1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Written by Mark Hemment, 1996 ([email protected]). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12 #ifndef _LINUX_SLAB_H 13 #define _LINUX_SLAB_H 14 15 #include <linux/gfp.h> 16 #include <linux/overflow.h> 17 #include <linux/types.h> 18 #include <linux/workqueue.h> 19 #include <linux/percpu-refcount.h> 20 21 22 /* 23 * Flags to pass to kmem_cache_create(). 24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 25 */ 26 /* DEBUG: Perform (expensive) checks on alloc/free */ 27 #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 28 /* DEBUG: Red zone objs in a cache */ 29 #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 30 /* DEBUG: Poison objects */ 31 #define SLAB_POISON ((slab_flags_t __force)0x00000800U) 32 /* Align objs on cache lines */ 33 #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 34 /* Use GFP_DMA memory */ 35 #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 36 /* Use GFP_DMA32 memory */ 37 #define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) 38 /* DEBUG: Store the last owner for bug hunting */ 39 #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 40 /* Panic if kmem_cache_create() fails */ 41 #define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 42 /* 43 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 44 * 45 * This delays freeing the SLAB page by a grace period, it does _NOT_ 46 * delay object freeing. This means that if you do kmem_cache_free() 47 * that memory location is free to be reused at any time. Thus it may 48 * be possible to see another object there in the same RCU grace period. 49 * 50 * This feature only ensures the memory location backing the object 51 * stays valid, the trick to using this is relying on an independent 52 * object validation pass. Something like: 53 * 54 * rcu_read_lock() 55 * again: 56 * obj = lockless_lookup(key); 57 * if (obj) { 58 * if (!try_get_ref(obj)) // might fail for free objects 59 * goto again; 60 * 61 * if (obj->key != key) { // not the object we expected 62 * put_ref(obj); 63 * goto again; 64 * } 65 * } 66 * rcu_read_unlock(); 67 * 68 * This is useful if we need to approach a kernel structure obliquely, 69 * from its address obtained without the usual locking. We can lock 70 * the structure to stabilize it and check it's still at the given address, 71 * only if we can be sure that the memory has not been meanwhile reused 72 * for some other kind of object (which our subsystem's lock might corrupt). 73 * 74 * rcu_read_lock before reading the address, then rcu_read_unlock after 75 * taking the spinlock within the structure expected at that address. 76 * 77 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 78 */ 79 /* Defer freeing slabs to RCU */ 80 #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 81 /* Spread some memory over cpuset */ 82 #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 83 /* Trace allocations and frees */ 84 #define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 85 86 /* Flag to prevent checks on free */ 87 #ifdef CONFIG_DEBUG_OBJECTS 88 # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 89 #else 90 # define SLAB_DEBUG_OBJECTS 0 91 #endif 92 93 /* Avoid kmemleak tracing */ 94 #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 95 96 /* Fault injection mark */ 97 #ifdef CONFIG_FAILSLAB 98 # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 99 #else 100 # define SLAB_FAILSLAB 0 101 #endif 102 /* Account to memcg */ 103 #ifdef CONFIG_MEMCG_KMEM 104 # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 105 #else 106 # define SLAB_ACCOUNT 0 107 #endif 108 109 #ifdef CONFIG_KASAN 110 #define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 111 #else 112 #define SLAB_KASAN 0 113 #endif 114 115 /* The following flags affect the page allocator grouping pages by mobility */ 116 /* Objects are reclaimable */ 117 #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 118 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 119 120 /* 121 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 122 * 123 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 