1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 36 #include <linux/netfilter/nf_conntrack_common.h> 37 #endif 38 #include <net/net_debug.h> 39 #include <net/dropreason-core.h> 40 #include <net/netmem.h> 41 42 /** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246 /* Don't change this without changing skb_csum_unnecessary! */ 247 #define CHECKSUM_NONE 0 248 #define CHECKSUM_UNNECESSARY 1 249 #define CHECKSUM_COMPLETE 2 250 #define CHECKSUM_PARTIAL 3 251 252 /* Maximum value in skb->csum_level */ 253 #define SKB_MAX_CSUM_LEVEL 3 254 255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256 #define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259 /* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266 #define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271 /* return minimum truesize of one skb containing X bytes of data */ 272 #define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276 struct ahash_request; 277 struct net_device; 278 struct scatterlist; 279 struct pipe_inode_info; 280 struct iov_iter; 281 struct napi_struct; 282 struct bpf_prog; 283 union bpf_attr; 284 struct skb_ext; 285 struct ts_config; 286 287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288 struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 u8 sabotage_in_done:1; 298 __u16 frag_max_size; 299 int physinif; 300 301 /* always valid & non-NULL from FORWARD on, for physdev match */ 302 struct net_device *physoutdev; 303 union { 304 /* prerouting: detect dnat in orig/reply direction */ 305 __be32 ipv4_daddr; 306 struct in6_addr ipv6_daddr; 307 308 /* after prerouting + nat detected: store original source 309 * mac since neigh resolution overwrites it, only used while 310 * skb is out in neigh layer. 311 */ 312 char neigh_header[8]; 313 }; 314 }; 315 #endif 316 317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 318 /* Chain in tc_skb_ext will be used to share the tc chain with 319 * ovs recirc_id. It will be set to the current chain by tc 320 * and read by ovs to recirc_id. 321 */ 322 struct tc_skb_ext { 323 union { 324 u64 act_miss_cookie; 325 __u32 chain; 326 }; 327 __u16 mru; 328 __u16 zone; 329 u8 post_ct:1; 330 u8 post_ct_snat:1; 331 u8 post_ct_dnat:1; 332 u8 act_miss:1; /* Set if act_miss_cookie is used */ 333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 334 }; 335 #endif 336 337 struct sk_buff_head { 338 /* These two members must be first to match sk_buff. */ 339 struct_group_tagged(sk_buff_list, list, 340 struct sk_buff *next; 341 struct sk_buff *prev; 342 ); 343 344 __u32 qlen; 345 spinlock_t lock; 346 }; 347 348 struct sk_buff; 349 350 #ifndef CONFIG_MAX_SKB_FRAGS 351 # define CONFIG_MAX_SKB_FRAGS 17 352 #endif 353 354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 355 356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 357 * segment using its current segmentation instead. 358 */ 359 #define GSO_BY_FRAGS 0xFFFF 360 361 typedef struct skb_frag { 362 netmem_ref netmem; 363 unsigned int len; 364 unsigned int offset; 365 } skb_frag_t; 366 367 /** 368 * skb_frag_size() - Returns the size of a skb fragment 369 * @frag: skb fragment 370 */ 371 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 372 { 373 return frag->len; 374 } 375 376 /** 377 * skb_frag_size_set() - Sets the size of a skb fragment 378 * @frag: skb fragment 379 * @size: size of fragment 380 */ 381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 382 { 383 frag->len = size; 384 } 385 386 /** 387 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 388 * @frag: skb fragment 389 * @delta: value to add 390 */ 391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 392 { 393 frag->len += delta; 394 } 395 396 /** 397 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 398 * @frag: skb fragment 399 * @delta: value to subtract 400 */ 401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 402 { 403 frag->len -= delta; 404 } 405 406 /** 407 * skb_frag_must_loop - Test if %p is a high memory page 408 * @p: fragment's page 409 */ 410 static inline bool skb_frag_must_loop(struct page *p) 411 { 412 #if defined(CONFIG_HIGHMEM) 413 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 414 return true; 415 #endif 416 return false; 417 } 418 419 /** 420 * skb_frag_foreach_page - loop over pages in a fragment 421 * 422 * @f: skb frag to operate on 423 * @f_off: offset from start of f->netmem 424 * @f_len: length from f_off to loop over 425 * @p: (temp var) current page 426 * @p_off: (temp var) offset from start of current page, 427 * non-zero only on first page. 428 * @p_len: (temp var) length in current page, 429 * < PAGE_SIZE only on first and last page. 430 * @copied: (temp var) length so far, excluding current p_len. 431 * 432 * A fragment can hold a compound page, in which case per-page 433 * operations, notably kmap_atomic, must be called for each 434 * regular page. 435 */ 436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 437 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 438 p_off = (f_off) & (PAGE_SIZE - 1), \ 439 p_len = skb_frag_must_loop(p) ? \ 440 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 441 copied = 0; \ 442 copied < f_len; \ 443 copied += p_len, p++, p_off = 0, \ 444 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 445 446 /** 447 * struct skb_shared_hwtstamps - hardware time stamps 448 * @hwtstamp: hardware time stamp transformed into duration 449 * since arbitrary point in time 450 * @netdev_data: address/cookie of network device driver used as 451 * reference to actual hardware time stamp 452 * 453 * Software time stamps generated by ktime_get_real() are stored in 454 * skb->tstamp. 455 * 456 * hwtstamps can only be compared against other hwtstamps from 457 * the same device. 458 * 459 * This structure is attached to packets as part of the 460 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 461 */ 462 struct skb_shared_hwtstamps { 463 union { 464 ktime_t hwtstamp; 465 void *netdev_data; 466 }; 467 }; 468 469 /* Definitions for tx_flags in struct skb_shared_info */ 470 enum { 471 /* generate hardware time stamp */ 472 SKBTX_HW_TSTAMP = 1 << 0, 473 474 /* generate software time stamp when queueing packet to NIC */ 475 SKBTX_SW_TSTAMP = 1 << 1, 476 477 /* device driver is going to provide hardware time stamp */ 478 SKBTX_IN_PROGRESS = 1 << 2, 479 480 /* generate hardware time stamp based on cycles if supported */ 481 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 482 483 /* generate wifi status information (where possible) */ 484 SKBTX_WIFI_STATUS = 1 << 4, 485 486 /* determine hardware time stamp based on time or cycles */ 487 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 488 489 /* generate software time stamp when entering packet scheduling */ 490 SKBTX_SCHED_TSTAMP = 1 << 6, 491 }; 492 493 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 494 SKBTX_SCHED_TSTAMP) 495 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 496 SKBTX_HW_TSTAMP_USE_CYCLES | \ 497 SKBTX_ANY_SW_TSTAMP) 498 499 /* Definitions for flags in struct skb_shared_info */ 500 enum { 501 /* use zcopy routines */ 502 SKBFL_ZEROCOPY_ENABLE = BIT(0), 503 504 /* This indicates at least one fragment might be overwritten 505 * (as in vmsplice(), sendfile() ...) 506 * If we need to compute a TX checksum, we'll need to copy 507 * all frags to avoid possible bad checksum 508 */ 509 SKBFL_SHARED_FRAG = BIT(1), 510 511 /* segment contains only zerocopy data and should not be 512 * charged to the kernel memory. 513 */ 514 SKBFL_PURE_ZEROCOPY = BIT(2), 515 516 SKBFL_DONT_ORPHAN = BIT(3), 517 518 /* page references are managed by the ubuf_info, so it's safe to 519 * use frags only up until ubuf_info is released 520 */ 521 SKBFL_MANAGED_FRAG_REFS = BIT(4), 522 }; 523 524 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 525 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 526 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 527 528 struct ubuf_info_ops { 529 void (*complete)(struct sk_buff *, struct ubuf_info *, 530 bool zerocopy_success); 531 /* has to be compatible with skb_zcopy_set() */ 532 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); 533 }; 534 535 /* 536 * The callback notifies userspace to release buffers when skb DMA is done in 537 * lower device, the skb last reference should be 0 when calling this. 538 * The zerocopy_success argument is true if zero copy transmit occurred, 539 * false on data copy or out of memory error caused by data copy attempt. 540 * The ctx field is used to track device context. 541 * The desc field is used to track userspace buffer index. 542 */ 543 struct ubuf_info { 544 const struct ubuf_info_ops *ops; 545 refcount_t refcnt; 546 u8 flags; 547 }; 548 549 struct ubuf_info_msgzc { 550 struct ubuf_info ubuf; 551 552 union { 553 struct { 554 unsigned long desc; 555 void *ctx; 556 }; 557 struct { 558 u32 id; 559 u16 len; 560 u16 zerocopy:1; 561 u32 bytelen; 562 }; 563 }; 564 565 struct mmpin { 566 struct user_struct *user; 567 unsigned int num_pg; 568 } mmp; 569 }; 570 571 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 572 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 573 ubuf) 574 575 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 576 void mm_unaccount_pinned_pages(struct mmpin *mmp); 577 578 /* Preserve some data across TX submission and completion. 579 * 580 * Note, this state is stored in the driver. Extending the layout 581 * might need some special care. 582 */ 583 struct xsk_tx_metadata_compl { 584 __u64 *tx_timestamp; 585 }; 586 587 /* This data is invariant across clones and lives at 588 * the end of the header data, ie. at skb->end. 589 */ 590 struct skb_shared_info { 591 __u8 flags; 592 __u8 meta_len; 593 __u8 nr_frags; 594 __u8 tx_flags; 595 unsigned short gso_size; 596 /* Warning: this field is not always filled in (UFO)! */ 597 unsigned short gso_segs; 598 struct sk_buff *frag_list; 599 union { 600 struct skb_shared_hwtstamps hwtstamps; 601 struct xsk_tx_metadata_compl xsk_meta; 602 }; 603 unsigned int gso_type; 604 u32 tskey; 605 606 /* 607 * Warning : all fields before dataref are cleared in __alloc_skb() 608 */ 609 atomic_t dataref; 610 unsigned int xdp_frags_size; 611 612 /* Intermediate layers must ensure that destructor_arg 613 * remains valid until skb destructor */ 614 void * destructor_arg; 615 616 /* must be last field, see pskb_expand_head() */ 617 skb_frag_t frags[MAX_SKB_FRAGS]; 618 }; 619 620 /** 621 * DOC: dataref and headerless skbs 622 * 623 * Transport layers send out clones of payload skbs they hold for 624 * retransmissions. To allow lower layers of the stack to prepend their headers 625 * we split &skb_shared_info.dataref into two halves. 626 * The lower 16 bits count the overall number of references. 627 * The higher 16 bits indicate how many of the references are payload-only. 628 * skb_header_cloned() checks if skb is allowed to add / write the headers. 629 * 630 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 631 * (via __skb_header_release()). Any clone created from marked skb will get 632 * &sk_buff.hdr_len populated with the available headroom. 633 * If there's the only clone in existence it's able to modify the headroom 634 * at will. The sequence of calls inside the transport layer is:: 635 * 636 * <alloc skb> 637 * skb_reserve() 638 * __skb_header_release() 639 * skb_clone() 640 * // send the clone down the stack 641 * 642 * This is not a very generic construct and it depends on the transport layers 643 * doing the right thing. In practice there's usually only one payload-only skb. 644 * Having multiple payload-only skbs with different lengths of hdr_len is not 645 * possible. The payload-only skbs should never leave their owner. 646 */ 647 #define SKB_DATAREF_SHIFT 16 648 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 649 650 651 enum { 652 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 653 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 654 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 655 }; 656 657 enum { 658 SKB_GSO_TCPV4 = 1 << 0, 659 660 /* This indicates the skb is from an untrusted source. */ 661 SKB_GSO_DODGY = 1 << 1, 662 663 /* This indicates the tcp segment has CWR set. */ 664 SKB_GSO_TCP_ECN = 1 << 2, 665 666 SKB_GSO_TCP_FIXEDID = 1 << 3, 667 668 SKB_GSO_TCPV6 = 1 << 4, 669 670 SKB_GSO_FCOE = 1 << 5, 671 672 SKB_GSO_GRE = 1 << 6, 673 674 SKB_GSO_GRE_CSUM = 1 << 7, 675 676 SKB_GSO_IPXIP4 = 1 << 8, 677 678 SKB_GSO_IPXIP6 = 1 << 9, 679 680 SKB_GSO_UDP_TUNNEL = 1 << 10, 681 682 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 683 684 SKB_GSO_PARTIAL = 1 << 12, 685 686 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 687 688 SKB_GSO_SCTP = 1 << 14, 689 690 SKB_GSO_ESP = 1 << 15, 691 692 SKB_GSO_UDP = 1 << 16, 693 694 SKB_GSO_UDP_L4 = 1 << 17, 695 696 SKB_GSO_FRAGLIST = 1 << 18, 697 }; 698 699 #if BITS_PER_LONG > 32 700 #define NET_SKBUFF_DATA_USES_OFFSET 1 701 #endif 702 703 #ifdef NET_SKBUFF_DATA_USES_OFFSET 704 typedef unsigned int sk_buff_data_t; 705 #else 706 typedef unsigned char *sk_buff_data_t; 707 #endif 708 709 enum skb_tstamp_type { 710 SKB_CLOCK_REALTIME, 711 SKB_CLOCK_MONOTONIC, 712 SKB_CLOCK_TAI, 713 __SKB_CLOCK_MAX = SKB_CLOCK_TAI, 714 }; 715 716 /** 717 * DOC: Basic sk_buff geometry 718 * 719 * struct sk_buff itself is a metadata structure and does not hold any packet 720 * data. All the data is held in associated buffers. 721 * 722 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 723 * into two parts: 724 * 725 * - data buffer, containing headers and sometimes payload; 726 * this is the part of the skb operated on by the common helpers 727 * such as skb_put() or skb_pull(); 728 * - shared info (struct skb_shared_info) which holds an array of pointers 729 * to read-only data in the (page, offset, length) format. 