xref: /linux-6.15/include/linux/slab.h (revision 129ab0d2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 ([email protected]).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 #include <linux/percpu-refcount.h>
20 
21 
22 /*
23  * Flags to pass to kmem_cache_create().
24  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25  */
26 /* DEBUG: Perform (expensive) checks on alloc/free */
27 #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
28 /* DEBUG: Red zone objs in a cache */
29 #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
30 /* DEBUG: Poison objects */
31 #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
32 /* Align objs on cache lines */
33 #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
34 /* Use GFP_DMA memory */
35 #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
36 /* Use GFP_DMA32 memory */
37 #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
38 /* DEBUG: Store the last owner for bug hunting */
39 #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
40 /* Panic if kmem_cache_create() fails */
41 #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
42 /*
43  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
44  *
45  * This delays freeing the SLAB page by a grace period, it does _NOT_
46  * delay object freeing. This means that if you do kmem_cache_free()
47  * that memory location is free to be reused at any time. Thus it may
48  * be possible to see another object there in the same RCU grace period.
49  *
50  * This feature only ensures the memory location backing the object
51  * stays valid, the trick to using this is relying on an independent
52  * object validation pass. Something like:
53  *
54  *  rcu_read_lock()
55  * again:
56  *  obj = lockless_lookup(key);
57  *  if (obj) {
58  *    if (!try_get_ref(obj)) // might fail for free objects
59  *      goto again;
60  *
61  *    if (obj->key != key) { // not the object we expected
62  *      put_ref(obj);
63  *      goto again;
64  *    }
65  *  }
66  *  rcu_read_unlock();
67  *
68  * This is useful if we need to approach a kernel structure obliquely,
69  * from its address obtained without the usual locking. We can lock
70  * the structure to stabilize it and check it's still at the given address,
71  * only if we can be sure that the memory has not been meanwhile reused
72  * for some other kind of object (which our subsystem's lock might corrupt).
73  *
74  * rcu_read_lock before reading the address, then rcu_read_unlock after
75  * taking the spinlock within the structure expected at that address.
76  *
77  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
78  */
79 /* Defer freeing slabs to RCU */
80 #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
81 /* Spread some memory over cpuset */
82 #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
83 /* Trace allocations and frees */
84 #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
85 
86 /* Flag to prevent checks on free */
87 #ifdef CONFIG_DEBUG_OBJECTS
88 # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
89 #else
90 # define SLAB_DEBUG_OBJECTS	0
91 #endif
92 
93 /* Avoid kmemleak tracing */
94 #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
95 
96 /* Fault injection mark */
97 #ifdef CONFIG_FAILSLAB
98 # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
99 #else
100 # define SLAB_FAILSLAB		0
101 #endif
102 /* Account to memcg */
103 #ifdef CONFIG_MEMCG_KMEM
104 # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
105 #else
106 # define SLAB_ACCOUNT		0
107 #endif
108 
109 #ifdef CONFIG_KASAN
110 #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
111 #else
112 #define SLAB_KASAN		0
113 #endif
114 
115 /* The following flags affect the page allocator grouping pages by mobility */
116 /* Objects are reclaimable */
117 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
118 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
119 
120 /* Slab deactivation flag */
121 #define SLAB_DEACTIVATED	((slab_flags_t __force)0x10000000U)
122 
123 /*
124  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
125  *
126  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
127  *
128  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
129  * Both make kfree a no-op.
130  */
131 #define ZERO_SIZE_PTR ((void *)16)
132 
133 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
134 				(unsigned long)ZERO_SIZE_PTR)
135 
136 #include <linux/kasan.h>
137 
138 struct mem_cgroup;
139 /*
140  * struct kmem_cache related prototypes
141  */
142 void __init kmem_cache_init(void);
143 bool slab_is_available(void);
144 
145 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
146 			unsigned int align, slab_flags_t flags,
147 			void (*ctor)(void *));
148 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
149 			unsigned int size, unsigned int align,
150 			slab_flags_t flags,
151 			unsigned int useroffset, unsigned int usersize,
152 			void (*ctor)(void *));
153 void kmem_cache_destroy(struct kmem_cache *s);
154 int kmem_cache_shrink(struct kmem_cache *s);
155 
156 /*
157  * Please use this macro to create slab caches. Simply specify the
158  * name of the structure and maybe some flags that are listed above.
