xref: /linux-6.15/include/linux/slab.h (revision 052d67b4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 ([email protected]).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/cache.h>
16 #include <linux/gfp.h>
17 #include <linux/overflow.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/cleanup.h>
22 #include <linux/hash.h>
23 
24 enum _slab_flag_bits {
25 	_SLAB_CONSISTENCY_CHECKS,
26 	_SLAB_RED_ZONE,
27 	_SLAB_POISON,
28 	_SLAB_KMALLOC,
29 	_SLAB_HWCACHE_ALIGN,
30 	_SLAB_CACHE_DMA,
31 	_SLAB_CACHE_DMA32,
32 	_SLAB_STORE_USER,
33 	_SLAB_PANIC,
34 	_SLAB_TYPESAFE_BY_RCU,
35 	_SLAB_TRACE,
36 #ifdef CONFIG_DEBUG_OBJECTS
37 	_SLAB_DEBUG_OBJECTS,
38 #endif
39 	_SLAB_NOLEAKTRACE,
40 	_SLAB_NO_MERGE,
41 #ifdef CONFIG_FAILSLAB
42 	_SLAB_FAILSLAB,
43 #endif
44 #ifdef CONFIG_MEMCG
45 	_SLAB_ACCOUNT,
46 #endif
47 #ifdef CONFIG_KASAN_GENERIC
48 	_SLAB_KASAN,
49 #endif
50 	_SLAB_NO_USER_FLAGS,
51 #ifdef CONFIG_KFENCE
52 	_SLAB_SKIP_KFENCE,
53 #endif
54 #ifndef CONFIG_SLUB_TINY
55 	_SLAB_RECLAIM_ACCOUNT,
56 #endif
57 	_SLAB_OBJECT_POISON,
58 	_SLAB_CMPXCHG_DOUBLE,
59 #ifdef CONFIG_SLAB_OBJ_EXT
60 	_SLAB_NO_OBJ_EXT,
61 #endif
62 	_SLAB_FLAGS_LAST_BIT
63 };
64 
65 #define __SLAB_FLAG_BIT(nr)	((slab_flags_t __force)(1U << (nr)))
66 #define __SLAB_FLAG_UNUSED	((slab_flags_t __force)(0U))
67 
68 /*
69  * Flags to pass to kmem_cache_create().
70  * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
71  */
72 /* DEBUG: Perform (expensive) checks on alloc/free */
73 #define SLAB_CONSISTENCY_CHECKS	__SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
74 /* DEBUG: Red zone objs in a cache */
75 #define SLAB_RED_ZONE		__SLAB_FLAG_BIT(_SLAB_RED_ZONE)
76 /* DEBUG: Poison objects */
77 #define SLAB_POISON		__SLAB_FLAG_BIT(_SLAB_POISON)
78 /* Indicate a kmalloc slab */
79 #define SLAB_KMALLOC		__SLAB_FLAG_BIT(_SLAB_KMALLOC)
80 /* Align objs on cache lines */
81 #define SLAB_HWCACHE_ALIGN	__SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
82 /* Use GFP_DMA memory */
83 #define SLAB_CACHE_DMA		__SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
84 /* Use GFP_DMA32 memory */
85 #define SLAB_CACHE_DMA32	__SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
86 /* DEBUG: Store the last owner for bug hunting */
87 #define SLAB_STORE_USER		__SLAB_FLAG_BIT(_SLAB_STORE_USER)
88 /* Panic if kmem_cache_create() fails */
89 #define SLAB_PANIC		__SLAB_FLAG_BIT(_SLAB_PANIC)
90 /*
91  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
92  *
93  * This delays freeing the SLAB page by a grace period, it does _NOT_
94  * delay object freeing. This means that if you do kmem_cache_free()
95  * that memory location is free to be reused at any time. Thus it may
96  * be possible to see another object there in the same RCU grace period.
97  *
98  * This feature only ensures the memory location backing the object
99  * stays valid, the trick to using this is relying on an independent
100  * object validation pass. Something like:
101  *
102  * begin:
103  *  rcu_read_lock();
104  *  obj = lockless_lookup(key);
105  *  if (obj) {
106  *    if (!try_get_ref(obj)) // might fail for free objects
107  *      rcu_read_unlock();
108  *      goto begin;
109  *
110  *    if (obj->key != key) { // not the object we expected
111  *      put_ref(obj);
112  *      rcu_read_unlock();
113  *      goto begin;
114  *    }
115  *  }
116  *  rcu_read_unlock();
117  *
118  * This is useful if we need to approach a kernel structure obliquely,
119  * from its address obtained without the usual locking. We can lock
120  * the structure to stabilize it and check it's still at the given address,
121  * only if we can be sure that the memory has not been meanwhile reused
122  * for some other kind of object (which our subsystem's lock might corrupt).