730 * 731 * Optionally &skb_shared_info.frag_list may point to another skb. 732 * 733 * Basic diagram may look like this:: 734 * 735 * --------------- 736 * | sk_buff | 737 * --------------- 738 * ,--------------------------- + head 739 * / ,----------------- + data 740 * / / ,----------- + tail 741 * | | | , + end 742 * | | | | 743 * v v v v 744 * ----------------------------------------------- 745 * | headroom | data | tailroom | skb_shared_info | 746 * ----------------------------------------------- 747 * + [page frag] 748 * + [page frag] 749 * + [page frag] 750 * + [page frag] --------- 751 * + frag_list --> | sk_buff | 752 * --------- 753 * 754 */ 755 756 /** 757 * struct sk_buff - socket buffer 758 * @next: Next buffer in list 759 * @prev: Previous buffer in list 760 * @tstamp: Time we arrived/left 761 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 762 * for retransmit timer 763 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 764 * @list: queue head 765 * @ll_node: anchor in an llist (eg socket defer_list) 766 * @sk: Socket we are owned by 767 * @dev: Device we arrived on/are leaving by 768 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 769 * @cb: Control buffer. Free for use by every layer. Put private vars here 770 * @_skb_refdst: destination entry (with norefcount bit) 771 * @len: Length of actual data 772 * @data_len: Data length 773 * @mac_len: Length of link layer header 774 * @hdr_len: writable header length of cloned skb 775 * @csum: Checksum (must include start/offset pair) 776 * @csum_start: Offset from skb->head where checksumming should start 777 * @csum_offset: Offset from csum_start where checksum should be stored 778 * @priority: Packet queueing priority 779 * @ignore_df: allow local fragmentation 780 * @cloned: Head may be cloned (check refcnt to be sure) 781 * @ip_summed: Driver fed us an IP checksum 782 * @nohdr: Payload reference only, must not modify header 783 * @pkt_type: Packet class 784 * @fclone: skbuff clone status 785 * @ipvs_property: skbuff is owned by ipvs 786 * @inner_protocol_type: whether the inner protocol is 787 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 788 * @remcsum_offload: remote checksum offload is enabled 789 * @offload_fwd_mark: Packet was L2-forwarded in hardware 790 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 791 * @tc_skip_classify: do not classify packet. set by IFB device 792 * @tc_at_ingress: used within tc_classify to distinguish in/egress 793 * @redirected: packet was redirected by packet classifier 794 * @from_ingress: packet was redirected from the ingress path 795 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 796 * @peeked: this packet has been seen already, so stats have been 797 * done for it, don't do them again 798 * @nf_trace: netfilter packet trace flag 799 * @protocol: Packet protocol from driver 800 * @destructor: Destruct function 801 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 802 * @_sk_redir: socket redirection information for skmsg 803 * @_nfct: Associated connection, if any (with nfctinfo bits) 804 * @skb_iif: ifindex of device we arrived on 805 * @tc_index: Traffic control index 806 * @hash: the packet hash 807 * @queue_mapping: Queue mapping for multiqueue devices 808 * @head_frag: skb was allocated from page fragments, 809 * not allocated by kmalloc() or vmalloc(). 810 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 811 * @pp_recycle: mark the packet for recycling instead of freeing (implies 812 * page_pool support on driver) 813 * @active_extensions: active extensions (skb_ext_id types) 814 * @ndisc_nodetype: router type (from link layer) 815 * @ooo_okay: allow the mapping of a socket to a queue to be changed 816 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 817 * ports. 818 * @sw_hash: indicates hash was computed in software stack 819 * @wifi_acked_valid: wifi_acked was set 820 * @wifi_acked: whether frame was acked on wifi or not 821 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 822 * @encapsulation: indicates the inner headers in the skbuff are valid 823 * @encap_hdr_csum: software checksum is needed 824 * @csum_valid: checksum is already valid 825 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 826 * @csum_complete_sw: checksum was completed by software 827 * @csum_level: indicates the number of consecutive checksums found in 828 * the packet minus one that have been verified as 829 * CHECKSUM_UNNECESSARY (max 3) 830 * @dst_pending_confirm: need to confirm neighbour 831 * @decrypted: Decrypted SKB 832 * @slow_gro: state present at GRO time, slower prepare step required 833 * @tstamp_type: When set, skb->tstamp has the 834 * delivery_time clock base of skb->tstamp. 835 * @napi_id: id of the NAPI struct this skb came from 836 * @sender_cpu: (aka @napi_id) source CPU in XPS 837 * @alloc_cpu: CPU which did the skb allocation. 838 * @secmark: security marking 839 * @mark: Generic packet mark 840 * @reserved_tailroom: (aka @mark) number of bytes of free space available 841 * at the tail of an sk_buff 842 * @vlan_all: vlan fields (proto & tci) 843 * @vlan_proto: vlan encapsulation protocol 844 * @vlan_tci: vlan tag control information 845 * @inner_protocol: Protocol (encapsulation) 846 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 847 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 848 * @inner_transport_header: Inner transport layer header (encapsulation) 849 * @inner_network_header: Network layer header (encapsulation) 850 * @inner_mac_header: Link layer header (encapsulation) 851 * @transport_header: Transport layer header 852 * @network_header: Network layer header 853 * @mac_header: Link layer header 854 * @kcov_handle: KCOV remote handle for remote coverage collection 855 * @tail: Tail pointer 856 * @end: End pointer 857 * @head: Head of buffer 858 * @data: Data head pointer 859 * @truesize: Buffer size 860 * @users: User count - see {datagram,tcp}.c 861 * @extensions: allocated extensions, valid if active_extensions is nonzero 862 */ 863 864 struct sk_buff { 865 union { 866 struct { 867 /* These two members must be first to match sk_buff_head. */ 868 struct sk_buff *next; 869 struct sk_buff *prev; 870 871 union { 872 struct net_device *dev; 873 /* Some protocols might use this space to store information, 874 * while device pointer would be NULL. 875 * UDP receive path is one user. 876 */ 877 unsigned long dev_scratch; 878 }; 879 }; 880 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 881 struct list_head list; 882 struct llist_node ll_node; 883 }; 884 885 struct sock *sk; 886 887 union { 888 ktime_t tstamp; 889 u64 skb_mstamp_ns; /* earliest departure time */ 890 }; 891 /* 892 * This is the control buffer. It is free to use for every 893 * layer. Please put your private variables there. If you 894 * want to keep them across layers you have to do a skb_clone() 895 * first. This is owned by whoever has the skb queued ATM. 896 */ 897 char cb[48] __aligned(8); 898 899 union { 900 struct { 901 unsigned long _skb_refdst; 902 void (*destructor)(struct sk_buff *skb); 903 }; 904 struct list_head tcp_tsorted_anchor; 905 #ifdef CONFIG_NET_SOCK_MSG 906 unsigned long _sk_redir; 907 #endif 908 }; 909 910 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 911 unsigned long _nfct; 912 #endif 913 unsigned int len, 914 data_len; 915 __u16 mac_len, 916 hdr_len; 917 918 /* Following fields are _not_ copied in __copy_skb_header() 919 * Note that queue_mapping is here mostly to fill a hole. 920 */ 921 __u16 queue_mapping; 922 923 /* if you move cloned around you also must adapt those constants */ 924 #ifdef __BIG_ENDIAN_BITFIELD 925 #define CLONED_MASK (1 << 7) 926 #else 927 #define CLONED_MASK 1 928 #endif 929 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 930 931 /* private: */ 932 __u8 __cloned_offset[0]; 933 /* public: */ 934 __u8 cloned:1, 935 nohdr:1, 936 fclone:2, 937 peeked:1, 938 head_frag:1, 939 pfmemalloc:1, 940 pp_recycle:1; /* page_pool recycle indicator */ 941 #ifdef CONFIG_SKB_EXTENSIONS 942 __u8 active_extensions; 943 #endif 944 945 /* Fields enclosed in headers group are copied 946 * using a single memcpy() in __copy_skb_header() 947 */ 948 struct_group(headers, 949 950 /* private: */ 951 __u8 __pkt_type_offset[0]; 952 /* public: */ 953 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 954 __u8 ignore_df:1; 955 __u8 dst_pending_confirm:1; 956 __u8 ip_summed:2; 957 __u8 ooo_okay:1; 958 959 /* private: */ 960 __u8 __mono_tc_offset[0]; 961 /* public: */ 962 __u8 tstamp_type:2; /* See skb_tstamp_type */ 963 #ifdef CONFIG_NET_XGRESS 964 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 965 __u8 tc_skip_classify:1; 966 #endif 967 __u8 remcsum_offload:1; 968 __u8 csum_complete_sw:1; 969 __u8 csum_level:2; 970 __u8 inner_protocol_type:1; 971 972 __u8 l4_hash:1; 973 __u8 sw_hash:1; 974 #ifdef CONFIG_WIRELESS 975 __u8 wifi_acked_valid:1; 976 __u8 wifi_acked:1; 977 #endif 978 __u8 no_fcs:1; 979 /* Indicates the inner headers are valid in the skbuff. */ 980 __u8 encapsulation:1; 981 __u8 encap_hdr_csum:1; 982 __u8 csum_valid:1; 983 #ifdef CONFIG_IPV6_NDISC_NODETYPE 984 __u8 ndisc_nodetype:2; 985 #endif 986 987 #if IS_ENABLED(CONFIG_IP_VS) 988 __u8 ipvs_property:1; 989 #endif 990 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 991 __u8 nf_trace:1; 992 #endif 993 #ifdef CONFIG_NET_SWITCHDEV 994 __u8 offload_fwd_mark:1; 995 __u8 offload_l3_fwd_mark:1; 996 #endif 997 __u8 redirected:1; 998 #ifdef CONFIG_NET_REDIRECT 999 __u8 from_ingress:1; 1000 #endif 1001 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 1002 __u8 nf_skip_egress:1; 1003 #endif 1004 #ifdef CONFIG_SKB_DECRYPTED 1005 __u8 decrypted:1; 1006 #endif 1007 __u8 slow_gro:1; 1008 #if IS_ENABLED(CONFIG_IP_SCTP) 1009 __u8 csum_not_inet:1; 1010 #endif 1011 1012 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1013 __u16 tc_index; /* traffic control index */ 1014 #endif 1015 1016 u16 alloc_cpu; 1017 1018 union { 1019 __wsum csum; 1020 struct { 1021 __u16 csum_start; 1022 __u16 csum_offset; 1023 }; 1024 }; 1025 __u32 priority; 1026 int skb_iif; 1027 __u32 hash; 1028 union { 1029 u32 vlan_all; 1030 struct { 1031 __be16 vlan_proto; 1032 __u16 vlan_tci; 1033 }; 1034 }; 1035 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1036 union { 1037 unsigned int napi_id; 1038 unsigned int sender_cpu; 1039 }; 1040 #endif 1041 #ifdef CONFIG_NETWORK_SECMARK 1042 __u32 secmark; 1043 #endif 1044 1045 union { 1046 __u32 mark; 1047 __u32 reserved_tailroom; 1048 }; 1049 1050 union { 1051 __be16 inner_protocol; 1052 __u8 inner_ipproto; 1053 }; 1054 1055 __u16 inner_transport_header; 1056 __u16 inner_network_header; 1057 __u16 inner_mac_header; 1058 1059 __be16 protocol; 1060 __u16 transport_header; 1061 __u16 network_header; 1062 __u16 mac_header; 1063 1064 #ifdef CONFIG_KCOV 1065 u64 kcov_handle; 1066 #endif 1067 1068 ); /* end headers group */ 1069 1070 /* These elements must be at the end, see alloc_skb() for details. */ 1071 sk_buff_data_t tail; 1072 sk_buff_data_t end; 1073 unsigned char *head, 1074 *data; 1075 unsigned int truesize; 1076 refcount_t users; 1077 1078 #ifdef CONFIG_SKB_EXTENSIONS 1079 /* only usable after checking ->active_extensions != 0 */ 1080 struct skb_ext *extensions; 1081 #endif 1082 }; 1083 1084 /* if you move pkt_type around you also must adapt those constants */ 1085 #ifdef __BIG_ENDIAN_BITFIELD 1086 #define PKT_TYPE_MAX (7 << 5) 1087 #else 1088 #define PKT_TYPE_MAX 7 1089 #endif 1090 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1091 1092 /* if you move tc_at_ingress or tstamp_type 1093 * around, you also must adapt these constants. 1094 */ 1095 #ifdef __BIG_ENDIAN_BITFIELD 1096 #define SKB_TSTAMP_TYPE_MASK (3 << 6) 1097 #define SKB_TSTAMP_TYPE_RSHIFT (6) 1098 #define TC_AT_INGRESS_MASK (1 << 5) 1099 #else 1100 #define SKB_TSTAMP_TYPE_MASK (3) 1101 #define TC_AT_INGRESS_MASK (1 << 2) 1102 #endif 1103 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1104 1105 #ifdef __KERNEL__ 1106 /* 1107 * Handling routines are only of interest to the kernel 1108 */ 1109 1110 #define SKB_ALLOC_FCLONE 0x01 1111 #define SKB_ALLOC_RX 0x02 1112 #define SKB_ALLOC_NAPI 0x04 1113 1114 /** 1115 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1116 * @skb: buffer 1117 */ 1118 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1119 { 1120 return unlikely(skb->pfmemalloc); 1121 } 1122 1123 /* 1124 * skb might have a dst pointer attached, refcounted or not. 1125 * _skb_refdst low order bit is set if refcount was _not_ taken 1126 */ 1127 #define SKB_DST_NOREF 1UL 1128 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1129 1130 /** 1131 * skb_dst - returns skb dst_entry 1132 * @skb: buffer 1133 * 1134 * Returns skb dst_entry, regardless of reference taken or not. 1135 */ 1136 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1137 { 1138 /* If refdst was not refcounted, check we still are in a 1139 * rcu_read_lock section 1140 */ 1141 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1142 !rcu_read_lock_held() && 1143 !rcu_read_lock_bh_held()); 1144 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1145 } 1146 1147 /** 1148 * skb_dst_set - sets skb dst 1149 * @skb: buffer 1150 * @dst: dst entry 1151 * 1152 * Sets skb dst, assuming a reference was taken on dst and should 1153 * be released by skb_dst_drop() 1154 */ 1155 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1156 { 1157 skb->slow_gro |= !!dst; 1158 skb->_skb_refdst = (unsigned long)dst; 1159 } 1160 1161 /** 1162 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1163 * @skb: buffer 1164 * @dst: dst entry 1165 * 1166 * Sets skb dst, assuming a reference was not taken on dst. 1167 * If dst entry is cached, we do not take reference and dst_release 1168 * will be avoided by refdst_drop. If dst entry is not cached, we take 1169 * reference, so that last dst_release can destroy the dst immediately. 