister_dev(struct usb_interface *intf, 1355 struct usb_class_driver *class_driver); 1356 1357 extern int usb_disabled(void); 1358 1359 /* ----------------------------------------------------------------------- */ 1360 1361 /* 1362 * URB support, for asynchronous request completions 1363 */ 1364 1365 /* 1366 * urb->transfer_flags: 1367 * 1368 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1369 */ 1370 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1371 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1372 * slot in the schedule */ 1373 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1374 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1375 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1376 * needed */ 1377 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1378 1379 /* The following flags are used internally by usbcore and HCDs */ 1380 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1381 #define URB_DIR_OUT 0 1382 #define URB_DIR_MASK URB_DIR_IN 1383 1384 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1385 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1386 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1387 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1388 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1389 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1390 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1391 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1392 1393 struct usb_iso_packet_descriptor { 1394 unsigned int offset; 1395 unsigned int length; /* expected length */ 1396 unsigned int actual_length; 1397 int status; 1398 }; 1399 1400 struct urb; 1401 1402 struct usb_anchor { 1403 struct list_head urb_list; 1404 wait_queue_head_t wait; 1405 spinlock_t lock; 1406 atomic_t suspend_wakeups; 1407 unsigned int poisoned:1; 1408 }; 1409 1410 static inline void init_usb_anchor(struct usb_anchor *anchor) 1411 { 1412 memset(anchor, 0, sizeof(*anchor)); 1413 INIT_LIST_HEAD(&anchor->urb_list); 1414 init_waitqueue_head(&anchor->wait); 1415 spin_lock_init(&anchor->lock); 1416 } 1417 1418 typedef void (*usb_complete_t)(struct urb *); 1419 1420 /** 1421 * struct urb - USB Request Block 1422 * @urb_list: For use by current owner of the URB. 1423 * @anchor_list: membership in the list of an anchor 1424 * @anchor: to anchor URBs to a common mooring 1425 * @ep: Points to the endpoint's data structure. Will eventually 1426 * replace @pipe. 1427 * @pipe: Holds endpoint number, direction, type, and more. 1428 * Create these values with the eight macros available; 1429 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1430 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1431 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1432 * numbers range from zero to fifteen. Note that "in" endpoint two 1433 * is a different endpoint (and pipe) from "out" endpoint two. 1434 * The current configuration controls the existence, type, and 1435 * maximum packet size of any given endpoint. 1436 * @stream_id: the endpoint's stream ID for bulk streams 1437 * @dev: Identifies the USB device to perform the request. 1438 * @status: This is read in non-iso completion functions to get the 1439 * status of the particular request. ISO requests only use it 1440 * to tell whether the URB was unlinked; detailed status for 1441 * each frame is in the fields of the iso_frame-desc. 1442 * @transfer_flags: A variety of flags may be used to affect how URB 1443 * submission, unlinking, or operation are handled. Different 1444 * kinds of URB can use different flags. 1445 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1446 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1447 * (however, do not leave garbage in transfer_buffer even then). 1448 * This buffer must be suitable for DMA; allocate it with 1449 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1450 * of this buffer will be modified. This buffer is used for the data 1451 * stage of control transfers. 1452 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1453 * the device driver is saying that it provided this DMA address, 1454 * which the host controller driver should use in preference to the 1455 * transfer_buffer. 1456 * @sg: scatter gather buffer list, the buffer size of each element in 1457 * the list (except the last) must be divisible by the endpoint's 1458 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1459 * @num_mapped_sgs: (internal) number of mapped sg entries 1460 * @num_sgs: number of entries in the sg list 1461 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1462 * be broken up into chunks according to the current maximum packet 1463 * size for the endpoint, which is a function of the configuration 1464 * and is encoded in the pipe. When the length is zero, neither 1465 * transfer_buffer nor transfer_dma is used. 1466 * @actual_length: This is read in non-iso completion functions, and 1467 * it tells how many bytes (out of transfer_buffer_length) were 1468 * transferred. It will normally be the same as requested, unless 1469 * either an error was reported or a short read was performed. 