xref: /linux-6.15/include/linux/slab.h (revision bbaf1ff0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 ([email protected]).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/cache.h>
16 #include <linux/gfp.h>
17 #include <linux/overflow.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20 #include <linux/percpu-refcount.h>
21 
22 
23 /*
24  * Flags to pass to kmem_cache_create().
25  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
26  */
27 /* DEBUG: Perform (expensive) checks on alloc/free */
28 #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
29 /* DEBUG: Red zone objs in a cache */
30 #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
31 /* DEBUG: Poison objects */
32 #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
33 /* Indicate a kmalloc slab */
34 #define SLAB_KMALLOC		((slab_flags_t __force)0x00001000U)
35 /* Align objs on cache lines */
36 #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
37 /* Use GFP_DMA memory */
38 #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
39 /* Use GFP_DMA32 memory */
40 #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
41 /* DEBUG: Store the last owner for bug hunting */
42 #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
43 /* Panic if kmem_cache_create() fails */
44 #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
45 /*
46  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
47  *
48  * This delays freeing the SLAB page by a grace period, it does _NOT_
49  * delay object freeing. This means that if you do kmem_cache_free()
50  * that memory location is free to be reused at any time. Thus it may
51  * be possible to see another object there in the same RCU grace period.
52  *
53  * This feature only ensures the memory location backing the object
54  * stays valid, the trick to using this is relying on an independent
55  * object validation pass. Something like:
56  *
57  *  rcu_read_lock()
58  * again:
59  *  obj = lockless_lookup(key);
60  *  if (obj) {
61  *    if (!try_get_ref(obj)) // might fail for free objects
62  *      goto again;
63  *
64  *    if (obj->key != key) { // not the object we expected
65  *      put_ref(obj);
66  *      goto again;
67  *    }
68  *  }
69  *  rcu_read_unlock();
70  *
71  * This is useful if we need to approach a kernel structure obliquely,
72  * from its address obtained without the usual locking. We can lock
73  * the structure to stabilize it and check it's still at the given address,
74  * only if we can be sure that the memory has not been meanwhile reused
75  * for some other kind of object (which our subsystem's lock might corrupt).
76  *
77  * rcu_read_lock before reading the address, then rcu_read_unlock after
78  * taking the spinlock within the structure expected at that address.
79  *
80  * Note that it is not possible to acquire a lock within a structure
81  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
82  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
83  * are not zeroed before being given to the slab, which means that any
84  * locks must be initialized after each and every kmem_struct_alloc().
85  * Alternatively, make the ctor passed to kmem_cache_create() initialize
86  * the locks at page-allocation time, as is done in __i915_request_ctor(),
87  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
88  * to safely acquire those ctor-initialized locks under rcu_read_lock()
89  * protection.
90  *
91  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
92  */
93 /* Defer freeing slabs to RCU */
94 #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
95 /* Spread some memory over cpuset */
96 #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
97 /* Trace allocations and frees */
98 #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
99 
100 /* Flag to prevent checks on free */
101 #ifdef CONFIG_DEBUG_OBJECTS
102 # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
103 #else
104 # define SLAB_DEBUG_OBJECTS	0
105 #endif
106 
107 /* Avoid kmemleak tracing */
108 #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
109 
110 /* Fault injection mark */
111 #ifdef CONFIG_FAILSLAB
112 # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
113 #else
114 # define SLAB_FAILSLAB		0
115 #endif
116 /* Account to memcg */
117 #ifdef CONFIG_MEMCG_KMEM
118 # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
119 #else
120 # define SLAB_ACCOUNT		0
121 #endif
122 
123 #ifdef CONFIG_KASAN_GENERIC
124 #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
125 #else
126 #define SLAB_KASAN		0
127 #endif
128 
129 /*
130  * Ignore user specified debugging flags.
131  * Intended for caches created for self-tests so they have only flags
132  * specified in the code and other flags are ignored.
133  */
134 #define SLAB_NO_USER_FLAGS	((slab_flags_t __force)0x10000000U)
135 
136 #ifdef CONFIG_KFENCE
137 #define SLAB_SKIP_KFENCE	((slab_flags_t __force)0x20000000U)
138 #else
139 #define SLAB_SKIP_KFENCE	0
140 #endif
141 
142 /* The following flags affect the page allocator grouping pages by mobility */
143 /* Objects are reclaimable */
144 #ifndef CONFIG_SLUB_TINY
145 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
146 #else
147 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0)
148 #endif
149 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
150 
151 /*
152  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
153  *
154  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
155  *
156  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
157  * Both make kfree a no-op.