1170 */ 1171 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1172 { 1173 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1174 skb->slow_gro |= !!dst; 1175 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1176 } 1177 1178 /** 1179 * skb_dst_is_noref - Test if skb dst isn't refcounted 1180 * @skb: buffer 1181 */ 1182 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1183 { 1184 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1185 } 1186 1187 /* For mangling skb->pkt_type from user space side from applications 1188 * such as nft, tc, etc, we only allow a conservative subset of 1189 * possible pkt_types to be set. 1190 */ 1191 static inline bool skb_pkt_type_ok(u32 ptype) 1192 { 1193 return ptype <= PACKET_OTHERHOST; 1194 } 1195 1196 /** 1197 * skb_napi_id - Returns the skb's NAPI id 1198 * @skb: buffer 1199 */ 1200 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1201 { 1202 #ifdef CONFIG_NET_RX_BUSY_POLL 1203 return skb->napi_id; 1204 #else 1205 return 0; 1206 #endif 1207 } 1208 1209 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1210 { 1211 #ifdef CONFIG_WIRELESS 1212 return skb->wifi_acked_valid; 1213 #else 1214 return 0; 1215 #endif 1216 } 1217 1218 /** 1219 * skb_unref - decrement the skb's reference count 1220 * @skb: buffer 1221 * 1222 * Returns true if we can free the skb. 1223 */ 1224 static inline bool skb_unref(struct sk_buff *skb) 1225 { 1226 if (unlikely(!skb)) 1227 return false; 1228 if (likely(refcount_read(&skb->users) == 1)) 1229 smp_rmb(); 1230 else if (likely(!refcount_dec_and_test(&skb->users))) 1231 return false; 1232 1233 return true; 1234 } 1235 1236 static inline bool skb_data_unref(const struct sk_buff *skb, 1237 struct skb_shared_info *shinfo) 1238 { 1239 int bias; 1240 1241 if (!skb->cloned) 1242 return true; 1243 1244 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1245 1246 if (atomic_read(&shinfo->dataref) == bias) 1247 smp_rmb(); 1248 else if (atomic_sub_return(bias, &shinfo->dataref)) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1255 enum skb_drop_reason reason); 1256 1257 static inline void 1258 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1259 { 1260 sk_skb_reason_drop(NULL, skb, reason); 1261 } 1262 1263 /** 1264 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1265 * @skb: buffer to free 1266 */ 1267 static inline void kfree_skb(struct sk_buff *skb) 1268 { 1269 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1270 } 1271 1272 void skb_release_head_state(struct sk_buff *skb); 1273 void kfree_skb_list_reason(struct sk_buff *segs, 1274 enum skb_drop_reason reason); 1275 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1276 void skb_tx_error(struct sk_buff *skb); 1277 1278 static inline void kfree_skb_list(struct sk_buff *segs) 1279 { 1280 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1281 } 1282 1283 #ifdef CONFIG_TRACEPOINTS 1284 void consume_skb(struct sk_buff *skb); 1285 #else 1286 static inline void consume_skb(struct sk_buff *skb) 1287 { 1288 return kfree_skb(skb); 1289 } 1290 #endif 1291 1292 void __consume_stateless_skb(struct sk_buff *skb); 1293 void __kfree_skb(struct sk_buff *skb); 1294 1295 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1296 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1297 bool *fragstolen, int *delta_truesize); 1298 1299 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1300 int node); 1301 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1302 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1303 struct sk_buff *build_skb_around(struct sk_buff *skb, 1304 void *data, unsigned int frag_size); 1305 void skb_attempt_defer_free(struct sk_buff *skb); 1306 1307 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1308 struct sk_buff *slab_build_skb(void *data); 1309 1310 /** 1311 * alloc_skb - allocate a network buffer 1312 * @size: size to allocate 1313 * @priority: allocation mask 1314 * 1315 * This function is a convenient wrapper around __alloc_skb(). 1316 */ 1317 static inline struct sk_buff *alloc_skb(unsigned int size, 1318 gfp_t priority) 1319 { 1320 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1321 } 1322 1323 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1324 unsigned long data_len, 1325 int max_page_order, 1326 int *errcode, 1327 gfp_t gfp_mask); 1328 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1329 1330 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1331 struct sk_buff_fclones { 1332 struct sk_buff skb1; 1333 1334 struct sk_buff skb2; 1335 1336 refcount_t fclone_ref; 1337 }; 1338 1339 /** 1340 * skb_fclone_busy - check if fclone is busy 1341 * @sk: socket 1342 * @skb: buffer 1343 * 1344 * Returns true if skb is a fast clone, and its clone is not freed. 1345 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1346 * so we also check that didn't happen. 1347 */ 1348 static inline bool skb_fclone_busy(const struct sock *sk, 1349 const struct sk_buff *skb) 1350 { 1351 const struct sk_buff_fclones *fclones; 1352 1353 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1354 1355 return skb->fclone == SKB_FCLONE_ORIG && 1356 refcount_read(&fclones->fclone_ref) > 1 && 1357 READ_ONCE(fclones->skb2.sk) == sk; 1358 } 1359 1360 /** 1361 * alloc_skb_fclone - allocate a network buffer from fclone cache 1362 * @size: size to allocate 1363 * @priority: allocation mask 1364 * 1365 * This function is a convenient wrapper around __alloc_skb(). 1366 */ 1367 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1368 gfp_t priority) 1369 { 1370 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1371 } 1372 1373 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1374 void skb_headers_offset_update(struct sk_buff *skb, int off); 1375 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1376 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1377 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1378 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1379 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1380 gfp_t gfp_mask, bool fclone); 1381 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1382 gfp_t gfp_mask) 1383 { 1384 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1385 } 1386 1387 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1388 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1389 unsigned int headroom); 1390 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1391 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1392 int newtailroom, gfp_t priority); 1393 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1394 int offset, int len); 1395 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1396 int offset, int len); 1397 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1398 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1399 1400 /** 1401 * skb_pad - zero pad the tail of an skb 1402 * @skb: buffer to pad 1403 * @pad: space to pad 1404 * 1405 * Ensure that a buffer is followed by a padding area that is zero 1406 * filled. Used by network drivers which may DMA or transfer data 1407 * beyond the buffer end onto the wire. 1408 * 1409 * May return error in out of memory cases. The skb is freed on error. 1410 */ 1411 static inline int skb_pad(struct sk_buff *skb, int pad) 1412 { 1413 return __skb_pad(skb, pad, true); 1414 } 1415 #define dev_kfree_skb(a) consume_skb(a) 1416 1417 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1418 int offset, size_t size, size_t max_frags); 1419 1420 struct skb_seq_state { 1421 __u32 lower_offset; 1422 __u32 upper_offset; 1423 __u32 frag_idx; 1424 __u32 stepped_offset; 1425 struct sk_buff *root_skb; 1426 struct sk_buff *cur_skb; 1427 __u8 *frag_data; 1428 __u32 frag_off; 1429 }; 1430 1431 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1432 unsigned int to, struct skb_seq_state *st); 1433 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1434 struct skb_seq_state *st); 1435 void skb_abort_seq_read(struct skb_seq_state *st); 1436 1437 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1438 unsigned int to, struct ts_config *config); 1439 1440 /* 1441 * Packet hash types specify the type of hash in skb_set_hash. 1442 * 1443 * Hash types refer to the protocol layer addresses which are used to 1444 * construct a packet's hash. The hashes are used to differentiate or identify 1445 * flows of the protocol layer for the hash type. Hash types are either 1446 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1447 * 1448 * Properties of hashes: 1449 * 1450 * 1) Two packets in different flows have different hash values 1451 * 2) Two packets in the same flow should have the same hash value 1452 * 1453 * A hash at a higher layer is considered to be more specific. A driver should 1454 * set the most specific hash possible. 1455 * 1456 * A driver cannot indicate a more specific hash than the layer at which a hash 1457 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1458 * 1459 * A driver may indicate a hash level which is less specific than the 1460 * actual layer the hash was computed on. For instance, a hash computed 1461 * at L4 may be considered an L3 hash. This should only be done if the 1462 * driver can't unambiguously determine that the HW computed the hash at 1463 * the higher layer. Note that the "should" in the second property above 1464 * permits this. 1465 */ 1466 enum pkt_hash_types { 1467 PKT_HASH_TYPE_NONE, /* Undefined type */ 1468 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1469 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1470 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1471 }; 1472 1473 static inline void skb_clear_hash(struct sk_buff *skb) 1474 { 1475 skb->hash = 0; 1476 skb->sw_hash = 0; 1477 skb->l4_hash = 0; 1478 } 1479 1480 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1481 { 1482 if (!skb->l4_hash) 1483 skb_clear_hash(skb); 1484 } 1485 1486 static inline void 1487 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1488 { 1489 skb->l4_hash = is_l4; 1490 skb->sw_hash = is_sw; 1491 skb->hash = hash; 1492 } 1493 1494 static inline void 1495 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1496 { 1497 /* Used by drivers to set hash from HW */ 1498 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1499 } 1500 1501 static inline void 1502 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1503 { 1504 __skb_set_hash(skb, hash, true, is_l4); 1505 } 1506 1507 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb); 1508 1509 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1510 { 1511 return __skb_get_hash_symmetric_net(NULL, skb); 1512 } 1513 1514 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb); 1515 u32 skb_get_poff(const struct sk_buff *skb); 1516 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1517 const struct flow_keys_basic *keys, int hlen); 1518 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1519 const void *data, int hlen_proto); 1520 1521 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1522 int thoff, u8 ip_proto) 1523 { 1524 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1525 } 1526 1527 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1528 const struct flow_dissector_key *key, 1529 unsigned int key_count); 1530 1531 struct bpf_flow_dissector; 1532 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1533 __be16 proto, int nhoff, int hlen, unsigned int flags); 1534 1535 bool __skb_flow_dissect(const struct net *net, 1536 const struct sk_buff *skb, 1537 struct flow_dissector *flow_dissector, 1538 void *target_container, const void *data, 1539 __be16 proto, int nhoff, int hlen, unsigned int flags); 1540 1541 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1542 struct flow_dissector *flow_dissector, 1543 void *target_container, unsigned int flags) 1544 { 1545 return __skb_flow_dissect(NULL, skb, flow_dissector, 1546 target_container, NULL, 0, 0, 0, flags); 1547 } 1548 1549 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1550 struct flow_keys *flow, 1551 unsigned int flags) 1552 { 1553 memset(flow, 0, sizeof(*flow)); 1554 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1555 flow, NULL, 0, 0, 0, flags); 1556 } 1557 1558 static inline bool 1559 skb_flow_dissect_flow_keys_basic(const struct net *net, 1560 const struct sk_buff *skb, 1561 struct flow_keys_basic *flow, 1562 const void *data, __be16 proto, 1563 int nhoff, int hlen, unsigned int flags) 1564 { 1565 memset(flow, 0, sizeof(*flow)); 1566 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1567 data, proto, nhoff, hlen, flags); 1568 } 1569 1570 void skb_flow_dissect_meta(const struct sk_buff *skb, 1571 struct flow_dissector *flow_dissector, 1572 void *target_container); 1573 1574 /* Gets a skb connection tracking info, ctinfo map should be a 1575 * map of mapsize to translate enum ip_conntrack_info states 1576 * to user states. 