xref: /linux-6.15/include/linux/uio.h (revision 8564c315)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Berkeley style UIO structures	-	Alan Cox 1994.
4  */
5 #ifndef __LINUX_UIO_H
6 #define __LINUX_UIO_H
7 
8 #include <linux/kernel.h>
9 #include <linux/thread_info.h>
10 #include <linux/mm_types.h>
11 #include <uapi/linux/uio.h>
12 
13 struct page;
14 
15 typedef unsigned int __bitwise iov_iter_extraction_t;
16 
17 struct kvec {
18 	void *iov_base; /* and that should *never* hold a userland pointer */
19 	size_t iov_len;
20 };
21 
22 enum iter_type {
23 	/* iter types */
24 	ITER_IOVEC,
25 	ITER_KVEC,
26 	ITER_BVEC,
27 	ITER_XARRAY,
28 	ITER_DISCARD,
29 	ITER_UBUF,
30 };
31 
32 #define ITER_SOURCE	1	// == WRITE
33 #define ITER_DEST	0	// == READ
34 
35 struct iov_iter_state {
36 	size_t iov_offset;
37 	size_t count;
38 	unsigned long nr_segs;
39 };
40 
41 struct iov_iter {
42 	u8 iter_type;
43 	bool copy_mc;
44 	bool nofault;
45 	bool data_source;
46 	bool user_backed;
47 	union {
48 		size_t iov_offset;
49 		int last_offset;
50 	};
51 	/*
52 	 * Hack alert: overlay ubuf_iovec with iovec + count, so
53 	 * that the members resolve correctly regardless of the type
54 	 * of iterator used. This means that you can use:
55 	 *
56 	 * &iter->__ubuf_iovec or iter->__iov
57 	 *
58 	 * interchangably for the user_backed cases, hence simplifying
59 	 * some of the cases that need to deal with both.
60 	 */
61 	union {
62 		/*
63 		 * This really should be a const, but we cannot do that without
64 		 * also modifying any of the zero-filling iter init functions.
65 		 * Leave it non-const for now, but it should be treated as such.
66 		 */
67 		struct iovec __ubuf_iovec;
68 		struct {
69 			union {
70 				/* use iter_iov() to get the current vec */
71 				const struct iovec *__iov;
72 				const struct kvec *kvec;
73 				const struct bio_vec *bvec;
74 				struct xarray *xarray;
75 				void __user *ubuf;
76 			};
77 			size_t count;
78 		};
79 	};
80 	union {
81 		unsigned long nr_segs;
82 		loff_t xarray_start;
83 	};
84 };
85 
86 static inline const struct iovec *iter_iov(const struct iov_iter *iter)
87 {
88 	if (iter->iter_type == ITER_UBUF)
89 		return (const struct iovec *) &iter->__ubuf_iovec;
90 	return iter->__iov;
91 }
92 
93 #define iter_iov_addr(iter)	(iter_iov(iter)->iov_base + (iter)->iov_offset)
94 #define iter_iov_len(iter)	(iter_iov(iter)->iov_len - (iter)->iov_offset)
95 
96 static inline enum iter_type iov_iter_type(const struct iov_iter *i)
97 {
98 	return i->iter_type;
99 }
100 
101 static inline void iov_iter_save_state(struct iov_iter *iter,
102 				       struct iov_iter_state *state)
103 {
104 	state->iov_offset = iter->iov_offset;
105 	state->count = iter->count;
106 	state->nr_segs = iter->nr_segs;
107 }
108 
109 static inline bool iter_is_ubuf(const struct iov_iter *i)
110 {
111 	return iov_iter_type(i) == ITER_UBUF;
112 }
113 
114 static inline bool iter_is_iovec(const struct iov_iter *i)
115 {
116 	return iov_iter_type(i) == ITER_IOVEC;
117 }
118 
119 static inline bool iov_iter_is_kvec(const struct iov_iter *i)
120 {
121 	return iov_iter_type(i) == ITER_KVEC;
122 }
123 
124 static inline bool iov_iter_is_bvec(const struct iov_iter *i)
125 {
126 	return iov_iter_type(i) == ITER_BVEC;
127 }
128 
129 static inline bool iov_iter_is_discard(const struct iov_iter *i)
130 {
131 	return iov_iter_type(i) == ITER_DISCARD;
132 }
133 
134 static inline bool iov_iter_is_xarray(const struct iov_iter *i)
135 {
136 	return iov_iter_type(i) == ITER_XARRAY;
137 }
138 
139 static inline unsigned char iov_iter_rw(const struct iov_iter *i)
140 {
141 	return i->data_source ? WRITE : READ;
142 }
143 
144 static inline bool user_backed_iter(const struct iov_iter *i)
145 {
146 	return i->user_backed;
147 }
148 
149 /*
150  * Total number of bytes covered by an iovec.
