1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_USB_H 3 #define __LINUX_USB_H 4 5 #include <linux/mod_devicetable.h> 6 #include <linux/usb/ch9.h> 7 8 #define USB_MAJOR 180 9 #define USB_DEVICE_MAJOR 189 10 11 12 #ifdef __KERNEL__ 13 14 #include <linux/errno.h> /* for -ENODEV */ 15 #include <linux/delay.h> /* for mdelay() */ 16 #include <linux/interrupt.h> /* for in_interrupt() */ 17 #include <linux/list.h> /* for struct list_head */ 18 #include <linux/kref.h> /* for struct kref */ 19 #include <linux/device.h> /* for struct device */ 20 #include <linux/fs.h> /* for struct file_operations */ 21 #include <linux/completion.h> /* for struct completion */ 22 #include <linux/sched.h> /* for current && schedule_timeout */ 23 #include <linux/mutex.h> /* for struct mutex */ 24 #include <linux/pm_runtime.h> /* for runtime PM */ 25 26 struct usb_device; 27 struct usb_driver; 28 struct wusb_dev; 29 30 /*-------------------------------------------------------------------------*/ 31 32 /* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48 struct ep_device; 49 50 /** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67 struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79 }; 80 81 /* host-side wrapper for one interface setting's parsed descriptors */ 82 struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94 }; 95 96 enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101 }; 102 103 int __must_check 104 usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110 int __must_check 111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117 static inline int __must_check 118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120 { 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122 } 123 124 static inline int __must_check 125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127 { 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129 } 130 131 static inline int __must_check 132 usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134 { 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136 } 137 138 static inline int __must_check 139 usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141 { 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143 } 144 145 static inline int __must_check 146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148 { 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150 } 151 152 static inline int __must_check 153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155 { 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157 } 158 159 static inline int __must_check 160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162 { 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164 } 165 166 static inline int __must_check 167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169 { 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171 } 172 173 /** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232 struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 struct work_struct reset_ws; /* for resets in atomic context */ 260 }; 261 262 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev) 263 264 static inline void *usb_get_intfdata(struct usb_interface *intf) 265 { 266 return dev_get_drvdata(&intf->dev); 267 } 268 269 /** 270 * usb_set_intfdata() - associate driver-specific data with an interface 271 * @intf: USB interface 272 * @data: driver data 273 * 274 * Drivers can use this function in their probe() callbacks to associate 275 * driver-specific data with an interface. 276 * 277 * Note that there is generally no need to clear the driver-data pointer even 278 * if some drivers do so for historical or implementation-specific reasons. 279 */ 280 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 281 { 282 dev_set_drvdata(&intf->dev, data); 283 } 284 285 struct usb_interface *usb_get_intf(struct usb_interface *intf); 286 void usb_put_intf(struct usb_interface *intf); 287 288 /* Hard limit */ 289 #define USB_MAXENDPOINTS 30 290 /* this maximum is arbitrary */ 291 #define USB_MAXINTERFACES 32 292 #define USB_MAXIADS (USB_MAXINTERFACES/2) 293 294 /* 295 * USB Resume Timer: Every Host controller driver should drive the resume 296 * signalling on the bus for the amount of time defined by this macro. 297 * 298 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 299 * 300 * Note that the USB Specification states we should drive resume for *at least* 301 * 20 ms, but it doesn't give an upper bound. This creates two possible 302 * situations which we want to avoid: 303 * 304 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 305 * us to fail USB Electrical Tests, thus failing Certification 306 * 307 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 308 * and while we can argue that's against the USB Specification, we don't have 309 * control over which devices a certification laboratory will be using for 310 * certification. If CertLab uses a device which was tested against Windows and 311 * that happens to have relaxed resume signalling rules, we might fall into 312 * situations where we fail interoperability and electrical tests. 313 * 314 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 315 * should cope with both LPJ calibration errors and devices not following every 316 * detail of the USB Specification. 317 */ 318 #define USB_RESUME_TIMEOUT 40 /* ms */ 319 320 /** 321 * struct usb_interface_cache - long-term representation of a device interface 322 * @num_altsetting: number of altsettings defined. 323 * @ref: reference counter. 324 * @altsetting: variable-length array of interface structures, one for 325 * each alternate setting that may be selected. Each one includes a 326 * set of endpoint configurations. They will be in no particular order. 327 * 328 * These structures persist for the lifetime of a usb_device, unlike 329 * struct usb_interface (which persists only as long as its configuration 330 * is installed). The altsetting arrays can be accessed through these 331 * structures at any time, permitting comparison of configurations and 332 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 333 */ 334 struct usb_interface_cache { 335 unsigned num_altsetting; /* number of alternate settings */ 336 struct kref ref; /* reference counter */ 337 338 /* variable-length array of alternate settings for this interface, 339 * stored in no particular order */ 340 struct usb_host_interface altsetting[]; 341 }; 342 #define ref_to_usb_interface_cache(r) \ 343 container_of(r, struct usb_interface_cache, ref) 344 #define altsetting_to_usb_interface_cache(a) \ 345 container_of(a, struct usb_interface_cache, altsetting[0]) 346 347 /** 348 * struct usb_host_config - representation of a device's configuration 349 * @desc: the device's configuration descriptor. 350 * @string: pointer to the cached version of the iConfiguration string, if 351 * present for this configuration. 352 * @intf_assoc: list of any interface association descriptors in this config 353 * @interface: array of pointers to usb_interface structures, one for each 354 * interface in the configuration. The number of interfaces is stored 355 * in desc.bNumInterfaces. These pointers are valid only while the 356 * configuration is active. 357 * @intf_cache: array of pointers to usb_interface_cache structures, one 358 * for each interface in the configuration. These structures exist 359 * for the entire life of the device. 360 * @extra: pointer to buffer containing all extra descriptors associated 361 * with this configuration (those preceding the first interface 362 * descriptor). 363 * @extralen: length of the extra descriptors buffer. 364 * 365 * USB devices may have multiple configurations, but only one can be active 366 * at any time. Each encapsulates a different operational environment; 367 * for example, a dual-speed device would have separate configurations for 368 * full-speed and high-speed operation. The number of configurations 369 * available is stored in the device descriptor as bNumConfigurations. 370 * 371 * A configuration can contain multiple interfaces. Each corresponds to 372 * a different function of the USB device, and all are available whenever 373 * the configuration is active. The USB standard says that interfaces 374 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 375 * of devices get this wrong. In addition, the interface array is not 376 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 377 * look up an interface entry based on its number. 378 * 379 * Device drivers should not attempt to activate configurations. The choice 380 * of which configuration to install is a policy decision based on such 381 * considerations as available power, functionality provided, and the user's 382 * desires (expressed through userspace tools). However, drivers can call 383 * usb_reset_configuration() to reinitialize the current configuration and 384 * all its interfaces. 