1 /* 2 * Written by Mark Hemment, 1996 ([email protected]). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11 #ifndef _LINUX_SLAB_H 12 #define _LINUX_SLAB_H 13 14 #include <linux/gfp.h> 15 #include <linux/types.h> 16 #include <linux/workqueue.h> 17 18 19 /* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 22 */ 23 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 24 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30 /* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 */ 65 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 66 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 67 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 68 69 /* Flag to prevent checks on free */ 70 #ifdef CONFIG_DEBUG_OBJECTS 71 # define SLAB_DEBUG_OBJECTS 0x00400000UL 72 #else 73 # define SLAB_DEBUG_OBJECTS 0x00000000UL 74 #endif 75 76 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 77 78 /* Don't track use of uninitialized memory */ 79 #ifdef CONFIG_KMEMCHECK 80 # define SLAB_NOTRACK 0x01000000UL 81 #else 82 # define SLAB_NOTRACK 0x00000000UL 83 #endif 84 #ifdef CONFIG_FAILSLAB 85 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 86 #else 87 # define SLAB_FAILSLAB 0x00000000UL 88 #endif 89 90 /* The following flags affect the page allocator grouping pages by mobility */ 91 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 92 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 93 /* 94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 95 * 96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 97 * 98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 99 * Both make kfree a no-op. 100 */ 101 #define ZERO_SIZE_PTR ((void *)16) 102 103 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 104 (unsigned long)ZERO_SIZE_PTR) 105 106 #include <linux/kmemleak.h> 107 #include <linux/kasan.h> 108 109 struct mem_cgroup; 110 /* 111 * struct kmem_cache related prototypes 112 */ 113 void __init kmem_cache_init(void); 114 bool slab_is_available(void); 115 116 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 117 unsigned long, 118 void (*)(void *)); 119 void kmem_cache_destroy(struct kmem_cache *); 120 int kmem_cache_shrink(struct kmem_cache *); 121 122 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 123 void memcg_deactivate_kmem_caches(struct mem_cgroup *); 124 void memcg_destroy_kmem_caches(struct mem_cgroup *); 125 126 /* 127 * Please use this macro to create slab caches. Simply specify the 128 * name of the structure and maybe some flags that are listed above. 129 * 130 * The alignment of the struct determines object alignment. If you 131 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 132 * then the objects will be properly aligned in SMP configurations. 133 */ 134 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 135 sizeof(struct __struct), __alignof__(struct __struct),\ 136 (__flags), NULL) 137 138 /* 139 * Common kmalloc functions provided by all allocators 140 */ 141 void * __must_check __krealloc(const void *, size_t, gfp_t); 142 void * __must_check krealloc(const void *, size_t, gfp_t); 143 void kfree(const void *); 144 void kzfree(const void *); 145 size_t ksize(const void *); 146 147 /* 148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 149 * alignment larger than the alignment of a 64-bit integer. 150 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 151 */ 152 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 153 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 154 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 155 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 156 #else 157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 158 #endif 159 160 /* 161 * Kmalloc array related definitions 162 */ 163 164 #ifdef CONFIG_SLAB 165 /* 166 * The largest kmalloc size supported by the SLAB allocators is 167 * 32 megabyte (2^25) or the maximum allocatable page order if that is 168 * less than 32 MB. 169 * 170 * WARNING: Its not easy to increase this value since the allocators have 171 * to do various tricks to work around compiler limitations in order to 172 * ensure proper constant folding. 