xref: /linux-6.15/include/linux/swait.h (revision bb7e5ce7)
1 #ifndef _LINUX_SWAIT_H
2 #define _LINUX_SWAIT_H
3 
4 #include <linux/list.h>
5 #include <linux/stddef.h>
6 #include <linux/spinlock.h>
7 #include <asm/current.h>
8 
9 /*
10  * Simple wait queues
11  *
12  * While these are very similar to the other/complex wait queues (wait.h) the
13  * most important difference is that the simple waitqueue allows for
14  * deterministic behaviour -- IOW it has strictly bounded IRQ and lock hold
15  * times.
16  *
17  * In order to make this so, we had to drop a fair number of features of the
18  * other waitqueue code; notably:
19  *
20  *  - mixing INTERRUPTIBLE and UNINTERRUPTIBLE sleeps on the same waitqueue;
21  *    all wakeups are TASK_NORMAL in order to avoid O(n) lookups for the right
22  *    sleeper state.
23  *
24  *  - the exclusive mode; because this requires preserving the list order
25  *    and this is hard.
26  *
27  *  - custom wake functions; because you cannot give any guarantees about
28  *    random code.
29  *
30  * As a side effect of this; the data structures are slimmer.
31  *
32  * One would recommend using this wait queue where possible.
33  */
34 
35 struct task_struct;
36 
37 struct swait_queue_head {
38 	raw_spinlock_t		lock;
39 	struct list_head	task_list;
40 };
41 
42 struct swait_queue {
43 	struct task_struct	*task;
44 	struct list_head	task_list;
45 };
46 
47 #define __SWAITQUEUE_INITIALIZER(name) {				\
48 	.task		= current,					\
49 	.task_list	= LIST_HEAD_INIT((name).task_list),		\
50 }
51 
52 #define DECLARE_SWAITQUEUE(name)					\
53 	struct swait_queue name = __SWAITQUEUE_INITIALIZER(name)
54 
55 #define __SWAIT_QUEUE_HEAD_INITIALIZER(name) {				\
56 	.lock		= __RAW_SPIN_LOCK_UNLOCKED(name.lock),		\
57 	.task_list	= LIST_HEAD_INIT((name).task_list),		\
58 }
59 
60 #define DECLARE_SWAIT_QUEUE_HEAD(name)					\
61 	struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INITIALIZER(name)
62 
63 extern void __init_swait_queue_head(struct swait_queue_head *q, const char *name,
64 				    struct lock_class_key *key);
65 
66 #define init_swait_queue_head(q)				\
67 	do {							\
68 		static struct lock_class_key __key;		\
69 		__init_swait_queue_head((q), #q, &__key);	\
70 	} while (0)
71 
72 #ifdef CONFIG_LOCKDEP
73 # define __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name)			\
74 	({ init_swait_queue_head(&name); name; })
75 # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name)			\
76 	struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name)
77 #else
78 # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name)			\
79 	DECLARE_SWAIT_QUEUE_HEAD(name)
80 #endif
81 
82 /**
83  * swait_active -- locklessly test for waiters on the queue
84  * @wq: the waitqueue to test for waiters
85  *
86  * returns true if the wait list is not empty
87  *
88  * NOTE: this function is lockless and requires care, incorrect usage _will_
89  * lead to sporadic and non-obvious failure.
90  *
91  * NOTE2: this function has the same above implications as regular waitqueues.
92  *
93  * Use either while holding swait_queue_head::lock or when used for wakeups
94  * with an extra smp_mb() like:
95  *
96  *      CPU0 - waker                    CPU1 - waiter
97  *
98  *                                      for (;;) {
99  *      @cond = true;                     prepare_to_swait(&wq_head, &wait, state);
100  *      smp_mb();                         // smp_mb() from set_current_state()
101  *      if (swait_active(wq_head))        if (@cond)
102  *        wake_up(wq_head);                      break;
103  *                                        schedule();
104  *                                      }
105  *                                      finish_swait(&wq_head, &wait);
106  *
107  * Because without the explicit smp_mb() it's possible for the
108  * swait_active() load to get hoisted over the @cond store such that we'll
109  * observe an empty wait list while the waiter might not observe @cond.
110  * This, in turn, can trigger missing wakeups.
111  *
112  * Also note that this 'optimization' trades a spin_lock() for an smp_mb(),
113  * which (when the lock is uncontended) are of roughly equal cost.
114  */
115 static inline int swait_active(struct swait_queue_head *wq)
116 {
117 	return !list_empty(&wq->task_list);
118 }
119 
120 /**
121  * swq_has_sleeper - check if there are any waiting processes
122  * @wq: the waitqueue to test for waiters
123  *
124  * Returns true if @wq has waiting processes
125  *
126  * Please refer to the comment for swait_active.
127  */
128 static inline bool swq_has_sleeper(struct swait_queue_head *wq)
129 {
130 	/*
131 	 * We need to be sure we are in sync with the list_add()
132 	 * modifications to the wait queue (task_list).
133 	 *
134 	 * This memory barrier should be paired with one on the
135 	 * waiting side.
