1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_USB_H 3 #define __LINUX_USB_H 4 5 #include <linux/mod_devicetable.h> 6 #include <linux/usb/ch9.h> 7 8 #define USB_MAJOR 180 9 #define USB_DEVICE_MAJOR 189 10 11 12 #ifdef __KERNEL__ 13 14 #include <linux/errno.h> /* for -ENODEV */ 15 #include <linux/delay.h> /* for mdelay() */ 16 #include <linux/interrupt.h> /* for in_interrupt() */ 17 #include <linux/list.h> /* for struct list_head */ 18 #include <linux/kref.h> /* for struct kref */ 19 #include <linux/device.h> /* for struct device */ 20 #include <linux/fs.h> /* for struct file_operations */ 21 #include <linux/completion.h> /* for struct completion */ 22 #include <linux/sched.h> /* for current && schedule_timeout */ 23 #include <linux/mutex.h> /* for struct mutex */ 24 #include <linux/pm_runtime.h> /* for runtime PM */ 25 26 struct usb_device; 27 struct usb_driver; 28 struct wusb_dev; 29 30 /*-------------------------------------------------------------------------*/ 31 32 /* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48 struct ep_device; 49 50 /** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67 struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79 }; 80 81 /* host-side wrapper for one interface setting's parsed descriptors */ 82 struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94 }; 95 96 enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101 }; 102 103 int __must_check 104 usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110 int __must_check 111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117 static inline int __must_check 118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120 { 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122 } 123 124 static inline int __must_check 125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127 { 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129 } 130 131 static inline int __must_check 132 usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134 { 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136 } 137 138 static inline int __must_check 139 usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141 { 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143 } 144 145 static inline int __must_check 146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148 { 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150 } 151 152 static inline int __must_check 153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155 { 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157 } 158 159 static inline int __must_check 160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162 { 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164 } 165 166 static inline int __must_check 167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169 { 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171 } 172 173 enum usb_wireless_status { 174 USB_WIRELESS_STATUS_NA = 0, 175 USB_WIRELESS_STATUS_DISCONNECTED, 176 USB_WIRELESS_STATUS_CONNECTED, 177 }; 178 179 /** 180 * struct usb_interface - what usb device drivers talk to 181 * @altsetting: array of interface structures, one for each alternate 182 * setting that may be selected. Each one includes a set of 183 * endpoint configurations. They will be in no particular order. 184 * @cur_altsetting: the current altsetting. 185 * @num_altsetting: number of altsettings defined. 186 * @intf_assoc: interface association descriptor 187 * @minor: the minor number assigned to this interface, if this 188 * interface is bound to a driver that uses the USB major number. 189 * If this interface does not use the USB major, this field should 190 * be unused. The driver should set this value in the probe() 191 * function of the driver, after it has been assigned a minor 192 * number from the USB core by calling usb_register_dev(). 193 * @condition: binding state of the interface: not bound, binding 194 * (in probe()), bound to a driver, or unbinding (in disconnect()) 195 * @sysfs_files_created: sysfs attributes exist 196 * @ep_devs_created: endpoint child pseudo-devices exist 197 * @unregistering: flag set when the interface is being unregistered 198 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 199 * capability during autosuspend. 200 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 201 * has been deferred. 202 * @needs_binding: flag set when the driver should be re-probed or unbound 203 * following a reset or suspend operation it doesn't support. 204 * @authorized: This allows to (de)authorize individual interfaces instead 205 * a whole device in contrast to the device authorization. 206 * @dev: driver model's view of this device 207 * @usb_dev: if an interface is bound to the USB major, this will point 208 * to the sysfs representation for that device. 209 * @reset_ws: Used for scheduling resets from atomic context. 210 * @resetting_device: USB core reset the device, so use alt setting 0 as 211 * current; needs bandwidth alloc after reset. 212 * @wireless_status: if the USB device uses a receiver/emitter combo, whether 213 * the emitter is connected. 214 * 215 * USB device drivers attach to interfaces on a physical device. Each 216 * interface encapsulates a single high level function, such as feeding 217 * an audio stream to a speaker or reporting a change in a volume control. 218 * Many USB devices only have one interface. The protocol used to talk to 219 * an interface's endpoints can be defined in a usb "class" specification, 220 * or by a product's vendor. The (default) control endpoint is part of 221 * every interface, but is never listed among the interface's descriptors. 222 * 223 * The driver that is bound to the interface can use standard driver model 224 * calls such as dev_get_drvdata() on the dev member of this structure. 225 * 226 * Each interface may have alternate settings. The initial configuration 227 * of a device sets altsetting 0, but the device driver can change 228 * that setting using usb_set_interface(). Alternate settings are often 229 * used to control the use of periodic endpoints, such as by having 230 * different endpoints use different amounts of reserved USB bandwidth. 231 * All standards-conformant USB devices that use isochronous endpoints 232 * will use them in non-default settings. 233 * 234 * The USB specification says that alternate setting numbers must run from 235 * 0 to one less than the total number of alternate settings. But some 236 * devices manage to mess this up, and the structures aren't necessarily 237 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 238 * look up an alternate setting in the altsetting array based on its number. 239 */ 240 struct usb_interface { 241 /* array of alternate settings for this interface, 242 * stored in no particular order */ 243 struct usb_host_interface *altsetting; 244 245 struct usb_host_interface *cur_altsetting; /* the currently 246 * active alternate setting */ 247 unsigned num_altsetting; /* number of alternate settings */ 248 249 /* If there is an interface association descriptor then it will list 250 * the associated interfaces */ 251 struct usb_interface_assoc_descriptor *intf_assoc; 252 253 int minor; /* minor number this interface is 254 * bound to */ 255 enum usb_interface_condition condition; /* state of binding */ 256 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 257 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 258 unsigned unregistering:1; /* unregistration is in progress */ 259 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 260 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 261 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 262 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 263 unsigned authorized:1; /* used for interface authorization */ 264 enum usb_wireless_status wireless_status; 265 struct work_struct wireless_status_work; 266 267 struct device dev; /* interface specific device info */ 268 struct device *usb_dev; 269 struct work_struct reset_ws; /* for resets in atomic context */ 270 }; 271 272 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev) 273 274 static inline void *usb_get_intfdata(struct usb_interface *intf) 275 { 276 return dev_get_drvdata(&intf->dev); 277 } 278 279 /** 280 * usb_set_intfdata() - associate driver-specific data with an interface 281 * @intf: USB interface 282 * @data: driver data 283 * 284 * Drivers can use this function in their probe() callbacks to associate 285 * driver-specific data with an interface. 286 * 287 * Note that there is generally no need to clear the driver-data pointer even 288 * if some drivers do so for historical or implementation-specific reasons. 289 */ 290 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 291 { 292 dev_set_drvdata(&intf->dev, data); 293 } 294 295 struct usb_interface *usb_get_intf(struct usb_interface *intf); 296 void usb_put_intf(struct usb_interface *intf); 297 298 /* Hard limit */ 299 #define USB_MAXENDPOINTS 30 300 /* this maximum is arbitrary */ 301 #define USB_MAXINTERFACES 32 302 #define USB_MAXIADS (USB_MAXINTERFACES/2) 303 304 /* 305 * USB Resume Timer: Every Host controller driver should drive the resume 306 * signalling on the bus for the amount of time defined by this macro. 307 * 308 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 309 * 310 * Note that the USB Specification states we should drive resume for *at least* 311 * 20 ms, but it doesn't give an upper bound. This creates two possible 312 * situations which we want to avoid: 313 * 314 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 315 * us to fail USB Electrical Tests, thus failing Certification 316 * 317 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 318 * and while we can argue that's against the USB Specification, we don't have 319 * control over which devices a certification laboratory will be using for 320 * certification. If CertLab uses a device which was tested against Windows and 321 * that happens to have relaxed resume signalling rules, we might fall into 322 * situations where we fail interoperability and electrical tests. 323 * 324 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 325 * should cope with both LPJ calibration errors and devices not following every 326 * detail of the USB Specification. 