123  *
124  * rcu_read_lock before reading the address, then rcu_read_unlock after
125  * taking the spinlock within the structure expected at that address.
126  *
127  * Note that it is not possible to acquire a lock within a structure
128  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
129  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
130  * are not zeroed before being given to the slab, which means that any
131  * locks must be initialized after each and every kmem_struct_alloc().
132  * Alternatively, make the ctor passed to kmem_cache_create() initialize
133  * the locks at page-allocation time, as is done in __i915_request_ctor(),
134  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
135  * to safely acquire those ctor-initialized locks under rcu_read_lock()
136  * protection.
137  *
138  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
139  */
140 /* Defer freeing slabs to RCU */
141 #define SLAB_TYPESAFE_BY_RCU	__SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
142 /* Trace allocations and frees */
143 #define SLAB_TRACE		__SLAB_FLAG_BIT(_SLAB_TRACE)
144 
145 /* Flag to prevent checks on free */
146 #ifdef CONFIG_DEBUG_OBJECTS
147 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
148 #else
149 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_UNUSED
150 #endif
151 
152 /* Avoid kmemleak tracing */
153 #define SLAB_NOLEAKTRACE	__SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
154 
155 /*
156  * Prevent merging with compatible kmem caches. This flag should be used
157  * cautiously. Valid use cases:
158  *
159  * - caches created for self-tests (e.g. kunit)
160  * - general caches created and used by a subsystem, only when a
161  *   (subsystem-specific) debug option is enabled
162  * - performance critical caches, should be very rare and consulted with slab
163  *   maintainers, and not used together with CONFIG_SLUB_TINY
164  */
165 #define SLAB_NO_MERGE		__SLAB_FLAG_BIT(_SLAB_NO_MERGE)
166 
167 /* Fault injection mark */
168 #ifdef CONFIG_FAILSLAB
169 # define SLAB_FAILSLAB		__SLAB_FLAG_BIT(_SLAB_FAILSLAB)
170 #else
171 # define SLAB_FAILSLAB		__SLAB_FLAG_UNUSED
172 #endif
173 /* Account to memcg */
174 #ifdef CONFIG_MEMCG
175 # define SLAB_ACCOUNT		__SLAB_FLAG_BIT(_SLAB_ACCOUNT)
176 #else
177 # define SLAB_ACCOUNT		__SLAB_FLAG_UNUSED
178 #endif
179 
180 #ifdef CONFIG_KASAN_GENERIC
181 #define SLAB_KASAN		__SLAB_FLAG_BIT(_SLAB_KASAN)
182 #else
183 #define SLAB_KASAN		__SLAB_FLAG_UNUSED
184 #endif
185 
186 /*
187  * Ignore user specified debugging flags.
188  * Intended for caches created for self-tests so they have only flags
189  * specified in the code and other flags are ignored.
190  */
191 #define SLAB_NO_USER_FLAGS	__SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
192 
193 #ifdef CONFIG_KFENCE
194 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
195 #else
196 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_UNUSED
197 #endif
198 
199 /* The following flags affect the page allocator grouping pages by mobility */
200 /* Objects are reclaimable */
201 #ifndef CONFIG_SLUB_TINY
202 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
203 #else
204 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_UNUSED
205 #endif
206 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
207 
208 /* Slab created using create_boot_cache */
209 #ifdef CONFIG_SLAB_OBJ_EXT
210 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
211 #else
212 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_UNUSED
213 #endif
214 
215 /*
216  * freeptr_t represents a SLUB freelist pointer, which might be encoded
217  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
218  */
219 typedef struct { unsigned long v; } freeptr_t;
220 
221 /*
222  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
223  *
224  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
225  *
226  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
227  * Both make kfree a no-op.
228  */
229 #define ZERO_SIZE_PTR ((void *)16)
230 
231 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
232 				(unsigned long)ZERO_SIZE_PTR)
233 
234 #include <linux/kasan.h>
235 
236 struct list_lru;
237 struct mem_cgroup;
238 /*
239  * struct kmem_cache related prototypes
240  */
241 bool slab_is_available(void);
242 
243 /**
244  * struct kmem_cache_args - Less common arguments for kmem_cache_create()
245  * @align: The required alignment for the objects.
