xref: /linux-6.15/include/linux/slab.h (revision d345bd2e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 ([email protected]).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/cache.h>
16 #include <linux/gfp.h>
17 #include <linux/overflow.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/cleanup.h>
22 #include <linux/hash.h>
23 
24 enum _slab_flag_bits {
25 	_SLAB_CONSISTENCY_CHECKS,
26 	_SLAB_RED_ZONE,
27 	_SLAB_POISON,
28 	_SLAB_KMALLOC,
29 	_SLAB_HWCACHE_ALIGN,
30 	_SLAB_CACHE_DMA,
31 	_SLAB_CACHE_DMA32,
32 	_SLAB_STORE_USER,
33 	_SLAB_PANIC,
34 	_SLAB_TYPESAFE_BY_RCU,
35 	_SLAB_TRACE,
36 #ifdef CONFIG_DEBUG_OBJECTS
37 	_SLAB_DEBUG_OBJECTS,
38 #endif
39 	_SLAB_NOLEAKTRACE,
40 	_SLAB_NO_MERGE,
41 #ifdef CONFIG_FAILSLAB
42 	_SLAB_FAILSLAB,
43 #endif
44 #ifdef CONFIG_MEMCG
45 	_SLAB_ACCOUNT,
46 #endif
47 #ifdef CONFIG_KASAN_GENERIC
48 	_SLAB_KASAN,
49 #endif
50 	_SLAB_NO_USER_FLAGS,
51 #ifdef CONFIG_KFENCE
52 	_SLAB_SKIP_KFENCE,
53 #endif
54 #ifndef CONFIG_SLUB_TINY
55 	_SLAB_RECLAIM_ACCOUNT,
56 #endif
57 	_SLAB_OBJECT_POISON,
58 	_SLAB_CMPXCHG_DOUBLE,
59 #ifdef CONFIG_SLAB_OBJ_EXT
60 	_SLAB_NO_OBJ_EXT,
61 #endif
62 	_SLAB_FLAGS_LAST_BIT
63 };
64 
65 #define __SLAB_FLAG_BIT(nr)	((slab_flags_t __force)(1U << (nr)))
66 #define __SLAB_FLAG_UNUSED	((slab_flags_t __force)(0U))
67 
68 /*
69  * Flags to pass to kmem_cache_create().
70  * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
71  */
72 /* DEBUG: Perform (expensive) checks on alloc/free */
73 #define SLAB_CONSISTENCY_CHECKS	__SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
74 /* DEBUG: Red zone objs in a cache */
75 #define SLAB_RED_ZONE		__SLAB_FLAG_BIT(_SLAB_RED_ZONE)
76 /* DEBUG: Poison objects */
77 #define SLAB_POISON		__SLAB_FLAG_BIT(_SLAB_POISON)
78 /* Indicate a kmalloc slab */
79 #define SLAB_KMALLOC		__SLAB_FLAG_BIT(_SLAB_KMALLOC)
80 /* Align objs on cache lines */
81 #define SLAB_HWCACHE_ALIGN	__SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
82 /* Use GFP_DMA memory */
83 #define SLAB_CACHE_DMA		__SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
84 /* Use GFP_DMA32 memory */
85 #define SLAB_CACHE_DMA32	__SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
86 /* DEBUG: Store the last owner for bug hunting */
87 #define SLAB_STORE_USER		__SLAB_FLAG_BIT(_SLAB_STORE_USER)
88 /* Panic if kmem_cache_create() fails */
89 #define SLAB_PANIC		__SLAB_FLAG_BIT(_SLAB_PANIC)
90 /*
91  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
92  *
93  * This delays freeing the SLAB page by a grace period, it does _NOT_
94  * delay object freeing. This means that if you do kmem_cache_free()
95  * that memory location is free to be reused at any time. Thus it may
96  * be possible to see another object there in the same RCU grace period.
