1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Written by Mark Hemment, 1996 ([email protected]). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12 #ifndef _LINUX_SLAB_H 13 #define _LINUX_SLAB_H 14 15 #include <linux/cache.h> 16 #include <linux/gfp.h> 17 #include <linux/overflow.h> 18 #include <linux/types.h> 19 #include <linux/rcupdate.h> 20 #include <linux/workqueue.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/cleanup.h> 23 #include <linux/hash.h> 24 25 enum _slab_flag_bits { 26 _SLAB_CONSISTENCY_CHECKS, 27 _SLAB_RED_ZONE, 28 _SLAB_POISON, 29 _SLAB_KMALLOC, 30 _SLAB_HWCACHE_ALIGN, 31 _SLAB_CACHE_DMA, 32 _SLAB_CACHE_DMA32, 33 _SLAB_STORE_USER, 34 _SLAB_PANIC, 35 _SLAB_TYPESAFE_BY_RCU, 36 _SLAB_TRACE, 37 #ifdef CONFIG_DEBUG_OBJECTS 38 _SLAB_DEBUG_OBJECTS, 39 #endif 40 _SLAB_NOLEAKTRACE, 41 _SLAB_NO_MERGE, 42 #ifdef CONFIG_FAILSLAB 43 _SLAB_FAILSLAB, 44 #endif 45 #ifdef CONFIG_MEMCG 46 _SLAB_ACCOUNT, 47 #endif 48 #ifdef CONFIG_KASAN_GENERIC 49 _SLAB_KASAN, 50 #endif 51 _SLAB_NO_USER_FLAGS, 52 #ifdef CONFIG_KFENCE 53 _SLAB_SKIP_KFENCE, 54 #endif 55 #ifndef CONFIG_SLUB_TINY 56 _SLAB_RECLAIM_ACCOUNT, 57 #endif 58 _SLAB_OBJECT_POISON, 59 _SLAB_CMPXCHG_DOUBLE, 60 #ifdef CONFIG_SLAB_OBJ_EXT 61 _SLAB_NO_OBJ_EXT, 62 #endif 63 _SLAB_FLAGS_LAST_BIT 64 }; 65 66 #define __SLAB_FLAG_BIT(nr) ((slab_flags_t __force)(1U << (nr))) 67 #define __SLAB_FLAG_UNUSED ((slab_flags_t __force)(0U)) 68 69 /* 70 * Flags to pass to kmem_cache_create(). 71 * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op 72 */ 73 /* DEBUG: Perform (expensive) checks on alloc/free */ 74 #define SLAB_CONSISTENCY_CHECKS __SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS) 75 /* DEBUG: Red zone objs in a cache */ 76 #define SLAB_RED_ZONE __SLAB_FLAG_BIT(_SLAB_RED_ZONE) 77 /* DEBUG: Poison objects */ 78 #define SLAB_POISON __SLAB_FLAG_BIT(_SLAB_POISON) 79 /* Indicate a kmalloc slab */ 80 #define SLAB_KMALLOC __SLAB_FLAG_BIT(_SLAB_KMALLOC) 81 /** 82 * define SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. 83 * 84 * Sufficiently large objects are aligned on cache line boundary. For object 85 * size smaller than a half of cache line size, the alignment is on the half of 86 * cache line size. In general, if object size is smaller than 1/2^n of cache 87 * line size, the alignment is adjusted to 1/2^n. 88 * 89 * If explicit alignment is also requested by the respective 90 * &struct kmem_cache_args field, the greater of both is alignments is applied. 91 */ 92 #define SLAB_HWCACHE_ALIGN __SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN) 93 /* Use GFP_DMA memory */ 94 #define SLAB_CACHE_DMA __SLAB_FLAG_BIT(_SLAB_CACHE_DMA) 95 /* Use GFP_DMA32 memory */ 96 #define SLAB_CACHE_DMA32 __SLAB_FLAG_BIT(_SLAB_CACHE_DMA32) 97 /* DEBUG: Store the last owner for bug hunting */ 98 #define SLAB_STORE_USER __SLAB_FLAG_BIT(_SLAB_STORE_USER) 99 /* Panic if kmem_cache_create() fails */ 100 #define SLAB_PANIC __SLAB_FLAG_BIT(_SLAB_PANIC) 101 /** 102 * define SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 103 * 104 * This delays freeing the SLAB page by a grace period, it does _NOT_ 105 * delay object freeing. This means that if you do kmem_cache_free() 106 * that memory location is free to be reused at any time. Thus it may 107 * be possible to see another object there in the same RCU grace period. 108 * 109 * This feature only ensures the memory location backing the object 110 * stays valid, the trick to using this is relying on an independent 111 * object validation pass. Something like: 112 * 113 * :: 114 * 115 * begin: 116 * rcu_read_lock(); 117 * obj = lockless_lookup(key); 118 * if (obj) { 119 * if (!try_get_ref(obj)) // might fail for free objects 120 * rcu_read_unlock(); 121 * goto begin; 122 * 123 * if (obj->key != key) { // not the object we expected 124 * put_ref(obj); 125 * rcu_read_unlock(); 126 * goto begin; 127 * } 128 * } 129 * rcu_read_unlock(); 130 * 131 * This is useful if we need to approach a kernel structure obliquely, 132 * from its address obtained without the usual locking. We can lock 133 * the structure to stabilize it and check it's still at the given address, 134 * only if we can be sure that the memory has not been meanwhile reused 135 * for some other kind of object (which our subsystem's lock might corrupt). 136 * 137 * rcu_read_lock before reading the address, then rcu_read_unlock after 138 * taking the spinlock within the structure expected at that address. 139 * 140 * Note that it is not possible to acquire a lock within a structure 141 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference 142 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages 143 * are not zeroed before being given to the slab, which means that any 144 * locks must be initialized after each and every kmem_struct_alloc(). 145 * Alternatively, make the ctor passed to kmem_cache_create() initialize 146 * the locks at page-allocation time, as is done in __i915_request_ctor(), 147 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers 148 * to safely acquire those ctor-initialized locks under rcu_read_lock() 149 * protection. 