xref: /linux-6.15/include/linux/swapops.h (revision ca92ea3d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SWAPOPS_H
3 #define _LINUX_SWAPOPS_H
4 
5 #include <linux/radix-tree.h>
6 #include <linux/bug.h>
7 #include <linux/mm_types.h>
8 
9 #ifdef CONFIG_MMU
10 
11 #ifdef CONFIG_SWAP
12 #include <linux/swapfile.h>
13 #endif	/* CONFIG_SWAP */
14 
15 /*
16  * swapcache pages are stored in the swapper_space radix tree.  We want to
17  * get good packing density in that tree, so the index should be dense in
18  * the low-order bits.
19  *
20  * We arrange the `type' and `offset' fields so that `type' is at the six
21  * high-order bits of the swp_entry_t and `offset' is right-aligned in the
22  * remaining bits.  Although `type' itself needs only five bits, we allow for
23  * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry().
24  *
25  * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
26  */
27 #define SWP_TYPE_SHIFT	(BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT)
28 #define SWP_OFFSET_MASK	((1UL << SWP_TYPE_SHIFT) - 1)
29 
30 /*
31  * Definitions only for PFN swap entries (see is_pfn_swap_entry()).  To
32  * store PFN, we only need SWP_PFN_BITS bits.  Each of the pfn swap entries
33  * can use the extra bits to store other information besides PFN.
34  */
35 #ifdef MAX_PHYSMEM_BITS
36 #define SWP_PFN_BITS			(MAX_PHYSMEM_BITS - PAGE_SHIFT)
37 #else  /* MAX_PHYSMEM_BITS */
38 #define SWP_PFN_BITS			(BITS_PER_LONG - PAGE_SHIFT)
39 #endif	/* MAX_PHYSMEM_BITS */
40 #define SWP_PFN_MASK			(BIT(SWP_PFN_BITS) - 1)
41 
42 /**
43  * Migration swap entry specific bitfield definitions.  Layout:
44  *
45  *   |----------+--------------------|
46  *   | swp_type | swp_offset         |
47  *   |----------+--------+-+-+-------|
48  *   |          | resv   |D|A|  PFN  |
49  *   |----------+--------+-+-+-------|
50  *
51  * @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A)
52  * @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D)
53  *
54  * Note: A/D bits will be stored in migration entries iff there're enough
55  * free bits in arch specific swp offset.  By default we'll ignore A/D bits
56  * when migrating a page.  Please refer to migration_entry_supports_ad()
57  * for more information.  If there're more bits besides PFN and A/D bits,
58  * they should be reserved and always be zeros.
59  */
60 #define SWP_MIG_YOUNG_BIT		(SWP_PFN_BITS)
61 #define SWP_MIG_DIRTY_BIT		(SWP_PFN_BITS + 1)
62 #define SWP_MIG_TOTAL_BITS		(SWP_PFN_BITS + 2)
63 
64 #define SWP_MIG_YOUNG			BIT(SWP_MIG_YOUNG_BIT)
65 #define SWP_MIG_DIRTY			BIT(SWP_MIG_DIRTY_BIT)
66 
67 static inline bool is_pfn_swap_entry(swp_entry_t entry);
68 
69 /* Clear all flags but only keep swp_entry_t related information */
70 static inline pte_t pte_swp_clear_flags(pte_t pte)
71 {
72 	if (pte_swp_exclusive(pte))
73 		pte = pte_swp_clear_exclusive(pte);
74 	if (pte_swp_soft_dirty(pte))
75 		pte = pte_swp_clear_soft_dirty(pte);
76 	if (pte_swp_uffd_wp(pte))
77 		pte = pte_swp_clear_uffd_wp(pte);
78 	return pte;
79 }
80 
81 /*
82  * Store a type+offset into a swp_entry_t in an arch-independent format
83  */
84 static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
85 {
86 	swp_entry_t ret;
87 
88 	ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK);
89 	return ret;
90 }
91 
92 /*
93  * Extract the `type' field from a swp_entry_t.  The swp_entry_t is in
94  * arch-independent format
95  */
96 static inline unsigned swp_type(swp_entry_t entry)
97 {
98 	return (entry.val >> SWP_TYPE_SHIFT);
99 }
100 
101 /*
102  * Extract the `offset' field from a swp_entry_t.  The swp_entry_t is in
103  * arch-independent format
104  */
105 static inline pgoff_t swp_offset(swp_entry_t entry)
106 {
107 	return entry.val & SWP_OFFSET_MASK;
108 }
109 
110 /*
111  * This should only be called upon a pfn swap entry to get the PFN stored
112  * in the swap entry.  Please refers to is_pfn_swap_entry() for definition
113  * of pfn swap entry.