1577 */ 1578 void 1579 skb_flow_dissect_ct(const struct sk_buff *skb, 1580 struct flow_dissector *flow_dissector, 1581 void *target_container, 1582 u16 *ctinfo_map, size_t mapsize, 1583 bool post_ct, u16 zone); 1584 void 1585 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1586 struct flow_dissector *flow_dissector, 1587 void *target_container); 1588 1589 void skb_flow_dissect_hash(const struct sk_buff *skb, 1590 struct flow_dissector *flow_dissector, 1591 void *target_container); 1592 1593 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb) 1594 { 1595 if (!skb->l4_hash && !skb->sw_hash) 1596 __skb_get_hash_net(net, skb); 1597 1598 return skb->hash; 1599 } 1600 1601 static inline __u32 skb_get_hash(struct sk_buff *skb) 1602 { 1603 if (!skb->l4_hash && !skb->sw_hash) 1604 __skb_get_hash_net(NULL, skb); 1605 1606 return skb->hash; 1607 } 1608 1609 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1610 { 1611 if (!skb->l4_hash && !skb->sw_hash) { 1612 struct flow_keys keys; 1613 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1614 1615 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1616 } 1617 1618 return skb->hash; 1619 } 1620 1621 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1622 const siphash_key_t *perturb); 1623 1624 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1625 { 1626 return skb->hash; 1627 } 1628 1629 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1630 { 1631 to->hash = from->hash; 1632 to->sw_hash = from->sw_hash; 1633 to->l4_hash = from->l4_hash; 1634 }; 1635 1636 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1637 const struct sk_buff *skb2) 1638 { 1639 #ifdef CONFIG_SKB_DECRYPTED 1640 return skb2->decrypted - skb1->decrypted; 1641 #else 1642 return 0; 1643 #endif 1644 } 1645 1646 static inline bool skb_is_decrypted(const struct sk_buff *skb) 1647 { 1648 #ifdef CONFIG_SKB_DECRYPTED 1649 return skb->decrypted; 1650 #else 1651 return false; 1652 #endif 1653 } 1654 1655 static inline void skb_copy_decrypted(struct sk_buff *to, 1656 const struct sk_buff *from) 1657 { 1658 #ifdef CONFIG_SKB_DECRYPTED 1659 to->decrypted = from->decrypted; 1660 #endif 1661 } 1662 1663 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1664 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1665 { 1666 return skb->head + skb->end; 1667 } 1668 1669 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1670 { 1671 return skb->end; 1672 } 1673 1674 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1675 { 1676 skb->end = offset; 1677 } 1678 #else 1679 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1680 { 1681 return skb->end; 1682 } 1683 1684 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1685 { 1686 return skb->end - skb->head; 1687 } 1688 1689 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1690 { 1691 skb->end = skb->head + offset; 1692 } 1693 #endif 1694 1695 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; 1696 1697 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1698 struct ubuf_info *uarg); 1699 1700 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1701 1702 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1703 struct sk_buff *skb, struct iov_iter *from, 1704 size_t length); 1705 1706 int zerocopy_fill_skb_from_iter(struct sk_buff *skb, 1707 struct iov_iter *from, size_t length); 1708 1709 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1710 struct msghdr *msg, int len) 1711 { 1712 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1713 } 1714 1715 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1716 struct msghdr *msg, int len, 1717 struct ubuf_info *uarg); 1718 1719 /* Internal */ 1720 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1721 1722 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1723 { 1724 return &skb_shinfo(skb)->hwtstamps; 1725 } 1726 1727 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1728 { 1729 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1730 1731 return is_zcopy ? skb_uarg(skb) : NULL; 1732 } 1733 1734 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1735 { 1736 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1737 } 1738 1739 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1740 { 1741 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1742 } 1743 1744 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1745 const struct sk_buff *skb2) 1746 { 1747 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1748 } 1749 1750 static inline void net_zcopy_get(struct ubuf_info *uarg) 1751 { 1752 refcount_inc(&uarg->refcnt); 1753 } 1754 1755 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1756 { 1757 skb_shinfo(skb)->destructor_arg = uarg; 1758 skb_shinfo(skb)->flags |= uarg->flags; 1759 } 1760 1761 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1762 bool *have_ref) 1763 { 1764 if (skb && uarg && !skb_zcopy(skb)) { 1765 if (unlikely(have_ref && *have_ref)) 1766 *have_ref = false; 1767 else 1768 net_zcopy_get(uarg); 1769 skb_zcopy_init(skb, uarg); 1770 } 1771 } 1772 1773 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1774 { 1775 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1776 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1777 } 1778 1779 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1780 { 1781 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1782 } 1783 1784 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1785 { 1786 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1787 } 1788 1789 static inline void net_zcopy_put(struct ubuf_info *uarg) 1790 { 1791 if (uarg) 1792 uarg->ops->complete(NULL, uarg, true); 1793 } 1794 1795 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1796 { 1797 if (uarg) { 1798 if (uarg->ops == &msg_zerocopy_ubuf_ops) 1799 msg_zerocopy_put_abort(uarg, have_uref); 1800 else if (have_uref) 1801 net_zcopy_put(uarg); 1802 } 1803 } 1804 1805 /* Release a reference on a zerocopy structure */ 1806 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1807 { 1808 struct ubuf_info *uarg = skb_zcopy(skb); 1809 1810 if (uarg) { 1811 if (!skb_zcopy_is_nouarg(skb)) 1812 uarg->ops->complete(skb, uarg, zerocopy_success); 1813 1814 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1815 } 1816 } 1817 1818 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1819 1820 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1821 { 1822 if (unlikely(skb_zcopy_managed(skb))) 1823 __skb_zcopy_downgrade_managed(skb); 1824 } 1825 1826 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1827 { 1828 skb->next = NULL; 1829 } 1830 1831 static inline void skb_poison_list(struct sk_buff *skb) 1832 { 1833 #ifdef CONFIG_DEBUG_NET 1834 skb->next = SKB_LIST_POISON_NEXT; 1835 #endif 1836 } 1837 1838 /* Iterate through singly-linked GSO fragments of an skb. */ 1839 #define skb_list_walk_safe(first, skb, next_skb) \ 1840 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1841 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1842 1843 static inline void skb_list_del_init(struct sk_buff *skb) 1844 { 1845 __list_del_entry(&skb->list); 1846 skb_mark_not_on_list(skb); 1847 } 1848 1849 /** 1850 * skb_queue_empty - check if a queue is empty 1851 * @list: queue head 1852 * 1853 * Returns true if the queue is empty, false otherwise. 1854 */ 1855 static inline int skb_queue_empty(const struct sk_buff_head *list) 1856 { 1857 return list->next == (const struct sk_buff *) list; 1858 } 1859 1860 /** 1861 * skb_queue_empty_lockless - check if a queue is empty 1862 * @list: queue head 1863 * 1864 * Returns true if the queue is empty, false otherwise. 1865 * This variant can be used in lockless contexts. 1866 */ 1867 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1868 { 1869 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1870 } 1871 1872 1873 /** 1874 * skb_queue_is_last - check if skb is the last entry in the queue 1875 * @list: queue head 1876 * @skb: buffer 1877 * 1878 * Returns true if @skb is the last buffer on the list. 1879 */ 1880 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1881 const struct sk_buff *skb) 1882 { 1883 return skb->next == (const struct sk_buff *) list; 1884 } 1885 1886 /** 1887 * skb_queue_is_first - check if skb is the first entry in the queue 1888 * @list: queue head 1889 * @skb: buffer 1890 * 1891 * Returns true if @skb is the first buffer on the list. 1892 */ 1893 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1894 const struct sk_buff *skb) 1895 { 1896 return skb->prev == (const struct sk_buff *) list; 1897 } 1898 1899 /** 1900 * skb_queue_next - return the next packet in the queue 1901 * @list: queue head 1902 * @skb: current buffer 1903 * 1904 * Return the next packet in @list after @skb. It is only valid to 1905 * call this if skb_queue_is_last() evaluates to false. 1906 */ 1907 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1908 const struct sk_buff *skb) 1909 { 1910 /* This BUG_ON may seem severe, but if we just return then we 1911 * are going to dereference garbage. 1912 */ 1913 BUG_ON(skb_queue_is_last(list, skb)); 1914 return skb->next; 1915 } 1916 1917 /** 1918 * skb_queue_prev - return the prev packet in the queue 1919 * @list: queue head 1920 * @skb: current buffer 1921 * 1922 * Return the prev packet in @list before @skb. It is only valid to 1923 * call this if skb_queue_is_first() evaluates to false. 1924 */ 1925 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1926 const struct sk_buff *skb) 1927 { 1928 /* This BUG_ON may seem severe, but if we just return then we 1929 * are going to dereference garbage. 1930 */ 1931 BUG_ON(skb_queue_is_first(list, skb)); 1932 return skb->prev; 1933 } 1934 1935 /** 1936 * skb_get - reference buffer 1937 * @skb: buffer to reference 1938 * 1939 * Makes another reference to a socket buffer and returns a pointer 1940 * to the buffer. 1941 */ 1942 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1943 { 1944 refcount_inc(&skb->users); 1945 return skb; 1946 } 1947 1948 /* 1949 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1950 */ 1951 1952 /** 1953 * skb_cloned - is the buffer a clone 1954 * @skb: buffer to check 1955 * 1956 * Returns true if the buffer was generated with skb_clone() and is 1957 * one of multiple shared copies of the buffer. Cloned buffers are 1958 * shared data so must not be written to under normal circumstances. 1959 */ 1960 static inline int skb_cloned(const struct sk_buff *skb) 1961 { 1962 return skb->cloned && 1963 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1964 } 1965 1966 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1967 { 1968 might_sleep_if(gfpflags_allow_blocking(pri)); 1969 1970 if (skb_cloned(skb)) 1971 return pskb_expand_head(skb, 0, 0, pri); 1972 1973 return 0; 1974 } 1975 1976 /* This variant of skb_unclone() makes sure skb->truesize 1977 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1978 * 1979 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1980 * when various debugging features are in place. 1981 */ 1982 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1983 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1984 { 1985 might_sleep_if(gfpflags_allow_blocking(pri)); 1986 1987 if (skb_cloned(skb)) 1988 return __skb_unclone_keeptruesize(skb, pri); 1989 return 0; 1990 } 1991 1992 /** 1993 * skb_header_cloned - is the header a clone 1994 * @skb: buffer to check 1995 * 1996 * Returns true if modifying the header part of the buffer requires 1997 * the data to be copied. 1998 */ 1999 static inline int skb_header_cloned(const struct sk_buff *skb) 2000 { 2001 int dataref; 2002 2003 if (!skb->cloned) 2004 return 0; 2005 2006 dataref = atomic_read(&skb_shinfo(skb)->dataref); 2007 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 2008 return dataref != 1; 2009 } 2010 2011 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 2012 { 2013 might_sleep_if(gfpflags_allow_blocking(pri)); 2014 2015 if (skb_header_cloned(skb)) 2016 return pskb_expand_head(skb, 0, 0, pri); 2017 2018 return 0; 2019 } 2020 2021 /** 2022 * __skb_header_release() - allow clones to use the headroom 2023 * @skb: buffer to operate on 2024 * 2025 * See "DOC: dataref and headerless skbs". 2026 */ 2027 static inline void __skb_header_release(struct sk_buff *skb) 2028 { 2029 skb->nohdr = 1; 2030 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2031 } 2032 2033 2034 /** 2035 * skb_shared - is the buffer shared 2036 * @skb: buffer to check 2037 * 2038 * Returns true if more than one person has a reference to this 2039 * buffer. 2040 */ 2041 static inline int skb_shared(const struct sk_buff *skb) 2042 { 2043 return refcount_read(&skb->users) != 1; 2044 } 2045 2046 /** 2047 * skb_share_check - check if buffer is shared and if so clone it 2048 * @skb: buffer to check 2049 * @pri: priority for memory allocation 2050 * 2051 * If the buffer is shared the buffer is cloned and the old copy 2052 * drops a reference. A new clone with a single reference is returned. 2053 * If the buffer is not shared the original buffer is returned. When 2054 * being called from interrupt status or with spinlocks held pri must 2055 * be GFP_ATOMIC. 2056 * 2057 * NULL is returned on a memory allocation failure. 2058 */ 2059 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2060 { 2061 might_sleep_if(gfpflags_allow_blocking(pri)); 2062 if (skb_shared(skb)) { 2063 struct sk_buff *nskb = skb_clone(skb, pri); 2064 2065 if (likely(nskb)) 2066 consume_skb(skb); 2067 else 2068 kfree_skb(skb); 2069 skb = nskb; 2070 } 2071 return skb; 2072 } 2073 2074 /* 2075 * Copy shared buffers into a new sk_buff. We effectively do COW on 2076 * packets to handle cases where we have a local reader and forward 2077 * and a couple of other messy ones. The normal one is tcpdumping 2078 * a packet that's being forwarded. 2079 */ 2080 2081 /** 2082 * skb_unshare - make a copy of a shared buffer 2083 * @skb: buffer to check 2084 * @pri: priority for memory allocation 2085 * 2086 * If the socket buffer is a clone then this function creates a new 2087 * copy of the data, drops a reference count on the old copy and returns 2088 * the new copy with the reference count at 1. If the buffer is not a clone 2089 * the original buffer is returned. When called with a spinlock held or 2090 * from interrupt state @pri must be %GFP_ATOMIC 2091 * 2092 * %NULL is returned on a memory allocation failure. 2093 */ 2094 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2095 gfp_t pri) 2096 { 2097 might_sleep_if(gfpflags_allow_blocking(pri)); 2098 if (skb_cloned(skb)) { 2099 struct sk_buff *nskb = skb_copy(skb, pri); 2100 2101 /* Free our shared copy */ 2102 if (likely(nskb)) 2103 consume_skb(skb); 2104 else 2105 kfree_skb(skb); 2106 skb = nskb; 2107 } 2108 return skb; 2109 } 2110 2111 /** 2112 * skb_peek - peek at the head of an &sk_buff_head 2113 * @list_: list to peek at 2114 * 2115 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2116 * be careful with this one. A peek leaves the buffer on the 2117 * list and someone else may run off with it. You must hold 2118 * the appropriate locks or have a private queue to do this. 2119 * 2120 * Returns %NULL for an empty list or a pointer to the head element. 2121 * The reference count is not incremented and the reference is therefore 2122 * volatile. Use with caution. 