150 * 151 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 152 */ 153 #define SLAB_TYPESAFE_BY_RCU __SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU) 154 /* Trace allocations and frees */ 155 #define SLAB_TRACE __SLAB_FLAG_BIT(_SLAB_TRACE) 156 157 /* Flag to prevent checks on free */ 158 #ifdef CONFIG_DEBUG_OBJECTS 159 # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS) 160 #else 161 # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_UNUSED 162 #endif 163 164 /* Avoid kmemleak tracing */ 165 #define SLAB_NOLEAKTRACE __SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE) 166 167 /* 168 * Prevent merging with compatible kmem caches. This flag should be used 169 * cautiously. Valid use cases: 170 * 171 * - caches created for self-tests (e.g. kunit) 172 * - general caches created and used by a subsystem, only when a 173 * (subsystem-specific) debug option is enabled 174 * - performance critical caches, should be very rare and consulted with slab 175 * maintainers, and not used together with CONFIG_SLUB_TINY 176 */ 177 #define SLAB_NO_MERGE __SLAB_FLAG_BIT(_SLAB_NO_MERGE) 178 179 /* Fault injection mark */ 180 #ifdef CONFIG_FAILSLAB 181 # define SLAB_FAILSLAB __SLAB_FLAG_BIT(_SLAB_FAILSLAB) 182 #else 183 # define SLAB_FAILSLAB __SLAB_FLAG_UNUSED 184 #endif 185 /** 186 * define SLAB_ACCOUNT - Account allocations to memcg. 187 * 188 * All object allocations from this cache will be memcg accounted, regardless of 189 * __GFP_ACCOUNT being or not being passed to individual allocations. 190 */ 191 #ifdef CONFIG_MEMCG 192 # define SLAB_ACCOUNT __SLAB_FLAG_BIT(_SLAB_ACCOUNT) 193 #else 194 # define SLAB_ACCOUNT __SLAB_FLAG_UNUSED 195 #endif 196 197 #ifdef CONFIG_KASAN_GENERIC 198 #define SLAB_KASAN __SLAB_FLAG_BIT(_SLAB_KASAN) 199 #else 200 #define SLAB_KASAN __SLAB_FLAG_UNUSED 201 #endif 202 203 /* 204 * Ignore user specified debugging flags. 205 * Intended for caches created for self-tests so they have only flags 206 * specified in the code and other flags are ignored. 207 */ 208 #define SLAB_NO_USER_FLAGS __SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS) 209 210 #ifdef CONFIG_KFENCE 211 #define SLAB_SKIP_KFENCE __SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE) 212 #else 213 #define SLAB_SKIP_KFENCE __SLAB_FLAG_UNUSED 214 #endif 215 216 /* The following flags affect the page allocator grouping pages by mobility */ 217 /** 218 * define SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. 219 * 220 * Use this flag for caches that have an associated shrinker. As a result, slab 221 * pages are allocated with __GFP_RECLAIMABLE, which affects grouping pages by 222 * mobility, and are accounted in SReclaimable counter in /proc/meminfo 223 */ 224 #ifndef CONFIG_SLUB_TINY 225 #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT) 226 #else 227 #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_UNUSED 228 #endif 229 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 230 231 /* Slab created using create_boot_cache */ 232 #ifdef CONFIG_SLAB_OBJ_EXT 233 #define SLAB_NO_OBJ_EXT __SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT) 234 #else 235 #define SLAB_NO_OBJ_EXT __SLAB_FLAG_UNUSED 236 #endif 237 238 /* 239 * freeptr_t represents a SLUB freelist pointer, which might be encoded 240 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 241 */ 242 typedef struct { unsigned long v; } freeptr_t; 243 244 /* 245 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 246 * 247 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 248 * 249 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 250 * Both make kfree a no-op. 251 */ 252 #define ZERO_SIZE_PTR ((void *)16) 253 254 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 255 (unsigned long)ZERO_SIZE_PTR) 256 257 #include <linux/kasan.h> 258 259 struct list_lru; 260 struct mem_cgroup; 261 /* 262 * struct kmem_cache related prototypes 263 */ 264 bool slab_is_available(void); 265 266 /** 267 * struct kmem_cache_args - Less common arguments for kmem_cache_create() 268 * 269 * Any uninitialized fields of the structure are interpreted as unused. The 270 * exception is @freeptr_offset where %0 is a valid value, so 271 * @use_freeptr_offset must be also set to %true in order to interpret the field 272 * as used. For @useroffset %0 is also valid, but only with non-%0 273 * @usersize. 274 * 275 * When %NULL args is passed to kmem_cache_create(), it is equivalent to all 276 * fields unused. 277 */ 278 struct kmem_cache_args { 279 /** 280 * @align: The required alignment for the objects. 281 * 282 * %0 means no specific alignment is requested. 283 */ 284 unsigned int align; 285 /** 286 * @useroffset: Usercopy region offset. 287 * 288 * %0 is a valid offset, when @usersize is non-%0 289 */ 290 unsigned int useroffset; 291 /** 292 * @usersize: Usercopy region size. 293 * 294 * %0 means no usercopy region is specified. 