1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SWAPOPS_H 3 #define _LINUX_SWAPOPS_H 4 5 #include <linux/radix-tree.h> 6 #include <linux/bug.h> 7 #include <linux/mm_types.h> 8 9 #ifdef CONFIG_MMU 10 11 #ifdef CONFIG_SWAP 12 #include <linux/swapfile.h> 13 #endif /* CONFIG_SWAP */ 14 15 /* 16 * swapcache pages are stored in the swapper_space radix tree. We want to 17 * get good packing density in that tree, so the index should be dense in 18 * the low-order bits. 19 * 20 * We arrange the `type' and `offset' fields so that `type' is at the six 21 * high-order bits of the swp_entry_t and `offset' is right-aligned in the 22 * remaining bits. Although `type' itself needs only five bits, we allow for 23 * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry(). 24 * 25 * swp_entry_t's are *never* stored anywhere in their arch-dependent format. 26 */ 27 #define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT) 28 #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1) 29 30 /* 31 * Definitions only for PFN swap entries (see is_pfn_swap_entry()). To 32 * store PFN, we only need SWP_PFN_BITS bits. Each of the pfn swap entries 33 * can use the extra bits to store other information besides PFN. 34 */ 35 #ifdef MAX_PHYSMEM_BITS 36 #define SWP_PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 37 #else /* MAX_PHYSMEM_BITS */ 38 #define SWP_PFN_BITS (BITS_PER_LONG - PAGE_SHIFT) 39 #endif /* MAX_PHYSMEM_BITS */ 40 #define SWP_PFN_MASK (BIT(SWP_PFN_BITS) - 1) 41 42 /** 43 * Migration swap entry specific bitfield definitions. Layout: 44 * 45 * |----------+--------------------| 46 * | swp_type | swp_offset | 47 * |----------+--------+-+-+-------| 48 * | | resv |D|A| PFN | 49 * |----------+--------+-+-+-------| 50 * 51 * @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A) 52 * @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D) 53 * 54 * Note: A/D bits will be stored in migration entries iff there're enough 55 * free bits in arch specific swp offset. By default we'll ignore A/D bits 56 * when migrating a page. Please refer to migration_entry_supports_ad() 57 * for more information. If there're more bits besides PFN and A/D bits, 58 * they should be reserved and always be zeros. 59 */ 60 #define SWP_MIG_YOUNG_BIT (SWP_PFN_BITS) 61 #define SWP_MIG_DIRTY_BIT (SWP_PFN_BITS + 1) 62 #define SWP_MIG_TOTAL_BITS (SWP_PFN_BITS + 2) 63 64 #define SWP_MIG_YOUNG BIT(SWP_MIG_YOUNG_BIT) 65 #define SWP_MIG_DIRTY BIT(SWP_MIG_DIRTY_BIT) 66 67 static inline bool is_pfn_swap_entry(swp_entry_t entry); 68 69 /* Clear all flags but only keep swp_entry_t related information */ 70 static inline pte_t pte_swp_clear_flags(pte_t pte) 71 { 72 if (pte_swp_exclusive(pte)) 73 pte = pte_swp_clear_exclusive(pte); 74 if (pte_swp_soft_dirty(pte)) 75 pte = pte_swp_clear_soft_dirty(pte); 76 if (pte_swp_uffd_wp(pte)) 77 pte = pte_swp_clear_uffd_wp(pte); 78 return pte; 79 } 80 81 /* 82 * Store a type+offset into a swp_entry_t in an arch-independent format 83 */ 84 static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset) 85 { 86 swp_entry_t ret; 87 88 ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK); 89 return ret; 90 } 91 92 /* 93 * Extract the `type' field from a swp_entry_t. The swp_entry_t is in 94 * arch-independent format 95 */ 96 static inline unsigned swp_type(swp_entry_t entry) 97 { 98 return (entry.val >> SWP_TYPE_SHIFT); 99 } 100 101 /* 102 * Extract the `offset' field from a swp_entry_t. The swp_entry_t is in 103 * arch-independent format 104 */ 105 static inline pgoff_t swp_offset(swp_entry_t entry) 106 { 107 return entry.val & SWP_OFFSET_MASK; 108 } 109 110 /* 111 * This should only be called upon a pfn swap entry to get the PFN stored 112 * in the swap entry. Please refers to is_pfn_swap_entry() for definition 113 * of pfn swap entry. 114 */ 115 static inline unsigned long swp_offset_pfn(swp_entry_t entry) 116 { 117 VM_BUG_ON(!is_pfn_swap_entry(entry)); 118 return swp_offset(entry) & SWP_PFN_MASK; 119 } 120 121 /* check whether a pte points to a swap entry */ 122 static inline int is_swap_pte(pte_t pte) 123 { 124 return !pte_none(pte) && !pte_present(pte); 125 } 126 127 /* 128 * Convert the arch-dependent pte representation of a swp_entry_t into an 129 * arch-independent swp_entry_t. 130 */ 131 static inline swp_entry_t pte_to_swp_entry(pte_t pte) 132 { 133 swp_entry_t arch_entry; 134 135 pte = pte_swp_clear_flags(pte); 136 arch_entry = __pte_to_swp_entry(pte); 137 return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); 138 } 139 140 /* 141 * Convert the arch-independent representation of a swp_entry_t into the 142 * arch-dependent pte representation. 