xref: /linux-6.15/include/linux/usb.h (revision 130eac41)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29 
30 /*-------------------------------------------------------------------------*/
31 
32 /*
33  * Host-side wrappers for standard USB descriptors ... these are parsed
34  * from the data provided by devices.  Parsing turns them from a flat
35  * sequence of descriptors into a hierarchy:
36  *
37  *  - devices have one (usually) or more configs;
38  *  - configs have one (often) or more interfaces;
39  *  - interfaces have one (usually) or more settings;
40  *  - each interface setting has zero or (usually) more endpoints.
41  *  - a SuperSpeed endpoint has a companion descriptor
42  *
43  * And there might be other descriptors mixed in with those.
44  *
45  * Devices may also have class-specific or vendor-specific descriptors.
46  */
47 
48 struct ep_device;
49 
50 /**
51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor		desc;
69 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
71 	struct list_head		urb_list;
72 	void				*hcpriv;
73 	struct ep_device		*ep_dev;	/* For sysfs info */
74 
75 	unsigned char *extra;   /* Extra descriptors */
76 	int extralen;
77 	int enabled;
78 	int streams;
79 };
80 
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 	struct usb_interface_descriptor	desc;
84 
85 	int extralen;
86 	unsigned char *extra;   /* Extra descriptors */
87 
88 	/* array of desc.bNumEndpoints endpoints associated with this
89 	 * interface setting.  these will be in no particular order.
90 	 */
91 	struct usb_host_endpoint *endpoint;
92 
93 	char *string;		/* iInterface string, if present */
94 };
95 
96 enum usb_interface_condition {
97 	USB_INTERFACE_UNBOUND = 0,
98 	USB_INTERFACE_BINDING,
99 	USB_INTERFACE_BOUND,
100 	USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 		struct usb_endpoint_descriptor **bulk_in,
106 		struct usb_endpoint_descriptor **bulk_out,
107 		struct usb_endpoint_descriptor **int_in,
108 		struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 		struct usb_endpoint_descriptor **bulk_in,
113 		struct usb_endpoint_descriptor **bulk_out,
114 		struct usb_endpoint_descriptor **int_in,
115 		struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 		struct usb_endpoint_descriptor **bulk_in)
120 {
121 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 		struct usb_endpoint_descriptor **bulk_out)
127 {
128 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 		struct usb_endpoint_descriptor **int_in)
134 {
135 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 		struct usb_endpoint_descriptor **bulk_in)
148 {
149 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 		struct usb_endpoint_descriptor **bulk_out)
155 {
156 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 		struct usb_endpoint_descriptor **int_in)
162 {
163 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 		struct usb_endpoint_descriptor **int_out)
169 {
170 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 /**
174  * struct usb_interface - what usb device drivers talk to
175  * @altsetting: array of interface structures, one for each alternate
176  *	setting that may be selected.  Each one includes a set of
177  *	endpoint configurations.  They will be in no particular order.
178  * @cur_altsetting: the current altsetting.
179  * @num_altsetting: number of altsettings defined.
180  * @intf_assoc: interface association descriptor
181  * @minor: the minor number assigned to this interface, if this
182  *	interface is bound to a driver that uses the USB major number.
183  *	If this interface does not use the USB major, this field should
184  *	be unused.  The driver should set this value in the probe()
185  *	function of the driver, after it has been assigned a minor
186  *	number from the USB core by calling usb_register_dev().
187  * @condition: binding state of the interface: not bound, binding
188  *	(in probe()), bound to a driver, or unbinding (in disconnect())
189  * @sysfs_files_created: sysfs attributes exist
190  * @ep_devs_created: endpoint child pseudo-devices exist
191  * @unregistering: flag set when the interface is being unregistered
192  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193  *	capability during autosuspend.
194  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195  *	has been deferred.
196  * @needs_binding: flag set when the driver should be re-probed or unbound
197  *	following a reset or suspend operation it doesn't support.
198  * @authorized: This allows to (de)authorize individual interfaces instead
199  *	a whole device in contrast to the device authorization.
200  * @dev: driver model's view of this device
201  * @usb_dev: if an interface is bound to the USB major, this will point
202  *	to the sysfs representation for that device.
203  * @reset_ws: Used for scheduling resets from atomic context.
204  * @resetting_device: USB core reset the device, so use alt setting 0 as
205  *	current; needs bandwidth alloc after reset.
206  *
207  * USB device drivers attach to interfaces on a physical device.  Each
208  * interface encapsulates a single high level function, such as feeding
209  * an audio stream to a speaker or reporting a change in a volume control.
210  * Many USB devices only have one interface.  The protocol used to talk to
211  * an interface's endpoints can be defined in a usb "class" specification,
212  * or by a product's vendor.  The (default) control endpoint is part of
213  * every interface, but is never listed among the interface's descriptors.
214  *
215  * The driver that is bound to the interface can use standard driver model
216  * calls such as dev_get_drvdata() on the dev member of this structure.
217  *
218  * Each interface may have alternate settings.  The initial configuration
219  * of a device sets altsetting 0, but the device driver can change
220  * that setting using usb_set_interface().  Alternate settings are often
221  * used to control the use of periodic endpoints, such as by having
222  * different endpoints use different amounts of reserved USB bandwidth.
223  * All standards-conformant USB devices that use isochronous endpoints
224  * will use them in non-default settings.
225  *
226  * The USB specification says that alternate setting numbers must run from
227  * 0 to one less than the total number of alternate settings.  But some
228  * devices manage to mess this up, and the structures aren't necessarily
229  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
230  * look up an alternate setting in the altsetting array based on its number.
231  */
232 struct usb_interface {
233 	/* array of alternate settings for this interface,
234 	 * stored in no particular order */
235 	struct usb_host_interface *altsetting;
236 
237 	struct usb_host_interface *cur_altsetting;	/* the currently
238 					 * active alternate setting */
239 	unsigned num_altsetting;	/* number of alternate settings */
240 
241 	/* If there is an interface association descriptor then it will list
242 	 * the associated interfaces */
243 	struct usb_interface_assoc_descriptor *intf_assoc;
244 
245 	int minor;			/* minor number this interface is
246 					 * bound to */
247 	enum usb_interface_condition condition;		/* state of binding */
248 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
249 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
250 	unsigned unregistering:1;	/* unregistration is in progress */
251 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
252 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
253 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
254 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
255 	unsigned authorized:1;		/* used for interface authorization */
256 
257 	struct device dev;		/* interface specific device info */
258 	struct device *usb_dev;
259 	struct work_struct reset_ws;	/* for resets in atomic context */
260 };
261 
262 #define to_usb_interface(__dev)	container_of_const(__dev, struct usb_interface, dev)
263 
264 static inline void *usb_get_intfdata(struct usb_interface *intf)
265 {
266 	return dev_get_drvdata(&intf->dev);
267 }
268 
269 /**
270  * usb_set_intfdata() - associate driver-specific data with an interface
271  * @intf: USB interface
272  * @data: driver data
273  *
274  * Drivers can use this function in their probe() callbacks to associate
275  * driver-specific data with an interface.
276  *
277  * Note that there is generally no need to clear the driver-data pointer even
278  * if some drivers do so for historical or implementation-specific reasons.
279  */
280 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
281 {
282 	dev_set_drvdata(&intf->dev, data);
283 }
284 
285 struct usb_interface *usb_get_intf(struct usb_interface *intf);
286 void usb_put_intf(struct usb_interface *intf);
287 
288 /* Hard limit */
289 #define USB_MAXENDPOINTS	30
290 /* this maximum is arbitrary */
291 #define USB_MAXINTERFACES	32
292 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
293 
294 /*
295  * USB Resume Timer: Every Host controller driver should drive the resume
296  * signalling on the bus for the amount of time defined by this macro.
297  *
298  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
299  *
300  * Note that the USB Specification states we should drive resume for *at least*
301  * 20 ms, but it doesn't give an upper bound. This creates two possible
302  * situations which we want to avoid:
303  *
304  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
305  * us to fail USB Electrical Tests, thus failing Certification
306  *
307  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
308  * and while we can argue that's against the USB Specification, we don't have
309  * control over which devices a certification laboratory will be using for
310  * certification. If CertLab uses a device which was tested against Windows and
311  * that happens to have relaxed resume signalling rules, we might fall into
312  * situations where we fail interoperability and electrical tests.
313  *
314  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
315  * should cope with both LPJ calibration errors and devices not following every
316  * detail of the USB Specification.
317  */
318 #define USB_RESUME_TIMEOUT	40 /* ms */
319 
320 /**
321  * struct usb_interface_cache - long-term representation of a device interface
322  * @num_altsetting: number of altsettings defined.
323  * @ref: reference counter.
324  * @altsetting: variable-length array of interface structures, one for
325  *	each alternate setting that may be selected.  Each one includes a
326  *	set of endpoint configurations.  They will be in no particular order.
