xref: /linux-6.15/include/linux/spi/spi.h (revision 8564c315)
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/bits.h>
10 #include <linux/device.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/slab.h>
13 #include <linux/kthread.h>
14 #include <linux/completion.h>
15 #include <linux/scatterlist.h>
16 #include <linux/gpio/consumer.h>
17 
18 #include <uapi/linux/spi/spi.h>
19 #include <linux/acpi.h>
20 #include <linux/u64_stats_sync.h>
21 
22 struct dma_chan;
23 struct software_node;
24 struct ptp_system_timestamp;
25 struct spi_controller;
26 struct spi_transfer;
27 struct spi_controller_mem_ops;
28 struct spi_controller_mem_caps;
29 struct spi_message;
30 
31 /*
32  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
33  * and SPI infrastructure.
34  */
35 extern struct bus_type spi_bus_type;
36 
37 /**
38  * struct spi_statistics - statistics for spi transfers
39  * @syncp:         seqcount to protect members in this struct for per-cpu udate
40  *                 on 32-bit systems
41  *
42  * @messages:      number of spi-messages handled
43  * @transfers:     number of spi_transfers handled
44  * @errors:        number of errors during spi_transfer
45  * @timedout:      number of timeouts during spi_transfer
46  *
47  * @spi_sync:      number of times spi_sync is used
48  * @spi_sync_immediate:
49  *                 number of times spi_sync is executed immediately
50  *                 in calling context without queuing and scheduling
51  * @spi_async:     number of times spi_async is used
52  *
53  * @bytes:         number of bytes transferred to/from device
54  * @bytes_tx:      number of bytes sent to device
55  * @bytes_rx:      number of bytes received from device
56  *
57  * @transfer_bytes_histo:
58  *                 transfer bytes histogramm
59  *
60  * @transfers_split_maxsize:
61  *                 number of transfers that have been split because of
62  *                 maxsize limit
63  */
64 struct spi_statistics {
65 	struct u64_stats_sync	syncp;
66 
67 	u64_stats_t		messages;
68 	u64_stats_t		transfers;
69 	u64_stats_t		errors;
70 	u64_stats_t		timedout;
71 
72 	u64_stats_t		spi_sync;
73 	u64_stats_t		spi_sync_immediate;
74 	u64_stats_t		spi_async;
75 
76 	u64_stats_t		bytes;
77 	u64_stats_t		bytes_rx;
78 	u64_stats_t		bytes_tx;
79 
80 #define SPI_STATISTICS_HISTO_SIZE 17
81 	u64_stats_t	transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
82 
83 	u64_stats_t	transfers_split_maxsize;
84 };
85 
86 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count)		\
87 	do {								\
88 		struct spi_statistics *__lstats;			\
89 		get_cpu();						\
90 		__lstats = this_cpu_ptr(pcpu_stats);			\
91 		u64_stats_update_begin(&__lstats->syncp);		\
92 		u64_stats_add(&__lstats->field, count);			\
93 		u64_stats_update_end(&__lstats->syncp);			\
94 		put_cpu();						\
95 	} while (0)
96 
97 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field)		\
98 	do {								\
99 		struct spi_statistics *__lstats;			\
100 		get_cpu();						\
101 		__lstats = this_cpu_ptr(pcpu_stats);			\
102 		u64_stats_update_begin(&__lstats->syncp);		\
103 		u64_stats_inc(&__lstats->field);			\
104 		u64_stats_update_end(&__lstats->syncp);			\
105 		put_cpu();						\
106 	} while (0)
107 
108 /**
109  * struct spi_delay - SPI delay information
110  * @value: Value for the delay
111  * @unit: Unit for the delay
112  */
113 struct spi_delay {
114 #define SPI_DELAY_UNIT_USECS	0
115 #define SPI_DELAY_UNIT_NSECS	1
116 #define SPI_DELAY_UNIT_SCK	2
117 	u16	value;
118 	u8	unit;
119 };
120 
121 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
122 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
123 extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
124 						  struct spi_transfer *xfer);
125 
126 /**
127  * struct spi_device - Controller side proxy for an SPI slave device
128  * @dev: Driver model representation of the device.
129  * @controller: SPI controller used with the device.
130  * @master: Copy of controller, for backwards compatibility.
131  * @max_speed_hz: Maximum clock rate to be used with this chip
132  *	(on this board); may be changed by the device's driver.
133  *	The spi_transfer.speed_hz can override this for each transfer.
134  * @chip_select: Chipselect, distinguishing chips handled by @controller.
135  * @mode: The spi mode defines how data is clocked out and in.
136  *	This may be changed by the device's driver.
137  *	The "active low" default for chipselect mode can be overridden
138  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
139  *	each word in a transfer (by specifying SPI_LSB_FIRST).
140  * @bits_per_word: Data transfers involve one or more words; word sizes
141  *	like eight or 12 bits are common.  In-memory wordsizes are
142  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
143  *	This may be changed by the device's driver, or left at the
144  *	default (0) indicating protocol words are eight bit bytes.
145  *	The spi_transfer.bits_per_word can override this for each transfer.
146  * @rt: Make the pump thread real time priority.
147  * @irq: Negative, or the number passed to request_irq() to receive
148  *	interrupts from this device.
149  * @controller_state: Controller's runtime state
150  * @controller_data: Board-specific definitions for controller, such as
151  *	FIFO initialization parameters; from board_info.controller_data
152  * @modalias: Name of the driver to use with this device, or an alias
153  *	for that name.  This appears in the sysfs "modalias" attribute
154  *	for driver coldplugging, and in uevents used for hotplugging
155  * @driver_override: If the name of a driver is written to this attribute, then
156  *	the device will bind to the named driver and only the named driver.
157  *	Do not set directly, because core frees it; use driver_set_override() to
158  *	set or clear it.
159  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
160  *	not using a GPIO line)
161  * @word_delay: delay to be inserted between consecutive
162  *	words of a transfer
163  * @cs_setup: delay to be introduced by the controller after CS is asserted
164  * @cs_hold: delay to be introduced by the controller before CS is deasserted
165  * @cs_inactive: delay to be introduced by the controller after CS is
166  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
167  *	two delays will be added up.
168  * @pcpu_statistics: statistics for the spi_device
169  *
170  * A @spi_device is used to interchange data between an SPI slave
171  * (usually a discrete chip) and CPU memory.
172  *
173  * In @dev, the platform_data is used to hold information about this
174  * device that's meaningful to the device's protocol driver, but not
175  * to its controller.  One example might be an identifier for a chip
176  * variant with slightly different functionality; another might be
177  * information about how this particular board wires the chip's pins.
178  */
179 struct spi_device {
180 	struct device		dev;
181 	struct spi_controller	*controller;
182 	struct spi_controller	*master;	/* Compatibility layer */
183 	u32			max_speed_hz;
184 	u8			chip_select;
185 	u8			bits_per_word;
186 	bool			rt;
187 #define SPI_NO_TX		BIT(31)		/* No transmit wire */
188 #define SPI_NO_RX		BIT(30)		/* No receive wire */
189 	/*
190 	 * TPM specification defines flow control over SPI. Client device
191 	 * can insert a wait state on MISO when address is transmitted by
192 	 * controller on MOSI. Detecting the wait state in software is only
193 	 * possible for full duplex controllers. For controllers that support
194 	 * only half-duplex, the wait state detection needs to be implemented
195 	 * in hardware. TPM devices would set this flag when hardware flow
196 	 * control is expected from SPI controller.