327 */ 328 #define USB_RESUME_TIMEOUT 40 /* ms */ 329 330 /** 331 * struct usb_interface_cache - long-term representation of a device interface 332 * @num_altsetting: number of altsettings defined. 333 * @ref: reference counter. 334 * @altsetting: variable-length array of interface structures, one for 335 * each alternate setting that may be selected. Each one includes a 336 * set of endpoint configurations. They will be in no particular order. 337 * 338 * These structures persist for the lifetime of a usb_device, unlike 339 * struct usb_interface (which persists only as long as its configuration 340 * is installed). The altsetting arrays can be accessed through these 341 * structures at any time, permitting comparison of configurations and 342 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 343 */ 344 struct usb_interface_cache { 345 unsigned num_altsetting; /* number of alternate settings */ 346 struct kref ref; /* reference counter */ 347 348 /* variable-length array of alternate settings for this interface, 349 * stored in no particular order */ 350 struct usb_host_interface altsetting[]; 351 }; 352 #define ref_to_usb_interface_cache(r) \ 353 container_of(r, struct usb_interface_cache, ref) 354 #define altsetting_to_usb_interface_cache(a) \ 355 container_of(a, struct usb_interface_cache, altsetting[0]) 356 357 /** 358 * struct usb_host_config - representation of a device's configuration 359 * @desc: the device's configuration descriptor. 360 * @string: pointer to the cached version of the iConfiguration string, if 361 * present for this configuration. 362 * @intf_assoc: list of any interface association descriptors in this config 363 * @interface: array of pointers to usb_interface structures, one for each 364 * interface in the configuration. The number of interfaces is stored 365 * in desc.bNumInterfaces. These pointers are valid only while the 366 * configuration is active. 367 * @intf_cache: array of pointers to usb_interface_cache structures, one 368 * for each interface in the configuration. These structures exist 369 * for the entire life of the device. 370 * @extra: pointer to buffer containing all extra descriptors associated 371 * with this configuration (those preceding the first interface 372 * descriptor). 373 * @extralen: length of the extra descriptors buffer. 374 * 375 * USB devices may have multiple configurations, but only one can be active 376 * at any time. Each encapsulates a different operational environment; 377 * for example, a dual-speed device would have separate configurations for 378 * full-speed and high-speed operation. The number of configurations 379 * available is stored in the device descriptor as bNumConfigurations. 380 * 381 * A configuration can contain multiple interfaces. Each corresponds to 382 * a different function of the USB device, and all are available whenever 383 * the configuration is active. The USB standard says that interfaces 384 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 385 * of devices get this wrong. In addition, the interface array is not 386 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 387 * look up an interface entry based on its number. 388 * 389 * Device drivers should not attempt to activate configurations. The choice 390 * of which configuration to install is a policy decision based on such 391 * considerations as available power, functionality provided, and the user's 392 * desires (expressed through userspace tools). However, drivers can call 393 * usb_reset_configuration() to reinitialize the current configuration and 394 * all its interfaces. 395 */ 396 struct usb_host_config { 397 struct usb_config_descriptor desc; 398 399 char *string; /* iConfiguration string, if present */ 400 401 /* List of any Interface Association Descriptors in this 402 * configuration. */ 403 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 404 405 /* the interfaces associated with this configuration, 406 * stored in no particular order */ 407 struct usb_interface *interface[USB_MAXINTERFACES]; 408 409 /* Interface information available even when this is not the 410 * active configuration */ 411 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 412 413 unsigned char *extra; /* Extra descriptors */ 414 int extralen; 415 }; 416 417 /* USB2.0 and USB3.0 device BOS descriptor set */ 418 struct usb_host_bos { 419 struct usb_bos_descriptor *desc; 420 421 /* wireless cap descriptor is handled by wusb */ 422 struct usb_ext_cap_descriptor *ext_cap; 423 struct usb_ss_cap_descriptor *ss_cap; 424 struct usb_ssp_cap_descriptor *ssp_cap; 425 struct usb_ss_container_id_descriptor *ss_id; 426 struct usb_ptm_cap_descriptor *ptm_cap; 427 }; 428 429 int __usb_get_extra_descriptor(char *buffer, unsigned size, 430 unsigned char type, void **ptr, size_t min); 431 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 432 __usb_get_extra_descriptor((ifpoint)->extra, \ 433 (ifpoint)->extralen, \ 434 type, (void **)ptr, sizeof(**(ptr))) 435 436 /* ----------------------------------------------------------------------- */ 437 438 /* USB device number allocation bitmap */ 439 struct usb_devmap { 440 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 441 }; 442 443 /* 444 * Allocated per bus (tree of devices) we have: 445 */ 446 struct usb_bus { 447 struct device *controller; /* host side hardware */ 448 struct device *sysdev; /* as seen from firmware or bus */ 449 int busnum; /* Bus number (in order of reg) */ 450 const char *bus_name; /* stable id (PCI slot_name etc) */ 451 u8 uses_pio_for_control; /* 452 * Does the host controller use PIO 453 * for control transfers? 454 */ 455 u8 otg_port; /* 0, or number of OTG/HNP port */ 456 unsigned is_b_host:1; /* true during some HNP roleswitches */ 457 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 458 unsigned no_stop_on_short:1; /* 459 * Quirk: some controllers don't stop 460 * the ep queue on a short transfer 461 * with the URB_SHORT_NOT_OK flag set. 462 */ 463 unsigned no_sg_constraint:1; /* no sg constraint */ 464 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 465 466 int devnum_next; /* Next open device number in 467 * round-robin allocation */ 468 struct mutex devnum_next_mutex; /* devnum_next mutex */ 469 470 struct usb_devmap devmap; /* device address allocation map */ 471 struct usb_device *root_hub; /* Root hub */ 472 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 473 474 int bandwidth_allocated; /* on this bus: how much of the time 475 * reserved for periodic (intr/iso) 476 * requests is used, on average? 477 * Units: microseconds/frame. 478 * Limits: Full/low speed reserve 90%, 479 * while high speed reserves 80%. 480 */ 481 int bandwidth_int_reqs; /* number of Interrupt requests */ 482 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 483 484 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 485 486 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 487 struct mon_bus *mon_bus; /* non-null when associated */ 488 int monitored; /* non-zero when monitored */ 489 #endif 490 }; 491 492 struct usb_dev_state; 493 494 /* ----------------------------------------------------------------------- */ 495 496 struct usb_tt; 497 498 enum usb_port_connect_type { 499 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 500 USB_PORT_CONNECT_TYPE_HOT_PLUG, 501 USB_PORT_CONNECT_TYPE_HARD_WIRED, 502 USB_PORT_NOT_USED, 503 }; 504 505 /* 506 * USB port quirks. 507 */ 508 509 /* For the given port, prefer the old (faster) enumeration scheme. */ 510 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 511 512 /* Decrease TRSTRCY to 10ms during device enumeration. */ 513 #define USB_PORT_QUIRK_FAST_ENUM BIT(1) 514 515 /* 516 * USB 2.0 Link Power Management (LPM) parameters. 517 */ 518 struct usb2_lpm_parameters { 519 /* Best effort service latency indicate how long the host will drive 520 * resume on an exit from L1. 521 */ 522 unsigned int besl; 523 524 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 525 * When the timer counts to zero, the parent hub will initiate a LPM 526 * transition to L1. 527 */ 528 int timeout; 529 }; 530 531 /* 532 * USB 3.0 Link Power Management (LPM) parameters. 533 * 534 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 535 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 536 * All three are stored in nanoseconds. 537 */ 538 struct usb3_lpm_parameters { 539 /* 540 * Maximum exit latency (MEL) for the host to send a packet to the 541 * device (either a Ping for isoc endpoints, or a data packet for 542 * interrupt endpoints), the hubs to decode the packet, and for all hubs 543 * in the path to transition the links to U0. 544 */ 545 unsigned int mel; 546 /* 547 * Maximum exit latency for a device-initiated LPM transition to bring 548 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 549 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 550 */ 551 unsigned int pel; 552 553 /* 554 * The System Exit Latency (SEL) includes PEL, and three other 555 * latencies. After a device initiates a U0 transition, it will take 556 * some time from when the device sends the ERDY to when it will finally 557 * receive the data packet. Basically, SEL should be the worse-case 558 * latency from when a device starts initiating a U0 transition to when 559 * it will get data. 560 */ 561 unsigned int sel; 562 /* 563 * The idle timeout value that is currently programmed into the parent 564 * hub for this device. When the timer counts to zero, the parent hub 565 * will initiate an LPM transition to either U1 or U2. 566 */ 567 int timeout; 568 }; 569 570 /** 571 * struct usb_device - kernel's representation of a USB device 572 * @devnum: device number; address on a USB bus 573 * @devpath: device ID string for use in messages (e.g., /port/...) 