295 */ 296 unsigned int usersize; 297 /** 298 * @freeptr_offset: Custom offset for the free pointer 299 * in &SLAB_TYPESAFE_BY_RCU caches 300 * 301 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer 302 * outside of the object. This might cause the object to grow in size. 303 * Cache creators that have a reason to avoid this can specify a custom 304 * free pointer offset in their struct where the free pointer will be 305 * placed. 306 * 307 * Note that placing the free pointer inside the object requires the 308 * caller to ensure that no fields are invalidated that are required to 309 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for 310 * details). 311 * 312 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset 313 * is specified, %use_freeptr_offset must be set %true. 314 * 315 * Note that @ctor currently isn't supported with custom free pointers 316 * as a @ctor requires an external free pointer. 317 */ 318 unsigned int freeptr_offset; 319 /** 320 * @use_freeptr_offset: Whether a @freeptr_offset is used. 321 */ 322 bool use_freeptr_offset; 323 /** 324 * @ctor: A constructor for the objects. 325 * 326 * The constructor is invoked for each object in a newly allocated slab 327 * page. It is the cache user's responsibility to free object in the 328 * same state as after calling the constructor, or deal appropriately 329 * with any differences between a freshly constructed and a reallocated 330 * object. 331 * 332 * %NULL means no constructor. 333 */ 334 void (*ctor)(void *); 335 }; 336 337 struct kmem_cache *__kmem_cache_create_args(const char *name, 338 unsigned int object_size, 339 struct kmem_cache_args *args, 340 slab_flags_t flags); 341 static inline struct kmem_cache * 342 __kmem_cache_create(const char *name, unsigned int size, unsigned int align, 343 slab_flags_t flags, void (*ctor)(void *)) 344 { 345 struct kmem_cache_args kmem_args = { 346 .align = align, 347 .ctor = ctor, 348 }; 349 350 return __kmem_cache_create_args(name, size, &kmem_args, flags); 351 } 352 353 /** 354 * kmem_cache_create_usercopy - Create a kmem cache with a region suitable 355 * for copying to userspace. 356 * @name: A string which is used in /proc/slabinfo to identify this cache. 357 * @size: The size of objects to be created in this cache. 358 * @align: The required alignment for the objects. 359 * @flags: SLAB flags 360 * @useroffset: Usercopy region offset 361 * @usersize: Usercopy region size 362 * @ctor: A constructor for the objects, or %NULL. 363 * 364 * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY() 365 * if whitelisting a single field is sufficient, or kmem_cache_create() with 366 * the necessary parameters passed via the args parameter (see 367 * &struct kmem_cache_args) 368 * 369 * Return: a pointer to the cache on success, NULL on failure. 370 */ 371 static inline struct kmem_cache * 372 kmem_cache_create_usercopy(const char *name, unsigned int size, 373 unsigned int align, slab_flags_t flags, 374 unsigned int useroffset, unsigned int usersize, 375 void (*ctor)(void *)) 376 { 377 struct kmem_cache_args kmem_args = { 378 .align = align, 379 .ctor = ctor, 380 .useroffset = useroffset, 381 .usersize = usersize, 382 }; 383 384 return __kmem_cache_create_args(name, size, &kmem_args, flags); 385 } 386 387 /* If NULL is passed for @args, use this variant with default arguments. */ 388 static inline struct kmem_cache * 389 __kmem_cache_default_args(const char *name, unsigned int size, 390 struct kmem_cache_args *args, 391 slab_flags_t flags) 392 { 393 struct kmem_cache_args kmem_default_args = {}; 394 395 /* Make sure we don't get passed garbage. */ 396 if (WARN_ON_ONCE(args)) 397 return ERR_PTR(-EINVAL); 398 399 return __kmem_cache_create_args(name, size, &kmem_default_args, flags); 400 } 401 402 /** 403 * kmem_cache_create - Create a kmem cache. 404 * @__name: A string which is used in /proc/slabinfo to identify this cache. 405 * @__object_size: The size of objects to be created in this cache. 406 * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL 407 * means defaults will be used for all the arguments. 408 * 409 * This is currently implemented as a macro using ``_Generic()`` to call 410 * either the new variant of the function, or a legacy one. 411 * 412 * The new variant has 4 parameters: 413 * ``kmem_cache_create(name, object_size, args, flags)`` 414 * 415 * See __kmem_cache_create_args() which implements this. 416 * 417 * The legacy variant has 5 parameters: 418 * ``kmem_cache_create(name, object_size, align, flags, ctor)`` 419 * 420 * The align and ctor parameters map to the respective fields of 421 * &struct kmem_cache_args 422 * 423 * Context: Cannot be called within a interrupt, but can be interrupted. 424 * 425 * Return: a pointer to the cache on success, NULL on failure. 