327  *
328  * These structures persist for the lifetime of a usb_device, unlike
329  * struct usb_interface (which persists only as long as its configuration
330  * is installed).  The altsetting arrays can be accessed through these
331  * structures at any time, permitting comparison of configurations and
332  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
333  */
334 struct usb_interface_cache {
335 	unsigned num_altsetting;	/* number of alternate settings */
336 	struct kref ref;		/* reference counter */
337 
338 	/* variable-length array of alternate settings for this interface,
339 	 * stored in no particular order */
340 	struct usb_host_interface altsetting[];
341 };
342 #define	ref_to_usb_interface_cache(r) \
343 		container_of(r, struct usb_interface_cache, ref)
344 #define	altsetting_to_usb_interface_cache(a) \
345 		container_of(a, struct usb_interface_cache, altsetting[0])
346 
347 /**
348  * struct usb_host_config - representation of a device's configuration
349  * @desc: the device's configuration descriptor.
350  * @string: pointer to the cached version of the iConfiguration string, if
351  *	present for this configuration.
352  * @intf_assoc: list of any interface association descriptors in this config
353  * @interface: array of pointers to usb_interface structures, one for each
354  *	interface in the configuration.  The number of interfaces is stored
355  *	in desc.bNumInterfaces.  These pointers are valid only while the
356  *	configuration is active.
357  * @intf_cache: array of pointers to usb_interface_cache structures, one
358  *	for each interface in the configuration.  These structures exist
359  *	for the entire life of the device.
360  * @extra: pointer to buffer containing all extra descriptors associated
361  *	with this configuration (those preceding the first interface
362  *	descriptor).
363  * @extralen: length of the extra descriptors buffer.
364  *
365  * USB devices may have multiple configurations, but only one can be active
366  * at any time.  Each encapsulates a different operational environment;
367  * for example, a dual-speed device would have separate configurations for
368  * full-speed and high-speed operation.  The number of configurations
369  * available is stored in the device descriptor as bNumConfigurations.
370  *
371  * A configuration can contain multiple interfaces.  Each corresponds to
372  * a different function of the USB device, and all are available whenever
373  * the configuration is active.  The USB standard says that interfaces
374  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
375  * of devices get this wrong.  In addition, the interface array is not
376  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
377  * look up an interface entry based on its number.
378  *
379  * Device drivers should not attempt to activate configurations.  The choice
380  * of which configuration to install is a policy decision based on such
381  * considerations as available power, functionality provided, and the user's
382  * desires (expressed through userspace tools).  However, drivers can call
383  * usb_reset_configuration() to reinitialize the current configuration and
384  * all its interfaces.
385  */
386 struct usb_host_config {
387 	struct usb_config_descriptor	desc;
388 
389 	char *string;		/* iConfiguration string, if present */
390 
391 	/* List of any Interface Association Descriptors in this
392 	 * configuration. */
393 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
394 
395 	/* the interfaces associated with this configuration,
396 	 * stored in no particular order */
397 	struct usb_interface *interface[USB_MAXINTERFACES];
398 
399 	/* Interface information available even when this is not the
400 	 * active configuration */
401 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
402 
403 	unsigned char *extra;   /* Extra descriptors */
404 	int extralen;
405 };
406 
407 /* USB2.0 and USB3.0 device BOS descriptor set */
408 struct usb_host_bos {
409 	struct usb_bos_descriptor	*desc;
410 
411 	/* wireless cap descriptor is handled by wusb */
412 	struct usb_ext_cap_descriptor	*ext_cap;
413 	struct usb_ss_cap_descriptor	*ss_cap;
414 	struct usb_ssp_cap_descriptor	*ssp_cap;
415 	struct usb_ss_container_id_descriptor	*ss_id;
416 	struct usb_ptm_cap_descriptor	*ptm_cap;
417 };
418 
419 int __usb_get_extra_descriptor(char *buffer, unsigned size,
420 	unsigned char type, void **ptr, size_t min);
421 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
422 				__usb_get_extra_descriptor((ifpoint)->extra, \
423 				(ifpoint)->extralen, \
424 				type, (void **)ptr, sizeof(**(ptr)))
425 
426 /* ----------------------------------------------------------------------- */
427 
428 /* USB device number allocation bitmap */
429 struct usb_devmap {
430 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
431 };
432 
433 /*
434  * Allocated per bus (tree of devices) we have:
435  */
436 struct usb_bus {
437 	struct device *controller;	/* host side hardware */
438 	struct device *sysdev;		/* as seen from firmware or bus */
439 	int busnum;			/* Bus number (in order of reg) */
440 	const char *bus_name;		/* stable id (PCI slot_name etc) */
441 	u8 uses_pio_for_control;	/*
442 					 * Does the host controller use PIO
443 					 * for control transfers?
444 					 */
445 	u8 otg_port;			/* 0, or number of OTG/HNP port */
446 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
447 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
448 	unsigned no_stop_on_short:1;    /*
449 					 * Quirk: some controllers don't stop
450 					 * the ep queue on a short transfer
451 					 * with the URB_SHORT_NOT_OK flag set.
452 					 */
453 	unsigned no_sg_constraint:1;	/* no sg constraint */
454 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
455 
456 	int devnum_next;		/* Next open device number in
457 					 * round-robin allocation */
458 	struct mutex devnum_next_mutex; /* devnum_next mutex */
459 
460 	struct usb_devmap devmap;	/* device address allocation map */
461 	struct usb_device *root_hub;	/* Root hub */
462 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
463 
464 	int bandwidth_allocated;	/* on this bus: how much of the time
465 					 * reserved for periodic (intr/iso)
466 					 * requests is used, on average?
467 					 * Units: microseconds/frame.
468 					 * Limits: Full/low speed reserve 90%,
469 					 * while high speed reserves 80%.
470 					 */
471 	int bandwidth_int_reqs;		/* number of Interrupt requests */
472 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
473 
474 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
475 
476 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
477 	struct mon_bus *mon_bus;	/* non-null when associated */
478 	int monitored;			/* non-zero when monitored */
479 #endif
480 };
481 
482 struct usb_dev_state;
483 
484 /* ----------------------------------------------------------------------- */
485 
486 struct usb_tt;
487 
488 enum usb_port_connect_type {
489 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
490 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
491 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
492 	USB_PORT_NOT_USED,
493 };
494 
495 /*
496  * USB port quirks.
497  */
498 
499 /* For the given port, prefer the old (faster) enumeration scheme. */
500 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
501 
502 /* Decrease TRSTRCY to 10ms during device enumeration. */
503 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
504 
505 /*
506  * USB 2.0 Link Power Management (LPM) parameters.
507  */
508 struct usb2_lpm_parameters {
509 	/* Best effort service latency indicate how long the host will drive
510 	 * resume on an exit from L1.
511 	 */
512 	unsigned int besl;
513 
514 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
515 	 * When the timer counts to zero, the parent hub will initiate a LPM
516 	 * transition to L1.
517 	 */
518 	int timeout;
519 };
520 
521 /*
522  * USB 3.0 Link Power Management (LPM) parameters.
523  *
524  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
525  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
526  * All three are stored in nanoseconds.
527  */
528 struct usb3_lpm_parameters {
529 	/*
530 	 * Maximum exit latency (MEL) for the host to send a packet to the
531 	 * device (either a Ping for isoc endpoints, or a data packet for
532 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
533 	 * in the path to transition the links to U0.
534 	 */
535 	unsigned int mel;
536 	/*
537 	 * Maximum exit latency for a device-initiated LPM transition to bring
538 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
539 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
540 	 */
541 	unsigned int pel;
542 
543 	/*
544 	 * The System Exit Latency (SEL) includes PEL, and three other
545 	 * latencies.  After a device initiates a U0 transition, it will take
546 	 * some time from when the device sends the ERDY to when it will finally
547 	 * receive the data packet.  Basically, SEL should be the worse-case
548 	 * latency from when a device starts initiating a U0 transition to when
549 	 * it will get data.
550 	 */
551 	unsigned int sel;
552 	/*
553 	 * The idle timeout value that is currently programmed into the parent
554 	 * hub for this device.  When the timer counts to zero, the parent hub
555 	 * will initiate an LPM transition to either U1 or U2.
556 	 */
557 	int timeout;
558 };
559 
560 /**
561  * struct usb_device - kernel's representation of a USB device
562  * @devnum: device number; address on a USB bus
563  * @devpath: device ID string for use in messages (e.g., /port/...)
564  * @route: tree topology hex string for use with xHCI
565  * @state: device state: configured, not attached, etc.