1470 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1471 * short reads be reported as errors. 1472 * @setup_packet: Only used for control transfers, this points to eight bytes 1473 * of setup data. Control transfers always start by sending this data 1474 * to the device. Then transfer_buffer is read or written, if needed. 1475 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1476 * this field; setup_packet must point to a valid buffer. 1477 * @start_frame: Returns the initial frame for isochronous transfers. 1478 * @number_of_packets: Lists the number of ISO transfer buffers. 1479 * @interval: Specifies the polling interval for interrupt or isochronous 1480 * transfers. The units are frames (milliseconds) for full and low 1481 * speed devices, and microframes (1/8 millisecond) for highspeed 1482 * and SuperSpeed devices. 1483 * @error_count: Returns the number of ISO transfers that reported errors. 1484 * @context: For use in completion functions. This normally points to 1485 * request-specific driver context. 1486 * @complete: Completion handler. This URB is passed as the parameter to the 1487 * completion function. The completion function may then do what 1488 * it likes with the URB, including resubmitting or freeing it. 1489 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1490 * collect the transfer status for each buffer. 1491 * 1492 * This structure identifies USB transfer requests. URBs must be allocated by 1493 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1494 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1495 * are submitted using usb_submit_urb(), and pending requests may be canceled 1496 * using usb_unlink_urb() or usb_kill_urb(). 1497 * 1498 * Data Transfer Buffers: 1499 * 1500 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1501 * taken from the general page pool. That is provided by transfer_buffer 1502 * (control requests also use setup_packet), and host controller drivers 1503 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1504 * mapping operations can be expensive on some platforms (perhaps using a dma 1505 * bounce buffer or talking to an IOMMU), 1506 * although they're cheap on commodity x86 and ppc hardware. 1507 * 1508 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1509 * which tells the host controller driver that no such mapping is needed for 1510 * the transfer_buffer since 1511 * the device driver is DMA-aware. For example, a device driver might 1512 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1513 * When this transfer flag is provided, host controller drivers will 1514 * attempt to use the dma address found in the transfer_dma 1515 * field rather than determining a dma address themselves. 1516 * 1517 * Note that transfer_buffer must still be set if the controller 1518 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1519 * to root hub. If you have to transfer between highmem zone and the device 1520 * on such controller, create a bounce buffer or bail out with an error. 1521 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1522 * capable, assign NULL to it, so that usbmon knows not to use the value. 1523 * The setup_packet must always be set, so it cannot be located in highmem. 1524 * 1525 * Initialization: 1526 * 1527 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1528 * zero), and complete fields. All URBs must also initialize 1529 * transfer_buffer and transfer_buffer_length. They may provide the 1530 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1531 * to be treated as errors; that flag is invalid for write requests. 1532 * 1533 * Bulk URBs may 1534 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1535 * should always terminate with a short packet, even if it means adding an 1536 * extra zero length packet. 1537 * 1538 * Control URBs must provide a valid pointer in the setup_packet field. 1539 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1540 * beforehand. 1541 * 1542 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1543 * or, for highspeed devices, 125 microsecond units) 1544 * to poll for transfers. After the URB has been submitted, the interval 1545 * field reflects how the transfer was actually scheduled. 1546 * The polling interval may be more frequent than requested. 1547 * For example, some controllers have a maximum interval of 32 milliseconds, 1548 * while others support intervals of up to 1024 milliseconds. 1549 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1550 * endpoints, as well as high speed interrupt endpoints, the encoding of 1551 * the transfer interval in the endpoint descriptor is logarithmic. 1552 * Device drivers must convert that value to linear units themselves.) 