197 	 */
198 #define SPI_TPM_HW_FLOW		BIT(29)		/* TPM HW flow control */
199 	/*
200 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
201 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
202 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
203 	 * The bits defined here are from bit 31 downwards, while in
204 	 * SPI_MODE_USER_MASK are from 0 upwards.
205 	 * These bits must not overlap. A static assert check should make sure of that.
206 	 * If adding extra bits, make sure to decrease the bit index below as well.
207 	 */
208 #define SPI_MODE_KERNEL_MASK	(~(BIT(29) - 1))
209 	u32			mode;
210 	int			irq;
211 	void			*controller_state;
212 	void			*controller_data;
213 	char			modalias[SPI_NAME_SIZE];
214 	const char		*driver_override;
215 	struct gpio_desc	*cs_gpiod;	/* Chip select gpio desc */
216 	struct spi_delay	word_delay; /* Inter-word delay */
217 	/* CS delays */
218 	struct spi_delay	cs_setup;
219 	struct spi_delay	cs_hold;
220 	struct spi_delay	cs_inactive;
221 
222 	/* The statistics */
223 	struct spi_statistics __percpu	*pcpu_statistics;
224 
225 	/*
226 	 * likely need more hooks for more protocol options affecting how
227 	 * the controller talks to each chip, like:
228 	 *  - memory packing (12 bit samples into low bits, others zeroed)
229 	 *  - priority
230 	 *  - chipselect delays
231 	 *  - ...
232 	 */
233 };
234 
235 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
236 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
237 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
238 
239 static inline struct spi_device *to_spi_device(const struct device *dev)
240 {
241 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
242 }
243 
244 /* Most drivers won't need to care about device refcounting */
245 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
246 {
247 	return (spi && get_device(&spi->dev)) ? spi : NULL;
248 }
249 
250 static inline void spi_dev_put(struct spi_device *spi)
251 {
252 	if (spi)
253 		put_device(&spi->dev);
254 }
255 
256 /* ctldata is for the bus_controller driver's runtime state */
257 static inline void *spi_get_ctldata(const struct spi_device *spi)
258 {
259 	return spi->controller_state;
260 }
261 
262 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
263 {
264 	spi->controller_state = state;
265 }
266 
267 /* Device driver data */
268 
269 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
270 {
271 	dev_set_drvdata(&spi->dev, data);
272 }
273 
274 static inline void *spi_get_drvdata(const struct spi_device *spi)
275 {
276 	return dev_get_drvdata(&spi->dev);
277 }
278 
279 static inline u8 spi_get_chipselect(const struct spi_device *spi, u8 idx)
280 {
281 	return spi->chip_select;
282 }
283 
284 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect)
285 {
286 	spi->chip_select = chipselect;
287 }
288 
289 static inline struct gpio_desc *spi_get_csgpiod(const struct spi_device *spi, u8 idx)
290 {
291 	return spi->cs_gpiod;
292 }
293 
294 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod)
295 {
296 	spi->cs_gpiod = csgpiod;
297 }
298 
299 /**
300  * struct spi_driver - Host side "protocol" driver
301  * @id_table: List of SPI devices supported by this driver
302  * @probe: Binds this driver to the spi device.  Drivers can verify
303  *	that the device is actually present, and may need to configure
304  *	characteristics (such as bits_per_word) which weren't needed for
305  *	the initial configuration done during system setup.
306  * @remove: Unbinds this driver from the spi device
307  * @shutdown: Standard shutdown callback used during system state
308  *	transitions such as powerdown/halt and kexec
309  * @driver: SPI device drivers should initialize the name and owner
310  *	field of this structure.
311  *
312  * This represents the kind of device driver that uses SPI messages to
313  * interact with the hardware at the other end of a SPI link.  It's called
314  * a "protocol" driver because it works through messages rather than talking
315  * directly to SPI hardware (which is what the underlying SPI controller
316  * driver does to pass those messages).  These protocols are defined in the
317  * specification for the device(s) supported by the driver.
318  *
319  * As a rule, those device protocols represent the lowest level interface
320  * supported by a driver, and it will support upper level interfaces too.
321  * Examples of such upper levels include frameworks like MTD, networking,
322  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
323  */
324 struct spi_driver {
325 	const struct spi_device_id *id_table;
326 	int			(*probe)(struct spi_device *spi);
327 	void			(*remove)(struct spi_device *spi);
328 	void			(*shutdown)(struct spi_device *spi);
329 	struct device_driver	driver;
330 };
331 
332 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
333 {
334 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
335 }
336 
337 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
338 
339 /**
340  * spi_unregister_driver - reverse effect of spi_register_driver
341  * @sdrv: the driver to unregister
342  * Context: can sleep
343  */
344 static inline void spi_unregister_driver(struct spi_driver *sdrv)
345 {
346 	if (sdrv)
347 		driver_unregister(&sdrv->driver);
348 }
349 
350 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
351 
352 /* Use a define to avoid include chaining to get THIS_MODULE */
353 #define spi_register_driver(driver) \
354 	__spi_register_driver(THIS_MODULE, driver)
355 
356 /**
357  * module_spi_driver() - Helper macro for registering a SPI driver
358  * @__spi_driver: spi_driver struct
359  *
360  * Helper macro for SPI drivers which do not do anything special in module
361  * init/exit. This eliminates a lot of boilerplate. Each module may only
362  * use this macro once, and calling it replaces module_init() and module_exit()
363  */
364 #define module_spi_driver(__spi_driver) \
365 	module_driver(__spi_driver, spi_register_driver, \
366 			spi_unregister_driver)
367 
368 /**
369  * struct spi_controller - interface to SPI master or slave controller
370  * @dev: device interface to this driver
371  * @list: link with the global spi_controller list
372  * @bus_num: board-specific (and often SOC-specific) identifier for a
373  *	given SPI controller.
374  * @num_chipselect: chipselects are used to distinguish individual
375  *	SPI slaves, and are numbered from zero to num_chipselects.
376  *	each slave has a chipselect signal, but it's common that not
377  *	every chipselect is connected to a slave.
378  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
379  * @mode_bits: flags understood by this controller driver
380  * @buswidth_override_bits: flags to override for this controller driver
381  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
382  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
383  *	supported. If set, the SPI core will reject any transfer with an
384  *	unsupported bits_per_word. If not set, this value is simply ignored,
385  *	and it's up to the individual driver to perform any validation.
386  * @min_speed_hz: Lowest supported transfer speed
387  * @max_speed_hz: Highest supported transfer speed
388  * @flags: other constraints relevant to this driver
389  * @slave: indicates that this is an SPI slave controller
390  * @target: indicates that this is an SPI target controller
391  * @devm_allocated: whether the allocation of this struct is devres-managed
392  * @max_transfer_size: function that returns the max transfer size for
393  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
394  * @max_message_size: function that returns the max message size for
395  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
396  * @io_mutex: mutex for physical bus access
397  * @add_lock: mutex to avoid adding devices to the same chipselect
398  * @bus_lock_spinlock: spinlock for SPI bus locking
399  * @bus_lock_mutex: mutex for exclusion of multiple callers
400  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
401  * @setup: updates the device mode and clocking records used by a
402  *	device's SPI controller; protocol code may call this.  This
403  *	must fail if an unrecognized or unsupported mode is requested.
404  *	It's always safe to call this unless transfers are pending on
405  *	the device whose settings are being modified.