124 * 125 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 126 * Both make kfree a no-op. 127 */ 128 #define ZERO_SIZE_PTR ((void *)16) 129 130 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 131 (unsigned long)ZERO_SIZE_PTR) 132 133 #include <linux/kasan.h> 134 135 struct list_lru; 136 struct mem_cgroup; 137 /* 138 * struct kmem_cache related prototypes 139 */ 140 void __init kmem_cache_init(void); 141 bool slab_is_available(void); 142 143 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, 144 unsigned int align, slab_flags_t flags, 145 void (*ctor)(void *)); 146 struct kmem_cache *kmem_cache_create_usercopy(const char *name, 147 unsigned int size, unsigned int align, 148 slab_flags_t flags, 149 unsigned int useroffset, unsigned int usersize, 150 void (*ctor)(void *)); 151 void kmem_cache_destroy(struct kmem_cache *s); 152 int kmem_cache_shrink(struct kmem_cache *s); 153 154 /* 155 * Please use this macro to create slab caches. Simply specify the 156 * name of the structure and maybe some flags that are listed above. 157 * 158 * The alignment of the struct determines object alignment. If you 159 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 160 * then the objects will be properly aligned in SMP configurations. 161 */ 162 #define KMEM_CACHE(__struct, __flags) \ 163 kmem_cache_create(#__struct, sizeof(struct __struct), \ 164 __alignof__(struct __struct), (__flags), NULL) 165 166 /* 167 * To whitelist a single field for copying to/from usercopy, use this 168 * macro instead for KMEM_CACHE() above. 169 */ 170 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 171 kmem_cache_create_usercopy(#__struct, \ 172 sizeof(struct __struct), \ 173 __alignof__(struct __struct), (__flags), \ 174 offsetof(struct __struct, __field), \ 175 sizeof_field(struct __struct, __field), NULL) 176 177 /* 178 * Common kmalloc functions provided by all allocators 179 */ 180 void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __alloc_size(2); 181 void kfree(const void *objp); 182 void kfree_sensitive(const void *objp); 183 size_t __ksize(const void *objp); 184 size_t ksize(const void *objp); 185 #ifdef CONFIG_PRINTK 186 bool kmem_valid_obj(void *object); 187 void kmem_dump_obj(void *object); 188 #endif 189 190 /* 191 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 192 * alignment larger than the alignment of a 64-bit integer. 193 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 194 */ 195 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 196 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 197 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 198 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 199 #else 200 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 201 #endif 202 203 /* 204 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 205 * Intended for arches that get misalignment faults even for 64 bit integer 206 * aligned buffers. 207 */ 208 #ifndef ARCH_SLAB_MINALIGN 209 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 210 #endif 211 212 /* 213 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 214 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 215 * aligned pointers. 216 */ 217 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 218 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 219 #define __assume_page_alignment __assume_aligned(PAGE_SIZE) 220 221 /* 222 * Kmalloc array related definitions 223 */ 224 225 #ifdef CONFIG_SLAB 226 /* 227 * The largest kmalloc size supported by the SLAB allocators is 228 * 32 megabyte (2^25) or the maximum allocatable page order if that is 229 * less than 32 MB. 230 * 231 * WARNING: Its not easy to increase this value since the allocators have 232 * to do various tricks to work around compiler limitations in order to 233 * ensure proper constant folding. 