173 */ 174 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 175 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 176 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 177 #ifndef KMALLOC_SHIFT_LOW 178 #define KMALLOC_SHIFT_LOW 5 179 #endif 180 #endif 181 182 #ifdef CONFIG_SLUB 183 /* 184 * SLUB directly allocates requests fitting in to an order-1 page 185 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 186 */ 187 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 188 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 189 #ifndef KMALLOC_SHIFT_LOW 190 #define KMALLOC_SHIFT_LOW 3 191 #endif 192 #endif 193 194 #ifdef CONFIG_SLOB 195 /* 196 * SLOB passes all requests larger than one page to the page allocator. 197 * No kmalloc array is necessary since objects of different sizes can 198 * be allocated from the same page. 199 */ 200 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT 201 #define KMALLOC_SHIFT_MAX 30 202 #ifndef KMALLOC_SHIFT_LOW 203 #define KMALLOC_SHIFT_LOW 3 204 #endif 205 #endif 206 207 /* Maximum allocatable size */ 208 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 209 /* Maximum size for which we actually use a slab cache */ 210 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 211 /* Maximum order allocatable via the slab allocagtor */ 212 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 213 214 /* 215 * Kmalloc subsystem. 216 */ 217 #ifndef KMALLOC_MIN_SIZE 218 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 219 #endif 220 221 /* 222 * This restriction comes from byte sized index implementation. 223 * Page size is normally 2^12 bytes and, in this case, if we want to use 224 * byte sized index which can represent 2^8 entries, the size of the object 225 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 226 * If minimum size of kmalloc is less than 16, we use it as minimum object 227 * size and give up to use byte sized index. 228 */ 229 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 230 (KMALLOC_MIN_SIZE) : 16) 231 232 #ifndef CONFIG_SLOB 233 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 234 #ifdef CONFIG_ZONE_DMA 235 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 236 #endif 237 238 /* 239 * Figure out which kmalloc slab an allocation of a certain size 240 * belongs to. 241 * 0 = zero alloc 242 * 1 = 65 .. 96 bytes 243 * 2 = 129 .. 192 bytes 244 * n = 2^(n-1)+1 .. 2^n 245 */ 246 static __always_inline int kmalloc_index(size_t size) 247 { 248 if (!size) 249 return 0; 250 251 if (size <= KMALLOC_MIN_SIZE) 252 return KMALLOC_SHIFT_LOW; 253 254 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 255 return 1; 256 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 257 return 2; 258 if (size <= 8) return 3; 259 if (size <= 16) return 4; 260 if (size <= 32) return 5; 261 if (size <= 64) return 6; 262 if (size <= 128) return 7; 263 if (size <= 256) return 8; 264 if (size <= 512) return 9; 265 if (size <= 1024) return 10; 266 if (size <= 2 * 1024) return 11; 267 if (size <= 4 * 1024) return 12; 268 if (size <= 8 * 1024) return 13; 269 if (size <= 16 * 1024) return 14; 270 if (size <= 32 * 1024) return 15; 271 if (size <= 64 * 1024) return 16; 272 if (size <= 128 * 1024) return 17; 273 if (size <= 256 * 1024) return 18; 274 if (size <= 512 * 1024) return 19; 275 if (size <= 1024 * 1024) return 20; 276 if (size <= 2 * 1024 * 1024) return 21; 277 if (size <= 4 * 1024 * 1024) return 22; 278 if (size <= 8 * 1024 * 1024) return 23; 279 if (size <= 16 * 1024 * 1024) return 24; 280 if (size <= 32 * 1024 * 1024) return 25; 281 if (size <= 64 * 1024 * 1024) return 26; 282 BUG(); 283 284 /* Will never be reached. Needed because the compiler may complain */ 285 return -1; 286 } 287 #endif /* !CONFIG_SLOB */ 288 289 void *__kmalloc(size_t size, gfp_t flags); 290 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags); 291 void kmem_cache_free(struct kmem_cache *, void *); 292 293 /* 294 * Bulk allocation and freeing operations. These are accellerated in an 295 * allocator specific way to avoid taking locks repeatedly or building 296 * metadata structures unnecessarily. 297 * 298 * Note that interrupts must be enabled when calling these functions. 