2123 */ 2124 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2125 { 2126 struct sk_buff *skb = list_->next; 2127 2128 if (skb == (struct sk_buff *)list_) 2129 skb = NULL; 2130 return skb; 2131 } 2132 2133 /** 2134 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2135 * @list_: list to peek at 2136 * 2137 * Like skb_peek(), but the caller knows that the list is not empty. 2138 */ 2139 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2140 { 2141 return list_->next; 2142 } 2143 2144 /** 2145 * skb_peek_next - peek skb following the given one from a queue 2146 * @skb: skb to start from 2147 * @list_: list to peek at 2148 * 2149 * Returns %NULL when the end of the list is met or a pointer to the 2150 * next element. The reference count is not incremented and the 2151 * reference is therefore volatile. Use with caution. 2152 */ 2153 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2154 const struct sk_buff_head *list_) 2155 { 2156 struct sk_buff *next = skb->next; 2157 2158 if (next == (struct sk_buff *)list_) 2159 next = NULL; 2160 return next; 2161 } 2162 2163 /** 2164 * skb_peek_tail - peek at the tail of an &sk_buff_head 2165 * @list_: list to peek at 2166 * 2167 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2168 * be careful with this one. A peek leaves the buffer on the 2169 * list and someone else may run off with it. You must hold 2170 * the appropriate locks or have a private queue to do this. 2171 * 2172 * Returns %NULL for an empty list or a pointer to the tail element. 2173 * The reference count is not incremented and the reference is therefore 2174 * volatile. Use with caution. 2175 */ 2176 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2177 { 2178 struct sk_buff *skb = READ_ONCE(list_->prev); 2179 2180 if (skb == (struct sk_buff *)list_) 2181 skb = NULL; 2182 return skb; 2183 2184 } 2185 2186 /** 2187 * skb_queue_len - get queue length 2188 * @list_: list to measure 2189 * 2190 * Return the length of an &sk_buff queue. 2191 */ 2192 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2193 { 2194 return list_->qlen; 2195 } 2196 2197 /** 2198 * skb_queue_len_lockless - get queue length 2199 * @list_: list to measure 2200 * 2201 * Return the length of an &sk_buff queue. 2202 * This variant can be used in lockless contexts. 2203 */ 2204 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2205 { 2206 return READ_ONCE(list_->qlen); 2207 } 2208 2209 /** 2210 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2211 * @list: queue to initialize 2212 * 2213 * This initializes only the list and queue length aspects of 2214 * an sk_buff_head object. This allows to initialize the list 2215 * aspects of an sk_buff_head without reinitializing things like 2216 * the spinlock. It can also be used for on-stack sk_buff_head 2217 * objects where the spinlock is known to not be used. 2218 */ 2219 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2220 { 2221 list->prev = list->next = (struct sk_buff *)list; 2222 list->qlen = 0; 2223 } 2224 2225 /* 2226 * This function creates a split out lock class for each invocation; 2227 * this is needed for now since a whole lot of users of the skb-queue 2228 * infrastructure in drivers have different locking usage (in hardirq) 2229 * than the networking core (in softirq only). In the long run either the 2230 * network layer or drivers should need annotation to consolidate the 2231 * main types of usage into 3 classes. 2232 */ 2233 static inline void skb_queue_head_init(struct sk_buff_head *list) 2234 { 2235 spin_lock_init(&list->lock); 2236 __skb_queue_head_init(list); 2237 } 2238 2239 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2240 struct lock_class_key *class) 2241 { 2242 skb_queue_head_init(list); 2243 lockdep_set_class(&list->lock, class); 2244 } 2245 2246 /* 2247 * Insert an sk_buff on a list. 2248 * 2249 * The "__skb_xxxx()" functions are the non-atomic ones that 2250 * can only be called with interrupts disabled. 2251 */ 2252 static inline void __skb_insert(struct sk_buff *newsk, 2253 struct sk_buff *prev, struct sk_buff *next, 2254 struct sk_buff_head *list) 2255 { 2256 /* See skb_queue_empty_lockless() and skb_peek_tail() 2257 * for the opposite READ_ONCE() 2258 */ 2259 WRITE_ONCE(newsk->next, next); 2260 WRITE_ONCE(newsk->prev, prev); 2261 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2262 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2263 WRITE_ONCE(list->qlen, list->qlen + 1); 2264 } 2265 2266 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2267 struct sk_buff *prev, 2268 struct sk_buff *next) 2269 { 2270 struct sk_buff *first = list->next; 2271 struct sk_buff *last = list->prev; 2272 2273 WRITE_ONCE(first->prev, prev); 2274 WRITE_ONCE(prev->next, first); 2275 2276 WRITE_ONCE(last->next, next); 2277 WRITE_ONCE(next->prev, last); 2278 } 2279 2280 /** 2281 * skb_queue_splice - join two skb lists, this is designed for stacks 2282 * @list: the new list to add 2283 * @head: the place to add it in the first list 2284 */ 2285 static inline void skb_queue_splice(const struct sk_buff_head *list, 2286 struct sk_buff_head *head) 2287 { 2288 if (!skb_queue_empty(list)) { 2289 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2290 head->qlen += list->qlen; 2291 } 2292 } 2293 2294 /** 2295 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2296 * @list: the new list to add 2297 * @head: the place to add it in the first list 2298 * 2299 * The list at @list is reinitialised 2300 */ 2301 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2302 struct sk_buff_head *head) 2303 { 2304 if (!skb_queue_empty(list)) { 2305 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2306 head->qlen += list->qlen; 2307 __skb_queue_head_init(list); 2308 } 2309 } 2310 2311 /** 2312 * skb_queue_splice_tail - join two skb lists, each list being a queue 2313 * @list: the new list to add 2314 * @head: the place to add it in the first list 2315 */ 2316 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2317 struct sk_buff_head *head) 2318 { 2319 if (!skb_queue_empty(list)) { 2320 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2321 head->qlen += list->qlen; 2322 } 2323 } 2324 2325 /** 2326 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2327 * @list: the new list to add 2328 * @head: the place to add it in the first list 2329 * 2330 * Each of the lists is a queue. 2331 * The list at @list is reinitialised 2332 */ 2333 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2334 struct sk_buff_head *head) 2335 { 2336 if (!skb_queue_empty(list)) { 2337 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2338 head->qlen += list->qlen; 2339 __skb_queue_head_init(list); 2340 } 2341 } 2342 2343 /** 2344 * __skb_queue_after - queue a buffer at the list head 2345 * @list: list to use 2346 * @prev: place after this buffer 2347 * @newsk: buffer to queue 2348 * 2349 * Queue a buffer int the middle of a list. This function takes no locks 2350 * and you must therefore hold required locks before calling it. 2351 * 2352 * A buffer cannot be placed on two lists at the same time. 2353 */ 2354 static inline void __skb_queue_after(struct sk_buff_head *list, 2355 struct sk_buff *prev, 2356 struct sk_buff *newsk) 2357 { 2358 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2359 } 2360 2361 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2362 struct sk_buff_head *list); 2363 2364 static inline void __skb_queue_before(struct sk_buff_head *list, 2365 struct sk_buff *next, 2366 struct sk_buff *newsk) 2367 { 2368 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2369 } 2370 2371 /** 2372 * __skb_queue_head - queue a buffer at the list head 2373 * @list: list to use 2374 * @newsk: buffer to queue 2375 * 2376 * Queue a buffer at the start of a list. This function takes no locks 2377 * and you must therefore hold required locks before calling it. 2378 * 2379 * A buffer cannot be placed on two lists at the same time. 2380 */ 2381 static inline void __skb_queue_head(struct sk_buff_head *list, 2382 struct sk_buff *newsk) 2383 { 2384 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2385 } 2386 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2387 2388 /** 2389 * __skb_queue_tail - queue a buffer at the list tail 2390 * @list: list to use 2391 * @newsk: buffer to queue 2392 * 2393 * Queue a buffer at the end of a list. This function takes no locks 2394 * and you must therefore hold required locks before calling it. 2395 * 2396 * A buffer cannot be placed on two lists at the same time. 2397 */ 2398 static inline void __skb_queue_tail(struct sk_buff_head *list, 2399 struct sk_buff *newsk) 2400 { 2401 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2402 } 2403 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2404 2405 /* 2406 * remove sk_buff from list. _Must_ be called atomically, and with 2407 * the list known.. 2408 */ 2409 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2410 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2411 { 2412 struct sk_buff *next, *prev; 2413 2414 WRITE_ONCE(list->qlen, list->qlen - 1); 2415 next = skb->next; 2416 prev = skb->prev; 2417 skb->next = skb->prev = NULL; 2418 WRITE_ONCE(next->prev, prev); 2419 WRITE_ONCE(prev->next, next); 2420 } 2421 2422 /** 2423 * __skb_dequeue - remove from the head of the queue 2424 * @list: list to dequeue from 2425 * 2426 * Remove the head of the list. This function does not take any locks 2427 * so must be used with appropriate locks held only. The head item is 2428 * returned or %NULL if the list is empty. 2429 */ 2430 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2431 { 2432 struct sk_buff *skb = skb_peek(list); 2433 if (skb) 2434 __skb_unlink(skb, list); 2435 return skb; 2436 } 2437 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2438 2439 /** 2440 * __skb_dequeue_tail - remove from the tail of the queue 2441 * @list: list to dequeue from 2442 * 2443 * Remove the tail of the list. This function does not take any locks 2444 * so must be used with appropriate locks held only. The tail item is 2445 * returned or %NULL if the list is empty. 2446 */ 2447 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2448 { 2449 struct sk_buff *skb = skb_peek_tail(list); 2450 if (skb) 2451 __skb_unlink(skb, list); 2452 return skb; 2453 } 2454 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2455 2456 2457 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2458 { 2459 return skb->data_len; 2460 } 2461 2462 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2463 { 2464 return skb->len - skb->data_len; 2465 } 2466 2467 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2468 { 2469 unsigned int i, len = 0; 2470 2471 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2472 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2473 return len; 2474 } 2475 2476 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2477 { 2478 return skb_headlen(skb) + __skb_pagelen(skb); 2479 } 2480 2481 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2482 netmem_ref netmem, int off, 2483 int size) 2484 { 2485 frag->netmem = netmem; 2486 frag->offset = off; 2487 skb_frag_size_set(frag, size); 2488 } 2489 2490 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2491 struct page *page, 2492 int off, int size) 2493 { 2494 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2495 } 2496 2497 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2498 int i, netmem_ref netmem, 2499 int off, int size) 2500 { 2501 skb_frag_t *frag = &shinfo->frags[i]; 2502 2503 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2504 } 2505 2506 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2507 int i, struct page *page, 2508 int off, int size) 2509 { 2510 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2511 size); 2512 } 2513 2514 /** 2515 * skb_len_add - adds a number to len fields of skb 2516 * @skb: buffer to add len to 2517 * @delta: number of bytes to add 2518 */ 2519 static inline void skb_len_add(struct sk_buff *skb, int delta) 2520 { 2521 skb->len += delta; 2522 skb->data_len += delta; 2523 skb->truesize += delta; 2524 } 2525 2526 /** 2527 * __skb_fill_netmem_desc - initialise a fragment in an skb 2528 * @skb: buffer containing fragment to be initialised 2529 * @i: fragment index to initialise 2530 * @netmem: the netmem to use for this fragment 2531 * @off: the offset to the data with @page 2532 * @size: the length of the data 2533 * 2534 * Initialises the @i'th fragment of @skb to point to &size bytes at 2535 * offset @off within @page. 2536 * 2537 * Does not take any additional reference on the fragment. 2538 */ 2539 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2540 netmem_ref netmem, int off, int size) 2541 { 2542 struct page *page = netmem_to_page(netmem); 2543 2544 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2545 2546 /* Propagate page pfmemalloc to the skb if we can. The problem is 2547 * that not all callers have unique ownership of the page but rely 2548 * on page_is_pfmemalloc doing the right thing(tm). 2549 */ 2550 page = compound_head(page); 2551 if (page_is_pfmemalloc(page)) 2552 skb->pfmemalloc = true; 2553 } 2554 2555 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2556 struct page *page, int off, int size) 2557 { 2558 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2559 } 2560 2561 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2562 netmem_ref netmem, int off, int size) 2563 { 2564 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2565 skb_shinfo(skb)->nr_frags = i + 1; 2566 } 2567 2568 /** 2569 * skb_fill_page_desc - initialise a paged fragment in an skb 2570 * @skb: buffer containing fragment to be initialised 2571 * @i: paged fragment index to initialise 2572 * @page: the page to use for this fragment 2573 * @off: the offset to the data with @page 2574 * @size: the length of the data 2575 * 2576 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2577 * @skb to point to @size bytes at offset @off within @page. In 2578 * addition updates @skb such that @i is the last fragment. 