566  * @speed: device speed: high/full/low (or error)
567  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
568  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
569  * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
570  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
571  * @ttport: device port on that tt hub
572  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
573  * @parent: our hub, unless we're the root
574  * @bus: bus we're part of
575  * @ep0: endpoint 0 data (default control pipe)
576  * @dev: generic device interface
577  * @descriptor: USB device descriptor
578  * @bos: USB device BOS descriptor set
579  * @config: all of the device's configs
580  * @actconfig: the active configuration
581  * @ep_in: array of IN endpoints
582  * @ep_out: array of OUT endpoints
583  * @rawdescriptors: raw descriptors for each config
584  * @bus_mA: Current available from the bus
585  * @portnum: parent port number (origin 1)
586  * @level: number of USB hub ancestors
587  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
588  * @can_submit: URBs may be submitted
589  * @persist_enabled:  USB_PERSIST enabled for this device
590  * @reset_in_progress: the device is being reset
591  * @have_langid: whether string_langid is valid
592  * @authorized: policy has said we can use it;
593  *	(user space) policy determines if we authorize this device to be
594  *	used or not. By default, wired USB devices are authorized.
595  *	WUSB devices are not, until we authorize them from user space.
596  *	FIXME -- complete doc
597  * @authenticated: Crypto authentication passed
598  * @wusb: device is Wireless USB
599  * @lpm_capable: device supports LPM
600  * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
601  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
602  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
603  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
604  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
605  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
606  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
607  * @string_langid: language ID for strings
608  * @product: iProduct string, if present (static)
609  * @manufacturer: iManufacturer string, if present (static)
610  * @serial: iSerialNumber string, if present (static)
611  * @filelist: usbfs files that are open to this device
612  * @maxchild: number of ports if hub
613  * @quirks: quirks of the whole device
614  * @urbnum: number of URBs submitted for the whole device
615  * @active_duration: total time device is not suspended
616  * @connect_time: time device was first connected
617  * @do_remote_wakeup:  remote wakeup should be enabled
618  * @reset_resume: needs reset instead of resume
619  * @port_is_suspended: the upstream port is suspended (L2 or U3)
620  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
621  *	specific data for the device.
622  * @slot_id: Slot ID assigned by xHCI
623  * @removable: Device can be physically removed from this port
624  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
625  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
626  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
627  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
628  *	to keep track of the number of functions that require USB 3.0 Link Power
629  *	Management to be disabled for this usb_device.  This count should only
630  *	be manipulated by those functions, with the bandwidth_mutex is held.
631  * @hub_delay: cached value consisting of:
632  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
633  *	Will be used as wValue for SetIsochDelay requests.
634  * @use_generic_driver: ask driver core to reprobe using the generic driver.
635  *
636  * Notes:
637  * Usbcore drivers should not set usbdev->state directly.  Instead use
638  * usb_set_device_state().
639  */
640 struct usb_device {
641 	int		devnum;
642 	char		devpath[16];
643 	u32		route;
644 	enum usb_device_state	state;
645 	enum usb_device_speed	speed;
646 	unsigned int		rx_lanes;
647 	unsigned int		tx_lanes;
648 	enum usb_ssp_rate	ssp_rate;
649 
650 	struct usb_tt	*tt;
651 	int		ttport;
652 
653 	unsigned int toggle[2];
654 
655 	struct usb_device *parent;
656 	struct usb_bus *bus;
657 	struct usb_host_endpoint ep0;
658 
659 	struct device dev;
660 
661 	struct usb_device_descriptor descriptor;
662 	struct usb_host_bos *bos;
663 	struct usb_host_config *config;
664 
665 	struct usb_host_config *actconfig;
666 	struct usb_host_endpoint *ep_in[16];
667 	struct usb_host_endpoint *ep_out[16];
668 
669 	char **rawdescriptors;
670 
671 	unsigned short bus_mA;
672 	u8 portnum;
673 	u8 level;
674 	u8 devaddr;
675 
676 	unsigned can_submit:1;
677 	unsigned persist_enabled:1;
678 	unsigned reset_in_progress:1;
679 	unsigned have_langid:1;
680 	unsigned authorized:1;
681 	unsigned authenticated:1;
682 	unsigned wusb:1;
683 	unsigned lpm_capable:1;
684 	unsigned lpm_devinit_allow:1;
685 	unsigned usb2_hw_lpm_capable:1;
686 	unsigned usb2_hw_lpm_besl_capable:1;
687 	unsigned usb2_hw_lpm_enabled:1;
688 	unsigned usb2_hw_lpm_allowed:1;
689 	unsigned usb3_lpm_u1_enabled:1;
690 	unsigned usb3_lpm_u2_enabled:1;
691 	int string_langid;
692 
693 	/* static strings from the device */
694 	char *product;
695 	char *manufacturer;
696 	char *serial;
697 
698 	struct list_head filelist;
699 
700 	int maxchild;
701 
702 	u32 quirks;
703 	atomic_t urbnum;
704 
705 	unsigned long active_duration;
706 
707 	unsigned long connect_time;
708 
709 	unsigned do_remote_wakeup:1;
710 	unsigned reset_resume:1;
711 	unsigned port_is_suspended:1;
712 
713 	struct wusb_dev *wusb_dev;
714 	int slot_id;
715 	struct usb2_lpm_parameters l1_params;
716 	struct usb3_lpm_parameters u1_params;
717 	struct usb3_lpm_parameters u2_params;
718 	unsigned lpm_disable_count;
719 
720 	u16 hub_delay;
721 	unsigned use_generic_driver:1;
722 };
723 
724 #define to_usb_device(__dev)	container_of_const(__dev, struct usb_device, dev)
725 
726 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
727 {
728 	return to_usb_device(intf->dev.parent);
729 }
730 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
731 {
732 	return to_usb_device((const struct device *)intf->dev.parent);
733 }
734 
735 #define interface_to_usbdev(intf)					\
736 	_Generic((intf),						\
737 		 const struct usb_interface *: __intf_to_usbdev_const,	\
738 		 struct usb_interface *: __intf_to_usbdev)(intf)
739 
740 extern struct usb_device *usb_get_dev(struct usb_device *dev);
741 extern void usb_put_dev(struct usb_device *dev);
742 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
743 	int port1);
744 
745 /**
746  * usb_hub_for_each_child - iterate over all child devices on the hub
747  * @hdev:  USB device belonging to the usb hub
748  * @port1: portnum associated with child device
749  * @child: child device pointer
750  */
751 #define usb_hub_for_each_child(hdev, port1, child) \
752 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
753 			port1 <= hdev->maxchild; \
754 			child = usb_hub_find_child(hdev, ++port1)) \
755 		if (!child) continue; else
756 
757 /* USB device locking */
758 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
759 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
760 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
761 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
762 extern int usb_lock_device_for_reset(struct usb_device *udev,
763 				     const struct usb_interface *iface);
764 
765 /* USB port reset for device reinitialization */
766 extern int usb_reset_device(struct usb_device *dev);
767 extern void usb_queue_reset_device(struct usb_interface *dev);
768 
769 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
770 
771 #ifdef CONFIG_ACPI
772 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
773 	bool enable);
774 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
775 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
776 #else
777 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
778 	bool enable) { return 0; }
779 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
780 	{ return true; }
781 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
782 	{ return 0; }
783 #endif
784 
785 /* USB autosuspend and autoresume */
786 #ifdef CONFIG_PM
787 extern void usb_enable_autosuspend(struct usb_device *udev);
788 extern void usb_disable_autosuspend(struct usb_device *udev);
789 
790 extern int usb_autopm_get_interface(struct usb_interface *intf);
791 extern void usb_autopm_put_interface(struct usb_interface *intf);
792 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
793 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
794 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
795 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
796 
797 static inline void usb_mark_last_busy(struct usb_device *udev)
798 {
799 	pm_runtime_mark_last_busy(&udev->dev);
800 }
801 
802 #else
803 
804 static inline int usb_enable_autosuspend(struct usb_device *udev)
805 { return 0; }
806 static inline int usb_disable_autosuspend(struct usb_device *udev)
807 { return 0; }
808 
809 static inline int usb_autopm_get_interface(struct usb_interface *intf)
810 { return 0; }
811 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
812 { return 0; }
813 
814 static inline void usb_autopm_put_interface(struct usb_interface *intf)
815 { }
816 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
817 { }
818 static inline void usb_autopm_get_interface_no_resume(
819 		struct usb_interface *intf)
820 { }
821 static inline void usb_autopm_put_interface_no_suspend(
822 		struct usb_interface *intf)
823 { }
824 static inline void usb_mark_last_busy(struct usb_device *udev)
825 { }
826 #endif
827 
828 extern int usb_disable_lpm(struct usb_device *udev);
829 extern void usb_enable_lpm(struct usb_device *udev);
830 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
831 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
832 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
833 
834 extern int usb_disable_ltm(struct usb_device *udev);
835 extern void usb_enable_ltm(struct usb_device *udev);
836 
837 static inline bool usb_device_supports_ltm(struct usb_device *udev)
838 {
839 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
840 		return false;
841 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
842 }
843 
844 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
845 {
846 	return udev && udev->bus && udev->bus->no_sg_constraint;
847 }
848 
849 
850 /*-------------------------------------------------------------------------*/
851 
852 /* for drivers using iso endpoints */
853 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
854 
855 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
856 extern int usb_alloc_streams(struct usb_interface *interface,
857 		struct usb_host_endpoint **eps, unsigned int num_eps,
858 		unsigned int num_streams, gfp_t mem_flags);
859 
860 /* Reverts a group of bulk endpoints back to not using stream IDs. */
861 extern int usb_free_streams(struct usb_interface *interface,
862 		struct usb_host_endpoint **eps, unsigned int num_eps,
863 		gfp_t mem_flags);
864 
865 /* used these for multi-interface device registration */
866 extern int usb_driver_claim_interface(struct usb_driver *driver,
867 			struct usb_interface *iface, void *data);
868 
869 /**
870  * usb_interface_claimed - returns true iff an interface is claimed
871  * @iface: the interface being checked
872  *
873  * Return: %true (nonzero) iff the interface is claimed, else %false
874  * (zero).
