xref: /linux-6.15/include/linux/uio.h (revision 6501ac11)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Berkeley style UIO structures	-	Alan Cox 1994.
4  */
5 #ifndef __LINUX_UIO_H
6 #define __LINUX_UIO_H
7 
8 #include <linux/kernel.h>
9 #include <linux/thread_info.h>
10 #include <linux/mm_types.h>
11 #include <uapi/linux/uio.h>
12 
13 struct page;
14 
15 typedef unsigned int __bitwise iov_iter_extraction_t;
16 
17 struct kvec {
18 	void *iov_base; /* and that should *never* hold a userland pointer */
19 	size_t iov_len;
20 };
21 
22 enum iter_type {
23 	/* iter types */
24 	ITER_UBUF,
25 	ITER_IOVEC,
26 	ITER_BVEC,
27 	ITER_KVEC,
28 	ITER_XARRAY,
29 	ITER_DISCARD,
30 };
31 
32 #define ITER_SOURCE	1	// == WRITE
33 #define ITER_DEST	0	// == READ
34 
35 struct iov_iter_state {
36 	size_t iov_offset;
37 	size_t count;
38 	unsigned long nr_segs;
39 };
40 
41 struct iov_iter {
42 	u8 iter_type;
43 	bool copy_mc;
44 	bool nofault;
45 	bool data_source;
46 	size_t iov_offset;
47 	/*
48 	 * Hack alert: overlay ubuf_iovec with iovec + count, so
49 	 * that the members resolve correctly regardless of the type
50 	 * of iterator used. This means that you can use:
51 	 *
52 	 * &iter->__ubuf_iovec or iter->__iov
53 	 *
54 	 * interchangably for the user_backed cases, hence simplifying
55 	 * some of the cases that need to deal with both.
56 	 */
57 	union {
58 		/*
59 		 * This really should be a const, but we cannot do that without
60 		 * also modifying any of the zero-filling iter init functions.
61 		 * Leave it non-const for now, but it should be treated as such.
62 		 */
63 		struct iovec __ubuf_iovec;
64 		struct {
65 			union {
66 				/* use iter_iov() to get the current vec */
67 				const struct iovec *__iov;
68 				const struct kvec *kvec;
69 				const struct bio_vec *bvec;
70 				struct xarray *xarray;
71 				void __user *ubuf;
72 			};
73 			size_t count;
74 		};
75 	};
76 	union {
77 		unsigned long nr_segs;
78 		loff_t xarray_start;
79 	};
80 };
81 
82 static inline const struct iovec *iter_iov(const struct iov_iter *iter)
83 {
84 	if (iter->iter_type == ITER_UBUF)
85 		return (const struct iovec *) &iter->__ubuf_iovec;
86 	return iter->__iov;
87 }
88 
89 #define iter_iov_addr(iter)	(iter_iov(iter)->iov_base + (iter)->iov_offset)
90 #define iter_iov_len(iter)	(iter_iov(iter)->iov_len - (iter)->iov_offset)
91 
92 static inline enum iter_type iov_iter_type(const struct iov_iter *i)
93 {
94 	return i->iter_type;
95 }
96 
97 static inline void iov_iter_save_state(struct iov_iter *iter,
98 				       struct iov_iter_state *state)
99 {
100 	state->iov_offset = iter->iov_offset;
101 	state->count = iter->count;
102 	state->nr_segs = iter->nr_segs;
103 }
104 
105 static inline bool iter_is_ubuf(const struct iov_iter *i)
106 {
107 	return iov_iter_type(i) == ITER_UBUF;
108 }
109 
110 static inline bool iter_is_iovec(const struct iov_iter *i)
111 {
112 	return iov_iter_type(i) == ITER_IOVEC;
113 }
114 
115 static inline bool iov_iter_is_kvec(const struct iov_iter *i)
116 {
117 	return iov_iter_type(i) == ITER_KVEC;
118 }
119 
120 static inline bool iov_iter_is_bvec(const struct iov_iter *i)
121 {
122 	return iov_iter_type(i) == ITER_BVEC;
123 }
124 
125 static inline bool iov_iter_is_discard(const struct iov_iter *i)
126 {
127 	return iov_iter_type(i) == ITER_DISCARD;
128 }
129 
130 static inline bool iov_iter_is_xarray(const struct iov_iter *i)
131 {
132 	return iov_iter_type(i) == ITER_XARRAY;
133 }
134 
135 static inline unsigned char iov_iter_rw(const struct iov_iter *i)
136 {
137 	return i->data_source ? WRITE : READ;
138 }
139 
140 static inline bool user_backed_iter(const struct iov_iter *i)
141 {
142 	return iter_is_ubuf(i) || iter_is_iovec(i);
143 }
144 
145 /*
146  * Total number of bytes covered by an iovec.