385 */ 386 struct usb_host_config { 387 struct usb_config_descriptor desc; 388 389 char *string; /* iConfiguration string, if present */ 390 391 /* List of any Interface Association Descriptors in this 392 * configuration. */ 393 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 394 395 /* the interfaces associated with this configuration, 396 * stored in no particular order */ 397 struct usb_interface *interface[USB_MAXINTERFACES]; 398 399 /* Interface information available even when this is not the 400 * active configuration */ 401 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 402 403 unsigned char *extra; /* Extra descriptors */ 404 int extralen; 405 }; 406 407 /* USB2.0 and USB3.0 device BOS descriptor set */ 408 struct usb_host_bos { 409 struct usb_bos_descriptor *desc; 410 411 /* wireless cap descriptor is handled by wusb */ 412 struct usb_ext_cap_descriptor *ext_cap; 413 struct usb_ss_cap_descriptor *ss_cap; 414 struct usb_ssp_cap_descriptor *ssp_cap; 415 struct usb_ss_container_id_descriptor *ss_id; 416 struct usb_ptm_cap_descriptor *ptm_cap; 417 }; 418 419 int __usb_get_extra_descriptor(char *buffer, unsigned size, 420 unsigned char type, void **ptr, size_t min); 421 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 422 __usb_get_extra_descriptor((ifpoint)->extra, \ 423 (ifpoint)->extralen, \ 424 type, (void **)ptr, sizeof(**(ptr))) 425 426 /* ----------------------------------------------------------------------- */ 427 428 /* USB device number allocation bitmap */ 429 struct usb_devmap { 430 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 431 }; 432 433 /* 434 * Allocated per bus (tree of devices) we have: 435 */ 436 struct usb_bus { 437 struct device *controller; /* host side hardware */ 438 struct device *sysdev; /* as seen from firmware or bus */ 439 int busnum; /* Bus number (in order of reg) */ 440 const char *bus_name; /* stable id (PCI slot_name etc) */ 441 u8 uses_pio_for_control; /* 442 * Does the host controller use PIO 443 * for control transfers? 444 */ 445 u8 otg_port; /* 0, or number of OTG/HNP port */ 446 unsigned is_b_host:1; /* true during some HNP roleswitches */ 447 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 448 unsigned no_stop_on_short:1; /* 449 * Quirk: some controllers don't stop 450 * the ep queue on a short transfer 451 * with the URB_SHORT_NOT_OK flag set. 452 */ 453 unsigned no_sg_constraint:1; /* no sg constraint */ 454 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 455 456 int devnum_next; /* Next open device number in 457 * round-robin allocation */ 458 struct mutex devnum_next_mutex; /* devnum_next mutex */ 459 460 struct usb_devmap devmap; /* device address allocation map */ 461 struct usb_device *root_hub; /* Root hub */ 462 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 463 464 int bandwidth_allocated; /* on this bus: how much of the time 465 * reserved for periodic (intr/iso) 466 * requests is used, on average? 467 * Units: microseconds/frame. 468 * Limits: Full/low speed reserve 90%, 469 * while high speed reserves 80%. 470 */ 471 int bandwidth_int_reqs; /* number of Interrupt requests */ 472 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 473 474 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 475 476 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 477 struct mon_bus *mon_bus; /* non-null when associated */ 478 int monitored; /* non-zero when monitored */ 479 #endif 480 }; 481 482 struct usb_dev_state; 483 484 /* ----------------------------------------------------------------------- */ 485 486 struct usb_tt; 487 488 enum usb_port_connect_type { 489 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 490 USB_PORT_CONNECT_TYPE_HOT_PLUG, 491 USB_PORT_CONNECT_TYPE_HARD_WIRED, 492 USB_PORT_NOT_USED, 493 }; 494 495 /* 496 * USB port quirks. 497 */ 498 499 /* For the given port, prefer the old (faster) enumeration scheme. */ 500 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 501 502 /* Decrease TRSTRCY to 10ms during device enumeration. */ 503 #define USB_PORT_QUIRK_FAST_ENUM BIT(1) 504 505 /* 506 * USB 2.0 Link Power Management (LPM) parameters. 507 */ 508 struct usb2_lpm_parameters { 509 /* Best effort service latency indicate how long the host will drive 510 * resume on an exit from L1. 511 */ 512 unsigned int besl; 513 514 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 515 * When the timer counts to zero, the parent hub will initiate a LPM 516 * transition to L1. 517 */ 518 int timeout; 519 }; 520 521 /* 522 * USB 3.0 Link Power Management (LPM) parameters. 523 * 524 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 525 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 526 * All three are stored in nanoseconds. 527 */ 528 struct usb3_lpm_parameters { 529 /* 530 * Maximum exit latency (MEL) for the host to send a packet to the 531 * device (either a Ping for isoc endpoints, or a data packet for 532 * interrupt endpoints), the hubs to decode the packet, and for all hubs 533 * in the path to transition the links to U0. 534 */ 535 unsigned int mel; 536 /* 537 * Maximum exit latency for a device-initiated LPM transition to bring 538 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 539 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 540 */ 541 unsigned int pel; 542 543 /* 544 * The System Exit Latency (SEL) includes PEL, and three other 545 * latencies. After a device initiates a U0 transition, it will take 546 * some time from when the device sends the ERDY to when it will finally 547 * receive the data packet. Basically, SEL should be the worse-case 548 * latency from when a device starts initiating a U0 transition to when 549 * it will get data. 550 */ 551 unsigned int sel; 552 /* 553 * The idle timeout value that is currently programmed into the parent 554 * hub for this device. When the timer counts to zero, the parent hub 555 * will initiate an LPM transition to either U1 or U2. 556 */ 557 int timeout; 558 }; 559 560 /** 561 * struct usb_device - kernel's representation of a USB device 562 * @devnum: device number; address on a USB bus 563 * @devpath: device ID string for use in messages (e.g., /port/...) 564 * @route: tree topology hex string for use with xHCI 565 * @state: device state: configured, not attached, etc. 566 * @speed: device speed: high/full/low (or error) 567 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 568 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 569 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 570 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 571 * @ttport: device port on that tt hub 572 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 573 * @parent: our hub, unless we're the root 574 * @bus: bus we're part of 575 * @ep0: endpoint 0 data (default control pipe) 576 * @dev: generic device interface 577 * @descriptor: USB device descriptor 578 * @bos: USB device BOS descriptor set 579 * @config: all of the device's configs 580 * @actconfig: the active configuration 581 * @ep_in: array of IN endpoints 582 * @ep_out: array of OUT endpoints 583 * @rawdescriptors: raw descriptors for each config 584 * @bus_mA: Current available from the bus 585 * @portnum: parent port number (origin 1) 586 * @level: number of USB hub ancestors 587 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 588 * @can_submit: URBs may be submitted 589 * @persist_enabled: USB_PERSIST enabled for this device 590 * @reset_in_progress: the device is being reset 591 * @have_langid: whether string_langid is valid 592 * @authorized: policy has said we can use it; 593 * (user space) policy determines if we authorize this device to be 594 * used or not. By default, wired USB devices are authorized. 595 * WUSB devices are not, until we authorize them from user space. 596 * FIXME -- complete doc 597 * @authenticated: Crypto authentication passed 598 * @wusb: device is Wireless USB 599 * @lpm_capable: device supports LPM 600 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 601 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 602 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 603 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 604 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 605 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 606 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 607 * @string_langid: language ID for strings 608 * @product: iProduct string, if present (static) 609 * @manufacturer: iManufacturer string, if present (static) 610 * @serial: iSerialNumber string, if present (static) 611 * @filelist: usbfs files that are open to this device 612 * @maxchild: number of ports if hub 613 * @quirks: quirks of the whole device 614 * @urbnum: number of URBs submitted for the whole device 615 * @active_duration: total time device is not suspended 616 * @connect_time: time device was first connected 617 * @do_remote_wakeup: remote wakeup should be enabled 618 * @reset_resume: needs reset instead of resume 619 * @port_is_suspended: the upstream port is suspended (L2 or U3) 620 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 621 * specific data for the device. 622 * @slot_id: Slot ID assigned by xHCI 623 * @removable: Device can be physically removed from this port 624 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 625 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 626 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 627 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 628 * to keep track of the number of functions that require USB 3.0 Link Power 629 * Management to be disabled for this usb_device. This count should only 630 * be manipulated by those functions, with the bandwidth_mutex is held. 631 * @hub_delay: cached value consisting of: 632 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 633 * Will be used as wValue for SetIsochDelay requests. 634 * @use_generic_driver: ask driver core to reprobe using the generic driver. 635 * 636 * Notes: 637 * Usbcore drivers should not set usbdev->state directly. Instead use 638 * usb_set_device_state(). 