574 * @route: tree topology hex string for use with xHCI 575 * @state: device state: configured, not attached, etc. 576 * @speed: device speed: high/full/low (or error) 577 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 578 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 579 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 580 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 581 * @ttport: device port on that tt hub 582 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 583 * @parent: our hub, unless we're the root 584 * @bus: bus we're part of 585 * @ep0: endpoint 0 data (default control pipe) 586 * @dev: generic device interface 587 * @descriptor: USB device descriptor 588 * @bos: USB device BOS descriptor set 589 * @config: all of the device's configs 590 * @actconfig: the active configuration 591 * @ep_in: array of IN endpoints 592 * @ep_out: array of OUT endpoints 593 * @rawdescriptors: raw descriptors for each config 594 * @bus_mA: Current available from the bus 595 * @portnum: parent port number (origin 1) 596 * @level: number of USB hub ancestors 597 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 598 * @can_submit: URBs may be submitted 599 * @persist_enabled: USB_PERSIST enabled for this device 600 * @reset_in_progress: the device is being reset 601 * @have_langid: whether string_langid is valid 602 * @authorized: policy has said we can use it; 603 * (user space) policy determines if we authorize this device to be 604 * used or not. By default, wired USB devices are authorized. 605 * WUSB devices are not, until we authorize them from user space. 606 * FIXME -- complete doc 607 * @authenticated: Crypto authentication passed 608 * @wusb: device is Wireless USB 609 * @lpm_capable: device supports LPM 610 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 611 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 612 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 613 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 614 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 615 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 616 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 617 * @string_langid: language ID for strings 618 * @product: iProduct string, if present (static) 619 * @manufacturer: iManufacturer string, if present (static) 620 * @serial: iSerialNumber string, if present (static) 621 * @filelist: usbfs files that are open to this device 622 * @maxchild: number of ports if hub 623 * @quirks: quirks of the whole device 624 * @urbnum: number of URBs submitted for the whole device 625 * @active_duration: total time device is not suspended 626 * @connect_time: time device was first connected 627 * @do_remote_wakeup: remote wakeup should be enabled 628 * @reset_resume: needs reset instead of resume 629 * @port_is_suspended: the upstream port is suspended (L2 or U3) 630 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 631 * specific data for the device. 632 * @slot_id: Slot ID assigned by xHCI 633 * @removable: Device can be physically removed from this port 634 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 635 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 636 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 637 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 638 * to keep track of the number of functions that require USB 3.0 Link Power 639 * Management to be disabled for this usb_device. This count should only 640 * be manipulated by those functions, with the bandwidth_mutex is held. 641 * @hub_delay: cached value consisting of: 642 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 643 * Will be used as wValue for SetIsochDelay requests. 644 * @use_generic_driver: ask driver core to reprobe using the generic driver. 645 * 646 * Notes: 647 * Usbcore drivers should not set usbdev->state directly. Instead use 648 * usb_set_device_state(). 649 */ 650 struct usb_device { 651 int devnum; 652 char devpath[16]; 653 u32 route; 654 enum usb_device_state state; 655 enum usb_device_speed speed; 656 unsigned int rx_lanes; 657 unsigned int tx_lanes; 658 enum usb_ssp_rate ssp_rate; 659 660 struct usb_tt *tt; 661 int ttport; 662 663 unsigned int toggle[2]; 664 665 struct usb_device *parent; 666 struct usb_bus *bus; 667 struct usb_host_endpoint ep0; 668 669 struct device dev; 670 671 struct usb_device_descriptor descriptor; 672 struct usb_host_bos *bos; 673 struct usb_host_config *config; 674 675 struct usb_host_config *actconfig; 676 struct usb_host_endpoint *ep_in[16]; 677 struct usb_host_endpoint *ep_out[16]; 678 679 char **rawdescriptors; 680 681 unsigned short bus_mA; 682 u8 portnum; 683 u8 level; 684 u8 devaddr; 685 686 unsigned can_submit:1; 687 unsigned persist_enabled:1; 688 unsigned reset_in_progress:1; 689 unsigned have_langid:1; 690 unsigned authorized:1; 691 unsigned authenticated:1; 692 unsigned wusb:1; 693 unsigned lpm_capable:1; 694 unsigned lpm_devinit_allow:1; 695 unsigned usb2_hw_lpm_capable:1; 696 unsigned usb2_hw_lpm_besl_capable:1; 697 unsigned usb2_hw_lpm_enabled:1; 698 unsigned usb2_hw_lpm_allowed:1; 699 unsigned usb3_lpm_u1_enabled:1; 700 unsigned usb3_lpm_u2_enabled:1; 701 int string_langid; 702 703 /* static strings from the device */ 704 char *product; 705 char *manufacturer; 706 char *serial; 707 708 struct list_head filelist; 709 710 int maxchild; 711 712 u32 quirks; 713 atomic_t urbnum; 714 715 unsigned long active_duration; 716 717 #ifdef CONFIG_PM 718 unsigned long connect_time; 719 720 unsigned do_remote_wakeup:1; 721 unsigned reset_resume:1; 722 unsigned port_is_suspended:1; 723 #endif 724 struct wusb_dev *wusb_dev; 725 int slot_id; 726 struct usb2_lpm_parameters l1_params; 727 struct usb3_lpm_parameters u1_params; 728 struct usb3_lpm_parameters u2_params; 729 unsigned lpm_disable_count; 730 731 u16 hub_delay; 732 unsigned use_generic_driver:1; 733 }; 734 735 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev) 736 737 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 738 { 739 return to_usb_device(intf->dev.parent); 740 } 741 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 742 { 743 return to_usb_device((const struct device *)intf->dev.parent); 744 } 745 746 #define interface_to_usbdev(intf) \ 747 _Generic((intf), \ 748 const struct usb_interface *: __intf_to_usbdev_const, \ 749 struct usb_interface *: __intf_to_usbdev)(intf) 750 751 extern struct usb_device *usb_get_dev(struct usb_device *dev); 752 extern void usb_put_dev(struct usb_device *dev); 753 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 754 int port1); 755 756 /** 757 * usb_hub_for_each_child - iterate over all child devices on the hub 758 * @hdev: USB device belonging to the usb hub 759 * @port1: portnum associated with child device 760 * @child: child device pointer 761 */ 762 #define usb_hub_for_each_child(hdev, port1, child) \ 763 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 764 port1 <= hdev->maxchild; \ 765 child = usb_hub_find_child(hdev, ++port1)) \ 766 if (!child) continue; else 767 768 /* USB device locking */ 769 #define usb_lock_device(udev) device_lock(&(udev)->dev) 770 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 771 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 772 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 773 extern int usb_lock_device_for_reset(struct usb_device *udev, 774 const struct usb_interface *iface); 775 776 /* USB port reset for device reinitialization */ 777 extern int usb_reset_device(struct usb_device *dev); 778 extern void usb_queue_reset_device(struct usb_interface *dev); 779 780 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 781 782 #ifdef CONFIG_ACPI 783 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 784 bool enable); 785 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 786 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index); 787 #else 788 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 789 bool enable) { return 0; } 790 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 791 { return true; } 792 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index) 793 { return 0; } 794 #endif 795 796 /* USB autosuspend and autoresume */ 797 #ifdef CONFIG_PM 798 extern void usb_enable_autosuspend(struct usb_device *udev); 799 extern void usb_disable_autosuspend(struct usb_device *udev); 800 801 extern int usb_autopm_get_interface(struct usb_interface *intf); 802 extern void usb_autopm_put_interface(struct usb_interface *intf); 803 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 804 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 805 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 806 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 807 808 static inline void usb_mark_last_busy(struct usb_device *udev) 809 { 810 pm_runtime_mark_last_busy(&udev->dev); 811 } 812 813 #else 814 815 static inline int usb_enable_autosuspend(struct usb_device *udev) 816 { return 0; } 817 static inline int usb_disable_autosuspend(struct usb_device *udev) 818 { return 0; } 819 820 static inline int usb_autopm_get_interface(struct usb_interface *intf) 821 { return 0; } 822 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 823 { return 0; } 824 825 static inline void usb_autopm_put_interface(struct usb_interface *intf) 826 { } 827 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 828 { } 829 static inline void usb_autopm_get_interface_no_resume( 830 struct usb_interface *intf) 831 { } 832 static inline void usb_autopm_put_interface_no_suspend( 833 struct usb_interface *intf) 834 { } 835 static inline void usb_mark_last_busy(struct usb_device *udev) 836 { } 837 #endif 838 839 extern int usb_disable_lpm(struct usb_device *udev); 840 extern void usb_enable_lpm(struct usb_device *udev); 841 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 842 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 843 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 844 845 extern int usb_disable_ltm(struct usb_device *udev); 846 extern void usb_enable_ltm(struct usb_device *udev); 847 848 static inline bool usb_device_supports_ltm(struct usb_device *udev) 849 { 850 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 851 return false; 852 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 853 } 854 855 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 856 { 857 return udev && udev->bus && udev->bus->no_sg_constraint; 858 } 859 860 861 /*-------------------------------------------------------------------------*/ 862 863 /* for drivers using iso endpoints */ 864 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 865 866 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 867 extern int usb_alloc_streams(struct usb_interface *interface, 868 struct usb_host_endpoint **eps, unsigned int num_eps, 869 unsigned int num_streams, gfp_t mem_flags); 870 871 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 872 extern int usb_free_streams(struct usb_interface *interface, 873 struct usb_host_endpoint **eps, unsigned int num_eps, 874 gfp_t mem_flags); 875 876 /* used these for multi-interface device registration */ 877 extern int usb_driver_claim_interface(struct usb_driver *driver, 878 struct usb_interface *iface, void *data); 879 880 /** 881 * usb_interface_claimed - returns true iff an interface is claimed 882 * @iface: the interface being checked 883 * 884 * Return: %true (nonzero) iff the interface is claimed, else %false 885 * (zero). 