234 */ 235 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 236 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 237 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 238 #ifndef KMALLOC_SHIFT_LOW 239 #define KMALLOC_SHIFT_LOW 5 240 #endif 241 #endif 242 243 #ifdef CONFIG_SLUB 244 /* 245 * SLUB directly allocates requests fitting in to an order-1 page 246 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 247 */ 248 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 249 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 250 #ifndef KMALLOC_SHIFT_LOW 251 #define KMALLOC_SHIFT_LOW 3 252 #endif 253 #endif 254 255 #ifdef CONFIG_SLOB 256 /* 257 * SLOB passes all requests larger than one page to the page allocator. 258 * No kmalloc array is necessary since objects of different sizes can 259 * be allocated from the same page. 260 */ 261 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT 262 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 263 #ifndef KMALLOC_SHIFT_LOW 264 #define KMALLOC_SHIFT_LOW 3 265 #endif 266 #endif 267 268 /* Maximum allocatable size */ 269 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 270 /* Maximum size for which we actually use a slab cache */ 271 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 272 /* Maximum order allocatable via the slab allocator */ 273 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 274 275 /* 276 * Kmalloc subsystem. 277 */ 278 #ifndef KMALLOC_MIN_SIZE 279 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 280 #endif 281 282 /* 283 * This restriction comes from byte sized index implementation. 284 * Page size is normally 2^12 bytes and, in this case, if we want to use 285 * byte sized index which can represent 2^8 entries, the size of the object 286 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 287 * If minimum size of kmalloc is less than 16, we use it as minimum object 288 * size and give up to use byte sized index. 289 */ 290 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 291 (KMALLOC_MIN_SIZE) : 16) 292 293 /* 294 * Whenever changing this, take care of that kmalloc_type() and 295 * create_kmalloc_caches() still work as intended. 296 * 297 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 298 * is for accounted but unreclaimable and non-dma objects. All the other 299 * kmem caches can have both accounted and unaccounted objects. 300 */ 301 enum kmalloc_cache_type { 302 KMALLOC_NORMAL = 0, 303 #ifndef CONFIG_ZONE_DMA 304 KMALLOC_DMA = KMALLOC_NORMAL, 305 #endif 306 #ifndef CONFIG_MEMCG_KMEM 307 KMALLOC_CGROUP = KMALLOC_NORMAL, 308 #else 309 KMALLOC_CGROUP, 310 #endif 311 KMALLOC_RECLAIM, 312 #ifdef CONFIG_ZONE_DMA 313 KMALLOC_DMA, 314 #endif 315 NR_KMALLOC_TYPES 316 }; 317 318 #ifndef CONFIG_SLOB 319 extern struct kmem_cache * 320 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; 321 322 /* 323 * Define gfp bits that should not be set for KMALLOC_NORMAL. 324 */ 325 #define KMALLOC_NOT_NORMAL_BITS \ 326 (__GFP_RECLAIMABLE | \ 327 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 328 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0)) 329 330 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) 331 { 332 /* 333 * The most common case is KMALLOC_NORMAL, so test for it 334 * with a single branch for all the relevant flags. 335 */ 336 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 337 return KMALLOC_NORMAL; 338 339 /* 340 * At least one of the flags has to be set. Their priorities in 341 * decreasing order are: 342 * 1) __GFP_DMA 343 * 2) __GFP_RECLAIMABLE 344 * 3) __GFP_ACCOUNT 345 */ 346 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 347 return KMALLOC_DMA; 348 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE)) 349 return KMALLOC_RECLAIM; 350 else 351 return KMALLOC_CGROUP; 352 } 353 354 /* 355 * Figure out which kmalloc slab an allocation of a certain size 356 * belongs to. 357 * 0 = zero alloc 358 * 1 = 65 .. 96 bytes 359 * 2 = 129 .. 192 bytes 360 * n = 2^(n-1)+1 .. 