406  * @set_cs_timing: optional hook for SPI devices to request SPI master
407  * controller for configuring specific CS setup time, hold time and inactive
408  * delay interms of clock counts
409  * @transfer: adds a message to the controller's transfer queue.
410  * @cleanup: frees controller-specific state
411  * @can_dma: determine whether this controller supports DMA
412  * @dma_map_dev: device which can be used for DMA mapping
413  * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
414  * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
415  * @queued: whether this controller is providing an internal message queue
416  * @kworker: pointer to thread struct for message pump
417  * @pump_messages: work struct for scheduling work to the message pump
418  * @queue_lock: spinlock to syncronise access to message queue
419  * @queue: message queue
420  * @cur_msg: the currently in-flight message
421  * @cur_msg_completion: a completion for the current in-flight message
422  * @cur_msg_incomplete: Flag used internally to opportunistically skip
423  *	the @cur_msg_completion. This flag is used to check if the driver has
424  *	already called spi_finalize_current_message().
425  * @cur_msg_need_completion: Flag used internally to opportunistically skip
426  *	the @cur_msg_completion. This flag is used to signal the context that
427  *	is running spi_finalize_current_message() that it needs to complete()
428  * @cur_msg_mapped: message has been mapped for DMA
429  * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
430  *           selected
431  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
432  * @xfer_completion: used by core transfer_one_message()
433  * @busy: message pump is busy
434  * @running: message pump is running
435  * @rt: whether this queue is set to run as a realtime task
436  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
437  *                   while the hardware is prepared, using the parent
438  *                   device for the spidev
439  * @max_dma_len: Maximum length of a DMA transfer for the device.
440  * @prepare_transfer_hardware: a message will soon arrive from the queue
441  *	so the subsystem requests the driver to prepare the transfer hardware
442  *	by issuing this call
443  * @transfer_one_message: the subsystem calls the driver to transfer a single
444  *	message while queuing transfers that arrive in the meantime. When the
445  *	driver is finished with this message, it must call
446  *	spi_finalize_current_message() so the subsystem can issue the next
447  *	message
448  * @unprepare_transfer_hardware: there are currently no more messages on the
449  *	queue so the subsystem notifies the driver that it may relax the
450  *	hardware by issuing this call
451  *
452  * @set_cs: set the logic level of the chip select line.  May be called
453  *          from interrupt context.
454  * @prepare_message: set up the controller to transfer a single message,
455  *                   for example doing DMA mapping.  Called from threaded
456  *                   context.
457  * @transfer_one: transfer a single spi_transfer.
458  *
459  *                  - return 0 if the transfer is finished,
460  *                  - return 1 if the transfer is still in progress. When
461  *                    the driver is finished with this transfer it must
462  *                    call spi_finalize_current_transfer() so the subsystem
463  *                    can issue the next transfer. Note: transfer_one and
464  *                    transfer_one_message are mutually exclusive; when both
465  *                    are set, the generic subsystem does not call your
466  *                    transfer_one callback.
467  * @handle_err: the subsystem calls the driver to handle an error that occurs
468  *		in the generic implementation of transfer_one_message().
469  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
470  *	     This field is optional and should only be implemented if the
471  *	     controller has native support for memory like operations.
472  * @mem_caps: controller capabilities for the handling of memory operations.
473  * @unprepare_message: undo any work done by prepare_message().
474  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
475  * @target_abort: abort the ongoing transfer request on an SPI target controller
476  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
477  *	number. Any individual value may be NULL for CS lines that
478  *	are not GPIOs (driven by the SPI controller itself).
479  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
480  *	GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
481  *	the cs_gpiod assigned if a GPIO line is found for the chipselect.
482  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
483  *	fill in this field with the first unused native CS, to be used by SPI
484  *	controller drivers that need to drive a native CS when using GPIO CS.
485  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
486  *	spi_register_controller() will validate all native CS (including the
487  *	unused native CS) against this value.
488  * @pcpu_statistics: statistics for the spi_controller
489  * @dma_tx: DMA transmit channel
490  * @dma_rx: DMA receive channel
491  * @dummy_rx: dummy receive buffer for full-duplex devices
492  * @dummy_tx: dummy transmit buffer for full-duplex devices
493  * @fw_translate_cs: If the boot firmware uses different numbering scheme
494  *	what Linux expects, this optional hook can be used to translate
495  *	between the two.
496  * @ptp_sts_supported: If the driver sets this to true, it must provide a
497  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
498  *	moment in time when @spi_transfer->ptp_sts_word_pre and
499  *	@spi_transfer->ptp_sts_word_post were transmitted.
500  *	If the driver does not set this, the SPI core takes the snapshot as
501  *	close to the driver hand-over as possible.
502  * @irq_flags: Interrupt enable state during PTP system timestamping
503  * @fallback: fallback to pio if dma transfer return failure with
504  *	SPI_TRANS_FAIL_NO_START.
505  * @queue_empty: signal green light for opportunistically skipping the queue
506  *	for spi_sync transfers.
507  * @must_async: disable all fast paths in the core
508  *
509  * Each SPI controller can communicate with one or more @spi_device
510  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
511  * but not chip select signals.  Each device may be configured to use a
512  * different clock rate, since those shared signals are ignored unless
513  * the chip is selected.
514  *
515  * The driver for an SPI controller manages access to those devices through
516  * a queue of spi_message transactions, copying data between CPU memory and
517  * an SPI slave device.  For each such message it queues, it calls the
518  * message's completion function when the transaction completes.
519  */
520 struct spi_controller {
521 	struct device	dev;
522 
523 	struct list_head list;
524 
525 	/* Other than negative (== assign one dynamically), bus_num is fully
526 	 * board-specific.  usually that simplifies to being SOC-specific.
527 	 * example:  one SOC has three SPI controllers, numbered 0..2,
528 	 * and one board's schematics might show it using SPI-2.  software
529 	 * would normally use bus_num=2 for that controller.
530 	 */
531 	s16			bus_num;
532 
533 	/* chipselects will be integral to many controllers; some others
534 	 * might use board-specific GPIOs.
535 	 */
536 	u16			num_chipselect;
537 
538 	/* Some SPI controllers pose alignment requirements on DMAable
539 	 * buffers; let protocol drivers know about these requirements.
540 	 */
541 	u16			dma_alignment;
542 
543 	/* spi_device.mode flags understood by this controller driver */
544 	u32			mode_bits;
545 
546 	/* spi_device.mode flags override flags for this controller */
547 	u32			buswidth_override_bits;
548 
549 	/* Bitmask of supported bits_per_word for transfers */
550 	u32			bits_per_word_mask;
551 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
552 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
553 
554 	/* Limits on transfer speed */
555 	u32			min_speed_hz;
556 	u32			max_speed_hz;
557 
558 	/* Other constraints relevant to this driver */
559 	u16			flags;
560 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* Can't do full duplex */
561 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* Can't do buffer read */
562 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* Can't do buffer write */
563 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* Requires rx */
564 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* Requires tx */
565 
566 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
567 
568 	/* Flag indicating if the allocation of this struct is devres-managed */
569 	bool			devm_allocated;
570 
571 	union {
572 		/* Flag indicating this is an SPI slave controller */
573 		bool			slave;
574 		/* Flag indicating this is an SPI target controller */
575 		bool			target;
576 	};
577 
578 	/*
579 	 * on some hardware transfer / message size may be constrained
580 	 * the limit may depend on device transfer settings
581 	 */
582 	size_t (*max_transfer_size)(struct spi_device *spi);
583 	size_t (*max_message_size)(struct spi_device *spi);
584 
585 	/* I/O mutex */
586 	struct mutex		io_mutex;
587 
588 	/* Used to avoid adding the same CS twice */
589 	struct mutex		add_lock;
590 
591 	/* Lock and mutex for SPI bus locking */
592 	spinlock_t		bus_lock_spinlock;
593 	struct mutex		bus_lock_mutex;
594 
595 	/* Flag indicating that the SPI bus is locked for exclusive use */
596 	bool			bus_lock_flag;
597 
598 	/* Setup mode and clock, etc (spi driver may call many times).
