xref: /linux-6.15/include/linux/slab.h (revision d3345fec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 ([email protected]).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 #include <linux/percpu-refcount.h>
20 
21 
22 /*
23  * Flags to pass to kmem_cache_create().
24  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25  */
26 /* DEBUG: Perform (expensive) checks on alloc/free */
27 #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
28 /* DEBUG: Red zone objs in a cache */
29 #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
30 /* DEBUG: Poison objects */
31 #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
32 /* Align objs on cache lines */
33 #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
34 /* Use GFP_DMA memory */
35 #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
36 /* Use GFP_DMA32 memory */
37 #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
38 /* DEBUG: Store the last owner for bug hunting */
39 #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
40 /* Panic if kmem_cache_create() fails */
41 #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
42 /*
43  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
44  *
45  * This delays freeing the SLAB page by a grace period, it does _NOT_
46  * delay object freeing. This means that if you do kmem_cache_free()
47  * that memory location is free to be reused at any time. Thus it may
48  * be possible to see another object there in the same RCU grace period.
49  *
50  * This feature only ensures the memory location backing the object
51  * stays valid, the trick to using this is relying on an independent
52  * object validation pass. Something like:
53  *
54  *  rcu_read_lock()
55  * again:
56  *  obj = lockless_lookup(key);
57  *  if (obj) {
58  *    if (!try_get_ref(obj)) // might fail for free objects
59  *      goto again;
60  *
61  *    if (obj->key != key) { // not the object we expected
62  *      put_ref(obj);
63  *      goto again;
64  *    }
65  *  }
66  *  rcu_read_unlock();
67  *
68  * This is useful if we need to approach a kernel structure obliquely,
69  * from its address obtained without the usual locking. We can lock
70  * the structure to stabilize it and check it's still at the given address,
71  * only if we can be sure that the memory has not been meanwhile reused
72  * for some other kind of object (which our subsystem's lock might corrupt).
73  *
74  * rcu_read_lock before reading the address, then rcu_read_unlock after
75  * taking the spinlock within the structure expected at that address.
76  *
77  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
78  */
79 /* Defer freeing slabs to RCU */
80 #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
81 /* Spread some memory over cpuset */
82 #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
83 /* Trace allocations and frees */
84 #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
85 
86 /* Flag to prevent checks on free */
87 #ifdef CONFIG_DEBUG_OBJECTS
88 # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
89 #else
90 # define SLAB_DEBUG_OBJECTS	0
91 #endif
92 
93 /* Avoid kmemleak tracing */
94 #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
95 
96 /* Fault injection mark */
97 #ifdef CONFIG_FAILSLAB
98 # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
99 #else
100 # define SLAB_FAILSLAB		0
101 #endif
102 /* Account to memcg */
103 #ifdef CONFIG_MEMCG_KMEM
104 # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
105 #else
106 # define SLAB_ACCOUNT		0
107 #endif
108 
109 #ifdef CONFIG_KASAN
110 #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
111 #else
112 #define SLAB_KASAN		0
113 #endif
114 
115 /*
116  * Ignore user specified debugging flags.
117  * Intended for caches created for self-tests so they have only flags
118  * specified in the code and other flags are ignored.
119  */
120 #define SLAB_NO_USER_FLAGS	((slab_flags_t __force)0x10000000U)
121 
122 /* The following flags affect the page allocator grouping pages by mobility */
123 /* Objects are reclaimable */
124 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
125 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
126 
127 /*
128  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
129  *
130  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
131  *
132  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
133  * Both make kfree a no-op.