886 * 887 * Note: 888 * Callers must own the driver model's usb bus readlock. So driver 889 * probe() entries don't need extra locking, but other call contexts 890 * may need to explicitly claim that lock. 891 * 892 */ 893 static inline int usb_interface_claimed(struct usb_interface *iface) 894 { 895 return (iface->dev.driver != NULL); 896 } 897 898 extern void usb_driver_release_interface(struct usb_driver *driver, 899 struct usb_interface *iface); 900 901 int usb_set_wireless_status(struct usb_interface *iface, 902 enum usb_wireless_status status); 903 904 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 905 const struct usb_device_id *id); 906 extern int usb_match_one_id(struct usb_interface *interface, 907 const struct usb_device_id *id); 908 909 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 910 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 911 int minor); 912 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 913 unsigned ifnum); 914 extern struct usb_host_interface *usb_altnum_to_altsetting( 915 const struct usb_interface *intf, unsigned int altnum); 916 extern struct usb_host_interface *usb_find_alt_setting( 917 struct usb_host_config *config, 918 unsigned int iface_num, 919 unsigned int alt_num); 920 921 /* port claiming functions */ 922 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 923 struct usb_dev_state *owner); 924 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 925 struct usb_dev_state *owner); 926 927 /** 928 * usb_make_path - returns stable device path in the usb tree 929 * @dev: the device whose path is being constructed 930 * @buf: where to put the string 931 * @size: how big is "buf"? 932 * 933 * Return: Length of the string (> 0) or negative if size was too small. 934 * 935 * Note: 936 * This identifier is intended to be "stable", reflecting physical paths in 937 * hardware such as physical bus addresses for host controllers or ports on 938 * USB hubs. That makes it stay the same until systems are physically 939 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 940 * controllers. Adding and removing devices, including virtual root hubs 941 * in host controller driver modules, does not change these path identifiers; 942 * neither does rebooting or re-enumerating. These are more useful identifiers 943 * than changeable ("unstable") ones like bus numbers or device addresses. 944 * 945 * With a partial exception for devices connected to USB 2.0 root hubs, these 946 * identifiers are also predictable. So long as the device tree isn't changed, 947 * plugging any USB device into a given hub port always gives it the same path. 948 * Because of the use of "companion" controllers, devices connected to ports on 949 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 950 * high speed, and a different one if they are full or low speed. 951 */ 952 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 953 { 954 int actual; 955 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 956 dev->devpath); 957 return (actual >= (int)size) ? -1 : actual; 958 } 959 960 /*-------------------------------------------------------------------------*/ 961 962 #define USB_DEVICE_ID_MATCH_DEVICE \ 963 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 964 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 965 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 966 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 967 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 968 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 969 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 970 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 971 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 972 #define USB_DEVICE_ID_MATCH_INT_INFO \ 973 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 974 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 975 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 976 977 /** 978 * USB_DEVICE - macro used to describe a specific usb device 979 * @vend: the 16 bit USB Vendor ID 980 * @prod: the 16 bit USB Product ID 981 * 982 * This macro is used to create a struct usb_device_id that matches a 983 * specific device. 984 */ 985 #define USB_DEVICE(vend, prod) \ 986 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 987 .idVendor = (vend), \ 988 .idProduct = (prod) 989 /** 990 * USB_DEVICE_VER - describe a specific usb device with a version range 991 * @vend: the 16 bit USB Vendor ID 992 * @prod: the 16 bit USB Product ID 993 * @lo: the bcdDevice_lo value 994 * @hi: the bcdDevice_hi value 995 * 996 * This macro is used to create a struct usb_device_id that matches a 997 * specific device, with a version range. 998 */ 999 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 1000 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 1001 .idVendor = (vend), \ 1002 .idProduct = (prod), \ 1003 .bcdDevice_lo = (lo), \ 1004 .bcdDevice_hi = (hi) 1005 1006 /** 1007 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 1008 * @vend: the 16 bit USB Vendor ID 1009 * @prod: the 16 bit USB Product ID 1010 * @cl: bInterfaceClass value 1011 * 1012 * This macro is used to create a struct usb_device_id that matches a 1013 * specific interface class of devices. 1014 */ 1015 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 1016 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1017 USB_DEVICE_ID_MATCH_INT_CLASS, \ 1018 .idVendor = (vend), \ 1019 .idProduct = (prod), \ 1020 .bInterfaceClass = (cl) 1021 1022 /** 1023 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 1024 * @vend: the 16 bit USB Vendor ID 1025 * @prod: the 16 bit USB Product ID 1026 * @pr: bInterfaceProtocol value 1027 * 1028 * This macro is used to create a struct usb_device_id that matches a 1029 * specific interface protocol of devices. 1030 */ 1031 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1032 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1033 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1034 .idVendor = (vend), \ 1035 .idProduct = (prod), \ 1036 .bInterfaceProtocol = (pr) 1037 1038 /** 1039 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1040 * @vend: the 16 bit USB Vendor ID 1041 * @prod: the 16 bit USB Product ID 1042 * @num: bInterfaceNumber value 1043 * 1044 * This macro is used to create a struct usb_device_id that matches a 1045 * specific interface number of devices. 1046 */ 1047 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1048 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1049 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1050 .idVendor = (vend), \ 1051 .idProduct = (prod), \ 1052 .bInterfaceNumber = (num) 1053 1054 /** 1055 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1056 * @cl: bDeviceClass value 1057 * @sc: bDeviceSubClass value 1058 * @pr: bDeviceProtocol value 1059 * 1060 * This macro is used to create a struct usb_device_id that matches a 1061 * specific class of devices. 1062 */ 1063 #define USB_DEVICE_INFO(cl, sc, pr) \ 1064 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1065 .bDeviceClass = (cl), \ 1066 .bDeviceSubClass = (sc), \ 1067 .bDeviceProtocol = (pr) 1068 1069 /** 1070 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1071 * @cl: bInterfaceClass value 1072 * @sc: bInterfaceSubClass value 1073 * @pr: bInterfaceProtocol value 1074 * 1075 * This macro is used to create a struct usb_device_id that matches a 1076 * specific class of interfaces. 1077 */ 1078 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1079 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1080 .bInterfaceClass = (cl), \ 1081 .bInterfaceSubClass = (sc), \ 1082 .bInterfaceProtocol = (pr) 1083 1084 /** 1085 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1086 * @vend: the 16 bit USB Vendor ID 1087 * @prod: the 16 bit USB Product ID 1088 * @cl: bInterfaceClass value 1089 * @sc: bInterfaceSubClass value 1090 * @pr: bInterfaceProtocol value 1091 * 1092 * This macro is used to create a struct usb_device_id that matches a 1093 * specific device with a specific class of interfaces. 1094 * 1095 * This is especially useful when explicitly matching devices that have 1096 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1097 */ 1098 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1099 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1100 | USB_DEVICE_ID_MATCH_DEVICE, \ 1101 .idVendor = (vend), \ 1102 .idProduct = (prod), \ 1103 .bInterfaceClass = (cl), \ 1104 .bInterfaceSubClass = (sc), \ 1105 .bInterfaceProtocol = (pr) 1106 1107 /** 1108 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1109 * @vend: the 16 bit USB Vendor ID 1110 * @cl: bInterfaceClass value 1111 * @sc: bInterfaceSubClass value 1112 * @pr: bInterfaceProtocol value 1113 * 1114 * This macro is used to create a struct usb_device_id that matches a 1115 * specific vendor with a specific class of interfaces. 