426 */ 427 #define kmem_cache_create(__name, __object_size, __args, ...) \ 428 _Generic((__args), \ 429 struct kmem_cache_args *: __kmem_cache_create_args, \ 430 void *: __kmem_cache_default_args, \ 431 default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__) 432 433 void kmem_cache_destroy(struct kmem_cache *s); 434 int kmem_cache_shrink(struct kmem_cache *s); 435 436 /* 437 * Please use this macro to create slab caches. Simply specify the 438 * name of the structure and maybe some flags that are listed above. 439 * 440 * The alignment of the struct determines object alignment. If you 441 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 442 * then the objects will be properly aligned in SMP configurations. 443 */ 444 #define KMEM_CACHE(__struct, __flags) \ 445 __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ 446 &(struct kmem_cache_args) { \ 447 .align = __alignof__(struct __struct), \ 448 }, (__flags)) 449 450 /* 451 * To whitelist a single field for copying to/from usercopy, use this 452 * macro instead for KMEM_CACHE() above. 453 */ 454 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 455 __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ 456 &(struct kmem_cache_args) { \ 457 .align = __alignof__(struct __struct), \ 458 .useroffset = offsetof(struct __struct, __field), \ 459 .usersize = sizeof_field(struct __struct, __field), \ 460 }, (__flags)) 461 462 /* 463 * Common kmalloc functions provided by all allocators 464 */ 465 void * __must_check krealloc_noprof(const void *objp, size_t new_size, 466 gfp_t flags) __realloc_size(2); 467 #define krealloc(...) alloc_hooks(krealloc_noprof(__VA_ARGS__)) 468 469 void kfree(const void *objp); 470 void kfree_sensitive(const void *objp); 471 size_t __ksize(const void *objp); 472 473 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T)) 474 DEFINE_FREE(kfree_sensitive, void *, if (_T) kfree_sensitive(_T)) 475 476 /** 477 * ksize - Report actual allocation size of associated object 478 * 479 * @objp: Pointer returned from a prior kmalloc()-family allocation. 480 * 481 * This should not be used for writing beyond the originally requested 482 * allocation size. Either use krealloc() or round up the allocation size 483 * with kmalloc_size_roundup() prior to allocation. If this is used to 484 * access beyond the originally requested allocation size, UBSAN_BOUNDS 485 * and/or FORTIFY_SOURCE may trip, since they only know about the 486 * originally allocated size via the __alloc_size attribute. 487 */ 488 size_t ksize(const void *objp); 489 490 #ifdef CONFIG_PRINTK 491 bool kmem_dump_obj(void *object); 492 #else 493 static inline bool kmem_dump_obj(void *object) { return false; } 494 #endif 495 496 /* 497 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 498 * alignment larger than the alignment of a 64-bit integer. 499 * Setting ARCH_DMA_MINALIGN in arch headers allows that. 500 */ 501 #ifdef ARCH_HAS_DMA_MINALIGN 502 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN) 503 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 504 #endif 505 #endif 506 507 #ifndef ARCH_KMALLOC_MINALIGN 508 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 509 #elif ARCH_KMALLOC_MINALIGN > 8 510 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN 511 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 512 #endif 513 514 /* 515 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 516 * Intended for arches that get misalignment faults even for 64 bit integer 517 * aligned buffers. 518 */ 519 #ifndef ARCH_SLAB_MINALIGN 520 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 521 #endif 522 523 /* 524 * Arches can define this function if they want to decide the minimum slab 525 * alignment at runtime. The value returned by the function must be a power 526 * of two and >= ARCH_SLAB_MINALIGN. 527 */ 528 #ifndef arch_slab_minalign 529 static inline unsigned int arch_slab_minalign(void) 530 { 531 return ARCH_SLAB_MINALIGN; 532 } 533 #endif 534 535 /* 536 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. 537 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN 538 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. 539 */ 540 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 541 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 542 #define __assume_page_alignment __assume_aligned(PAGE_SIZE) 543 544 /* 545 * Kmalloc array related definitions 546 */ 547 548 /* 549 * SLUB directly allocates requests fitting in to an order-1 page 550 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 551 */ 552 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 553 #define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDER + PAGE_SHIFT) 554 #ifndef KMALLOC_SHIFT_LOW 555 #define KMALLOC_SHIFT_LOW 3 556 #endif 557 558 /* Maximum allocatable size */ 559 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 560 /* Maximum size for which we actually use a slab cache */ 561 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 562 /* Maximum order allocatable via the slab allocator */ 563 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 564 565 /* 566 * Kmalloc subsystem. 