2^n 361 * 362 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 363 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 364 * Callers where !size_is_constant should only be test modules, where runtime 365 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 366 */ 367 static __always_inline unsigned int __kmalloc_index(size_t size, 368 bool size_is_constant) 369 { 370 if (!size) 371 return 0; 372 373 if (size <= KMALLOC_MIN_SIZE) 374 return KMALLOC_SHIFT_LOW; 375 376 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 377 return 1; 378 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 379 return 2; 380 if (size <= 8) return 3; 381 if (size <= 16) return 4; 382 if (size <= 32) return 5; 383 if (size <= 64) return 6; 384 if (size <= 128) return 7; 385 if (size <= 256) return 8; 386 if (size <= 512) return 9; 387 if (size <= 1024) return 10; 388 if (size <= 2 * 1024) return 11; 389 if (size <= 4 * 1024) return 12; 390 if (size <= 8 * 1024) return 13; 391 if (size <= 16 * 1024) return 14; 392 if (size <= 32 * 1024) return 15; 393 if (size <= 64 * 1024) return 16; 394 if (size <= 128 * 1024) return 17; 395 if (size <= 256 * 1024) return 18; 396 if (size <= 512 * 1024) return 19; 397 if (size <= 1024 * 1024) return 20; 398 if (size <= 2 * 1024 * 1024) return 21; 399 if (size <= 4 * 1024 * 1024) return 22; 400 if (size <= 8 * 1024 * 1024) return 23; 401 if (size <= 16 * 1024 * 1024) return 24; 402 if (size <= 32 * 1024 * 1024) return 25; 403 404 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 405 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 406 else 407 BUG(); 408 409 /* Will never be reached. Needed because the compiler may complain */ 410 return -1; 411 } 412 #define kmalloc_index(s) __kmalloc_index(s, true) 413 #endif /* !CONFIG_SLOB */ 414 415 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1); 416 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc; 417 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 418 gfp_t gfpflags) __assume_slab_alignment __malloc; 419 void kmem_cache_free(struct kmem_cache *s, void *objp); 420 421 /* 422 * Bulk allocation and freeing operations. These are accelerated in an 423 * allocator specific way to avoid taking locks repeatedly or building 424 * metadata structures unnecessarily. 425 * 426 * Note that interrupts must be enabled when calling these functions. 427 */ 428 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 429 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p); 430 431 /* 432 * Caller must not use kfree_bulk() on memory not originally allocated 433 * by kmalloc(), because the SLOB allocator cannot handle this. 434 */ 435 static __always_inline void kfree_bulk(size_t size, void **p) 436 { 437 kmem_cache_free_bulk(NULL, size, p); 438 } 439 440 #ifdef CONFIG_NUMA 441 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment 442 __alloc_size(1); 443 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment 444 __malloc; 445 #else 446 static __always_inline __alloc_size(1) void *__kmalloc_node(size_t size, gfp_t flags, int node) 447 { 448 return __kmalloc(size, flags); 449 } 450 451 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 452 { 453 return kmem_cache_alloc(s, flags); 454 } 455 #endif 456 457 #ifdef CONFIG_TRACING 458 extern void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) 459 __assume_slab_alignment __alloc_size(3); 460 461 #ifdef CONFIG_NUMA 462 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 463 int node, size_t size) __assume_slab_alignment 464 __alloc_size(4); 465 #else 466 static __always_inline __alloc_size(4) void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 467 gfp_t gfpflags, int node, size_t size) 468 { 469 return kmem_cache_alloc_trace(s, gfpflags, size); 470 } 471 #endif /* CONFIG_NUMA */ 472 473 #else /* CONFIG_TRACING */ 474 static __always_inline __alloc_size(3) void *kmem_cache_alloc_trace(struct kmem_cache *s, 475 gfp_t flags, size_t size) 476 { 477 void *ret = kmem_cache_alloc(s, flags); 478 479 ret = kasan_kmalloc(s, ret, size, flags); 480 return ret; 481 } 482 483 static __always_inline void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 484 int node, size_t size) 485 { 486 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 487 488 ret = kasan_kmalloc(s, ret, size, gfpflags); 489 return ret; 490 } 491 #endif /* CONFIG_TRACING */ 492 493 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment 494 __alloc_size(1); 495 496 #ifdef CONFIG_TRACING 497 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 498 __assume_page_alignment __alloc_size(1); 499 #else 500 static __always_inline __alloc_size(1) void *kmalloc_order_trace(size_t size, gfp_t flags, 501 unsigned int order) 502 { 503 return kmalloc_order(size, flags, order); 504 } 505 #endif 506 507 static __always_inline __alloc_size(1) void *kmalloc_large(size_t size, gfp_t flags) 508 { 509 unsigned int order = get_order(size); 510 return kmalloc_order_trace(size, flags, order); 511 } 512 513 /** 514 * kmalloc - allocate memory 515 * @size: how many bytes of memory are required. 