1 /* 2 * Written by Mark Hemment, 1996 ([email protected]). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11 #ifndef _LINUX_SLAB_H 12 #define _LINUX_SLAB_H 13 14 #include <linux/gfp.h> 15 #include <linux/types.h> 16 #include <linux/workqueue.h> 17 18 19 /* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. 22 */ 23 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 24 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30 /* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 */ 65 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 66 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 67 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 68 69 /* Flag to prevent checks on free */ 70 #ifdef CONFIG_DEBUG_OBJECTS 71 # define SLAB_DEBUG_OBJECTS 0x00400000UL 72 #else 73 # define SLAB_DEBUG_OBJECTS 0x00000000UL 74 #endif 75 76 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 77 78 /* Don't track use of uninitialized memory */ 79 #ifdef CONFIG_KMEMCHECK 80 # define SLAB_NOTRACK 0x01000000UL 81 #else 82 # define SLAB_NOTRACK 0x00000000UL 83 #endif 84 #ifdef CONFIG_FAILSLAB 85 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 86 #else 87 # define SLAB_FAILSLAB 0x00000000UL 88 #endif 89 90 /* The following flags affect the page allocator grouping pages by mobility */ 91 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 92 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 93 /* 94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 95 * 96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 97 * 98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 99 * Both make kfree a no-op. 100 */ 101 #define ZERO_SIZE_PTR ((void *)16) 102 103 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 104 (unsigned long)ZERO_SIZE_PTR) 105 106 #include <linux/kmemleak.h> 107 108 struct mem_cgroup; 109 /* 110 * struct kmem_cache related prototypes 111 */ 112 void __init kmem_cache_init(void); 113 int slab_is_available(void); 114 115 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 116 unsigned long, 117 void (*)(void *)); 118 #ifdef CONFIG_MEMCG_KMEM 119 void kmem_cache_create_memcg(struct mem_cgroup *, struct kmem_cache *); 120 #endif 121 void kmem_cache_destroy(struct kmem_cache *); 122 int kmem_cache_shrink(struct kmem_cache *); 123 void kmem_cache_free(struct kmem_cache *, void *); 124 125 /* 126 * Please use this macro to create slab caches. Simply specify the 127 * name of the structure and maybe some flags that are listed above. 128 * 129 * The alignment of the struct determines object alignment. If you 130 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 131 * then the objects will be properly aligned in SMP configurations. 132 */ 133 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 134 sizeof(struct __struct), __alignof__(struct __struct),\ 135 (__flags), NULL) 136 137 /* 138 * Common kmalloc functions provided by all allocators 139 */ 140 void * __must_check __krealloc(const void *, size_t, gfp_t); 141 void * __must_check krealloc(const void *, size_t, gfp_t); 142 void kfree(const void *); 143 void kzfree(const void *); 144 size_t ksize(const void *); 145 146 /* 147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 148 * alignment larger than the alignment of a 64-bit integer. 149 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 150 */ 151 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 152 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 153 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 154 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 155 #else 156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 157 #endif 158 159 #ifdef CONFIG_SLOB 160 /* 161 * Common fields provided in kmem_cache by all slab allocators 162 * This struct is either used directly by the allocator (SLOB) 163 * or the allocator must include definitions for all fields 164 * provided in kmem_cache_common in their definition of kmem_cache. 165 * 166 * Once we can do anonymous structs (C11 standard) we could put a 167 * anonymous struct definition in these allocators so that the 168 * separate allocations in the kmem_cache structure of SLAB and 169 * SLUB is no longer needed. 170 */ 171 struct kmem_cache { 172 unsigned int object_size;/* The original size of the object */ 173 unsigned int size; /* The aligned/padded/added on size */ 174 unsigned int align; /* Alignment as calculated */ 175 unsigned long flags; /* Active flags on the slab */ 176 const char *name; /* Slab name for sysfs */ 177 int refcount; /* Use counter */ 178 void (*ctor)(void *); /* Called on object slot creation */ 179 struct list_head list; /* List of all slab caches on the system */ 180 }; 181 182 #endif /* CONFIG_SLOB */ 183 184 /* 185 * Kmalloc array related definitions 186 */ 187 188 #ifdef CONFIG_SLAB 189 /* 190 * The largest kmalloc size supported by the SLAB allocators is 191 * 32 megabyte (2^25) or the maximum allocatable page order if that is 192 * less than 32 MB. 193 * 194 * WARNING: Its not easy to increase this value since the allocators have 195 * to do various tricks to work around compiler limitations in order to 196 * ensure proper constant folding. 