639 */ 640 struct usb_device { 641 int devnum; 642 char devpath[16]; 643 u32 route; 644 enum usb_device_state state; 645 enum usb_device_speed speed; 646 unsigned int rx_lanes; 647 unsigned int tx_lanes; 648 enum usb_ssp_rate ssp_rate; 649 650 struct usb_tt *tt; 651 int ttport; 652 653 unsigned int toggle[2]; 654 655 struct usb_device *parent; 656 struct usb_bus *bus; 657 struct usb_host_endpoint ep0; 658 659 struct device dev; 660 661 struct usb_device_descriptor descriptor; 662 struct usb_host_bos *bos; 663 struct usb_host_config *config; 664 665 struct usb_host_config *actconfig; 666 struct usb_host_endpoint *ep_in[16]; 667 struct usb_host_endpoint *ep_out[16]; 668 669 char **rawdescriptors; 670 671 unsigned short bus_mA; 672 u8 portnum; 673 u8 level; 674 u8 devaddr; 675 676 unsigned can_submit:1; 677 unsigned persist_enabled:1; 678 unsigned reset_in_progress:1; 679 unsigned have_langid:1; 680 unsigned authorized:1; 681 unsigned authenticated:1; 682 unsigned wusb:1; 683 unsigned lpm_capable:1; 684 unsigned lpm_devinit_allow:1; 685 unsigned usb2_hw_lpm_capable:1; 686 unsigned usb2_hw_lpm_besl_capable:1; 687 unsigned usb2_hw_lpm_enabled:1; 688 unsigned usb2_hw_lpm_allowed:1; 689 unsigned usb3_lpm_u1_enabled:1; 690 unsigned usb3_lpm_u2_enabled:1; 691 int string_langid; 692 693 /* static strings from the device */ 694 char *product; 695 char *manufacturer; 696 char *serial; 697 698 struct list_head filelist; 699 700 int maxchild; 701 702 u32 quirks; 703 atomic_t urbnum; 704 705 unsigned long active_duration; 706 707 unsigned long connect_time; 708 709 unsigned do_remote_wakeup:1; 710 unsigned reset_resume:1; 711 unsigned port_is_suspended:1; 712 713 struct wusb_dev *wusb_dev; 714 int slot_id; 715 struct usb2_lpm_parameters l1_params; 716 struct usb3_lpm_parameters u1_params; 717 struct usb3_lpm_parameters u2_params; 718 unsigned lpm_disable_count; 719 720 u16 hub_delay; 721 unsigned use_generic_driver:1; 722 }; 723 724 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev) 725 726 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 727 { 728 return to_usb_device(intf->dev.parent); 729 } 730 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 731 { 732 return to_usb_device((const struct device *)intf->dev.parent); 733 } 734 735 #define interface_to_usbdev(intf) \ 736 _Generic((intf), \ 737 const struct usb_interface *: __intf_to_usbdev_const, \ 738 struct usb_interface *: __intf_to_usbdev)(intf) 739 740 extern struct usb_device *usb_get_dev(struct usb_device *dev); 741 extern void usb_put_dev(struct usb_device *dev); 742 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 743 int port1); 744 745 /** 746 * usb_hub_for_each_child - iterate over all child devices on the hub 747 * @hdev: USB device belonging to the usb hub 748 * @port1: portnum associated with child device 749 * @child: child device pointer 750 */ 751 #define usb_hub_for_each_child(hdev, port1, child) \ 752 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 753 port1 <= hdev->maxchild; \ 754 child = usb_hub_find_child(hdev, ++port1)) \ 755 if (!child) continue; else 756 757 /* USB device locking */ 758 #define usb_lock_device(udev) device_lock(&(udev)->dev) 759 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 760 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 761 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 762 extern int usb_lock_device_for_reset(struct usb_device *udev, 763 const struct usb_interface *iface); 764 765 /* USB port reset for device reinitialization */ 766 extern int usb_reset_device(struct usb_device *dev); 767 extern void usb_queue_reset_device(struct usb_interface *dev); 768 769 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 770 771 #ifdef CONFIG_ACPI 772 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 773 bool enable); 774 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 775 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index); 776 #else 777 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 778 bool enable) { return 0; } 779 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 780 { return true; } 781 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index) 782 { return 0; } 783 #endif 784 785 /* USB autosuspend and autoresume */ 786 #ifdef CONFIG_PM 787 extern void usb_enable_autosuspend(struct usb_device *udev); 788 extern void usb_disable_autosuspend(struct usb_device *udev); 789 790 extern int usb_autopm_get_interface(struct usb_interface *intf); 791 extern void usb_autopm_put_interface(struct usb_interface *intf); 792 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 793 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 794 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 795 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 796 797 static inline void usb_mark_last_busy(struct usb_device *udev) 798 { 799 pm_runtime_mark_last_busy(&udev->dev); 800 } 801 802 #else 803 804 static inline int usb_enable_autosuspend(struct usb_device *udev) 805 { return 0; } 806 static inline int usb_disable_autosuspend(struct usb_device *udev) 807 { return 0; } 808 809 static inline int usb_autopm_get_interface(struct usb_interface *intf) 810 { return 0; } 811 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 812 { return 0; } 813 814 static inline void usb_autopm_put_interface(struct usb_interface *intf) 815 { } 816 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 817 { } 818 static inline void usb_autopm_get_interface_no_resume( 819 struct usb_interface *intf) 820 { } 821 static inline void usb_autopm_put_interface_no_suspend( 822 struct usb_interface *intf) 823 { } 824 static inline void usb_mark_last_busy(struct usb_device *udev) 825 { } 826 #endif 827 828 extern int usb_disable_lpm(struct usb_device *udev); 829 extern void usb_enable_lpm(struct usb_device *udev); 830 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 831 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 832 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 833 834 extern int usb_disable_ltm(struct usb_device *udev); 835 extern void usb_enable_ltm(struct usb_device *udev); 836 837 static inline bool usb_device_supports_ltm(struct usb_device *udev) 838 { 839 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 840 return false; 841 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 842 } 843 844 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 845 { 846 return udev && udev->bus && udev->bus->no_sg_constraint; 847 } 848 849 850 /*-------------------------------------------------------------------------*/ 851 852 /* for drivers using iso endpoints */ 853 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 854 855 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 856 extern int usb_alloc_streams(struct usb_interface *interface, 857 struct usb_host_endpoint **eps, unsigned int num_eps, 858 unsigned int num_streams, gfp_t mem_flags); 859 860 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 861 extern int usb_free_streams(struct usb_interface *interface, 862 struct usb_host_endpoint **eps, unsigned int num_eps, 863 gfp_t mem_flags); 864 865 /* used these for multi-interface device registration */ 866 extern int usb_driver_claim_interface(struct usb_driver *driver, 867 struct usb_interface *iface, void *data); 868 869 /** 870 * usb_interface_claimed - returns true iff an interface is claimed 871 * @iface: the interface being checked 872 * 873 * Return: %true (nonzero) iff the interface is claimed, else %false 874 * (zero). 875 * 876 * Note: 877 * Callers must own the driver model's usb bus readlock. So driver 878 * probe() entries don't need extra locking, but other call contexts 879 * may need to explicitly claim that lock. 880 * 881 */ 882 static inline int usb_interface_claimed(struct usb_interface *iface) 883 { 884 return (iface->dev.driver != NULL); 885 } 886 887 extern void usb_driver_release_interface(struct usb_driver *driver, 888 struct usb_interface *iface); 889 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 890 const struct usb_device_id *id); 891 extern int usb_match_one_id(struct usb_interface *interface, 892 const struct usb_device_id *id); 893 894 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 895 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 896 int minor); 897 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 898 unsigned ifnum); 899 extern struct usb_host_interface *usb_altnum_to_altsetting( 900 const struct usb_interface *intf, unsigned int altnum); 901 extern struct usb_host_interface *usb_find_alt_setting( 902 struct usb_host_config *config, 903 unsigned int iface_num, 904 unsigned int alt_num); 905 906 /* port claiming functions */ 907 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 908 struct usb_dev_state *owner); 909 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 910 struct usb_dev_state *owner); 911 912 /** 913 * usb_make_path - returns stable device path in the usb tree 914 * @dev: the device whose path is being constructed 915 * @buf: where to put the string 916 * @size: how big is "buf"? 917 * 918 * Return: Length of the string (> 0) or negative if size was too small. 919 * 920 * Note: 921 * This identifier is intended to be "stable", reflecting physical paths in 922 * hardware such as physical bus addresses for host controllers or ports on 923 * USB hubs. That makes it stay the same until systems are physically 924 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 925 * controllers. Adding and removing devices, including virtual root hubs 926 * in host controller driver modules, does not change these path identifiers; 927 * neither does rebooting or re-enumerating. These are more useful identifiers 928 * than changeable ("unstable") ones like bus numbers or device addresses. 