567 */ 568 #ifndef KMALLOC_MIN_SIZE 569 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 570 #endif 571 572 /* 573 * This restriction comes from byte sized index implementation. 574 * Page size is normally 2^12 bytes and, in this case, if we want to use 575 * byte sized index which can represent 2^8 entries, the size of the object 576 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 577 * If minimum size of kmalloc is less than 16, we use it as minimum object 578 * size and give up to use byte sized index. 579 */ 580 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 581 (KMALLOC_MIN_SIZE) : 16) 582 583 #ifdef CONFIG_RANDOM_KMALLOC_CACHES 584 #define RANDOM_KMALLOC_CACHES_NR 15 // # of cache copies 585 #else 586 #define RANDOM_KMALLOC_CACHES_NR 0 587 #endif 588 589 /* 590 * Whenever changing this, take care of that kmalloc_type() and 591 * create_kmalloc_caches() still work as intended. 592 * 593 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 594 * is for accounted but unreclaimable and non-dma objects. All the other 595 * kmem caches can have both accounted and unaccounted objects. 596 */ 597 enum kmalloc_cache_type { 598 KMALLOC_NORMAL = 0, 599 #ifndef CONFIG_ZONE_DMA 600 KMALLOC_DMA = KMALLOC_NORMAL, 601 #endif 602 #ifndef CONFIG_MEMCG 603 KMALLOC_CGROUP = KMALLOC_NORMAL, 604 #endif 605 KMALLOC_RANDOM_START = KMALLOC_NORMAL, 606 KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR, 607 #ifdef CONFIG_SLUB_TINY 608 KMALLOC_RECLAIM = KMALLOC_NORMAL, 609 #else 610 KMALLOC_RECLAIM, 611 #endif 612 #ifdef CONFIG_ZONE_DMA 613 KMALLOC_DMA, 614 #endif 615 #ifdef CONFIG_MEMCG 616 KMALLOC_CGROUP, 617 #endif 618 NR_KMALLOC_TYPES 619 }; 620 621 typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1]; 622 623 extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES]; 624 625 /* 626 * Define gfp bits that should not be set for KMALLOC_NORMAL. 627 */ 628 #define KMALLOC_NOT_NORMAL_BITS \ 629 (__GFP_RECLAIMABLE | \ 630 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 631 (IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0)) 632 633 extern unsigned long random_kmalloc_seed; 634 635 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller) 636 { 637 /* 638 * The most common case is KMALLOC_NORMAL, so test for it 639 * with a single branch for all the relevant flags. 640 */ 641 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 642 #ifdef CONFIG_RANDOM_KMALLOC_CACHES 643 /* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */ 644 return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed, 645 ilog2(RANDOM_KMALLOC_CACHES_NR + 1)); 646 #else 647 return KMALLOC_NORMAL; 648 #endif 649 650 /* 651 * At least one of the flags has to be set. Their priorities in 652 * decreasing order are: 653 * 1) __GFP_DMA 654 * 2) __GFP_RECLAIMABLE 655 * 3) __GFP_ACCOUNT 656 */ 657 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 658 return KMALLOC_DMA; 659 if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE)) 660 return KMALLOC_RECLAIM; 661 else 662 return KMALLOC_CGROUP; 663 } 664 665 /* 666 * Figure out which kmalloc slab an allocation of a certain size 667 * belongs to. 668 * 0 = zero alloc 669 * 1 = 65 .. 96 bytes 670 * 2 = 129 .. 192 bytes 671 * n = 2^(n-1)+1 .. 2^n 672 * 673 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 674 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 675 * Callers where !size_is_constant should only be test modules, where runtime 676 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 677 */ 678 static __always_inline unsigned int __kmalloc_index(size_t size, 679 bool size_is_constant) 680 { 681 if (!size) 682 return 0; 683 684 if (size <= KMALLOC_MIN_SIZE) 685 return KMALLOC_SHIFT_LOW; 686 687 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 688 return 1; 689 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 690 return 2; 691 if (size <= 8) return 3; 692 if (size <= 16) return 4; 693 if (size <= 32) return 5; 694 if (size <= 64) return 6; 695 if (size <= 128) return 7; 696 if (size <= 256) return 8; 697 if (size <= 512) return 9; 698 if (size <= 1024) return 10; 699 if (size <= 2 * 1024) return 11; 700 if (size <= 4 * 1024) return 12; 701 if (size <= 8 * 1024) return 13; 702 if (size <= 16 * 1024) return 14; 703 if (size <= 32 * 1024) return 15; 704 if (size <= 64 * 1024) return 16; 705 if (size <= 128 * 1024) return 17; 706 if (size <= 256 * 1024) return 18; 707 if (size <= 512 * 1024) return 19; 708 if (size <= 1024 * 1024) return 20; 709 if (size <= 2 * 1024 * 1024) return 21; 710 711 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 712 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 713 else 714 BUG(); 715 716 /* Will never be reached. Needed because the compiler may complain */ 717 return -1; 718 } 719 static_assert(PAGE_SHIFT <= 20); 720 #define kmalloc_index(s) __kmalloc_index(s, true) 721 722 #include <linux/alloc_tag.h> 723 724 /** 725 * kmem_cache_alloc - Allocate an object 726 * @cachep: The cache to allocate from. 727 * @flags: See kmalloc(). 