xref: /linux-6.15/include/linux/slab.h (revision 7f8ceea0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 ([email protected]).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/cache.h>
16 #include <linux/gfp.h>
17 #include <linux/overflow.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/cleanup.h>
22 #include <linux/hash.h>
23 
24 enum _slab_flag_bits {
25 	_SLAB_CONSISTENCY_CHECKS,
26 	_SLAB_RED_ZONE,
27 	_SLAB_POISON,
28 	_SLAB_KMALLOC,
29 	_SLAB_HWCACHE_ALIGN,
30 	_SLAB_CACHE_DMA,
31 	_SLAB_CACHE_DMA32,
32 	_SLAB_STORE_USER,
33 	_SLAB_PANIC,
34 	_SLAB_TYPESAFE_BY_RCU,
35 	_SLAB_TRACE,
36 #ifdef CONFIG_DEBUG_OBJECTS
37 	_SLAB_DEBUG_OBJECTS,
38 #endif
39 	_SLAB_NOLEAKTRACE,
40 	_SLAB_NO_MERGE,
41 #ifdef CONFIG_FAILSLAB
42 	_SLAB_FAILSLAB,
43 #endif
44 #ifdef CONFIG_MEMCG
45 	_SLAB_ACCOUNT,
46 #endif
47 #ifdef CONFIG_KASAN_GENERIC
48 	_SLAB_KASAN,
49 #endif
50 	_SLAB_NO_USER_FLAGS,
51 #ifdef CONFIG_KFENCE
52 	_SLAB_SKIP_KFENCE,
53 #endif
54 #ifndef CONFIG_SLUB_TINY
55 	_SLAB_RECLAIM_ACCOUNT,
56 #endif
57 	_SLAB_OBJECT_POISON,
58 	_SLAB_CMPXCHG_DOUBLE,
59 #ifdef CONFIG_SLAB_OBJ_EXT
60 	_SLAB_NO_OBJ_EXT,
61 #endif
62 	_SLAB_FLAGS_LAST_BIT
63 };
64 
65 #define __SLAB_FLAG_BIT(nr)	((slab_flags_t __force)(1U << (nr)))
66 #define __SLAB_FLAG_UNUSED	((slab_flags_t __force)(0U))
67 
68 /*
69  * Flags to pass to kmem_cache_create().
70  * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
71  */
72 /* DEBUG: Perform (expensive) checks on alloc/free */
73 #define SLAB_CONSISTENCY_CHECKS	__SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
74 /* DEBUG: Red zone objs in a cache */
75 #define SLAB_RED_ZONE		__SLAB_FLAG_BIT(_SLAB_RED_ZONE)
76 /* DEBUG: Poison objects */
77 #define SLAB_POISON		__SLAB_FLAG_BIT(_SLAB_POISON)
78 /* Indicate a kmalloc slab */
79 #define SLAB_KMALLOC		__SLAB_FLAG_BIT(_SLAB_KMALLOC)
80 /**
81  * define SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries.
82  *
83  * Sufficiently large objects are aligned on cache line boundary. For object
84  * size smaller than a half of cache line size, the alignment is on the half of
85  * cache line size. In general, if object size is smaller than 1/2^n of cache
86  * line size, the alignment is adjusted to 1/2^n.
87  *
88  * If explicit alignment is also requested by the respective
89  * &struct kmem_cache_args field, the greater of both is alignments is applied.
90  */
91 #define SLAB_HWCACHE_ALIGN	__SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
92 /* Use GFP_DMA memory */
93 #define SLAB_CACHE_DMA		__SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
94 /* Use GFP_DMA32 memory */
95 #define SLAB_CACHE_DMA32	__SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
96 /* DEBUG: Store the last owner for bug hunting */
97 #define SLAB_STORE_USER		__SLAB_FLAG_BIT(_SLAB_STORE_USER)
98 /* Panic if kmem_cache_create() fails */
99 #define SLAB_PANIC		__SLAB_FLAG_BIT(_SLAB_PANIC)
100 /**
101  * define SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
102  *
103  * This delays freeing the SLAB page by a grace period, it does _NOT_
104  * delay object freeing. This means that if you do kmem_cache_free()
105  * that memory location is free to be reused at any time. Thus it may
106  * be possible to see another object there in the same RCU grace period.
107  *
108  * This feature only ensures the memory location backing the object
109  * stays valid, the trick to using this is relying on an independent
110  * object validation pass. Something like:
111  *
112  * ::
113  *
114  *  begin:
115  *   rcu_read_lock();
116  *   obj = lockless_lookup(key);
117  *   if (obj) {
118  *     if (!try_get_ref(obj)) // might fail for free objects
119  *       rcu_read_unlock();
120  *       goto begin;
121  *
122  *     if (obj->key != key) { // not the object we expected
123  *       put_ref(obj);
124  *       rcu_read_unlock();
125  *       goto begin;
126  *     }
127  *   }
128  *  rcu_read_unlock();
129  *
130  * This is useful if we need to approach a kernel structure obliquely,
131  * from its address obtained without the usual locking. We can lock
132  * the structure to stabilize it and check it's still at the given address,
133  * only if we can be sure that the memory has not been meanwhile reused
134  * for some other kind of object (which our subsystem's lock might corrupt).