929 * 930 * With a partial exception for devices connected to USB 2.0 root hubs, these 931 * identifiers are also predictable. So long as the device tree isn't changed, 932 * plugging any USB device into a given hub port always gives it the same path. 933 * Because of the use of "companion" controllers, devices connected to ports on 934 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 935 * high speed, and a different one if they are full or low speed. 936 */ 937 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 938 { 939 int actual; 940 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 941 dev->devpath); 942 return (actual >= (int)size) ? -1 : actual; 943 } 944 945 /*-------------------------------------------------------------------------*/ 946 947 #define USB_DEVICE_ID_MATCH_DEVICE \ 948 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 949 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 950 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 951 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 952 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 953 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 954 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 955 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 956 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 957 #define USB_DEVICE_ID_MATCH_INT_INFO \ 958 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 959 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 960 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 961 962 /** 963 * USB_DEVICE - macro used to describe a specific usb device 964 * @vend: the 16 bit USB Vendor ID 965 * @prod: the 16 bit USB Product ID 966 * 967 * This macro is used to create a struct usb_device_id that matches a 968 * specific device. 969 */ 970 #define USB_DEVICE(vend, prod) \ 971 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 972 .idVendor = (vend), \ 973 .idProduct = (prod) 974 /** 975 * USB_DEVICE_VER - describe a specific usb device with a version range 976 * @vend: the 16 bit USB Vendor ID 977 * @prod: the 16 bit USB Product ID 978 * @lo: the bcdDevice_lo value 979 * @hi: the bcdDevice_hi value 980 * 981 * This macro is used to create a struct usb_device_id that matches a 982 * specific device, with a version range. 983 */ 984 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 985 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 986 .idVendor = (vend), \ 987 .idProduct = (prod), \ 988 .bcdDevice_lo = (lo), \ 989 .bcdDevice_hi = (hi) 990 991 /** 992 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 993 * @vend: the 16 bit USB Vendor ID 994 * @prod: the 16 bit USB Product ID 995 * @cl: bInterfaceClass value 996 * 997 * This macro is used to create a struct usb_device_id that matches a 998 * specific interface class of devices. 999 */ 1000 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 1001 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1002 USB_DEVICE_ID_MATCH_INT_CLASS, \ 1003 .idVendor = (vend), \ 1004 .idProduct = (prod), \ 1005 .bInterfaceClass = (cl) 1006 1007 /** 1008 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 1009 * @vend: the 16 bit USB Vendor ID 1010 * @prod: the 16 bit USB Product ID 1011 * @pr: bInterfaceProtocol value 1012 * 1013 * This macro is used to create a struct usb_device_id that matches a 1014 * specific interface protocol of devices. 1015 */ 1016 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1017 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1018 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1019 .idVendor = (vend), \ 1020 .idProduct = (prod), \ 1021 .bInterfaceProtocol = (pr) 1022 1023 /** 1024 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1025 * @vend: the 16 bit USB Vendor ID 1026 * @prod: the 16 bit USB Product ID 1027 * @num: bInterfaceNumber value 1028 * 1029 * This macro is used to create a struct usb_device_id that matches a 1030 * specific interface number of devices. 1031 */ 1032 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1033 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1034 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1035 .idVendor = (vend), \ 1036 .idProduct = (prod), \ 1037 .bInterfaceNumber = (num) 1038 1039 /** 1040 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1041 * @cl: bDeviceClass value 1042 * @sc: bDeviceSubClass value 1043 * @pr: bDeviceProtocol value 1044 * 1045 * This macro is used to create a struct usb_device_id that matches a 1046 * specific class of devices. 1047 */ 1048 #define USB_DEVICE_INFO(cl, sc, pr) \ 1049 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1050 .bDeviceClass = (cl), \ 1051 .bDeviceSubClass = (sc), \ 1052 .bDeviceProtocol = (pr) 1053 1054 /** 1055 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1056 * @cl: bInterfaceClass value 1057 * @sc: bInterfaceSubClass value 1058 * @pr: bInterfaceProtocol value 1059 * 1060 * This macro is used to create a struct usb_device_id that matches a 1061 * specific class of interfaces. 1062 */ 1063 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1064 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1065 .bInterfaceClass = (cl), \ 1066 .bInterfaceSubClass = (sc), \ 1067 .bInterfaceProtocol = (pr) 1068 1069 /** 1070 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1071 * @vend: the 16 bit USB Vendor ID 1072 * @prod: the 16 bit USB Product ID 1073 * @cl: bInterfaceClass value 1074 * @sc: bInterfaceSubClass value 1075 * @pr: bInterfaceProtocol value 1076 * 1077 * This macro is used to create a struct usb_device_id that matches a 1078 * specific device with a specific class of interfaces. 1079 * 1080 * This is especially useful when explicitly matching devices that have 1081 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1082 */ 1083 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1084 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1085 | USB_DEVICE_ID_MATCH_DEVICE, \ 1086 .idVendor = (vend), \ 1087 .idProduct = (prod), \ 1088 .bInterfaceClass = (cl), \ 1089 .bInterfaceSubClass = (sc), \ 1090 .bInterfaceProtocol = (pr) 1091 1092 /** 1093 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1094 * @vend: the 16 bit USB Vendor ID 1095 * @cl: bInterfaceClass value 1096 * @sc: bInterfaceSubClass value 1097 * @pr: bInterfaceProtocol value 1098 * 1099 * This macro is used to create a struct usb_device_id that matches a 1100 * specific vendor with a specific class of interfaces. 1101 * 1102 * This is especially useful when explicitly matching devices that have 1103 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1104 */ 1105 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1106 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1107 | USB_DEVICE_ID_MATCH_VENDOR, \ 1108 .idVendor = (vend), \ 1109 .bInterfaceClass = (cl), \ 1110 .bInterfaceSubClass = (sc), \ 1111 .bInterfaceProtocol = (pr) 1112 1113 /* ----------------------------------------------------------------------- */ 1114 1115 /* Stuff for dynamic usb ids */ 1116 struct usb_dynids { 1117 spinlock_t lock; 1118 struct list_head list; 1119 }; 1120 1121 struct usb_dynid { 1122 struct list_head node; 1123 struct usb_device_id id; 1124 }; 1125 1126 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1127 const struct usb_device_id *id_table, 1128 struct device_driver *driver, 1129 const char *buf, size_t count); 1130 1131 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1132 1133 /** 1134 * struct usbdrv_wrap - wrapper for driver-model structure 1135 * @driver: The driver-model core driver structure. 1136 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1137 */ 1138 struct usbdrv_wrap { 1139 struct device_driver driver; 1140 int for_devices; 1141 }; 1142 1143 /** 1144 * struct usb_driver - identifies USB interface driver to usbcore 1145 * @name: The driver name should be unique among USB drivers, 1146 * and should normally be the same as the module name. 1147 * @probe: Called to see if the driver is willing to manage a particular 1148 * interface on a device. If it is, probe returns zero and uses 1149 * usb_set_intfdata() to associate driver-specific data with the 1150 * interface. It may also use usb_set_interface() to specify the 1151 * appropriate altsetting. If unwilling to manage the interface, 1152 * return -ENODEV, if genuine IO errors occurred, an appropriate 1153 * negative errno value. 1154 * @disconnect: Called when the interface is no longer accessible, usually 1155 * because its device has been (or is being) disconnected or the 1156 * driver module is being unloaded. 1157 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1158 * the "usbfs" filesystem. This lets devices provide ways to 1159 * expose information to user space regardless of where they 1160 * do (or don't) show up otherwise in the filesystem. 1161 * @suspend: Called when the device is going to be suspended by the 1162 * system either from system sleep or runtime suspend context. The 1163 * return value will be ignored in system sleep context, so do NOT 1164 * try to continue using the device if suspend fails in this case. 1165 * Instead, let the resume or reset-resume routine recover from 1166 * the failure. 1167 * @resume: Called when the device is being resumed by the system. 1168 * @reset_resume: Called when the suspended device has been reset instead 1169 * of being resumed. 