159  *
160  * The alignment of the struct determines object alignment. If you
161  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
162  * then the objects will be properly aligned in SMP configurations.
163  */
164 #define KMEM_CACHE(__struct, __flags)					\
165 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
166 			__alignof__(struct __struct), (__flags), NULL)
167 
168 /*
169  * To whitelist a single field for copying to/from usercopy, use this
170  * macro instead for KMEM_CACHE() above.
171  */
172 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
173 		kmem_cache_create_usercopy(#__struct,			\
174 			sizeof(struct __struct),			\
175 			__alignof__(struct __struct), (__flags),	\
176 			offsetof(struct __struct, __field),		\
177 			sizeof_field(struct __struct, __field), NULL)
178 
179 /*
180  * Common kmalloc functions provided by all allocators
181  */
182 void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __alloc_size(2);
183 void kfree(const void *objp);
184 void kfree_sensitive(const void *objp);
185 size_t __ksize(const void *objp);
186 size_t ksize(const void *objp);
187 #ifdef CONFIG_PRINTK
188 bool kmem_valid_obj(void *object);
189 void kmem_dump_obj(void *object);
190 #endif
191 
192 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
193 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
194 			bool to_user);
195 #else
196 static inline void __check_heap_object(const void *ptr, unsigned long n,
197 				       struct page *page, bool to_user) { }
198 #endif
199 
200 /*
201  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
202  * alignment larger than the alignment of a 64-bit integer.
203  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
204  */
205 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
206 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
207 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
208 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
209 #else
210 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
211 #endif
212 
213 /*
214  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
215  * Intended for arches that get misalignment faults even for 64 bit integer
216  * aligned buffers.
217  */
218 #ifndef ARCH_SLAB_MINALIGN
219 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
220 #endif
221 
222 /*
223  * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
224  * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
225  * aligned pointers.
226  */
227 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
228 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
229 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
230 
231 /*
232  * Kmalloc array related definitions
233  */
234 
235 #ifdef CONFIG_SLAB
236 /*
237  * The largest kmalloc size supported by the SLAB allocators is
238  * 32 megabyte (2^25) or the maximum allocatable page order if that is
239  * less than 32 MB.
240  *
241  * WARNING: Its not easy to increase this value since the allocators have
242  * to do various tricks to work around compiler limitations in order to
243  * ensure proper constant folding.
244  */
245 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
246 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
247 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
248 #ifndef KMALLOC_SHIFT_LOW
249 #define KMALLOC_SHIFT_LOW	5
250 #endif
251 #endif
252 
253 #ifdef CONFIG_SLUB
254 /*
255  * SLUB directly allocates requests fitting in to an order-1 page
256  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
257  */
258 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
259 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
260 #ifndef KMALLOC_SHIFT_LOW
261 #define KMALLOC_SHIFT_LOW	3
262 #endif
263 #endif
264 
265 #ifdef CONFIG_SLOB
266 /*
267  * SLOB passes all requests larger than one page to the page allocator.
268  * No kmalloc array is necessary since objects of different sizes can
269  * be allocated from the same page.
270  */
271 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
272 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
273 #ifndef KMALLOC_SHIFT_LOW
274 #define KMALLOC_SHIFT_LOW	3
275 #endif
276 #endif
277 
278 /* Maximum allocatable size */
279 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
280 /* Maximum size for which we actually use a slab cache */
281 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
282 /* Maximum order allocatable via the slab allocator */
283 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
284 
285 /*
286  * Kmalloc subsystem.