97  *
98  * This feature only ensures the memory location backing the object
99  * stays valid, the trick to using this is relying on an independent
100  * object validation pass. Something like:
101  *
102  * begin:
103  *  rcu_read_lock();
104  *  obj = lockless_lookup(key);
105  *  if (obj) {
106  *    if (!try_get_ref(obj)) // might fail for free objects
107  *      rcu_read_unlock();
108  *      goto begin;
109  *
110  *    if (obj->key != key) { // not the object we expected
111  *      put_ref(obj);
112  *      rcu_read_unlock();
113  *      goto begin;
114  *    }
115  *  }
116  *  rcu_read_unlock();
117  *
118  * This is useful if we need to approach a kernel structure obliquely,
119  * from its address obtained without the usual locking. We can lock
120  * the structure to stabilize it and check it's still at the given address,
121  * only if we can be sure that the memory has not been meanwhile reused
122  * for some other kind of object (which our subsystem's lock might corrupt).
123  *
124  * rcu_read_lock before reading the address, then rcu_read_unlock after
125  * taking the spinlock within the structure expected at that address.
126  *
127  * Note that it is not possible to acquire a lock within a structure
128  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
129  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
130  * are not zeroed before being given to the slab, which means that any
131  * locks must be initialized after each and every kmem_struct_alloc().
132  * Alternatively, make the ctor passed to kmem_cache_create() initialize
133  * the locks at page-allocation time, as is done in __i915_request_ctor(),
134  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
135  * to safely acquire those ctor-initialized locks under rcu_read_lock()
136  * protection.
137  *
138  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
139  */
140 /* Defer freeing slabs to RCU */
141 #define SLAB_TYPESAFE_BY_RCU	__SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
142 /* Trace allocations and frees */
143 #define SLAB_TRACE		__SLAB_FLAG_BIT(_SLAB_TRACE)
144 
145 /* Flag to prevent checks on free */
146 #ifdef CONFIG_DEBUG_OBJECTS
147 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
148 #else
149 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_UNUSED
150 #endif
151 
152 /* Avoid kmemleak tracing */
153 #define SLAB_NOLEAKTRACE	__SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
154 
155 /*
156  * Prevent merging with compatible kmem caches. This flag should be used
157  * cautiously. Valid use cases:
158  *
159  * - caches created for self-tests (e.g. kunit)
160  * - general caches created and used by a subsystem, only when a
161  *   (subsystem-specific) debug option is enabled
162  * - performance critical caches, should be very rare and consulted with slab
163  *   maintainers, and not used together with CONFIG_SLUB_TINY
164  */
165 #define SLAB_NO_MERGE		__SLAB_FLAG_BIT(_SLAB_NO_MERGE)
166 
167 /* Fault injection mark */
168 #ifdef CONFIG_FAILSLAB
169 # define SLAB_FAILSLAB		__SLAB_FLAG_BIT(_SLAB_FAILSLAB)
170 #else
171 # define SLAB_FAILSLAB		__SLAB_FLAG_UNUSED
172 #endif
173 /* Account to memcg */
174 #ifdef CONFIG_MEMCG
175 # define SLAB_ACCOUNT		__SLAB_FLAG_BIT(_SLAB_ACCOUNT)
176 #else
177 # define SLAB_ACCOUNT		__SLAB_FLAG_UNUSED
178 #endif
179 
180 #ifdef CONFIG_KASAN_GENERIC
181 #define SLAB_KASAN		__SLAB_FLAG_BIT(_SLAB_KASAN)
182 #else
183 #define SLAB_KASAN		__SLAB_FLAG_UNUSED
184 #endif
185 
186 /*
187  * Ignore user specified debugging flags.
188  * Intended for caches created for self-tests so they have only flags
189  * specified in the code and other flags are ignored.
190  */
191 #define SLAB_NO_USER_FLAGS	__SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
192 
193 #ifdef CONFIG_KFENCE
194 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
195 #else
196 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_UNUSED
197 #endif
198 
199 /* The following flags affect the page allocator grouping pages by mobility */
200 /* Objects are reclaimable */
201 #ifndef CONFIG_SLUB_TINY
202 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
203 #else
204 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_UNUSED
205 #endif
206 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
207 
208 /* Slab created using create_boot_cache */
209 #ifdef CONFIG_SLAB_OBJ_EXT
210 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
211 #else
212 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_UNUSED
213 #endif
214 
215 /*
216  * freeptr_t represents a SLUB freelist pointer, which might be encoded
217  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
218  */
219 typedef struct { unsigned long v; } freeptr_t;
220 
221 /*
222  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
223  *
224  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
225  *
226  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
227  * Both make kfree a no-op.