516 * @flags: the type of memory to allocate. 517 * 518 * kmalloc is the normal method of allocating memory 519 * for objects smaller than page size in the kernel. 520 * 521 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 522 * bytes. For @size of power of two bytes, the alignment is also guaranteed 523 * to be at least to the size. 524 * 525 * The @flags argument may be one of the GFP flags defined at 526 * include/linux/gfp.h and described at 527 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 528 * 529 * The recommended usage of the @flags is described at 530 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 531 * 532 * Below is a brief outline of the most useful GFP flags 533 * 534 * %GFP_KERNEL 535 * Allocate normal kernel ram. May sleep. 536 * 537 * %GFP_NOWAIT 538 * Allocation will not sleep. 539 * 540 * %GFP_ATOMIC 541 * Allocation will not sleep. May use emergency pools. 542 * 543 * %GFP_HIGHUSER 544 * Allocate memory from high memory on behalf of user. 545 * 546 * Also it is possible to set different flags by OR'ing 547 * in one or more of the following additional @flags: 548 * 549 * %__GFP_HIGH 550 * This allocation has high priority and may use emergency pools. 551 * 552 * %__GFP_NOFAIL 553 * Indicate that this allocation is in no way allowed to fail 554 * (think twice before using). 555 * 556 * %__GFP_NORETRY 557 * If memory is not immediately available, 558 * then give up at once. 559 * 560 * %__GFP_NOWARN 561 * If allocation fails, don't issue any warnings. 562 * 563 * %__GFP_RETRY_MAYFAIL 564 * Try really hard to succeed the allocation but fail 565 * eventually. 566 */ 567 static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags) 568 { 569 if (__builtin_constant_p(size)) { 570 #ifndef CONFIG_SLOB 571 unsigned int index; 572 #endif 573 if (size > KMALLOC_MAX_CACHE_SIZE) 574 return kmalloc_large(size, flags); 575 #ifndef CONFIG_SLOB 576 index = kmalloc_index(size); 577 578 if (!index) 579 return ZERO_SIZE_PTR; 580 581 return kmem_cache_alloc_trace( 582 kmalloc_caches[kmalloc_type(flags)][index], 583 flags, size); 584 #endif 585 } 586 return __kmalloc(size, flags); 587 } 588 589 static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node) 590 { 591 #ifndef CONFIG_SLOB 592 if (__builtin_constant_p(size) && 593 size <= KMALLOC_MAX_CACHE_SIZE) { 594 unsigned int i = kmalloc_index(size); 595 596 if (!i) 597 return ZERO_SIZE_PTR; 598 599 return kmem_cache_alloc_node_trace( 600 kmalloc_caches[kmalloc_type(flags)][i], 601 flags, node, size); 602 } 603 #endif 604 return __kmalloc_node(size, flags, node); 605 } 606 607 /** 608 * kmalloc_array - allocate memory for an array. 609 * @n: number of elements. 610 * @size: element size. 611 * @flags: the type of memory to allocate (see kmalloc). 612 */ 613 static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags) 614 { 615 size_t bytes; 616 617 if (unlikely(check_mul_overflow(n, size, &bytes))) 618 return NULL; 619 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 620 return kmalloc(bytes, flags); 621 return __kmalloc(bytes, flags); 622 } 623 624 /** 625 * krealloc_array - reallocate memory for an array. 626 * @p: pointer to the memory chunk to reallocate 627 * @new_n: new number of elements to alloc 628 * @new_size: new size of a single member of the array 629 * @flags: the type of memory to allocate (see kmalloc) 630 */ 631 static inline __alloc_size(2, 3) void * __must_check krealloc_array(void *p, 632 size_t new_n, 633 size_t new_size, 634 gfp_t flags) 635 { 636 size_t bytes; 637 638 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 639 return NULL; 640 641 return krealloc(p, bytes, flags); 642 } 643 644 /** 645 * kcalloc - allocate memory for an array. The memory is set to zero. 646 * @n: number of elements. 