1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SWAPOPS_H 3 #define _LINUX_SWAPOPS_H 4 5 #include <linux/radix-tree.h> 6 #include <linux/bug.h> 7 #include <linux/mm_types.h> 8 9 #ifdef CONFIG_MMU 10 11 /* 12 * swapcache pages are stored in the swapper_space radix tree. We want to 13 * get good packing density in that tree, so the index should be dense in 14 * the low-order bits. 15 * 16 * We arrange the `type' and `offset' fields so that `type' is at the six 17 * high-order bits of the swp_entry_t and `offset' is right-aligned in the 18 * remaining bits. Although `type' itself needs only five bits, we allow for 19 * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry(). 20 * 21 * swp_entry_t's are *never* stored anywhere in their arch-dependent format. 22 */ 23 #define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT) 24 #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1) 25 26 /* Clear all flags but only keep swp_entry_t related information */ 27 static inline pte_t pte_swp_clear_flags(pte_t pte) 28 { 29 if (pte_swp_exclusive(pte)) 30 pte = pte_swp_clear_exclusive(pte); 31 if (pte_swp_soft_dirty(pte)) 32 pte = pte_swp_clear_soft_dirty(pte); 33 if (pte_swp_uffd_wp(pte)) 34 pte = pte_swp_clear_uffd_wp(pte); 35 return pte; 36 } 37 38 /* 39 * Store a type+offset into a swp_entry_t in an arch-independent format 40 */ 41 static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset) 42 { 43 swp_entry_t ret; 44 45 ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK); 46 return ret; 47 } 48 49 /* 50 * Extract the `type' field from a swp_entry_t. The swp_entry_t is in 51 * arch-independent format 52 */ 53 static inline unsigned swp_type(swp_entry_t entry) 54 { 55 return (entry.val >> SWP_TYPE_SHIFT); 56 } 57 58 /* 59 * Extract the `offset' field from a swp_entry_t. The swp_entry_t is in 60 * arch-independent format 61 */ 62 static inline pgoff_t swp_offset(swp_entry_t entry) 63 { 64 return entry.val & SWP_OFFSET_MASK; 65 } 66 67 /* check whether a pte points to a swap entry */ 68 static inline int is_swap_pte(pte_t pte) 69 { 70 return !pte_none(pte) && !pte_present(pte); 71 } 72 73 /* 74 * Convert the arch-dependent pte representation of a swp_entry_t into an 75 * arch-independent swp_entry_t. 76 */ 77 static inline swp_entry_t pte_to_swp_entry(pte_t pte) 78 { 79 swp_entry_t arch_entry; 80 81 pte = pte_swp_clear_flags(pte); 82 arch_entry = __pte_to_swp_entry(pte); 83 return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); 84 } 85 86 /* 87 * Convert the arch-independent representation of a swp_entry_t into the 88 * arch-dependent pte representation. 89 */ 90 static inline pte_t swp_entry_to_pte(swp_entry_t entry) 91 { 92 swp_entry_t arch_entry; 93 94 arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); 95 return __swp_entry_to_pte(arch_entry); 96 } 97 98 static inline swp_entry_t radix_to_swp_entry(void *arg) 99 { 100 swp_entry_t entry; 101 102 entry.val = xa_to_value(arg); 103 return entry; 104 } 105 106 static inline void *swp_to_radix_entry(swp_entry_t entry) 107 { 108 return xa_mk_value(entry.val); 109 } 110 111 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) 112 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset) 113 { 114 return swp_entry(SWP_DEVICE_READ, offset); 115 } 116 117 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset) 118 { 119 return swp_entry(SWP_DEVICE_WRITE, offset); 120 } 121 122 static inline bool is_device_private_entry(swp_entry_t entry) 123 { 124 int type = swp_type(entry); 125 return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE; 126 } 127 128 static inline bool is_writable_device_private_entry(swp_entry_t entry) 129 { 130 return unlikely(swp_type(entry) == SWP_DEVICE_WRITE); 131 } 132 133 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset) 134 { 135 return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset); 136 } 137 138 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset) 139 { 140 return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset); 141 } 142 143 static inline bool is_device_exclusive_entry(swp_entry_t entry) 144 { 145 return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ || 146 swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE; 147 } 148 149 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry) 150 { 151 return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE); 152 } 153 #else /* CONFIG_DEVICE_PRIVATE */ 154 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset) 155 { 156 return swp_entry(0, 0); 157 } 158 159 