134  */
135 #define ZERO_SIZE_PTR ((void *)16)
136 
137 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
138 				(unsigned long)ZERO_SIZE_PTR)
139 
140 #include <linux/kasan.h>
141 
142 struct list_lru;
143 struct mem_cgroup;
144 /*
145  * struct kmem_cache related prototypes
146  */
147 void __init kmem_cache_init(void);
148 bool slab_is_available(void);
149 
150 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
151 			unsigned int align, slab_flags_t flags,
152 			void (*ctor)(void *));
153 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
154 			unsigned int size, unsigned int align,
155 			slab_flags_t flags,
156 			unsigned int useroffset, unsigned int usersize,
157 			void (*ctor)(void *));
158 void kmem_cache_destroy(struct kmem_cache *s);
159 int kmem_cache_shrink(struct kmem_cache *s);
160 
161 /*
162  * Please use this macro to create slab caches. Simply specify the
163  * name of the structure and maybe some flags that are listed above.
164  *
165  * The alignment of the struct determines object alignment. If you
166  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
167  * then the objects will be properly aligned in SMP configurations.
168  */
169 #define KMEM_CACHE(__struct, __flags)					\
170 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
171 			__alignof__(struct __struct), (__flags), NULL)
172 
173 /*
174  * To whitelist a single field for copying to/from usercopy, use this
175  * macro instead for KMEM_CACHE() above.
176  */
177 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
178 		kmem_cache_create_usercopy(#__struct,			\
179 			sizeof(struct __struct),			\
180 			__alignof__(struct __struct), (__flags),	\
181 			offsetof(struct __struct, __field),		\
182 			sizeof_field(struct __struct, __field), NULL)
183 
184 /*
185  * Common kmalloc functions provided by all allocators
186  */
187 void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __alloc_size(2);
188 void kfree(const void *objp);
189 void kfree_sensitive(const void *objp);
190 size_t __ksize(const void *objp);
191 size_t ksize(const void *objp);
192 #ifdef CONFIG_PRINTK
193 bool kmem_valid_obj(void *object);
194 void kmem_dump_obj(void *object);
195 #endif
196 
197 /*
198  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
199  * alignment larger than the alignment of a 64-bit integer.
200  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
201  */
202 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
203 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
204 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
205 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
206 #else
207 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
208 #endif
209 
210 /*
211  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
212  * Intended for arches that get misalignment faults even for 64 bit integer
213  * aligned buffers.
214  */
215 #ifndef ARCH_SLAB_MINALIGN
216 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
217 #endif
218 
219 /*
220  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
221  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
222  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
223  */
224 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
225 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
226 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
227 
228 /*
229  * Kmalloc array related definitions
230  */
231 
232 #ifdef CONFIG_SLAB
233 /*
234  * The largest kmalloc size supported by the SLAB allocators is
235  * 32 megabyte (2^25) or the maximum allocatable page order if that is
236  * less than 32 MB.
237  *
238  * WARNING: Its not easy to increase this value since the allocators have
239  * to do various tricks to work around compiler limitations in order to
240  * ensure proper constant folding.
241  */
242 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
243 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
244 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
245 #ifndef KMALLOC_SHIFT_LOW
246 #define KMALLOC_SHIFT_LOW	5
247 #endif
248 #endif
249 
250 #ifdef CONFIG_SLUB
251 /*
252  * SLUB directly allocates requests fitting in to an order-1 page
253  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
254  */
255 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
256 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
257 #ifndef KMALLOC_SHIFT_LOW
258 #define KMALLOC_SHIFT_LOW	3
259 #endif
260 #endif
261 
262 #ifdef CONFIG_SLOB
263 /*
264  * SLOB passes all requests larger than one page to the page allocator.
265  * No kmalloc array is necessary since objects of different sizes can
266  * be allocated from the same page.
267  */
268 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
269 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
270 #ifndef KMALLOC_SHIFT_LOW
271 #define KMALLOC_SHIFT_LOW	3
272 #endif
273 #endif
274 
275 /* Maximum allocatable size */
276 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
277 /* Maximum size for which we actually use a slab cache */
278 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
279 /* Maximum order allocatable via the slab allocator */
280 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
281 
282 /*
283  * Kmalloc subsystem.