647 * @size: element size. 648 * @flags: the type of memory to allocate (see kmalloc). 649 */ 650 static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags) 651 { 652 return kmalloc_array(n, size, flags | __GFP_ZERO); 653 } 654 655 /* 656 * kmalloc_track_caller is a special version of kmalloc that records the 657 * calling function of the routine calling it for slab leak tracking instead 658 * of just the calling function (confusing, eh?). 659 * It's useful when the call to kmalloc comes from a widely-used standard 660 * allocator where we care about the real place the memory allocation 661 * request comes from. 662 */ 663 extern void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller); 664 #define kmalloc_track_caller(size, flags) \ 665 __kmalloc_track_caller(size, flags, _RET_IP_) 666 667 static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 668 int node) 669 { 670 size_t bytes; 671 672 if (unlikely(check_mul_overflow(n, size, &bytes))) 673 return NULL; 674 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 675 return kmalloc_node(bytes, flags, node); 676 return __kmalloc_node(bytes, flags, node); 677 } 678 679 static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 680 { 681 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 682 } 683 684 685 #ifdef CONFIG_NUMA 686 extern void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node, 687 unsigned long caller) __alloc_size(1); 688 #define kmalloc_node_track_caller(size, flags, node) \ 689 __kmalloc_node_track_caller(size, flags, node, \ 690 _RET_IP_) 691 692 #else /* CONFIG_NUMA */ 693 694 #define kmalloc_node_track_caller(size, flags, node) \ 695 kmalloc_track_caller(size, flags) 696 697 #endif /* CONFIG_NUMA */ 698 699 /* 700 * Shortcuts 701 */ 702 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 703 { 704 return kmem_cache_alloc(k, flags | __GFP_ZERO); 705 } 706 707 /** 708 * kzalloc - allocate memory. The memory is set to zero. 709 * @size: how many bytes of memory are required. 710 * @flags: the type of memory to allocate (see kmalloc). 711 */ 712 static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags) 713 { 714 return kmalloc(size, flags | __GFP_ZERO); 715 } 716 717 /** 718 * kzalloc_node - allocate zeroed memory from a particular memory node. 719 * @size: how many bytes of memory are required. 720 * @flags: the type of memory to allocate (see kmalloc). 721 * @node: memory node from which to allocate 722 */ 723 static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node) 724 { 725 return kmalloc_node(size, flags | __GFP_ZERO, node); 726 } 727 728 extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1); 729 static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags) 730 { 731 return kvmalloc_node(size, flags, NUMA_NO_NODE); 732 } 733 static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node) 734 { 735 return kvmalloc_node(size, flags | __GFP_ZERO, node); 736 } 737 static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags) 738 { 739 return kvmalloc(size, flags | __GFP_ZERO); 740 } 741 742 static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 743 { 744 size_t bytes; 745 746 if (unlikely(check_mul_overflow(n, size, &bytes))) 747 return NULL; 748 749 return kvmalloc(bytes, flags); 750 } 751 752 static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags) 753 { 754 return kvmalloc_array(n, size, flags | __GFP_ZERO); 755 } 756 757 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 758 __alloc_size(3); 759 extern void kvfree(const void *addr); 760 extern void kvfree_sensitive(const void *addr, size_t len); 761 762 unsigned int kmem_cache_size(struct kmem_cache *s); 763 void __init kmem_cache_init_late(void); 764 765 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 766 int slab_prepare_cpu(unsigned int cpu); 767 int slab_dead_cpu(unsigned int cpu); 768 #else 769 #define slab_prepare_cpu NULL 770 #define slab_dead_cpu NULL 771 #endif 772 773 #endif /* _LINUX_SLAB_H */ 774