228  */
229 #define ZERO_SIZE_PTR ((void *)16)
230 
231 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
232 				(unsigned long)ZERO_SIZE_PTR)
233 
234 #include <linux/kasan.h>
235 
236 struct list_lru;
237 struct mem_cgroup;
238 /*
239  * struct kmem_cache related prototypes
240  */
241 bool slab_is_available(void);
242 
243 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
244 			unsigned int align, slab_flags_t flags,
245 			void (*ctor)(void *));
246 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
247 			unsigned int size, unsigned int align,
248 			slab_flags_t flags,
249 			unsigned int useroffset, unsigned int usersize,
250 			void (*ctor)(void *));
251 struct kmem_cache *kmem_cache_create_rcu(const char *name, unsigned int size,
252 					 unsigned int freeptr_offset,
253 					 slab_flags_t flags);
254 void kmem_cache_destroy(struct kmem_cache *s);
255 int kmem_cache_shrink(struct kmem_cache *s);
256 
257 /*
258  * Please use this macro to create slab caches. Simply specify the
259  * name of the structure and maybe some flags that are listed above.
260  *
261  * The alignment of the struct determines object alignment. If you
262  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
263  * then the objects will be properly aligned in SMP configurations.
264  */
265 #define KMEM_CACHE(__struct, __flags)					\
266 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
267 			__alignof__(struct __struct), (__flags), NULL)
268 
269 /*
270  * To whitelist a single field for copying to/from usercopy, use this
271  * macro instead for KMEM_CACHE() above.
272  */
273 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
274 		kmem_cache_create_usercopy(#__struct,			\
275 			sizeof(struct __struct),			\
276 			__alignof__(struct __struct), (__flags),	\
277 			offsetof(struct __struct, __field),		\
278 			sizeof_field(struct __struct, __field), NULL)
279 
280 /*
281  * Common kmalloc functions provided by all allocators
282  */
283 void * __must_check krealloc_noprof(const void *objp, size_t new_size,
284 				    gfp_t flags) __realloc_size(2);
285 #define krealloc(...)				alloc_hooks(krealloc_noprof(__VA_ARGS__))
286 
287 void kfree(const void *objp);
288 void kfree_sensitive(const void *objp);
289 size_t __ksize(const void *objp);
290 
291 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
292 
293 /**
294  * ksize - Report actual allocation size of associated object
295  *
296  * @objp: Pointer returned from a prior kmalloc()-family allocation.
297  *
298  * This should not be used for writing beyond the originally requested
299  * allocation size. Either use krealloc() or round up the allocation size
300  * with kmalloc_size_roundup() prior to allocation. If this is used to
301  * access beyond the originally requested allocation size, UBSAN_BOUNDS
302  * and/or FORTIFY_SOURCE may trip, since they only know about the
303  * originally allocated size via the __alloc_size attribute.
304  */
305 size_t ksize(const void *objp);
306 
307 #ifdef CONFIG_PRINTK
308 bool kmem_dump_obj(void *object);
309 #else
310 static inline bool kmem_dump_obj(void *object) { return false; }
311 #endif
312 
313 /*
314  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
315  * alignment larger than the alignment of a 64-bit integer.
316  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
317  */
318 #ifdef ARCH_HAS_DMA_MINALIGN
319 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
320 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
321 #endif
322 #endif
323 
324 #ifndef ARCH_KMALLOC_MINALIGN
325 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
326 #elif ARCH_KMALLOC_MINALIGN > 8
327 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
328 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
329 #endif
330 
331 /*
332  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
333  * Intended for arches that get misalignment faults even for 64 bit integer
334  * aligned buffers.
335  */
336 #ifndef ARCH_SLAB_MINALIGN
337 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
338 #endif
339 
340 /*
341  * Arches can define this function if they want to decide the minimum slab
342  * alignment at runtime. The value returned by the function must be a power
343  * of two and >= ARCH_SLAB_MINALIGN.