158  */
159 #define ZERO_SIZE_PTR ((void *)16)
160 
161 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
162 				(unsigned long)ZERO_SIZE_PTR)
163 
164 #include <linux/kasan.h>
165 
166 struct list_lru;
167 struct mem_cgroup;
168 /*
169  * struct kmem_cache related prototypes
170  */
171 bool slab_is_available(void);
172 
173 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
174 			unsigned int align, slab_flags_t flags,
175 			void (*ctor)(void *));
176 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
177 			unsigned int size, unsigned int align,
178 			slab_flags_t flags,
179 			unsigned int useroffset, unsigned int usersize,
180 			void (*ctor)(void *));
181 void kmem_cache_destroy(struct kmem_cache *s);
182 int kmem_cache_shrink(struct kmem_cache *s);
183 
184 /*
185  * Please use this macro to create slab caches. Simply specify the
186  * name of the structure and maybe some flags that are listed above.
187  *
188  * The alignment of the struct determines object alignment. If you
189  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
190  * then the objects will be properly aligned in SMP configurations.
191  */
192 #define KMEM_CACHE(__struct, __flags)					\
193 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
194 			__alignof__(struct __struct), (__flags), NULL)
195 
196 /*
197  * To whitelist a single field for copying to/from usercopy, use this
198  * macro instead for KMEM_CACHE() above.
199  */
200 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
201 		kmem_cache_create_usercopy(#__struct,			\
202 			sizeof(struct __struct),			\
203 			__alignof__(struct __struct), (__flags),	\
204 			offsetof(struct __struct, __field),		\
205 			sizeof_field(struct __struct, __field), NULL)
206 
207 /*
208  * Common kmalloc functions provided by all allocators
209  */
210 void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2);
211 void kfree(const void *objp);
212 void kfree_sensitive(const void *objp);
213 size_t __ksize(const void *objp);
214 
215 /**
216  * ksize - Report actual allocation size of associated object
217  *
218  * @objp: Pointer returned from a prior kmalloc()-family allocation.
219  *
220  * This should not be used for writing beyond the originally requested
221  * allocation size. Either use krealloc() or round up the allocation size
222  * with kmalloc_size_roundup() prior to allocation. If this is used to
223  * access beyond the originally requested allocation size, UBSAN_BOUNDS
224  * and/or FORTIFY_SOURCE may trip, since they only know about the
225  * originally allocated size via the __alloc_size attribute.
226  */
227 size_t ksize(const void *objp);
228 
229 #ifdef CONFIG_PRINTK
230 bool kmem_valid_obj(void *object);
231 void kmem_dump_obj(void *object);
232 #endif
233 
234 /*
235  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
236  * alignment larger than the alignment of a 64-bit integer.
237  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
238  */
239 #ifdef ARCH_HAS_DMA_MINALIGN
240 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
241 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
242 #endif
243 #endif
244 
245 #ifndef ARCH_KMALLOC_MINALIGN
246 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
247 #elif ARCH_KMALLOC_MINALIGN > 8
248 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
249 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
250 #endif
251 
252 /*
253  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
254  * Intended for arches that get misalignment faults even for 64 bit integer
255  * aligned buffers.
256  */
257 #ifndef ARCH_SLAB_MINALIGN
258 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
259 #endif
260 
261 /*
262  * Arches can define this function if they want to decide the minimum slab
263  * alignment at runtime. The value returned by the function must be a power
264  * of two and >= ARCH_SLAB_MINALIGN.
265  */
266 #ifndef arch_slab_minalign
267 static inline unsigned int arch_slab_minalign(void)
268 {
269 	return ARCH_SLAB_MINALIGN;
270 }
271 #endif
272 
273 /*
274  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
275  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
276  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
277  */
278 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
279 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
280 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
281 
282 /*
283  * Kmalloc array related definitions
284  */
285 
286 #ifdef CONFIG_SLAB
287 /*
288  * SLAB and SLUB directly allocates requests fitting in to an order-1 page
289  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
290  */
291 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
292 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
293 #ifndef KMALLOC_SHIFT_LOW
294 #define KMALLOC_SHIFT_LOW	5
295 #endif
296 #endif
297 
298 #ifdef CONFIG_SLUB
299 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
300 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
301 #ifndef KMALLOC_SHIFT_LOW
302 #define KMALLOC_SHIFT_LOW	3
303 #endif
304 #endif
305 
306 /* Maximum allocatable size */
307 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
308 /* Maximum size for which we actually use a slab cache */
309 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
310 /* Maximum order allocatable via the slab allocator */
311 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
312 
313 /*
314  * Kmalloc subsystem.