287  */
288 #ifndef KMALLOC_MIN_SIZE
289 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
290 #endif
291 
292 /*
293  * This restriction comes from byte sized index implementation.
294  * Page size is normally 2^12 bytes and, in this case, if we want to use
295  * byte sized index which can represent 2^8 entries, the size of the object
296  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
297  * If minimum size of kmalloc is less than 16, we use it as minimum object
298  * size and give up to use byte sized index.
299  */
300 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
301                                (KMALLOC_MIN_SIZE) : 16)
302 
303 /*
304  * Whenever changing this, take care of that kmalloc_type() and
305  * create_kmalloc_caches() still work as intended.
306  *
307  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
308  * is for accounted but unreclaimable and non-dma objects. All the other
309  * kmem caches can have both accounted and unaccounted objects.
310  */
311 enum kmalloc_cache_type {
312 	KMALLOC_NORMAL = 0,
313 #ifndef CONFIG_ZONE_DMA
314 	KMALLOC_DMA = KMALLOC_NORMAL,
315 #endif
316 #ifndef CONFIG_MEMCG_KMEM
317 	KMALLOC_CGROUP = KMALLOC_NORMAL,
318 #else
319 	KMALLOC_CGROUP,
320 #endif
321 	KMALLOC_RECLAIM,
322 #ifdef CONFIG_ZONE_DMA
323 	KMALLOC_DMA,
324 #endif
325 	NR_KMALLOC_TYPES
326 };
327 
328 #ifndef CONFIG_SLOB
329 extern struct kmem_cache *
330 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
331 
332 /*
333  * Define gfp bits that should not be set for KMALLOC_NORMAL.
334  */
335 #define KMALLOC_NOT_NORMAL_BITS					\
336 	(__GFP_RECLAIMABLE |					\
337 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
338 	(IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
339 
340 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
341 {
342 	/*
343 	 * The most common case is KMALLOC_NORMAL, so test for it
344 	 * with a single branch for all the relevant flags.
345 	 */
346 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
347 		return KMALLOC_NORMAL;
348 
349 	/*
350 	 * At least one of the flags has to be set. Their priorities in
351 	 * decreasing order are:
352 	 *  1) __GFP_DMA
353 	 *  2) __GFP_RECLAIMABLE
354 	 *  3) __GFP_ACCOUNT
355 	 */
356 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
357 		return KMALLOC_DMA;
358 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
359 		return KMALLOC_RECLAIM;
360 	else
361 		return KMALLOC_CGROUP;
362 }
363 
364 /*
365  * Figure out which kmalloc slab an allocation of a certain size
366  * belongs to.
367  * 0 = zero alloc
368  * 1 =  65 .. 96 bytes
369  * 2 = 129 .. 192 bytes
370  * n = 2^(n-1)+1 .. 2^n
371  *
372  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
373  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
374  * Callers where !size_is_constant should only be test modules, where runtime
375  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
376  */
377 static __always_inline unsigned int __kmalloc_index(size_t size,
378 						    bool size_is_constant)
379 {
380 	if (!size)
381 		return 0;
382 
383 	if (size <= KMALLOC_MIN_SIZE)
384 		return KMALLOC_SHIFT_LOW;
385 
386 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
387 		return 1;
388 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
389 		return 2;
390 	if (size <=          8) return 3;
391 	if (size <=         16) return 4;
392 	if (size <=         32) return 5;
393 	if (size <=         64) return 6;
394 	if (size <=        128) return 7;
395 	if (size <=        256) return 8;
396 	if (size <=        512) return 9;
397 	if (size <=       1024) return 10;
398 	if (size <=   2 * 1024) return 11;
399 	if (size <=   4 * 1024) return 12;
400 	if (size <=   8 * 1024) return 13;
401 	if (size <=  16 * 1024) return 14;
402 	if (size <=  32 * 1024) return 15;
403 	if (size <=  64 * 1024) return 16;
404 	if (size <= 128 * 1024) return 17;
405 	if (size <= 256 * 1024) return 18;
