xref: /linux-6.15/include/linux/slab.h (revision fc4fa6e1)
1 /*
2  * Written by Mark Hemment, 1996 ([email protected]).
3  *
4  * (C) SGI 2006, Christoph Lameter
5  * 	Cleaned up and restructured to ease the addition of alternative
6  * 	implementations of SLAB allocators.
7  * (C) Linux Foundation 2008-2013
8  *      Unified interface for all slab allocators
9  */
10 
11 #ifndef _LINUX_SLAB_H
12 #define	_LINUX_SLAB_H
13 
14 #include <linux/gfp.h>
15 #include <linux/types.h>
16 #include <linux/workqueue.h>
17 
18 
19 /*
20  * Flags to pass to kmem_cache_create().
21  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
22  */
23 #define SLAB_DEBUG_FREE		0x00000100UL	/* DEBUG: Perform (expensive) checks on free */
24 #define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
25 #define SLAB_POISON		0x00000800UL	/* DEBUG: Poison objects */
26 #define SLAB_HWCACHE_ALIGN	0x00002000UL	/* Align objs on cache lines */
27 #define SLAB_CACHE_DMA		0x00004000UL	/* Use GFP_DMA memory */
28 #define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
29 #define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
30 /*
31  * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32  *
33  * This delays freeing the SLAB page by a grace period, it does _NOT_
34  * delay object freeing. This means that if you do kmem_cache_free()
35  * that memory location is free to be reused at any time. Thus it may
36  * be possible to see another object there in the same RCU grace period.
37  *
38  * This feature only ensures the memory location backing the object
39  * stays valid, the trick to using this is relying on an independent
40  * object validation pass. Something like:
41  *
42  *  rcu_read_lock()
43  * again:
44  *  obj = lockless_lookup(key);
45  *  if (obj) {
46  *    if (!try_get_ref(obj)) // might fail for free objects
47  *      goto again;
48  *
49  *    if (obj->key != key) { // not the object we expected
50  *      put_ref(obj);
51  *      goto again;
52  *    }
53  *  }
54  *  rcu_read_unlock();
55  *
56  * This is useful if we need to approach a kernel structure obliquely,
57  * from its address obtained without the usual locking. We can lock
58  * the structure to stabilize it and check it's still at the given address,
59  * only if we can be sure that the memory has not been meanwhile reused
60  * for some other kind of object (which our subsystem's lock might corrupt).
61  *
62  * rcu_read_lock before reading the address, then rcu_read_unlock after
63  * taking the spinlock within the structure expected at that address.
64  */
65 #define SLAB_DESTROY_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
66 #define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
67 #define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */
68 
69 /* Flag to prevent checks on free */
70 #ifdef CONFIG_DEBUG_OBJECTS
71 # define SLAB_DEBUG_OBJECTS	0x00400000UL
72 #else
73 # define SLAB_DEBUG_OBJECTS	0x00000000UL
74 #endif
75 
76 #define SLAB_NOLEAKTRACE	0x00800000UL	/* Avoid kmemleak tracing */
77 
78 /* Don't track use of uninitialized memory */
79 #ifdef CONFIG_KMEMCHECK
80 # define SLAB_NOTRACK		0x01000000UL
81 #else
82 # define SLAB_NOTRACK		0x00000000UL
83 #endif
84 #ifdef CONFIG_FAILSLAB
85 # define SLAB_FAILSLAB		0x02000000UL	/* Fault injection mark */
86 #else
87 # define SLAB_FAILSLAB		0x00000000UL
88 #endif
89 
90 /* The following flags affect the page allocator grouping pages by mobility */
91 #define SLAB_RECLAIM_ACCOUNT	0x00020000UL		/* Objects are reclaimable */
92 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
93 /*
94  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95  *
96  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97  *
98  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99  * Both make kfree a no-op.