135  *
136  * rcu_read_lock before reading the address, then rcu_read_unlock after
137  * taking the spinlock within the structure expected at that address.
138  *
139  * Note that object identity check has to be done *after* acquiring a
140  * reference, therefore user has to ensure proper ordering for loads.
141  * Similarly, when initializing objects allocated with SLAB_TYPESAFE_BY_RCU,
142  * the newly allocated object has to be fully initialized *before* its
143  * refcount gets initialized and proper ordering for stores is required.
144  * refcount_{add|inc}_not_zero_acquire() and refcount_set_release() are
145  * designed with the proper fences required for reference counting objects
146  * allocated with SLAB_TYPESAFE_BY_RCU.
147  *
148  * Note that it is not possible to acquire a lock within a structure
149  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
150  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
151  * are not zeroed before being given to the slab, which means that any
152  * locks must be initialized after each and every kmem_struct_alloc().
153  * Alternatively, make the ctor passed to kmem_cache_create() initialize
154  * the locks at page-allocation time, as is done in __i915_request_ctor(),
155  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
156  * to safely acquire those ctor-initialized locks under rcu_read_lock()
157  * protection.
158  *
159  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
160  */
161 #define SLAB_TYPESAFE_BY_RCU	__SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
162 /* Trace allocations and frees */
163 #define SLAB_TRACE		__SLAB_FLAG_BIT(_SLAB_TRACE)
164 
165 /* Flag to prevent checks on free */
166 #ifdef CONFIG_DEBUG_OBJECTS
167 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
168 #else
169 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_UNUSED
170 #endif
171 
172 /* Avoid kmemleak tracing */
173 #define SLAB_NOLEAKTRACE	__SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
174 
175 /*
176  * Prevent merging with compatible kmem caches. This flag should be used
177  * cautiously. Valid use cases:
178  *
179  * - caches created for self-tests (e.g. kunit)
180  * - general caches created and used by a subsystem, only when a
181  *   (subsystem-specific) debug option is enabled
182  * - performance critical caches, should be very rare and consulted with slab
183  *   maintainers, and not used together with CONFIG_SLUB_TINY
184  */
185 #define SLAB_NO_MERGE		__SLAB_FLAG_BIT(_SLAB_NO_MERGE)
186 
187 /* Fault injection mark */
188 #ifdef CONFIG_FAILSLAB
189 # define SLAB_FAILSLAB		__SLAB_FLAG_BIT(_SLAB_FAILSLAB)
190 #else
191 # define SLAB_FAILSLAB		__SLAB_FLAG_UNUSED
192 #endif
193 /**
194  * define SLAB_ACCOUNT - Account allocations to memcg.
195  *
196  * All object allocations from this cache will be memcg accounted, regardless of
197  * __GFP_ACCOUNT being or not being passed to individual allocations.
198  */
199 #ifdef CONFIG_MEMCG
200 # define SLAB_ACCOUNT		__SLAB_FLAG_BIT(_SLAB_ACCOUNT)
201 #else
202 # define SLAB_ACCOUNT		__SLAB_FLAG_UNUSED
203 #endif
204 
205 #ifdef CONFIG_KASAN_GENERIC
206 #define SLAB_KASAN		__SLAB_FLAG_BIT(_SLAB_KASAN)
207 #else
208 #define SLAB_KASAN		__SLAB_FLAG_UNUSED
209 #endif
210 
211 /*
212  * Ignore user specified debugging flags.
213  * Intended for caches created for self-tests so they have only flags
214  * specified in the code and other flags are ignored.
215  */
216 #define SLAB_NO_USER_FLAGS	__SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
217 
218 #ifdef CONFIG_KFENCE
219 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
220 #else
221 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_UNUSED
222 #endif
223 
224 /* The following flags affect the page allocator grouping pages by mobility */
225 /**
226  * define SLAB_RECLAIM_ACCOUNT - Objects are reclaimable.
227  *
228  * Use this flag for caches that have an associated shrinker. As a result, slab
229  * pages are allocated with __GFP_RECLAIMABLE, which affects grouping pages by
230  * mobility, and are accounted in SReclaimable counter in /proc/meminfo
231  */
232 #ifndef CONFIG_SLUB_TINY
233 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
234 #else
235 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_UNUSED
236 #endif
237 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
238 
239 /* Slab created using create_boot_cache */
240 #ifdef CONFIG_SLAB_OBJ_EXT
241 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
242 #else
243 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_UNUSED
244 #endif
245 
246 /*
247  * freeptr_t represents a SLUB freelist pointer, which might be encoded
248  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
249  */
250 typedef struct { unsigned long v; } freeptr_t;
251 
252 /*
253  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
254  *
255  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
256  *
257  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
258  * Both make kfree a no-op.