151  *
152  * NOTE that it is not safe to use this function until all the iovec's
153  * segment lengths have been validated.  Because the individual lengths can
154  * overflow a size_t when added together.
155  */
156 static inline size_t iov_length(const struct iovec *iov, unsigned long nr_segs)
157 {
158 	unsigned long seg;
159 	size_t ret = 0;
160 
161 	for (seg = 0; seg < nr_segs; seg++)
162 		ret += iov[seg].iov_len;
163 	return ret;
164 }
165 
166 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset,
167 				  size_t bytes, struct iov_iter *i);
168 void iov_iter_advance(struct iov_iter *i, size_t bytes);
169 void iov_iter_revert(struct iov_iter *i, size_t bytes);
170 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t bytes);
171 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t bytes);
172 size_t iov_iter_single_seg_count(const struct iov_iter *i);
173 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
174 			 struct iov_iter *i);
175 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
176 			 struct iov_iter *i);
177 
178 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i);
179 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i);
180 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i);
181 
182 static inline size_t copy_folio_to_iter(struct folio *folio, size_t offset,
183 		size_t bytes, struct iov_iter *i)
184 {
185 	return copy_page_to_iter(&folio->page, offset, bytes, i);
186 }
187 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset,
188 				 size_t bytes, struct iov_iter *i);
189 
190 static __always_inline __must_check
191 size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
192 {
193 	if (check_copy_size(addr, bytes, true))
194 		return _copy_to_iter(addr, bytes, i);
195 	return 0;
196 }
197 
198 static __always_inline __must_check
199 size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
200 {
201 	if (check_copy_size(addr, bytes, false))
202 		return _copy_from_iter(addr, bytes, i);
203 	return 0;
204 }
205 
206 static __always_inline __must_check
207 bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
208 {
209 	size_t copied = copy_from_iter(addr, bytes, i);
210 	if (likely(copied == bytes))
211 		return true;
212 	iov_iter_revert(i, copied);
213 	return false;
214 }
215 
216 static __always_inline __must_check
217 size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
218 {
219 	if (check_copy_size(addr, bytes, false))
220 		return _copy_from_iter_nocache(addr, bytes, i);
221 	return 0;
222 }
223 
224 static __always_inline __must_check
225 bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
226 {
227 	size_t copied = copy_from_iter_nocache(addr, bytes, i);
228 	if (likely(copied == bytes))
229 		return true;
230 	iov_iter_revert(i, copied);
231 	return false;
232 }
233 
234 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
235 /*
236  * Note, users like pmem that depend on the stricter semantics of
237  * _copy_from_iter_flushcache() than _copy_from_iter_nocache() must check for
238  * IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) before assuming that the
239  * destination is flushed from the cache on return.
240  */
241 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i);
242 #else
243 #define _copy_from_iter_flushcache _copy_from_iter_nocache
244 #endif
245 
246 #ifdef CONFIG_ARCH_HAS_COPY_MC
247 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i);
248 static inline void iov_iter_set_copy_mc(struct iov_iter *i)
249 {
250 	i->copy_mc = true;
251 }
252 
253 static inline bool iov_iter_is_copy_mc(const struct iov_iter *i)
254 {
255 	return i->copy_mc;
256 }
257 #else
258 #define _copy_mc_to_iter _copy_to_iter
259 static inline void iov_iter_set_copy_mc(struct iov_iter *i) { }
260 static inline bool iov_iter_is_copy_mc(const struct iov_iter *i)
261 {
262 	return false;
263 }
264 #endif
265 
266 size_t iov_iter_zero(size_t bytes, struct iov_iter *);
267 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
268 			unsigned len_mask);
269 unsigned long iov_iter_alignment(const struct iov_iter *i);
270 unsigned long iov_iter_gap_alignment(const struct iov_iter *i);
271 void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov,
272 			unsigned long nr_segs, size_t count);
273 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec,
274 			unsigned long nr_segs, size_t count);
275 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec,
276 			unsigned long nr_segs, size_t count);
277 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count);
278 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, struct xarray *xarray,
279 		     loff_t start, size_t count);
280 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
281 			size_t maxsize, unsigned maxpages, size_t *start);
282 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, struct page ***pages,
283 			size_t maxsize, size_t *start);
284 int iov_iter_npages(const struct iov_iter *i, int maxpages);
285 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state);
286 
287 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags);
288 
289 static inline size_t iov_iter_count(const struct iov_iter *i)
290 {
291 	return i->count;
292 }
293 
294 /*
295  * Cap the iov_iter by given limit; note that the second argument is
296  * *not* the new size - it's upper limit for such.  Passing it a value
297  * greater than the amount of data in iov_iter is fine - it'll just do
298  * nothing in that case.