315  */
316 #ifndef KMALLOC_MIN_SIZE
317 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
318 #endif
319 
320 /*
321  * This restriction comes from byte sized index implementation.
322  * Page size is normally 2^12 bytes and, in this case, if we want to use
323  * byte sized index which can represent 2^8 entries, the size of the object
324  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
325  * If minimum size of kmalloc is less than 16, we use it as minimum object
326  * size and give up to use byte sized index.
327  */
328 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
329                                (KMALLOC_MIN_SIZE) : 16)
330 
331 /*
332  * Whenever changing this, take care of that kmalloc_type() and
333  * create_kmalloc_caches() still work as intended.
334  *
335  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
336  * is for accounted but unreclaimable and non-dma objects. All the other
337  * kmem caches can have both accounted and unaccounted objects.
338  */
339 enum kmalloc_cache_type {
340 	KMALLOC_NORMAL = 0,
341 #ifndef CONFIG_ZONE_DMA
342 	KMALLOC_DMA = KMALLOC_NORMAL,
343 #endif
344 #ifndef CONFIG_MEMCG_KMEM
345 	KMALLOC_CGROUP = KMALLOC_NORMAL,
346 #endif
347 #ifdef CONFIG_SLUB_TINY
348 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
349 #else
350 	KMALLOC_RECLAIM,
351 #endif
352 #ifdef CONFIG_ZONE_DMA
353 	KMALLOC_DMA,
354 #endif
355 #ifdef CONFIG_MEMCG_KMEM
356 	KMALLOC_CGROUP,
357 #endif
358 	NR_KMALLOC_TYPES
359 };
360 
361 extern struct kmem_cache *
362 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
363 
364 /*
365  * Define gfp bits that should not be set for KMALLOC_NORMAL.
366  */
367 #define KMALLOC_NOT_NORMAL_BITS					\
368 	(__GFP_RECLAIMABLE |					\
369 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
370 	(IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
371 
372 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
373 {
374 	/*
375 	 * The most common case is KMALLOC_NORMAL, so test for it
376 	 * with a single branch for all the relevant flags.
377 	 */
378 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
379 		return KMALLOC_NORMAL;
380 
381 	/*
382 	 * At least one of the flags has to be set. Their priorities in
383 	 * decreasing order are:
384 	 *  1) __GFP_DMA
385 	 *  2) __GFP_RECLAIMABLE
386 	 *  3) __GFP_ACCOUNT
387 	 */
388 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
389 		return KMALLOC_DMA;
390 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
391 		return KMALLOC_RECLAIM;
392 	else
393 		return KMALLOC_CGROUP;
394 }
395 
396 /*
397  * Figure out which kmalloc slab an allocation of a certain size
398  * belongs to.
399  * 0 = zero alloc
400  * 1 =  65 .. 96 bytes
401  * 2 = 129 .. 192 bytes
402  * n = 2^(n-1)+1 .. 2^n
403  *
404  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
405  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
406  * Callers where !size_is_constant should only be test modules, where runtime
407  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
408  */
409 static __always_inline unsigned int __kmalloc_index(size_t size,
410 						    bool size_is_constant)
411 {
412 	if (!size)
413 		return 0;
414 
415 	if (size <= KMALLOC_MIN_SIZE)
416 		return KMALLOC_SHIFT_LOW;
417 
418 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
419 		return 1;
420 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
421 		return 2;
422 	if (size <=          8) return 3;
423 	if (size <=         16) return 4;
424 	if (size <=         32) return 5;
425 	if (size <=         64) return 6;
426 	if (size <=        128) return 7;
427 	if (size <=        256) return 8;
428 	if (size <=        512) return 9;
429 	if (size <=       1024) return 10;
430 	if (size <=   2 * 1024) return 11;
431 	if (size <=   4 * 1024) return 12;
432 	if (size <=   8 * 1024) return 13;
433 	if (size <=  16 * 1024) return 14;
434 	if (size <=  32 * 1024) return 15;
435 	if (size <=  64 * 1024) return 16;
436 	if (size <= 128 * 1024) return 17;
437 	if (size <= 256 * 1024) return 18;
438 	if (size <= 512 * 1024) return 19;
439 	if (size <= 1024 * 1024) return 20;
440 	if (size <=  2 * 1024 * 1024) return 21;
441 
442 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
443 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
444 	else
445 		BUG();
446 
447 	/* Will never be reached. Needed because the compiler may complain */
448 	return -1;
449 }
450 static_assert(PAGE_SHIFT <= 20);
451 #define kmalloc_index(s) __kmalloc_index(s, true)
452 
453 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
454 
455 /**
456  * kmem_cache_alloc - Allocate an object
457  * @cachep: The cache to allocate from.