1170 * @pre_reset: Called by usb_reset_device() when the device is about to be 1171 * reset. This routine must not return until the driver has no active 1172 * URBs for the device, and no more URBs may be submitted until the 1173 * post_reset method is called. 1174 * @post_reset: Called by usb_reset_device() after the device 1175 * has been reset 1176 * @id_table: USB drivers use ID table to support hotplugging. 1177 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1178 * or your driver's probe function will never get called. 1179 * @dev_groups: Attributes attached to the device that will be created once it 1180 * is bound to the driver. 1181 * @dynids: used internally to hold the list of dynamically added device 1182 * ids for this driver. 1183 * @drvwrap: Driver-model core structure wrapper. 1184 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1185 * added to this driver by preventing the sysfs file from being created. 1186 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1187 * for interfaces bound to this driver. 1188 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1189 * endpoints before calling the driver's disconnect method. 1190 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1191 * to initiate lower power link state transitions when an idle timeout 1192 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1193 * 1194 * USB interface drivers must provide a name, probe() and disconnect() 1195 * methods, and an id_table. Other driver fields are optional. 1196 * 1197 * The id_table is used in hotplugging. It holds a set of descriptors, 1198 * and specialized data may be associated with each entry. That table 1199 * is used by both user and kernel mode hotplugging support. 1200 * 1201 * The probe() and disconnect() methods are called in a context where 1202 * they can sleep, but they should avoid abusing the privilege. Most 1203 * work to connect to a device should be done when the device is opened, 1204 * and undone at the last close. The disconnect code needs to address 1205 * concurrency issues with respect to open() and close() methods, as 1206 * well as forcing all pending I/O requests to complete (by unlinking 1207 * them as necessary, and blocking until the unlinks complete). 1208 */ 1209 struct usb_driver { 1210 const char *name; 1211 1212 int (*probe) (struct usb_interface *intf, 1213 const struct usb_device_id *id); 1214 1215 void (*disconnect) (struct usb_interface *intf); 1216 1217 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1218 void *buf); 1219 1220 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1221 int (*resume) (struct usb_interface *intf); 1222 int (*reset_resume)(struct usb_interface *intf); 1223 1224 int (*pre_reset)(struct usb_interface *intf); 1225 int (*post_reset)(struct usb_interface *intf); 1226 1227 const struct usb_device_id *id_table; 1228 const struct attribute_group **dev_groups; 1229 1230 struct usb_dynids dynids; 1231 struct usbdrv_wrap drvwrap; 1232 unsigned int no_dynamic_id:1; 1233 unsigned int supports_autosuspend:1; 1234 unsigned int disable_hub_initiated_lpm:1; 1235 unsigned int soft_unbind:1; 1236 }; 1237 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1238 1239 /** 1240 * struct usb_device_driver - identifies USB device driver to usbcore 1241 * @name: The driver name should be unique among USB drivers, 1242 * and should normally be the same as the module name. 1243 * @match: If set, used for better device/driver matching. 1244 * @probe: Called to see if the driver is willing to manage a particular 1245 * device. If it is, probe returns zero and uses dev_set_drvdata() 1246 * to associate driver-specific data with the device. If unwilling 1247 * to manage the device, return a negative errno value. 1248 * @disconnect: Called when the device is no longer accessible, usually 1249 * because it has been (or is being) disconnected or the driver's 1250 * module is being unloaded. 1251 * @suspend: Called when the device is going to be suspended by the system. 1252 * @resume: Called when the device is being resumed by the system. 1253 * @dev_groups: Attributes attached to the device that will be created once it 1254 * is bound to the driver. 1255 * @drvwrap: Driver-model core structure wrapper. 1256 * @id_table: used with @match() to select better matching driver at 1257 * probe() time. 1258 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1259 * for devices bound to this driver. 1260 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1261 * resume and suspend functions will be called in addition to the driver's 1262 * own, so this part of the setup does not need to be replicated. 1263 * 1264 * USB drivers must provide all the fields listed above except drvwrap, 1265 * match, and id_table. 1266 */ 1267 struct usb_device_driver { 1268 const char *name; 1269 1270 bool (*match) (struct usb_device *udev); 1271 int (*probe) (struct usb_device *udev); 1272 void (*disconnect) (struct usb_device *udev); 1273 1274 int (*suspend) (struct usb_device *udev, pm_message_t message); 1275 int (*resume) (struct usb_device *udev, pm_message_t message); 1276 const struct attribute_group **dev_groups; 1277 struct usbdrv_wrap drvwrap; 1278 const struct usb_device_id *id_table; 1279 unsigned int supports_autosuspend:1; 1280 unsigned int generic_subclass:1; 1281 }; 1282 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1283 drvwrap.driver) 1284 1285 /** 1286 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1287 * @name: the usb class device name for this driver. Will show up in sysfs. 1288 * @devnode: Callback to provide a naming hint for a possible 1289 * device node to create. 1290 * @fops: pointer to the struct file_operations of this driver. 1291 * @minor_base: the start of the minor range for this driver. 1292 * 1293 * This structure is used for the usb_register_dev() and 1294 * usb_deregister_dev() functions, to consolidate a number of the 1295 * parameters used for them. 1296 */ 1297 struct usb_class_driver { 1298 char *name; 1299 char *(*devnode)(const struct device *dev, umode_t *mode); 1300 const struct file_operations *fops; 1301 int minor_base; 1302 }; 1303 1304 /* 1305 * use these in module_init()/module_exit() 1306 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1307 */ 1308 extern int usb_register_driver(struct usb_driver *, struct module *, 1309 const char *); 1310 1311 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1312 #define usb_register(driver) \ 1313 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1314 1315 extern void usb_deregister(struct usb_driver *); 1316 1317 /** 1318 * module_usb_driver() - Helper macro for registering a USB driver 1319 * @__usb_driver: usb_driver struct 1320 * 1321 * Helper macro for USB drivers which do not do anything special in module 1322 * init/exit. This eliminates a lot of boilerplate. Each module may only 1323 * use this macro once, and calling it replaces module_init() and module_exit() 1324 */ 1325 #define module_usb_driver(__usb_driver) \ 1326 module_driver(__usb_driver, usb_register, \ 1327 usb_deregister) 1328 1329 extern int usb_register_device_driver(struct usb_device_driver *, 1330 struct module *); 1331 extern void usb_deregister_device_driver(struct usb_device_driver *); 1332 1333 extern int usb_register_dev(struct usb_interface *intf, 1334 struct usb_class_driver *class_driver); 1335 extern void usb_deregister_dev(struct usb_interface *intf, 1336 struct usb_class_driver *class_driver); 1337 1338 extern int usb_disabled(void); 1339 1340 /* ----------------------------------------------------------------------- */ 1341 1342 /* 1343 * URB support, for asynchronous request completions 1344 */ 1345 1346 /* 1347 * urb->transfer_flags: 1348 * 1349 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1350 */ 1351 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1352 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1353 * slot in the schedule */ 1354 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1355 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1356 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1357 * needed */ 1358 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1359 1360 /* The following flags are used internally by usbcore and HCDs */ 1361 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1362 #define URB_DIR_OUT 0 1363 #define URB_DIR_MASK URB_DIR_IN 1364 1365 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1366 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1367 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1368 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1369 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1370 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1371 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1372 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1373 1374 struct usb_iso_packet_descriptor { 1375 unsigned int offset; 1376 unsigned int length; /* expected length */ 1377 unsigned int actual_length; 1378 int status; 1379 }; 1380 1381 struct urb; 1382 1383 struct usb_anchor { 1384 struct list_head urb_list; 1385 wait_queue_head_t wait; 1386 spinlock_t lock; 1387 atomic_t suspend_wakeups; 1388 unsigned int poisoned:1; 1389 }; 1390 1391 static inline void init_usb_anchor(struct usb_anchor *anchor) 1392 { 1393 memset(anchor, 0, sizeof(*anchor)); 1394 INIT_LIST_HEAD(&anchor->urb_list); 1395 init_waitqueue_head(&anchor->wait); 1396 spin_lock_init(&anchor->lock); 1397 } 1398 1399 typedef void (*usb_complete_t)(struct urb *); 1400 1401 /** 1402 * struct urb - USB Request Block 1403 * @urb_list: For use by current owner of the URB. 1404 * @anchor_list: membership in the list of an anchor 1405 * @anchor: to anchor URBs to a common mooring 1406 * @ep: Points to the endpoint's data structure. Will eventually 1407 * replace @pipe. 1408 * @pipe: Holds endpoint number, direction, type, and more. 1409 * Create these values with the eight macros available; 1410 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1411 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1412 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1413 * numbers range from zero to fifteen. Note that "in" endpoint two 1414 * is a different endpoint (and pipe) from "out" endpoint two. 1415 * The current configuration controls the existence, type, and 1416 * maximum packet size of any given endpoint. 