1116 * 1117 * This is especially useful when explicitly matching devices that have 1118 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1119 */ 1120 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1121 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1122 | USB_DEVICE_ID_MATCH_VENDOR, \ 1123 .idVendor = (vend), \ 1124 .bInterfaceClass = (cl), \ 1125 .bInterfaceSubClass = (sc), \ 1126 .bInterfaceProtocol = (pr) 1127 1128 /* ----------------------------------------------------------------------- */ 1129 1130 /* Stuff for dynamic usb ids */ 1131 struct usb_dynids { 1132 spinlock_t lock; 1133 struct list_head list; 1134 }; 1135 1136 struct usb_dynid { 1137 struct list_head node; 1138 struct usb_device_id id; 1139 }; 1140 1141 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1142 const struct usb_device_id *id_table, 1143 struct device_driver *driver, 1144 const char *buf, size_t count); 1145 1146 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1147 1148 /** 1149 * struct usbdrv_wrap - wrapper for driver-model structure 1150 * @driver: The driver-model core driver structure. 1151 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1152 */ 1153 struct usbdrv_wrap { 1154 struct device_driver driver; 1155 int for_devices; 1156 }; 1157 1158 /** 1159 * struct usb_driver - identifies USB interface driver to usbcore 1160 * @name: The driver name should be unique among USB drivers, 1161 * and should normally be the same as the module name. 1162 * @probe: Called to see if the driver is willing to manage a particular 1163 * interface on a device. If it is, probe returns zero and uses 1164 * usb_set_intfdata() to associate driver-specific data with the 1165 * interface. It may also use usb_set_interface() to specify the 1166 * appropriate altsetting. If unwilling to manage the interface, 1167 * return -ENODEV, if genuine IO errors occurred, an appropriate 1168 * negative errno value. 1169 * @disconnect: Called when the interface is no longer accessible, usually 1170 * because its device has been (or is being) disconnected or the 1171 * driver module is being unloaded. 1172 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1173 * the "usbfs" filesystem. This lets devices provide ways to 1174 * expose information to user space regardless of where they 1175 * do (or don't) show up otherwise in the filesystem. 1176 * @suspend: Called when the device is going to be suspended by the 1177 * system either from system sleep or runtime suspend context. The 1178 * return value will be ignored in system sleep context, so do NOT 1179 * try to continue using the device if suspend fails in this case. 1180 * Instead, let the resume or reset-resume routine recover from 1181 * the failure. 1182 * @resume: Called when the device is being resumed by the system. 1183 * @reset_resume: Called when the suspended device has been reset instead 1184 * of being resumed. 1185 * @pre_reset: Called by usb_reset_device() when the device is about to be 1186 * reset. This routine must not return until the driver has no active 1187 * URBs for the device, and no more URBs may be submitted until the 1188 * post_reset method is called. 1189 * @post_reset: Called by usb_reset_device() after the device 1190 * has been reset 1191 * @id_table: USB drivers use ID table to support hotplugging. 1192 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1193 * or your driver's probe function will never get called. 1194 * @dev_groups: Attributes attached to the device that will be created once it 1195 * is bound to the driver. 1196 * @dynids: used internally to hold the list of dynamically added device 1197 * ids for this driver. 1198 * @drvwrap: Driver-model core structure wrapper. 1199 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1200 * added to this driver by preventing the sysfs file from being created. 1201 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1202 * for interfaces bound to this driver. 1203 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1204 * endpoints before calling the driver's disconnect method. 1205 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1206 * to initiate lower power link state transitions when an idle timeout 1207 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1208 * 1209 * USB interface drivers must provide a name, probe() and disconnect() 1210 * methods, and an id_table. Other driver fields are optional. 1211 * 1212 * The id_table is used in hotplugging. It holds a set of descriptors, 1213 * and specialized data may be associated with each entry. That table 1214 * is used by both user and kernel mode hotplugging support. 1215 * 1216 * The probe() and disconnect() methods are called in a context where 1217 * they can sleep, but they should avoid abusing the privilege. Most 1218 * work to connect to a device should be done when the device is opened, 1219 * and undone at the last close. The disconnect code needs to address 1220 * concurrency issues with respect to open() and close() methods, as 1221 * well as forcing all pending I/O requests to complete (by unlinking 1222 * them as necessary, and blocking until the unlinks complete). 1223 */ 1224 struct usb_driver { 1225 const char *name; 1226 1227 int (*probe) (struct usb_interface *intf, 1228 const struct usb_device_id *id); 1229 1230 void (*disconnect) (struct usb_interface *intf); 1231 1232 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1233 void *buf); 1234 1235 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1236 int (*resume) (struct usb_interface *intf); 1237 int (*reset_resume)(struct usb_interface *intf); 1238 1239 int (*pre_reset)(struct usb_interface *intf); 1240 int (*post_reset)(struct usb_interface *intf); 1241 1242 const struct usb_device_id *id_table; 1243 const struct attribute_group **dev_groups; 1244 1245 struct usb_dynids dynids; 1246 struct usbdrv_wrap drvwrap; 1247 unsigned int no_dynamic_id:1; 1248 unsigned int supports_autosuspend:1; 1249 unsigned int disable_hub_initiated_lpm:1; 1250 unsigned int soft_unbind:1; 1251 }; 1252 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1253 1254 /** 1255 * struct usb_device_driver - identifies USB device driver to usbcore 1256 * @name: The driver name should be unique among USB drivers, 1257 * and should normally be the same as the module name. 1258 * @match: If set, used for better device/driver matching. 1259 * @probe: Called to see if the driver is willing to manage a particular 1260 * device. If it is, probe returns zero and uses dev_set_drvdata() 1261 * to associate driver-specific data with the device. If unwilling 1262 * to manage the device, return a negative errno value. 1263 * @disconnect: Called when the device is no longer accessible, usually 1264 * because it has been (or is being) disconnected or the driver's 1265 * module is being unloaded. 1266 * @suspend: Called when the device is going to be suspended by the system. 1267 * @resume: Called when the device is being resumed by the system. 1268 * @dev_groups: Attributes attached to the device that will be created once it 1269 * is bound to the driver. 1270 * @drvwrap: Driver-model core structure wrapper. 1271 * @id_table: used with @match() to select better matching driver at 1272 * probe() time. 1273 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1274 * for devices bound to this driver. 1275 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1276 * resume and suspend functions will be called in addition to the driver's 1277 * own, so this part of the setup does not need to be replicated. 1278 * 1279 * USB drivers must provide all the fields listed above except drvwrap, 1280 * match, and id_table. 1281 */ 1282 struct usb_device_driver { 1283 const char *name; 1284 1285 bool (*match) (struct usb_device *udev); 1286 int (*probe) (struct usb_device *udev); 1287 void (*disconnect) (struct usb_device *udev); 1288 1289 int (*suspend) (struct usb_device *udev, pm_message_t message); 1290 int (*resume) (struct usb_device *udev, pm_message_t message); 1291 const struct attribute_group **dev_groups; 1292 struct usbdrv_wrap drvwrap; 1293 const struct usb_device_id *id_table; 1294 unsigned int supports_autosuspend:1; 1295 unsigned int generic_subclass:1; 1296 }; 1297 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1298 drvwrap.driver) 1299 1300 /** 1301 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1302 * @name: the usb class device name for this driver. Will show up in sysfs. 1303 * @devnode: Callback to provide a naming hint for a possible 1304 * device node to create. 1305 * @fops: pointer to the struct file_operations of this driver. 1306 * @minor_base: the start of the minor range for this driver. 1307 * 1308 * This structure is used for the usb_register_dev() and 1309 * usb_deregister_dev() functions, to consolidate a number of the 1310 * parameters used for them. 1311 */ 1312 struct usb_class_driver { 1313 char *name; 1314 char *(*devnode)(const struct device *dev, umode_t *mode); 1315 const struct file_operations *fops; 1316 int minor_base; 1317 }; 1318 1319 /* 1320 * use these in module_init()/module_exit() 1321 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1322 */ 1323 extern int usb_register_driver(struct usb_driver *, struct module *, 1324 const char *); 1325 1326 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1327 #define usb_register(driver) \ 1328 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1329 1330 extern void usb_deregister(struct usb_driver *); 1331 1332 /** 1333 * module_usb_driver() - Helper macro for registering a USB driver 1334 * @__usb_driver: usb_driver struct 1335 * 1336 * Helper macro for USB drivers which do not do anything special in module 1337 * init/exit. This eliminates a lot of boilerplate. Each module may only 1338 * use this macro once, and calling it replaces module_init() and module_exit() 1339 */ 1340 #define module_usb_driver(__usb_driver) \ 1341 module_driver(__usb_driver, usb_register, \ 1342 usb_deregister) 1343 1344 extern int usb_register_device_driver(struct usb_device_driver *, 1345 struct module *); 1346 extern void usb_deregister_device_driver(struct usb_device_driver *); 1347 1348 extern int usb_register_dev(struct usb_interface *intf, 1349 struct usb_class_driver *class_driver); 1350 extern void usb_deregister_dev(struct usb_interface *intf, 1351 struct usb_class_driver *class_driver); 1352 1353 extern int usb_disabled(void); 1354 1355 /* ----------------------------------------------------------------------- */ 1356 1357 /* 1358 * URB support, for asynchronous request completions 1359 */ 1360 