599 	 *
600 	 * IMPORTANT:  this may be called when transfers to another
601 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
602 	 * which could break those transfers.
603 	 */
604 	int			(*setup)(struct spi_device *spi);
605 
606 	/*
607 	 * set_cs_timing() method is for SPI controllers that supports
608 	 * configuring CS timing.
609 	 *
610 	 * This hook allows SPI client drivers to request SPI controllers
611 	 * to configure specific CS timing through spi_set_cs_timing() after
612 	 * spi_setup().
613 	 */
614 	int (*set_cs_timing)(struct spi_device *spi);
615 
616 	/* Bidirectional bulk transfers
617 	 *
618 	 * + The transfer() method may not sleep; its main role is
619 	 *   just to add the message to the queue.
620 	 * + For now there's no remove-from-queue operation, or
621 	 *   any other request management
622 	 * + To a given spi_device, message queueing is pure fifo
623 	 *
624 	 * + The controller's main job is to process its message queue,
625 	 *   selecting a chip (for masters), then transferring data
626 	 * + If there are multiple spi_device children, the i/o queue
627 	 *   arbitration algorithm is unspecified (round robin, fifo,
628 	 *   priority, reservations, preemption, etc)
629 	 *
630 	 * + Chipselect stays active during the entire message
631 	 *   (unless modified by spi_transfer.cs_change != 0).
632 	 * + The message transfers use clock and SPI mode parameters
633 	 *   previously established by setup() for this device
634 	 */
635 	int			(*transfer)(struct spi_device *spi,
636 						struct spi_message *mesg);
637 
638 	/* Called on release() to free memory provided by spi_controller */
639 	void			(*cleanup)(struct spi_device *spi);
640 
641 	/*
642 	 * Used to enable core support for DMA handling, if can_dma()
643 	 * exists and returns true then the transfer will be mapped
644 	 * prior to transfer_one() being called.  The driver should
645 	 * not modify or store xfer and dma_tx and dma_rx must be set
646 	 * while the device is prepared.
647 	 */
648 	bool			(*can_dma)(struct spi_controller *ctlr,
649 					   struct spi_device *spi,
650 					   struct spi_transfer *xfer);
651 	struct device *dma_map_dev;
652 	struct device *cur_rx_dma_dev;
653 	struct device *cur_tx_dma_dev;
654 
655 	/*
656 	 * These hooks are for drivers that want to use the generic
657 	 * controller transfer queueing mechanism. If these are used, the
658 	 * transfer() function above must NOT be specified by the driver.
659 	 * Over time we expect SPI drivers to be phased over to this API.
660 	 */
661 	bool				queued;
662 	struct kthread_worker		*kworker;
663 	struct kthread_work		pump_messages;
664 	spinlock_t			queue_lock;
665 	struct list_head		queue;
666 	struct spi_message		*cur_msg;
667 	struct completion               cur_msg_completion;
668 	bool				cur_msg_incomplete;
669 	bool				cur_msg_need_completion;
670 	bool				busy;
671 	bool				running;
672 	bool				rt;
673 	bool				auto_runtime_pm;
674 	bool				cur_msg_mapped;
675 	char				last_cs;
676 	bool				last_cs_mode_high;
677 	bool                            fallback;
678 	struct completion               xfer_completion;
679 	size_t				max_dma_len;
680 
681 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
682 	int (*transfer_one_message)(struct spi_controller *ctlr,
683 				    struct spi_message *mesg);
684 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
685 	int (*prepare_message)(struct spi_controller *ctlr,
686 			       struct spi_message *message);
687 	int (*unprepare_message)(struct spi_controller *ctlr,
688 				 struct spi_message *message);
689 	union {
690 		int (*slave_abort)(struct spi_controller *ctlr);
691 		int (*target_abort)(struct spi_controller *ctlr);
692 	};
693 
694 	/*
695 	 * These hooks are for drivers that use a generic implementation
696 	 * of transfer_one_message() provided by the core.
697 	 */
698 	void (*set_cs)(struct spi_device *spi, bool enable);
699 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
700 			    struct spi_transfer *transfer);
701 	void (*handle_err)(struct spi_controller *ctlr,
702 			   struct spi_message *message);
703 
704 	/* Optimized handlers for SPI memory-like operations. */
705 	const struct spi_controller_mem_ops *mem_ops;
706 	const struct spi_controller_mem_caps *mem_caps;
707 
708 	/* gpio chip select */
709 	struct gpio_desc	**cs_gpiods;
710 	bool			use_gpio_descriptors;
711 	s8			unused_native_cs;
712 	s8			max_native_cs;
713 
714 	/* Statistics */
715 	struct spi_statistics __percpu	*pcpu_statistics;
716 
717 	/* DMA channels for use with core dmaengine helpers */
718 	struct dma_chan		*dma_tx;
719 	struct dma_chan		*dma_rx;
720 
721 	/* Dummy data for full duplex devices */
722 	void			*dummy_rx;
723 	void			*dummy_tx;
724 
725 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
726 
727 	/*
728 	 * Driver sets this field to indicate it is able to snapshot SPI
729 	 * transfers (needed e.g. for reading the time of POSIX clocks)
730 	 */
731 	bool			ptp_sts_supported;
732 
733 	/* Interrupt enable state during PTP system timestamping */
734 	unsigned long		irq_flags;
735 
736 	/* Flag for enabling opportunistic skipping of the queue in spi_sync */
737 	bool			queue_empty;
738 	bool			must_async;
739 };
740 
741 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
742 {
743 	return dev_get_drvdata(&ctlr->dev);
744 }
745 
746 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
747 					      void *data)
748 {
749 	dev_set_drvdata(&ctlr->dev, data);
750 }
751 
752 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
753 {
754 	if (!ctlr || !get_device(&ctlr->dev))
755 		return NULL;
756 	return ctlr;
757 }
758 
759 static inline void spi_controller_put(struct spi_controller *ctlr)
760 {
761 	if (ctlr)
762 		put_device(&ctlr->dev);
763 }
764 
765 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
766 {
767 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
768 }
769 
770 static inline bool spi_controller_is_target(struct spi_controller *ctlr)
771 {
772 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target;
773 }
774 
775 /* PM calls that need to be issued by the driver */
776 extern int spi_controller_suspend(struct spi_controller *ctlr);
777 extern int spi_controller_resume(struct spi_controller *ctlr);
778 
779 /* Calls the driver make to interact with the message queue */
780 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
781 extern void spi_finalize_current_message(struct spi_controller *ctlr);
782 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
783 
784 /* Helper calls for driver to timestamp transfer */
785 void spi_take_timestamp_pre(struct spi_controller *ctlr,
786 			    struct spi_transfer *xfer,
787 			    size_t progress, bool irqs_off);
788 void spi_take_timestamp_post(struct spi_controller *ctlr,
789 			     struct spi_transfer *xfer,
790 			     size_t progress, bool irqs_off);
791 
792 /* The spi driver core manages memory for the spi_controller classdev */
793 extern struct spi_controller *__spi_alloc_controller(struct device *host,
794 						unsigned int size, bool slave);
795 
796 static inline struct spi_controller *spi_alloc_master(struct device *host,
797 						      unsigned int size)
798 {
799 	return __spi_alloc_controller(host, size, false);
800 }
801 
802 static inline struct spi_controller *spi_alloc_slave(struct device *host,
803 						     unsigned int size)
804 {
805 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
806 		return NULL;
807 
808 	return __spi_alloc_controller(host, size, true);
809 }
810 
811 static inline struct spi_controller *spi_alloc_host(struct device *dev,
812 						    unsigned int size)
813 {
814 	return __spi_alloc_controller(dev, size, false);
815 }
816 
817 static inline struct spi_controller *spi_alloc_target(struct device *dev,
818 						      unsigned int size)
819 {
820 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
821 		return NULL;
822 