299 */ 300 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 301 bool kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 302 303 #ifdef CONFIG_NUMA 304 void *__kmalloc_node(size_t size, gfp_t flags, int node); 305 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 306 #else 307 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 308 { 309 return __kmalloc(size, flags); 310 } 311 312 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 313 { 314 return kmem_cache_alloc(s, flags); 315 } 316 #endif 317 318 #ifdef CONFIG_TRACING 319 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t); 320 321 #ifdef CONFIG_NUMA 322 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 323 gfp_t gfpflags, 324 int node, size_t size); 325 #else 326 static __always_inline void * 327 kmem_cache_alloc_node_trace(struct kmem_cache *s, 328 gfp_t gfpflags, 329 int node, size_t size) 330 { 331 return kmem_cache_alloc_trace(s, gfpflags, size); 332 } 333 #endif /* CONFIG_NUMA */ 334 335 #else /* CONFIG_TRACING */ 336 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 337 gfp_t flags, size_t size) 338 { 339 void *ret = kmem_cache_alloc(s, flags); 340 341 kasan_kmalloc(s, ret, size); 342 return ret; 343 } 344 345 static __always_inline void * 346 kmem_cache_alloc_node_trace(struct kmem_cache *s, 347 gfp_t gfpflags, 348 int node, size_t size) 349 { 350 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 351 352 kasan_kmalloc(s, ret, size); 353 return ret; 354 } 355 #endif /* CONFIG_TRACING */ 356 357 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order); 358 359 #ifdef CONFIG_TRACING 360 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 361 #else 362 static __always_inline void * 363 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 364 { 365 return kmalloc_order(size, flags, order); 366 } 367 #endif 368 369 static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 370 { 371 unsigned int order = get_order(size); 372 return kmalloc_order_trace(size, flags, order); 373 } 374 375 /** 376 * kmalloc - allocate memory 377 * @size: how many bytes of memory are required. 378 * @flags: the type of memory to allocate. 379 * 380 * kmalloc is the normal method of allocating memory 381 * for objects smaller than page size in the kernel. 382 * 383 * The @flags argument may be one of: 384 * 385 * %GFP_USER - Allocate memory on behalf of user. May sleep. 386 * 387 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 388 * 389 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 390 * For example, use this inside interrupt handlers. 391 * 392 * %GFP_HIGHUSER - Allocate pages from high memory. 393 * 394 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 395 * 396 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 397 * 398 * %GFP_NOWAIT - Allocation will not sleep. 399 * 400 * %__GFP_THISNODE - Allocate node-local memory only. 401 * 402 * %GFP_DMA - Allocation suitable for DMA. 403 * Should only be used for kmalloc() caches. Otherwise, use a 404 * slab created with SLAB_DMA. 405 * 406 * Also it is possible to set different flags by OR'ing 407 * in one or more of the following additional @flags: 408 * 409 * %__GFP_COLD - Request cache-cold pages instead of 410 * trying to return cache-warm pages. 411 * 412 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 413 * 414 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 415 * (think twice before using). 416 * 417 * %__GFP_NORETRY - If memory is not immediately available, 418 * then give up at once. 419 * 420 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 421 * 422 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 423 * 424 * There are other flags available as well, but these are not intended 425 * for general use, and so are not documented here. For a full list of 426 * potential flags, always refer to linux/gfp.h. 427 */ 428 static __always_inline void *kmalloc(size_t size, gfp_t flags) 429 { 430 if (__builtin_constant_p(size)) { 431 if (size > KMALLOC_MAX_CACHE_SIZE) 432 return kmalloc_large(size, flags); 433 #ifndef CONFIG_SLOB 434 if (!(flags & GFP_DMA)) { 435 int index = kmalloc_index(size); 436 437 if (!index) 438 return ZERO_SIZE_PTR; 439 440 return kmem_cache_alloc_trace(kmalloc_caches[index], 441 flags, size); 442 } 443 #endif 444 } 445 return __kmalloc(size, flags); 446 } 447 448 /* 449 * Determine size used for the nth kmalloc cache. 450 * return size or 0 if a kmalloc cache for that 451 * size does not exist 452 */ 453 static __always_inline int kmalloc_size(int n) 454 { 455 #ifndef CONFIG_SLOB 456 if (n > 2) 457 return 1 << n; 458 459 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 460 return 96; 461 462 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 463 return 192; 464 #endif 465 return 0; 466 } 467 468 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 469 { 470 #ifndef CONFIG_SLOB 471 if (__builtin_constant_p(size) && 472 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 473 int i = kmalloc_index(size); 474 475 if (!i) 476 return ZERO_SIZE_PTR; 477 478 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 479 flags, node, size); 480 } 481 #endif 482 return __kmalloc_node(size, flags, node); 483 } 484 485 /* 486 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 487 * Intended for arches that get misalignment faults even for 64 bit integer 488 * aligned buffers. 