1553 * 1554 * If an isochronous endpoint queue isn't already running, the host 1555 * controller will schedule a new URB to start as soon as bandwidth 1556 * utilization allows. If the queue is running then a new URB will be 1557 * scheduled to start in the first transfer slot following the end of the 1558 * preceding URB, if that slot has not already expired. If the slot has 1559 * expired (which can happen when IRQ delivery is delayed for a long time), 1560 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1561 * is clear then the URB will be scheduled to start in the expired slot, 1562 * implying that some of its packets will not be transferred; if the flag 1563 * is set then the URB will be scheduled in the first unexpired slot, 1564 * breaking the queue's synchronization. Upon URB completion, the 1565 * start_frame field will be set to the (micro)frame number in which the 1566 * transfer was scheduled. Ranges for frame counter values are HC-specific 1567 * and can go from as low as 256 to as high as 65536 frames. 1568 * 1569 * Isochronous URBs have a different data transfer model, in part because 1570 * the quality of service is only "best effort". Callers provide specially 1571 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1572 * at the end. Each such packet is an individual ISO transfer. Isochronous 1573 * URBs are normally queued, submitted by drivers to arrange that 1574 * transfers are at least double buffered, and then explicitly resubmitted 1575 * in completion handlers, so 1576 * that data (such as audio or video) streams at as constant a rate as the 1577 * host controller scheduler can support. 1578 * 1579 * Completion Callbacks: 1580 * 1581 * The completion callback is made in_interrupt(), and one of the first 1582 * things that a completion handler should do is check the status field. 1583 * The status field is provided for all URBs. It is used to report 1584 * unlinked URBs, and status for all non-ISO transfers. It should not 1585 * be examined before the URB is returned to the completion handler. 1586 * 1587 * The context field is normally used to link URBs back to the relevant 1588 * driver or request state. 1589 * 1590 * When the completion callback is invoked for non-isochronous URBs, the 1591 * actual_length field tells how many bytes were transferred. This field 1592 * is updated even when the URB terminated with an error or was unlinked. 1593 * 1594 * ISO transfer status is reported in the status and actual_length fields 1595 * of the iso_frame_desc array, and the number of errors is reported in 1596 * error_count. Completion callbacks for ISO transfers will normally 1597 * (re)submit URBs to ensure a constant transfer rate. 1598 * 1599 * Note that even fields marked "public" should not be touched by the driver 1600 * when the urb is owned by the hcd, that is, since the call to 1601 * usb_submit_urb() till the entry into the completion routine. 1602 */ 1603 struct urb { 1604 /* private: usb core and host controller only fields in the urb */ 1605 struct kref kref; /* reference count of the URB */ 1606 int unlinked; /* unlink error code */ 1607 void *hcpriv; /* private data for host controller */ 1608 atomic_t use_count; /* concurrent submissions counter */ 1609 atomic_t reject; /* submissions will fail */ 1610 1611 /* public: documented fields in the urb that can be used by drivers */ 1612 struct list_head urb_list; /* list head for use by the urb's 1613 * current owner */ 1614 struct list_head anchor_list; /* the URB may be anchored */ 1615 struct usb_anchor *anchor; 1616 struct usb_device *dev; /* (in) pointer to associated device */ 1617 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1618 unsigned int pipe; /* (in) pipe information */ 1619 unsigned int stream_id; /* (in) stream ID */ 1620 int status; /* (return) non-ISO status */ 1621 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1622 void *transfer_buffer; /* (in) associated data buffer */ 1623 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1624 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1625 int num_mapped_sgs; /* (internal) mapped sg entries */ 1626 int num_sgs; /* (in) number of entries in the sg list */ 1627 u32 transfer_buffer_length; /* (in) data buffer length */ 1628 u32 actual_length; /* (return) actual transfer length */ 1629 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1630 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1631 int start_frame; /* (modify) start frame (ISO) */ 1632 int number_of_packets; /* (in) number of ISO packets */ 1633 int interval; /* (modify) transfer interval 1634 * (INT/ISO) */ 1635 int error_count; /* (return) number of ISO errors */ 1636 void *context; /* (in) context for completion */ 1637 usb_complete_t complete; /* (in) completion routine */ 1638 struct usb_iso_packet_descriptor iso_frame_desc[]; 1639 /* (in) ISO ONLY */ 1640 }; 1641 1642 /* ----------------------------------------------------------------------- */ 1643 1644 /** 1645 * usb_fill_control_urb - initializes a control urb 1646 * @urb: pointer to the urb to initialize. 