246  * @useroffset: Usercopy region offset
247  * @usersize: Usercopy region size
248  * @freeptr_offset: Custom offset for the free pointer in RCU caches
249  * @use_freeptr_offset: Whether a @freeptr_offset is used
250  * @ctor: A constructor for the objects.
251  */
252 struct kmem_cache_args {
253 	unsigned int align;
254 	unsigned int useroffset;
255 	unsigned int usersize;
256 	unsigned int freeptr_offset;
257 	bool use_freeptr_offset;
258 	void (*ctor)(void *);
259 };
260 
261 struct kmem_cache *__kmem_cache_create_args(const char *name,
262 					    unsigned int object_size,
263 					    struct kmem_cache_args *args,
264 					    slab_flags_t flags);
265 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
266 			unsigned int align, slab_flags_t flags,
267 			void (*ctor)(void *));
268 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
269 			unsigned int size, unsigned int align,
270 			slab_flags_t flags,
271 			unsigned int useroffset, unsigned int usersize,
272 			void (*ctor)(void *));
273 struct kmem_cache *kmem_cache_create_rcu(const char *name, unsigned int size,
274 					 unsigned int freeptr_offset,
275 					 slab_flags_t flags);
276 void kmem_cache_destroy(struct kmem_cache *s);
277 int kmem_cache_shrink(struct kmem_cache *s);
278 
279 /*
280  * Please use this macro to create slab caches. Simply specify the
281  * name of the structure and maybe some flags that are listed above.
282  *
283  * The alignment of the struct determines object alignment. If you
284  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
285  * then the objects will be properly aligned in SMP configurations.
286  */
287 #define KMEM_CACHE(__struct, __flags)                                   \
288 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),    \
289 			&(struct kmem_cache_args) {			\
290 				.align	= __alignof__(struct __struct), \
291 			}, (__flags))
292 
293 /*
294  * To whitelist a single field for copying to/from usercopy, use this
295  * macro instead for KMEM_CACHE() above.
296  */
297 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
298 		kmem_cache_create_usercopy(#__struct,			\
299 			sizeof(struct __struct),			\
300 			__alignof__(struct __struct), (__flags),	\
301 			offsetof(struct __struct, __field),		\
302 			sizeof_field(struct __struct, __field), NULL)
303 
304 /*
305  * Common kmalloc functions provided by all allocators
306  */
307 void * __must_check krealloc_noprof(const void *objp, size_t new_size,
308 				    gfp_t flags) __realloc_size(2);
309 #define krealloc(...)				alloc_hooks(krealloc_noprof(__VA_ARGS__))
310 
311 void kfree(const void *objp);
312 void kfree_sensitive(const void *objp);
313 size_t __ksize(const void *objp);
314 
315 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
316 
317 /**
318  * ksize - Report actual allocation size of associated object
319  *
320  * @objp: Pointer returned from a prior kmalloc()-family allocation.
321  *
322  * This should not be used for writing beyond the originally requested
323  * allocation size. Either use krealloc() or round up the allocation size
324  * with kmalloc_size_roundup() prior to allocation. If this is used to
325  * access beyond the originally requested allocation size, UBSAN_BOUNDS
326  * and/or FORTIFY_SOURCE may trip, since they only know about the
327  * originally allocated size via the __alloc_size attribute.
328  */
329 size_t ksize(const void *objp);
330 
331 #ifdef CONFIG_PRINTK
332 bool kmem_dump_obj(void *object);
333 #else
334 static inline bool kmem_dump_obj(void *object) { return false; }
335 #endif
336 
337 /*
338  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
339  * alignment larger than the alignment of a 64-bit integer.
340  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
341  */
342 #ifdef ARCH_HAS_DMA_MINALIGN
343 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
344 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
345 #endif
346 #endif
347 
348 #ifndef ARCH_KMALLOC_MINALIGN
349 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
350 #elif ARCH_KMALLOC_MINALIGN > 8
351 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
352 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
353 #endif
354 
355 /*
356  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
357  * Intended for arches that get misalignment faults even for 64 bit integer
358  * aligned buffers.