259  */
260 #define ZERO_SIZE_PTR ((void *)16)
261 
262 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
263 				(unsigned long)ZERO_SIZE_PTR)
264 
265 #include <linux/kasan.h>
266 
267 struct list_lru;
268 struct mem_cgroup;
269 /*
270  * struct kmem_cache related prototypes
271  */
272 bool slab_is_available(void);
273 
274 /**
275  * struct kmem_cache_args - Less common arguments for kmem_cache_create()
276  *
277  * Any uninitialized fields of the structure are interpreted as unused. The
278  * exception is @freeptr_offset where %0 is a valid value, so
279  * @use_freeptr_offset must be also set to %true in order to interpret the field
280  * as used. For @useroffset %0 is also valid, but only with non-%0
281  * @usersize.
282  *
283  * When %NULL args is passed to kmem_cache_create(), it is equivalent to all
284  * fields unused.
285  */
286 struct kmem_cache_args {
287 	/**
288 	 * @align: The required alignment for the objects.
289 	 *
290 	 * %0 means no specific alignment is requested.
291 	 */
292 	unsigned int align;
293 	/**
294 	 * @useroffset: Usercopy region offset.
295 	 *
296 	 * %0 is a valid offset, when @usersize is non-%0
297 	 */
298 	unsigned int useroffset;
299 	/**
300 	 * @usersize: Usercopy region size.
301 	 *
302 	 * %0 means no usercopy region is specified.
303 	 */
304 	unsigned int usersize;
305 	/**
306 	 * @freeptr_offset: Custom offset for the free pointer
307 	 * in &SLAB_TYPESAFE_BY_RCU caches
308 	 *
309 	 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
310 	 * outside of the object. This might cause the object to grow in size.
311 	 * Cache creators that have a reason to avoid this can specify a custom
312 	 * free pointer offset in their struct where the free pointer will be
313 	 * placed.
314 	 *
315 	 * Note that placing the free pointer inside the object requires the
316 	 * caller to ensure that no fields are invalidated that are required to
317 	 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
318 	 * details).
319 	 *
320 	 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
321 	 * is specified, %use_freeptr_offset must be set %true.
322 	 *
323 	 * Note that @ctor currently isn't supported with custom free pointers
324 	 * as a @ctor requires an external free pointer.
325 	 */
326 	unsigned int freeptr_offset;
327 	/**
328 	 * @use_freeptr_offset: Whether a @freeptr_offset is used.
329 	 */
330 	bool use_freeptr_offset;
331 	/**
332 	 * @ctor: A constructor for the objects.
333 	 *
334 	 * The constructor is invoked for each object in a newly allocated slab
335 	 * page. It is the cache user's responsibility to free object in the
336 	 * same state as after calling the constructor, or deal appropriately
337 	 * with any differences between a freshly constructed and a reallocated
338 	 * object.
339 	 *
340 	 * %NULL means no constructor.
341 	 */
342 	void (*ctor)(void *);
343 };
344 
345 struct kmem_cache *__kmem_cache_create_args(const char *name,
346 					    unsigned int object_size,
347 					    struct kmem_cache_args *args,
348 					    slab_flags_t flags);
349 static inline struct kmem_cache *
350 __kmem_cache_create(const char *name, unsigned int size, unsigned int align,
351 		    slab_flags_t flags, void (*ctor)(void *))
352 {
353 	struct kmem_cache_args kmem_args = {
354 		.align	= align,
355 		.ctor	= ctor,
356 	};
357 
358 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
359 }
360 
361 /**
362  * kmem_cache_create_usercopy - Create a kmem cache with a region suitable
363  * for copying to userspace.
364  * @name: A string which is used in /proc/slabinfo to identify this cache.
365  * @size: The size of objects to be created in this cache.
366  * @align: The required alignment for the objects.
367  * @flags: SLAB flags
368  * @useroffset: Usercopy region offset
369  * @usersize: Usercopy region size
370  * @ctor: A constructor for the objects, or %NULL.
371  *
372  * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY()
373  * if whitelisting a single field is sufficient, or kmem_cache_create() with
374  * the necessary parameters passed via the args parameter (see
375  * &struct kmem_cache_args)
376  *
377  * Return: a pointer to the cache on success, NULL on failure.
