1 /* 2 * Written by Mark Hemment, 1996 ([email protected]). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11 #ifndef _LINUX_SLAB_H 12 #define _LINUX_SLAB_H 13 14 #include <linux/gfp.h> 15 #include <linux/types.h> 16 #include <linux/workqueue.h> 17 18 19 /* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 22 */ 23 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 24 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30 /* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 */ 65 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 66 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 67 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 68 69 /* Flag to prevent checks on free */ 70 #ifdef CONFIG_DEBUG_OBJECTS 71 # define SLAB_DEBUG_OBJECTS 0x00400000UL 72 #else 73 # define SLAB_DEBUG_OBJECTS 0x00000000UL 74 #endif 75 76 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 77 78 /* Don't track use of uninitialized memory */ 79 #ifdef CONFIG_KMEMCHECK 80 # define SLAB_NOTRACK 0x01000000UL 81 #else 82 # define SLAB_NOTRACK 0x00000000UL 83 #endif 84 #ifdef CONFIG_FAILSLAB 85 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 86 #else 87 # define SLAB_FAILSLAB 0x00000000UL 88 #endif 89 #ifdef CONFIG_MEMCG_KMEM 90 # define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */ 91 #else 92 # define SLAB_ACCOUNT 0x00000000UL 93 #endif 94 95 /* The following flags affect the page allocator grouping pages by mobility */ 96 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 97 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 98 /* 99 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 100 * 101 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 102 * 103 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 104 * Both make kfree a no-op. 105 */ 106 #define ZERO_SIZE_PTR ((void *)16) 107 108 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 109 (unsigned long)ZERO_SIZE_PTR) 110 111 #include <linux/kmemleak.h> 112 #include <linux/kasan.h> 113 114 struct mem_cgroup; 115 /* 116 * struct kmem_cache related prototypes 117 */ 118 void __init kmem_cache_init(void); 119 bool slab_is_available(void); 120 121 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 122 unsigned long, 123 void (*)(void *)); 124 void kmem_cache_destroy(struct kmem_cache *); 125 int kmem_cache_shrink(struct kmem_cache *); 126 127 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 128 void memcg_deactivate_kmem_caches(struct mem_cgroup *); 129 void memcg_destroy_kmem_caches(struct mem_cgroup *); 130 131 /* 132 * Please use this macro to create slab caches. Simply specify the 133 * name of the structure and maybe some flags that are listed above. 134 * 135 * The alignment of the struct determines object alignment. If you 136 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 137 * then the objects will be properly aligned in SMP configurations. 138 */ 139 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 140 sizeof(struct __struct), __alignof__(struct __struct),\ 141 (__flags), NULL) 142 143 /* 144 * Common kmalloc functions provided by all allocators 145 */ 146 void * __must_check __krealloc(const void *, size_t, gfp_t); 147 void * __must_check krealloc(const void *, size_t, gfp_t); 148 void kfree(const void *); 149 void kzfree(const void *); 150 size_t ksize(const void *); 151 152 /* 153 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 154 * alignment larger than the alignment of a 64-bit integer. 155 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 156 */ 157 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 158 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 159 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 160 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 161 #else 162 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 163 #endif 164 165 /* 166 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 167 * Intended for arches that get misalignment faults even for 64 bit integer 168 * aligned buffers. 169 */ 170 #ifndef ARCH_SLAB_MINALIGN 171 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 172 #endif 173 174 /* 175 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 176 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 177 * aligned pointers. 