143 */ 144 static inline pte_t swp_entry_to_pte(swp_entry_t entry) 145 { 146 swp_entry_t arch_entry; 147 148 arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); 149 return __swp_entry_to_pte(arch_entry); 150 } 151 152 static inline swp_entry_t radix_to_swp_entry(void *arg) 153 { 154 swp_entry_t entry; 155 156 entry.val = xa_to_value(arg); 157 return entry; 158 } 159 160 static inline void *swp_to_radix_entry(swp_entry_t entry) 161 { 162 return xa_mk_value(entry.val); 163 } 164 165 static inline swp_entry_t make_swapin_error_entry(struct page *page) 166 { 167 return swp_entry(SWP_SWAPIN_ERROR, page_to_pfn(page)); 168 } 169 170 static inline int is_swapin_error_entry(swp_entry_t entry) 171 { 172 return swp_type(entry) == SWP_SWAPIN_ERROR; 173 } 174 175 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) 176 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset) 177 { 178 return swp_entry(SWP_DEVICE_READ, offset); 179 } 180 181 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset) 182 { 183 return swp_entry(SWP_DEVICE_WRITE, offset); 184 } 185 186 static inline bool is_device_private_entry(swp_entry_t entry) 187 { 188 int type = swp_type(entry); 189 return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE; 190 } 191 192 static inline bool is_writable_device_private_entry(swp_entry_t entry) 193 { 194 return unlikely(swp_type(entry) == SWP_DEVICE_WRITE); 195 } 196 197 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset) 198 { 199 return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset); 200 } 201 202 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset) 203 { 204 return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset); 205 } 206 207 static inline bool is_device_exclusive_entry(swp_entry_t entry) 208 { 209 return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ || 210 swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE; 211 } 212 213 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry) 214 { 215 return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE); 216 } 217 #else /* CONFIG_DEVICE_PRIVATE */ 218 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset) 219 { 220 return swp_entry(0, 0); 221 } 222 223 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset) 224 { 225 return swp_entry(0, 0); 226 } 227 228 static inline bool is_device_private_entry(swp_entry_t entry) 229 { 230 return false; 231 } 232 233 static inline bool is_writable_device_private_entry(swp_entry_t entry) 234 { 235 return false; 236 } 237 238 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset) 239 { 240 return swp_entry(0, 0); 241 } 242 243 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset) 244 { 245 return swp_entry(0, 0); 246 } 247 248 static inline bool is_device_exclusive_entry(swp_entry_t entry) 249 { 250 return false; 251 } 252 253 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry) 254 { 255 return false; 256 } 257 #endif /* CONFIG_DEVICE_PRIVATE */ 258 259 #ifdef CONFIG_MIGRATION 260 static inline int is_migration_entry(swp_entry_t entry) 261 { 262 return unlikely(swp_type(entry) == SWP_MIGRATION_READ || 263 swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE || 264 swp_type(entry) == SWP_MIGRATION_WRITE); 265 } 266 267 static inline int is_writable_migration_entry(swp_entry_t entry) 268 { 269 return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE); 270 } 271 272 static inline int is_readable_migration_entry(swp_entry_t entry) 273 { 274 return unlikely(swp_type(entry) == SWP_MIGRATION_READ); 275 } 276 277 static inline int is_readable_exclusive_migration_entry(swp_entry_t entry) 278 { 279 return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE); 280 } 281 282 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset) 283 { 284 return swp_entry(SWP_MIGRATION_READ, offset); 285 } 286 287 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset) 288 { 289 return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset); 290 } 291 292 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset) 293 { 294 return swp_entry(SWP_MIGRATION_WRITE, offset); 295 } 296 297 /* 298 * Returns whether the host has large enough swap offset field to support 299 * carrying over pgtable A/D bits for page migrations. The result is 300 * pretty much arch specific. 