299  */
300 static inline void iov_iter_truncate(struct iov_iter *i, u64 count)
301 {
302 	/*
303 	 * count doesn't have to fit in size_t - comparison extends both
304 	 * operands to u64 here and any value that would be truncated by
305 	 * conversion in assignement is by definition greater than all
306 	 * values of size_t, including old i->count.
307 	 */
308 	if (i->count > count)
309 		i->count = count;
310 }
311 
312 /*
313  * reexpand a previously truncated iterator; count must be no more than how much
314  * we had shrunk it.
315  */
316 static inline void iov_iter_reexpand(struct iov_iter *i, size_t count)
317 {
318 	i->count = count;
319 }
320 
321 static inline int
322 iov_iter_npages_cap(struct iov_iter *i, int maxpages, size_t max_bytes)
323 {
324 	size_t shorted = 0;
325 	int npages;
326 
327 	if (iov_iter_count(i) > max_bytes) {
328 		shorted = iov_iter_count(i) - max_bytes;
329 		iov_iter_truncate(i, max_bytes);
330 	}
331 	npages = iov_iter_npages(i, maxpages);
332 	if (shorted)
333 		iov_iter_reexpand(i, iov_iter_count(i) + shorted);
334 
335 	return npages;
336 }
337 
338 struct csum_state {
339 	__wsum csum;
340 	size_t off;
341 };
342 
343 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csstate, struct iov_iter *i);
344 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i);
345 
346 static __always_inline __must_check
347 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
348 				  __wsum *csum, struct iov_iter *i)
349 {
350 	size_t copied = csum_and_copy_from_iter(addr, bytes, csum, i);
351 	if (likely(copied == bytes))
352 		return true;
353 	iov_iter_revert(i, copied);
354 	return false;
355 }
356 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
357 		struct iov_iter *i);
358 
359 struct iovec *iovec_from_user(const struct iovec __user *uvector,
360 		unsigned long nr_segs, unsigned long fast_segs,
361 		struct iovec *fast_iov, bool compat);
362 ssize_t import_iovec(int type, const struct iovec __user *uvec,
363 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
364 		 struct iov_iter *i);
365 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
366 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
367 		 struct iov_iter *i, bool compat);
368 int import_single_range(int type, void __user *buf, size_t len,
369 		 struct iovec *iov, struct iov_iter *i);
370 int import_ubuf(int type, void __user *buf, size_t len, struct iov_iter *i);
371 
372 static inline void iov_iter_ubuf(struct iov_iter *i, unsigned int direction,
373 			void __user *buf, size_t count)
374 {
375 	WARN_ON(direction & ~(READ | WRITE));
376 	*i = (struct iov_iter) {
377 		.iter_type = ITER_UBUF,
378 		.copy_mc = false,
379 		.user_backed = true,
380 		.data_source = direction,
381 		.ubuf = buf,
382 		.count = count,
383 		.nr_segs = 1
384 	};
385 }
386 /* Flags for iov_iter_get/extract_pages*() */
387 /* Allow P2PDMA on the extracted pages */
388 #define ITER_ALLOW_P2PDMA	((__force iov_iter_extraction_t)0x01)
389 
390 ssize_t iov_iter_extract_pages(struct iov_iter *i, struct page ***pages,
391 			       size_t maxsize, unsigned int maxpages,
392 			       iov_iter_extraction_t extraction_flags,
393 			       size_t *offset0);
394 
395 /**
396  * iov_iter_extract_will_pin - Indicate how pages from the iterator will be retained
397  * @iter: The iterator
398  *
399  * Examine the iterator and indicate by returning true or false as to how, if
400  * at all, pages extracted from the iterator will be retained by the extraction
401  * function.
402  *
403  * %true indicates that the pages will have a pin placed in them that the
404  * caller must unpin.  This is must be done for DMA/async DIO to force fork()
405  * to forcibly copy a page for the child (the parent must retain the original
406  * page).
407  *
408  * %false indicates that no measures are taken and that it's up to the caller
409  * to retain the pages.
410  */
411 static inline bool iov_iter_extract_will_pin(const struct iov_iter *iter)
412 {
413 	return user_backed_iter(iter);
414 }
415 
416 struct sg_table;
417 ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t len,
418 			   struct sg_table *sgtable, unsigned int sg_max,
419 			   iov_iter_extraction_t extraction_flags);
420 
421 #endif
422