728 * 729 * Allocate an object from this cache. 730 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags. 731 * 732 * Return: pointer to the new object or %NULL in case of error 733 */ 734 void *kmem_cache_alloc_noprof(struct kmem_cache *cachep, 735 gfp_t flags) __assume_slab_alignment __malloc; 736 #define kmem_cache_alloc(...) alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__)) 737 738 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 739 gfp_t gfpflags) __assume_slab_alignment __malloc; 740 #define kmem_cache_alloc_lru(...) alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__)) 741 742 /** 743 * kmem_cache_charge - memcg charge an already allocated slab memory 744 * @objp: address of the slab object to memcg charge 745 * @gfpflags: describe the allocation context 746 * 747 * kmem_cache_charge allows charging a slab object to the current memcg, 748 * primarily in cases where charging at allocation time might not be possible 749 * because the target memcg is not known (i.e. softirq context) 750 * 751 * The objp should be pointer returned by the slab allocator functions like 752 * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge 753 * behavior can be controlled through gfpflags parameter, which affects how the 754 * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes 755 * that overcharging is requested instead of failure, but is not applied for the 756 * internal metadata allocation. 757 * 758 * There are several cases where it will return true even if the charging was 759 * not done: 760 * More specifically: 761 * 762 * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems. 763 * 2. Already charged slab objects. 764 * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc() 765 * without __GFP_ACCOUNT 766 * 4. Allocating internal metadata has failed 767 * 768 * Return: true if charge was successful otherwise false. 769 */ 770 bool kmem_cache_charge(void *objp, gfp_t gfpflags); 771 void kmem_cache_free(struct kmem_cache *s, void *objp); 772 773 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, 774 unsigned int useroffset, unsigned int usersize, 775 void (*ctor)(void *)); 776 777 /* 778 * Bulk allocation and freeing operations. These are accelerated in an 779 * allocator specific way to avoid taking locks repeatedly or building 780 * metadata structures unnecessarily. 781 * 782 * Note that interrupts must be enabled when calling these functions. 783 */ 784 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 785 786 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p); 787 #define kmem_cache_alloc_bulk(...) alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__)) 788 789 static __always_inline void kfree_bulk(size_t size, void **p) 790 { 791 kmem_cache_free_bulk(NULL, size, p); 792 } 793 794 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags, 795 int node) __assume_slab_alignment __malloc; 796 #define kmem_cache_alloc_node(...) alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__)) 797 798 /* 799 * These macros allow declaring a kmem_buckets * parameter alongside size, which 800 * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call 801 * sites don't have to pass NULL. 802 */ 803 #ifdef CONFIG_SLAB_BUCKETS 804 #define DECL_BUCKET_PARAMS(_size, _b) size_t (_size), kmem_buckets *(_b) 805 #define PASS_BUCKET_PARAMS(_size, _b) (_size), (_b) 806 #define PASS_BUCKET_PARAM(_b) (_b) 807 #else 808 #define DECL_BUCKET_PARAMS(_size, _b) size_t (_size) 809 #define PASS_BUCKET_PARAMS(_size, _b) (_size) 810 #define PASS_BUCKET_PARAM(_b) NULL 811 #endif 812 813 /* 814 * The following functions are not to be used directly and are intended only 815 * for internal use from kmalloc() and kmalloc_node() 816 * with the exception of kunit tests 817 */ 818 819 void *__kmalloc_noprof(size_t size, gfp_t flags) 820 __assume_kmalloc_alignment __alloc_size(1); 821 822 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 823 __assume_kmalloc_alignment __alloc_size(1); 824 825 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size) 826 __assume_kmalloc_alignment __alloc_size(3); 827 828 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 829 int node, size_t size) 830 __assume_kmalloc_alignment __alloc_size(4); 831 832 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 833 __assume_page_alignment __alloc_size(1); 834 835 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 836 __assume_page_alignment __alloc_size(1); 837 838 /** 839 * kmalloc - allocate kernel memory 840 * @size: how many bytes of memory are required. 841 * @flags: describe the allocation context 842 * 843 * kmalloc is the normal method of allocating memory 844 * for objects smaller than page size in the kernel. 