378  */
379 static inline struct kmem_cache *
380 kmem_cache_create_usercopy(const char *name, unsigned int size,
381 			   unsigned int align, slab_flags_t flags,
382 			   unsigned int useroffset, unsigned int usersize,
383 			   void (*ctor)(void *))
384 {
385 	struct kmem_cache_args kmem_args = {
386 		.align		= align,
387 		.ctor		= ctor,
388 		.useroffset	= useroffset,
389 		.usersize	= usersize,
390 	};
391 
392 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
393 }
394 
395 /* If NULL is passed for @args, use this variant with default arguments. */
396 static inline struct kmem_cache *
397 __kmem_cache_default_args(const char *name, unsigned int size,
398 			  struct kmem_cache_args *args,
399 			  slab_flags_t flags)
400 {
401 	struct kmem_cache_args kmem_default_args = {};
402 
403 	/* Make sure we don't get passed garbage. */
404 	if (WARN_ON_ONCE(args))
405 		return ERR_PTR(-EINVAL);
406 
407 	return __kmem_cache_create_args(name, size, &kmem_default_args, flags);
408 }
409 
410 /**
411  * kmem_cache_create - Create a kmem cache.
412  * @__name: A string which is used in /proc/slabinfo to identify this cache.
413  * @__object_size: The size of objects to be created in this cache.
414  * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL
415  *	    means defaults will be used for all the arguments.
416  *
417  * This is currently implemented as a macro using ``_Generic()`` to call
418  * either the new variant of the function, or a legacy one.
419  *
420  * The new variant has 4 parameters:
421  * ``kmem_cache_create(name, object_size, args, flags)``
422  *
423  * See __kmem_cache_create_args() which implements this.
424  *
425  * The legacy variant has 5 parameters:
426  * ``kmem_cache_create(name, object_size, align, flags, ctor)``
427  *
428  * The align and ctor parameters map to the respective fields of
429  * &struct kmem_cache_args
430  *
431  * Context: Cannot be called within a interrupt, but can be interrupted.
432  *
433  * Return: a pointer to the cache on success, NULL on failure.
434  */
435 #define kmem_cache_create(__name, __object_size, __args, ...)           \
436 	_Generic((__args),                                              \
437 		struct kmem_cache_args *: __kmem_cache_create_args,	\
438 		void *: __kmem_cache_default_args,			\
439 		default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__)
440 
441 void kmem_cache_destroy(struct kmem_cache *s);
442 int kmem_cache_shrink(struct kmem_cache *s);
443 
444 /*
445  * Please use this macro to create slab caches. Simply specify the
446  * name of the structure and maybe some flags that are listed above.
447  *
448  * The alignment of the struct determines object alignment. If you
449  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
450  * then the objects will be properly aligned in SMP configurations.
451  */
452 #define KMEM_CACHE(__struct, __flags)                                   \
453 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),    \
454 			&(struct kmem_cache_args) {			\
455 				.align	= __alignof__(struct __struct), \
456 			}, (__flags))
457 
458 /*
459  * To whitelist a single field for copying to/from usercopy, use this
460  * macro instead for KMEM_CACHE() above.
461  */
462 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)						\
463 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),				\
464 			&(struct kmem_cache_args) {						\
465 				.align		= __alignof__(struct __struct),			\
466 				.useroffset	= offsetof(struct __struct, __field),		\
467 				.usersize	= sizeof_field(struct __struct, __field),	\
468 			}, (__flags))
469 
470 /*
471  * Common kmalloc functions provided by all allocators
472  */
473 void * __must_check krealloc_noprof(const void *objp, size_t new_size,
474 				    gfp_t flags) __realloc_size(2);
475 #define krealloc(...)				alloc_hooks(krealloc_noprof(__VA_ARGS__))
476 
477 void kfree(const void *objp);
478 void kfree_sensitive(const void *objp);
479 size_t __ksize(const void *objp);
480 
481 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
482 DEFINE_FREE(kfree_sensitive, void *, if (_T) kfree_sensitive(_T))
483 
484 /**
485  * ksize - Report actual allocation size of associated object
486  *
487  * @objp: Pointer returned from a prior kmalloc()-family allocation.
488  *
489  * This should not be used for writing beyond the originally requested
490  * allocation size. Either use krealloc() or round up the allocation size
491  * with kmalloc_size_roundup() prior to allocation. If this is used to
492  * access beyond the originally requested allocation size, UBSAN_BOUNDS
493  * and/or FORTIFY_SOURCE may trip, since they only know about the
494  * originally allocated size via the __alloc_size attribute.
495  */
496 size_t ksize(const void *objp);
497 
498 #ifdef CONFIG_PRINTK
499 bool kmem_dump_obj(void *object);
500 #else
501 static inline bool kmem_dump_obj(void *object) { return false; }
502 #endif
503 
504 /*
505  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
506  * alignment larger than the alignment of a 64-bit integer.
507  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
508  */
509 #ifdef ARCH_HAS_DMA_MINALIGN
510 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
511 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
512 #endif
513 #endif
514 
515 #ifndef ARCH_KMALLOC_MINALIGN
516 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
517 #elif ARCH_KMALLOC_MINALIGN > 8
518 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
519 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
520 #endif
521 
522 /*
523  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
524  * Intended for arches that get misalignment faults even for 64 bit integer
525  * aligned buffers.