2579 * 2580 * Does not take any additional reference on the fragment. 2581 */ 2582 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2583 struct page *page, int off, int size) 2584 { 2585 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2586 } 2587 2588 /** 2589 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2590 * @skb: buffer containing fragment to be initialised 2591 * @i: paged fragment index to initialise 2592 * @page: the page to use for this fragment 2593 * @off: the offset to the data with @page 2594 * @size: the length of the data 2595 * 2596 * Variant of skb_fill_page_desc() which does not deal with 2597 * pfmemalloc, if page is not owned by us. 2598 */ 2599 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2600 struct page *page, int off, 2601 int size) 2602 { 2603 struct skb_shared_info *shinfo = skb_shinfo(skb); 2604 2605 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2606 shinfo->nr_frags = i + 1; 2607 } 2608 2609 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2610 int off, int size, unsigned int truesize); 2611 2612 static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2613 struct page *page, int off, int size, 2614 unsigned int truesize) 2615 { 2616 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2617 truesize); 2618 } 2619 2620 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2621 unsigned int truesize); 2622 2623 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2624 2625 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2626 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2627 { 2628 return skb->head + skb->tail; 2629 } 2630 2631 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2632 { 2633 skb->tail = skb->data - skb->head; 2634 } 2635 2636 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2637 { 2638 skb_reset_tail_pointer(skb); 2639 skb->tail += offset; 2640 } 2641 2642 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2643 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2644 { 2645 return skb->tail; 2646 } 2647 2648 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2649 { 2650 skb->tail = skb->data; 2651 } 2652 2653 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2654 { 2655 skb->tail = skb->data + offset; 2656 } 2657 2658 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2659 2660 static inline void skb_assert_len(struct sk_buff *skb) 2661 { 2662 #ifdef CONFIG_DEBUG_NET 2663 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2664 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2665 #endif /* CONFIG_DEBUG_NET */ 2666 } 2667 2668 /* 2669 * Add data to an sk_buff 2670 */ 2671 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2672 void *skb_put(struct sk_buff *skb, unsigned int len); 2673 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2674 { 2675 void *tmp = skb_tail_pointer(skb); 2676 SKB_LINEAR_ASSERT(skb); 2677 skb->tail += len; 2678 skb->len += len; 2679 return tmp; 2680 } 2681 2682 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2683 { 2684 void *tmp = __skb_put(skb, len); 2685 2686 memset(tmp, 0, len); 2687 return tmp; 2688 } 2689 2690 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2691 unsigned int len) 2692 { 2693 void *tmp = __skb_put(skb, len); 2694 2695 memcpy(tmp, data, len); 2696 return tmp; 2697 } 2698 2699 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2700 { 2701 *(u8 *)__skb_put(skb, 1) = val; 2702 } 2703 2704 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2705 { 2706 void *tmp = skb_put(skb, len); 2707 2708 memset(tmp, 0, len); 2709 2710 return tmp; 2711 } 2712 2713 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2714 unsigned int len) 2715 { 2716 void *tmp = skb_put(skb, len); 2717 2718 memcpy(tmp, data, len); 2719 2720 return tmp; 2721 } 2722 2723 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2724 { 2725 *(u8 *)skb_put(skb, 1) = val; 2726 } 2727 2728 void *skb_push(struct sk_buff *skb, unsigned int len); 2729 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2730 { 2731 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2732 2733 skb->data -= len; 2734 skb->len += len; 2735 return skb->data; 2736 } 2737 2738 void *skb_pull(struct sk_buff *skb, unsigned int len); 2739 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2740 { 2741 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2742 2743 skb->len -= len; 2744 if (unlikely(skb->len < skb->data_len)) { 2745 #if defined(CONFIG_DEBUG_NET) 2746 skb->len += len; 2747 pr_err("__skb_pull(len=%u)\n", len); 2748 skb_dump(KERN_ERR, skb, false); 2749 #endif 2750 BUG(); 2751 } 2752 return skb->data += len; 2753 } 2754 2755 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2756 { 2757 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2758 } 2759 2760 void *skb_pull_data(struct sk_buff *skb, size_t len); 2761 2762 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2763 2764 static inline enum skb_drop_reason 2765 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2766 { 2767 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2768 2769 if (likely(len <= skb_headlen(skb))) 2770 return SKB_NOT_DROPPED_YET; 2771 2772 if (unlikely(len > skb->len)) 2773 return SKB_DROP_REASON_PKT_TOO_SMALL; 2774 2775 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2776 return SKB_DROP_REASON_NOMEM; 2777 2778 return SKB_NOT_DROPPED_YET; 2779 } 2780 2781 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2782 { 2783 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2784 } 2785 2786 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2787 { 2788 if (!pskb_may_pull(skb, len)) 2789 return NULL; 2790 2791 skb->len -= len; 2792 return skb->data += len; 2793 } 2794 2795 void skb_condense(struct sk_buff *skb); 2796 2797 /** 2798 * skb_headroom - bytes at buffer head 2799 * @skb: buffer to check 2800 * 2801 * Return the number of bytes of free space at the head of an &sk_buff. 2802 */ 2803 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2804 { 2805 return skb->data - skb->head; 2806 } 2807 2808 /** 2809 * skb_tailroom - bytes at buffer end 2810 * @skb: buffer to check 2811 * 2812 * Return the number of bytes of free space at the tail of an sk_buff 2813 */ 2814 static inline int skb_tailroom(const struct sk_buff *skb) 2815 { 2816 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2817 } 2818 2819 /** 2820 * skb_availroom - bytes at buffer end 2821 * @skb: buffer to check 2822 * 2823 * Return the number of bytes of free space at the tail of an sk_buff 2824 * allocated by sk_stream_alloc() 2825 */ 2826 static inline int skb_availroom(const struct sk_buff *skb) 2827 { 2828 if (skb_is_nonlinear(skb)) 2829 return 0; 2830 2831 return skb->end - skb->tail - skb->reserved_tailroom; 2832 } 2833 2834 /** 2835 * skb_reserve - adjust headroom 2836 * @skb: buffer to alter 2837 * @len: bytes to move 2838 * 2839 * Increase the headroom of an empty &sk_buff by reducing the tail 2840 * room. This is only allowed for an empty buffer. 2841 */ 2842 static inline void skb_reserve(struct sk_buff *skb, int len) 2843 { 2844 skb->data += len; 2845 skb->tail += len; 2846 } 2847 2848 /** 2849 * skb_tailroom_reserve - adjust reserved_tailroom 2850 * @skb: buffer to alter 2851 * @mtu: maximum amount of headlen permitted 2852 * @needed_tailroom: minimum amount of reserved_tailroom 2853 * 2854 * Set reserved_tailroom so that headlen can be as large as possible but 2855 * not larger than mtu and tailroom cannot be smaller than 2856 * needed_tailroom. 2857 * The required headroom should already have been reserved before using 2858 * this function. 2859 */ 2860 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2861 unsigned int needed_tailroom) 2862 { 2863 SKB_LINEAR_ASSERT(skb); 2864 if (mtu < skb_tailroom(skb) - needed_tailroom) 2865 /* use at most mtu */ 2866 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2867 else 2868 /* use up to all available space */ 2869 skb->reserved_tailroom = needed_tailroom; 2870 } 2871 2872 #define ENCAP_TYPE_ETHER 0 2873 #define ENCAP_TYPE_IPPROTO 1 2874 2875 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2876 __be16 protocol) 2877 { 2878 skb->inner_protocol = protocol; 2879 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2880 } 2881 2882 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2883 __u8 ipproto) 2884 { 2885 skb->inner_ipproto = ipproto; 2886 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2887 } 2888 2889 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2890 { 2891 skb->inner_mac_header = skb->mac_header; 2892 skb->inner_network_header = skb->network_header; 2893 skb->inner_transport_header = skb->transport_header; 2894 } 2895 2896 static inline void skb_reset_mac_len(struct sk_buff *skb) 2897 { 2898 skb->mac_len = skb->network_header - skb->mac_header; 2899 } 2900 2901 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2902 *skb) 2903 { 2904 return skb->head + skb->inner_transport_header; 2905 } 2906 2907 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2908 { 2909 return skb_inner_transport_header(skb) - skb->data; 2910 } 2911 2912 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2913 { 2914 skb->inner_transport_header = skb->data - skb->head; 2915 } 2916 2917 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2918 const int offset) 2919 { 2920 skb_reset_inner_transport_header(skb); 2921 skb->inner_transport_header += offset; 2922 } 2923 2924 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2925 { 2926 return skb->head + skb->inner_network_header; 2927 } 2928 2929 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2930 { 2931 skb->inner_network_header = skb->data - skb->head; 2932 } 2933 2934 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2935 const int offset) 2936 { 2937 skb_reset_inner_network_header(skb); 2938 skb->inner_network_header += offset; 2939 } 2940 2941 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2942 { 2943 return skb->inner_network_header > 0; 2944 } 2945 2946 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2947 { 2948 return skb->head + skb->inner_mac_header; 2949 } 2950 2951 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2952 { 2953 skb->inner_mac_header = skb->data - skb->head; 2954 } 2955 2956 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2957 const int offset) 2958 { 2959 skb_reset_inner_mac_header(skb); 2960 skb->inner_mac_header += offset; 2961 } 2962 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2963 { 2964 return skb->transport_header != (typeof(skb->transport_header))~0U; 2965 } 2966 2967 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2968 { 2969 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2970 return skb->head + skb->transport_header; 2971 } 2972 2973 static inline void skb_reset_transport_header(struct sk_buff *skb) 2974 { 2975 skb->transport_header = skb->data - skb->head; 2976 } 2977 2978 static inline void skb_set_transport_header(struct sk_buff *skb, 2979 const int offset) 2980 { 2981 skb_reset_transport_header(skb); 2982 skb->transport_header += offset; 2983 } 2984 2985 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2986 { 2987 return skb->head + skb->network_header; 2988 } 2989 2990 static inline void skb_reset_network_header(struct sk_buff *skb) 2991 { 2992 skb->network_header = skb->data - skb->head; 2993 } 2994 2995 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2996 { 2997 skb_reset_network_header(skb); 2998 skb->network_header += offset; 2999 } 3000 3001 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 3002 { 3003 return skb->mac_header != (typeof(skb->mac_header))~0U; 3004 } 3005 3006 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 3007 { 3008 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3009 return skb->head + skb->mac_header; 3010 } 3011 3012 static inline int skb_mac_offset(const struct sk_buff *skb) 3013 { 3014 return skb_mac_header(skb) - skb->data; 3015 } 3016 3017 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 3018 { 3019 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3020 return skb->network_header - skb->mac_header; 3021 } 3022 3023 static inline void skb_unset_mac_header(struct sk_buff *skb) 3024 { 3025 skb->mac_header = (typeof(skb->mac_header))~0U; 3026 } 3027 3028 static inline void skb_reset_mac_header(struct sk_buff *skb) 3029 { 3030 skb->mac_header = skb->data - skb->head; 3031 } 3032 3033 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3034 { 3035 skb_reset_mac_header(skb); 3036 skb->mac_header += offset; 3037 } 3038 3039 static inline void skb_pop_mac_header(struct sk_buff *skb) 3040 { 3041 skb->mac_header = skb->network_header; 3042 } 3043 3044 static inline void skb_probe_transport_header(struct sk_buff *skb) 3045 { 3046 struct flow_keys_basic keys; 3047 3048 if (skb_transport_header_was_set(skb)) 3049 return; 3050 3051 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3052 NULL, 0, 0, 0, 0)) 3053 skb_set_transport_header(skb, keys.control.thoff); 3054 } 3055 3056 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3057 { 3058 if (skb_mac_header_was_set(skb)) { 3059 const unsigned char *old_mac = skb_mac_header(skb); 3060 3061 skb_set_mac_header(skb, -skb->mac_len); 3062 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3063 } 3064 } 3065 3066 /* Move the full mac header up to current network_header. 3067 * Leaves skb->data pointing at offset skb->mac_len into the mac_header. 3068 * Must be provided the complete mac header length. 