301 */ 302 static inline bool migration_entry_supports_ad(void) 303 { 304 #ifdef CONFIG_SWAP 305 return swap_migration_ad_supported; 306 #else /* CONFIG_SWAP */ 307 return false; 308 #endif /* CONFIG_SWAP */ 309 } 310 311 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry) 312 { 313 if (migration_entry_supports_ad()) 314 return swp_entry(swp_type(entry), 315 swp_offset(entry) | SWP_MIG_YOUNG); 316 return entry; 317 } 318 319 static inline bool is_migration_entry_young(swp_entry_t entry) 320 { 321 if (migration_entry_supports_ad()) 322 return swp_offset(entry) & SWP_MIG_YOUNG; 323 /* Keep the old behavior of aging page after migration */ 324 return false; 325 } 326 327 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry) 328 { 329 if (migration_entry_supports_ad()) 330 return swp_entry(swp_type(entry), 331 swp_offset(entry) | SWP_MIG_DIRTY); 332 return entry; 333 } 334 335 static inline bool is_migration_entry_dirty(swp_entry_t entry) 336 { 337 if (migration_entry_supports_ad()) 338 return swp_offset(entry) & SWP_MIG_DIRTY; 339 /* Keep the old behavior of clean page after migration */ 340 return false; 341 } 342 343 extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 344 spinlock_t *ptl); 345 extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 346 unsigned long address); 347 #ifdef CONFIG_HUGETLB_PAGE 348 extern void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl); 349 extern void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte); 350 #endif /* CONFIG_HUGETLB_PAGE */ 351 #else /* CONFIG_MIGRATION */ 352 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset) 353 { 354 return swp_entry(0, 0); 355 } 356 357 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset) 358 { 359 return swp_entry(0, 0); 360 } 361 362 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset) 363 { 364 return swp_entry(0, 0); 365 } 366 367 static inline int is_migration_entry(swp_entry_t swp) 368 { 369 return 0; 370 } 371 372 static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 373 spinlock_t *ptl) { } 374 static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 375 unsigned long address) { } 376 #ifdef CONFIG_HUGETLB_PAGE 377 static inline void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) { } 378 static inline void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) { } 379 #endif /* CONFIG_HUGETLB_PAGE */ 380 static inline int is_writable_migration_entry(swp_entry_t entry) 381 { 382 return 0; 383 } 384 static inline int is_readable_migration_entry(swp_entry_t entry) 385 { 386 return 0; 387 } 388 389 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry) 390 { 391 return entry; 392 } 393 394 static inline bool is_migration_entry_young(swp_entry_t entry) 395 { 396 return false; 397 } 398 399 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry) 400 { 401 return entry; 402 } 403 404 static inline bool is_migration_entry_dirty(swp_entry_t entry) 405 { 406 return false; 407 } 408 #endif /* CONFIG_MIGRATION */ 409 410 typedef unsigned long pte_marker; 411 412 #define PTE_MARKER_UFFD_WP BIT(0) 413 #define PTE_MARKER_MASK (PTE_MARKER_UFFD_WP) 414 415 static inline swp_entry_t make_pte_marker_entry(pte_marker marker) 416 { 417 return swp_entry(SWP_PTE_MARKER, marker); 418 } 419 420 static inline bool is_pte_marker_entry(swp_entry_t entry) 421 { 422 return swp_type(entry) == SWP_PTE_MARKER; 423 } 424 425 static inline pte_marker pte_marker_get(swp_entry_t entry) 426 { 427 return swp_offset(entry) & PTE_MARKER_MASK; 428 } 429 430 static inline bool is_pte_marker(pte_t pte) 431 { 432 return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte)); 433 } 434 435 static inline pte_t make_pte_marker(pte_marker marker) 436 { 437 return swp_entry_to_pte(make_pte_marker_entry(marker)); 438 } 439 440 /* 441 * This is a special version to check pte_none() just