359  */
360 #ifndef ARCH_SLAB_MINALIGN
361 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
362 #endif
363 
364 /*
365  * Arches can define this function if they want to decide the minimum slab
366  * alignment at runtime. The value returned by the function must be a power
367  * of two and >= ARCH_SLAB_MINALIGN.
368  */
369 #ifndef arch_slab_minalign
370 static inline unsigned int arch_slab_minalign(void)
371 {
372 	return ARCH_SLAB_MINALIGN;
373 }
374 #endif
375 
376 /*
377  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
378  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
379  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
380  */
381 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
382 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
383 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
384 
385 /*
386  * Kmalloc array related definitions
387  */
388 
389 /*
390  * SLUB directly allocates requests fitting in to an order-1 page
391  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
392  */
393 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
394 #define KMALLOC_SHIFT_MAX	(MAX_PAGE_ORDER + PAGE_SHIFT)
395 #ifndef KMALLOC_SHIFT_LOW
396 #define KMALLOC_SHIFT_LOW	3
397 #endif
398 
399 /* Maximum allocatable size */
400 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
401 /* Maximum size for which we actually use a slab cache */
402 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
403 /* Maximum order allocatable via the slab allocator */
404 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
405 
406 /*
407  * Kmalloc subsystem.
408  */
409 #ifndef KMALLOC_MIN_SIZE
410 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
411 #endif
412 
413 /*
414  * This restriction comes from byte sized index implementation.
415  * Page size is normally 2^12 bytes and, in this case, if we want to use
416  * byte sized index which can represent 2^8 entries, the size of the object
417  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
418  * If minimum size of kmalloc is less than 16, we use it as minimum object
419  * size and give up to use byte sized index.
420  */
421 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
422                                (KMALLOC_MIN_SIZE) : 16)
423 
424 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
425 #define RANDOM_KMALLOC_CACHES_NR	15 // # of cache copies
426 #else
427 #define RANDOM_KMALLOC_CACHES_NR	0
428 #endif
429 
430 /*
431  * Whenever changing this, take care of that kmalloc_type() and
432  * create_kmalloc_caches() still work as intended.
433  *
434  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
435  * is for accounted but unreclaimable and non-dma objects. All the other
436  * kmem caches can have both accounted and unaccounted objects.
437  */
438 enum kmalloc_cache_type {
439 	KMALLOC_NORMAL = 0,
440 #ifndef CONFIG_ZONE_DMA
441 	KMALLOC_DMA = KMALLOC_NORMAL,
442 #endif
443 #ifndef CONFIG_MEMCG
444 	KMALLOC_CGROUP = KMALLOC_NORMAL,
445 #endif
446 	KMALLOC_RANDOM_START = KMALLOC_NORMAL,
447 	KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
448 #ifdef CONFIG_SLUB_TINY
449 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
450 #else
451 	KMALLOC_RECLAIM,
452 #endif
453 #ifdef CONFIG_ZONE_DMA
454 	KMALLOC_DMA,
455 #endif
456 #ifdef CONFIG_MEMCG
457 	KMALLOC_CGROUP,
458 #endif
459 	NR_KMALLOC_TYPES
460 };
461 
462 typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
463 
464 extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
465 
466 /*
467  * Define gfp bits that should not be set for KMALLOC_NORMAL.
468  */
469 #define KMALLOC_NOT_NORMAL_BITS					\
470 	(__GFP_RECLAIMABLE |					\
471 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
472 	(IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
473 
474 extern unsigned long random_kmalloc_seed;
475 
476 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
477 {
478 	/*
479 	 * The most common case is KMALLOC_NORMAL, so test for it
480 	 * with a single branch for all the relevant flags.
481 	 */
482 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
483 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
484 		/* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
485 		return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
486 						      ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
487 #else
488 		return KMALLOC_NORMAL;
489 #endif
490 
491 	/*
492 	 * At least one of the flags has to be set. Their priorities in
493 	 * decreasing order are:
494 	 *  1) __GFP_DMA
495 	 *  2) __GFP_RECLAIMABLE
496 	 *  3) __GFP_ACCOUNT
497 	 */
498 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
499 		return KMALLOC_DMA;
500 	if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
501 		return KMALLOC_RECLAIM;
502 	else
503 		return KMALLOC_CGROUP;
504 }
505 
506 /*
507  * Figure out which kmalloc slab an allocation of a certain size
508  * belongs to.