875  *
876  * Note:
877  * Callers must own the driver model's usb bus readlock.  So driver
878  * probe() entries don't need extra locking, but other call contexts
879  * may need to explicitly claim that lock.
880  *
881  */
882 static inline int usb_interface_claimed(struct usb_interface *iface)
883 {
884 	return (iface->dev.driver != NULL);
885 }
886 
887 extern void usb_driver_release_interface(struct usb_driver *driver,
888 			struct usb_interface *iface);
889 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
890 					 const struct usb_device_id *id);
891 extern int usb_match_one_id(struct usb_interface *interface,
892 			    const struct usb_device_id *id);
893 
894 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
895 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
896 		int minor);
897 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
898 		unsigned ifnum);
899 extern struct usb_host_interface *usb_altnum_to_altsetting(
900 		const struct usb_interface *intf, unsigned int altnum);
901 extern struct usb_host_interface *usb_find_alt_setting(
902 		struct usb_host_config *config,
903 		unsigned int iface_num,
904 		unsigned int alt_num);
905 
906 /* port claiming functions */
907 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
908 		struct usb_dev_state *owner);
909 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
910 		struct usb_dev_state *owner);
911 
912 /**
913  * usb_make_path - returns stable device path in the usb tree
914  * @dev: the device whose path is being constructed
915  * @buf: where to put the string
916  * @size: how big is "buf"?
917  *
918  * Return: Length of the string (> 0) or negative if size was too small.
919  *
920  * Note:
921  * This identifier is intended to be "stable", reflecting physical paths in
922  * hardware such as physical bus addresses for host controllers or ports on
923  * USB hubs.  That makes it stay the same until systems are physically
924  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
925  * controllers.  Adding and removing devices, including virtual root hubs
926  * in host controller driver modules, does not change these path identifiers;
927  * neither does rebooting or re-enumerating.  These are more useful identifiers
928  * than changeable ("unstable") ones like bus numbers or device addresses.
929  *
930  * With a partial exception for devices connected to USB 2.0 root hubs, these
931  * identifiers are also predictable.  So long as the device tree isn't changed,
932  * plugging any USB device into a given hub port always gives it the same path.
933  * Because of the use of "companion" controllers, devices connected to ports on
934  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
935  * high speed, and a different one if they are full or low speed.
936  */
937 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
938 {
939 	int actual;
940 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
941 			  dev->devpath);
942 	return (actual >= (int)size) ? -1 : actual;
943 }
944 
945 /*-------------------------------------------------------------------------*/
946 
947 #define USB_DEVICE_ID_MATCH_DEVICE \
948 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
949 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
950 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
951 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
952 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
953 #define USB_DEVICE_ID_MATCH_DEV_INFO \
954 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
955 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
956 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
957 #define USB_DEVICE_ID_MATCH_INT_INFO \
958 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
959 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
960 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
961 
962 /**
963  * USB_DEVICE - macro used to describe a specific usb device
964  * @vend: the 16 bit USB Vendor ID
965  * @prod: the 16 bit USB Product ID
966  *
967  * This macro is used to create a struct usb_device_id that matches a
968  * specific device.
969  */
970 #define USB_DEVICE(vend, prod) \
971 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
972 	.idVendor = (vend), \
973 	.idProduct = (prod)
974 /**
975  * USB_DEVICE_VER - describe a specific usb device with a version range
976  * @vend: the 16 bit USB Vendor ID
977  * @prod: the 16 bit USB Product ID
978  * @lo: the bcdDevice_lo value
979  * @hi: the bcdDevice_hi value
980  *
981  * This macro is used to create a struct usb_device_id that matches a
982  * specific device, with a version range.
983  */
984 #define USB_DEVICE_VER(vend, prod, lo, hi) \
985 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
986 	.idVendor = (vend), \
987 	.idProduct = (prod), \
988 	.bcdDevice_lo = (lo), \
989 	.bcdDevice_hi = (hi)
990 
991 /**
992  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
993  * @vend: the 16 bit USB Vendor ID
994  * @prod: the 16 bit USB Product ID
995  * @cl: bInterfaceClass value
996  *
997  * This macro is used to create a struct usb_device_id that matches a
998  * specific interface class of devices.
999  */
1000 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1001 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1002 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1003 	.idVendor = (vend), \
1004 	.idProduct = (prod), \
1005 	.bInterfaceClass = (cl)
1006 
1007 /**
1008  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1009  * @vend: the 16 bit USB Vendor ID
1010  * @prod: the 16 bit USB Product ID
1011  * @pr: bInterfaceProtocol value
1012  *
1013  * This macro is used to create a struct usb_device_id that matches a
1014  * specific interface protocol of devices.
1015  */
1016 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1017 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1018 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1019 	.idVendor = (vend), \
1020 	.idProduct = (prod), \
1021 	.bInterfaceProtocol = (pr)
1022 
1023 /**
1024  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1025  * @vend: the 16 bit USB Vendor ID
1026  * @prod: the 16 bit USB Product ID
1027  * @num: bInterfaceNumber value
1028  *
1029  * This macro is used to create a struct usb_device_id that matches a
1030  * specific interface number of devices.
1031  */
1032 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1033 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1034 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1035 	.idVendor = (vend), \
1036 	.idProduct = (prod), \
1037 	.bInterfaceNumber = (num)
1038 
1039 /**
1040  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1041  * @cl: bDeviceClass value
1042  * @sc: bDeviceSubClass value
1043  * @pr: bDeviceProtocol value
1044  *
1045  * This macro is used to create a struct usb_device_id that matches a
1046  * specific class of devices.
1047  */
1048 #define USB_DEVICE_INFO(cl, sc, pr) \
1049 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1050 	.bDeviceClass = (cl), \
1051 	.bDeviceSubClass = (sc), \
1052 	.bDeviceProtocol = (pr)
1053 
1054 /**
1055  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1056  * @cl: bInterfaceClass value
1057  * @sc: bInterfaceSubClass value
1058  * @pr: bInterfaceProtocol value
1059  *
1060  * This macro is used to create a struct usb_device_id that matches a
1061  * specific class of interfaces.
1062  */
1063 #define USB_INTERFACE_INFO(cl, sc, pr) \
1064 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1065 	.bInterfaceClass = (cl), \
1066 	.bInterfaceSubClass = (sc), \
1067 	.bInterfaceProtocol = (pr)
1068 
1069 /**
1070  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1071  * @vend: the 16 bit USB Vendor ID
1072  * @prod: the 16 bit USB Product ID
1073  * @cl: bInterfaceClass value
1074  * @sc: bInterfaceSubClass value
1075  * @pr: bInterfaceProtocol value
1076  *
1077  * This macro is used to create a struct usb_device_id that matches a
1078  * specific device with a specific class of interfaces.
1079  *
1080  * This is especially useful when explicitly matching devices that have
1081  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1082  */
1083 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1084 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1085 		| USB_DEVICE_ID_MATCH_DEVICE, \
1086 	.idVendor = (vend), \
1087 	.idProduct = (prod), \
1088 	.bInterfaceClass = (cl), \
1089 	.bInterfaceSubClass = (sc), \
1090 	.bInterfaceProtocol = (pr)
1091 
1092 /**
1093  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1094  * @vend: the 16 bit USB Vendor ID
1095  * @cl: bInterfaceClass value
1096  * @sc: bInterfaceSubClass value
1097  * @pr: bInterfaceProtocol value
1098  *
1099  * This macro is used to create a struct usb_device_id that matches a
1100  * specific vendor with a specific class of interfaces.