406 	if (size <= 512 * 1024) return 19;
407 	if (size <= 1024 * 1024) return 20;
408 	if (size <=  2 * 1024 * 1024) return 21;
409 	if (size <=  4 * 1024 * 1024) return 22;
410 	if (size <=  8 * 1024 * 1024) return 23;
411 	if (size <=  16 * 1024 * 1024) return 24;
412 	if (size <=  32 * 1024 * 1024) return 25;
413 
414 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
415 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
416 	else
417 		BUG();
418 
419 	/* Will never be reached. Needed because the compiler may complain */
420 	return -1;
421 }
422 #define kmalloc_index(s) __kmalloc_index(s, true)
423 #endif /* !CONFIG_SLOB */
424 
425 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
426 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc;
427 void kmem_cache_free(struct kmem_cache *s, void *objp);
428 
429 /*
430  * Bulk allocation and freeing operations. These are accelerated in an
431  * allocator specific way to avoid taking locks repeatedly or building
432  * metadata structures unnecessarily.
433  *
434  * Note that interrupts must be enabled when calling these functions.
435  */
436 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
437 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
438 
439 /*
440  * Caller must not use kfree_bulk() on memory not originally allocated
441  * by kmalloc(), because the SLOB allocator cannot handle this.
442  */
443 static __always_inline void kfree_bulk(size_t size, void **p)
444 {
445 	kmem_cache_free_bulk(NULL, size, p);
446 }
447 
448 #ifdef CONFIG_NUMA
449 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
450 							 __alloc_size(1);
451 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
452 									 __malloc;
453 #else
454 static __always_inline __alloc_size(1) void *__kmalloc_node(size_t size, gfp_t flags, int node)
455 {
456 	return __kmalloc(size, flags);
457 }
458 
459 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
460 {
461 	return kmem_cache_alloc(s, flags);
462 }
463 #endif
464 
465 #ifdef CONFIG_TRACING
466 extern void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
467 				   __assume_slab_alignment __alloc_size(3);
468 
469 #ifdef CONFIG_NUMA
470 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
471 					 int node, size_t size) __assume_slab_alignment
472 								__alloc_size(4);
473 #else
474 static __always_inline __alloc_size(4) void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
475 						 gfp_t gfpflags, int node, size_t size)
476 {
477 	return kmem_cache_alloc_trace(s, gfpflags, size);
478 }
479 #endif /* CONFIG_NUMA */
480 
481 #else /* CONFIG_TRACING */
482 static __always_inline __alloc_size(3) void *kmem_cache_alloc_trace(struct kmem_cache *s,
483 								    gfp_t flags, size_t size)
484 {
485 	void *ret = kmem_cache_alloc(s, flags);
486 
487 	ret = kasan_kmalloc(s, ret, size, flags);
488 	return ret;
489 }
490 
491 static __always_inline void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
492 							 int node, size_t size)
493 {
494 	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
495 
496 	ret = kasan_kmalloc(s, ret, size, gfpflags);
497 	return ret;
498 }
499 #endif /* CONFIG_TRACING */
500 
501 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment
502 									 __alloc_size(1);
503 
504 #ifdef CONFIG_TRACING
505 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
506 				__assume_page_alignment __alloc_size(1);
507 #else
508 static __always_inline __alloc_size(1) void *kmalloc_order_trace(size_t size, gfp_t flags,
509 								 unsigned int order)
510 {
511 	return kmalloc_order(size, flags, order);
512 }
513 #endif
514 
515 static __always_inline __alloc_size(1) void *kmalloc_large(size_t size, gfp_t flags)
516 {
517 	unsigned int order = get_order(size);
518 	return kmalloc_order_trace(size, flags, order);
519 }
520 
521 /**
522  * kmalloc - allocate memory
523  * @size: how many bytes of memory are required.