284  */
285 #ifndef KMALLOC_MIN_SIZE
286 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
287 #endif
288 
289 /*
290  * This restriction comes from byte sized index implementation.
291  * Page size is normally 2^12 bytes and, in this case, if we want to use
292  * byte sized index which can represent 2^8 entries, the size of the object
293  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
294  * If minimum size of kmalloc is less than 16, we use it as minimum object
295  * size and give up to use byte sized index.
296  */
297 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
298                                (KMALLOC_MIN_SIZE) : 16)
299 
300 /*
301  * Whenever changing this, take care of that kmalloc_type() and
302  * create_kmalloc_caches() still work as intended.
303  *
304  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
305  * is for accounted but unreclaimable and non-dma objects. All the other
306  * kmem caches can have both accounted and unaccounted objects.
307  */
308 enum kmalloc_cache_type {
309 	KMALLOC_NORMAL = 0,
310 #ifndef CONFIG_ZONE_DMA
311 	KMALLOC_DMA = KMALLOC_NORMAL,
312 #endif
313 #ifndef CONFIG_MEMCG_KMEM
314 	KMALLOC_CGROUP = KMALLOC_NORMAL,
315 #else
316 	KMALLOC_CGROUP,
317 #endif
318 	KMALLOC_RECLAIM,
319 #ifdef CONFIG_ZONE_DMA
320 	KMALLOC_DMA,
321 #endif
322 	NR_KMALLOC_TYPES
323 };
324 
325 #ifndef CONFIG_SLOB
326 extern struct kmem_cache *
327 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
328 
329 /*
330  * Define gfp bits that should not be set for KMALLOC_NORMAL.
331  */
332 #define KMALLOC_NOT_NORMAL_BITS					\
333 	(__GFP_RECLAIMABLE |					\
334 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
335 	(IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
336 
337 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
338 {
339 	/*
340 	 * The most common case is KMALLOC_NORMAL, so test for it
341 	 * with a single branch for all the relevant flags.
342 	 */
343 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
344 		return KMALLOC_NORMAL;
345 
346 	/*
347 	 * At least one of the flags has to be set. Their priorities in
348 	 * decreasing order are:
349 	 *  1) __GFP_DMA
350 	 *  2) __GFP_RECLAIMABLE
351 	 *  3) __GFP_ACCOUNT
352 	 */
353 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
354 		return KMALLOC_DMA;
355 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
356 		return KMALLOC_RECLAIM;
357 	else
358 		return KMALLOC_CGROUP;
359 }
360 
361 /*
362  * Figure out which kmalloc slab an allocation of a certain size
363  * belongs to.
364  * 0 = zero alloc
365  * 1 =  65 .. 96 bytes
366  * 2 = 129 .. 192 bytes
367  * n = 2^(n-1)+1 .. 2^n
368  *
369  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
370  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
371  * Callers where !size_is_constant should only be test modules, where runtime
372  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
373  */
374 static __always_inline unsigned int __kmalloc_index(size_t size,
375 						    bool size_is_constant)
376 {
377 	if (!size)
378 		return 0;
379 
380 	if (size <= KMALLOC_MIN_SIZE)
381 		return KMALLOC_SHIFT_LOW;
382 
383 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
384 		return 1;
385 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
386 		return 2;
387 	if (size <=          8) return 3;
388 	if (size <=         16) return 4;
389 	if (size <=         32) return 5;
390 	if (size <=         64) return 6;
391 	if (size <=        128) return 7;
392 	if (size <=        256) return 8;
393 	if (size <=        512) return 9;
394 	if (size <=       1024) return 10;
395 	if (size <=   2 * 1024) return 11;
396 	if (size <=   4 * 1024) return 12;
397 	if (size <=   8 * 1024) return 13;
398 	if (size <=  16 * 1024) return 14;
399 	if (size <=  32 * 1024) return 15;
400 	if (size <=  64 * 1024) return 16;
401 	if (size <= 128 * 1024) return 17;
402 	if (size <= 256 * 1024) return 18;
403 	if (size <= 512 * 1024) return 19;