178 */ 179 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 180 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 181 #define __assume_page_alignment __assume_aligned(PAGE_SIZE) 182 183 /* 184 * Kmalloc array related definitions 185 */ 186 187 #ifdef CONFIG_SLAB 188 /* 189 * The largest kmalloc size supported by the SLAB allocators is 190 * 32 megabyte (2^25) or the maximum allocatable page order if that is 191 * less than 32 MB. 192 * 193 * WARNING: Its not easy to increase this value since the allocators have 194 * to do various tricks to work around compiler limitations in order to 195 * ensure proper constant folding. 196 */ 197 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 198 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 199 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 200 #ifndef KMALLOC_SHIFT_LOW 201 #define KMALLOC_SHIFT_LOW 5 202 #endif 203 #endif 204 205 #ifdef CONFIG_SLUB 206 /* 207 * SLUB directly allocates requests fitting in to an order-1 page 208 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 209 */ 210 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 211 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 212 #ifndef KMALLOC_SHIFT_LOW 213 #define KMALLOC_SHIFT_LOW 3 214 #endif 215 #endif 216 217 #ifdef CONFIG_SLOB 218 /* 219 * SLOB passes all requests larger than one page to the page allocator. 220 * No kmalloc array is necessary since objects of different sizes can 221 * be allocated from the same page. 222 */ 223 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT 224 #define KMALLOC_SHIFT_MAX 30 225 #ifndef KMALLOC_SHIFT_LOW 226 #define KMALLOC_SHIFT_LOW 3 227 #endif 228 #endif 229 230 /* Maximum allocatable size */ 231 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 232 /* Maximum size for which we actually use a slab cache */ 233 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 234 /* Maximum order allocatable via the slab allocagtor */ 235 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 236 237 /* 238 * Kmalloc subsystem. 239 */ 240 #ifndef KMALLOC_MIN_SIZE 241 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 242 #endif 243 244 /* 245 * This restriction comes from byte sized index implementation. 246 * Page size is normally 2^12 bytes and, in this case, if we want to use 247 * byte sized index which can represent 2^8 entries, the size of the object 248 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 249 * If minimum size of kmalloc is less than 16, we use it as minimum object 250 * size and give up to use byte sized index. 251 */ 252 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 253 (KMALLOC_MIN_SIZE) : 16) 254 255 #ifndef CONFIG_SLOB 256 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 257 #ifdef CONFIG_ZONE_DMA 258 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 259 #endif 260 261 /* 262 * Figure out which kmalloc slab an allocation of a certain size 263 * belongs to. 264 * 0 = zero alloc 265 * 1 = 65 .. 96 bytes 266 * 2 = 129 .. 192 bytes 267 * n = 2^(n-1)+1 .. 2^n 268 */ 269 static __always_inline int kmalloc_index(size_t size) 270 { 271 if (!size) 272 return 0; 273 274 if (size <= KMALLOC_MIN_SIZE) 275 return KMALLOC_SHIFT_LOW; 276 277 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 278 return 1; 279 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 280 return 2; 281 if (size <= 8) return 3; 282 if (size <= 16) return 4; 283 if (size <= 32) return 5; 284 if (size <= 64) return 6; 285 if (size <= 128) return 7; 286 if (size <= 256) return 8; 287 if (size <= 512) return 9; 288 if (size <= 1024) return 10; 289 if (size <= 2 * 1024) return 11; 290 if (size <= 4 * 1024) return 12; 291 if (size <= 8 * 1024) return 13; 292 if (size <= 16 * 1024) return 14; 293 if (size <= 32 * 1024) return 15; 294 if (size <= 64 * 1024) return 16; 295 if (size <= 128 * 1024) return 17; 296 if (size <= 256 * 1024) return 18; 297 if (size <= 512 * 1024) return 19; 298 if (size <= 1024 * 1024) return 20; 299 if (size <= 2 * 1024 * 1024) return 21; 300 if (size <= 4 * 1024 * 1024) return 22; 301 if (size <= 8 * 1024 * 1024) return 23; 302 if (size <= 16 * 1024 * 1024) return 24; 303 if (size <= 32 * 1024 * 1024) return 25; 304 if (size <= 64 * 1024 * 1024) return 26; 305 BUG(); 306 307 /* Will never be reached. Needed because the compiler may complain */ 308 return -1; 309 } 310 #endif /* !CONFIG_SLOB */ 311 312 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment; 313 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment; 314 void kmem_cache_free(struct kmem_cache *, void *); 315 316 /* 317 * Bulk allocation and freeing operations. These are accellerated in an 318 * allocator specific way to avoid taking locks repeatedly or building 319 * metadata structures unnecessarily. 