524  * @flags: the type of memory to allocate.
525  *
526  * kmalloc is the normal method of allocating memory
527  * for objects smaller than page size in the kernel.
528  *
529  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
530  * bytes. For @size of power of two bytes, the alignment is also guaranteed
531  * to be at least to the size.
532  *
533  * The @flags argument may be one of the GFP flags defined at
534  * include/linux/gfp.h and described at
535  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
536  *
537  * The recommended usage of the @flags is described at
538  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
539  *
540  * Below is a brief outline of the most useful GFP flags
541  *
542  * %GFP_KERNEL
543  *	Allocate normal kernel ram. May sleep.
544  *
545  * %GFP_NOWAIT
546  *	Allocation will not sleep.
547  *
548  * %GFP_ATOMIC
549  *	Allocation will not sleep.  May use emergency pools.
550  *
551  * %GFP_HIGHUSER
552  *	Allocate memory from high memory on behalf of user.
553  *
554  * Also it is possible to set different flags by OR'ing
555  * in one or more of the following additional @flags:
556  *
557  * %__GFP_HIGH
558  *	This allocation has high priority and may use emergency pools.
559  *
560  * %__GFP_NOFAIL
561  *	Indicate that this allocation is in no way allowed to fail
562  *	(think twice before using).
563  *
564  * %__GFP_NORETRY
565  *	If memory is not immediately available,
566  *	then give up at once.
567  *
568  * %__GFP_NOWARN
569  *	If allocation fails, don't issue any warnings.
570  *
571  * %__GFP_RETRY_MAYFAIL
572  *	Try really hard to succeed the allocation but fail
573  *	eventually.
574  */
575 static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
576 {
577 	if (__builtin_constant_p(size)) {
578 #ifndef CONFIG_SLOB
579 		unsigned int index;
580 #endif
581 		if (size > KMALLOC_MAX_CACHE_SIZE)
582 			return kmalloc_large(size, flags);
583 #ifndef CONFIG_SLOB
584 		index = kmalloc_index(size);
585 
586 		if (!index)
587 			return ZERO_SIZE_PTR;
588 
589 		return kmem_cache_alloc_trace(
590 				kmalloc_caches[kmalloc_type(flags)][index],
591 				flags, size);
592 #endif
593 	}
594 	return __kmalloc(size, flags);
595 }
596 
597 static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
598 {
599 #ifndef CONFIG_SLOB
600 	if (__builtin_constant_p(size) &&
601 		size <= KMALLOC_MAX_CACHE_SIZE) {
602 		unsigned int i = kmalloc_index(size);
603 
604 		if (!i)
605 			return ZERO_SIZE_PTR;
606 
607 		return kmem_cache_alloc_node_trace(
608 				kmalloc_caches[kmalloc_type(flags)][i],
609 						flags, node, size);
610 	}
611 #endif
612 	return __kmalloc_node(size, flags, node);
613 }
614 
615 /**
616  * kmalloc_array - allocate memory for an array.
617  * @n: number of elements.
618  * @size: element size.
619  * @flags: the type of memory to allocate (see kmalloc).
620  */
621 static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
622 {
623 	size_t bytes;
624 
625 	if (unlikely(check_mul_overflow(n, size, &bytes)))
626 		return NULL;
627 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
628 		return kmalloc(bytes, flags);
629 	return __kmalloc(bytes, flags);
630 }
631 
632 /**
633  * krealloc_array - reallocate memory for an array.