404 	if (size <= 1024 * 1024) return 20;
405 	if (size <=  2 * 1024 * 1024) return 21;
406 	if (size <=  4 * 1024 * 1024) return 22;
407 	if (size <=  8 * 1024 * 1024) return 23;
408 	if (size <=  16 * 1024 * 1024) return 24;
409 	if (size <=  32 * 1024 * 1024) return 25;
410 
411 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
412 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
413 	else
414 		BUG();
415 
416 	/* Will never be reached. Needed because the compiler may complain */
417 	return -1;
418 }
419 #define kmalloc_index(s) __kmalloc_index(s, true)
420 #endif /* !CONFIG_SLOB */
421 
422 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
423 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc;
424 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
425 			   gfp_t gfpflags) __assume_slab_alignment __malloc;
426 void kmem_cache_free(struct kmem_cache *s, void *objp);
427 
428 /*
429  * Bulk allocation and freeing operations. These are accelerated in an
430  * allocator specific way to avoid taking locks repeatedly or building
431  * metadata structures unnecessarily.
432  *
433  * Note that interrupts must be enabled when calling these functions.
434  */
435 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
436 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
437 
438 /*
439  * Caller must not use kfree_bulk() on memory not originally allocated
440  * by kmalloc(), because the SLOB allocator cannot handle this.
441  */
442 static __always_inline void kfree_bulk(size_t size, void **p)
443 {
444 	kmem_cache_free_bulk(NULL, size, p);
445 }
446 
447 #ifdef CONFIG_NUMA
448 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
449 							 __alloc_size(1);
450 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
451 									 __malloc;
452 #else
453 static __always_inline __alloc_size(1) void *__kmalloc_node(size_t size, gfp_t flags, int node)
454 {
455 	return __kmalloc(size, flags);
456 }
457 
458 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
459 {
460 	return kmem_cache_alloc(s, flags);
461 }
462 #endif
463 
464 #ifdef CONFIG_TRACING
465 extern void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
466 				   __assume_slab_alignment __alloc_size(3);
467 
468 #ifdef CONFIG_NUMA
469 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
470 					 int node, size_t size) __assume_slab_alignment
471 								__alloc_size(4);
472 #else
473 static __always_inline __alloc_size(4) void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
474 						 gfp_t gfpflags, int node, size_t size)
475 {
476 	return kmem_cache_alloc_trace(s, gfpflags, size);
477 }
478 #endif /* CONFIG_NUMA */
479 
480 #else /* CONFIG_TRACING */
481 static __always_inline __alloc_size(3) void *kmem_cache_alloc_trace(struct kmem_cache *s,
482 								    gfp_t flags, size_t size)
483 {
484 	void *ret = kmem_cache_alloc(s, flags);
485 
486 	ret = kasan_kmalloc(s, ret, size, flags);
487 	return ret;
488 }
489 
490 static __always_inline void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
491 							 int node, size_t size)
492 {
493 	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
494 
495 	ret = kasan_kmalloc(s, ret, size, gfpflags);
496 	return ret;
497 }
498 #endif /* CONFIG_TRACING */
499 
500 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment
501 									 __alloc_size(1);
502 
503 #ifdef CONFIG_TRACING
504 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
505 				__assume_page_alignment __alloc_size(1);
506 #else
507 static __always_inline __alloc_size(1) void *kmalloc_order_trace(size_t size, gfp_t flags,
508 								 unsigned int order)
509 {
510 	return kmalloc_order(size, flags, order);
511 }
512 #endif
513 
514 static __always_inline __alloc_size(1) void *kmalloc_large(size_t size, gfp_t flags)
515 {
516 	unsigned int order = get_order(size);
517 	return kmalloc_order_trace(size, flags, order);
518 }
519 
520 /**
521  * kmalloc - allocate memory
522  * @size: how many bytes of memory are required.