344  */
345 #ifndef arch_slab_minalign
346 static inline unsigned int arch_slab_minalign(void)
347 {
348 	return ARCH_SLAB_MINALIGN;
349 }
350 #endif
351 
352 /*
353  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
354  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
355  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
356  */
357 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
358 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
359 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
360 
361 /*
362  * Kmalloc array related definitions
363  */
364 
365 /*
366  * SLUB directly allocates requests fitting in to an order-1 page
367  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
368  */
369 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
370 #define KMALLOC_SHIFT_MAX	(MAX_PAGE_ORDER + PAGE_SHIFT)
371 #ifndef KMALLOC_SHIFT_LOW
372 #define KMALLOC_SHIFT_LOW	3
373 #endif
374 
375 /* Maximum allocatable size */
376 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
377 /* Maximum size for which we actually use a slab cache */
378 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
379 /* Maximum order allocatable via the slab allocator */
380 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
381 
382 /*
383  * Kmalloc subsystem.
384  */
385 #ifndef KMALLOC_MIN_SIZE
386 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
387 #endif
388 
389 /*
390  * This restriction comes from byte sized index implementation.
391  * Page size is normally 2^12 bytes and, in this case, if we want to use
392  * byte sized index which can represent 2^8 entries, the size of the object
393  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
394  * If minimum size of kmalloc is less than 16, we use it as minimum object
395  * size and give up to use byte sized index.
396  */
397 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
398                                (KMALLOC_MIN_SIZE) : 16)
399 
400 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
401 #define RANDOM_KMALLOC_CACHES_NR	15 // # of cache copies
402 #else
403 #define RANDOM_KMALLOC_CACHES_NR	0
404 #endif
405 
406 /*
407  * Whenever changing this, take care of that kmalloc_type() and
408  * create_kmalloc_caches() still work as intended.
409  *
410  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
411  * is for accounted but unreclaimable and non-dma objects. All the other
412  * kmem caches can have both accounted and unaccounted objects.
413  */
414 enum kmalloc_cache_type {
415 	KMALLOC_NORMAL = 0,
416 #ifndef CONFIG_ZONE_DMA
417 	KMALLOC_DMA = KMALLOC_NORMAL,
418 #endif
419 #ifndef CONFIG_MEMCG
420 	KMALLOC_CGROUP = KMALLOC_NORMAL,
421 #endif
422 	KMALLOC_RANDOM_START = KMALLOC_NORMAL,
423 	KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
424 #ifdef CONFIG_SLUB_TINY
425 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
426 #else
427 	KMALLOC_RECLAIM,
428 #endif
429 #ifdef CONFIG_ZONE_DMA
430 	KMALLOC_DMA,
431 #endif
432 #ifdef CONFIG_MEMCG
433 	KMALLOC_CGROUP,
434 #endif
435 	NR_KMALLOC_TYPES
436 };
437 
438 typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
439 
440 extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
441 
442 /*
443  * Define gfp bits that should not be set for KMALLOC_NORMAL.
444  */
445 #define KMALLOC_NOT_NORMAL_BITS					\
446 	(__GFP_RECLAIMABLE |					\
447 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
448 	(IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
449 
450 extern unsigned long random_kmalloc_seed;
451 
452 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
453 {
454 	/*
455 	 * The most common case is KMALLOC_NORMAL, so test for it
456 	 * with a single branch for all the relevant flags.
457 	 */
458 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
459 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
460 		/* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
461 		return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
462 						      ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
463 #else
464 		return KMALLOC_NORMAL;
465 #endif
466 
467 	/*
468 	 * At least one of the flags has to be set. Their priorities in
469 	 * decreasing order are:
470 	 *  1) __GFP_DMA
471 	 *  2) __GFP_RECLAIMABLE
472 	 *  3) __GFP_ACCOUNT
473 	 */
474 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
475 		return KMALLOC_DMA;
476 	if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
477 		return KMALLOC_RECLAIM;
478 	else
479 		return KMALLOC_CGROUP;
480 }
481 
482 /*
483  * Figure out which kmalloc slab an allocation of a certain size
484  * belongs to.