1101  *
1102  * This is especially useful when explicitly matching devices that have
1103  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1104  */
1105 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1106 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1107 		| USB_DEVICE_ID_MATCH_VENDOR, \
1108 	.idVendor = (vend), \
1109 	.bInterfaceClass = (cl), \
1110 	.bInterfaceSubClass = (sc), \
1111 	.bInterfaceProtocol = (pr)
1112 
1113 /* ----------------------------------------------------------------------- */
1114 
1115 /* Stuff for dynamic usb ids */
1116 struct usb_dynids {
1117 	spinlock_t lock;
1118 	struct list_head list;
1119 };
1120 
1121 struct usb_dynid {
1122 	struct list_head node;
1123 	struct usb_device_id id;
1124 };
1125 
1126 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1127 				const struct usb_device_id *id_table,
1128 				struct device_driver *driver,
1129 				const char *buf, size_t count);
1130 
1131 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1132 
1133 /**
1134  * struct usbdrv_wrap - wrapper for driver-model structure
1135  * @driver: The driver-model core driver structure.
1136  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1137  */
1138 struct usbdrv_wrap {
1139 	struct device_driver driver;
1140 	int for_devices;
1141 };
1142 
1143 /**
1144  * struct usb_driver - identifies USB interface driver to usbcore
1145  * @name: The driver name should be unique among USB drivers,
1146  *	and should normally be the same as the module name.
1147  * @probe: Called to see if the driver is willing to manage a particular
1148  *	interface on a device.  If it is, probe returns zero and uses
1149  *	usb_set_intfdata() to associate driver-specific data with the
1150  *	interface.  It may also use usb_set_interface() to specify the
1151  *	appropriate altsetting.  If unwilling to manage the interface,
1152  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1153  *	negative errno value.
1154  * @disconnect: Called when the interface is no longer accessible, usually
1155  *	because its device has been (or is being) disconnected or the
1156  *	driver module is being unloaded.
1157  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1158  *	the "usbfs" filesystem.  This lets devices provide ways to
1159  *	expose information to user space regardless of where they
1160  *	do (or don't) show up otherwise in the filesystem.
1161  * @suspend: Called when the device is going to be suspended by the
1162  *	system either from system sleep or runtime suspend context. The
1163  *	return value will be ignored in system sleep context, so do NOT
1164  *	try to continue using the device if suspend fails in this case.
1165  *	Instead, let the resume or reset-resume routine recover from
1166  *	the failure.
1167  * @resume: Called when the device is being resumed by the system.
1168  * @reset_resume: Called when the suspended device has been reset instead
1169  *	of being resumed.
1170  * @pre_reset: Called by usb_reset_device() when the device is about to be
1171  *	reset.  This routine must not return until the driver has no active
1172  *	URBs for the device, and no more URBs may be submitted until the
1173  *	post_reset method is called.
1174  * @post_reset: Called by usb_reset_device() after the device
1175  *	has been reset
1176  * @id_table: USB drivers use ID table to support hotplugging.
1177  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1178  *	or your driver's probe function will never get called.
1179  * @dev_groups: Attributes attached to the device that will be created once it
1180  *	is bound to the driver.
1181  * @dynids: used internally to hold the list of dynamically added device
1182  *	ids for this driver.
1183  * @drvwrap: Driver-model core structure wrapper.
1184  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1185  *	added to this driver by preventing the sysfs file from being created.
1186  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1187  *	for interfaces bound to this driver.
1188  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1189  *	endpoints before calling the driver's disconnect method.
1190  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1191  *	to initiate lower power link state transitions when an idle timeout
1192  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1193  *
1194  * USB interface drivers must provide a name, probe() and disconnect()
1195  * methods, and an id_table.  Other driver fields are optional.
1196  *
1197  * The id_table is used in hotplugging.  It holds a set of descriptors,
1198  * and specialized data may be associated with each entry.  That table
1199  * is used by both user and kernel mode hotplugging support.
1200  *
1201  * The probe() and disconnect() methods are called in a context where
1202  * they can sleep, but they should avoid abusing the privilege.  Most
1203  * work to connect to a device should be done when the device is opened,
1204  * and undone at the last close.  The disconnect code needs to address
1205  * concurrency issues with respect to open() and close() methods, as
1206  * well as forcing all pending I/O requests to complete (by unlinking
1207  * them as necessary, and blocking until the unlinks complete).
1208  */
1209 struct usb_driver {
1210 	const char *name;
1211 
1212 	int (*probe) (struct usb_interface *intf,
1213 		      const struct usb_device_id *id);
1214 
1215 	void (*disconnect) (struct usb_interface *intf);
1216 
1217 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1218 			void *buf);
1219 
1220 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1221 	int (*resume) (struct usb_interface *intf);
1222 	int (*reset_resume)(struct usb_interface *intf);
1223 
1224 	int (*pre_reset)(struct usb_interface *intf);
1225 	int (*post_reset)(struct usb_interface *intf);
1226 
1227 	const struct usb_device_id *id_table;
1228 	const struct attribute_group **dev_groups;
1229 
1230 	struct usb_dynids dynids;
1231 	struct usbdrv_wrap drvwrap;
1232 	unsigned int no_dynamic_id:1;
1233 	unsigned int supports_autosuspend:1;
1234 	unsigned int disable_hub_initiated_lpm:1;
1235 	unsigned int soft_unbind:1;
1236 };
1237 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1238 
1239 /**
1240  * struct usb_device_driver - identifies USB device driver to usbcore
1241  * @name: The driver name should be unique among USB drivers,
1242  *	and should normally be the same as the module name.
1243  * @match: If set, used for better device/driver matching.
1244  * @probe: Called to see if the driver is willing to manage a particular
1245  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1246  *	to associate driver-specific data with the device.  If unwilling
1247  *	to manage the device, return a negative errno value.
1248  * @disconnect: Called when the device is no longer accessible, usually
1249  *	because it has been (or is being) disconnected or the driver's
1250  *	module is being unloaded.
1251  * @suspend: Called when the device is going to be suspended by the system.
1252  * @resume: Called when the device is being resumed by the system.
1253  * @dev_groups: Attributes attached to the device that will be created once it
1254  *	is bound to the driver.
1255  * @drvwrap: Driver-model core structure wrapper.
1256  * @id_table: used with @match() to select better matching driver at
1257  * 	probe() time.
1258  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1259  *	for devices bound to this driver.
1260  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1261  *	resume and suspend functions will be called in addition to the driver's
1262  *	own, so this part of the setup does not need to be replicated.
1263  *
1264  * USB drivers must provide all the fields listed above except drvwrap,
1265  * match, and id_table.
1266  */
1267 struct usb_device_driver {
1268 	const char *name;
1269 
1270 	bool (*match) (struct usb_device *udev);
1271 	int (*probe) (struct usb_device *udev);
1272 	void (*disconnect) (struct usb_device *udev);
1273 
1274 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1275 	int (*resume) (struct usb_device *udev, pm_message_t message);
1276 	const struct attribute_group **dev_groups;
1277 	struct usbdrv_wrap drvwrap;
1278 	const struct usb_device_id *id_table;
1279 	unsigned int supports_autosuspend:1;
1280 	unsigned int generic_subclass:1;
1281 };
1282 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1283 		drvwrap.driver)
1284 
1285 /**
1286  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1287  * @name: the usb class device name for this driver.  Will show up in sysfs.
1288  * @devnode: Callback to provide a naming hint for a possible
1289  *	device node to create.
1290  * @fops: pointer to the struct file_operations of this driver.
1291  * @minor_base: the start of the minor range for this driver.
1292  *
1293  * This structure is used for the usb_register_dev() and
1294  * usb_deregister_dev() functions, to consolidate a number of the
1295  * parameters used for them.