823 	return __spi_alloc_controller(dev, size, true);
824 }
825 
826 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
827 						   unsigned int size,
828 						   bool slave);
829 
830 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
831 							   unsigned int size)
832 {
833 	return __devm_spi_alloc_controller(dev, size, false);
834 }
835 
836 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
837 							  unsigned int size)
838 {
839 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
840 		return NULL;
841 
842 	return __devm_spi_alloc_controller(dev, size, true);
843 }
844 
845 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev,
846 							 unsigned int size)
847 {
848 	return __devm_spi_alloc_controller(dev, size, false);
849 }
850 
851 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev,
852 							   unsigned int size)
853 {
854 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
855 		return NULL;
856 
857 	return __devm_spi_alloc_controller(dev, size, true);
858 }
859 
860 extern int spi_register_controller(struct spi_controller *ctlr);
861 extern int devm_spi_register_controller(struct device *dev,
862 					struct spi_controller *ctlr);
863 extern void spi_unregister_controller(struct spi_controller *ctlr);
864 
865 #if IS_ENABLED(CONFIG_ACPI)
866 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
867 						struct acpi_device *adev,
868 						int index);
869 int acpi_spi_count_resources(struct acpi_device *adev);
870 #endif
871 
872 /*
873  * SPI resource management while processing a SPI message
874  */
875 
876 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
877 				  struct spi_message *msg,
878 				  void *res);
879 
880 /**
881  * struct spi_res - spi resource management structure
882  * @entry:   list entry
883  * @release: release code called prior to freeing this resource
884  * @data:    extra data allocated for the specific use-case
885  *
886  * this is based on ideas from devres, but focused on life-cycle
887  * management during spi_message processing
888  */
889 struct spi_res {
890 	struct list_head        entry;
891 	spi_res_release_t       release;
892 	unsigned long long      data[]; /* Guarantee ull alignment */
893 };
894 
895 /*---------------------------------------------------------------------------*/
896 
897 /*
898  * I/O INTERFACE between SPI controller and protocol drivers
899  *
900  * Protocol drivers use a queue of spi_messages, each transferring data
901  * between the controller and memory buffers.
902  *
903  * The spi_messages themselves consist of a series of read+write transfer
904  * segments.  Those segments always read the same number of bits as they
905  * write; but one or the other is easily ignored by passing a null buffer
906  * pointer.  (This is unlike most types of I/O API, because SPI hardware
907  * is full duplex.)
908  *
909  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
910  * up to the protocol driver, which guarantees the integrity of both (as
911  * well as the data buffers) for as long as the message is queued.
912  */
913 
914 /**
915  * struct spi_transfer - a read/write buffer pair
916  * @tx_buf: data to be written (dma-safe memory), or NULL
917  * @rx_buf: data to be read (dma-safe memory), or NULL
918  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
919  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
920  * @tx_nbits: number of bits used for writing. If 0 the default
921  *      (SPI_NBITS_SINGLE) is used.
922  * @rx_nbits: number of bits used for reading. If 0 the default
923  *      (SPI_NBITS_SINGLE) is used.
924  * @len: size of rx and tx buffers (in bytes)
925  * @speed_hz: Select a speed other than the device default for this
926  *      transfer. If 0 the default (from @spi_device) is used.
927  * @bits_per_word: select a bits_per_word other than the device default
928  *      for this transfer. If 0 the default (from @spi_device) is used.
929  * @dummy_data: indicates transfer is dummy bytes transfer.
930  * @cs_off: performs the transfer with chipselect off.
931  * @cs_change: affects chipselect after this transfer completes
932  * @cs_change_delay: delay between cs deassert and assert when
933  *      @cs_change is set and @spi_transfer is not the last in @spi_message
934  * @delay: delay to be introduced after this transfer before
935  *	(optionally) changing the chipselect status, then starting
936  *	the next transfer or completing this @spi_message.
937  * @word_delay: inter word delay to be introduced after each word size
938  *	(set by bits_per_word) transmission.
939  * @effective_speed_hz: the effective SCK-speed that was used to
940  *      transfer this transfer. Set to 0 if the spi bus driver does
941  *      not support it.
942  * @transfer_list: transfers are sequenced through @spi_message.transfers
943  * @tx_sg: Scatterlist for transmit, currently not for client use
944  * @rx_sg: Scatterlist for receive, currently not for client use
945  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
946  *	within @tx_buf for which the SPI device is requesting that the time
947  *	snapshot for this transfer begins. Upon completing the SPI transfer,
948  *	this value may have changed compared to what was requested, depending
949  *	on the available snapshotting resolution (DMA transfer,
950  *	@ptp_sts_supported is false, etc).
951  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
952  *	that a single byte should be snapshotted).
953  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
954  *	for this controller), it will set @ptp_sts_word_pre to 0, and
955  *	@ptp_sts_word_post to the length of the transfer. This is done
956  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
957  *	that a transfer-level snapshot taken from within the driver may still
958  *	be of higher quality.
959  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
960  *	PTP system timestamp structure may lie. If drivers use PIO or their
961  *	hardware has some sort of assist for retrieving exact transfer timing,
962  *	they can (and should) assert @ptp_sts_supported and populate this
963  *	structure using the ptp_read_system_*ts helper functions.
964  *	The timestamp must represent the time at which the SPI slave device has
965  *	processed the word, i.e. the "pre" timestamp should be taken before
966  *	transmitting the "pre" word, and the "post" timestamp after receiving
967  *	transmit confirmation from the controller for the "post" word.
968  * @timestamped: true if the transfer has been timestamped
969  * @error: Error status logged by spi controller driver.
970  *
971  * SPI transfers always write the same number of bytes as they read.
972  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
973  * In some cases, they may also want to provide DMA addresses for
974  * the data being transferred; that may reduce overhead, when the
975  * underlying driver uses dma.
976  *
977  * If the transmit buffer is null, zeroes will be shifted out
978  * while filling @rx_buf.  If the receive buffer is null, the data
979  * shifted in will be discarded.  Only "len" bytes shift out (or in).
980  * It's an error to try to shift out a partial word.  (For example, by
981  * shifting out three bytes with word size of sixteen or twenty bits;
982  * the former uses two bytes per word, the latter uses four bytes.)
983  *
984  * In-memory data values are always in native CPU byte order, translated
985  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
986  * for example when bits_per_word is sixteen, buffers are 2N bytes long
987  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
988  *
989  * When the word size of the SPI transfer is not a power-of-two multiple
990  * of eight bits, those in-memory words include extra bits.  In-memory
991  * words are always seen by protocol drivers as right-justified, so the
992  * undefined (rx) or unused (tx) bits are always the most significant bits.