489 */ 490 #ifndef ARCH_SLAB_MINALIGN 491 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 492 #endif 493 494 struct memcg_cache_array { 495 struct rcu_head rcu; 496 struct kmem_cache *entries[0]; 497 }; 498 499 /* 500 * This is the main placeholder for memcg-related information in kmem caches. 501 * Both the root cache and the child caches will have it. For the root cache, 502 * this will hold a dynamically allocated array large enough to hold 503 * information about the currently limited memcgs in the system. To allow the 504 * array to be accessed without taking any locks, on relocation we free the old 505 * version only after a grace period. 506 * 507 * Child caches will hold extra metadata needed for its operation. Fields are: 508 * 509 * @memcg: pointer to the memcg this cache belongs to 510 * @root_cache: pointer to the global, root cache, this cache was derived from 511 * 512 * Both root and child caches of the same kind are linked into a list chained 513 * through @list. 514 */ 515 struct memcg_cache_params { 516 bool is_root_cache; 517 struct list_head list; 518 union { 519 struct memcg_cache_array __rcu *memcg_caches; 520 struct { 521 struct mem_cgroup *memcg; 522 struct kmem_cache *root_cache; 523 }; 524 }; 525 }; 526 527 int memcg_update_all_caches(int num_memcgs); 528 529 /** 530 * kmalloc_array - allocate memory for an array. 531 * @n: number of elements. 532 * @size: element size. 533 * @flags: the type of memory to allocate (see kmalloc). 534 */ 535 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 536 { 537 if (size != 0 && n > SIZE_MAX / size) 538 return NULL; 539 return __kmalloc(n * size, flags); 540 } 541 542 /** 543 * kcalloc - allocate memory for an array. The memory is set to zero. 544 * @n: number of elements. 545 * @size: element size. 546 * @flags: the type of memory to allocate (see kmalloc). 547 */ 548 static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 549 { 550 return kmalloc_array(n, size, flags | __GFP_ZERO); 551 } 552 553 /* 554 * kmalloc_track_caller is a special version of kmalloc that records the 555 * calling function of the routine calling it for slab leak tracking instead 556 * of just the calling function (confusing, eh?). 557 * It's useful when the call to kmalloc comes from a widely-used standard 558 * allocator where we care about the real place the memory allocation 559 * request comes from. 560 */ 561 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 562 #define kmalloc_track_caller(size, flags) \ 563 __kmalloc_track_caller(size, flags, _RET_IP_) 564 565 #ifdef CONFIG_NUMA 566 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 567 #define kmalloc_node_track_caller(size, flags, node) \ 568 __kmalloc_node_track_caller(size, flags, node, \ 569 _RET_IP_) 570 571 #else /* CONFIG_NUMA */ 572 573 #define kmalloc_node_track_caller(size, flags, node) \ 574 kmalloc_track_caller(size, flags) 575 576 #endif /* CONFIG_NUMA */ 577 578 /* 579 * Shortcuts 580 */ 581 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 582 { 583 return kmem_cache_alloc(k, flags | __GFP_ZERO); 584 } 585 586 /** 587 * kzalloc - allocate memory. The memory is set to zero. 588 * @size: how many bytes of memory are required. 589 * @flags: the type of memory to allocate (see kmalloc). 590 */ 591 static inline void *kzalloc(size_t size, gfp_t flags) 592 { 593 return kmalloc(size, flags | __GFP_ZERO); 594 } 595 596 /** 597 * kzalloc_node - allocate zeroed memory from a particular memory node. 598 * @size: how many bytes of memory are required. 599 * @flags: the type of memory to allocate (see kmalloc). 600 * @node: memory node from which to allocate 601 */ 602 static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 603 { 604 return kmalloc_node(size, flags | __GFP_ZERO, node); 605 } 606 607 unsigned int kmem_cache_size(struct kmem_cache *s); 608 void __init kmem_cache_init_late(void); 609 610 #endif /* _LINUX_SLAB_H */ 611