1417 * @stream_id: the endpoint's stream ID for bulk streams 1418 * @dev: Identifies the USB device to perform the request. 1419 * @status: This is read in non-iso completion functions to get the 1420 * status of the particular request. ISO requests only use it 1421 * to tell whether the URB was unlinked; detailed status for 1422 * each frame is in the fields of the iso_frame-desc. 1423 * @transfer_flags: A variety of flags may be used to affect how URB 1424 * submission, unlinking, or operation are handled. Different 1425 * kinds of URB can use different flags. 1426 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1427 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1428 * (however, do not leave garbage in transfer_buffer even then). 1429 * This buffer must be suitable for DMA; allocate it with 1430 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1431 * of this buffer will be modified. This buffer is used for the data 1432 * stage of control transfers. 1433 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1434 * the device driver is saying that it provided this DMA address, 1435 * which the host controller driver should use in preference to the 1436 * transfer_buffer. 1437 * @sg: scatter gather buffer list, the buffer size of each element in 1438 * the list (except the last) must be divisible by the endpoint's 1439 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1440 * @num_mapped_sgs: (internal) number of mapped sg entries 1441 * @num_sgs: number of entries in the sg list 1442 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1443 * be broken up into chunks according to the current maximum packet 1444 * size for the endpoint, which is a function of the configuration 1445 * and is encoded in the pipe. When the length is zero, neither 1446 * transfer_buffer nor transfer_dma is used. 1447 * @actual_length: This is read in non-iso completion functions, and 1448 * it tells how many bytes (out of transfer_buffer_length) were 1449 * transferred. It will normally be the same as requested, unless 1450 * either an error was reported or a short read was performed. 1451 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1452 * short reads be reported as errors. 1453 * @setup_packet: Only used for control transfers, this points to eight bytes 1454 * of setup data. Control transfers always start by sending this data 1455 * to the device. Then transfer_buffer is read or written, if needed. 1456 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1457 * this field; setup_packet must point to a valid buffer. 1458 * @start_frame: Returns the initial frame for isochronous transfers. 1459 * @number_of_packets: Lists the number of ISO transfer buffers. 1460 * @interval: Specifies the polling interval for interrupt or isochronous 1461 * transfers. The units are frames (milliseconds) for full and low 1462 * speed devices, and microframes (1/8 millisecond) for highspeed 1463 * and SuperSpeed devices. 1464 * @error_count: Returns the number of ISO transfers that reported errors. 1465 * @context: For use in completion functions. This normally points to 1466 * request-specific driver context. 1467 * @complete: Completion handler. This URB is passed as the parameter to the 1468 * completion function. The completion function may then do what 1469 * it likes with the URB, including resubmitting or freeing it. 1470 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1471 * collect the transfer status for each buffer. 1472 * 1473 * This structure identifies USB transfer requests. URBs must be allocated by 1474 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1475 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1476 * are submitted using usb_submit_urb(), and pending requests may be canceled 1477 * using usb_unlink_urb() or usb_kill_urb(). 1478 * 1479 * Data Transfer Buffers: 1480 * 1481 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1482 * taken from the general page pool. That is provided by transfer_buffer 1483 * (control requests also use setup_packet), and host controller drivers 1484 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1485 * mapping operations can be expensive on some platforms (perhaps using a dma 1486 * bounce buffer or talking to an IOMMU), 1487 * although they're cheap on commodity x86 and ppc hardware. 1488 * 1489 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1490 * which tells the host controller driver that no such mapping is needed for 1491 * the transfer_buffer since 1492 * the device driver is DMA-aware. For example, a device driver might 1493 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1494 * When this transfer flag is provided, host controller drivers will 1495 * attempt to use the dma address found in the transfer_dma 1496 * field rather than determining a dma address themselves. 1497 * 1498 * Note that transfer_buffer must still be set if the controller 1499 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1500 * to root hub. If you have to transfer between highmem zone and the device 1501 * on such controller, create a bounce buffer or bail out with an error. 1502 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1503 * capable, assign NULL to it, so that usbmon knows not to use the value. 1504 * The setup_packet must always be set, so it cannot be located in highmem. 1505 * 1506 * Initialization: 1507 * 1508 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1509 * zero), and complete fields. All URBs must also initialize 1510 * transfer_buffer and transfer_buffer_length. They may provide the 1511 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1512 * to be treated as errors; that flag is invalid for write requests. 1513 * 1514 * Bulk URBs may 1515 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1516 * should always terminate with a short packet, even if it means adding an 1517 * extra zero length packet. 1518 * 1519 * Control URBs must provide a valid pointer in the setup_packet field. 1520 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1521 * beforehand. 1522 * 1523 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1524 * or, for highspeed devices, 125 microsecond units) 1525 * to poll for transfers. After the URB has been submitted, the interval 1526 * field reflects how the transfer was actually scheduled. 1527 * The polling interval may be more frequent than requested. 1528 * For example, some controllers have a maximum interval of 32 milliseconds, 1529 * while others support intervals of up to 1024 milliseconds. 1530 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1531 * endpoints, as well as high speed interrupt endpoints, the encoding of 1532 * the transfer interval in the endpoint descriptor is logarithmic. 1533 * Device drivers must convert that value to linear units themselves.) 1534 * 1535 * If an isochronous endpoint queue isn't already running, the host 1536 * controller will schedule a new URB to start as soon as bandwidth 1537 * utilization allows. If the queue is running then a new URB will be 1538 * scheduled to start in the first transfer slot following the end of the 1539 * preceding URB, if that slot has not already expired. If the slot has 1540 * expired (which can happen when IRQ delivery is delayed for a long time), 1541 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1542 * is clear then the URB will be scheduled to start in the expired slot, 1543 * implying that some of its packets will not be transferred; if the flag 1544 * is set then the URB will be scheduled in the first unexpired slot, 1545 * breaking the queue's synchronization. Upon URB completion, the 1546 * start_frame field will be set to the (micro)frame number in which the 1547 * transfer was scheduled. Ranges for frame counter values are HC-specific 1548 * and can go from as low as 256 to as high as 65536 frames. 1549 * 1550 * Isochronous URBs have a different data transfer model, in part because 1551 * the quality of service is only "best effort". Callers provide specially 1552 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1553 * at the end. Each such packet is an individual ISO transfer. Isochronous 1554 * URBs are normally queued, submitted by drivers to arrange that 1555 * transfers are at least double buffered, and then explicitly resubmitted 1556 * in completion handlers, so 1557 * that data (such as audio or video) streams at as constant a rate as the 1558 * host controller scheduler can support. 1559 * 1560 * Completion Callbacks: 1561 * 1562 * The completion callback is made in_interrupt(), and one of the first 1563 * things that a completion handler should do is check the status field. 