458  * @flags: See kmalloc().
459  *
460  * Allocate an object from this cache.
461  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
462  *
463  * Return: pointer to the new object or %NULL in case of error
464  */
465 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc;
466 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
467 			   gfp_t gfpflags) __assume_slab_alignment __malloc;
468 void kmem_cache_free(struct kmem_cache *s, void *objp);
469 
470 /*
471  * Bulk allocation and freeing operations. These are accelerated in an
472  * allocator specific way to avoid taking locks repeatedly or building
473  * metadata structures unnecessarily.
474  *
475  * Note that interrupts must be enabled when calling these functions.
476  */
477 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
478 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
479 
480 static __always_inline void kfree_bulk(size_t size, void **p)
481 {
482 	kmem_cache_free_bulk(NULL, size, p);
483 }
484 
485 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
486 							 __alloc_size(1);
487 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
488 									 __malloc;
489 
490 void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
491 		    __assume_kmalloc_alignment __alloc_size(3);
492 
493 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
494 			 int node, size_t size) __assume_kmalloc_alignment
495 						__alloc_size(4);
496 void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment
497 					      __alloc_size(1);
498 
499 void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment
500 							     __alloc_size(1);
501 
502 /**
503  * kmalloc - allocate kernel memory
504  * @size: how many bytes of memory are required.
505  * @flags: describe the allocation context
506  *
507  * kmalloc is the normal method of allocating memory
508  * for objects smaller than page size in the kernel.
509  *
510  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
511  * bytes. For @size of power of two bytes, the alignment is also guaranteed
512  * to be at least to the size.
513  *
514  * The @flags argument may be one of the GFP flags defined at
515  * include/linux/gfp_types.h and described at
516  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
517  *
518  * The recommended usage of the @flags is described at
519  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
520  *
521  * Below is a brief outline of the most useful GFP flags
522  *
523  * %GFP_KERNEL
524  *	Allocate normal kernel ram. May sleep.
525  *
526  * %GFP_NOWAIT
527  *	Allocation will not sleep.
528  *
529  * %GFP_ATOMIC
530  *	Allocation will not sleep.  May use emergency pools.
531  *
532  * Also it is possible to set different flags by OR'ing
533  * in one or more of the following additional @flags:
534  *
535  * %__GFP_ZERO
536  *	Zero the allocated memory before returning. Also see kzalloc().
537  *
538  * %__GFP_HIGH
539  *	This allocation has high priority and may use emergency pools.
540  *
541  * %__GFP_NOFAIL
542  *	Indicate that this allocation is in no way allowed to fail
543  *	(think twice before using).
544  *
545  * %__GFP_NORETRY
546  *	If memory is not immediately available,
547  *	then give up at once.
548  *
549  * %__GFP_NOWARN
550  *	If allocation fails, don't issue any warnings.
551  *
552  * %__GFP_RETRY_MAYFAIL
553  *	Try really hard to succeed the allocation but fail
554  *	eventually.
555  */
556 static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
557 {
558 	if (__builtin_constant_p(size) && size) {
559 		unsigned int index;
560 
561 		if (size > KMALLOC_MAX_CACHE_SIZE)
562 			return kmalloc_large(size, flags);
563 
564 		index = kmalloc_index(size);
565 		return kmalloc_trace(
566 				kmalloc_caches[kmalloc_type(flags)][index],
567 				flags, size);
568 	}
569 	return __kmalloc(size, flags);
570 }
571 
572 static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
573 {
574 	if (__builtin_constant_p(size) && size) {
575 		unsigned int index;
576 
577 		if (size > KMALLOC_MAX_CACHE_SIZE)
578 			return kmalloc_large_node(size, flags, node);
579 
580 		index = kmalloc_index(size);
581 		return kmalloc_node_trace(
582 				kmalloc_caches[kmalloc_type(flags)][index],
583 				flags, node, size);
584 	}
585 	return __kmalloc_node(size, flags, node);
586 }
587 
588 /**
589  * kmalloc_array - allocate memory for an array.
590  * @n: number of elements.
591  * @size: element size.
592  * @flags: the type of memory to allocate (see kmalloc).
593  */
594 static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
595 {
596 	size_t bytes;
597 
598 	if (unlikely(check_mul_overflow(n, size, &bytes)))
599 		return NULL;
600 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
601 		return kmalloc(bytes, flags);
602 	return __kmalloc(bytes, flags);
603 }
604 
605 /**
606  * krealloc_array - reallocate memory for an array.