485  * 0 = zero alloc
486  * 1 =  65 .. 96 bytes
487  * 2 = 129 .. 192 bytes
488  * n = 2^(n-1)+1 .. 2^n
489  *
490  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
491  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
492  * Callers where !size_is_constant should only be test modules, where runtime
493  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
494  */
495 static __always_inline unsigned int __kmalloc_index(size_t size,
496 						    bool size_is_constant)
497 {
498 	if (!size)
499 		return 0;
500 
501 	if (size <= KMALLOC_MIN_SIZE)
502 		return KMALLOC_SHIFT_LOW;
503 
504 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
505 		return 1;
506 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
507 		return 2;
508 	if (size <=          8) return 3;
509 	if (size <=         16) return 4;
510 	if (size <=         32) return 5;
511 	if (size <=         64) return 6;
512 	if (size <=        128) return 7;
513 	if (size <=        256) return 8;
514 	if (size <=        512) return 9;
515 	if (size <=       1024) return 10;
516 	if (size <=   2 * 1024) return 11;
517 	if (size <=   4 * 1024) return 12;
518 	if (size <=   8 * 1024) return 13;
519 	if (size <=  16 * 1024) return 14;
520 	if (size <=  32 * 1024) return 15;
521 	if (size <=  64 * 1024) return 16;
522 	if (size <= 128 * 1024) return 17;
523 	if (size <= 256 * 1024) return 18;
524 	if (size <= 512 * 1024) return 19;
525 	if (size <= 1024 * 1024) return 20;
526 	if (size <=  2 * 1024 * 1024) return 21;
527 
528 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
529 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
530 	else
531 		BUG();
532 
533 	/* Will never be reached. Needed because the compiler may complain */
534 	return -1;
535 }
536 static_assert(PAGE_SHIFT <= 20);
537 #define kmalloc_index(s) __kmalloc_index(s, true)
538 
539 #include <linux/alloc_tag.h>
540 
541 /**
542  * kmem_cache_alloc - Allocate an object
543  * @cachep: The cache to allocate from.
544  * @flags: See kmalloc().
545  *
546  * Allocate an object from this cache.
547  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
548  *
549  * Return: pointer to the new object or %NULL in case of error
550  */
551 void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
552 			      gfp_t flags) __assume_slab_alignment __malloc;
553 #define kmem_cache_alloc(...)			alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
554 
555 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
556 			    gfp_t gfpflags) __assume_slab_alignment __malloc;
557 #define kmem_cache_alloc_lru(...)	alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
558 
559 void kmem_cache_free(struct kmem_cache *s, void *objp);
560 
561 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
562 				  unsigned int useroffset, unsigned int usersize,
563 				  void (*ctor)(void *));
564 
565 /*
566  * Bulk allocation and freeing operations. These are accelerated in an
567  * allocator specific way to avoid taking locks repeatedly or building
568  * metadata structures unnecessarily.
569  *
570  * Note that interrupts must be enabled when calling these functions.
571  */
572 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
573 
574 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
575 #define kmem_cache_alloc_bulk(...)	alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
576 
577 static __always_inline void kfree_bulk(size_t size, void **p)
578 {
579 	kmem_cache_free_bulk(NULL, size, p);
580 }
581 
582 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
583 				   int node) __assume_slab_alignment __malloc;
584 #define kmem_cache_alloc_node(...)	alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
585 
586 /*
587  * These macros allow declaring a kmem_buckets * parameter alongside size, which
588  * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
589  * sites don't have to pass NULL.
590  */
591 #ifdef CONFIG_SLAB_BUCKETS
592 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size), kmem_buckets *(_b)
593 #define PASS_BUCKET_PARAMS(_size, _b)	(_size), (_b)
594 #define PASS_BUCKET_PARAM(_b)		(_b)
595 #else
596 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size)
597 #define PASS_BUCKET_PARAMS(_size, _b)	(_size)
598 #define PASS_BUCKET_PARAM(_b)		NULL
599 #endif
600 
601 /*
602  * The following functions are not to be used directly and are intended only
603  * for internal use from kmalloc() and kmalloc_node()
604  * with the exception of kunit tests
605  */
606 
607 void *__kmalloc_noprof(size_t size, gfp_t flags)
608 				__assume_kmalloc_alignment __alloc_size(1);
609 
610 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
611 				__assume_kmalloc_alignment __alloc_size(1);
612 
613 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
614 				__assume_kmalloc_alignment __alloc_size(3);
615 
616 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
617 				  int node, size_t size)
618 				__assume_kmalloc_alignment __alloc_size(4);
619 
620 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
621 				__assume_page_alignment __alloc_size(1);
622 
623 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
624 				__assume_page_alignment __alloc_size(1);
625 
626 /**
627  * kmalloc - allocate kernel memory
628  * @size: how many bytes of memory are required.