1647 * @dev: pointer to the struct usb_device for this urb. 1648 * @pipe: the endpoint pipe 1649 * @setup_packet: pointer to the setup_packet buffer. The buffer must be 1650 * suitable for DMA. 1651 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1652 * suitable for DMA. 1653 * @buffer_length: length of the transfer buffer 1654 * @complete_fn: pointer to the usb_complete_t function 1655 * @context: what to set the urb context to. 1656 * 1657 * Initializes a control urb with the proper information needed to submit 1658 * it to a device. 1659 * 1660 * The transfer buffer and the setup_packet buffer will most likely be filled 1661 * or read via DMA. The simplest way to get a buffer that can be DMAed to is 1662 * allocating it via kmalloc() or equivalent, even for very small buffers. 1663 * If the buffers are embedded in a bigger structure, there is a risk that 1664 * the buffer itself, the previous fields and/or the next fields are corrupted 1665 * due to cache incoherencies; or slowed down if they are evicted from the 1666 * cache. For more information, check &struct urb. 1667 * 1668 */ 1669 static inline void usb_fill_control_urb(struct urb *urb, 1670 struct usb_device *dev, 1671 unsigned int pipe, 1672 unsigned char *setup_packet, 1673 void *transfer_buffer, 1674 int buffer_length, 1675 usb_complete_t complete_fn, 1676 void *context) 1677 { 1678 urb->dev = dev; 1679 urb->pipe = pipe; 1680 urb->setup_packet = setup_packet; 1681 urb->transfer_buffer = transfer_buffer; 1682 urb->transfer_buffer_length = buffer_length; 1683 urb->complete = complete_fn; 1684 urb->context = context; 1685 } 1686 1687 /** 1688 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1689 * @urb: pointer to the urb to initialize. 1690 * @dev: pointer to the struct usb_device for this urb. 1691 * @pipe: the endpoint pipe 1692 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1693 * suitable for DMA. 1694 * @buffer_length: length of the transfer buffer 1695 * @complete_fn: pointer to the usb_complete_t function 1696 * @context: what to set the urb context to. 1697 * 1698 * Initializes a bulk urb with the proper information needed to submit it 1699 * to a device. 1700 * 1701 * Refer to usb_fill_control_urb() for a description of the requirements for 1702 * transfer_buffer. 1703 */ 1704 static inline void usb_fill_bulk_urb(struct urb *urb, 1705 struct usb_device *dev, 1706 unsigned int pipe, 1707 void *transfer_buffer, 1708 int buffer_length, 1709 usb_complete_t complete_fn, 1710 void *context) 1711 { 1712 urb->dev = dev; 1713 urb->pipe = pipe; 1714 urb->transfer_buffer = transfer_buffer; 1715 urb->transfer_buffer_length = buffer_length; 1716 urb->complete = complete_fn; 1717 urb->context = context; 1718 } 1719 1720 /** 1721 * usb_fill_int_urb - macro to help initialize a interrupt urb 1722 * @urb: pointer to the urb to initialize. 1723 * @dev: pointer to the struct usb_device for this urb. 1724 * @pipe: the endpoint pipe 1725 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1726 * suitable for DMA. 1727 * @buffer_length: length of the transfer buffer 1728 * @complete_fn: pointer to the usb_complete_t function 1729 * @context: what to set the urb context to. 1730 * @interval: what to set the urb interval to, encoded like 1731 * the endpoint descriptor's bInterval value. 1732 * 1733 * Initializes a interrupt urb with the proper information needed to submit 1734 * it to a device. 1735 * 1736 * Refer to usb_fill_control_urb() for a description of the requirements for 1737 * transfer_buffer. 1738 * 1739 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1740 * encoding of the endpoint interval, and express polling intervals in 1741 * microframes (eight per millisecond) rather than in frames (one per 1742 * millisecond). 1743 */ 1744 static inline void usb_fill_int_urb(struct urb *urb, 1745 struct usb_device *dev, 1746 unsigned int pipe, 1747 void *transfer_buffer, 1748 int buffer_length, 1749 usb_complete_t complete_fn, 1750 void *context, 1751 int interval) 1752 { 1753 urb->dev = dev; 1754 urb->pipe = pipe; 1755 urb->transfer_buffer = transfer_buffer; 1756 urb->transfer_buffer_length = buffer_length; 1757 urb->complete = complete_fn; 1758 urb->context = context; 1759 1760 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1761 /* make sure interval is within allowed range */ 1762 interval = clamp(interval, 1, 16); 1763 1764 urb->interval = 1 << (interval - 1); 1765 } else { 1766 urb->interval = interval; 1767 } 1768 1769 urb->start_frame = -1; 1770 } 1771 1772 extern void usb_init_urb(struct urb *urb); 1773 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1774 extern void usb_free_urb(struct urb *urb); 1775 #define usb_put_urb usb_free_urb 1776 extern struct urb *usb_get_urb(struct urb *urb); 1777 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1778 extern int usb_unlink_urb(struct urb *urb); 1779 extern void usb_kill_urb(struct urb *urb); 1780 extern void usb_poison_urb(struct urb *urb); 1781 extern void usb_unpoison_urb(struct urb *urb); 1782 extern void usb_block_urb(struct urb *urb); 1783 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1784 