845 * 846 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 847 * bytes. For @size of power of two bytes, the alignment is also guaranteed 848 * to be at least to the size. For other sizes, the alignment is guaranteed to 849 * be at least the largest power-of-two divisor of @size. 850 * 851 * The @flags argument may be one of the GFP flags defined at 852 * include/linux/gfp_types.h and described at 853 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 854 * 855 * The recommended usage of the @flags is described at 856 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 857 * 858 * Below is a brief outline of the most useful GFP flags 859 * 860 * %GFP_KERNEL 861 * Allocate normal kernel ram. May sleep. 862 * 863 * %GFP_NOWAIT 864 * Allocation will not sleep. 865 * 866 * %GFP_ATOMIC 867 * Allocation will not sleep. May use emergency pools. 868 * 869 * Also it is possible to set different flags by OR'ing 870 * in one or more of the following additional @flags: 871 * 872 * %__GFP_ZERO 873 * Zero the allocated memory before returning. Also see kzalloc(). 874 * 875 * %__GFP_HIGH 876 * This allocation has high priority and may use emergency pools. 877 * 878 * %__GFP_NOFAIL 879 * Indicate that this allocation is in no way allowed to fail 880 * (think twice before using). 881 * 882 * %__GFP_NORETRY 883 * If memory is not immediately available, 884 * then give up at once. 885 * 886 * %__GFP_NOWARN 887 * If allocation fails, don't issue any warnings. 888 * 889 * %__GFP_RETRY_MAYFAIL 890 * Try really hard to succeed the allocation but fail 891 * eventually. 892 */ 893 static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags) 894 { 895 if (__builtin_constant_p(size) && size) { 896 unsigned int index; 897 898 if (size > KMALLOC_MAX_CACHE_SIZE) 899 return __kmalloc_large_noprof(size, flags); 900 901 index = kmalloc_index(size); 902 return __kmalloc_cache_noprof( 903 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 904 flags, size); 905 } 906 return __kmalloc_noprof(size, flags); 907 } 908 #define kmalloc(...) alloc_hooks(kmalloc_noprof(__VA_ARGS__)) 909 910 #define kmem_buckets_alloc(_b, _size, _flags) \ 911 alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE)) 912 913 #define kmem_buckets_alloc_track_caller(_b, _size, _flags) \ 914 alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_)) 915 916 static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node) 917 { 918 if (__builtin_constant_p(size) && size) { 919 unsigned int index; 920 921 if (size > KMALLOC_MAX_CACHE_SIZE) 922 return __kmalloc_large_node_noprof(size, flags, node); 923 924 index = kmalloc_index(size); 925 return __kmalloc_cache_node_noprof( 926 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 927 flags, node, size); 928 } 929 return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node); 930 } 931 #define kmalloc_node(...) alloc_hooks(kmalloc_node_noprof(__VA_ARGS__)) 932 933 /** 934 * kmalloc_array - allocate memory for an array. 935 * @n: number of elements. 936 * @size: element size. 937 * @flags: the type of memory to allocate (see kmalloc). 938 */ 939 static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags) 940 { 941 size_t bytes; 942 943 if (unlikely(check_mul_overflow(n, size, &bytes))) 944 return NULL; 945 return kmalloc_noprof(bytes, flags); 946 } 947 #define kmalloc_array(...) alloc_hooks(kmalloc_array_noprof(__VA_ARGS__)) 948 949 /** 950 * krealloc_array - reallocate memory for an array. 951 * @p: pointer to the memory chunk to reallocate 952 * @new_n: new number of elements to alloc 953 * @new_size: new size of a single member of the array 954 * @flags: the type of memory to allocate (see kmalloc) 955 * 956 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 957 * initial memory allocation, every subsequent call to this API for the same 958 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 959 * __GFP_ZERO is not fully honored by this API. 960 * 961 * See krealloc_noprof() for further details. 962 * 963 * In any case, the contents of the object pointed to are preserved up to the 964 * lesser of the new and old sizes. 965 */ 966 static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p, 967 size_t new_n, 968 size_t new_size, 969 gfp_t flags) 970 { 971 size_t bytes; 972 973 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 974 return NULL; 975 976 return krealloc_noprof(p, bytes, flags); 977 } 978 #define krealloc_array(...) alloc_hooks(krealloc_array_noprof(__VA_ARGS__)) 979 980 /** 981 * kcalloc - allocate memory for an array. The memory is set to zero. 982 * @n: number of elements. 983 * @size: element size. 984 * @flags: the type of memory to allocate (see kmalloc). 985 */ 986 #define kcalloc(n, size, flags) kmalloc_array(n, size, (flags) | __GFP_ZERO) 987 988 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node, 989 unsigned long caller) __alloc_size(1); 990 #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \ 991 __kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller) 992 #define kmalloc_node_track_caller(...) \ 993 alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_)) 994 995 /* 996 * kmalloc_track_caller is a special version of kmalloc that records the 997 * calling function of the routine calling it for slab leak tracking instead 998 * of just the calling function (confusing, eh?). 