523  * @flags: the type of memory to allocate.
524  *
525  * kmalloc is the normal method of allocating memory
526  * for objects smaller than page size in the kernel.
527  *
528  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
529  * bytes. For @size of power of two bytes, the alignment is also guaranteed
530  * to be at least to the size.
531  *
532  * The @flags argument may be one of the GFP flags defined at
533  * include/linux/gfp.h and described at
534  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
535  *
536  * The recommended usage of the @flags is described at
537  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
538  *
539  * Below is a brief outline of the most useful GFP flags
540  *
541  * %GFP_KERNEL
542  *	Allocate normal kernel ram. May sleep.
543  *
544  * %GFP_NOWAIT
545  *	Allocation will not sleep.
546  *
547  * %GFP_ATOMIC
548  *	Allocation will not sleep.  May use emergency pools.
549  *
550  * %GFP_HIGHUSER
551  *	Allocate memory from high memory on behalf of user.
552  *
553  * Also it is possible to set different flags by OR'ing
554  * in one or more of the following additional @flags:
555  *
556  * %__GFP_HIGH
557  *	This allocation has high priority and may use emergency pools.
558  *
559  * %__GFP_NOFAIL
560  *	Indicate that this allocation is in no way allowed to fail
561  *	(think twice before using).
562  *
563  * %__GFP_NORETRY
564  *	If memory is not immediately available,
565  *	then give up at once.
566  *
567  * %__GFP_NOWARN
568  *	If allocation fails, don't issue any warnings.
569  *
570  * %__GFP_RETRY_MAYFAIL
571  *	Try really hard to succeed the allocation but fail
572  *	eventually.
573  */
574 static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
575 {
576 	if (__builtin_constant_p(size)) {
577 #ifndef CONFIG_SLOB
578 		unsigned int index;
579 #endif
580 		if (size > KMALLOC_MAX_CACHE_SIZE)
581 			return kmalloc_large(size, flags);
582 #ifndef CONFIG_SLOB
583 		index = kmalloc_index(size);
584 
585 		if (!index)
586 			return ZERO_SIZE_PTR;
587 
588 		return kmem_cache_alloc_trace(
589 				kmalloc_caches[kmalloc_type(flags)][index],
590 				flags, size);
591 #endif
592 	}
593 	return __kmalloc(size, flags);
594 }
595 
596 static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
597 {
598 #ifndef CONFIG_SLOB
599 	if (__builtin_constant_p(size) &&
600 		size <= KMALLOC_MAX_CACHE_SIZE) {
601 		unsigned int i = kmalloc_index(size);
602 
603 		if (!i)
604 			return ZERO_SIZE_PTR;
605 
606 		return kmem_cache_alloc_node_trace(
607 				kmalloc_caches[kmalloc_type(flags)][i],
608 						flags, node, size);
609 	}
610 #endif
611 	return __kmalloc_node(size, flags, node);
612 }
613 
614 /**
615  * kmalloc_array - allocate memory for an array.
616  * @n: number of elements.
617  * @size: element size.
618  * @flags: the type of memory to allocate (see kmalloc).
619  */
620 static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
621 {
622 	size_t bytes;
623 
624 	if (unlikely(check_mul_overflow(n, size, &bytes)))
625 		return NULL;
626 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
627 		return kmalloc(bytes, flags);
628 	return __kmalloc(bytes, flags);
629 }
630 
631 /**
632  * krealloc_array - reallocate memory for an array.