629  * @flags: describe the allocation context
630  *
631  * kmalloc is the normal method of allocating memory
632  * for objects smaller than page size in the kernel.
633  *
634  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
635  * bytes. For @size of power of two bytes, the alignment is also guaranteed
636  * to be at least to the size. For other sizes, the alignment is guaranteed to
637  * be at least the largest power-of-two divisor of @size.
638  *
639  * The @flags argument may be one of the GFP flags defined at
640  * include/linux/gfp_types.h and described at
641  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
642  *
643  * The recommended usage of the @flags is described at
644  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
645  *
646  * Below is a brief outline of the most useful GFP flags
647  *
648  * %GFP_KERNEL
649  *	Allocate normal kernel ram. May sleep.
650  *
651  * %GFP_NOWAIT
652  *	Allocation will not sleep.
653  *
654  * %GFP_ATOMIC
655  *	Allocation will not sleep.  May use emergency pools.
656  *
657  * Also it is possible to set different flags by OR'ing
658  * in one or more of the following additional @flags:
659  *
660  * %__GFP_ZERO
661  *	Zero the allocated memory before returning. Also see kzalloc().
662  *
663  * %__GFP_HIGH
664  *	This allocation has high priority and may use emergency pools.
665  *
666  * %__GFP_NOFAIL
667  *	Indicate that this allocation is in no way allowed to fail
668  *	(think twice before using).
669  *
670  * %__GFP_NORETRY
671  *	If memory is not immediately available,
672  *	then give up at once.
673  *
674  * %__GFP_NOWARN
675  *	If allocation fails, don't issue any warnings.
676  *
677  * %__GFP_RETRY_MAYFAIL
678  *	Try really hard to succeed the allocation but fail
679  *	eventually.
680  */
681 static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
682 {
683 	if (__builtin_constant_p(size) && size) {
684 		unsigned int index;
685 
686 		if (size > KMALLOC_MAX_CACHE_SIZE)
687 			return __kmalloc_large_noprof(size, flags);
688 
689 		index = kmalloc_index(size);
690 		return __kmalloc_cache_noprof(
691 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
692 				flags, size);
693 	}
694 	return __kmalloc_noprof(size, flags);
695 }
696 #define kmalloc(...)				alloc_hooks(kmalloc_noprof(__VA_ARGS__))
697 
698 #define kmem_buckets_alloc(_b, _size, _flags)	\
699 	alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
700 
701 #define kmem_buckets_alloc_track_caller(_b, _size, _flags)	\
702 	alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
703 
704 static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
705 {
706 	if (__builtin_constant_p(size) && size) {
707 		unsigned int index;
708 
709 		if (size > KMALLOC_MAX_CACHE_SIZE)
710 			return __kmalloc_large_node_noprof(size, flags, node);
711 
712 		index = kmalloc_index(size);
713 		return __kmalloc_cache_node_noprof(
714 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
715 				flags, node, size);
716 	}
717 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
718 }
719 #define kmalloc_node(...)			alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
720 
721 /**
722  * kmalloc_array - allocate memory for an array.
723  * @n: number of elements.
724  * @size: element size.
725  * @flags: the type of memory to allocate (see kmalloc).
726  */
727 static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
728 {
729 	size_t bytes;
730 
731 	if (unlikely(check_mul_overflow(n, size, &bytes)))
732 		return NULL;
733 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
734 		return kmalloc_noprof(bytes, flags);
735 	return kmalloc_noprof(bytes, flags);
736 }
737 #define kmalloc_array(...)			alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
738 
739 /**
740  * krealloc_array - reallocate memory for an array.
741  * @p: pointer to the memory chunk to reallocate
742  * @new_n: new number of elements to alloc
743  * @new_size: new size of a single member of the array
744  * @flags: the type of memory to allocate (see kmalloc)
745  */
746 static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
747 								       size_t new_n,
748 								       size_t new_size,
749 								       gfp_t flags)
750 {
751 	size_t bytes;
752 
753 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
754 		return NULL;
755 
756 	return krealloc_noprof(p, bytes, flags);
757 }
758 #define krealloc_array(...)			alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
759 
760 /**
761  * kcalloc - allocate memory for an array. The memory is set to zero.
762  * @n: number of elements.