100  */
101 #define ZERO_SIZE_PTR ((void *)16)
102 
103 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
104 				(unsigned long)ZERO_SIZE_PTR)
105 
106 #include <linux/kmemleak.h>
107 #include <linux/kasan.h>
108 
109 struct mem_cgroup;
110 /*
111  * struct kmem_cache related prototypes
112  */
113 void __init kmem_cache_init(void);
114 bool slab_is_available(void);
115 
116 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
117 			unsigned long,
118 			void (*)(void *));
119 void kmem_cache_destroy(struct kmem_cache *);
120 int kmem_cache_shrink(struct kmem_cache *);
121 
122 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
123 void memcg_deactivate_kmem_caches(struct mem_cgroup *);
124 void memcg_destroy_kmem_caches(struct mem_cgroup *);
125 
126 /*
127  * Please use this macro to create slab caches. Simply specify the
128  * name of the structure and maybe some flags that are listed above.
129  *
130  * The alignment of the struct determines object alignment. If you
131  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
132  * then the objects will be properly aligned in SMP configurations.
133  */
134 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
135 		sizeof(struct __struct), __alignof__(struct __struct),\
136 		(__flags), NULL)
137 
138 /*
139  * Common kmalloc functions provided by all allocators
140  */
141 void * __must_check __krealloc(const void *, size_t, gfp_t);
142 void * __must_check krealloc(const void *, size_t, gfp_t);
143 void kfree(const void *);
144 void kzfree(const void *);
145 size_t ksize(const void *);
146 
147 /*
148  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149  * alignment larger than the alignment of a 64-bit integer.
150  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
151  */
152 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
153 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
154 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
155 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
156 #else
157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #endif
159 
160 /*
161  * Kmalloc array related definitions
162  */
163 
164 #ifdef CONFIG_SLAB
165 /*
166  * The largest kmalloc size supported by the SLAB allocators is
167  * 32 megabyte (2^25) or the maximum allocatable page order if that is
168  * less than 32 MB.
169  *
170  * WARNING: Its not easy to increase this value since the allocators have
171  * to do various tricks to work around compiler limitations in order to
172  * ensure proper constant folding.
173  */
174 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
175 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
176 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
177 #ifndef KMALLOC_SHIFT_LOW
178 #define KMALLOC_SHIFT_LOW	5
179 #endif
180 #endif
181 
182 #ifdef CONFIG_SLUB
183 /*
184  * SLUB directly allocates requests fitting in to an order-1 page
185  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
186  */
187 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
188 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
189 #ifndef KMALLOC_SHIFT_LOW
190 #define KMALLOC_SHIFT_LOW	3
191 #endif
192 #endif
193 
194 #ifdef CONFIG_SLOB
195 /*
196  * SLOB passes all requests larger than one page to the page allocator.
197  * No kmalloc array is necessary since objects of different sizes can
198  * be allocated from the same page.
199  */
200 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
201 #define KMALLOC_SHIFT_MAX	30
202 #ifndef KMALLOC_SHIFT_LOW
203 #define KMALLOC_SHIFT_LOW	3
204 #endif
205 #endif
206 
207 /* Maximum allocatable size */
208 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
209 /* Maximum size for which we actually use a slab cache */
210 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
211 /* Maximum order allocatable via the slab allocagtor */
212 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
213 
214 /*
215  * Kmalloc subsystem.
216  */
217 #ifndef KMALLOC_MIN_SIZE
218 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
219 #endif
220 
221 /*
222  * This restriction comes from byte sized index implementation.
223  * Page size is normally 2^12 bytes and, in this case, if we want to use
224  * byte sized index which can represent 2^8 entries, the size of the object
225  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
226  * If minimum size of kmalloc is less than 16, we use it as minimum object
227  * size and give up to use byte sized index.
228  */
229 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
230                                (KMALLOC_MIN_SIZE) : 16)
231 
232 #ifndef CONFIG_SLOB
233 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
234 #ifdef CONFIG_ZONE_DMA
235 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
236 #endif
237 
238 /*
239  * Figure out which kmalloc slab an allocation of a certain size
240  * belongs to.