526  */
527 #ifndef ARCH_SLAB_MINALIGN
528 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
529 #endif
530 
531 /*
532  * Arches can define this function if they want to decide the minimum slab
533  * alignment at runtime. The value returned by the function must be a power
534  * of two and >= ARCH_SLAB_MINALIGN.
535  */
536 #ifndef arch_slab_minalign
537 static inline unsigned int arch_slab_minalign(void)
538 {
539 	return ARCH_SLAB_MINALIGN;
540 }
541 #endif
542 
543 /*
544  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
545  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
546  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
547  */
548 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
549 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
550 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
551 
552 /*
553  * Kmalloc array related definitions
554  */
555 
556 /*
557  * SLUB directly allocates requests fitting in to an order-1 page
558  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
559  */
560 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
561 #define KMALLOC_SHIFT_MAX	(MAX_PAGE_ORDER + PAGE_SHIFT)
562 #ifndef KMALLOC_SHIFT_LOW
563 #define KMALLOC_SHIFT_LOW	3
564 #endif
565 
566 /* Maximum allocatable size */
567 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
568 /* Maximum size for which we actually use a slab cache */
569 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
570 /* Maximum order allocatable via the slab allocator */
571 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
572 
573 /*
574  * Kmalloc subsystem.
575  */
576 #ifndef KMALLOC_MIN_SIZE
577 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
578 #endif
579 
580 /*
581  * This restriction comes from byte sized index implementation.
582  * Page size is normally 2^12 bytes and, in this case, if we want to use
583  * byte sized index which can represent 2^8 entries, the size of the object
584  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
585  * If minimum size of kmalloc is less than 16, we use it as minimum object
586  * size and give up to use byte sized index.
587  */
588 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
589                                (KMALLOC_MIN_SIZE) : 16)
590 
591 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
592 #define RANDOM_KMALLOC_CACHES_NR	15 // # of cache copies
593 #else
594 #define RANDOM_KMALLOC_CACHES_NR	0
595 #endif
596 
597 /*
598  * Whenever changing this, take care of that kmalloc_type() and
599  * create_kmalloc_caches() still work as intended.
600  *
601  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
602  * is for accounted but unreclaimable and non-dma objects. All the other
603  * kmem caches can have both accounted and unaccounted objects.
604  */
605 enum kmalloc_cache_type {
606 	KMALLOC_NORMAL = 0,
607 #ifndef CONFIG_ZONE_DMA
608 	KMALLOC_DMA = KMALLOC_NORMAL,
609 #endif
610 #ifndef CONFIG_MEMCG
611 	KMALLOC_CGROUP = KMALLOC_NORMAL,
612 #endif
613 	KMALLOC_RANDOM_START = KMALLOC_NORMAL,
614 	KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
615 #ifdef CONFIG_SLUB_TINY
616 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
617 #else
618 	KMALLOC_RECLAIM,
619 #endif
620 #ifdef CONFIG_ZONE_DMA
621 	KMALLOC_DMA,
622 #endif
623 #ifdef CONFIG_MEMCG
624 	KMALLOC_CGROUP,
625 #endif
626 	NR_KMALLOC_TYPES
627 };
628 
629 typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
630 
631 extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
632 
633 /*
634  * Define gfp bits that should not be set for KMALLOC_NORMAL.
635  */
636 #define KMALLOC_NOT_NORMAL_BITS					\
637 	(__GFP_RECLAIMABLE |					\
638 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
639 	(IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
640 
641 extern unsigned long random_kmalloc_seed;
642 
643 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
644 {
645 	/*
646 	 * The most common case is KMALLOC_NORMAL, so test for it
647 	 * with a single branch for all the relevant flags.
648 	 */
649 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
650 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
651 		/* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
652 		return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
653 						      ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
654 #else
655 		return KMALLOC_NORMAL;
656 #endif
657 
658 	/*
659 	 * At least one of the flags has to be set. Their priorities in
660 	 * decreasing order are:
661 	 *  1) __GFP_DMA
662 	 *  2) __GFP_RECLAIMABLE
663 	 *  3) __GFP_ACCOUNT
664 	 */
665 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
666 		return KMALLOC_DMA;
667 	if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
668 		return KMALLOC_RECLAIM;
669 	else
670 		return KMALLOC_CGROUP;
671 }
672 
673 /*
674  * Figure out which kmalloc slab an allocation of a certain size
675  * belongs to.