136 	 */
137 	smp_mb();
138 	return swait_active(wq);
139 }
140 
141 extern void swake_up(struct swait_queue_head *q);
142 extern void swake_up_all(struct swait_queue_head *q);
143 extern void swake_up_locked(struct swait_queue_head *q);
144 
145 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
146 extern void prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait, int state);
147 extern long prepare_to_swait_event(struct swait_queue_head *q, struct swait_queue *wait, int state);
148 
149 extern void __finish_swait(struct swait_queue_head *q, struct swait_queue *wait);
150 extern void finish_swait(struct swait_queue_head *q, struct swait_queue *wait);
151 
152 /* as per ___wait_event() but for swait, therefore "exclusive == 0" */
153 #define ___swait_event(wq, condition, state, ret, cmd)			\
154 ({									\
155 	struct swait_queue __wait;					\
156 	long __ret = ret;						\
157 									\
158 	INIT_LIST_HEAD(&__wait.task_list);				\
159 	for (;;) {							\
160 		long __int = prepare_to_swait_event(&wq, &__wait, state);\
161 									\
162 		if (condition)						\
163 			break;						\
164 									\
165 		if (___wait_is_interruptible(state) && __int) {		\
166 			__ret = __int;					\
167 			break;						\
168 		}							\
169 									\
170 		cmd;							\
171 	}								\
172 	finish_swait(&wq, &__wait);					\
173 	__ret;								\
174 })
175 
176 #define __swait_event(wq, condition)					\
177 	(void)___swait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0,	\
178 			    schedule())
179 
180 #define swait_event(wq, condition)					\
181 do {									\
182 	if (condition)							\
183 		break;							\
184 	__swait_event(wq, condition);					\
185 } while (0)
186 
187 #define __swait_event_timeout(wq, condition, timeout)			\
188 	___swait_event(wq, ___wait_cond_timeout(condition),		\
189 		      TASK_UNINTERRUPTIBLE, timeout,			\
190 		      __ret = schedule_timeout(__ret))
191 
192 #define swait_event_timeout(wq, condition, timeout)			\
193 ({									\
194 	long __ret = timeout;						\
195 	if (!___wait_cond_timeout(condition))				\
196 		__ret = __swait_event_timeout(wq, condition, timeout);	\
197 	__ret;								\
198 })
199 
200 #define __swait_event_interruptible(wq, condition)			\
201 	___swait_event(wq, condition, TASK_INTERRUPTIBLE, 0,		\
202 		      schedule())
203 
204 #define swait_event_interruptible(wq, condition)			\
205 ({									\
206 	int __ret = 0;							\
207 	if (!(condition))						\
208 		__ret = __swait_event_interruptible(wq, condition);	\
209 	__ret;								\
210 })
211 
212 #define __swait_event_interruptible_timeout(wq, condition, timeout)	\
213 	___swait_event(wq, ___wait_cond_timeout(condition),		\
214 		      TASK_INTERRUPTIBLE, timeout,			\
215 		      __ret = schedule_timeout(__ret))
216 
217 #define swait_event_interruptible_timeout(wq, condition, timeout)	\
218 ({									\
219 	long __ret = timeout;						\
220 	if (!___wait_cond_timeout(condition))				\
221 		__ret = __swait_event_interruptible_timeout(wq,		\
222 						condition, timeout);	\
223 	__ret;								\
224 })
225 
226 #define __swait_event_idle(wq, condition)				\
227 	(void)___swait_event(wq, condition, TASK_IDLE, 0, schedule())
228 
229 /**
230  * swait_event_idle - wait without system load contribution
231  * @wq: the waitqueue to wait on
232  * @condition: a C expression for the event to wait for
233  *
234  * The process is put to sleep (TASK_IDLE) until the @condition evaluates to
235  * true. The @condition is checked each time the waitqueue @wq is woken up.
236  *
237  * This function is mostly used when a kthread or workqueue waits for some
238  * condition and doesn't want to contribute to system load. Signals are
239  * ignored.
240  */
241 #define swait_event_idle(wq, condition)					\
242 do {									\
243 	if (condition)							\
244 		break;							\
245 	__swait_event_idle(wq, condition);				\
246 } while (0)
247 
248 #define __swait_event_idle_timeout(wq, condition, timeout)		\
249 	___swait_event(wq, ___wait_cond_timeout(condition),		\
250 		       TASK_IDLE, timeout,				\
251 		       __ret = schedule_timeout(__ret))
252 
253 /**
254  * swait_event_idle_timeout - wait up to timeout without load contribution
255  * @wq: the waitqueue to wait on
256  * @condition: a C expression for the event to wait for
257  * @timeout: timeout at which we'll give up in jiffies
258  *
259  * The process is put to sleep (TASK_IDLE) until the @condition evaluates to
260  * true. The @condition is checked each time the waitqueue @wq is woken up.
261  *
262  * This function is mostly used when a kthread or workqueue waits for some
263  * condition and doesn't want to contribute to system load. Signals are
264  * ignored.
265  *
266  * Returns:
267  * 0 if the @condition evaluated to %false after the @timeout elapsed,
268  * 1 if the @condition evaluated to %true after the @timeout elapsed,
269  * or the remaining jiffies (at least 1) if the @condition evaluated
270  * to %true before the @timeout elapsed.
271  */
272 #define swait_event_idle_timeout(wq, condition, timeout)		\
273 ({									\
274 	long __ret = timeout;						\
275 	if (!___wait_cond_timeout(condition))				\
276 		__ret = __swait_event_idle_timeout(wq,			\
277 						   condition, timeout);	\
278 	__ret;								\
279 })
280 
281 #endif /* _LINUX_SWAIT_H */
282