993  *
994  * All SPI transfers start with the relevant chipselect active.  Normally
995  * it stays selected until after the last transfer in a message.  Drivers
996  * can affect the chipselect signal using cs_change.
997  *
998  * (i) If the transfer isn't the last one in the message, this flag is
999  * used to make the chipselect briefly go inactive in the middle of the
1000  * message.  Toggling chipselect in this way may be needed to terminate
1001  * a chip command, letting a single spi_message perform all of group of
1002  * chip transactions together.
1003  *
1004  * (ii) When the transfer is the last one in the message, the chip may
1005  * stay selected until the next transfer.  On multi-device SPI busses
1006  * with nothing blocking messages going to other devices, this is just
1007  * a performance hint; starting a message to another device deselects
1008  * this one.  But in other cases, this can be used to ensure correctness.
1009  * Some devices need protocol transactions to be built from a series of
1010  * spi_message submissions, where the content of one message is determined
1011  * by the results of previous messages and where the whole transaction
1012  * ends when the chipselect goes intactive.
1013  *
1014  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
1015  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
1016  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
1017  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
1018  *
1019  * The code that submits an spi_message (and its spi_transfers)
1020  * to the lower layers is responsible for managing its memory.
1021  * Zero-initialize every field you don't set up explicitly, to
1022  * insulate against future API updates.  After you submit a message
1023  * and its transfers, ignore them until its completion callback.
1024  */
1025 struct spi_transfer {
1026 	/* It's ok if tx_buf == rx_buf (right?)
1027 	 * for MicroWire, one buffer must be null
1028 	 * buffers must work with dma_*map_single() calls, unless
1029 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
1030 	 */
1031 	const void	*tx_buf;
1032 	void		*rx_buf;
1033 	unsigned	len;
1034 
1035 #define SPI_TRANS_FAIL_NO_START	BIT(0)
1036 	u16		error;
1037 
1038 	dma_addr_t	tx_dma;
1039 	dma_addr_t	rx_dma;
1040 	struct sg_table tx_sg;
1041 	struct sg_table rx_sg;
1042 
1043 	unsigned	dummy_data:1;
1044 	unsigned	cs_off:1;
1045 	unsigned	cs_change:1;
1046 	unsigned	tx_nbits:3;
1047 	unsigned	rx_nbits:3;
1048 	unsigned	timestamped:1;
1049 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
1050 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
1051 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
1052 	u8		bits_per_word;
1053 	struct spi_delay	delay;
1054 	struct spi_delay	cs_change_delay;
1055 	struct spi_delay	word_delay;
1056 	u32		speed_hz;
1057 
1058 	u32		effective_speed_hz;
1059 
1060 	unsigned int	ptp_sts_word_pre;
1061 	unsigned int	ptp_sts_word_post;
1062 
1063 	struct ptp_system_timestamp *ptp_sts;
1064 
1065 	struct list_head transfer_list;
1066 };
1067 
1068 /**
1069  * struct spi_message - one multi-segment SPI transaction
1070  * @transfers: list of transfer segments in this transaction
1071  * @spi: SPI device to which the transaction is queued
1072  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
1073  *	addresses for each transfer buffer
1074  * @complete: called to report transaction completions
1075  * @context: the argument to complete() when it's called
1076  * @frame_length: the total number of bytes in the message
1077  * @actual_length: the total number of bytes that were transferred in all
1078  *	successful segments
1079  * @status: zero for success, else negative errno
1080  * @queue: for use by whichever driver currently owns the message
1081  * @state: for use by whichever driver currently owns the message
1082  * @resources: for resource management when the spi message is processed
1083  * @prepared: spi_prepare_message was called for the this message
1084  *
1085  * A @spi_message is used to execute an atomic sequence of data transfers,
1086  * each represented by a struct spi_transfer.  The sequence is "atomic"
1087  * in the sense that no other spi_message may use that SPI bus until that
1088  * sequence completes.  On some systems, many such sequences can execute as
1089  * a single programmed DMA transfer.  On all systems, these messages are
1090  * queued, and might complete after transactions to other devices.  Messages
1091  * sent to a given spi_device are always executed in FIFO order.
1092  *
1093  * The code that submits an spi_message (and its spi_transfers)
1094  * to the lower layers is responsible for managing its memory.
1095  * Zero-initialize every field you don't set up explicitly, to
1096  * insulate against future API updates.  After you submit a message
1097  * and its transfers, ignore them until its completion callback.
1098  */
1099 struct spi_message {
1100 	struct list_head	transfers;
1101 
1102 	struct spi_device	*spi;
1103 
1104 	unsigned		is_dma_mapped:1;
1105 
1106 	/* spi_prepare_message() was called for this message */
1107 	bool			prepared;
1108 
1109 	/* REVISIT:  we might want a flag affecting the behavior of the
1110 	 * last transfer ... allowing things like "read 16 bit length L"
1111 	 * immediately followed by "read L bytes".  Basically imposing
1112 	 * a specific message scheduling algorithm.
1113 	 *
1114 	 * Some controller drivers (message-at-a-time queue processing)
1115 	 * could provide that as their default scheduling algorithm.  But
1116 	 * others (with multi-message pipelines) could need a flag to
1117 	 * tell them about such special cases.
1118 	 */
1119 
1120 	/* Completion is reported through a callback */
1121 	int			status;
1122 	void			(*complete)(void *context);
1123 	void			*context;
1124 	unsigned		frame_length;
1125 	unsigned		actual_length;
1126 
1127 	/* For optional use by whatever driver currently owns the
1128 	 * spi_message ...  between calls to spi_async and then later
1129 	 * complete(), that's the spi_controller controller driver.
1130 	 */
1131 	struct list_head	queue;
1132 	void			*state;
1133 
1134 	/* List of spi_res reources when the spi message is processed */
1135 	struct list_head        resources;
1136 };
1137 
1138 static inline void spi_message_init_no_memset(struct spi_message *m)
1139 {
1140 	INIT_LIST_HEAD(&m->transfers);
1141 	INIT_LIST_HEAD(&m->resources);
1142 }
1143 
1144 static inline void spi_message_init(struct spi_message *m)
1145 {
1146 	memset(m, 0, sizeof *m);
1147 	spi_message_init_no_memset(m);
1148 }
1149 
1150 static inline void
1151 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1152 {
1153 	list_add_tail(&t->transfer_list, &m->transfers);
1154 }
1155 
1156 static inline void
1157 spi_transfer_del(struct spi_transfer *t)
1158 {
1159 	list_del(&t->transfer_list);
1160 }
1161 
1162 static inline int
1163 spi_transfer_delay_exec(struct spi_transfer *t)
1164 {
1165 	return spi_delay_exec(&t->delay, t);
1166 }
1167 
1168 /**
1169  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1170  * @m: spi_message to be initialized
1171  * @xfers: An array of spi transfers
1172  * @num_xfers: Number of items in the xfer array
1173  *
1174  * This function initializes the given spi_message and adds each spi_transfer in
1175  * the given array to the message.
1176  */
1177 static inline void
1178 spi_message_init_with_transfers(struct spi_message *m,
1179 struct spi_transfer *xfers, unsigned int num_xfers)
1180 {
1181 	unsigned int i;
1182 
1183 	spi_message_init(m);
1184 	for (i = 0; i < num_xfers; ++i)
1185 		spi_message_add_tail(&xfers[i], m);
1186 }
1187 
1188 /* It's fine to embed message and transaction structures in other data
1189  * structures so long as you don't free them while they're in use.