114  */
115 static inline unsigned long swp_offset_pfn(swp_entry_t entry)
116 {
117 	VM_BUG_ON(!is_pfn_swap_entry(entry));
118 	return swp_offset(entry) & SWP_PFN_MASK;
119 }
120 
121 /* check whether a pte points to a swap entry */
122 static inline int is_swap_pte(pte_t pte)
123 {
124 	return !pte_none(pte) && !pte_present(pte);
125 }
126 
127 /*
128  * Convert the arch-dependent pte representation of a swp_entry_t into an
129  * arch-independent swp_entry_t.
130  */
131 static inline swp_entry_t pte_to_swp_entry(pte_t pte)
132 {
133 	swp_entry_t arch_entry;
134 
135 	pte = pte_swp_clear_flags(pte);
136 	arch_entry = __pte_to_swp_entry(pte);
137 	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
138 }
139 
140 /*
141  * Convert the arch-independent representation of a swp_entry_t into the
142  * arch-dependent pte representation.
143  */
144 static inline pte_t swp_entry_to_pte(swp_entry_t entry)
145 {
146 	swp_entry_t arch_entry;
147 
148 	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
149 	return __swp_entry_to_pte(arch_entry);
150 }
151 
152 static inline swp_entry_t radix_to_swp_entry(void *arg)
153 {
154 	swp_entry_t entry;
155 
156 	entry.val = xa_to_value(arg);
157 	return entry;
158 }
159 
160 static inline void *swp_to_radix_entry(swp_entry_t entry)
161 {
162 	return xa_mk_value(entry.val);
163 }
164 
165 static inline swp_entry_t make_swapin_error_entry(struct page *page)
166 {
167 	return swp_entry(SWP_SWAPIN_ERROR, page_to_pfn(page));
168 }
169 
170 static inline int is_swapin_error_entry(swp_entry_t entry)
171 {
172 	return swp_type(entry) == SWP_SWAPIN_ERROR;
173 }
174 
175 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
176 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
177 {
178 	return swp_entry(SWP_DEVICE_READ, offset);
179 }
180 
181 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
182 {
183 	return swp_entry(SWP_DEVICE_WRITE, offset);
184 }
185 
186 static inline bool is_device_private_entry(swp_entry_t entry)
187 {
188 	int type = swp_type(entry);
189 	return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
190 }
191 
192 static inline bool is_writable_device_private_entry(swp_entry_t entry)
193 {
194 	return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
195 }
196 
197 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
198 {
199 	return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset);
200 }
201 
202 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
203 {
204 	return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset);
205 }
206 
207 static inline bool is_device_exclusive_entry(swp_entry_t entry)
208 {
209 	return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ ||
210 		swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE;
211 }
212 
213 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
214 {
215 	return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE);
216 }
217 #else /* CONFIG_DEVICE_PRIVATE */
218 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
219 {
220 	return swp_entry(0, 0);
221 }
222 
223 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
224 {
225 	return swp_entry(0, 0);
226 }
227 
228 static inline bool is_device_private_entry(swp_entry_t entry)
229 {
230 	return false;
231 }
232 
233 static inline bool is_writable_device_private_entry(swp_entry_t entry)
234 {
235 	return false;
236 }
237 
238 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
239 {
240 	return swp_entry(0, 0);
241 }
242 
243 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
244 {
245 	return swp_entry(0, 0);
246 }
247 
248 static inline bool is_device_exclusive_entry(swp_entry_t entry)
249 {
250 	return false;
251 }
252 
253 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
254 {
255 	return false;
256 }
257 #endif /* CONFIG_DEVICE_PRIVATE */
258 
259 #ifdef CONFIG_MIGRATION
260 static inline int is_migration_entry(swp_entry_t entry)
261 {
262 	return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
263 			swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE ||
264 			swp_type(entry) == SWP_MIGRATION_WRITE);
265 }
266 
267 static inline int is_writable_migration_entry(swp_entry_t entry)
268 {
269 	return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
270 }
271 
272 static inline int is_readable_migration_entry(swp_entry_t entry)
273 {
274 	return unlikely(swp_type(entry) == SWP_MIGRATION_READ);
275 }
276 
277 static inline int is_readable_exclusive_migration_entry(swp_entry_t entry)
278 {
279 	return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE);
280 }
281 
282 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
283 {
284 	return swp_entry(SWP_MIGRATION_READ, offset);
285 }
286 
287 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
288 {
289 	return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset);
290 }
291 
292 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
293 {
294 	return swp_entry(SWP_MIGRATION_WRITE, offset);
295 }
296 
297 /*
298  * Returns whether the host has large enough swap offset field to support
299  * carrying over pgtable A/D bits for page migrations.  The result is
300  * pretty much arch specific.