676  * 0 = zero alloc
677  * 1 =  65 .. 96 bytes
678  * 2 = 129 .. 192 bytes
679  * n = 2^(n-1)+1 .. 2^n
680  *
681  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
682  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
683  * Callers where !size_is_constant should only be test modules, where runtime
684  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
685  */
686 static __always_inline unsigned int __kmalloc_index(size_t size,
687 						    bool size_is_constant)
688 {
689 	if (!size)
690 		return 0;
691 
692 	if (size <= KMALLOC_MIN_SIZE)
693 		return KMALLOC_SHIFT_LOW;
694 
695 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
696 		return 1;
697 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
698 		return 2;
699 	if (size <=          8) return 3;
700 	if (size <=         16) return 4;
701 	if (size <=         32) return 5;
702 	if (size <=         64) return 6;
703 	if (size <=        128) return 7;
704 	if (size <=        256) return 8;
705 	if (size <=        512) return 9;
706 	if (size <=       1024) return 10;
707 	if (size <=   2 * 1024) return 11;
708 	if (size <=   4 * 1024) return 12;
709 	if (size <=   8 * 1024) return 13;
710 	if (size <=  16 * 1024) return 14;
711 	if (size <=  32 * 1024) return 15;
712 	if (size <=  64 * 1024) return 16;
713 	if (size <= 128 * 1024) return 17;
714 	if (size <= 256 * 1024) return 18;
715 	if (size <= 512 * 1024) return 19;
716 	if (size <= 1024 * 1024) return 20;
717 	if (size <=  2 * 1024 * 1024) return 21;
718 
719 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
720 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
721 	else
722 		BUG();
723 
724 	/* Will never be reached. Needed because the compiler may complain */
725 	return -1;
726 }
727 static_assert(PAGE_SHIFT <= 20);
728 #define kmalloc_index(s) __kmalloc_index(s, true)
729 
730 #include <linux/alloc_tag.h>
731 
732 /**
733  * kmem_cache_alloc - Allocate an object
734  * @cachep: The cache to allocate from.
735  * @flags: See kmalloc().
736  *
737  * Allocate an object from this cache.
738  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
739  *
740  * Return: pointer to the new object or %NULL in case of error
741  */
742 void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
743 			      gfp_t flags) __assume_slab_alignment __malloc;
744 #define kmem_cache_alloc(...)			alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
745 
746 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
747 			    gfp_t gfpflags) __assume_slab_alignment __malloc;
748 #define kmem_cache_alloc_lru(...)	alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
749 
750 /**
751  * kmem_cache_charge - memcg charge an already allocated slab memory
752  * @objp: address of the slab object to memcg charge
753  * @gfpflags: describe the allocation context
754  *
755  * kmem_cache_charge allows charging a slab object to the current memcg,
756  * primarily in cases where charging at allocation time might not be possible
757  * because the target memcg is not known (i.e. softirq context)
758  *
759  * The objp should be pointer returned by the slab allocator functions like
760  * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge
761  * behavior can be controlled through gfpflags parameter, which affects how the
762  * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes
763  * that overcharging is requested instead of failure, but is not applied for the
764  * internal metadata allocation.
765  *
766  * There are several cases where it will return true even if the charging was
767  * not done:
768  * More specifically:
769  *
770  * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems.
771  * 2. Already charged slab objects.
772  * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc()
773  *    without __GFP_ACCOUNT
774  * 4. Allocating internal metadata has failed
775  *
776  * Return: true if charge was successful otherwise false.
777  */
778 bool kmem_cache_charge(void *objp, gfp_t gfpflags);
779 void kmem_cache_free(struct kmem_cache *s, void *objp);
780 
781 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
782 				  unsigned int useroffset, unsigned int usersize,
783 				  void (*ctor)(void *));
784 
785 /*
786  * Bulk allocation and freeing operations. These are accelerated in an
787  * allocator specific way to avoid taking locks repeatedly or building
788  * metadata structures unnecessarily.
789  *
790  * Note that interrupts must be enabled when calling these functions.
791  */
792 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
793 
794 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
795 #define kmem_cache_alloc_bulk(...)	alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
796 
797 static __always_inline void kfree_bulk(size_t size, void **p)
798 {
799 	kmem_cache_free_bulk(NULL, size, p);
800 }
801 
802 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
803 				   int node) __assume_slab_alignment __malloc;
804 #define kmem_cache_alloc_node(...)	alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
805 
806 /*
807  * These macros allow declaring a kmem_buckets * parameter alongside size, which
808  * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
809  * sites don't have to pass NULL.