999 * It's useful when the call to kmalloc comes from a widely-used standard 1000 * allocator where we care about the real place the memory allocation 1001 * request comes from. 1002 */ 1003 #define kmalloc_track_caller(...) kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE) 1004 1005 #define kmalloc_track_caller_noprof(...) \ 1006 kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_) 1007 1008 static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, 1009 int node) 1010 { 1011 size_t bytes; 1012 1013 if (unlikely(check_mul_overflow(n, size, &bytes))) 1014 return NULL; 1015 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 1016 return kmalloc_node_noprof(bytes, flags, node); 1017 return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node); 1018 } 1019 #define kmalloc_array_node(...) alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__)) 1020 1021 #define kcalloc_node(_n, _size, _flags, _node) \ 1022 kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node) 1023 1024 /* 1025 * Shortcuts 1026 */ 1027 #define kmem_cache_zalloc(_k, _flags) kmem_cache_alloc(_k, (_flags)|__GFP_ZERO) 1028 1029 /** 1030 * kzalloc - allocate memory. The memory is set to zero. 1031 * @size: how many bytes of memory are required. 1032 * @flags: the type of memory to allocate (see kmalloc). 1033 */ 1034 static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags) 1035 { 1036 return kmalloc_noprof(size, flags | __GFP_ZERO); 1037 } 1038 #define kzalloc(...) alloc_hooks(kzalloc_noprof(__VA_ARGS__)) 1039 #define kzalloc_node(_size, _flags, _node) kmalloc_node(_size, (_flags)|__GFP_ZERO, _node) 1040 1041 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1); 1042 #define kvmalloc_node_noprof(size, flags, node) \ 1043 __kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node) 1044 #define kvmalloc_node(...) alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__)) 1045 1046 #define kvmalloc(_size, _flags) kvmalloc_node(_size, _flags, NUMA_NO_NODE) 1047 #define kvmalloc_noprof(_size, _flags) kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE) 1048 #define kvzalloc(_size, _flags) kvmalloc(_size, (_flags)|__GFP_ZERO) 1049 1050 #define kvzalloc_node(_size, _flags, _node) kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node) 1051 #define kmem_buckets_valloc(_b, _size, _flags) \ 1052 alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE)) 1053 1054 static inline __alloc_size(1, 2) void * 1055 kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node) 1056 { 1057 size_t bytes; 1058 1059 if (unlikely(check_mul_overflow(n, size, &bytes))) 1060 return NULL; 1061 1062 return kvmalloc_node_noprof(bytes, flags, node); 1063 } 1064 1065 #define kvmalloc_array_noprof(...) kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE) 1066 #define kvcalloc_node_noprof(_n,_s,_f,_node) kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node) 1067 #define kvcalloc_noprof(...) kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE) 1068 1069 #define kvmalloc_array(...) alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__)) 1070 #define kvcalloc_node(...) alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__)) 1071 #define kvcalloc(...) alloc_hooks(kvcalloc_noprof(__VA_ARGS__)) 1072 1073 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) 1074 __realloc_size(2); 1075 #define kvrealloc(...) alloc_hooks(kvrealloc_noprof(__VA_ARGS__)) 1076 1077 extern void kvfree(const void *addr); 1078 DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T)) 1079 1080 extern void kvfree_sensitive(const void *addr, size_t len); 1081 1082 unsigned int kmem_cache_size(struct kmem_cache *s); 1083 1084 #ifndef CONFIG_KVFREE_RCU_BATCHED 1085 static inline void kvfree_rcu_barrier(void) 1086 { 1087 rcu_barrier(); 1088 } 1089 1090 static inline void kfree_rcu_scheduler_running(void) { } 1091 #else 1092 void kvfree_rcu_barrier(void); 1093 1094 void kfree_rcu_scheduler_running(void); 1095 #endif 1096 1097 /** 1098 * kmalloc_size_roundup - Report allocation bucket size for the given size 1099 * 1100 * @size: Number of bytes to round up from. 1101 * 1102 * This returns the number of bytes that would be available in a kmalloc() 1103 * allocation of @size bytes. For example, a 126 byte request would be 1104 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly 1105 * for the general-purpose kmalloc()-based allocations, and is not for the 1106 * pre-sized kmem_cache_alloc()-based allocations.) 1107 * 1108 * Use this to kmalloc() the full bucket size ahead of time instead of using 1109 * ksize() to query the size after an allocation. 1110 */ 1111 size_t kmalloc_size_roundup(size_t size); 1112 1113 void __init kmem_cache_init_late(void); 1114 void __init kvfree_rcu_init(void); 1115 1116 #endif /* _LINUX_SLAB_H */ 1117