3069 */ 3070 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) 3071 { 3072 if (skb_mac_header_was_set(skb)) { 3073 const unsigned char *old_mac = skb_mac_header(skb); 3074 3075 skb_set_mac_header(skb, -full_mac_len); 3076 memmove(skb_mac_header(skb), old_mac, full_mac_len); 3077 __skb_push(skb, full_mac_len - skb->mac_len); 3078 } 3079 } 3080 3081 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3082 { 3083 return skb->csum_start - skb_headroom(skb); 3084 } 3085 3086 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3087 { 3088 return skb->head + skb->csum_start; 3089 } 3090 3091 static inline int skb_transport_offset(const struct sk_buff *skb) 3092 { 3093 return skb_transport_header(skb) - skb->data; 3094 } 3095 3096 static inline u32 skb_network_header_len(const struct sk_buff *skb) 3097 { 3098 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3099 return skb->transport_header - skb->network_header; 3100 } 3101 3102 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3103 { 3104 return skb->inner_transport_header - skb->inner_network_header; 3105 } 3106 3107 static inline int skb_network_offset(const struct sk_buff *skb) 3108 { 3109 return skb_network_header(skb) - skb->data; 3110 } 3111 3112 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3113 { 3114 return skb_inner_network_header(skb) - skb->data; 3115 } 3116 3117 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3118 { 3119 return pskb_may_pull(skb, skb_network_offset(skb) + len); 3120 } 3121 3122 /* 3123 * CPUs often take a performance hit when accessing unaligned memory 3124 * locations. The actual performance hit varies, it can be small if the 3125 * hardware handles it or large if we have to take an exception and fix it 3126 * in software. 3127 * 3128 * Since an ethernet header is 14 bytes network drivers often end up with 3129 * the IP header at an unaligned offset. The IP header can be aligned by 3130 * shifting the start of the packet by 2 bytes. Drivers should do this 3131 * with: 3132 * 3133 * skb_reserve(skb, NET_IP_ALIGN); 3134 * 3135 * The downside to this alignment of the IP header is that the DMA is now 3136 * unaligned. On some architectures the cost of an unaligned DMA is high 3137 * and this cost outweighs the gains made by aligning the IP header. 3138 * 3139 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3140 * to be overridden. 3141 */ 3142 #ifndef NET_IP_ALIGN 3143 #define NET_IP_ALIGN 2 3144 #endif 3145 3146 /* 3147 * The networking layer reserves some headroom in skb data (via 3148 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3149 * the header has to grow. In the default case, if the header has to grow 3150 * 32 bytes or less we avoid the reallocation. 3151 * 3152 * Unfortunately this headroom changes the DMA alignment of the resulting 3153 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3154 * on some architectures. An architecture can override this value, 3155 * perhaps setting it to a cacheline in size (since that will maintain 3156 * cacheline alignment of the DMA). It must be a power of 2. 3157 * 3158 * Various parts of the networking layer expect at least 32 bytes of 3159 * headroom, you should not reduce this. 3160 * 3161 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3162 * to reduce average number of cache lines per packet. 3163 * get_rps_cpu() for example only access one 64 bytes aligned block : 3164 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3165 */ 3166 #ifndef NET_SKB_PAD 3167 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3168 #endif 3169 3170 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3171 3172 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3173 { 3174 if (WARN_ON(skb_is_nonlinear(skb))) 3175 return; 3176 skb->len = len; 3177 skb_set_tail_pointer(skb, len); 3178 } 3179 3180 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3181 { 3182 __skb_set_length(skb, len); 3183 } 3184 3185 void skb_trim(struct sk_buff *skb, unsigned int len); 3186 3187 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3188 { 3189 if (skb->data_len) 3190 return ___pskb_trim(skb, len); 3191 __skb_trim(skb, len); 3192 return 0; 3193 } 3194 3195 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3196 { 3197 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3198 } 3199 3200 /** 3201 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3202 * @skb: buffer to alter 3203 * @len: new length 3204 * 3205 * This is identical to pskb_trim except that the caller knows that 3206 * the skb is not cloned so we should never get an error due to out- 3207 * of-memory. 3208 */ 3209 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3210 { 3211 int err = pskb_trim(skb, len); 3212 BUG_ON(err); 3213 } 3214 3215 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3216 { 3217 unsigned int diff = len - skb->len; 3218 3219 if (skb_tailroom(skb) < diff) { 3220 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3221 GFP_ATOMIC); 3222 if (ret) 3223 return ret; 3224 } 3225 __skb_set_length(skb, len); 3226 return 0; 3227 } 3228 3229 /** 3230 * skb_orphan - orphan a buffer 3231 * @skb: buffer to orphan 3232 * 3233 * If a buffer currently has an owner then we call the owner's 3234 * destructor function and make the @skb unowned. The buffer continues 3235 * to exist but is no longer charged to its former owner. 3236 */ 3237 static inline void skb_orphan(struct sk_buff *skb) 3238 { 3239 if (skb->destructor) { 3240 skb->destructor(skb); 3241 skb->destructor = NULL; 3242 skb->sk = NULL; 3243 } else { 3244 BUG_ON(skb->sk); 3245 } 3246 } 3247 3248 /** 3249 * skb_orphan_frags - orphan the frags contained in a buffer 3250 * @skb: buffer to orphan frags from 3251 * @gfp_mask: allocation mask for replacement pages 3252 * 3253 * For each frag in the SKB which needs a destructor (i.e. has an 3254 * owner) create a copy of that frag and release the original 3255 * page by calling the destructor. 3256 */ 3257 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3258 { 3259 if (likely(!skb_zcopy(skb))) 3260 return 0; 3261 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3262 return 0; 3263 return skb_copy_ubufs(skb, gfp_mask); 3264 } 3265 3266 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3267 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3268 { 3269 if (likely(!skb_zcopy(skb))) 3270 return 0; 3271 return skb_copy_ubufs(skb, gfp_mask); 3272 } 3273 3274 /** 3275 * __skb_queue_purge_reason - empty a list 3276 * @list: list to empty 3277 * @reason: drop reason 3278 * 3279 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3280 * the list and one reference dropped. This function does not take the 3281 * list lock and the caller must hold the relevant locks to use it. 3282 */ 3283 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3284 enum skb_drop_reason reason) 3285 { 3286 struct sk_buff *skb; 3287 3288 while ((skb = __skb_dequeue(list)) != NULL) 3289 kfree_skb_reason(skb, reason); 3290 } 3291 3292 static inline void __skb_queue_purge(struct sk_buff_head *list) 3293 { 3294 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3295 } 3296 3297 void skb_queue_purge_reason(struct sk_buff_head *list, 3298 enum skb_drop_reason reason); 3299 3300 static inline void skb_queue_purge(struct sk_buff_head *list) 3301 { 3302 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3303 } 3304 3305 unsigned int skb_rbtree_purge(struct rb_root *root); 3306 void skb_errqueue_purge(struct sk_buff_head *list); 3307 3308 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3309 3310 /** 3311 * netdev_alloc_frag - allocate a page fragment 3312 * @fragsz: fragment size 3313 * 3314 * Allocates a frag from a page for receive buffer. 3315 * Uses GFP_ATOMIC allocations. 3316 */ 3317 static inline void *netdev_alloc_frag(unsigned int fragsz) 3318 { 3319 return __netdev_alloc_frag_align(fragsz, ~0u); 3320 } 3321 3322 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3323 unsigned int align) 3324 { 3325 WARN_ON_ONCE(!is_power_of_2(align)); 3326 return __netdev_alloc_frag_align(fragsz, -align); 3327 } 3328 3329 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3330 gfp_t gfp_mask); 3331 3332 /** 3333 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3334 * @dev: network device to receive on 3335 * @length: length to allocate 3336 * 3337 * Allocate a new &sk_buff and assign it a usage count of one. The 3338 * buffer has unspecified headroom built in. Users should allocate 3339 * the headroom they think they need without accounting for the 3340 * built in space. The built in space is used for optimisations. 3341 * 3342 * %NULL is returned if there is no free memory. Although this function 3343 * allocates memory it can be called from an interrupt. 3344 */ 3345 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3346 unsigned int length) 3347 { 3348 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3349 } 3350 3351 /* legacy helper around __netdev_alloc_skb() */ 3352 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3353 gfp_t gfp_mask) 3354 { 3355 return __netdev_alloc_skb(NULL, length, gfp_mask); 3356 } 3357 3358 /* legacy helper around netdev_alloc_skb() */ 3359 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3360 { 3361 return netdev_alloc_skb(NULL, length); 3362 } 3363 3364 3365 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3366 unsigned int length, gfp_t gfp) 3367 { 3368 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3369 3370 if (NET_IP_ALIGN && skb) 3371 skb_reserve(skb, NET_IP_ALIGN); 3372 return skb; 3373 } 3374 3375 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3376 unsigned int length) 3377 { 3378 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3379 } 3380 3381 static inline void skb_free_frag(void *addr) 3382 { 3383 page_frag_free(addr); 3384 } 3385 3386 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3387 3388 static inline void *napi_alloc_frag(unsigned int fragsz) 3389 { 3390 return __napi_alloc_frag_align(fragsz, ~0u); 3391 } 3392 3393 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3394 unsigned int align) 3395 { 3396 WARN_ON_ONCE(!is_power_of_2(align)); 3397 return __napi_alloc_frag_align(fragsz, -align); 3398 } 3399 3400 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3401 void napi_consume_skb(struct sk_buff *skb, int budget); 3402 3403 void napi_skb_free_stolen_head(struct sk_buff *skb); 3404 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3405 3406 /** 3407 * __dev_alloc_pages - allocate page for network Rx 3408 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3409 * @order: size of the allocation 3410 * 3411 * Allocate a new page. 3412 * 3413 * %NULL is returned if there is no free memory. 3414 */ 3415 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, 3416 unsigned int order) 3417 { 3418 /* This piece of code contains several assumptions. 3419 * 1. This is for device Rx, therefore a cold page is preferred. 3420 * 2. The expectation is the user wants a compound page. 3421 * 3. If requesting a order 0 page it will not be compound 3422 * due to the check to see if order has a value in prep_new_page 3423 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3424 * code in gfp_to_alloc_flags that should be enforcing this. 3425 */ 3426 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3427 3428 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); 3429 } 3430 #define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) 3431 3432 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) 3433 3434 /** 3435 * __dev_alloc_page - allocate a page for network Rx 3436 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3437 * 3438 * Allocate a new page. 3439 * 3440 * %NULL is returned if there is no free memory. 3441 */ 3442 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) 3443 { 3444 return __dev_alloc_pages_noprof(gfp_mask, 0); 3445 } 3446 #define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) 3447 3448 #define dev_alloc_page() dev_alloc_pages(0) 3449 3450 /** 3451 * dev_page_is_reusable - check whether a page can be reused for network Rx 3452 * @page: the page to test 3453 * 3454 * A page shouldn't be considered for reusing/recycling if it was allocated 3455 * under memory pressure or at a distant memory node. 3456 * 3457 * Returns false if this page should be returned to page allocator, true 3458 * otherwise. 3459 */ 3460 static inline bool dev_page_is_reusable(const struct page *page) 3461 { 3462 return likely(page_to_nid(page) == numa_mem_id() && 3463 !page_is_pfmemalloc(page)); 3464 } 3465 3466 /** 3467 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3468 * @page: The page that was allocated from skb_alloc_page 3469 * @skb: The skb that may need pfmemalloc set 3470 */ 3471 static inline void skb_propagate_pfmemalloc(const struct page *page, 3472 struct sk_buff *skb) 3473 { 3474 if (page_is_pfmemalloc(page)) 3475 skb->pfmemalloc = true; 3476 } 3477 3478 /** 3479 * skb_frag_off() - Returns the offset of a skb fragment 3480 * @frag: the paged fragment 3481 */ 3482 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3483 { 3484 return frag->offset; 3485 } 3486 3487 /** 3488 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3489 * @frag: skb fragment 3490 * @delta: value to add 3491 */ 3492 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3493 { 3494 frag->offset += delta; 3495 } 3496 3497 /** 3498 * skb_frag_off_set() - Sets the offset of a skb fragment 3499 * @frag: skb fragment 3500 * @offset: offset of fragment 3501 */ 3502 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3503 { 3504 frag->offset = offset; 3505 } 3506 3507 /** 3508 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3509 * @fragto: skb fragment where offset is set 3510 * @fragfrom: skb fragment offset is copied from 3511 */ 3512 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3513 const skb_frag_t *fragfrom) 3514 { 3515 fragto->offset = fragfrom->offset; 3516 } 3517 3518 /** 3519 * skb_frag_page - retrieve the page referred to by a paged fragment 3520 * @frag: the paged fragment 3521 * 3522 * Returns the &struct page associated with @frag. 3523 */ 3524 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3525 { 3526 return netmem_to_page(frag->netmem); 3527 } 3528 3529 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3530 unsigned int headroom); 3531 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3532 struct bpf_prog *prog); 3533 /** 3534 * skb_frag_address - gets the address of the data contained in a paged fragment 3535 * @frag: the paged fragment buffer 3536 * 3537 * Returns the address of the data within @frag. The page must already 3538 * be mapped. 