810  */
811 #ifdef CONFIG_SLAB_BUCKETS
812 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size), kmem_buckets *(_b)
813 #define PASS_BUCKET_PARAMS(_size, _b)	(_size), (_b)
814 #define PASS_BUCKET_PARAM(_b)		(_b)
815 #else
816 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size)
817 #define PASS_BUCKET_PARAMS(_size, _b)	(_size)
818 #define PASS_BUCKET_PARAM(_b)		NULL
819 #endif
820 
821 /*
822  * The following functions are not to be used directly and are intended only
823  * for internal use from kmalloc() and kmalloc_node()
824  * with the exception of kunit tests
825  */
826 
827 void *__kmalloc_noprof(size_t size, gfp_t flags)
828 				__assume_kmalloc_alignment __alloc_size(1);
829 
830 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
831 				__assume_kmalloc_alignment __alloc_size(1);
832 
833 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
834 				__assume_kmalloc_alignment __alloc_size(3);
835 
836 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
837 				  int node, size_t size)
838 				__assume_kmalloc_alignment __alloc_size(4);
839 
840 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
841 				__assume_page_alignment __alloc_size(1);
842 
843 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
844 				__assume_page_alignment __alloc_size(1);
845 
846 /**
847  * kmalloc - allocate kernel memory
848  * @size: how many bytes of memory are required.
849  * @flags: describe the allocation context
850  *
851  * kmalloc is the normal method of allocating memory
852  * for objects smaller than page size in the kernel.
853  *
854  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
855  * bytes. For @size of power of two bytes, the alignment is also guaranteed
856  * to be at least to the size. For other sizes, the alignment is guaranteed to
857  * be at least the largest power-of-two divisor of @size.
858  *
859  * The @flags argument may be one of the GFP flags defined at
860  * include/linux/gfp_types.h and described at
861  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
862  *
863  * The recommended usage of the @flags is described at
864  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
865  *
866  * Below is a brief outline of the most useful GFP flags
867  *
868  * %GFP_KERNEL
869  *	Allocate normal kernel ram. May sleep.
870  *
871  * %GFP_NOWAIT
872  *	Allocation will not sleep.
873  *
874  * %GFP_ATOMIC
875  *	Allocation will not sleep.  May use emergency pools.
876  *
877  * Also it is possible to set different flags by OR'ing
878  * in one or more of the following additional @flags:
879  *
880  * %__GFP_ZERO
881  *	Zero the allocated memory before returning. Also see kzalloc().
882  *
883  * %__GFP_HIGH
884  *	This allocation has high priority and may use emergency pools.
885  *
886  * %__GFP_NOFAIL
887  *	Indicate that this allocation is in no way allowed to fail
888  *	(think twice before using).
889  *
890  * %__GFP_NORETRY
891  *	If memory is not immediately available,
892  *	then give up at once.
893  *
894  * %__GFP_NOWARN
895  *	If allocation fails, don't issue any warnings.
896  *
897  * %__GFP_RETRY_MAYFAIL
898  *	Try really hard to succeed the allocation but fail
899  *	eventually.
900  */
901 static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
902 {
903 	if (__builtin_constant_p(size) && size) {
904 		unsigned int index;
905 
906 		if (size > KMALLOC_MAX_CACHE_SIZE)
907 			return __kmalloc_large_noprof(size, flags);
908 
909 		index = kmalloc_index(size);
910 		return __kmalloc_cache_noprof(
911 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
912 				flags, size);
913 	}
914 	return __kmalloc_noprof(size, flags);
915 }
916 #define kmalloc(...)				alloc_hooks(kmalloc_noprof(__VA_ARGS__))
917 
918 #define kmem_buckets_alloc(_b, _size, _flags)	\
919 	alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
920 
921 #define kmem_buckets_alloc_track_caller(_b, _size, _flags)	\
922 	alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
923 
924 static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
925 {
926 	if (__builtin_constant_p(size) && size) {
927 		unsigned int index;
928 
929 		if (size > KMALLOC_MAX_CACHE_SIZE)
930 			return __kmalloc_large_node_noprof(size, flags, node);
931 
932 		index = kmalloc_index(size);
933 		return __kmalloc_cache_node_noprof(
934 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
935 				flags, node, size);
936 	}
937 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
938 }
939 #define kmalloc_node(...)			alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
940 
941 /**
942  * kmalloc_array - allocate memory for an array.
943  * @n: number of elements.
944  * @size: element size.
945  * @flags: the type of memory to allocate (see kmalloc).
946  */
947 static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
948 {
949 	size_t bytes;
950 
951 	if (unlikely(check_mul_overflow(n, size, &bytes)))
952 		return NULL;
953 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
954 		return kmalloc_noprof(bytes, flags);
955 	return kmalloc_noprof(bytes, flags);
956 }
957 #define kmalloc_array(...)			alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
958 
959 /**
960  * krealloc_array - reallocate memory for an array.
961  * @p: pointer to the memory chunk to reallocate
962  * @new_n: new number of elements to alloc
963  * @new_size: new size of a single member of the array
964  * @flags: the type of memory to allocate (see kmalloc)
965  *
966  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
967  * initial memory allocation, every subsequent call to this API for the same
968  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
969  * __GFP_ZERO is not fully honored by this API.
970  *
971  * See krealloc_noprof() for further details.
972  *
973  * In any case, the contents of the object pointed to are preserved up to the
974  * lesser of the new and old sizes.