320 * 321 * Note that interrupts must be enabled when calling these functions. 322 */ 323 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 324 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 325 326 #ifdef CONFIG_NUMA 327 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment; 328 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment; 329 #else 330 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 331 { 332 return __kmalloc(size, flags); 333 } 334 335 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 336 { 337 return kmem_cache_alloc(s, flags); 338 } 339 #endif 340 341 #ifdef CONFIG_TRACING 342 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment; 343 344 #ifdef CONFIG_NUMA 345 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 346 gfp_t gfpflags, 347 int node, size_t size) __assume_slab_alignment; 348 #else 349 static __always_inline void * 350 kmem_cache_alloc_node_trace(struct kmem_cache *s, 351 gfp_t gfpflags, 352 int node, size_t size) 353 { 354 return kmem_cache_alloc_trace(s, gfpflags, size); 355 } 356 #endif /* CONFIG_NUMA */ 357 358 #else /* CONFIG_TRACING */ 359 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 360 gfp_t flags, size_t size) 361 { 362 void *ret = kmem_cache_alloc(s, flags); 363 364 kasan_kmalloc(s, ret, size); 365 return ret; 366 } 367 368 static __always_inline void * 369 kmem_cache_alloc_node_trace(struct kmem_cache *s, 370 gfp_t gfpflags, 371 int node, size_t size) 372 { 373 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 374 375 kasan_kmalloc(s, ret, size); 376 return ret; 377 } 378 #endif /* CONFIG_TRACING */ 379 380 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment; 381 382 #ifdef CONFIG_TRACING 383 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment; 384 #else 385 static __always_inline void * 386 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 387 { 388 return kmalloc_order(size, flags, order); 389 } 390 #endif 391 392 static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 393 { 394 unsigned int order = get_order(size); 395 return kmalloc_order_trace(size, flags, order); 396 } 397 398 /** 399 * kmalloc - allocate memory 400 * @size: how many bytes of memory are required. 401 * @flags: the type of memory to allocate. 402 * 403 * kmalloc is the normal method of allocating memory 404 * for objects smaller than page size in the kernel. 405 * 406 * The @flags argument may be one of: 407 * 408 * %GFP_USER - Allocate memory on behalf of user. May sleep. 409 * 410 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 411 * 412 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 413 * For example, use this inside interrupt handlers. 414 * 415 * %GFP_HIGHUSER - Allocate pages from high memory. 416 * 417 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 418 * 419 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 420 * 421 * %GFP_NOWAIT - Allocation will not sleep. 422 * 423 * %__GFP_THISNODE - Allocate node-local memory only. 424 * 425 * %GFP_DMA - Allocation suitable for DMA. 426 * Should only be used for kmalloc() caches. Otherwise, use a 427 * slab created with SLAB_DMA. 428 * 429 * Also it is possible to set different flags by OR'ing 430 * in one or more of the following additional @flags: 431 * 432 * %__GFP_COLD - Request cache-cold pages instead of 433 * trying to return cache-warm pages. 434 * 435 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 436 * 437 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 438 * (think twice before using). 439 * 440 * %__GFP_NORETRY - If memory is not immediately available, 441 * then give up at once. 442 * 443 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 444 * 445 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 446 * 447 * There are other flags available as well, but these are not intended 448 * for general use, and so are not documented here. For a full list of 449 * potential flags, always refer to linux/gfp.h. 450 */ 451 static __always_inline void *kmalloc(size_t size, gfp_t flags) 452 { 453 if (__builtin_constant_p(size)) { 454 if (size > KMALLOC_MAX_CACHE_SIZE) 455 return kmalloc_large(size, flags); 456 #ifndef CONFIG_SLOB 457 if (!(flags & GFP_DMA)) { 458 int index = kmalloc_index(size); 459 460 if (!index) 461 return ZERO_SIZE_PTR; 462 463 return kmem_cache_alloc_trace(kmalloc_caches[index], 464 flags, size); 465 } 466 #endif 467 } 468 return __kmalloc(size, flags); 469 } 470 471 /* 472 * Determine size used for the nth kmalloc cache. 