1296  */
1297 struct usb_class_driver {
1298 	char *name;
1299 	char *(*devnode)(const struct device *dev, umode_t *mode);
1300 	const struct file_operations *fops;
1301 	int minor_base;
1302 };
1303 
1304 /*
1305  * use these in module_init()/module_exit()
1306  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1307  */
1308 extern int usb_register_driver(struct usb_driver *, struct module *,
1309 			       const char *);
1310 
1311 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1312 #define usb_register(driver) \
1313 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1314 
1315 extern void usb_deregister(struct usb_driver *);
1316 
1317 /**
1318  * module_usb_driver() - Helper macro for registering a USB driver
1319  * @__usb_driver: usb_driver struct
1320  *
1321  * Helper macro for USB drivers which do not do anything special in module
1322  * init/exit. This eliminates a lot of boilerplate. Each module may only
1323  * use this macro once, and calling it replaces module_init() and module_exit()
1324  */
1325 #define module_usb_driver(__usb_driver) \
1326 	module_driver(__usb_driver, usb_register, \
1327 		       usb_deregister)
1328 
1329 extern int usb_register_device_driver(struct usb_device_driver *,
1330 			struct module *);
1331 extern void usb_deregister_device_driver(struct usb_device_driver *);
1332 
1333 extern int usb_register_dev(struct usb_interface *intf,
1334 			    struct usb_class_driver *class_driver);
1335 extern void usb_deregister_dev(struct usb_interface *intf,
1336 			       struct usb_class_driver *class_driver);
1337 
1338 extern int usb_disabled(void);
1339 
1340 /* ----------------------------------------------------------------------- */
1341 
1342 /*
1343  * URB support, for asynchronous request completions
1344  */
1345 
1346 /*
1347  * urb->transfer_flags:
1348  *
1349  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1350  */
1351 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1352 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1353 					 * slot in the schedule */
1354 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1355 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1356 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1357 					 * needed */
1358 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1359 
1360 /* The following flags are used internally by usbcore and HCDs */
1361 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1362 #define URB_DIR_OUT		0
1363 #define URB_DIR_MASK		URB_DIR_IN
1364 
1365 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1366 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1367 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1368 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1369 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1370 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1371 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1372 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1373 
1374 struct usb_iso_packet_descriptor {
1375 	unsigned int offset;
1376 	unsigned int length;		/* expected length */
1377 	unsigned int actual_length;
1378 	int status;
1379 };
1380 
1381 struct urb;
1382 
1383 struct usb_anchor {
1384 	struct list_head urb_list;
1385 	wait_queue_head_t wait;
1386 	spinlock_t lock;
1387 	atomic_t suspend_wakeups;
1388 	unsigned int poisoned:1;
1389 };
1390 
1391 static inline void init_usb_anchor(struct usb_anchor *anchor)
1392 {
1393 	memset(anchor, 0, sizeof(*anchor));
1394 	INIT_LIST_HEAD(&anchor->urb_list);
1395 	init_waitqueue_head(&anchor->wait);
1396 	spin_lock_init(&anchor->lock);
1397 }
1398 
1399 typedef void (*usb_complete_t)(struct urb *);
1400 
1401 /**
1402  * struct urb - USB Request Block
1403  * @urb_list: For use by current owner of the URB.
1404  * @anchor_list: membership in the list of an anchor
1405  * @anchor: to anchor URBs to a common mooring
1406  * @ep: Points to the endpoint's data structure.  Will eventually
1407  *	replace @pipe.
1408  * @pipe: Holds endpoint number, direction, type, and more.
1409  *	Create these values with the eight macros available;
1410  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1411  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1412  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1413  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1414  *	is a different endpoint (and pipe) from "out" endpoint two.
1415  *	The current configuration controls the existence, type, and
1416  *	maximum packet size of any given endpoint.
1417  * @stream_id: the endpoint's stream ID for bulk streams
1418  * @dev: Identifies the USB device to perform the request.
1419  * @status: This is read in non-iso completion functions to get the
1420  *	status of the particular request.  ISO requests only use it
1421  *	to tell whether the URB was unlinked; detailed status for
1422  *	each frame is in the fields of the iso_frame-desc.
1423  * @transfer_flags: A variety of flags may be used to affect how URB
1424  *	submission, unlinking, or operation are handled.  Different
1425  *	kinds of URB can use different flags.
1426  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1427  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1428  *	(however, do not leave garbage in transfer_buffer even then).
1429  *	This buffer must be suitable for DMA; allocate it with
1430  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1431  *	of this buffer will be modified.  This buffer is used for the data
1432  *	stage of control transfers.
1433  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1434  *	the device driver is saying that it provided this DMA address,
1435  *	which the host controller driver should use in preference to the
1436  *	transfer_buffer.
1437  * @sg: scatter gather buffer list, the buffer size of each element in
1438  * 	the list (except the last) must be divisible by the endpoint's
1439  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1440  * @num_mapped_sgs: (internal) number of mapped sg entries
1441  * @num_sgs: number of entries in the sg list
1442  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1443  *	be broken up into chunks according to the current maximum packet
1444  *	size for the endpoint, which is a function of the configuration
1445  *	and is encoded in the pipe.  When the length is zero, neither
1446  *	transfer_buffer nor transfer_dma is used.
1447  * @actual_length: This is read in non-iso completion functions, and
1448  *	it tells how many bytes (out of transfer_buffer_length) were
1449  *	transferred.  It will normally be the same as requested, unless
1450  *	either an error was reported or a short read was performed.
1451  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1452  *	short reads be reported as errors.
1453  * @setup_packet: Only used for control transfers, this points to eight bytes
1454  *	of setup data.  Control transfers always start by sending this data
1455  *	to the device.  Then transfer_buffer is read or written, if needed.
1456  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1457  *	this field; setup_packet must point to a valid buffer.
1458  * @start_frame: Returns the initial frame for isochronous transfers.
1459  * @number_of_packets: Lists the number of ISO transfer buffers.
1460  * @interval: Specifies the polling interval for interrupt or isochronous
1461  *	transfers.  The units are frames (milliseconds) for full and low
1462  *	speed devices, and microframes (1/8 millisecond) for highspeed
1463  *	and SuperSpeed devices.
1464  * @error_count: Returns the number of ISO transfers that reported errors.
1465  * @context: For use in completion functions.  This normally points to
1466  *	request-specific driver context.
1467  * @complete: Completion handler. This URB is passed as the parameter to the
1468  *	completion function.  The completion function may then do what
1469  *	it likes with the URB, including resubmitting or freeing it.
1470  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1471  *	collect the transfer status for each buffer.
1472  *
1473  * This structure identifies USB transfer requests.  URBs must be allocated by
1474  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1475  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1476  * are submitted using usb_submit_urb(), and pending requests may be canceled
1477  * using usb_unlink_urb() or usb_kill_urb().
1478  *
1479  * Data Transfer Buffers:
1480  *
1481  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1482  * taken from the general page pool.  That is provided by transfer_buffer
1483  * (control requests also use setup_packet), and host controller drivers
1484  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1485  * mapping operations can be expensive on some platforms (perhaps using a dma
1486  * bounce buffer or talking to an IOMMU),
1487  * although they're cheap on commodity x86 and ppc hardware.
1488  *
1489  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1490  * which tells the host controller driver that no such mapping is needed for
1491  * the transfer_buffer since
1492  * the device driver is DMA-aware.  For example, a device driver might
1493  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1494  * When this transfer flag is provided, host controller drivers will
1495  * attempt to use the dma address found in the transfer_dma
1496  * field rather than determining a dma address themselves.
1497  *
1498  * Note that transfer_buffer must still be set if the controller
1499  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1500  * to root hub. If you have to transfer between highmem zone and the device
1501  * on such controller, create a bounce buffer or bail out with an error.
1502  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1503  * capable, assign NULL to it, so that usbmon knows not to use the value.
1504  * The setup_packet must always be set, so it cannot be located in highmem.
1505  *
1506  * Initialization:
1507  *
1508  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1509  * zero), and complete fields.  All URBs must also initialize
1510  * transfer_buffer and transfer_buffer_length.  They may provide the
1511  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1512  * to be treated as errors; that flag is invalid for write requests.
1513  *
1514  * Bulk URBs may
1515  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1516  * should always terminate with a short packet, even if it means adding an
1517  * extra zero length packet.
1518  *
1519  * Control URBs must provide a valid pointer in the setup_packet field.
1520  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1521  * beforehand.
1522  *
1523  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1524  * or, for highspeed devices, 125 microsecond units)
1525  * to poll for transfers.  After the URB has been submitted, the interval
1526  * field reflects how the transfer was actually scheduled.
1527  * The polling interval may be more frequent than requested.
1528  * For example, some controllers have a maximum interval of 32 milliseconds,
1529  * while others support intervals of up to 1024 milliseconds.
1530  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1531  * endpoints, as well as high speed interrupt endpoints, the encoding of
1532  * the transfer interval in the endpoint descriptor is logarithmic.
1533  * Device drivers must convert that value to linear units themselves.)
1534  *
1535  * If an isochronous endpoint queue isn't already running, the host
1536  * controller will schedule a new URB to start as soon as bandwidth
1537  * utilization allows.  If the queue is running then a new URB will be
1538  * scheduled to start in the first transfer slot following the end of the
1539  * preceding URB, if that slot has not already expired.  If the slot has
1540  * expired (which can happen when IRQ delivery is delayed for a long time),
1541  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1542  * is clear then the URB will be scheduled to start in the expired slot,
1543  * implying that some of its packets will not be transferred; if the flag
1544  * is set then the URB will be scheduled in the first unexpired slot,
1545  * breaking the queue's synchronization.  Upon URB completion, the
1546  * start_frame field will be set to the (micro)frame number in which the
1547  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1548  * and can go from as low as 256 to as high as 65536 frames.
1549  *
1550  * Isochronous URBs have a different data transfer model, in part because
1551  * the quality of service is only "best effort".  Callers provide specially
1552  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1553  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1554  * URBs are normally queued, submitted by drivers to arrange that
1555  * transfers are at least double buffered, and then explicitly resubmitted
1556  * in completion handlers, so
1557  * that data (such as audio or video) streams at as constant a rate as the
1558  * host controller scheduler can support.