to cover the case when 442 * the pte is a pte marker. It existed because in many cases the pte marker 443 * should be seen as a none pte; it's just that we have stored some information 444 * onto the none pte so it becomes not-none any more. 445 * 446 * It should be used when the pte is file-backed, ram-based and backing 447 * userspace pages, like shmem. It is not needed upon pgtables that do not 448 * support pte markers at all. For example, it's not needed on anonymous 449 * memory, kernel-only memory (including when the system is during-boot), 450 * non-ram based generic file-system. It's fine to be used even there, but the 451 * extra pte marker check will be pure overhead. 452 */ 453 static inline int pte_none_mostly(pte_t pte) 454 { 455 return pte_none(pte) || is_pte_marker(pte); 456 } 457 458 static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry) 459 { 460 struct page *p = pfn_to_page(swp_offset_pfn(entry)); 461 462 /* 463 * Any use of migration entries may only occur while the 464 * corresponding page is locked 465 */ 466 BUG_ON(is_migration_entry(entry) && !PageLocked(p)); 467 468 return p; 469 } 470 471 /* 472 * A pfn swap entry is a special type of swap entry that always has a pfn stored 473 * in the swap offset. They are used to represent unaddressable device memory 474 * and to restrict access to a page undergoing migration. 475 */ 476 static inline bool is_pfn_swap_entry(swp_entry_t entry) 477 { 478 /* Make sure the swp offset can always store the needed fields */ 479 BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS); 480 481 return is_migration_entry(entry) || is_device_private_entry(entry) || 482 is_device_exclusive_entry(entry); 483 } 484 485 struct page_vma_mapped_walk; 486 487 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 488 extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 489 struct page *page); 490 491 extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, 492 struct page *new); 493 494 extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd); 495 496 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) 497 { 498 swp_entry_t arch_entry; 499 500 if (pmd_swp_soft_dirty(pmd)) 501 pmd = pmd_swp_clear_soft_dirty(pmd); 502 if (pmd_swp_uffd_wp(pmd)) 503 pmd = pmd_swp_clear_uffd_wp(pmd); 504 arch_entry = __pmd_to_swp_entry(pmd); 505 return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); 506 } 507 508 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) 509 { 510 swp_entry_t arch_entry; 511 512 arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); 513 return __swp_entry_to_pmd(arch_entry); 514 } 515 516 static inline int is_pmd_migration_entry(pmd_t pmd) 517 { 518 return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd)); 519 } 520 #else /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 521 static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 522 struct page *page) 523 { 524 BUILD_BUG(); 525 } 526 527 static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, 528 struct page *new) 529 { 530 BUILD_BUG(); 531 } 532 533 static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { } 534 535 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) 536 { 537 return swp_entry(0, 0); 538 } 539 540 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) 541 { 542 return __pmd(0); 543 } 544 545 static inline int is_pmd_migration_entry(pmd_t pmd) 546 { 547 return 0; 548 } 549 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 550 551 #ifdef CONFIG_MEMORY_FAILURE 552 553 /* 554 * Support for hardware poisoned pages 555 */ 556 static inline swp_entry_t make_hwpoison_entry(struct page *page) 557 { 558 BUG_ON(!PageLocked(page)); 559 return swp_entry(SWP_HWPOISON, page_to_pfn(page)); 560 } 561 562 static inline int is_hwpoison_entry(swp_entry_t entry) 563 { 564 return swp_type(entry) == SWP_HWPOISON; 565 } 566 567 #else 568 569 static inline swp_entry_t make_hwpoison_entry(struct page *page) 570 { 571 return swp_entry(0, 0); 572 } 573 574 static inline int is_hwpoison_entry(swp_entry_t swp) 575 { 576 return 0; 577 } 578 #endif 579 580 static inline int non_swap_entry(swp_entry_t entry) 581 { 582 return swp_type(entry) >= MAX_SWAPFILES; 583 } 584 585 #endif /* CONFIG_MMU */ 586 #endif /* _LINUX_SWAPOPS_H */ 587