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1785 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1786 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1787 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1788 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1789 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1790 extern void usb_unanchor_urb(struct urb *urb); 1791 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1792 unsigned int timeout); 1793 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1794 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1795 extern int usb_anchor_empty(struct usb_anchor *anchor); 1796 1797 #define usb_unblock_urb usb_unpoison_urb 1798 1799 /** 1800 * usb_urb_dir_in - check if an URB describes an IN transfer 1801 * @urb: URB to be checked 1802 * 1803 * Return: 1 if @urb describes an IN transfer (device-to-host), 1804 * otherwise 0. 1805 */ 1806 static inline int usb_urb_dir_in(struct urb *urb) 1807 { 1808 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1809 } 1810 1811 /** 1812 * usb_urb_dir_out - check if an URB describes an OUT transfer 1813 * @urb: URB to be checked 1814 * 1815 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1816 * otherwise 0. 1817 */ 1818 static inline int usb_urb_dir_out(struct urb *urb) 1819 { 1820 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1821 } 1822 1823 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1824 int usb_urb_ep_type_check(const struct urb *urb); 1825 1826 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1827 gfp_t mem_flags, dma_addr_t *dma); 1828 void usb_free_coherent(struct usb_device *dev, size_t size, 1829 void *addr, dma_addr_t dma); 1830 1831 /*-------------------------------------------------------------------* 1832 * SYNCHRONOUS CALL SUPPORT * 1833 *-------------------------------------------------------------------*/ 1834 1835 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1836 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1837 void *data, __u16 size, int timeout); 1838 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1839 void *data, int len, int *actual_length, int timeout); 1840 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1841 void *data, int len, int *actual_length, 1842 int timeout); 1843 1844 /* wrappers around usb_control_msg() for the most common standard requests */ 1845 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1846 __u8 requesttype, __u16 value, __u16 index, 1847 const void *data, __u16 size, int timeout, 1848 gfp_t memflags); 1849 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1850 __u8 requesttype, __u16 value, __u16 index, 1851 void *data, __u16 size, int timeout, 1852 gfp_t memflags); 1853 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1854 unsigned char descindex, void *buf, int size); 1855 extern int usb_get_status(struct usb_device *dev, 1856 int recip, int type, int target, void *data); 1857 1858 static inline int usb_get_std_status(struct usb_device *dev, 1859 int recip, int target, void *data) 1860 { 1861 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1862 data); 1863 } 1864 1865 static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1866 { 1867 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1868 0, data); 1869 } 1870 1871 extern int usb_string(struct usb_device *dev, int index, 1872 char *buf, size_t size); 1873 extern char *usb_cache_string(struct usb_device *udev, int index); 1874 1875 /* wrappers that also update important state inside usbcore */ 1876 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1877 extern int usb_reset_configuration(struct usb_device *dev); 1878 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1879 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1880 1881 /* this request isn't really synchronous, but it belongs with the others */ 1882 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1883 1884 /* choose and set configuration for device */ 1885 extern int usb_choose_configuration(struct usb_device *udev); 1886 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1887 1888 /* 1889 * timeouts, in milliseconds, used for sending/receiving control messages 1890 * they typically complete within a few frames (msec) after they're issued 1891 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1892 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1893 */ 1894 #define USB_CTRL_GET_TIMEOUT 5000 1895 #define USB_CTRL_SET_TIMEOUT 5000 1896 1897 1898 /** 1899 * struct usb_sg_request - support for scatter/gather I/O 1900 * @status: zero indicates success, else negative errno 1901 * @bytes: counts bytes transferred. 1902 * 1903 * These requests are initialized using usb_sg_init(), and then are used 1904 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1905 * members of the request object aren't for driver access. 1906 * 1907 * The status and bytecount values are valid only after usb_sg_wait() 1908 * returns. If the status is zero, then the bytecount matches the total 1909 * from the request. 