1361 /* 1362 * urb->transfer_flags: 1363 * 1364 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1365 */ 1366 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1367 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1368 * slot in the schedule */ 1369 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1370 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1371 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1372 * needed */ 1373 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1374 1375 /* The following flags are used internally by usbcore and HCDs */ 1376 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1377 #define URB_DIR_OUT 0 1378 #define URB_DIR_MASK URB_DIR_IN 1379 1380 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1381 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1382 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1383 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1384 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1385 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1386 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1387 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1388 1389 struct usb_iso_packet_descriptor { 1390 unsigned int offset; 1391 unsigned int length; /* expected length */ 1392 unsigned int actual_length; 1393 int status; 1394 }; 1395 1396 struct urb; 1397 1398 struct usb_anchor { 1399 struct list_head urb_list; 1400 wait_queue_head_t wait; 1401 spinlock_t lock; 1402 atomic_t suspend_wakeups; 1403 unsigned int poisoned:1; 1404 }; 1405 1406 static inline void init_usb_anchor(struct usb_anchor *anchor) 1407 { 1408 memset(anchor, 0, sizeof(*anchor)); 1409 INIT_LIST_HEAD(&anchor->urb_list); 1410 init_waitqueue_head(&anchor->wait); 1411 spin_lock_init(&anchor->lock); 1412 } 1413 1414 typedef void (*usb_complete_t)(struct urb *); 1415 1416 /** 1417 * struct urb - USB Request Block 1418 * @urb_list: For use by current owner of the URB. 1419 * @anchor_list: membership in the list of an anchor 1420 * @anchor: to anchor URBs to a common mooring 1421 * @ep: Points to the endpoint's data structure. Will eventually 1422 * replace @pipe. 1423 * @pipe: Holds endpoint number, direction, type, and more. 1424 * Create these values with the eight macros available; 1425 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1426 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1427 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1428 * numbers range from zero to fifteen. Note that "in" endpoint two 1429 * is a different endpoint (and pipe) from "out" endpoint two. 1430 * The current configuration controls the existence, type, and 1431 * maximum packet size of any given endpoint. 1432 * @stream_id: the endpoint's stream ID for bulk streams 1433 * @dev: Identifies the USB device to perform the request. 1434 * @status: This is read in non-iso completion functions to get the 1435 * status of the particular request. ISO requests only use it 1436 * to tell whether the URB was unlinked; detailed status for 1437 * each frame is in the fields of the iso_frame-desc. 1438 * @transfer_flags: A variety of flags may be used to affect how URB 1439 * submission, unlinking, or operation are handled. Different 1440 * kinds of URB can use different flags. 1441 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1442 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1443 * (however, do not leave garbage in transfer_buffer even then). 1444 * This buffer must be suitable for DMA; allocate it with 1445 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1446 * of this buffer will be modified. This buffer is used for the data 1447 * stage of control transfers. 1448 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1449 * the device driver is saying that it provided this DMA address, 1450 * which the host controller driver should use in preference to the 1451 * transfer_buffer. 1452 * @sg: scatter gather buffer list, the buffer size of each element in 1453 * the list (except the last) must be divisible by the endpoint's 1454 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1455 * @num_mapped_sgs: (internal) number of mapped sg entries 1456 * @num_sgs: number of entries in the sg list 1457 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1458 * be broken up into chunks according to the current maximum packet 1459 * size for the endpoint, which is a function of the configuration 1460 * and is encoded in the pipe. When the length is zero, neither 1461 * transfer_buffer nor transfer_dma is used. 1462 * @actual_length: This is read in non-iso completion functions, and 1463 * it tells how many bytes (out of transfer_buffer_length) were 1464 * transferred. It will normally be the same as requested, unless 1465 * either an error was reported or a short read was performed. 1466 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1467 * short reads be reported as errors. 1468 * @setup_packet: Only used for control transfers, this points to eight bytes 1469 * of setup data. Control transfers always start by sending this data 1470 * to the device. Then transfer_buffer is read or written, if needed. 1471 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1472 * this field; setup_packet must point to a valid buffer. 1473 * @start_frame: Returns the initial frame for isochronous transfers. 1474 * @number_of_packets: Lists the number of ISO transfer buffers. 1475 * @interval: Specifies the polling interval for interrupt or isochronous 1476 * transfers. The units are frames (milliseconds) for full and low 1477 * speed devices, and microframes (1/8 millisecond) for highspeed 1478 * and SuperSpeed devices. 1479 * @error_count: Returns the number of ISO transfers that reported errors. 1480 * @context: For use in completion functions. This normally points to 1481 * request-specific driver context. 1482 * @complete: Completion handler. This URB is passed as the parameter to the 1483 * completion function. The completion function may then do what 1484 * it likes with the URB, including resubmitting or freeing it. 1485 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1486 * collect the transfer status for each buffer. 1487 * 1488 * This structure identifies USB transfer requests. URBs must be allocated by 1489 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1490 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1491 * are submitted using usb_submit_urb(), and pending requests may be canceled 1492 * using usb_unlink_urb() or usb_kill_urb(). 1493 * 1494 * Data Transfer Buffers: 1495 * 1496 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1497 * taken from the general page pool. That is provided by transfer_buffer 1498 * (control requests also use setup_packet), and host controller drivers 1499 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1500 * mapping operations can be expensive on some platforms (perhaps using a dma 1501 * bounce buffer or talking to an IOMMU), 1502 * although they're cheap on commodity x86 and ppc hardware. 1503 * 1504 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1505 * which tells the host controller driver that no such mapping is needed for 1506 * the transfer_buffer since 1507 * the device driver is DMA-aware. For example, a device driver might 1508 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1509 * When this transfer flag is provided, host controller drivers will 1510 * attempt to use the dma address found in the transfer_dma 1511 * field rather than determining a dma address themselves. 1512 * 1513 * Note that transfer_buffer must still be set if the controller 1514 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1515 * to root hub. If you have to transfer between highmem zone and the device 1516 * on such controller, create a bounce buffer or bail out with an error. 1517 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1518 * capable, assign NULL to it, so that usbmon knows not to use the value. 1519 * The setup_packet must always be set, so it cannot be located in highmem. 1520 * 1521 * Initialization: 1522 * 1523 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1524 * zero), and complete fields. All URBs must also initialize 1525 * transfer_buffer and transfer_buffer_length. They may provide the 1526 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1527 * to be treated as errors; that flag is invalid for write requests. 1528 * 1529 * Bulk URBs may 1530 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1531 * should always terminate with a short packet, even if it means adding an 1532 * extra zero length packet. 1533 * 1534 * Control URBs must provide a valid pointer in the setup_packet field. 1535 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1536 * beforehand. 1537 * 1538 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1539 * or, for highspeed devices, 125 microsecond units) 1540 * to poll for transfers. After the URB has been submitted, the interval 1541 * field reflects how the transfer was actually scheduled. 1542 * The polling interval may be more frequent than requested. 1543 * For example, some controllers have a maximum interval of 32 milliseconds, 1544 * while others support intervals of up to 1024 milliseconds. 1545 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1546 * endpoints, as well as high speed interrupt endpoints, the encoding of 1547 * the transfer interval in the endpoint descriptor is logarithmic. 1548 * Device drivers must convert that value to linear units themselves.) 1549 * 1550 * If an isochronous endpoint queue isn't already running, the host 1551 * controller will schedule a new URB to start as soon as bandwidth 1552 * utilization allows. If the queue is running then a new URB will be 1553 * scheduled to start in the first transfer slot following the end of the 1554 * preceding URB, if that slot has not already expired. If the slot has 1555 * expired (which can happen when IRQ delivery is delayed for a long time), 1556 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1557 * is clear then the URB will be scheduled to start in the expired slot, 1558 * implying that some of its packets will not be transferred; if the flag 1559 * is set then the URB will be scheduled in the first unexpired slot, 1560 * breaking the queue's synchronization. Upon URB completion, the 1561 * start_frame field will be set to the (micro)frame number in which the 1562 * transfer was scheduled. Ranges for frame counter values are HC-specific 1563 * and can go from as low as 256 to as high as 65536 frames. 