147  *
148  * NOTE that it is not safe to use this function until all the iovec's
149  * segment lengths have been validated.  Because the individual lengths can
150  * overflow a size_t when added together.
151  */
152 static inline size_t iov_length(const struct iovec *iov, unsigned long nr_segs)
153 {
154 	unsigned long seg;
155 	size_t ret = 0;
156 
157 	for (seg = 0; seg < nr_segs; seg++)
158 		ret += iov[seg].iov_len;
159 	return ret;
160 }
161 
162 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
163 				  size_t bytes, struct iov_iter *i);
164 void iov_iter_advance(struct iov_iter *i, size_t bytes);
165 void iov_iter_revert(struct iov_iter *i, size_t bytes);
166 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t bytes);
167 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t bytes);
168 size_t iov_iter_single_seg_count(const struct iov_iter *i);
169 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
170 			 struct iov_iter *i);
171 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
172 			 struct iov_iter *i);
173 
174 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i);
175 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i);
176 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i);
177 
178 static inline size_t copy_folio_to_iter(struct folio *folio, size_t offset,
179 		size_t bytes, struct iov_iter *i)
180 {
181 	return copy_page_to_iter(&folio->page, offset, bytes, i);
182 }
183 
184 static inline size_t copy_folio_from_iter_atomic(struct folio *folio,
185 		size_t offset, size_t bytes, struct iov_iter *i)
186 {
187 	return copy_page_from_iter_atomic(&folio->page, offset, bytes, i);
188 }
189 
190 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset,
191 				 size_t bytes, struct iov_iter *i);
192 
193 static __always_inline __must_check
194 size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
195 {
196 	if (check_copy_size(addr, bytes, true))
197 		return _copy_to_iter(addr, bytes, i);
198 	return 0;
199 }
200 
201 static __always_inline __must_check
202 size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
203 {
204 	if (check_copy_size(addr, bytes, false))
205 		return _copy_from_iter(addr, bytes, i);
206 	return 0;
207 }
208 
209 static __always_inline __must_check
210 bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
211 {
212 	size_t copied = copy_from_iter(addr, bytes, i);
213 	if (likely(copied == bytes))
214 		return true;
215 	iov_iter_revert(i, copied);
216 	return false;
217 }
218 
219 static __always_inline __must_check
220 size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
221 {
222 	if (check_copy_size(addr, bytes, false))
223 		return _copy_from_iter_nocache(addr, bytes, i);
224 	return 0;
225 }
226 
227 static __always_inline __must_check
228 bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
229 {
230 	size_t copied = copy_from_iter_nocache(addr, bytes, i);
231 	if (likely(copied == bytes))
232 		return true;
233 	iov_iter_revert(i, copied);
234 	return false;
235 }
236 
237 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
238 /*
239  * Note, users like pmem that depend on the stricter semantics of
240  * _copy_from_iter_flushcache() than _copy_from_iter_nocache() must check for
241  * IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) before assuming that the
242  * destination is flushed from the cache on return.
243  */
244 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i);
245 #else
246 #define _copy_from_iter_flushcache _copy_from_iter_nocache
247 #endif
248 
249 #ifdef CONFIG_ARCH_HAS_COPY_MC
250 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i);
251 static inline void iov_iter_set_copy_mc(struct iov_iter *i)
252 {
253 	i->copy_mc = true;
254 }
255 
256 static inline bool iov_iter_is_copy_mc(const struct iov_iter *i)
257 {
258 	return i->copy_mc;
259 }
260 #else
261 #define _copy_mc_to_iter _copy_to_iter
262 static inline void iov_iter_set_copy_mc(struct iov_iter *i) { }
263 static inline bool iov_iter_is_copy_mc(const struct iov_iter *i)
264 {
265 	return false;
266 }
267 #endif
268 
269 size_t iov_iter_zero(size_t bytes, struct iov_iter *);
270 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
271 			unsigned len_mask);
272 unsigned long iov_iter_alignment(const struct iov_iter *i);
273 unsigned long iov_iter_gap_alignment(const struct iov_iter *i);
274 void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov,
275 			unsigned long nr_segs, size_t count);
276 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec,
277 			unsigned long nr_segs, size_t count);
278 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec,
279 			unsigned long nr_segs, size_t count);
280 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count);
281 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, struct xarray *xarray,
282 		     loff_t start, size_t count);
283 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
284 			size_t maxsize, unsigned maxpages, size_t *start);
285 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, struct page ***pages,
286 			size_t maxsize, size_t *start);
287 int iov_iter_npages(const struct iov_iter *i, int maxpages);
288 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state);
289 
290 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags);
291 
292 static inline size_t iov_iter_count(const struct iov_iter *i)
293 {
294 	return i->count;
295 }
296 
297 /*
298  * Cap the iov_iter by given limit; note that the second argument is
299  * *not* the new size - it's upper limit for such.  Passing it a value
300  * greater than the amount of data in iov_iter is fine - it'll just do
301  * nothing in that case.