301  */
302 static inline bool migration_entry_supports_ad(void)
303 {
304 #ifdef CONFIG_SWAP
305 	return swap_migration_ad_supported;
306 #else  /* CONFIG_SWAP */
307 	return false;
308 #endif	/* CONFIG_SWAP */
309 }
310 
311 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
312 {
313 	if (migration_entry_supports_ad())
314 		return swp_entry(swp_type(entry),
315 				 swp_offset(entry) | SWP_MIG_YOUNG);
316 	return entry;
317 }
318 
319 static inline bool is_migration_entry_young(swp_entry_t entry)
320 {
321 	if (migration_entry_supports_ad())
322 		return swp_offset(entry) & SWP_MIG_YOUNG;
323 	/* Keep the old behavior of aging page after migration */
324 	return false;
325 }
326 
327 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
328 {
329 	if (migration_entry_supports_ad())
330 		return swp_entry(swp_type(entry),
331 				 swp_offset(entry) | SWP_MIG_DIRTY);
332 	return entry;
333 }
334 
335 static inline bool is_migration_entry_dirty(swp_entry_t entry)
336 {
337 	if (migration_entry_supports_ad())
338 		return swp_offset(entry) & SWP_MIG_DIRTY;
339 	/* Keep the old behavior of clean page after migration */
340 	return false;
341 }
342 
343 extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
344 					spinlock_t *ptl);
345 extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 					unsigned long address);
347 #ifdef CONFIG_HUGETLB_PAGE
348 extern void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl);
349 extern void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte);
350 #endif	/* CONFIG_HUGETLB_PAGE */
351 #else  /* CONFIG_MIGRATION */
352 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
353 {
354 	return swp_entry(0, 0);
355 }
356 
357 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
358 {
359 	return swp_entry(0, 0);
360 }
361 
362 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
363 {
364 	return swp_entry(0, 0);
365 }
366 
367 static inline int is_migration_entry(swp_entry_t swp)
368 {
369 	return 0;
370 }
371 
372 static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
373 					spinlock_t *ptl) { }
374 static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
375 					 unsigned long address) { }
376 #ifdef CONFIG_HUGETLB_PAGE
377 static inline void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) { }
378 static inline void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) { }
379 #endif	/* CONFIG_HUGETLB_PAGE */
380 static inline int is_writable_migration_entry(swp_entry_t entry)
381 {
382 	return 0;
383 }
384 static inline int is_readable_migration_entry(swp_entry_t entry)
385 {
386 	return 0;
387 }
388 
389 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
390 {
391 	return entry;
392 }
393 
394 static inline bool is_migration_entry_young(swp_entry_t entry)
395 {
396 	return false;
397 }
398 
399 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
400 {
401 	return entry;
402 }
403 
404 static inline bool is_migration_entry_dirty(swp_entry_t entry)
405 {
406 	return false;
407 }
408 #endif	/* CONFIG_MIGRATION */
409 
410 typedef unsigned long pte_marker;
411 
412 #define  PTE_MARKER_UFFD_WP  BIT(0)
413 #define  PTE_MARKER_MASK     (PTE_MARKER_UFFD_WP)
414 
415 static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
416 {
417 	return swp_entry(SWP_PTE_MARKER, marker);
418 }
419 
420 static inline bool is_pte_marker_entry(swp_entry_t entry)
421 {
422 	return swp_type(entry) == SWP_PTE_MARKER;
423 }
424 
425 static inline pte_marker pte_marker_get(swp_entry_t entry)
426 {
427 	return swp_offset(entry) & PTE_MARKER_MASK;
428 }
429 
430 static inline bool is_pte_marker(pte_t pte)
431 {
432 	return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte));
433 }
434 
435 static inline pte_t make_pte_marker(pte_marker marker)
436 {
437 	return swp_entry_to_pte(make_pte_marker_entry(marker));
438 }
439 
440 /*
441  * This is a special version to check pte_none() just to cover the case when
442  * the pte is a pte marker.  It existed because in many cases the pte marker
443  * should be seen as a none pte; it's just that we have stored some information
444  * onto the none pte so it becomes not-none any more.