1190  */
1191 
1192 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1193 {
1194 	struct spi_message *m;
1195 
1196 	m = kzalloc(sizeof(struct spi_message)
1197 			+ ntrans * sizeof(struct spi_transfer),
1198 			flags);
1199 	if (m) {
1200 		unsigned i;
1201 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1202 
1203 		spi_message_init_no_memset(m);
1204 		for (i = 0; i < ntrans; i++, t++)
1205 			spi_message_add_tail(t, m);
1206 	}
1207 	return m;
1208 }
1209 
1210 static inline void spi_message_free(struct spi_message *m)
1211 {
1212 	kfree(m);
1213 }
1214 
1215 extern int spi_setup(struct spi_device *spi);
1216 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1217 extern int spi_slave_abort(struct spi_device *spi);
1218 extern int spi_target_abort(struct spi_device *spi);
1219 
1220 static inline size_t
1221 spi_max_message_size(struct spi_device *spi)
1222 {
1223 	struct spi_controller *ctlr = spi->controller;
1224 
1225 	if (!ctlr->max_message_size)
1226 		return SIZE_MAX;
1227 	return ctlr->max_message_size(spi);
1228 }
1229 
1230 static inline size_t
1231 spi_max_transfer_size(struct spi_device *spi)
1232 {
1233 	struct spi_controller *ctlr = spi->controller;
1234 	size_t tr_max = SIZE_MAX;
1235 	size_t msg_max = spi_max_message_size(spi);
1236 
1237 	if (ctlr->max_transfer_size)
1238 		tr_max = ctlr->max_transfer_size(spi);
1239 
1240 	/* Transfer size limit must not be greater than message size limit */
1241 	return min(tr_max, msg_max);
1242 }
1243 
1244 /**
1245  * spi_is_bpw_supported - Check if bits per word is supported
1246  * @spi: SPI device
1247  * @bpw: Bits per word
1248  *
1249  * This function checks to see if the SPI controller supports @bpw.
1250  *
1251  * Returns:
1252  * True if @bpw is supported, false otherwise.
1253  */
1254 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1255 {
1256 	u32 bpw_mask = spi->master->bits_per_word_mask;
1257 
1258 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1259 		return true;
1260 
1261 	return false;
1262 }
1263 
1264 /**
1265  * spi_controller_xfer_timeout - Compute a suitable timeout value
1266  * @ctlr: SPI device
1267  * @xfer: Transfer descriptor
1268  *
1269  * Compute a relevant timeout value for the given transfer. We derive the time
1270  * that it would take on a single data line and take twice this amount of time
1271  * with a minimum of 500ms to avoid false positives on loaded systems.
1272  *
1273  * Returns: Transfer timeout value in milliseconds.
1274  */
1275 static inline unsigned int spi_controller_xfer_timeout(struct spi_controller *ctlr,
1276 						       struct spi_transfer *xfer)
1277 {
1278 	return max(xfer->len * 8 * 2 / (xfer->speed_hz / 1000), 500U);
1279 }
1280 
1281 /*---------------------------------------------------------------------------*/
1282 
1283 /* SPI transfer replacement methods which make use of spi_res */
1284 
1285 struct spi_replaced_transfers;
1286 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1287 				       struct spi_message *msg,
1288 				       struct spi_replaced_transfers *res);
1289 /**
1290  * struct spi_replaced_transfers - structure describing the spi_transfer
1291  *                                 replacements that have occurred
1292  *                                 so that they can get reverted
1293  * @release:            some extra release code to get executed prior to
1294  *                      relasing this structure
1295  * @extradata:          pointer to some extra data if requested or NULL
1296  * @replaced_transfers: transfers that have been replaced and which need
1297  *                      to get restored
1298  * @replaced_after:     the transfer after which the @replaced_transfers
1299  *                      are to get re-inserted
1300  * @inserted:           number of transfers inserted
1301  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1302  *                      that have been replacing replaced_transfers
1303  *
1304  * note: that @extradata will point to @inserted_transfers[@inserted]
1305  * if some extra allocation is requested, so alignment will be the same
1306  * as for spi_transfers
1307  */
1308 struct spi_replaced_transfers {
1309 	spi_replaced_release_t release;
1310 	void *extradata;
1311 	struct list_head replaced_transfers;
1312 	struct list_head *replaced_after;
1313 	size_t inserted;
1314 	struct spi_transfer inserted_transfers[];
1315 };
1316 
1317 /*---------------------------------------------------------------------------*/
1318 
1319 /* SPI transfer transformation methods */
1320 
1321 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1322 				       struct spi_message *msg,
1323 				       size_t maxsize,
1324 				       gfp_t gfp);
1325 extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
1326 					struct spi_message *msg,
1327 					size_t maxwords,
1328 					gfp_t gfp);
1329 
1330 /*---------------------------------------------------------------------------*/
1331 
1332 /* All these synchronous SPI transfer routines are utilities layered
1333  * over the core async transfer primitive.  Here, "synchronous" means
1334  * they will sleep uninterruptibly until the async transfer completes.
1335  */
1336 
1337 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1338 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1339 extern int spi_bus_lock(struct spi_controller *ctlr);
1340 extern int spi_bus_unlock(struct spi_controller *ctlr);
1341 
1342 /**
1343  * spi_sync_transfer - synchronous SPI data transfer
1344  * @spi: device with which data will be exchanged
1345  * @xfers: An array of spi_transfers
1346  * @num_xfers: Number of items in the xfer array
1347  * Context: can sleep
1348  *
1349  * Does a synchronous SPI data transfer of the given spi_transfer array.
1350  *
1351  * For more specific semantics see spi_sync().
1352  *
1353  * Return: zero on success, else a negative error code.
1354  */
1355 static inline int
1356 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1357 	unsigned int num_xfers)
1358 {
1359 	struct spi_message msg;
1360 
1361 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1362 
1363 	return spi_sync(spi, &msg);
1364 }
1365 
1366 /**
1367  * spi_write - SPI synchronous write
1368  * @spi: device to which data will be written
1369  * @buf: data buffer
1370  * @len: data buffer size
1371  * Context: can sleep
1372  *
1373  * This function writes the buffer @buf.
1374  * Callable only from contexts that can sleep.
1375  *
1376  * Return: zero on success, else a negative error code.
1377  */
1378 static inline int
1379 spi_write(struct spi_device *spi, const void *buf, size_t len)
1380 {
1381 	struct spi_transfer	t = {
1382 			.tx_buf		= buf,
1383 			.len		= len,
1384 		};
1385 
1386 	return spi_sync_transfer(spi, &t, 1);
1387 }
1388 
1389 /**
1390  * spi_read - SPI synchronous read
1391  * @spi: device from which data will be read
1392  * @buf: data buffer
1393  * @len: data buffer size
1394  * Context: can sleep
1395  *
1396  * This function reads the buffer @buf.
1397  * Callable only from contexts that can sleep.
1398  *
1399  * Return: zero on success, else a negative error code.
1400  */
1401 static inline int
1402 spi_read(struct spi_device *spi, void *buf, size_t len)
1403 {
1404 	struct spi_transfer	t = {
1405 			.rx_buf		= buf,
1406 			.len		= len,
1407 		};
1408 
1409 	return spi_sync_transfer(spi, &t, 1);
1410 }
1411 
1412 /* This copies txbuf and rxbuf data; for small transfers only! */
1413 extern int spi_write_then_read(struct spi_device *spi,
1414 		const void *txbuf, unsigned n_tx,
1415 		void *rxbuf, unsigned n_rx);
1416 
1417 /**
1418  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1419  * @spi: device with which data will be exchanged
1420  * @cmd: command to be written before data is read back
1421  * Context: can sleep
1422  *
1423  * Callable only from contexts that can sleep.