975  */
976 static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
977 								       size_t new_n,
978 								       size_t new_size,
979 								       gfp_t flags)
980 {
981 	size_t bytes;
982 
983 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
984 		return NULL;
985 
986 	return krealloc_noprof(p, bytes, flags);
987 }
988 #define krealloc_array(...)			alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
989 
990 /**
991  * kcalloc - allocate memory for an array. The memory is set to zero.
992  * @n: number of elements.
993  * @size: element size.
994  * @flags: the type of memory to allocate (see kmalloc).
995  */
996 #define kcalloc(n, size, flags)		kmalloc_array(n, size, (flags) | __GFP_ZERO)
997 
998 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
999 					 unsigned long caller) __alloc_size(1);
1000 #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
1001 	__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
1002 #define kmalloc_node_track_caller(...)		\
1003 	alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
1004 
1005 /*
1006  * kmalloc_track_caller is a special version of kmalloc that records the
1007  * calling function of the routine calling it for slab leak tracking instead
1008  * of just the calling function (confusing, eh?).
1009  * It's useful when the call to kmalloc comes from a widely-used standard
1010  * allocator where we care about the real place the memory allocation
1011  * request comes from.
1012  */
1013 #define kmalloc_track_caller(...)		kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
1014 
1015 #define kmalloc_track_caller_noprof(...)	\
1016 		kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
1017 
1018 static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
1019 							  int node)
1020 {
1021 	size_t bytes;
1022 
1023 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1024 		return NULL;
1025 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
1026 		return kmalloc_node_noprof(bytes, flags, node);
1027 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
1028 }
1029 #define kmalloc_array_node(...)			alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
1030 
1031 #define kcalloc_node(_n, _size, _flags, _node)	\
1032 	kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
1033 
1034 /*
1035  * Shortcuts
1036  */
1037 #define kmem_cache_zalloc(_k, _flags)		kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
1038 
1039 /**
1040  * kzalloc - allocate memory. The memory is set to zero.
1041  * @size: how many bytes of memory are required.
1042  * @flags: the type of memory to allocate (see kmalloc).
1043  */
1044 static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
1045 {
1046 	return kmalloc_noprof(size, flags | __GFP_ZERO);
1047 }
1048 #define kzalloc(...)				alloc_hooks(kzalloc_noprof(__VA_ARGS__))
1049 #define kzalloc_node(_size, _flags, _node)	kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1050 
1051 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
1052 #define kvmalloc_node_noprof(size, flags, node)	\
1053 	__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
1054 #define kvmalloc_node(...)			alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
1055 
1056 #define kvmalloc(_size, _flags)			kvmalloc_node(_size, _flags, NUMA_NO_NODE)
1057 #define kvmalloc_noprof(_size, _flags)		kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
1058 #define kvzalloc(_size, _flags)			kvmalloc(_size, (_flags)|__GFP_ZERO)
1059 
1060 #define kvzalloc_node(_size, _flags, _node)	kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1061 #define kmem_buckets_valloc(_b, _size, _flags)	\
1062 	alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
1063 
1064 static inline __alloc_size(1, 2) void *
1065 kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
1066 {
1067 	size_t bytes;
1068 
1069 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1070 		return NULL;
1071 
1072 	return kvmalloc_node_noprof(bytes, flags, node);
1073 }
1074 
1075 #define kvmalloc_array_noprof(...)		kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1076 #define kvcalloc_node_noprof(_n,_s,_f,_node)	kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
1077 #define kvcalloc_noprof(...)			kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1078 
1079 #define kvmalloc_array(...)			alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
1080 #define kvcalloc_node(...)			alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
1081 #define kvcalloc(...)				alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
1082 
1083 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
1084 		__realloc_size(2);
1085 #define kvrealloc(...)				alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
1086 
1087 extern void kvfree(const void *addr);
1088 DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
1089 
1090 extern void kvfree_sensitive(const void *addr, size_t len);
1091 
1092 unsigned int kmem_cache_size(struct kmem_cache *s);
1093 
1094 /**
1095  * kmalloc_size_roundup - Report allocation bucket size for the given size
1096  *
1097  * @size: Number of bytes to round up from.
1098  *
1099  * This returns the number of bytes that would be available in a kmalloc()
1100  * allocation of @size bytes. For example, a 126 byte request would be
1101  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
1102  * for the general-purpose kmalloc()-based allocations, and is not for the
1103  * pre-sized kmem_cache_alloc()-based allocations.)
1104  *
1105  * Use this to kmalloc() the full bucket size ahead of time instead of using
1106  * ksize() to query the size after an allocation.
1107  */
1108 size_t kmalloc_size_roundup(size_t size);
1109 
1110 void __init kmem_cache_init_late(void);
1111 void __init kvfree_rcu_init(void);
1112 
1113 #endif	/* _LINUX_SLAB_H */
1114