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset) 160 { 161 return swp_entry(0, 0); 162 } 163 164 static inline bool is_device_private_entry(swp_entry_t entry) 165 { 166 return false; 167 } 168 169 static inline bool is_writable_device_private_entry(swp_entry_t entry) 170 { 171 return false; 172 } 173 174 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset) 175 { 176 return swp_entry(0, 0); 177 } 178 179 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset) 180 { 181 return swp_entry(0, 0); 182 } 183 184 static inline bool is_device_exclusive_entry(swp_entry_t entry) 185 { 186 return false; 187 } 188 189 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry) 190 { 191 return false; 192 } 193 #endif /* CONFIG_DEVICE_PRIVATE */ 194 195 #ifdef CONFIG_MIGRATION 196 static inline int is_migration_entry(swp_entry_t entry) 197 { 198 return unlikely(swp_type(entry) == SWP_MIGRATION_READ || 199 swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE || 200 swp_type(entry) == SWP_MIGRATION_WRITE); 201 } 202 203 static inline int is_writable_migration_entry(swp_entry_t entry) 204 { 205 return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE); 206 } 207 208 static inline int is_readable_migration_entry(swp_entry_t entry) 209 { 210 return unlikely(swp_type(entry) == SWP_MIGRATION_READ); 211 } 212 213 static inline int is_readable_exclusive_migration_entry(swp_entry_t entry) 214 { 215 return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE); 216 } 217 218 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset) 219 { 220 return swp_entry(SWP_MIGRATION_READ, offset); 221 } 222 223 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset) 224 { 225 return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset); 226 } 227 228 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset) 229 { 230 return swp_entry(SWP_MIGRATION_WRITE, offset); 231 } 232 233 extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 234 spinlock_t *ptl); 235 extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 236 unsigned long address); 237 extern void migration_entry_wait_huge(struct vm_area_struct *vma, 238 struct mm_struct *mm, pte_t *pte); 239 #else 240 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset) 241 { 242 return swp_entry(0, 0); 243 } 244 245 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset) 246 { 247 return swp_entry(0, 0); 248 } 249 250 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset) 251 { 252 return swp_entry(0, 0); 253 } 254 255 static inline int is_migration_entry(swp_entry_t swp) 256 { 257 return 0; 258 } 259 260 static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 261 spinlock_t *ptl) { } 262 static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 263 unsigned long address) { } 264 static inline void migration_entry_wait_huge(struct vm_area_struct *vma, 265 struct mm_struct *mm, pte_t *pte) { } 266 static inline int is_writable_migration_entry(swp_entry_t entry) 267 { 268 return 0; 269 } 270 static inline int is_readable_migration_entry(swp_entry_t entry) 271 { 272 return 0; 273 } 274 275 #endif 276 277 typedef unsigned long pte_marker; 278 279 #define PTE_MARKER_UFFD_WP BIT(0) 280 #define PTE_MARKER_MASK (PTE_MARKER_UFFD_WP) 281 282 #ifdef CONFIG_PTE_MARKER 283 284 static inline swp_entry_t make_pte_marker_entry(pte_marker marker) 285 { 286 return swp_entry(SWP_PTE_MARKER, marker); 287 } 288 289 static inline bool is_pte_marker_entry(swp_entry_t entry) 290 { 291 return swp_type(entry) == SWP_PTE_MARKER; 292 } 293 294 static inline pte_marker pte_marker_get(swp_entry_t entry) 295 { 296 return swp_offset(entry) & PTE_MARKER_MASK; 297 } 298 299 static inline bool is_pte_marker(pte_t pte) 300 { 301 return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte)); 302 } 303 304 #else /* CONFIG_PTE_MARKER */ 305 306 static inline swp_entry_t make_pte_marker_entry(pte_marker marker) 307 { 308 /* This should never be called if !CONFIG_PTE_MARKER */ 309 WARN_ON_ONCE(1); 310 return swp_entry(0, 0); 311 } 312 313 static inline bool is_pte_marker_entry(swp_entry_t entry) 314 { 315 return false; 316 } 317 318 static inline pte_marker pte_marker_get(swp_entry_t entry) 319 { 320 return 0; 321 } 322 323 static inline bool is_pte_marker(pte_t pte) 324 { 325 return false; 326 } 327 328 #endif /* CONFIG_PTE_MARKER */ 329 330 static inline pte_t make_pte_marker(pte_marker marker) 331 { 332 return swp_entry_to_pte(make_pte_marker_entry(marker)); 333 } 334 335 /* 336 * This is a special version to check pte_none() just to cover the case when 337 * the pte is a pte marker. It existed because in many cases the pte marker 338 * should be seen as a none pte; it's just that we have stored some information 339 * onto the none pte so it becomes not-none any more. 340 * 341 * It should be used when the pte is file-backed, ram-based and backing 342 * userspace pages, like shmem. It is not needed upon pgtables that do not 343 * support pte markers at all. For example, it's not needed on anonymous 344 * memory, kernel-only memory (including when the system is during-boot), 345 * non-ram based generic file-system. It's fine to be used even there, but the 346 * extra pte marker check will be pure overhead. 