1424  *
1425  * Return: the (unsigned) eight bit number returned by the
1426  * device, or else a negative error code.
1427  */
1428 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1429 {
1430 	ssize_t			status;
1431 	u8			result;
1432 
1433 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1434 
1435 	/* Return negative errno or unsigned value */
1436 	return (status < 0) ? status : result;
1437 }
1438 
1439 /**
1440  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1441  * @spi: device with which data will be exchanged
1442  * @cmd: command to be written before data is read back
1443  * Context: can sleep
1444  *
1445  * The number is returned in wire-order, which is at least sometimes
1446  * big-endian.
1447  *
1448  * Callable only from contexts that can sleep.
1449  *
1450  * Return: the (unsigned) sixteen bit number returned by the
1451  * device, or else a negative error code.
1452  */
1453 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1454 {
1455 	ssize_t			status;
1456 	u16			result;
1457 
1458 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1459 
1460 	/* Return negative errno or unsigned value */
1461 	return (status < 0) ? status : result;
1462 }
1463 
1464 /**
1465  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1466  * @spi: device with which data will be exchanged
1467  * @cmd: command to be written before data is read back
1468  * Context: can sleep
1469  *
1470  * This function is similar to spi_w8r16, with the exception that it will
1471  * convert the read 16 bit data word from big-endian to native endianness.
1472  *
1473  * Callable only from contexts that can sleep.
1474  *
1475  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1476  * endianness, or else a negative error code.
1477  */
1478 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1479 
1480 {
1481 	ssize_t status;
1482 	__be16 result;
1483 
1484 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1485 	if (status < 0)
1486 		return status;
1487 
1488 	return be16_to_cpu(result);
1489 }
1490 
1491 /*---------------------------------------------------------------------------*/
1492 
1493 /*
1494  * INTERFACE between board init code and SPI infrastructure.
1495  *
1496  * No SPI driver ever sees these SPI device table segments, but
1497  * it's how the SPI core (or adapters that get hotplugged) grows
1498  * the driver model tree.
1499  *
1500  * As a rule, SPI devices can't be probed.  Instead, board init code
1501  * provides a table listing the devices which are present, with enough
1502  * information to bind and set up the device's driver.  There's basic
1503  * support for nonstatic configurations too; enough to handle adding
1504  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1505  */
1506 
1507 /**
1508  * struct spi_board_info - board-specific template for a SPI device
1509  * @modalias: Initializes spi_device.modalias; identifies the driver.
1510  * @platform_data: Initializes spi_device.platform_data; the particular
1511  *	data stored there is driver-specific.
1512  * @swnode: Software node for the device.
1513  * @controller_data: Initializes spi_device.controller_data; some
1514  *	controllers need hints about hardware setup, e.g. for DMA.
1515  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1516  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1517  *	from the chip datasheet and board-specific signal quality issues.
1518  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1519  *	by spi_new_device(), and otherwise depends on board wiring.
1520  * @chip_select: Initializes spi_device.chip_select; depends on how
1521  *	the board is wired.
1522  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1523  *	wiring (some devices support both 3WIRE and standard modes), and
1524  *	possibly presence of an inverter in the chipselect path.
1525  *
1526  * When adding new SPI devices to the device tree, these structures serve
1527  * as a partial device template.  They hold information which can't always
1528  * be determined by drivers.  Information that probe() can establish (such
1529  * as the default transfer wordsize) is not included here.
1530  *
1531  * These structures are used in two places.  Their primary role is to
1532  * be stored in tables of board-specific device descriptors, which are
1533  * declared early in board initialization and then used (much later) to
1534  * populate a controller's device tree after the that controller's driver
1535  * initializes.  A secondary (and atypical) role is as a parameter to
1536  * spi_new_device() call, which happens after those controller drivers
1537  * are active in some dynamic board configuration models.
1538  */
1539 struct spi_board_info {
1540 	/* The device name and module name are coupled, like platform_bus;
1541 	 * "modalias" is normally the driver name.
1542 	 *
1543 	 * platform_data goes to spi_device.dev.platform_data,
1544 	 * controller_data goes to spi_device.controller_data,
1545 	 * irq is copied too
1546 	 */
1547 	char		modalias[SPI_NAME_SIZE];
1548 	const void	*platform_data;
1549 	const struct software_node *swnode;
1550 	void		*controller_data;
1551 	int		irq;
1552 
1553 	/* Slower signaling on noisy or low voltage boards */
1554 	u32		max_speed_hz;
1555 
1556 
1557 	/* bus_num is board specific and matches the bus_num of some
1558 	 * spi_controller that will probably be registered later.
1559 	 *
1560 	 * chip_select reflects how this chip is wired to that master;
1561 	 * it's less than num_chipselect.
1562 	 */
1563 	u16		bus_num;
1564 	u16		chip_select;
1565 
1566 	/* mode becomes spi_device.mode, and is essential for chips
1567 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1568 	 */
1569 	u32		mode;
1570 
1571 	/* ... may need additional spi_device chip config data here.
1572 	 * avoid stuff protocol drivers can set; but include stuff
1573 	 * needed to behave without being bound to a driver:
1574 	 *  - quirks like clock rate mattering when not selected
1575 	 */
1576 };
1577 
1578 #ifdef	CONFIG_SPI
1579 extern int
1580 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1581 #else
1582 /* Board init code may ignore whether SPI is configured or not */
1583 static inline int
1584 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1585 	{ return 0; }
1586 #endif
1587 
1588 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1589  * use spi_new_device() to describe each device.  You can also call
1590  * spi_unregister_device() to start making that device vanish, but
1591  * normally that would be handled by spi_unregister_controller().
1592  *
1593  * You can also use spi_alloc_device() and spi_add_device() to use a two
1594  * stage registration sequence for each spi_device. This gives the caller
1595  * some more control over the spi_device structure before it is registered,
1596  * but requires that caller to initialize fields that would otherwise
1597  * be defined using the board info.
1598  */
1599 extern struct spi_device *
1600 spi_alloc_device(struct spi_controller *ctlr);
1601 
1602 extern int
1603 spi_add_device(struct spi_device *spi);
1604 
1605 extern struct spi_device *
1606 spi_new_device(struct spi_controller *, struct spi_board_info *);
1607 
1608 extern void spi_unregister_device(struct spi_device *spi);
1609 
1610 extern const struct spi_device_id *
1611 spi_get_device_id(const struct spi_device *sdev);
1612 
1613 extern const void *
1614 spi_get_device_match_data(const struct spi_device *sdev);
1615 
1616 static inline bool
1617 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1618 {
1619 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1620 }
1621 
1622 /* Compatibility layer */
1623 #define spi_master			spi_controller
1624 
1625 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1626 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1627 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1628 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1629 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1630 
1631 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1632 #define spi_master_set_devdata(_ctlr, _data)	\
1633 	spi_controller_set_devdata(_ctlr, _data)
1634 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1635 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1636 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1637 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1638 
1639 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1640 #define devm_spi_register_master(_dev, _ctlr) \
1641 	devm_spi_register_controller(_dev, _ctlr)
1642 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1643 
1644 #endif /* __LINUX_SPI_H */
1645