1564 * The status field is provided for all URBs. It is used to report 1565 * unlinked URBs, and status for all non-ISO transfers. It should not 1566 * be examined before the URB is returned to the completion handler. 1567 * 1568 * The context field is normally used to link URBs back to the relevant 1569 * driver or request state. 1570 * 1571 * When the completion callback is invoked for non-isochronous URBs, the 1572 * actual_length field tells how many bytes were transferred. This field 1573 * is updated even when the URB terminated with an error or was unlinked. 1574 * 1575 * ISO transfer status is reported in the status and actual_length fields 1576 * of the iso_frame_desc array, and the number of errors is reported in 1577 * error_count. Completion callbacks for ISO transfers will normally 1578 * (re)submit URBs to ensure a constant transfer rate. 1579 * 1580 * Note that even fields marked "public" should not be touched by the driver 1581 * when the urb is owned by the hcd, that is, since the call to 1582 * usb_submit_urb() till the entry into the completion routine. 1583 */ 1584 struct urb { 1585 /* private: usb core and host controller only fields in the urb */ 1586 struct kref kref; /* reference count of the URB */ 1587 int unlinked; /* unlink error code */ 1588 void *hcpriv; /* private data for host controller */ 1589 atomic_t use_count; /* concurrent submissions counter */ 1590 atomic_t reject; /* submissions will fail */ 1591 1592 /* public: documented fields in the urb that can be used by drivers */ 1593 struct list_head urb_list; /* list head for use by the urb's 1594 * current owner */ 1595 struct list_head anchor_list; /* the URB may be anchored */ 1596 struct usb_anchor *anchor; 1597 struct usb_device *dev; /* (in) pointer to associated device */ 1598 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1599 unsigned int pipe; /* (in) pipe information */ 1600 unsigned int stream_id; /* (in) stream ID */ 1601 int status; /* (return) non-ISO status */ 1602 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1603 void *transfer_buffer; /* (in) associated data buffer */ 1604 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1605 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1606 int num_mapped_sgs; /* (internal) mapped sg entries */ 1607 int num_sgs; /* (in) number of entries in the sg list */ 1608 u32 transfer_buffer_length; /* (in) data buffer length */ 1609 u32 actual_length; /* (return) actual transfer length */ 1610 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1611 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1612 int start_frame; /* (modify) start frame (ISO) */ 1613 int number_of_packets; /* (in) number of ISO packets */ 1614 int interval; /* (modify) transfer interval 1615 * (INT/ISO) */ 1616 int error_count; /* (return) number of ISO errors */ 1617 void *context; /* (in) context for completion */ 1618 usb_complete_t complete; /* (in) completion routine */ 1619 struct usb_iso_packet_descriptor iso_frame_desc[]; 1620 /* (in) ISO ONLY */ 1621 }; 1622 1623 /* ----------------------------------------------------------------------- */ 1624 1625 /** 1626 * usb_fill_control_urb - initializes a control urb 1627 * @urb: pointer to the urb to initialize. 1628 * @dev: pointer to the struct usb_device for this urb. 1629 * @pipe: the endpoint pipe 1630 * @setup_packet: pointer to the setup_packet buffer. The buffer must be 1631 * suitable for DMA. 1632 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1633 * suitable for DMA. 1634 * @buffer_length: length of the transfer buffer 1635 * @complete_fn: pointer to the usb_complete_t function 1636 * @context: what to set the urb context to. 1637 * 1638 * Initializes a control urb with the proper information needed to submit 1639 * it to a device. 1640 * 1641 * The transfer buffer and the setup_packet buffer will most likely be filled 1642 * or read via DMA. The simplest way to get a buffer that can be DMAed to is 1643 * allocating it via kmalloc() or equivalent, even for very small buffers. 1644 * If the buffers are embedded in a bigger structure, there is a risk that 1645 * the buffer itself, the previous fields and/or the next fields are corrupted 1646 * due to cache incoherencies; or slowed down if they are evicted from the 1647 * cache. For more information, check &struct urb. 1648 * 1649 */ 1650 static inline void usb_fill_control_urb(struct urb *urb, 1651 struct usb_device *dev, 1652 unsigned int pipe, 1653 unsigned char *setup_packet, 1654 void *transfer_buffer, 1655 int buffer_length, 1656 usb_complete_t complete_fn, 1657 void *context) 1658 { 1659 urb->dev = dev; 1660 urb->pipe = pipe; 1661 urb->setup_packet = setup_packet; 1662 urb->transfer_buffer = transfer_buffer; 1663 urb->transfer_buffer_length = buffer_length; 1664 urb->complete = complete_fn; 1665 urb->context = context; 1666 } 1667 1668 /** 1669 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1670 * @urb: pointer to the urb to initialize. 1671 * @dev: pointer to the struct usb_device for this urb. 1672 * @pipe: the endpoint pipe 1673 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1674 * suitable for DMA. 1675 * @buffer_length: length of the transfer buffer 1676 * @complete_fn: pointer to the usb_complete_t function 1677 * @context: what to set the urb context to. 1678 * 1679 * Initializes a bulk urb with the proper information needed to submit it 1680 * to a device. 1681 * 1682 * Refer to usb_fill_control_urb() for a description of the requirements for 1683 * transfer_buffer. 1684 */ 1685 static inline void usb_fill_bulk_urb(struct urb *urb, 1686 struct usb_device *dev, 1687 unsigned int pipe, 1688 void *transfer_buffer, 1689 int buffer_length, 1690 usb_complete_t complete_fn, 1691 void *context) 1692 { 1693 urb->dev = dev; 1694 urb->pipe = pipe; 1695 urb->transfer_buffer = transfer_buffer; 1696 urb->transfer_buffer_length = buffer_length; 1697 urb->complete = complete_fn; 1698 urb->context = context; 1699 } 1700 1701 /** 1702 * usb_fill_int_urb - macro to help initialize a interrupt urb 1703 * @urb: pointer to the urb to initialize. 1704 * @dev: pointer to the struct usb_device for this urb. 1705 * @pipe: the endpoint pipe 1706 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1707 * suitable for DMA. 1708 * @buffer_length: length of the transfer buffer 1709 * @complete_fn: pointer to the usb_complete_t function 1710 * @context: what to set the urb context to. 1711 * @interval: what to set the urb interval to, encoded like 1712 * the endpoint descriptor's bInterval value. 1713 * 1714 * Initializes a interrupt urb with the proper information needed to submit 1715 * it to a device. 1716 * 1717 * Refer to usb_fill_control_urb() for a description of the requirements for 1718 * transfer_buffer. 1719 * 1720 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1721 * encoding of the endpoint interval, and express polling intervals in 1722 * microframes (eight per millisecond) rather than in frames (one per 1723 * millisecond). 1724 * 1725 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1726 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1727 * through to the host controller, rather than being translated into microframe 1728 * units. 1729 */ 1730 static inline void usb_fill_int_urb(struct urb *urb, 1731 struct usb_device *dev, 1732 unsigned int pipe, 1733 void *transfer_buffer, 1734 int buffer_length, 1735 usb_complete_t complete_fn, 1736 void *context, 1737 int interval) 1738 { 1739 urb->dev = dev; 1740 urb->pipe = pipe; 1741 urb->transfer_buffer = transfer_buffer; 1742 urb->transfer_buffer_length = buffer_length; 1743 urb->complete = complete_fn; 1744 urb->context = context; 1745 1746 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1747 /* make sure interval is within allowed range */ 1748 interval = clamp(interval, 1, 16); 1749 1750 urb->interval = 1 << (interval - 1); 1751 } else { 1752 urb->interval = interval; 1753 } 1754 1755 urb->start_frame = -1; 1756 } 1757 1758 extern void usb_init_urb(struct urb *urb); 1759 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1760 extern void usb_free_urb(struct urb *urb); 1761 #define usb_put_urb usb_free_urb 1762 extern struct urb *usb_get_urb(struct urb *urb); 1763 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1764 extern int usb_unlink_urb(struct urb *urb); 1765 extern void usb_kill_urb(struct urb *urb); 1766 extern void usb_poison_urb(struct urb *urb); 1767 extern void usb_unpoison_urb(struct urb *urb); 1768 extern void usb_block_urb(struct urb *urb); 1769 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1770 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1771 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1772 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1773 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1774 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1775 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1776 extern void usb_unanchor_urb(struct urb *urb); 1777 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1778 unsigned int timeout); 1779 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1780 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1781 extern int usb_anchor_empty(struct usb_anchor *anchor); 1782 1783 #define usb_unblock_urb usb_unpoison_urb 1784 1785 /** 1786 * usb_urb_dir_in - check if an URB describes an IN transfer 1787 * @urb: URB to be checked 1788 * 1789 * Return: 1 if @urb describes an IN transfer (device-to-host), 1790 * otherwise 0. 