347 * 348 * For systems configured with !CONFIG_PTE_MARKER this will be automatically 349 * optimized to pte_none(). 350 */ 351 static inline int pte_none_mostly(pte_t pte) 352 { 353 return pte_none(pte) || is_pte_marker(pte); 354 } 355 356 static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry) 357 { 358 struct page *p = pfn_to_page(swp_offset(entry)); 359 360 /* 361 * Any use of migration entries may only occur while the 362 * corresponding page is locked 363 */ 364 BUG_ON(is_migration_entry(entry) && !PageLocked(p)); 365 366 return p; 367 } 368 369 /* 370 * A pfn swap entry is a special type of swap entry that always has a pfn stored 371 * in the swap offset. They are used to represent unaddressable device memory 372 * and to restrict access to a page undergoing migration. 373 */ 374 static inline bool is_pfn_swap_entry(swp_entry_t entry) 375 { 376 return is_migration_entry(entry) || is_device_private_entry(entry) || 377 is_device_exclusive_entry(entry); 378 } 379 380 struct page_vma_mapped_walk; 381 382 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 383 extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 384 struct page *page); 385 386 extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, 387 struct page *new); 388 389 extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd); 390 391 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) 392 { 393 swp_entry_t arch_entry; 394 395 if (pmd_swp_soft_dirty(pmd)) 396 pmd = pmd_swp_clear_soft_dirty(pmd); 397 if (pmd_swp_uffd_wp(pmd)) 398 pmd = pmd_swp_clear_uffd_wp(pmd); 399 arch_entry = __pmd_to_swp_entry(pmd); 400 return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); 401 } 402 403 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) 404 { 405 swp_entry_t arch_entry; 406 407 arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); 408 return __swp_entry_to_pmd(arch_entry); 409 } 410 411 static inline int is_pmd_migration_entry(pmd_t pmd) 412 { 413 return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd)); 414 } 415 #else 416 static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 417 struct page *page) 418 { 419 BUILD_BUG(); 420 } 421 422 static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, 423 struct page *new) 424 { 425 BUILD_BUG(); 426 } 427 428 static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { } 429 430 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) 431 { 432 return swp_entry(0, 0); 433 } 434 435 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) 436 { 437 return __pmd(0); 438 } 439 440 static inline int is_pmd_migration_entry(pmd_t pmd) 441 { 442 return 0; 443 } 444 #endif 445 446 #ifdef CONFIG_MEMORY_FAILURE 447 448 extern atomic_long_t num_poisoned_pages __read_mostly; 449 450 /* 451 * Support for hardware poisoned pages 452 */ 453 static inline swp_entry_t make_hwpoison_entry(struct page *page) 454 { 455 BUG_ON(!PageLocked(page)); 456 return swp_entry(SWP_HWPOISON, page_to_pfn(page)); 457 } 458 459 static inline int is_hwpoison_entry(swp_entry_t entry) 460 { 461 return swp_type(entry) == SWP_HWPOISON; 462 } 463 464 static inline unsigned long hwpoison_entry_to_pfn(swp_entry_t entry) 465 { 466 return swp_offset(entry); 467 } 468 469 static inline void num_poisoned_pages_inc(void) 470 { 471 atomic_long_inc(&num_poisoned_pages); 472 } 473 474 static inline void num_poisoned_pages_dec(void) 475 { 476 atomic_long_dec(&num_poisoned_pages); 477 } 478 479 #else 480 481 static inline swp_entry_t make_hwpoison_entry(struct page *page) 482 { 483 return swp_entry(0, 0); 484 } 485 486 static inline int is_hwpoison_entry(swp_entry_t swp) 487 { 488 return 0; 489 } 490 491 static inline void num_poisoned_pages_inc(void) 492 { 493 } 494 #endif 495 496 static inline int non_swap_entry(swp_entry_t entry) 497 { 498 return swp_type(entry) >= MAX_SWAPFILES; 499 } 500 501 #endif /* CONFIG_MMU */ 502 #endif /* _LINUX_SWAPOPS_H */ 503