509  * 0 = zero alloc
510  * 1 =  65 .. 96 bytes
511  * 2 = 129 .. 192 bytes
512  * n = 2^(n-1)+1 .. 2^n
513  *
514  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
515  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
516  * Callers where !size_is_constant should only be test modules, where runtime
517  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
518  */
519 static __always_inline unsigned int __kmalloc_index(size_t size,
520 						    bool size_is_constant)
521 {
522 	if (!size)
523 		return 0;
524 
525 	if (size <= KMALLOC_MIN_SIZE)
526 		return KMALLOC_SHIFT_LOW;
527 
528 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
529 		return 1;
530 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
531 		return 2;
532 	if (size <=          8) return 3;
533 	if (size <=         16) return 4;
534 	if (size <=         32) return 5;
535 	if (size <=         64) return 6;
536 	if (size <=        128) return 7;
537 	if (size <=        256) return 8;
538 	if (size <=        512) return 9;
539 	if (size <=       1024) return 10;
540 	if (size <=   2 * 1024) return 11;
541 	if (size <=   4 * 1024) return 12;
542 	if (size <=   8 * 1024) return 13;
543 	if (size <=  16 * 1024) return 14;
544 	if (size <=  32 * 1024) return 15;
545 	if (size <=  64 * 1024) return 16;
546 	if (size <= 128 * 1024) return 17;
547 	if (size <= 256 * 1024) return 18;
548 	if (size <= 512 * 1024) return 19;
549 	if (size <= 1024 * 1024) return 20;
550 	if (size <=  2 * 1024 * 1024) return 21;
551 
552 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
553 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
554 	else
555 		BUG();
556 
557 	/* Will never be reached. Needed because the compiler may complain */
558 	return -1;
559 }
560 static_assert(PAGE_SHIFT <= 20);
561 #define kmalloc_index(s) __kmalloc_index(s, true)
562 
563 #include <linux/alloc_tag.h>
564 
565 /**
566  * kmem_cache_alloc - Allocate an object
567  * @cachep: The cache to allocate from.
568  * @flags: See kmalloc().
569  *
570  * Allocate an object from this cache.
571  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
572  *
573  * Return: pointer to the new object or %NULL in case of error
574  */
575 void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
576 			      gfp_t flags) __assume_slab_alignment __malloc;
577 #define kmem_cache_alloc(...)			alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
578 
579 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
580 			    gfp_t gfpflags) __assume_slab_alignment __malloc;
581 #define kmem_cache_alloc_lru(...)	alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
582 
583 void kmem_cache_free(struct kmem_cache *s, void *objp);
584 
585 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
586 				  unsigned int useroffset, unsigned int usersize,
587 				  void (*ctor)(void *));
588 
589 /*
590  * Bulk allocation and freeing operations. These are accelerated in an
591  * allocator specific way to avoid taking locks repeatedly or building
592  * metadata structures unnecessarily.
593  *
594  * Note that interrupts must be enabled when calling these functions.
595  */
596 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
597 
598 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
599 #define kmem_cache_alloc_bulk(...)	alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
600 
601 static __always_inline void kfree_bulk(size_t size, void **p)
602 {
603 	kmem_cache_free_bulk(NULL, size, p);
604 }
605 
606 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
607 				   int node) __assume_slab_alignment __malloc;
608 #define kmem_cache_alloc_node(...)	alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
609 
610 /*
611  * These macros allow declaring a kmem_buckets * parameter alongside size, which
612  * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
613  * sites don't have to pass NULL.
614  */
615 #ifdef CONFIG_SLAB_BUCKETS
616 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size), kmem_buckets *(_b)
617 #define PASS_BUCKET_PARAMS(_size, _b)	(_size), (_b)
618 #define PASS_BUCKET_PARAM(_b)		(_b)
619 #else
620 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size)
621 #define PASS_BUCKET_PARAMS(_size, _b)	(_size)
622 #define PASS_BUCKET_PARAM(_b)		NULL
623 #endif
624 
625 /*
626  * The following functions are not to be used directly and are intended only
627  * for internal use from kmalloc() and kmalloc_node()
628  * with the exception of kunit tests
629  */
630 
631 void *__kmalloc_noprof(size_t size, gfp_t flags)
632 				__assume_kmalloc_alignment __alloc_size(1);
633 
634 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
635 				__assume_kmalloc_alignment __alloc_size(1);
636 
637 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
638 				__assume_kmalloc_alignment __alloc_size(3);
639 
640 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
641 				  int node, size_t size)
642 				__assume_kmalloc_alignment __alloc_size(4);
643 
644 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
645 				__assume_page_alignment __alloc_size(1);
646 
647 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
648 				__assume_page_alignment __alloc_size(1);
649 
650 /**
651  * kmalloc - allocate kernel memory
652  * @size: how many bytes of memory are required.