241  * 0 = zero alloc
242  * 1 =  65 .. 96 bytes
243  * 2 = 129 .. 192 bytes
244  * n = 2^(n-1)+1 .. 2^n
245  */
246 static __always_inline int kmalloc_index(size_t size)
247 {
248 	if (!size)
249 		return 0;
250 
251 	if (size <= KMALLOC_MIN_SIZE)
252 		return KMALLOC_SHIFT_LOW;
253 
254 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
255 		return 1;
256 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
257 		return 2;
258 	if (size <=          8) return 3;
259 	if (size <=         16) return 4;
260 	if (size <=         32) return 5;
261 	if (size <=         64) return 6;
262 	if (size <=        128) return 7;
263 	if (size <=        256) return 8;
264 	if (size <=        512) return 9;
265 	if (size <=       1024) return 10;
266 	if (size <=   2 * 1024) return 11;
267 	if (size <=   4 * 1024) return 12;
268 	if (size <=   8 * 1024) return 13;
269 	if (size <=  16 * 1024) return 14;
270 	if (size <=  32 * 1024) return 15;
271 	if (size <=  64 * 1024) return 16;
272 	if (size <= 128 * 1024) return 17;
273 	if (size <= 256 * 1024) return 18;
274 	if (size <= 512 * 1024) return 19;
275 	if (size <= 1024 * 1024) return 20;
276 	if (size <=  2 * 1024 * 1024) return 21;
277 	if (size <=  4 * 1024 * 1024) return 22;
278 	if (size <=  8 * 1024 * 1024) return 23;
279 	if (size <=  16 * 1024 * 1024) return 24;
280 	if (size <=  32 * 1024 * 1024) return 25;
281 	if (size <=  64 * 1024 * 1024) return 26;
282 	BUG();
283 
284 	/* Will never be reached. Needed because the compiler may complain */
285 	return -1;
286 }
287 #endif /* !CONFIG_SLOB */
288 
289 void *__kmalloc(size_t size, gfp_t flags);
290 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
291 void kmem_cache_free(struct kmem_cache *, void *);
292 
293 /*
294  * Bulk allocation and freeing operations. These are accellerated in an
295  * allocator specific way to avoid taking locks repeatedly or building
296  * metadata structures unnecessarily.
297  *
298  * Note that interrupts must be enabled when calling these functions.
299  */
300 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
301 bool kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
302 
303 #ifdef CONFIG_NUMA
304 void *__kmalloc_node(size_t size, gfp_t flags, int node);
305 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
306 #else
307 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
308 {
309 	return __kmalloc(size, flags);
310 }
311 
312 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
313 {
314 	return kmem_cache_alloc(s, flags);
315 }
316 #endif
317 
318 #ifdef CONFIG_TRACING
319 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
320 
321 #ifdef CONFIG_NUMA
322 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
323 					   gfp_t gfpflags,
324 					   int node, size_t size);
325 #else
326 static __always_inline void *
327 kmem_cache_alloc_node_trace(struct kmem_cache *s,
328 			      gfp_t gfpflags,
329 			      int node, size_t size)
330 {
331 	return kmem_cache_alloc_trace(s, gfpflags, size);
332 }
333 #endif /* CONFIG_NUMA */
334 
335 #else /* CONFIG_TRACING */
336 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
337 		gfp_t flags, size_t size)
338 {
339 	void *ret = kmem_cache_alloc(s, flags);
340 
341 	kasan_kmalloc(s, ret, size);
342 	return ret;
343 }
344 
345 static __always_inline void *
346 kmem_cache_alloc_node_trace(struct kmem_cache *s,
347 			      gfp_t gfpflags,
348 			      int node, size_t size)
349 {
350 	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
351 
352 	kasan_kmalloc(s, ret, size);
353 	return ret;
354 }
355 #endif /* CONFIG_TRACING */
356 
357 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order);
358 
359 #ifdef CONFIG_TRACING
360 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
361 #else
362 static __always_inline void *
363 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
364 {
365 	return kmalloc_order(size, flags, order);
366 }
367 #endif
368 
369 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
370 {
371 	unsigned int order = get_order(size);
372 	return kmalloc_order_trace(size, flags, order);
373 }
374 
375 /**
376  * kmalloc - allocate memory
377  * @size: how many bytes of memory are required.