302  */
303 static inline void iov_iter_truncate(struct iov_iter *i, u64 count)
304 {
305 	/*
306 	 * count doesn't have to fit in size_t - comparison extends both
307 	 * operands to u64 here and any value that would be truncated by
308 	 * conversion in assignement is by definition greater than all
309 	 * values of size_t, including old i->count.
310 	 */
311 	if (i->count > count)
312 		i->count = count;
313 }
314 
315 /*
316  * reexpand a previously truncated iterator; count must be no more than how much
317  * we had shrunk it.
318  */
319 static inline void iov_iter_reexpand(struct iov_iter *i, size_t count)
320 {
321 	i->count = count;
322 }
323 
324 static inline int
325 iov_iter_npages_cap(struct iov_iter *i, int maxpages, size_t max_bytes)
326 {
327 	size_t shorted = 0;
328 	int npages;
329 
330 	if (iov_iter_count(i) > max_bytes) {
331 		shorted = iov_iter_count(i) - max_bytes;
332 		iov_iter_truncate(i, max_bytes);
333 	}
334 	npages = iov_iter_npages(i, maxpages);
335 	if (shorted)
336 		iov_iter_reexpand(i, iov_iter_count(i) + shorted);
337 
338 	return npages;
339 }
340 
341 struct iovec *iovec_from_user(const struct iovec __user *uvector,
342 		unsigned long nr_segs, unsigned long fast_segs,
343 		struct iovec *fast_iov, bool compat);
344 ssize_t import_iovec(int type, const struct iovec __user *uvec,
345 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
346 		 struct iov_iter *i);
347 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
348 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
349 		 struct iov_iter *i, bool compat);
350 int import_ubuf(int type, void __user *buf, size_t len, struct iov_iter *i);
351 
352 static inline void iov_iter_ubuf(struct iov_iter *i, unsigned int direction,
353 			void __user *buf, size_t count)
354 {
355 	WARN_ON(direction & ~(READ | WRITE));
356 	*i = (struct iov_iter) {
357 		.iter_type = ITER_UBUF,
358 		.copy_mc = false,
359 		.data_source = direction,
360 		.ubuf = buf,
361 		.count = count,
362 		.nr_segs = 1
363 	};
364 }
365 /* Flags for iov_iter_get/extract_pages*() */
366 /* Allow P2PDMA on the extracted pages */
367 #define ITER_ALLOW_P2PDMA	((__force iov_iter_extraction_t)0x01)
368 
369 ssize_t iov_iter_extract_pages(struct iov_iter *i, struct page ***pages,
370 			       size_t maxsize, unsigned int maxpages,
371 			       iov_iter_extraction_t extraction_flags,
372 			       size_t *offset0);
373 
374 /**
375  * iov_iter_extract_will_pin - Indicate how pages from the iterator will be retained
376  * @iter: The iterator
377  *
378  * Examine the iterator and indicate by returning true or false as to how, if
379  * at all, pages extracted from the iterator will be retained by the extraction
380  * function.
381  *
382  * %true indicates that the pages will have a pin placed in them that the
383  * caller must unpin.  This is must be done for DMA/async DIO to force fork()
384  * to forcibly copy a page for the child (the parent must retain the original
385  * page).
386  *
387  * %false indicates that no measures are taken and that it's up to the caller
388  * to retain the pages.
389  */
390 static inline bool iov_iter_extract_will_pin(const struct iov_iter *iter)
391 {
392 	return user_backed_iter(iter);
393 }
394 
395 struct sg_table;
396 ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t len,
397 			   struct sg_table *sgtable, unsigned int sg_max,
398 			   iov_iter_extraction_t extraction_flags);
399 
400 #endif
401