197 */ 198 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 199 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 200 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 201 #ifndef KMALLOC_SHIFT_LOW 202 #define KMALLOC_SHIFT_LOW 5 203 #endif 204 #endif 205 206 #ifdef CONFIG_SLUB 207 /* 208 * SLUB directly allocates requests fitting in to an order-1 page 209 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 210 */ 211 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 212 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 213 #ifndef KMALLOC_SHIFT_LOW 214 #define KMALLOC_SHIFT_LOW 3 215 #endif 216 #endif 217 218 #ifdef CONFIG_SLOB 219 /* 220 * SLOB passes all requests larger than one page to the page allocator. 221 * No kmalloc array is necessary since objects of different sizes can 222 * be allocated from the same page. 223 */ 224 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT 225 #define KMALLOC_SHIFT_MAX 30 226 #ifndef KMALLOC_SHIFT_LOW 227 #define KMALLOC_SHIFT_LOW 3 228 #endif 229 #endif 230 231 /* Maximum allocatable size */ 232 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 233 /* Maximum size for which we actually use a slab cache */ 234 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 235 /* Maximum order allocatable via the slab allocagtor */ 236 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 237 238 /* 239 * Kmalloc subsystem. 240 */ 241 #ifndef KMALLOC_MIN_SIZE 242 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 243 #endif 244 245 /* 246 * This restriction comes from byte sized index implementation. 247 * Page size is normally 2^12 bytes and, in this case, if we want to use 248 * byte sized index which can represent 2^8 entries, the size of the object 249 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 250 * If minimum size of kmalloc is less than 16, we use it as minimum object 251 * size and give up to use byte sized index. 252 */ 253 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 254 (KMALLOC_MIN_SIZE) : 16) 255 256 #ifndef CONFIG_SLOB 257 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 258 #ifdef CONFIG_ZONE_DMA 259 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 260 #endif 261 262 /* 263 * Figure out which kmalloc slab an allocation of a certain size 264 * belongs to. 265 * 0 = zero alloc 266 * 1 = 65 .. 96 bytes 267 * 2 = 120 .. 192 bytes 268 * n = 2^(n-1) .. 2^n -1 269 */ 270 static __always_inline int kmalloc_index(size_t size) 271 { 272 if (!size) 273 return 0; 274 275 if (size <= KMALLOC_MIN_SIZE) 276 return KMALLOC_SHIFT_LOW; 277 278 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 279 return 1; 280 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 281 return 2; 282 if (size <= 8) return 3; 283 if (size <= 16) return 4; 284 if (size <= 32) return 5; 285 if (size <= 64) return 6; 286 if (size <= 128) return 7; 287 if (size <= 256) return 8; 288 if (size <= 512) return 9; 289 if (size <= 1024) return 10; 290 if (size <= 2 * 1024) return 11; 291 if (size <= 4 * 1024) return 12; 292 if (size <= 8 * 1024) return 13; 293 if (size <= 16 * 1024) return 14; 294 if (size <= 32 * 1024) return 15; 295 if (size <= 64 * 1024) return 16; 296 if (size <= 128 * 1024) return 17; 297 if (size <= 256 * 1024) return 18; 298 if (size <= 512 * 1024) return 19; 299 if (size <= 1024 * 1024) return 20; 300 if (size <= 2 * 1024 * 1024) return 21; 301 if (size <= 4 * 1024 * 1024) return 22; 302 if (size <= 8 * 1024 * 1024) return 23; 303 if (size <= 16 * 1024 * 1024) return 24; 304 if (size <= 32 * 1024 * 1024) return 25; 305 if (size <= 64 * 1024 * 1024) return 26; 306 BUG(); 307 308 /* Will never be reached. Needed because the compiler may complain */ 309 return -1; 310 } 311 #endif /* !CONFIG_SLOB */ 312 313 void *__kmalloc(size_t size, gfp_t flags); 314 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags); 315 316 #ifdef CONFIG_NUMA 317 void *__kmalloc_node(size_t size, gfp_t flags, int node); 318 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 319 #else 320 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 321 { 322 return __kmalloc(size, flags); 323 } 324 325 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 326 { 327 return kmem_cache_alloc(s, flags); 328 } 329 #endif 330 331 #ifdef CONFIG_TRACING 332 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t); 333 334 #ifdef CONFIG_NUMA 335 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 336 gfp_t gfpflags, 337 int node, size_t size); 338 #else 339 static __always_inline void * 340 kmem_cache_alloc_node_trace(struct kmem_cache *s, 341 gfp_t gfpflags, 342 int node, size_t size) 343 { 344 return kmem_cache_alloc_trace(s, gfpflags, size); 345 } 346 #endif /* CONFIG_NUMA */ 347 348 #else /* CONFIG_TRACING */ 349 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 350 gfp_t flags, size_t size) 351 { 352 return kmem_cache_alloc(s, flags); 353 } 354 355 static __always_inline void * 356 