634  * @p: pointer to the memory chunk to reallocate
635  * @new_n: new number of elements to alloc
636  * @new_size: new size of a single member of the array
637  * @flags: the type of memory to allocate (see kmalloc)
638  */
639 static inline __alloc_size(2, 3) void * __must_check krealloc_array(void *p,
640 								    size_t new_n,
641 								    size_t new_size,
642 								    gfp_t flags)
643 {
644 	size_t bytes;
645 
646 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
647 		return NULL;
648 
649 	return krealloc(p, bytes, flags);
650 }
651 
652 /**
653  * kcalloc - allocate memory for an array. The memory is set to zero.
654  * @n: number of elements.
655  * @size: element size.
656  * @flags: the type of memory to allocate (see kmalloc).
657  */
658 static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
659 {
660 	return kmalloc_array(n, size, flags | __GFP_ZERO);
661 }
662 
663 /*
664  * kmalloc_track_caller is a special version of kmalloc that records the
665  * calling function of the routine calling it for slab leak tracking instead
666  * of just the calling function (confusing, eh?).
667  * It's useful when the call to kmalloc comes from a widely-used standard
668  * allocator where we care about the real place the memory allocation
669  * request comes from.
670  */
671 extern void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
672 				   __alloc_size(1);
673 #define kmalloc_track_caller(size, flags) \
674 	__kmalloc_track_caller(size, flags, _RET_IP_)
675 
676 static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
677 							  int node)
678 {
679 	size_t bytes;
680 
681 	if (unlikely(check_mul_overflow(n, size, &bytes)))
682 		return NULL;
683 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
684 		return kmalloc_node(bytes, flags, node);
685 	return __kmalloc_node(bytes, flags, node);
686 }
687 
688 static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
689 {
690 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
691 }
692 
693 
694 #ifdef CONFIG_NUMA
695 extern void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
696 					 unsigned long caller) __alloc_size(1);
697 #define kmalloc_node_track_caller(size, flags, node) \
698 	__kmalloc_node_track_caller(size, flags, node, \
699 			_RET_IP_)
700 
701 #else /* CONFIG_NUMA */
702 
703 #define kmalloc_node_track_caller(size, flags, node) \
704 	kmalloc_track_caller(size, flags)
705 
706 #endif /* CONFIG_NUMA */
707 
708 /*
709  * Shortcuts
710  */
711 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
712 {
713 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
714 }
715 
716 /**
717  * kzalloc - allocate memory. The memory is set to zero.
718  * @size: how many bytes of memory are required.
719  * @flags: the type of memory to allocate (see kmalloc).
720  */
721 static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
722 {
723 	return kmalloc(size, flags | __GFP_ZERO);
724 }
725 
726 /**
727  * kzalloc_node - allocate zeroed memory from a particular memory node.
728  * @size: how many bytes of memory are required.
729  * @flags: the type of memory to allocate (see kmalloc).
730  * @node: memory node from which to allocate
731  */
732 static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
733 {
734 	return kmalloc_node(size, flags | __GFP_ZERO, node);
735 }
736 
737 extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
738 static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
739 {
740 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
741 }
742 static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
743 {
744 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
745 }
746 static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
747 {
748 	return kvmalloc(size, flags | __GFP_ZERO);
749 }
750 
751 static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
752 {
753 	size_t bytes;
754 
755 	if (unlikely(check_mul_overflow(n, size, &bytes)))
756 		return NULL;
757 
758 	return kvmalloc(bytes, flags);
759 }
760 
761 static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
762 {
763 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
764 }
765 
766 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
767 		      __alloc_size(3);
768 extern void kvfree(const void *addr);
769 extern void kvfree_sensitive(const void *addr, size_t len);
770 
771 unsigned int kmem_cache_size(struct kmem_cache *s);
772 void __init kmem_cache_init_late(void);
773 
774 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
775 int slab_prepare_cpu(unsigned int cpu);
776 int slab_dead_cpu(unsigned int cpu);
777 #else
778 #define slab_prepare_cpu	NULL
779 #define slab_dead_cpu		NULL
780 #endif
781 
782 #endif	/* _LINUX_SLAB_H */
783