763  * @size: element size.
764  * @flags: the type of memory to allocate (see kmalloc).
765  */
766 #define kcalloc(n, size, flags)		kmalloc_array(n, size, (flags) | __GFP_ZERO)
767 
768 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
769 					 unsigned long caller) __alloc_size(1);
770 #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
771 	__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
772 #define kmalloc_node_track_caller(...)		\
773 	alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
774 
775 /*
776  * kmalloc_track_caller is a special version of kmalloc that records the
777  * calling function of the routine calling it for slab leak tracking instead
778  * of just the calling function (confusing, eh?).
779  * It's useful when the call to kmalloc comes from a widely-used standard
780  * allocator where we care about the real place the memory allocation
781  * request comes from.
782  */
783 #define kmalloc_track_caller(...)		kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
784 
785 #define kmalloc_track_caller_noprof(...)	\
786 		kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
787 
788 static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
789 							  int node)
790 {
791 	size_t bytes;
792 
793 	if (unlikely(check_mul_overflow(n, size, &bytes)))
794 		return NULL;
795 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
796 		return kmalloc_node_noprof(bytes, flags, node);
797 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
798 }
799 #define kmalloc_array_node(...)			alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
800 
801 #define kcalloc_node(_n, _size, _flags, _node)	\
802 	kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
803 
804 /*
805  * Shortcuts
806  */
807 #define kmem_cache_zalloc(_k, _flags)		kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
808 
809 /**
810  * kzalloc - allocate memory. The memory is set to zero.
811  * @size: how many bytes of memory are required.
812  * @flags: the type of memory to allocate (see kmalloc).
813  */
814 static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
815 {
816 	return kmalloc_noprof(size, flags | __GFP_ZERO);
817 }
818 #define kzalloc(...)				alloc_hooks(kzalloc_noprof(__VA_ARGS__))
819 #define kzalloc_node(_size, _flags, _node)	kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
820 
821 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
822 #define kvmalloc_node_noprof(size, flags, node)	\
823 	__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
824 #define kvmalloc_node(...)			alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
825 
826 #define kvmalloc(_size, _flags)			kvmalloc_node(_size, _flags, NUMA_NO_NODE)
827 #define kvmalloc_noprof(_size, _flags)		kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
828 #define kvzalloc(_size, _flags)			kvmalloc(_size, (_flags)|__GFP_ZERO)
829 
830 #define kvzalloc_node(_size, _flags, _node)	kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
831 #define kmem_buckets_valloc(_b, _size, _flags)	\
832 	alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
833 
834 static inline __alloc_size(1, 2) void *
835 kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
836 {
837 	size_t bytes;
838 
839 	if (unlikely(check_mul_overflow(n, size, &bytes)))
840 		return NULL;
841 
842 	return kvmalloc_node_noprof(bytes, flags, node);
843 }
844 
845 #define kvmalloc_array_noprof(...)		kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
846 #define kvcalloc_node_noprof(_n,_s,_f,_node)	kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
847 #define kvcalloc_noprof(...)			kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
848 
849 #define kvmalloc_array(...)			alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
850 #define kvcalloc_node(...)			alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
851 #define kvcalloc(...)				alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
852 
853 extern void *kvrealloc_noprof(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
854 		      __realloc_size(3);
855 #define kvrealloc(...)				alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
856 
857 extern void kvfree(const void *addr);
858 DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
859 
860 extern void kvfree_sensitive(const void *addr, size_t len);
861 
862 unsigned int kmem_cache_size(struct kmem_cache *s);
863 
864 /**
865  * kmalloc_size_roundup - Report allocation bucket size for the given size
866  *
867  * @size: Number of bytes to round up from.
868  *
869  * This returns the number of bytes that would be available in a kmalloc()
870  * allocation of @size bytes. For example, a 126 byte request would be
871  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
872  * for the general-purpose kmalloc()-based allocations, and is not for the
873  * pre-sized kmem_cache_alloc()-based allocations.)
874  *
875  * Use this to kmalloc() the full bucket size ahead of time instead of using
876  * ksize() to query the size after an allocation.
877  */
878 size_t kmalloc_size_roundup(size_t size);
879 
880 void __init kmem_cache_init_late(void);
881 
882 #endif	/* _LINUX_SLAB_H */
883