kmem_cache_alloc_node_trace(struct kmem_cache *s, 357 gfp_t gfpflags, 358 int node, size_t size) 359 { 360 return kmem_cache_alloc_node(s, gfpflags, node); 361 } 362 #endif /* CONFIG_TRACING */ 363 364 #ifdef CONFIG_SLAB 365 #include <linux/slab_def.h> 366 #endif 367 368 #ifdef CONFIG_SLUB 369 #include <linux/slub_def.h> 370 #endif 371 372 static __always_inline void * 373 kmalloc_order(size_t size, gfp_t flags, unsigned int order) 374 { 375 void *ret; 376 377 flags |= (__GFP_COMP | __GFP_KMEMCG); 378 ret = (void *) __get_free_pages(flags, order); 379 kmemleak_alloc(ret, size, 1, flags); 380 return ret; 381 } 382 383 #ifdef CONFIG_TRACING 384 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 385 #else 386 static __always_inline void * 387 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 388 { 389 return kmalloc_order(size, flags, order); 390 } 391 #endif 392 393 static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 394 { 395 unsigned int order = get_order(size); 396 return kmalloc_order_trace(size, flags, order); 397 } 398 399 /** 400 * kmalloc - allocate memory 401 * @size: how many bytes of memory are required. 402 * @flags: the type of memory to allocate. 403 * 404 * kmalloc is the normal method of allocating memory 405 * for objects smaller than page size in the kernel. 406 * 407 * The @flags argument may be one of: 408 * 409 * %GFP_USER - Allocate memory on behalf of user. May sleep. 410 * 411 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 412 * 413 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 414 * For example, use this inside interrupt handlers. 415 * 416 * %GFP_HIGHUSER - Allocate pages from high memory. 417 * 418 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 419 * 420 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 421 * 422 * %GFP_NOWAIT - Allocation will not sleep. 423 * 424 * %__GFP_THISNODE - Allocate node-local memory only. 425 * 426 * %GFP_DMA - Allocation suitable for DMA. 427 * Should only be used for kmalloc() caches. Otherwise, use a 428 * slab created with SLAB_DMA. 429 * 430 * Also it is possible to set different flags by OR'ing 431 * in one or more of the following additional @flags: 432 * 433 * %__GFP_COLD - Request cache-cold pages instead of 434 * trying to return cache-warm pages. 435 * 436 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 437 * 438 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 439 * (think twice before using). 440 * 441 * %__GFP_NORETRY - If memory is not immediately available, 442 * then give up at once. 443 * 444 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 445 * 446 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 447 * 448 * There are other flags available as well, but these are not intended 449 * for general use, and so are not documented here. For a full list of 450 * potential flags, always refer to linux/gfp.h. 451 */ 452 static __always_inline void *kmalloc(size_t size, gfp_t flags) 453 { 454 if (__builtin_constant_p(size)) { 455 if (size > KMALLOC_MAX_CACHE_SIZE) 456 return kmalloc_large(size, flags); 457 #ifndef CONFIG_SLOB 458 if (!(flags & GFP_DMA)) { 459 int index = kmalloc_index(size); 460 461 if (!index) 462 return ZERO_SIZE_PTR; 463 464 return kmem_cache_alloc_trace(kmalloc_caches[index], 465 flags, size); 466 } 467 #endif 468 } 469 return __kmalloc(size, flags); 470 } 471 472 /* 473 * Determine size used for the nth kmalloc cache. 474 * return size or 0 if a kmalloc cache for that 475 * size does not exist 476 */ 477 static __always_inline int kmalloc_size(int n) 478 { 479 #ifndef CONFIG_SLOB 480 if (n > 2) 481 return 1 << n; 482 483 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 484 return 96; 485 486 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 487 return 192; 488 #endif 489 return 0; 490 } 491 492 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 493 { 494 #ifndef CONFIG_SLOB 495 if (__builtin_constant_p(size) && 496 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 497 int i = kmalloc_index(size); 498 499 if (!i) 500 return ZERO_SIZE_PTR; 501 502 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 503 flags, node, size); 504 } 505 #endif 506 return __kmalloc_node(size, flags, node); 507 } 508 509 /* 510 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 511 * Intended for arches that get misalignment faults even for 64 bit integer 512 * aligned buffers. 513 */ 514 #ifndef ARCH_SLAB_MINALIGN 515 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 516 #endif 517 /* 518 * This is the main placeholder for memcg-related information in kmem caches. 519 * struct kmem_cache will hold a pointer to it, so the memory cost while 520 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it 521 * would otherwise be if that would be bundled in kmem_cache: we'll need an 522 * extra pointer chase. But the trade off clearly lays in favor of not 523 * penalizing non-users. 