378  * @flags: the type of memory to allocate.
379  *
380  * kmalloc is the normal method of allocating memory
381  * for objects smaller than page size in the kernel.
382  *
383  * The @flags argument may be one of:
384  *
385  * %GFP_USER - Allocate memory on behalf of user.  May sleep.
386  *
387  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
388  *
389  * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
390  *   For example, use this inside interrupt handlers.
391  *
392  * %GFP_HIGHUSER - Allocate pages from high memory.
393  *
394  * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
395  *
396  * %GFP_NOFS - Do not make any fs calls while trying to get memory.
397  *
398  * %GFP_NOWAIT - Allocation will not sleep.
399  *
400  * %__GFP_THISNODE - Allocate node-local memory only.
401  *
402  * %GFP_DMA - Allocation suitable for DMA.
403  *   Should only be used for kmalloc() caches. Otherwise, use a
404  *   slab created with SLAB_DMA.
405  *
406  * Also it is possible to set different flags by OR'ing
407  * in one or more of the following additional @flags:
408  *
409  * %__GFP_COLD - Request cache-cold pages instead of
410  *   trying to return cache-warm pages.
411  *
412  * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
413  *
414  * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
415  *   (think twice before using).
416  *
417  * %__GFP_NORETRY - If memory is not immediately available,
418  *   then give up at once.
419  *
420  * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
421  *
422  * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
423  *
424  * There are other flags available as well, but these are not intended
425  * for general use, and so are not documented here. For a full list of
426  * potential flags, always refer to linux/gfp.h.
427  */
428 static __always_inline void *kmalloc(size_t size, gfp_t flags)
429 {
430 	if (__builtin_constant_p(size)) {
431 		if (size > KMALLOC_MAX_CACHE_SIZE)
432 			return kmalloc_large(size, flags);
433 #ifndef CONFIG_SLOB
434 		if (!(flags & GFP_DMA)) {
435 			int index = kmalloc_index(size);
436 
437 			if (!index)
438 				return ZERO_SIZE_PTR;
439 
440 			return kmem_cache_alloc_trace(kmalloc_caches[index],
441 					flags, size);
442 		}
443 #endif
444 	}
445 	return __kmalloc(size, flags);
446 }
447 
448 /*
449  * Determine size used for the nth kmalloc cache.
450  * return size or 0 if a kmalloc cache for that
451  * size does not exist
452  */
453 static __always_inline int kmalloc_size(int n)
454 {
455 #ifndef CONFIG_SLOB
456 	if (n > 2)
457 		return 1 << n;
458 
459 	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
460 		return 96;
461 
462 	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
463 		return 192;
464 #endif
465 	return 0;
466 }
467 
468 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
469 {
470 #ifndef CONFIG_SLOB
471 	if (__builtin_constant_p(size) &&
472 		size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
473 		int i = kmalloc_index(size);
474 
475 		if (!i)
476 			return ZERO_SIZE_PTR;
477 
478 		return kmem_cache_alloc_node_trace(kmalloc_caches[i],
479 						flags, node, size);
480 	}
481 #endif
482 	return __kmalloc_node(size, flags, node);
483 }
484 
485 /*
486  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
487  * Intended for arches that get misalignment faults even for 64 bit integer
488  * aligned buffers.