1910 * 1911 * After an error completion, drivers may need to clear a halt condition 1912 * on the endpoint. 1913 */ 1914 struct usb_sg_request { 1915 int status; 1916 size_t bytes; 1917 1918 /* private: 1919 * members below are private to usbcore, 1920 * and are not provided for driver access! 1921 */ 1922 spinlock_t lock; 1923 1924 struct usb_device *dev; 1925 int pipe; 1926 1927 int entries; 1928 struct urb **urbs; 1929 1930 int count; 1931 struct completion complete; 1932 }; 1933 1934 int usb_sg_init( 1935 struct usb_sg_request *io, 1936 struct usb_device *dev, 1937 unsigned pipe, 1938 unsigned period, 1939 struct scatterlist *sg, 1940 int nents, 1941 size_t length, 1942 gfp_t mem_flags 1943 ); 1944 void usb_sg_cancel(struct usb_sg_request *io); 1945 void usb_sg_wait(struct usb_sg_request *io); 1946 1947 1948 /* ----------------------------------------------------------------------- */ 1949 1950 /* 1951 * For various legacy reasons, Linux has a small cookie that's paired with 1952 * a struct usb_device to identify an endpoint queue. Queue characteristics 1953 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1954 * an unsigned int encoded as: 1955 * 1956 * - direction: bit 7 (0 = Host-to-Device [Out], 1957 * 1 = Device-to-Host [In] ... 1958 * like endpoint bEndpointAddress) 1959 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1960 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1961 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1962 * 10 = control, 11 = bulk) 1963 * 1964 * Given the device address and endpoint descriptor, pipes are redundant. 1965 */ 1966 1967 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1968 /* (yet ... they're the values used by usbfs) */ 1969 #define PIPE_ISOCHRONOUS 0 1970 #define PIPE_INTERRUPT 1 1971 #define PIPE_CONTROL 2 1972 #define PIPE_BULK 3 1973 1974 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1975 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1976 1977 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1978 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1979 1980 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1981 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1982 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1983 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1984 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1985 1986 static inline unsigned int __create_pipe(struct usb_device *dev, 1987 unsigned int endpoint) 1988 { 1989 return (dev->devnum << 8) | (endpoint << 15); 1990 } 1991 1992 /* Create various pipes... */ 1993 #define usb_sndctrlpipe(dev, endpoint) \ 1994 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1995 #define usb_rcvctrlpipe(dev, endpoint) \ 1996 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1997 #define usb_sndisocpipe(dev, endpoint) \ 1998 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1999 #define usb_rcvisocpipe(dev, endpoint) \ 2000 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2001 #define usb_sndbulkpipe(dev, endpoint) \ 2002 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 2003 #define usb_rcvbulkpipe(dev, endpoint) \ 2004 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2005 #define usb_sndintpipe(dev, endpoint) \ 2006 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 2007 #define usb_rcvintpipe(dev, endpoint) \ 2008 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2009 2010 static inline struct usb_host_endpoint * 2011 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 2012 { 2013 struct usb_host_endpoint **eps; 2014 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 2015 return eps[usb_pipeendpoint(pipe)]; 2016 } 2017 2018 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 2019 { 2020 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 2021 2022 if (!ep) 2023 return 0; 2024 2025 /* NOTE: only 0x07ff bits are for packet size... */ 2026 return usb_endpoint_maxp(&ep->desc); 2027 } 2028 2029 /* translate USB error codes to codes user space understands */ 2030 static inline int usb_translate_errors(int error_code) 2031 { 2032 switch (error_code) { 2033 case 0: 2034 case -ENOMEM: 2035 case -ENODEV: 2036 case -EOPNOTSUPP: 2037 return error_code; 2038 default: 2039 return -EIO; 2040 } 2041 } 2042 2043 /* Events from the usb core */ 2044 #define USB_DEVICE_ADD 0x0001 2045 #define USB_DEVICE_REMOVE 0x0002 2046 #define USB_BUS_ADD 0x0003 2047 #define USB_BUS_REMOVE 0x0004 2048 extern void usb_register_notify(struct notifier_block *nb); 2049 extern void usb_unregister_notify(struct notifier_block *nb); 2050 2051 /* debugfs stuff */ 2052 extern struct dentry *usb_debug_root; 2053 2054 /* LED triggers */ 2055 enum usb_led_event { 2056 USB_LED_EVENT_HOST = 0, 2057 USB_LED_EVENT_GADGET = 1, 2058 }; 2059 2060 #ifdef CONFIG_USB_LED_TRIG 2061 extern void usb_led_activity(enum usb_led_event ev); 2062 #else 2063 static inline void usb_led_activity(enum usb_led_event ev) {} 2064 #endif 2065 2066 #endif /* __KERNEL__ */ 2067 2068 #endif 2069