633  * @p: pointer to the memory chunk to reallocate
634  * @new_n: new number of elements to alloc
635  * @new_size: new size of a single member of the array
636  * @flags: the type of memory to allocate (see kmalloc)
637  */
638 static inline __alloc_size(2, 3) void * __must_check krealloc_array(void *p,
639 								    size_t new_n,
640 								    size_t new_size,
641 								    gfp_t flags)
642 {
643 	size_t bytes;
644 
645 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
646 		return NULL;
647 
648 	return krealloc(p, bytes, flags);
649 }
650 
651 /**
652  * kcalloc - allocate memory for an array. The memory is set to zero.
653  * @n: number of elements.
654  * @size: element size.
655  * @flags: the type of memory to allocate (see kmalloc).
656  */
657 static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
658 {
659 	return kmalloc_array(n, size, flags | __GFP_ZERO);
660 }
661 
662 /*
663  * kmalloc_track_caller is a special version of kmalloc that records the
664  * calling function of the routine calling it for slab leak tracking instead
665  * of just the calling function (confusing, eh?).
666  * It's useful when the call to kmalloc comes from a widely-used standard
667  * allocator where we care about the real place the memory allocation
668  * request comes from.
669  */
670 extern void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller);
671 #define kmalloc_track_caller(size, flags) \
672 	__kmalloc_track_caller(size, flags, _RET_IP_)
673 
674 static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
675 							  int node)
676 {
677 	size_t bytes;
678 
679 	if (unlikely(check_mul_overflow(n, size, &bytes)))
680 		return NULL;
681 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
682 		return kmalloc_node(bytes, flags, node);
683 	return __kmalloc_node(bytes, flags, node);
684 }
685 
686 static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
687 {
688 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
689 }
690 
691 
692 #ifdef CONFIG_NUMA
693 extern void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
694 					 unsigned long caller) __alloc_size(1);
695 #define kmalloc_node_track_caller(size, flags, node) \
696 	__kmalloc_node_track_caller(size, flags, node, \
697 			_RET_IP_)
698 
699 #else /* CONFIG_NUMA */
700 
701 #define kmalloc_node_track_caller(size, flags, node) \
702 	kmalloc_track_caller(size, flags)
703 
704 #endif /* CONFIG_NUMA */
705 
706 /*
707  * Shortcuts
708  */
709 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
710 {
711 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
712 }
713 
714 /**
715  * kzalloc - allocate memory. The memory is set to zero.
716  * @size: how many bytes of memory are required.
717  * @flags: the type of memory to allocate (see kmalloc).
718  */
719 static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
720 {
721 	return kmalloc(size, flags | __GFP_ZERO);
722 }
723 
724 /**
725  * kzalloc_node - allocate zeroed memory from a particular memory node.
726  * @size: how many bytes of memory are required.
727  * @flags: the type of memory to allocate (see kmalloc).
728  * @node: memory node from which to allocate
729  */
730 static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
731 {
732 	return kmalloc_node(size, flags | __GFP_ZERO, node);
733 }
734 
735 extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
736 static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
737 {
738 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
739 }
740 static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
741 {
742 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
743 }
744 static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
745 {
746 	return kvmalloc(size, flags | __GFP_ZERO);
747 }
748 
749 static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
750 {
751 	size_t bytes;
752 
753 	if (unlikely(check_mul_overflow(n, size, &bytes)))
754 		return NULL;
755 
756 	return kvmalloc(bytes, flags);
757 }
758 
759 static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
760 {
761 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
762 }
763 
764 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
765 		      __alloc_size(3);
766 extern void kvfree(const void *addr);
767 extern void kvfree_sensitive(const void *addr, size_t len);
768 
769 unsigned int kmem_cache_size(struct kmem_cache *s);
770 void __init kmem_cache_init_late(void);
771 
772 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
773 int slab_prepare_cpu(unsigned int cpu);
774 int slab_dead_cpu(unsigned int cpu);
775 #else
776 #define slab_prepare_cpu	NULL
777 #define slab_dead_cpu		NULL
778 #endif
779 
780 #endif	/* _LINUX_SLAB_H */
781