489  */
490 #ifndef ARCH_SLAB_MINALIGN
491 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
492 #endif
493 
494 struct memcg_cache_array {
495 	struct rcu_head rcu;
496 	struct kmem_cache *entries[0];
497 };
498 
499 /*
500  * This is the main placeholder for memcg-related information in kmem caches.
501  * Both the root cache and the child caches will have it. For the root cache,
502  * this will hold a dynamically allocated array large enough to hold
503  * information about the currently limited memcgs in the system. To allow the
504  * array to be accessed without taking any locks, on relocation we free the old
505  * version only after a grace period.
506  *
507  * Child caches will hold extra metadata needed for its operation. Fields are:
508  *
509  * @memcg: pointer to the memcg this cache belongs to
510  * @root_cache: pointer to the global, root cache, this cache was derived from
511  *
512  * Both root and child caches of the same kind are linked into a list chained
513  * through @list.
514  */
515 struct memcg_cache_params {
516 	bool is_root_cache;
517 	struct list_head list;
518 	union {
519 		struct memcg_cache_array __rcu *memcg_caches;
520 		struct {
521 			struct mem_cgroup *memcg;
522 			struct kmem_cache *root_cache;
523 		};
524 	};
525 };
526 
527 int memcg_update_all_caches(int num_memcgs);
528 
529 /**
530  * kmalloc_array - allocate memory for an array.
531  * @n: number of elements.
532  * @size: element size.
533  * @flags: the type of memory to allocate (see kmalloc).
534  */
535 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
536 {
537 	if (size != 0 && n > SIZE_MAX / size)
538 		return NULL;
539 	return __kmalloc(n * size, flags);
540 }
541 
542 /**
543  * kcalloc - allocate memory for an array. The memory is set to zero.
544  * @n: number of elements.
545  * @size: element size.
546  * @flags: the type of memory to allocate (see kmalloc).
547  */
548 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
549 {
550 	return kmalloc_array(n, size, flags | __GFP_ZERO);
551 }
552 
553 /*
554  * kmalloc_track_caller is a special version of kmalloc that records the
555  * calling function of the routine calling it for slab leak tracking instead
556  * of just the calling function (confusing, eh?).
557  * It's useful when the call to kmalloc comes from a widely-used standard
558  * allocator where we care about the real place the memory allocation
559  * request comes from.
560  */
561 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
562 #define kmalloc_track_caller(size, flags) \
563 	__kmalloc_track_caller(size, flags, _RET_IP_)
564 
565 #ifdef CONFIG_NUMA
566 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
567 #define kmalloc_node_track_caller(size, flags, node) \
568 	__kmalloc_node_track_caller(size, flags, node, \
569 			_RET_IP_)
570 
571 #else /* CONFIG_NUMA */
572 
573 #define kmalloc_node_track_caller(size, flags, node) \
574 	kmalloc_track_caller(size, flags)
575 
576 #endif /* CONFIG_NUMA */
577 
578 /*
579  * Shortcuts
580  */
581 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
582 {
583 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
584 }
585 
586 /**
587  * kzalloc - allocate memory. The memory is set to zero.
588  * @size: how many bytes of memory are required.
589  * @flags: the type of memory to allocate (see kmalloc).
590  */
591 static inline void *kzalloc(size_t size, gfp_t flags)
592 {
593 	return kmalloc(size, flags | __GFP_ZERO);
594 }
595 
596 /**
597  * kzalloc_node - allocate zeroed memory from a particular memory node.
598  * @size: how many bytes of memory are required.
599  * @flags: the type of memory to allocate (see kmalloc).
600  * @node: memory node from which to allocate
601  */
602 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
603 {
604 	return kmalloc_node(size, flags | __GFP_ZERO, node);
605 }
606 
607 unsigned int kmem_cache_size(struct kmem_cache *s);
608 void __init kmem_cache_init_late(void);
609 
610 #endif	/* _LINUX_SLAB_H */
611