473 * return size or 0 if a kmalloc cache for that 474 * size does not exist 475 */ 476 static __always_inline int kmalloc_size(int n) 477 { 478 #ifndef CONFIG_SLOB 479 if (n > 2) 480 return 1 << n; 481 482 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 483 return 96; 484 485 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 486 return 192; 487 #endif 488 return 0; 489 } 490 491 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 492 { 493 #ifndef CONFIG_SLOB 494 if (__builtin_constant_p(size) && 495 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 496 int i = kmalloc_index(size); 497 498 if (!i) 499 return ZERO_SIZE_PTR; 500 501 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 502 flags, node, size); 503 } 504 #endif 505 return __kmalloc_node(size, flags, node); 506 } 507 508 struct memcg_cache_array { 509 struct rcu_head rcu; 510 struct kmem_cache *entries[0]; 511 }; 512 513 /* 514 * This is the main placeholder for memcg-related information in kmem caches. 515 * Both the root cache and the child caches will have it. For the root cache, 516 * this will hold a dynamically allocated array large enough to hold 517 * information about the currently limited memcgs in the system. To allow the 518 * array to be accessed without taking any locks, on relocation we free the old 519 * version only after a grace period. 520 * 521 * Child caches will hold extra metadata needed for its operation. Fields are: 522 * 523 * @memcg: pointer to the memcg this cache belongs to 524 * @root_cache: pointer to the global, root cache, this cache was derived from 525 * 526 * Both root and child caches of the same kind are linked into a list chained 527 * through @list. 528 */ 529 struct memcg_cache_params { 530 bool is_root_cache; 531 struct list_head list; 532 union { 533 struct memcg_cache_array __rcu *memcg_caches; 534 struct { 535 struct mem_cgroup *memcg; 536 struct kmem_cache *root_cache; 537 }; 538 }; 539 }; 540 541 int memcg_update_all_caches(int num_memcgs); 542 543 /** 544 * kmalloc_array - allocate memory for an array. 545 * @n: number of elements. 546 * @size: element size. 547 * @flags: the type of memory to allocate (see kmalloc). 548 */ 549 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 550 { 551 if (size != 0 && n > SIZE_MAX / size) 552 return NULL; 553 return __kmalloc(n * size, flags); 554 } 555 556 /** 557 * kcalloc - allocate memory for an array. The memory is set to zero. 558 * @n: number of elements. 559 * @size: element size. 560 * @flags: the type of memory to allocate (see kmalloc). 561 */ 562 static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 563 { 564 return kmalloc_array(n, size, flags | __GFP_ZERO); 565 } 566 567 /* 568 * kmalloc_track_caller is a special version of kmalloc that records the 569 * calling function of the routine calling it for slab leak tracking instead 570 * of just the calling function (confusing, eh?). 571 * It's useful when the call to kmalloc comes from a widely-used standard 572 * allocator where we care about the real place the memory allocation 573 * request comes from. 574 */ 575 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 576 #define kmalloc_track_caller(size, flags) \ 577 __kmalloc_track_caller(size, flags, _RET_IP_) 578 579 #ifdef CONFIG_NUMA 580 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 581 #define kmalloc_node_track_caller(size, flags, node) \ 582 __kmalloc_node_track_caller(size, flags, node, \ 583 _RET_IP_) 584 585 #else /* CONFIG_NUMA */ 586 587 #define kmalloc_node_track_caller(size, flags, node) \ 588 kmalloc_track_caller(size, flags) 589 590 #endif /* CONFIG_NUMA */ 591 592 /* 593 * Shortcuts 594 */ 595 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 596 { 597 return kmem_cache_alloc(k, flags | __GFP_ZERO); 598 } 599 600 /** 601 * kzalloc - allocate memory. The memory is set to zero. 602 * @size: how many bytes of memory are required. 603 * @flags: the type of memory to allocate (see kmalloc). 604 */ 605 static inline void *kzalloc(size_t size, gfp_t flags) 606 { 607 return kmalloc(size, flags | __GFP_ZERO); 608 } 609 610 /** 611 * kzalloc_node - allocate zeroed memory from a particular memory node. 612 * @size: how many bytes of memory are required. 613 * @flags: the type of memory to allocate (see kmalloc). 614 * @node: memory node from which to allocate 615 */ 616 static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 617 { 618 return kmalloc_node(size, flags | __GFP_ZERO, node); 619 } 620 621 unsigned int kmem_cache_size(struct kmem_cache *s); 622 void __init kmem_cache_init_late(void); 623 624 #endif /* _LINUX_SLAB_H */ 625