1564 * 1565 * Isochronous URBs have a different data transfer model, in part because 1566 * the quality of service is only "best effort". Callers provide specially 1567 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1568 * at the end. Each such packet is an individual ISO transfer. Isochronous 1569 * URBs are normally queued, submitted by drivers to arrange that 1570 * transfers are at least double buffered, and then explicitly resubmitted 1571 * in completion handlers, so 1572 * that data (such as audio or video) streams at as constant a rate as the 1573 * host controller scheduler can support. 1574 * 1575 * Completion Callbacks: 1576 * 1577 * The completion callback is made in_interrupt(), and one of the first 1578 * things that a completion handler should do is check the status field. 1579 * The status field is provided for all URBs. It is used to report 1580 * unlinked URBs, and status for all non-ISO transfers. It should not 1581 * be examined before the URB is returned to the completion handler. 1582 * 1583 * The context field is normally used to link URBs back to the relevant 1584 * driver or request state. 1585 * 1586 * When the completion callback is invoked for non-isochronous URBs, the 1587 * actual_length field tells how many bytes were transferred. This field 1588 * is updated even when the URB terminated with an error or was unlinked. 1589 * 1590 * ISO transfer status is reported in the status and actual_length fields 1591 * of the iso_frame_desc array, and the number of errors is reported in 1592 * error_count. Completion callbacks for ISO transfers will normally 1593 * (re)submit URBs to ensure a constant transfer rate. 1594 * 1595 * Note that even fields marked "public" should not be touched by the driver 1596 * when the urb is owned by the hcd, that is, since the call to 1597 * usb_submit_urb() till the entry into the completion routine. 1598 */ 1599 struct urb { 1600 /* private: usb core and host controller only fields in the urb */ 1601 struct kref kref; /* reference count of the URB */ 1602 int unlinked; /* unlink error code */ 1603 void *hcpriv; /* private data for host controller */ 1604 atomic_t use_count; /* concurrent submissions counter */ 1605 atomic_t reject; /* submissions will fail */ 1606 1607 /* public: documented fields in the urb that can be used by drivers */ 1608 struct list_head urb_list; /* list head for use by the urb's 1609 * current owner */ 1610 struct list_head anchor_list; /* the URB may be anchored */ 1611 struct usb_anchor *anchor; 1612 struct usb_device *dev; /* (in) pointer to associated device */ 1613 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1614 unsigned int pipe; /* (in) pipe information */ 1615 unsigned int stream_id; /* (in) stream ID */ 1616 int status; /* (return) non-ISO status */ 1617 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1618 void *transfer_buffer; /* (in) associated data buffer */ 1619 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1620 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1621 int num_mapped_sgs; /* (internal) mapped sg entries */ 1622 int num_sgs; /* (in) number of entries in the sg list */ 1623 u32 transfer_buffer_length; /* (in) data buffer length */ 1624 u32 actual_length; /* (return) actual transfer length */ 1625 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1626 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1627 int start_frame; /* (modify) start frame (ISO) */ 1628 int number_of_packets; /* (in) number of ISO packets */ 1629 int interval; /* (modify) transfer interval 1630 * (INT/ISO) */ 1631 int error_count; /* (return) number of ISO errors */ 1632 void *context; /* (in) context for completion */ 1633 usb_complete_t complete; /* (in) completion routine */ 1634 struct usb_iso_packet_descriptor iso_frame_desc[]; 1635 /* (in) ISO ONLY */ 1636 }; 1637 1638 /* ----------------------------------------------------------------------- */ 1639 1640 /** 1641 * usb_fill_control_urb - initializes a control urb 1642 * @urb: pointer to the urb to initialize. 1643 * @dev: pointer to the struct usb_device for this urb. 1644 * @pipe: the endpoint pipe 1645 * @setup_packet: pointer to the setup_packet buffer. The buffer must be 1646 * suitable for DMA. 1647 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1648 * suitable for DMA. 1649 * @buffer_length: length of the transfer buffer 1650 * @complete_fn: pointer to the usb_complete_t function 1651 * @context: what to set the urb context to. 1652 * 1653 * Initializes a control urb with the proper information needed to submit 1654 * it to a device. 1655 * 1656 * The transfer buffer and the setup_packet buffer will most likely be filled 1657 * or read via DMA. The simplest way to get a buffer that can be DMAed to is 1658 * allocating it via kmalloc() or equivalent, even for very small buffers. 1659 * If the buffers are embedded in a bigger structure, there is a risk that 1660 * the buffer itself, the previous fields and/or the next fields are corrupted 1661 * due to cache incoherencies; or slowed down if they are evicted from the 1662 * cache. For more information, check &struct urb. 1663 * 1664 */ 1665 static inline void usb_fill_control_urb(struct urb *urb, 1666 struct usb_device *dev, 1667 unsigned int pipe, 1668 unsigned char *setup_packet, 1669 void *transfer_buffer, 1670 int buffer_length, 1671 usb_complete_t complete_fn, 1672 void *context) 1673 { 1674 urb->dev = dev; 1675 urb->pipe = pipe; 1676 urb->setup_packet = setup_packet; 1677 urb->transfer_buffer = transfer_buffer; 1678 urb->transfer_buffer_length = buffer_length; 1679 urb->complete = complete_fn; 1680 urb->context = context; 1681 } 1682 1683 /** 1684 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1685 * @urb: pointer to the urb to initialize. 1686 * @dev: pointer to the struct usb_device for this urb. 1687 * @pipe: the endpoint pipe 1688 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1689 * suitable for DMA. 1690 * @buffer_length: length of the transfer buffer 1691 * @complete_fn: pointer to the usb_complete_t function 1692 * @context: what to set the urb context to. 1693 * 1694 * Initializes a bulk urb with the proper information needed to submit it 1695 * to a device. 1696 * 1697 * Refer to usb_fill_control_urb() for a description of the requirements for 1698 * transfer_buffer. 1699 */ 1700 static inline void usb_fill_bulk_urb(struct urb *urb, 1701 struct usb_device *dev, 1702 unsigned int pipe, 1703 void *transfer_buffer, 1704 int buffer_length, 1705 usb_complete_t complete_fn, 1706 void *context) 1707 { 1708 urb->dev = dev; 1709 urb->pipe = pipe; 1710 urb->transfer_buffer = transfer_buffer; 1711 urb->transfer_buffer_length = buffer_length; 1712 urb->complete = complete_fn; 1713 urb->context = context; 1714 } 1715 1716 /** 1717 * usb_fill_int_urb - macro to help initialize a interrupt urb 1718 * @urb: pointer to the urb to initialize. 1719 * @dev: pointer to the struct usb_device for this urb. 1720 * @pipe: the endpoint pipe 1721 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1722 * suitable for DMA. 1723 * @buffer_length: length of the transfer buffer 1724 * @complete_fn: pointer to the usb_complete_t function 1725 * @context: what to set the urb context to. 1726 * @interval: what to set the urb interval to, encoded like 1727 * the endpoint descriptor's bInterval value. 1728 * 1729 * Initializes a interrupt urb with the proper information needed to submit 1730 * it to a device. 1731 * 1732 * Refer to usb_fill_control_urb() for a description of the requirements for 1733 * transfer_buffer. 1734 * 1735 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1736 * encoding of the endpoint interval, and express polling intervals in 1737 * microframes (eight per millisecond) rather than in frames (one per 1738 * millisecond). 1739 * 1740 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1741 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1742 * through to the host controller, rather than being translated into microframe 1743 * units. 1744 */ 1745 static inline void usb_fill_int_urb(struct urb *urb, 1746 struct usb_device *dev, 1747 unsigned int pipe, 1748 void *transfer_buffer, 1749 int buffer_length, 1750 usb_complete_t complete_fn, 1751 void *context, 1752 int interval) 1753 { 1754 urb->dev = dev; 1755 urb->pipe = pipe; 1756 urb->transfer_buffer = transfer_buffer; 1757 urb->transfer_buffer_length = buffer_length; 1758 urb->complete = complete_fn; 1759 urb->context = context; 1760 1761 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1762 /* make sure interval is within allowed range */ 1763 interval = clamp(interval, 1, 16); 1764 1765 urb->interval = 1 << (interval - 1); 1766 } else { 1767 urb->interval = interval; 1768 } 1769 1770 urb->start_frame = -1; 1771 } 1772 1773 extern void usb_init_urb(struct urb *urb); 1774 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1775 extern void usb_free_urb(struct urb *urb); 1776 #define usb_put_urb usb_free_urb 1777 extern struct urb *usb_get_urb(struct urb *urb); 1778 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1779 extern int usb_unlink_urb(struct urb *urb); 1780 extern void usb_kill_urb(struct urb *urb); 1781 extern void usb_poison_urb(struct urb *urb); 1782 extern void usb_unpoison_urb(struct urb *urb); 1783 extern void usb_block_urb(struct urb *urb); 1784 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1785 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1786 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1787 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1788 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1789 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1790 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1791 extern void usb_unanchor_urb(struct urb *urb); 1792 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1793 unsigned int timeout); 1794 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1795 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1796 extern int usb_anchor_empty(struct usb_anchor *anchor); 1797 1798 #define usb_unblock_urb usb_unpoison_urb 1799 1800 /** 1801 * usb_urb_dir_in - check if an URB describes an IN transfer 1802 * @urb: URB to be checked 1803 * 1804 * Return: 1 if @urb describes an IN transfer (device-to-host), 1805 * otherwise 0. 