445  *
446  * It should be used when the pte is file-backed, ram-based and backing
447  * userspace pages, like shmem.  It is not needed upon pgtables that do not
448  * support pte markers at all.  For example, it's not needed on anonymous
449  * memory, kernel-only memory (including when the system is during-boot),
450  * non-ram based generic file-system.  It's fine to be used even there, but the
451  * extra pte marker check will be pure overhead.
452  */
453 static inline int pte_none_mostly(pte_t pte)
454 {
455 	return pte_none(pte) || is_pte_marker(pte);
456 }
457 
458 static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry)
459 {
460 	struct page *p = pfn_to_page(swp_offset_pfn(entry));
461 
462 	/*
463 	 * Any use of migration entries may only occur while the
464 	 * corresponding page is locked
465 	 */
466 	BUG_ON(is_migration_entry(entry) && !PageLocked(p));
467 
468 	return p;
469 }
470 
471 /*
472  * A pfn swap entry is a special type of swap entry that always has a pfn stored
473  * in the swap offset. They are used to represent unaddressable device memory
474  * and to restrict access to a page undergoing migration.
475  */
476 static inline bool is_pfn_swap_entry(swp_entry_t entry)
477 {
478 	/* Make sure the swp offset can always store the needed fields */
479 	BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS);
480 
481 	return is_migration_entry(entry) || is_device_private_entry(entry) ||
482 	       is_device_exclusive_entry(entry);
483 }
484 
485 struct page_vma_mapped_walk;
486 
487 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
488 extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
489 		struct page *page);
490 
491 extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
492 		struct page *new);
493 
494 extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd);
495 
496 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
497 {
498 	swp_entry_t arch_entry;
499 
500 	if (pmd_swp_soft_dirty(pmd))
501 		pmd = pmd_swp_clear_soft_dirty(pmd);
502 	if (pmd_swp_uffd_wp(pmd))
503 		pmd = pmd_swp_clear_uffd_wp(pmd);
504 	arch_entry = __pmd_to_swp_entry(pmd);
505 	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
506 }
507 
508 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
509 {
510 	swp_entry_t arch_entry;
511 
512 	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
513 	return __swp_entry_to_pmd(arch_entry);
514 }
515 
516 static inline int is_pmd_migration_entry(pmd_t pmd)
517 {
518 	return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd));
519 }
520 #else  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
521 static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
522 		struct page *page)
523 {
524 	BUILD_BUG();
525 }
526 
527 static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
528 		struct page *new)
529 {
530 	BUILD_BUG();
531 }
532 
533 static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { }
534 
535 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
536 {
537 	return swp_entry(0, 0);
538 }
539 
540 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
541 {
542 	return __pmd(0);
543 }
544 
545 static inline int is_pmd_migration_entry(pmd_t pmd)
546 {
547 	return 0;
548 }
549 #endif  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
550 
551 #ifdef CONFIG_MEMORY_FAILURE
552 
553 /*
554  * Support for hardware poisoned pages
555  */
556 static inline swp_entry_t make_hwpoison_entry(struct page *page)
557 {
558 	BUG_ON(!PageLocked(page));
559 	return swp_entry(SWP_HWPOISON, page_to_pfn(page));
560 }
561 
562 static inline int is_hwpoison_entry(swp_entry_t entry)
563 {
564 	return swp_type(entry) == SWP_HWPOISON;
565 }
566 
567 #else
568 
569 static inline swp_entry_t make_hwpoison_entry(struct page *page)
570 {
571 	return swp_entry(0, 0);
572 }
573 
574 static inline int is_hwpoison_entry(swp_entry_t swp)
575 {
576 	return 0;
577 }
578 #endif
579 
580 static inline int non_swap_entry(swp_entry_t entry)
581 {
582 	return swp_type(entry) >= MAX_SWAPFILES;
583 }
584 
585 #endif /* CONFIG_MMU */
586 #endif /* _LINUX_SWAPOPS_H */
587