1559  *
1560  * Completion Callbacks:
1561  *
1562  * The completion callback is made in_interrupt(), and one of the first
1563  * things that a completion handler should do is check the status field.
1564  * The status field is provided for all URBs.  It is used to report
1565  * unlinked URBs, and status for all non-ISO transfers.  It should not
1566  * be examined before the URB is returned to the completion handler.
1567  *
1568  * The context field is normally used to link URBs back to the relevant
1569  * driver or request state.
1570  *
1571  * When the completion callback is invoked for non-isochronous URBs, the
1572  * actual_length field tells how many bytes were transferred.  This field
1573  * is updated even when the URB terminated with an error or was unlinked.
1574  *
1575  * ISO transfer status is reported in the status and actual_length fields
1576  * of the iso_frame_desc array, and the number of errors is reported in
1577  * error_count.  Completion callbacks for ISO transfers will normally
1578  * (re)submit URBs to ensure a constant transfer rate.
1579  *
1580  * Note that even fields marked "public" should not be touched by the driver
1581  * when the urb is owned by the hcd, that is, since the call to
1582  * usb_submit_urb() till the entry into the completion routine.
1583  */
1584 struct urb {
1585 	/* private: usb core and host controller only fields in the urb */
1586 	struct kref kref;		/* reference count of the URB */
1587 	int unlinked;			/* unlink error code */
1588 	void *hcpriv;			/* private data for host controller */
1589 	atomic_t use_count;		/* concurrent submissions counter */
1590 	atomic_t reject;		/* submissions will fail */
1591 
1592 	/* public: documented fields in the urb that can be used by drivers */
1593 	struct list_head urb_list;	/* list head for use by the urb's
1594 					 * current owner */
1595 	struct list_head anchor_list;	/* the URB may be anchored */
1596 	struct usb_anchor *anchor;
1597 	struct usb_device *dev;		/* (in) pointer to associated device */
1598 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1599 	unsigned int pipe;		/* (in) pipe information */
1600 	unsigned int stream_id;		/* (in) stream ID */
1601 	int status;			/* (return) non-ISO status */
1602 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1603 	void *transfer_buffer;		/* (in) associated data buffer */
1604 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1605 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1606 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1607 	int num_sgs;			/* (in) number of entries in the sg list */
1608 	u32 transfer_buffer_length;	/* (in) data buffer length */
1609 	u32 actual_length;		/* (return) actual transfer length */
1610 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1611 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1612 	int start_frame;		/* (modify) start frame (ISO) */
1613 	int number_of_packets;		/* (in) number of ISO packets */
1614 	int interval;			/* (modify) transfer interval
1615 					 * (INT/ISO) */
1616 	int error_count;		/* (return) number of ISO errors */
1617 	void *context;			/* (in) context for completion */
1618 	usb_complete_t complete;	/* (in) completion routine */
1619 	struct usb_iso_packet_descriptor iso_frame_desc[];
1620 					/* (in) ISO ONLY */
1621 };
1622 
1623 /* ----------------------------------------------------------------------- */
1624 
1625 /**
1626  * usb_fill_control_urb - initializes a control urb
1627  * @urb: pointer to the urb to initialize.
1628  * @dev: pointer to the struct usb_device for this urb.
1629  * @pipe: the endpoint pipe
1630  * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1631  *	suitable for DMA.
1632  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1633  *	suitable for DMA.
1634  * @buffer_length: length of the transfer buffer
1635  * @complete_fn: pointer to the usb_complete_t function
1636  * @context: what to set the urb context to.
1637  *
1638  * Initializes a control urb with the proper information needed to submit
1639  * it to a device.
1640  *
1641  * The transfer buffer and the setup_packet buffer will most likely be filled
1642  * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1643  * allocating it via kmalloc() or equivalent, even for very small buffers.
1644  * If the buffers are embedded in a bigger structure, there is a risk that
1645  * the buffer itself, the previous fields and/or the next fields are corrupted
1646  * due to cache incoherencies; or slowed down if they are evicted from the
1647  * cache. For more information, check &struct urb.
1648  *
1649  */
1650 static inline void usb_fill_control_urb(struct urb *urb,
1651 					struct usb_device *dev,
1652 					unsigned int pipe,
1653 					unsigned char *setup_packet,
1654 					void *transfer_buffer,
1655 					int buffer_length,
1656 					usb_complete_t complete_fn,
1657 					void *context)
1658 {
1659 	urb->dev = dev;
1660 	urb->pipe = pipe;
1661 	urb->setup_packet = setup_packet;
1662 	urb->transfer_buffer = transfer_buffer;
1663 	urb->transfer_buffer_length = buffer_length;
1664 	urb->complete = complete_fn;
1665 	urb->context = context;
1666 }
1667 
1668 /**
1669  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1670  * @urb: pointer to the urb to initialize.
1671  * @dev: pointer to the struct usb_device for this urb.
1672  * @pipe: the endpoint pipe
1673  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1674  *	suitable for DMA.
1675  * @buffer_length: length of the transfer buffer
1676  * @complete_fn: pointer to the usb_complete_t function
1677  * @context: what to set the urb context to.
1678  *
1679  * Initializes a bulk urb with the proper information needed to submit it
1680  * to a device.
1681  *
1682  * Refer to usb_fill_control_urb() for a description of the requirements for
1683  * transfer_buffer.
1684  */
1685 static inline void usb_fill_bulk_urb(struct urb *urb,
1686 				     struct usb_device *dev,
1687 				     unsigned int pipe,
1688 				     void *transfer_buffer,
1689 				     int buffer_length,
1690 				     usb_complete_t complete_fn,
1691 				     void *context)
1692 {
1693 	urb->dev = dev;
1694 	urb->pipe = pipe;
1695 	urb->transfer_buffer = transfer_buffer;
1696 	urb->transfer_buffer_length = buffer_length;
1697 	urb->complete = complete_fn;
1698 	urb->context = context;
1699 }
1700 
1701 /**
1702  * usb_fill_int_urb - macro to help initialize a interrupt urb
1703  * @urb: pointer to the urb to initialize.
1704  * @dev: pointer to the struct usb_device for this urb.
1705  * @pipe: the endpoint pipe
1706  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1707  *	suitable for DMA.
1708  * @buffer_length: length of the transfer buffer
1709  * @complete_fn: pointer to the usb_complete_t function
1710  * @context: what to set the urb context to.
1711  * @interval: what to set the urb interval to, encoded like
1712  *	the endpoint descriptor's bInterval value.
1713  *
1714  * Initializes a interrupt urb with the proper information needed to submit
1715  * it to a device.
1716  *
1717  * Refer to usb_fill_control_urb() for a description of the requirements for
1718  * transfer_buffer.
1719  *
1720  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1721  * encoding of the endpoint interval, and express polling intervals in
1722  * microframes (eight per millisecond) rather than in frames (one per
1723  * millisecond).
1724  *
1725  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1726  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1727  * through to the host controller, rather than being translated into microframe
1728  * units.
1729  */
1730 static inline void usb_fill_int_urb(struct urb *urb,
1731 				    struct usb_device *dev,
1732 				    unsigned int pipe,
1733 				    void *transfer_buffer,
1734 				    int buffer_length,
1735 				    usb_complete_t complete_fn,
1736 				    void *context,
1737 				    int interval)
1738 {
1739 	urb->dev = dev;
1740 	urb->pipe = pipe;
1741 	urb->transfer_buffer = transfer_buffer;
1742 	urb->transfer_buffer_length = buffer_length;
1743 	urb->complete = complete_fn;
1744 	urb->context = context;
1745 
1746 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1747 		/* make sure interval is within allowed range */
1748 		interval = clamp(interval, 1, 16);
1749 
1750 		urb->interval = 1 << (interval - 1);
1751 	} else {
1752 		urb->interval = interval;
1753 	}
1754 
1755 	urb->start_frame = -1;
1756 }
1757 
1758 extern void usb_init_urb(struct urb *urb);
1759 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1760 extern void usb_free_urb(struct urb *urb);
1761 #define usb_put_urb usb_free_urb
1762 extern struct urb *usb_get_urb(struct urb *urb);
1763 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1764 extern int usb_unlink_urb(struct urb *urb);
1765 extern void usb_kill_urb(struct urb *urb);
1766 extern void usb_poison_urb(struct urb *urb);
1767 extern void usb_unpoison_urb(struct urb *urb);
1768 extern void usb_block_urb(struct urb *urb);
1769 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1770 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1771 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1772 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1773 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1774 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1775 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1776 extern void usb_unanchor_urb(struct urb *urb);
1777 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1778 					 unsigned int timeout);
1779 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1780 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1781 extern int usb_anchor_empty(struct usb_anchor *anchor);
1782 
1783 #define usb_unblock_urb	usb_unpoison_urb
1784 
1785 /**
1786  * usb_urb_dir_in - check if an URB describes an IN transfer
1787  * @urb: URB to be checked
1788  *
1789  * Return: 1 if @urb describes an IN transfer (device-to-host),
1790  * otherwise 0.