524 * 525 * Both the root cache and the child caches will have it. For the root cache, 526 * this will hold a dynamically allocated array large enough to hold 527 * information about the currently limited memcgs in the system. To allow the 528 * array to be accessed without taking any locks, on relocation we free the old 529 * version only after a grace period. 530 * 531 * Child caches will hold extra metadata needed for its operation. Fields are: 532 * 533 * @memcg: pointer to the memcg this cache belongs to 534 * @list: list_head for the list of all caches in this memcg 535 * @root_cache: pointer to the global, root cache, this cache was derived from 536 * @dead: set to true after the memcg dies; the cache may still be around. 537 * @nr_pages: number of pages that belongs to this cache. 538 * @destroy: worker to be called whenever we are ready, or believe we may be 539 * ready, to destroy this cache. 540 */ 541 struct memcg_cache_params { 542 bool is_root_cache; 543 union { 544 struct { 545 struct rcu_head rcu_head; 546 struct kmem_cache *memcg_caches[0]; 547 }; 548 struct { 549 struct mem_cgroup *memcg; 550 struct list_head list; 551 struct kmem_cache *root_cache; 552 bool dead; 553 atomic_t nr_pages; 554 struct work_struct destroy; 555 }; 556 }; 557 }; 558 559 int memcg_update_all_caches(int num_memcgs); 560 561 struct seq_file; 562 int cache_show(struct kmem_cache *s, struct seq_file *m); 563 void print_slabinfo_header(struct seq_file *m); 564 565 /** 566 * kmalloc_array - allocate memory for an array. 567 * @n: number of elements. 568 * @size: element size. 569 * @flags: the type of memory to allocate (see kmalloc). 570 */ 571 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 572 { 573 if (size != 0 && n > SIZE_MAX / size) 574 return NULL; 575 return __kmalloc(n * size, flags); 576 } 577 578 /** 579 * kcalloc - allocate memory for an array. The memory is set to zero. 580 * @n: number of elements. 581 * @size: element size. 582 * @flags: the type of memory to allocate (see kmalloc). 583 */ 584 static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 585 { 586 return kmalloc_array(n, size, flags | __GFP_ZERO); 587 } 588 589 /* 590 * kmalloc_track_caller is a special version of kmalloc that records the 591 * calling function of the routine calling it for slab leak tracking instead 592 * of just the calling function (confusing, eh?). 593 * It's useful when the call to kmalloc comes from a widely-used standard 594 * allocator where we care about the real place the memory allocation 595 * request comes from. 596 */ 597 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 598 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 599 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 600 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 601 #define kmalloc_track_caller(size, flags) \ 602 __kmalloc_track_caller(size, flags, _RET_IP_) 603 #else 604 #define kmalloc_track_caller(size, flags) \ 605 __kmalloc(size, flags) 606 #endif /* DEBUG_SLAB */ 607 608 #ifdef CONFIG_NUMA 609 /* 610 * kmalloc_node_track_caller is a special version of kmalloc_node that 611 * records the calling function of the routine calling it for slab leak 612 * tracking instead of just the calling function (confusing, eh?). 613 * It's useful when the call to kmalloc_node comes from a widely-used 614 * standard allocator where we care about the real place the memory 615 * allocation request comes from. 616 */ 617 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 618 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 619 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 620 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 621 #define kmalloc_node_track_caller(size, flags, node) \ 622 __kmalloc_node_track_caller(size, flags, node, \ 623 _RET_IP_) 624 #else 625 #define kmalloc_node_track_caller(size, flags, node) \ 626 __kmalloc_node(size, flags, node) 627 #endif 628 629 #else /* CONFIG_NUMA */ 630 631 #define kmalloc_node_track_caller(size, flags, node) \ 632 kmalloc_track_caller(size, flags) 633 634 #endif /* CONFIG_NUMA */ 635 636 /* 637 * Shortcuts 638 */ 639 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 640 { 641 return kmem_cache_alloc(k, flags | __GFP_ZERO); 642 } 643 644 /** 645 * kzalloc - allocate memory. The memory is set to zero. 646 * @size: how many bytes of memory are required. 647 * @flags: the type of memory to allocate (see kmalloc). 648 */ 649 static inline void *kzalloc(size_t size, gfp_t flags) 650 { 651 return kmalloc(size, flags | __GFP_ZERO); 652 } 653 654 /** 655 * kzalloc_node - allocate zeroed memory from a particular memory node. 656 * @size: how many bytes of memory are required. 657 * @flags: the type of memory to allocate (see kmalloc). 658 * @node: memory node from which to allocate 659 */ 660 static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 661 { 662 return kmalloc_node(size, flags | __GFP_ZERO, node); 663 } 664 665 /* 666 * Determine the size of a slab object 667 */ 668 static inline unsigned int kmem_cache_size(struct kmem_cache *s) 669 { 670 return s->object_size; 671 } 672 673 void __init kmem_cache_init_late(void); 674 675 #endif /* _LINUX_SLAB_H */ 676