1806 */ 1807 static inline int usb_urb_dir_in(struct urb *urb) 1808 { 1809 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1810 } 1811 1812 /** 1813 * usb_urb_dir_out - check if an URB describes an OUT transfer 1814 * @urb: URB to be checked 1815 * 1816 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1817 * otherwise 0. 1818 */ 1819 static inline int usb_urb_dir_out(struct urb *urb) 1820 { 1821 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1822 } 1823 1824 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1825 int usb_urb_ep_type_check(const struct urb *urb); 1826 1827 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1828 gfp_t mem_flags, dma_addr_t *dma); 1829 void usb_free_coherent(struct usb_device *dev, size_t size, 1830 void *addr, dma_addr_t dma); 1831 1832 #if 0 1833 struct urb *usb_buffer_map(struct urb *urb); 1834 void usb_buffer_dmasync(struct urb *urb); 1835 void usb_buffer_unmap(struct urb *urb); 1836 #endif 1837 1838 struct scatterlist; 1839 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1840 struct scatterlist *sg, int nents); 1841 #if 0 1842 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1843 struct scatterlist *sg, int n_hw_ents); 1844 #endif 1845 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1846 struct scatterlist *sg, int n_hw_ents); 1847 1848 /*-------------------------------------------------------------------* 1849 * SYNCHRONOUS CALL SUPPORT * 1850 *-------------------------------------------------------------------*/ 1851 1852 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1853 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1854 void *data, __u16 size, int timeout); 1855 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1856 void *data, int len, int *actual_length, int timeout); 1857 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1858 void *data, int len, int *actual_length, 1859 int timeout); 1860 1861 /* wrappers around usb_control_msg() for the most common standard requests */ 1862 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1863 __u8 requesttype, __u16 value, __u16 index, 1864 const void *data, __u16 size, int timeout, 1865 gfp_t memflags); 1866 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1867 __u8 requesttype, __u16 value, __u16 index, 1868 void *data, __u16 size, int timeout, 1869 gfp_t memflags); 1870 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1871 unsigned char descindex, void *buf, int size); 1872 extern int usb_get_status(struct usb_device *dev, 1873 int recip, int type, int target, void *data); 1874 1875 static inline int usb_get_std_status(struct usb_device *dev, 1876 int recip, int target, void *data) 1877 { 1878 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1879 data); 1880 } 1881 1882 static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1883 { 1884 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1885 0, data); 1886 } 1887 1888 extern int usb_string(struct usb_device *dev, int index, 1889 char *buf, size_t size); 1890 extern char *usb_cache_string(struct usb_device *udev, int index); 1891 1892 /* wrappers that also update important state inside usbcore */ 1893 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1894 extern int usb_reset_configuration(struct usb_device *dev); 1895 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1896 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1897 1898 /* this request isn't really synchronous, but it belongs with the others */ 1899 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1900 1901 /* choose and set configuration for device */ 1902 extern int usb_choose_configuration(struct usb_device *udev); 1903 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1904 1905 /* 1906 * timeouts, in milliseconds, used for sending/receiving control messages 1907 * they typically complete within a few frames (msec) after they're issued 1908 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1909 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1910 */ 1911 #define USB_CTRL_GET_TIMEOUT 5000 1912 #define USB_CTRL_SET_TIMEOUT 5000 1913 1914 1915 /** 1916 * struct usb_sg_request - support for scatter/gather I/O 1917 * @status: zero indicates success, else negative errno 1918 * @bytes: counts bytes transferred. 1919 * 1920 * These requests are initialized using usb_sg_init(), and then are used 1921 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1922 * members of the request object aren't for driver access. 1923 * 1924 * The status and bytecount values are valid only after usb_sg_wait() 1925 * returns. If the status is zero, then the bytecount matches the total 1926 * from the request. 1927 * 1928 * After an error completion, drivers may need to clear a halt condition 1929 * on the endpoint. 1930 */ 1931 struct usb_sg_request { 1932 int status; 1933 size_t bytes; 1934 1935 /* private: 1936 * members below are private to usbcore, 1937 * and are not provided for driver access! 1938 */ 1939 spinlock_t lock; 1940 1941 struct usb_device *dev; 1942 int pipe; 1943 1944 int entries; 1945 struct urb **urbs; 1946 1947 int count; 1948 struct completion complete; 1949 }; 1950 1951 int usb_sg_init( 1952 struct usb_sg_request *io, 1953 struct usb_device *dev, 1954 unsigned pipe, 1955 unsigned period, 1956 struct scatterlist *sg, 1957 int nents, 1958 size_t length, 1959 gfp_t mem_flags 1960 ); 1961 void usb_sg_cancel(struct usb_sg_request *io); 1962 void usb_sg_wait(struct usb_sg_request *io); 1963 1964 1965 /* ----------------------------------------------------------------------- */ 1966 1967 /* 1968 * For various legacy reasons, Linux has a small cookie that's paired with 1969 * a struct usb_device to identify an endpoint queue. Queue characteristics 1970 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1971 * an unsigned int encoded as: 1972 * 1973 * - direction: bit 7 (0 = Host-to-Device [Out], 1974 * 1 = Device-to-Host [In] ... 1975 * like endpoint bEndpointAddress) 1976 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1977 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1978 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1979 * 10 = control, 11 = bulk) 1980 * 1981 * Given the device address and endpoint descriptor, pipes are redundant. 1982 */ 1983 1984 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1985 /* (yet ... they're the values used by usbfs) */ 1986 #define PIPE_ISOCHRONOUS 0 1987 #define PIPE_INTERRUPT 1 1988 #define PIPE_CONTROL 2 1989 #define PIPE_BULK 3 1990 1991 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1992 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1993 1994 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1995 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1996 1997 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1998 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1999 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 2000 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 2001 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 2002 2003 static inline unsigned int __create_pipe(struct usb_device *dev, 2004 unsigned int endpoint) 2005 { 2006 return (dev->devnum << 8) | (endpoint << 15); 2007 } 2008 2009 /* Create various pipes... */ 2010 #define usb_sndctrlpipe(dev, endpoint) \ 2011 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 2012 #define usb_rcvctrlpipe(dev, endpoint) \ 2013 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2014 #define usb_sndisocpipe(dev, endpoint) \ 2015 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 2016 #define usb_rcvisocpipe(dev, endpoint) \ 2017 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2018 #define usb_sndbulkpipe(dev, endpoint) \ 2019 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 2020 #define usb_rcvbulkpipe(dev, endpoint) \ 2021 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2022 #define usb_sndintpipe(dev, endpoint) \ 2023 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 2024 #define usb_rcvintpipe(dev, endpoint) \ 2025 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2026 2027 static inline struct usb_host_endpoint * 2028 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 2029 { 2030 struct usb_host_endpoint **eps; 2031 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 2032 return eps[usb_pipeendpoint(pipe)]; 2033 } 2034 2035 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 2036 { 2037 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 2038 2039 if (!ep) 2040 return 0; 2041 2042 /* NOTE: only 0x07ff bits are for packet size... */ 2043 return usb_endpoint_maxp(&ep->desc); 2044 } 2045 2046 /* translate USB error codes to codes user space understands */ 2047 static inline int usb_translate_errors(int error_code) 2048 { 2049 switch (error_code) { 2050 case 0: 2051 case -ENOMEM: 2052 case -ENODEV: 2053 case -EOPNOTSUPP: 2054 return error_code; 2055 default: 2056 return -EIO; 2057 } 2058 } 2059 2060 /* Events from the usb core */ 2061 #define USB_DEVICE_ADD 0x0001 2062 #define USB_DEVICE_REMOVE 0x0002 2063 #define USB_BUS_ADD 0x0003 2064 #define USB_BUS_REMOVE 0x0004 2065 extern void usb_register_notify(struct notifier_block *nb); 2066 extern void usb_unregister_notify(struct notifier_block *nb); 2067 2068 /* debugfs stuff */ 2069 extern struct dentry *usb_debug_root; 2070 2071 /* LED triggers */ 2072 enum usb_led_event { 2073 USB_LED_EVENT_HOST = 0, 2074 USB_LED_EVENT_GADGET = 1, 2075 }; 2076 2077 #ifdef CONFIG_USB_LED_TRIG 2078 extern void usb_led_activity(enum usb_led_event ev); 2079 #else 2080 static inline void usb_led_activity(enum usb_led_event ev) {} 2081 #endif 2082 2083 #endif /* __KERNEL__ */ 2084 2085 #endif 2086