653  * @flags: describe the allocation context
654  *
655  * kmalloc is the normal method of allocating memory
656  * for objects smaller than page size in the kernel.
657  *
658  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
659  * bytes. For @size of power of two bytes, the alignment is also guaranteed
660  * to be at least to the size. For other sizes, the alignment is guaranteed to
661  * be at least the largest power-of-two divisor of @size.
662  *
663  * The @flags argument may be one of the GFP flags defined at
664  * include/linux/gfp_types.h and described at
665  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
666  *
667  * The recommended usage of the @flags is described at
668  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
669  *
670  * Below is a brief outline of the most useful GFP flags
671  *
672  * %GFP_KERNEL
673  *	Allocate normal kernel ram. May sleep.
674  *
675  * %GFP_NOWAIT
676  *	Allocation will not sleep.
677  *
678  * %GFP_ATOMIC
679  *	Allocation will not sleep.  May use emergency pools.
680  *
681  * Also it is possible to set different flags by OR'ing
682  * in one or more of the following additional @flags:
683  *
684  * %__GFP_ZERO
685  *	Zero the allocated memory before returning. Also see kzalloc().
686  *
687  * %__GFP_HIGH
688  *	This allocation has high priority and may use emergency pools.
689  *
690  * %__GFP_NOFAIL
691  *	Indicate that this allocation is in no way allowed to fail
692  *	(think twice before using).
693  *
694  * %__GFP_NORETRY
695  *	If memory is not immediately available,
696  *	then give up at once.
697  *
698  * %__GFP_NOWARN
699  *	If allocation fails, don't issue any warnings.
700  *
701  * %__GFP_RETRY_MAYFAIL
702  *	Try really hard to succeed the allocation but fail
703  *	eventually.
704  */
705 static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
706 {
707 	if (__builtin_constant_p(size) && size) {
708 		unsigned int index;
709 
710 		if (size > KMALLOC_MAX_CACHE_SIZE)
711 			return __kmalloc_large_noprof(size, flags);
712 
713 		index = kmalloc_index(size);
714 		return __kmalloc_cache_noprof(
715 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
716 				flags, size);
717 	}
718 	return __kmalloc_noprof(size, flags);
719 }
720 #define kmalloc(...)				alloc_hooks(kmalloc_noprof(__VA_ARGS__))
721 
722 #define kmem_buckets_alloc(_b, _size, _flags)	\
723 	alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
724 
725 #define kmem_buckets_alloc_track_caller(_b, _size, _flags)	\
726 	alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
727 
728 static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
729 {
730 	if (__builtin_constant_p(size) && size) {
731 		unsigned int index;
732 
733 		if (size > KMALLOC_MAX_CACHE_SIZE)
734 			return __kmalloc_large_node_noprof(size, flags, node);
735 
736 		index = kmalloc_index(size);
737 		return __kmalloc_cache_node_noprof(
738 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
739 				flags, node, size);
740 	}
741 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
742 }
743 #define kmalloc_node(...)			alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
744 
745 /**
746  * kmalloc_array - allocate memory for an array.
747  * @n: number of elements.
748  * @size: element size.
749  * @flags: the type of memory to allocate (see kmalloc).
750  */
751 static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
752 {
753 	size_t bytes;
754 
755 	if (unlikely(check_mul_overflow(n, size, &bytes)))
756 		return NULL;
757 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
758 		return kmalloc_noprof(bytes, flags);
759 	return kmalloc_noprof(bytes, flags);
760 }
761 #define kmalloc_array(...)			alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
762 
763 /**
764  * krealloc_array - reallocate memory for an array.
765  * @p: pointer to the memory chunk to reallocate
766  * @new_n: new number of elements to alloc
767  * @new_size: new size of a single member of the array
768  * @flags: the type of memory to allocate (see kmalloc)
769  */
770 static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
771 								       size_t new_n,
772 								       size_t new_size,
773 								       gfp_t flags)
774 {
775 	size_t bytes;
776 
777 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
778 		return NULL;
779 
780 	return krealloc_noprof(p, bytes, flags);
781 }
782 #define krealloc_array(...)			alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
783 
784 /**
785  * kcalloc - allocate memory for an array. The memory is set to zero.