607  * @p: pointer to the memory chunk to reallocate
608  * @new_n: new number of elements to alloc
609  * @new_size: new size of a single member of the array
610  * @flags: the type of memory to allocate (see kmalloc)
611  */
612 static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p,
613 								      size_t new_n,
614 								      size_t new_size,
615 								      gfp_t flags)
616 {
617 	size_t bytes;
618 
619 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
620 		return NULL;
621 
622 	return krealloc(p, bytes, flags);
623 }
624 
625 /**
626  * kcalloc - allocate memory for an array. The memory is set to zero.
627  * @n: number of elements.
628  * @size: element size.
629  * @flags: the type of memory to allocate (see kmalloc).
630  */
631 static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
632 {
633 	return kmalloc_array(n, size, flags | __GFP_ZERO);
634 }
635 
636 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
637 				  unsigned long caller) __alloc_size(1);
638 #define kmalloc_node_track_caller(size, flags, node) \
639 	__kmalloc_node_track_caller(size, flags, node, \
640 				    _RET_IP_)
641 
642 /*
643  * kmalloc_track_caller is a special version of kmalloc that records the
644  * calling function of the routine calling it for slab leak tracking instead
645  * of just the calling function (confusing, eh?).
646  * It's useful when the call to kmalloc comes from a widely-used standard
647  * allocator where we care about the real place the memory allocation
648  * request comes from.
649  */
650 #define kmalloc_track_caller(size, flags) \
651 	__kmalloc_node_track_caller(size, flags, \
652 				    NUMA_NO_NODE, _RET_IP_)
653 
654 static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
655 							  int node)
656 {
657 	size_t bytes;
658 
659 	if (unlikely(check_mul_overflow(n, size, &bytes)))
660 		return NULL;
661 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
662 		return kmalloc_node(bytes, flags, node);
663 	return __kmalloc_node(bytes, flags, node);
664 }
665 
666 static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
667 {
668 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
669 }
670 
671 /*
672  * Shortcuts
673  */
674 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
675 {
676 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
677 }
678 
679 /**
680  * kzalloc - allocate memory. The memory is set to zero.
681  * @size: how many bytes of memory are required.
682  * @flags: the type of memory to allocate (see kmalloc).
683  */
684 static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
685 {
686 	return kmalloc(size, flags | __GFP_ZERO);
687 }
688 
689 /**
690  * kzalloc_node - allocate zeroed memory from a particular memory node.
691  * @size: how many bytes of memory are required.
692  * @flags: the type of memory to allocate (see kmalloc).
693  * @node: memory node from which to allocate
694  */
695 static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
696 {
697 	return kmalloc_node(size, flags | __GFP_ZERO, node);
698 }
699 
700 extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
701 static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
702 {
703 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
704 }
705 static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
706 {
707 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
708 }
709 static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
710 {
711 	return kvmalloc(size, flags | __GFP_ZERO);
712 }
713 
714 static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
715 {
716 	size_t bytes;
717 
718 	if (unlikely(check_mul_overflow(n, size, &bytes)))
719 		return NULL;
720 
721 	return kvmalloc(bytes, flags);
722 }
723 
724 static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
725 {
726 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
727 }
728 
729 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
730 		      __realloc_size(3);
731 extern void kvfree(const void *addr);
732 extern void kvfree_sensitive(const void *addr, size_t len);
733 
734 unsigned int kmem_cache_size(struct kmem_cache *s);
735 
736 /**
737  * kmalloc_size_roundup - Report allocation bucket size for the given size
738  *
739  * @size: Number of bytes to round up from.
740  *
741  * This returns the number of bytes that would be available in a kmalloc()
742  * allocation of @size bytes. For example, a 126 byte request would be
743  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
744  * for the general-purpose kmalloc()-based allocations, and is not for the
745  * pre-sized kmem_cache_alloc()-based allocations.)
746  *
747  * Use this to kmalloc() the full bucket size ahead of time instead of using
748  * ksize() to query the size after an allocation.
749  */
750 size_t kmalloc_size_roundup(size_t size);
751 
752 void __init kmem_cache_init_late(void);
753 
754 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
755 int slab_prepare_cpu(unsigned int cpu);
756 int slab_dead_cpu(unsigned int cpu);
757 #else
758 #define slab_prepare_cpu	NULL
759 #define slab_dead_cpu		NULL
760 #endif
761 
762 #endif	/* _LINUX_SLAB_H */
763