1791 */ 1792 static inline int usb_urb_dir_in(struct urb *urb) 1793 { 1794 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1795 } 1796 1797 /** 1798 * usb_urb_dir_out - check if an URB describes an OUT transfer 1799 * @urb: URB to be checked 1800 * 1801 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1802 * otherwise 0. 1803 */ 1804 static inline int usb_urb_dir_out(struct urb *urb) 1805 { 1806 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1807 } 1808 1809 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1810 int usb_urb_ep_type_check(const struct urb *urb); 1811 1812 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1813 gfp_t mem_flags, dma_addr_t *dma); 1814 void usb_free_coherent(struct usb_device *dev, size_t size, 1815 void *addr, dma_addr_t dma); 1816 1817 #if 0 1818 struct urb *usb_buffer_map(struct urb *urb); 1819 void usb_buffer_dmasync(struct urb *urb); 1820 void usb_buffer_unmap(struct urb *urb); 1821 #endif 1822 1823 struct scatterlist; 1824 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1825 struct scatterlist *sg, int nents); 1826 #if 0 1827 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1828 struct scatterlist *sg, int n_hw_ents); 1829 #endif 1830 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1831 struct scatterlist *sg, int n_hw_ents); 1832 1833 /*-------------------------------------------------------------------* 1834 * SYNCHRONOUS CALL SUPPORT * 1835 *-------------------------------------------------------------------*/ 1836 1837 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1838 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1839 void *data, __u16 size, int timeout); 1840 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1841 void *data, int len, int *actual_length, int timeout); 1842 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1843 void *data, int len, int *actual_length, 1844 int timeout); 1845 1846 /* wrappers around usb_control_msg() for the most common standard requests */ 1847 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1848 __u8 requesttype, __u16 value, __u16 index, 1849 const void *data, __u16 size, int timeout, 1850 gfp_t memflags); 1851 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1852 __u8 requesttype, __u16 value, __u16 index, 1853 void *data, __u16 size, int timeout, 1854 gfp_t memflags); 1855 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1856 unsigned char descindex, void *buf, int size); 1857 extern int usb_get_status(struct usb_device *dev, 1858 int recip, int type, int target, void *data); 1859 1860 static inline int usb_get_std_status(struct usb_device *dev, 1861 int recip, int target, void *data) 1862 { 1863 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1864 data); 1865 } 1866 1867 static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1868 { 1869 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1870 0, data); 1871 } 1872 1873 extern int usb_string(struct usb_device *dev, int index, 1874 char *buf, size_t size); 1875 extern char *usb_cache_string(struct usb_device *udev, int index); 1876 1877 /* wrappers that also update important state inside usbcore */ 1878 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1879 extern int usb_reset_configuration(struct usb_device *dev); 1880 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1881 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1882 1883 /* this request isn't really synchronous, but it belongs with the others */ 1884 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1885 1886 /* choose and set configuration for device */ 1887 extern int usb_choose_configuration(struct usb_device *udev); 1888 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1889 1890 /* 1891 * timeouts, in milliseconds, used for sending/receiving control messages 1892 * they typically complete within a few frames (msec) after they're issued 1893 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1894 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1895 */ 1896 #define USB_CTRL_GET_TIMEOUT 5000 1897 #define USB_CTRL_SET_TIMEOUT 5000 1898 1899 1900 /** 1901 * struct usb_sg_request - support for scatter/gather I/O 1902 * @status: zero indicates success, else negative errno 1903 * @bytes: counts bytes transferred. 1904 * 1905 * These requests are initialized using usb_sg_init(), and then are used 1906 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1907 * members of the request object aren't for driver access. 1908 * 1909 * The status and bytecount values are valid only after usb_sg_wait() 1910 * returns. If the status is zero, then the bytecount matches the total 1911 * from the request. 1912 * 1913 * After an error completion, drivers may need to clear a halt condition 1914 * on the endpoint. 1915 */ 1916 struct usb_sg_request { 1917 int status; 1918 size_t bytes; 1919 1920 /* private: 1921 * members below are private to usbcore, 1922 * and are not provided for driver access! 1923 */ 1924 spinlock_t lock; 1925 1926 struct usb_device *dev; 1927 int pipe; 1928 1929 int entries; 1930 struct urb **urbs; 1931 1932 int count; 1933 struct completion complete; 1934 }; 1935 1936 int usb_sg_init( 1937 struct usb_sg_request *io, 1938 struct usb_device *dev, 1939 unsigned pipe, 1940 unsigned period, 1941 struct scatterlist *sg, 1942 int nents, 1943 size_t length, 1944 gfp_t mem_flags 1945 ); 1946 void usb_sg_cancel(struct usb_sg_request *io); 1947 void usb_sg_wait(struct usb_sg_request *io); 1948 1949 1950 /* ----------------------------------------------------------------------- */ 1951 1952 /* 1953 * For various legacy reasons, Linux has a small cookie that's paired with 1954 * a struct usb_device to identify an endpoint queue. Queue characteristics 1955 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1956 * an unsigned int encoded as: 1957 * 1958 * - direction: bit 7 (0 = Host-to-Device [Out], 1959 * 1 = Device-to-Host [In] ... 1960 * like endpoint bEndpointAddress) 1961 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1962 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1963 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1964 * 10 = control, 11 = bulk) 1965 * 1966 * Given the device address and endpoint descriptor, pipes are redundant. 1967 */ 1968 1969 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1970 /* (yet ... they're the values used by usbfs) */ 1971 #define PIPE_ISOCHRONOUS 0 1972 #define PIPE_INTERRUPT 1 1973 #define PIPE_CONTROL 2 1974 #define PIPE_BULK 3 1975 1976 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1977 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1978 1979 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1980 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1981 1982 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1983 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1984 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1985 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1986 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1987 1988 static inline unsigned int __create_pipe(struct usb_device *dev, 1989 unsigned int endpoint) 1990 { 1991 return (dev->devnum << 8) | (endpoint << 15); 1992 } 1993 1994 /* Create various pipes... */ 1995 #define usb_sndctrlpipe(dev, endpoint) \ 1996 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1997 #define usb_rcvctrlpipe(dev, endpoint) \ 1998 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1999 #define usb_sndisocpipe(dev, endpoint) \ 2000 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 2001 #define usb_rcvisocpipe(dev, endpoint) \ 2002 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2003 #define usb_sndbulkpipe(dev, endpoint) \ 2004 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 2005 #define usb_rcvbulkpipe(dev, endpoint) \ 2006 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2007 #define usb_sndintpipe(dev, endpoint) \ 2008 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 2009 #define usb_rcvintpipe(dev, endpoint) \ 2010 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2011 2012 static inline struct usb_host_endpoint * 2013 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 2014 { 2015 struct usb_host_endpoint **eps; 2016 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 2017 return eps[usb_pipeendpoint(pipe)]; 2018 } 2019 2020 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 2021 { 2022 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 2023 2024 if (!ep) 2025 return 0; 2026 2027 /* NOTE: only 0x07ff bits are for packet size... */ 2028 return usb_endpoint_maxp(&ep->desc); 2029 } 2030 2031 /* translate USB error codes to codes user space understands */ 2032 static inline int usb_translate_errors(int error_code) 2033 { 2034 switch (error_code) { 2035 case 0: 2036 case -ENOMEM: 2037 case -ENODEV: 2038 case -EOPNOTSUPP: 2039 return error_code; 2040 default: 2041 return -EIO; 2042 } 2043 } 2044 2045 /* Events from the usb core */ 2046 #define USB_DEVICE_ADD 0x0001 2047 #define USB_DEVICE_REMOVE 0x0002 2048 #define USB_BUS_ADD 0x0003 2049 #define USB_BUS_REMOVE 0x0004 2050 extern void usb_register_notify(struct notifier_block *nb); 2051 extern void usb_unregister_notify(struct notifier_block *nb); 2052 2053 /* debugfs stuff */ 2054 extern struct dentry *usb_debug_root; 2055 2056 /* LED triggers */ 2057 enum usb_led_event { 2058 USB_LED_EVENT_HOST = 0, 2059 USB_LED_EVENT_GADGET = 1, 2060 }; 2061 2062 #ifdef CONFIG_USB_LED_TRIG 2063 extern void usb_led_activity(enum usb_led_event ev); 2064 #else 2065 static inline void usb_led_activity(enum usb_led_event ev) {} 2066 #endif 2067 2068 #endif /* __KERNEL__ */ 2069 2070 #endif 2071