786  * @n: number of elements.
787  * @size: element size.
788  * @flags: the type of memory to allocate (see kmalloc).
789  */
790 #define kcalloc(n, size, flags)		kmalloc_array(n, size, (flags) | __GFP_ZERO)
791 
792 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
793 					 unsigned long caller) __alloc_size(1);
794 #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
795 	__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
796 #define kmalloc_node_track_caller(...)		\
797 	alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
798 
799 /*
800  * kmalloc_track_caller is a special version of kmalloc that records the
801  * calling function of the routine calling it for slab leak tracking instead
802  * of just the calling function (confusing, eh?).
803  * It's useful when the call to kmalloc comes from a widely-used standard
804  * allocator where we care about the real place the memory allocation
805  * request comes from.
806  */
807 #define kmalloc_track_caller(...)		kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
808 
809 #define kmalloc_track_caller_noprof(...)	\
810 		kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
811 
812 static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
813 							  int node)
814 {
815 	size_t bytes;
816 
817 	if (unlikely(check_mul_overflow(n, size, &bytes)))
818 		return NULL;
819 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
820 		return kmalloc_node_noprof(bytes, flags, node);
821 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
822 }
823 #define kmalloc_array_node(...)			alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
824 
825 #define kcalloc_node(_n, _size, _flags, _node)	\
826 	kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
827 
828 /*
829  * Shortcuts
830  */
831 #define kmem_cache_zalloc(_k, _flags)		kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
832 
833 /**
834  * kzalloc - allocate memory. The memory is set to zero.
835  * @size: how many bytes of memory are required.
836  * @flags: the type of memory to allocate (see kmalloc).
837  */
838 static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
839 {
840 	return kmalloc_noprof(size, flags | __GFP_ZERO);
841 }
842 #define kzalloc(...)				alloc_hooks(kzalloc_noprof(__VA_ARGS__))
843 #define kzalloc_node(_size, _flags, _node)	kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
844 
845 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
846 #define kvmalloc_node_noprof(size, flags, node)	\
847 	__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
848 #define kvmalloc_node(...)			alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
849 
850 #define kvmalloc(_size, _flags)			kvmalloc_node(_size, _flags, NUMA_NO_NODE)
851 #define kvmalloc_noprof(_size, _flags)		kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
852 #define kvzalloc(_size, _flags)			kvmalloc(_size, (_flags)|__GFP_ZERO)
853 
854 #define kvzalloc_node(_size, _flags, _node)	kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
855 #define kmem_buckets_valloc(_b, _size, _flags)	\
856 	alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
857 
858 static inline __alloc_size(1, 2) void *
859 kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
860 {
861 	size_t bytes;
862 
863 	if (unlikely(check_mul_overflow(n, size, &bytes)))
864 		return NULL;
865 
866 	return kvmalloc_node_noprof(bytes, flags, node);
867 }
868 
869 #define kvmalloc_array_noprof(...)		kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
870 #define kvcalloc_node_noprof(_n,_s,_f,_node)	kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
871 #define kvcalloc_noprof(...)			kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
872 
873 #define kvmalloc_array(...)			alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
874 #define kvcalloc_node(...)			alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
875 #define kvcalloc(...)				alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
876 
877 extern void *kvrealloc_noprof(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
878 		      __realloc_size(3);
879 #define kvrealloc(...)				alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
880 
881 extern void kvfree(const void *addr);
882 DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
883 
884 extern void kvfree_sensitive(const void *addr, size_t len);
885 
886 unsigned int kmem_cache_size(struct kmem_cache *s);
887 
888 /**
889  * kmalloc_size_roundup - Report allocation bucket size for the given size
890  *
891  * @size: Number of bytes to round up from.
892  *
893  * This returns the number of bytes that would be available in a kmalloc()
894  * allocation of @size bytes. For example, a 126 byte request would be
895  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
896  * for the general-purpose kmalloc()-based allocations, and is not for the
897  * pre-sized kmem_cache_alloc()-based allocations.)
898  *
899  * Use this to kmalloc() the full bucket size ahead of time instead of using
900  * ksize() to query the size after an allocation.
901  */
902 size_t kmalloc_size_roundup(size_t size);
903 
904 void __init kmem_cache_init_late(void);
905 
906 #endif	/* _LINUX_SLAB_H */
907