1791  */
1792 static inline int usb_urb_dir_in(struct urb *urb)
1793 {
1794 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1795 }
1796 
1797 /**
1798  * usb_urb_dir_out - check if an URB describes an OUT transfer
1799  * @urb: URB to be checked
1800  *
1801  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1802  * otherwise 0.
1803  */
1804 static inline int usb_urb_dir_out(struct urb *urb)
1805 {
1806 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1807 }
1808 
1809 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1810 int usb_urb_ep_type_check(const struct urb *urb);
1811 
1812 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1813 	gfp_t mem_flags, dma_addr_t *dma);
1814 void usb_free_coherent(struct usb_device *dev, size_t size,
1815 	void *addr, dma_addr_t dma);
1816 
1817 #if 0
1818 struct urb *usb_buffer_map(struct urb *urb);
1819 void usb_buffer_dmasync(struct urb *urb);
1820 void usb_buffer_unmap(struct urb *urb);
1821 #endif
1822 
1823 struct scatterlist;
1824 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1825 		      struct scatterlist *sg, int nents);
1826 #if 0
1827 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1828 			   struct scatterlist *sg, int n_hw_ents);
1829 #endif
1830 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1831 			 struct scatterlist *sg, int n_hw_ents);
1832 
1833 /*-------------------------------------------------------------------*
1834  *                         SYNCHRONOUS CALL SUPPORT                  *
1835  *-------------------------------------------------------------------*/
1836 
1837 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1838 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1839 	void *data, __u16 size, int timeout);
1840 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1841 	void *data, int len, int *actual_length, int timeout);
1842 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1843 	void *data, int len, int *actual_length,
1844 	int timeout);
1845 
1846 /* wrappers around usb_control_msg() for the most common standard requests */
1847 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1848 			 __u8 requesttype, __u16 value, __u16 index,
1849 			 const void *data, __u16 size, int timeout,
1850 			 gfp_t memflags);
1851 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1852 			 __u8 requesttype, __u16 value, __u16 index,
1853 			 void *data, __u16 size, int timeout,
1854 			 gfp_t memflags);
1855 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1856 	unsigned char descindex, void *buf, int size);
1857 extern int usb_get_status(struct usb_device *dev,
1858 	int recip, int type, int target, void *data);
1859 
1860 static inline int usb_get_std_status(struct usb_device *dev,
1861 	int recip, int target, void *data)
1862 {
1863 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1864 		data);
1865 }
1866 
1867 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1868 {
1869 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1870 		0, data);
1871 }
1872 
1873 extern int usb_string(struct usb_device *dev, int index,
1874 	char *buf, size_t size);
1875 extern char *usb_cache_string(struct usb_device *udev, int index);
1876 
1877 /* wrappers that also update important state inside usbcore */
1878 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1879 extern int usb_reset_configuration(struct usb_device *dev);
1880 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1881 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1882 
1883 /* this request isn't really synchronous, but it belongs with the others */
1884 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1885 
1886 /* choose and set configuration for device */
1887 extern int usb_choose_configuration(struct usb_device *udev);
1888 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1889 
1890 /*
1891  * timeouts, in milliseconds, used for sending/receiving control messages
1892  * they typically complete within a few frames (msec) after they're issued
1893  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1894  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1895  */
1896 #define USB_CTRL_GET_TIMEOUT	5000
1897 #define USB_CTRL_SET_TIMEOUT	5000
1898 
1899 
1900 /**
1901  * struct usb_sg_request - support for scatter/gather I/O
1902  * @status: zero indicates success, else negative errno
1903  * @bytes: counts bytes transferred.
1904  *
1905  * These requests are initialized using usb_sg_init(), and then are used
1906  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1907  * members of the request object aren't for driver access.
1908  *
1909  * The status and bytecount values are valid only after usb_sg_wait()
1910  * returns.  If the status is zero, then the bytecount matches the total
1911  * from the request.
1912  *
1913  * After an error completion, drivers may need to clear a halt condition
1914  * on the endpoint.
1915  */
1916 struct usb_sg_request {
1917 	int			status;
1918 	size_t			bytes;
1919 
1920 	/* private:
1921 	 * members below are private to usbcore,
1922 	 * and are not provided for driver access!
1923 	 */
1924 	spinlock_t		lock;
1925 
1926 	struct usb_device	*dev;
1927 	int			pipe;
1928 
1929 	int			entries;
1930 	struct urb		**urbs;
1931 
1932 	int			count;
1933 	struct completion	complete;
1934 };
1935 
1936 int usb_sg_init(
1937 	struct usb_sg_request	*io,
1938 	struct usb_device	*dev,
1939 	unsigned		pipe,
1940 	unsigned		period,
1941 	struct scatterlist	*sg,
1942 	int			nents,
1943 	size_t			length,
1944 	gfp_t			mem_flags
1945 );
1946 void usb_sg_cancel(struct usb_sg_request *io);
1947 void usb_sg_wait(struct usb_sg_request *io);
1948 
1949 
1950 /* ----------------------------------------------------------------------- */
1951 
1952 /*
1953  * For various legacy reasons, Linux has a small cookie that's paired with
1954  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1955  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1956  * an unsigned int encoded as:
1957  *
1958  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1959  *					 1 = Device-to-Host [In] ...
1960  *					like endpoint bEndpointAddress)
1961  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1962  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1963  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1964  *					 10 = control, 11 = bulk)
1965  *
1966  * Given the device address and endpoint descriptor, pipes are redundant.
1967  */
1968 
1969 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1970 /* (yet ... they're the values used by usbfs) */
1971 #define PIPE_ISOCHRONOUS		0
1972 #define PIPE_INTERRUPT			1
1973 #define PIPE_CONTROL			2
1974 #define PIPE_BULK			3
1975 
1976 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1977 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1978 
1979 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1980 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1981 
1982 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1983 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1984 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1985 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1986 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1987 
1988 static inline unsigned int __create_pipe(struct usb_device *dev,
1989 		unsigned int endpoint)
1990 {
1991 	return (dev->devnum << 8) | (endpoint << 15);
1992 }
1993 
1994 /* Create various pipes... */
1995 #define usb_sndctrlpipe(dev, endpoint)	\
1996 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1997 #define usb_rcvctrlpipe(dev, endpoint)	\
1998 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1999 #define usb_sndisocpipe(dev, endpoint)	\
2000 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2001 #define usb_rcvisocpipe(dev, endpoint)	\
2002 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2003 #define usb_sndbulkpipe(dev, endpoint)	\
2004 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2005 #define usb_rcvbulkpipe(dev, endpoint)	\
2006 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2007 #define usb_sndintpipe(dev, endpoint)	\
2008 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2009 #define usb_rcvintpipe(dev, endpoint)	\
2010 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2011 
2012 static inline struct usb_host_endpoint *
2013 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2014 {
2015 	struct usb_host_endpoint **eps;
2016 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2017 	return eps[usb_pipeendpoint(pipe)];
2018 }
2019 
2020 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2021 {
2022 	struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2023 
2024 	if (!ep)
2025 		return 0;
2026 
2027 	/* NOTE:  only 0x07ff bits are for packet size... */
2028 	return usb_endpoint_maxp(&ep->desc);
2029 }
2030 
2031 /* translate USB error codes to codes user space understands */
2032 static inline int usb_translate_errors(int error_code)
2033 {
2034 	switch (error_code) {
2035 	case 0:
2036 	case -ENOMEM:
2037 	case -ENODEV:
2038 	case -EOPNOTSUPP:
2039 		return error_code;
2040 	default:
2041 		return -EIO;
2042 	}
2043 }
2044 
2045 /* Events from the usb core */
2046 #define USB_DEVICE_ADD		0x0001
2047 #define USB_DEVICE_REMOVE	0x0002
2048 #define USB_BUS_ADD		0x0003
2049 #define USB_BUS_REMOVE		0x0004
2050 extern void usb_register_notify(struct notifier_block *nb);
2051 extern void usb_unregister_notify(struct notifier_block *nb);
2052 
2053 /* debugfs stuff */
2054 extern struct dentry *usb_debug_root;
2055 
2056 /* LED triggers */
2057 enum usb_led_event {
2058 	USB_LED_EVENT_HOST = 0,
2059 	USB_LED_EVENT_GADGET = 1,
2060 };
2061 
2062 #ifdef CONFIG_USB_LED_TRIG
2063 extern void usb_led_activity(enum usb_led_event ev);
2064 #else
2065 static inline void usb_led_activity(enum usb_led_event ev) {}
2066 #endif
2067 
2068 #endif  /* __KERNEL__ */
2069 
2070 #endif
2071