3539 */ 3540 static inline void *skb_frag_address(const skb_frag_t *frag) 3541 { 3542 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3543 } 3544 3545 /** 3546 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3547 * @frag: the paged fragment buffer 3548 * 3549 * Returns the address of the data within @frag. Checks that the page 3550 * is mapped and returns %NULL otherwise. 3551 */ 3552 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3553 { 3554 void *ptr = page_address(skb_frag_page(frag)); 3555 if (unlikely(!ptr)) 3556 return NULL; 3557 3558 return ptr + skb_frag_off(frag); 3559 } 3560 3561 /** 3562 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3563 * @fragto: skb fragment where page is set 3564 * @fragfrom: skb fragment page is copied from 3565 */ 3566 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3567 const skb_frag_t *fragfrom) 3568 { 3569 fragto->netmem = fragfrom->netmem; 3570 } 3571 3572 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3573 3574 /** 3575 * skb_frag_dma_map - maps a paged fragment via the DMA API 3576 * @dev: the device to map the fragment to 3577 * @frag: the paged fragment to map 3578 * @offset: the offset within the fragment (starting at the 3579 * fragment's own offset) 3580 * @size: the number of bytes to map 3581 * @dir: the direction of the mapping (``PCI_DMA_*``) 3582 * 3583 * Maps the page associated with @frag to @device. 3584 */ 3585 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3586 const skb_frag_t *frag, 3587 size_t offset, size_t size, 3588 enum dma_data_direction dir) 3589 { 3590 return dma_map_page(dev, skb_frag_page(frag), 3591 skb_frag_off(frag) + offset, size, dir); 3592 } 3593 3594 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3595 gfp_t gfp_mask) 3596 { 3597 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3598 } 3599 3600 3601 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3602 gfp_t gfp_mask) 3603 { 3604 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3605 } 3606 3607 3608 /** 3609 * skb_clone_writable - is the header of a clone writable 3610 * @skb: buffer to check 3611 * @len: length up to which to write 3612 * 3613 * Returns true if modifying the header part of the cloned buffer 3614 * does not requires the data to be copied. 3615 */ 3616 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3617 { 3618 return !skb_header_cloned(skb) && 3619 skb_headroom(skb) + len <= skb->hdr_len; 3620 } 3621 3622 static inline int skb_try_make_writable(struct sk_buff *skb, 3623 unsigned int write_len) 3624 { 3625 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3626 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3627 } 3628 3629 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3630 int cloned) 3631 { 3632 int delta = 0; 3633 3634 if (headroom > skb_headroom(skb)) 3635 delta = headroom - skb_headroom(skb); 3636 3637 if (delta || cloned) 3638 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3639 GFP_ATOMIC); 3640 return 0; 3641 } 3642 3643 /** 3644 * skb_cow - copy header of skb when it is required 3645 * @skb: buffer to cow 3646 * @headroom: needed headroom 3647 * 3648 * If the skb passed lacks sufficient headroom or its data part 3649 * is shared, data is reallocated. If reallocation fails, an error 3650 * is returned and original skb is not changed. 3651 * 3652 * The result is skb with writable area skb->head...skb->tail 3653 * and at least @headroom of space at head. 3654 */ 3655 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3656 { 3657 return __skb_cow(skb, headroom, skb_cloned(skb)); 3658 } 3659 3660 /** 3661 * skb_cow_head - skb_cow but only making the head writable 3662 * @skb: buffer to cow 3663 * @headroom: needed headroom 3664 * 3665 * This function is identical to skb_cow except that we replace the 3666 * skb_cloned check by skb_header_cloned. It should be used when 3667 * you only need to push on some header and do not need to modify 3668 * the data. 3669 */ 3670 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3671 { 3672 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3673 } 3674 3675 /** 3676 * skb_padto - pad an skbuff up to a minimal size 3677 * @skb: buffer to pad 3678 * @len: minimal length 3679 * 3680 * Pads up a buffer to ensure the trailing bytes exist and are 3681 * blanked. If the buffer already contains sufficient data it 3682 * is untouched. Otherwise it is extended. Returns zero on 3683 * success. The skb is freed on error. 3684 */ 3685 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3686 { 3687 unsigned int size = skb->len; 3688 if (likely(size >= len)) 3689 return 0; 3690 return skb_pad(skb, len - size); 3691 } 3692 3693 /** 3694 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3695 * @skb: buffer to pad 3696 * @len: minimal length 3697 * @free_on_error: free buffer on error 3698 * 3699 * Pads up a buffer to ensure the trailing bytes exist and are 3700 * blanked. If the buffer already contains sufficient data it 3701 * is untouched. Otherwise it is extended. Returns zero on 3702 * success. The skb is freed on error if @free_on_error is true. 3703 */ 3704 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3705 unsigned int len, 3706 bool free_on_error) 3707 { 3708 unsigned int size = skb->len; 3709 3710 if (unlikely(size < len)) { 3711 len -= size; 3712 if (__skb_pad(skb, len, free_on_error)) 3713 return -ENOMEM; 3714 __skb_put(skb, len); 3715 } 3716 return 0; 3717 } 3718 3719 /** 3720 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3721 * @skb: buffer to pad 3722 * @len: minimal length 3723 * 3724 * Pads up a buffer to ensure the trailing bytes exist and are 3725 * blanked. If the buffer already contains sufficient data it 3726 * is untouched. Otherwise it is extended. Returns zero on 3727 * success. The skb is freed on error. 3728 */ 3729 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3730 { 3731 return __skb_put_padto(skb, len, true); 3732 } 3733 3734 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3735 __must_check; 3736 3737 static inline int skb_add_data(struct sk_buff *skb, 3738 struct iov_iter *from, int copy) 3739 { 3740 const int off = skb->len; 3741 3742 if (skb->ip_summed == CHECKSUM_NONE) { 3743 __wsum csum = 0; 3744 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3745 &csum, from)) { 3746 skb->csum = csum_block_add(skb->csum, csum, off); 3747 return 0; 3748 } 3749 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3750 return 0; 3751 3752 __skb_trim(skb, off); 3753 return -EFAULT; 3754 } 3755 3756 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3757 const struct page *page, int off) 3758 { 3759 if (skb_zcopy(skb)) 3760 return false; 3761 if (i) { 3762 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3763 3764 return page == skb_frag_page(frag) && 3765 off == skb_frag_off(frag) + skb_frag_size(frag); 3766 } 3767 return false; 3768 } 3769 3770 static inline int __skb_linearize(struct sk_buff *skb) 3771 { 3772 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3773 } 3774 3775 /** 3776 * skb_linearize - convert paged skb to linear one 3777 * @skb: buffer to linarize 3778 * 3779 * If there is no free memory -ENOMEM is returned, otherwise zero 3780 * is returned and the old skb data released. 3781 */ 3782 static inline int skb_linearize(struct sk_buff *skb) 3783 { 3784 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3785 } 3786 3787 /** 3788 * skb_has_shared_frag - can any frag be overwritten 3789 * @skb: buffer to test 3790 * 3791 * Return true if the skb has at least one frag that might be modified 3792 * by an external entity (as in vmsplice()/sendfile()) 3793 */ 3794 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3795 { 3796 return skb_is_nonlinear(skb) && 3797 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3798 } 3799 3800 /** 3801 * skb_linearize_cow - make sure skb is linear and writable 3802 * @skb: buffer to process 3803 * 3804 * If there is no free memory -ENOMEM is returned, otherwise zero 3805 * is returned and the old skb data released. 3806 */ 3807 static inline int skb_linearize_cow(struct sk_buff *skb) 3808 { 3809 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3810 __skb_linearize(skb) : 0; 3811 } 3812 3813 static __always_inline void 3814 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3815 unsigned int off) 3816 { 3817 if (skb->ip_summed == CHECKSUM_COMPLETE) 3818 skb->csum = csum_block_sub(skb->csum, 3819 csum_partial(start, len, 0), off); 3820 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3821 skb_checksum_start_offset(skb) < 0) 3822 skb->ip_summed = CHECKSUM_NONE; 3823 } 3824 3825 /** 3826 * skb_postpull_rcsum - update checksum for received skb after pull 3827 * @skb: buffer to update 3828 * @start: start of data before pull 3829 * @len: length of data pulled 3830 * 3831 * After doing a pull on a received packet, you need to call this to 3832 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3833 * CHECKSUM_NONE so that it can be recomputed from scratch. 3834 */ 3835 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3836 const void *start, unsigned int len) 3837 { 3838 if (skb->ip_summed == CHECKSUM_COMPLETE) 3839 skb->csum = wsum_negate(csum_partial(start, len, 3840 wsum_negate(skb->csum))); 3841 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3842 skb_checksum_start_offset(skb) < 0) 3843 skb->ip_summed = CHECKSUM_NONE; 3844 } 3845 3846 static __always_inline void 3847 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3848 unsigned int off) 3849 { 3850 if (skb->ip_summed == CHECKSUM_COMPLETE) 3851 skb->csum = csum_block_add(skb->csum, 3852 csum_partial(start, len, 0), off); 3853 } 3854 3855 /** 3856 * skb_postpush_rcsum - update checksum for received skb after push 3857 * @skb: buffer to update 3858 * @start: start of data after push 3859 * @len: length of data pushed 3860 * 3861 * After doing a push on a received packet, you need to call this to 3862 * update the CHECKSUM_COMPLETE checksum. 3863 */ 3864 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3865 const void *start, unsigned int len) 3866 { 3867 __skb_postpush_rcsum(skb, start, len, 0); 3868 } 3869 3870 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3871 3872 /** 3873 * skb_push_rcsum - push skb and update receive checksum 3874 * @skb: buffer to update 3875 * @len: length of data pulled 3876 * 3877 * This function performs an skb_push on the packet and updates 3878 * the CHECKSUM_COMPLETE checksum. It should be used on 3879 * receive path processing instead of skb_push unless you know 3880 * that the checksum difference is zero (e.g., a valid IP header) 3881 * or you are setting ip_summed to CHECKSUM_NONE. 3882 */ 3883 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3884 { 3885 skb_push(skb, len); 3886 skb_postpush_rcsum(skb, skb->data, len); 3887 return skb->data; 3888 } 3889 3890 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3891 /** 3892 * pskb_trim_rcsum - trim received skb and update checksum 3893 * @skb: buffer to trim 3894 * @len: new length 3895 * 3896 * This is exactly the same as pskb_trim except that it ensures the 3897 * checksum of received packets are still valid after the operation. 3898 * It can change skb pointers. 3899 */ 3900 3901 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3902 { 3903 if (likely(len >= skb->len)) 3904 return 0; 3905 return pskb_trim_rcsum_slow(skb, len); 3906 } 3907 3908 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3909 { 3910 if (skb->ip_summed == CHECKSUM_COMPLETE) 3911 skb->ip_summed = CHECKSUM_NONE; 3912 __skb_trim(skb, len); 3913 return 0; 3914 } 3915 3916 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3917 { 3918 if (skb->ip_summed == CHECKSUM_COMPLETE) 3919 skb->ip_summed = CHECKSUM_NONE; 3920 return __skb_grow(skb, len); 3921 } 3922 3923 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3924 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3925 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3926 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3927 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3928 3929 #define skb_queue_walk(queue, skb) \ 3930 for (skb = (queue)->next; \ 3931 skb != (struct sk_buff *)(queue); \ 3932 skb = skb->next) 3933 3934 #define skb_queue_walk_safe(queue, skb, tmp) \ 3935 for (skb = (queue)->next, tmp = skb->next; \ 3936 skb != (struct sk_buff *)(queue); \ 3937 skb = tmp, tmp = skb->next) 3938 3939 #define skb_queue_walk_from(queue, skb) \ 3940 for (; skb != (struct sk_buff *)(queue); \ 3941 skb = skb->next) 3942 3943 #define skb_rbtree_walk(skb, root) \ 3944 for (skb = skb_rb_first(root); skb != NULL; \ 3945 skb = skb_rb_next(skb)) 3946 3947 #define skb_rbtree_walk_from(skb) \ 3948 for (; skb != NULL; \ 3949 skb = skb_rb_next(skb)) 3950 3951 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3952 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3953 skb = tmp) 3954 3955 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3956 for (tmp = skb->next; \ 3957 skb != (struct sk_buff *)(queue); \ 3958 skb = tmp, tmp = skb->next) 3959 3960 #define skb_queue_reverse_walk(queue, skb) \ 3961 for (skb = (queue)->prev; \ 3962 skb != (struct sk_buff *)(queue); \ 3963 skb = skb->prev) 3964 3965 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3966 for (skb = (queue)->prev, tmp = skb->prev; \ 3967 skb != (struct sk_buff *)(queue); \ 3968 skb = tmp, tmp = skb->prev) 3969 3970 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3971 for (tmp = skb->prev; \ 3972 skb != (struct sk_buff *)(queue); \ 3973 skb = tmp, tmp = skb->prev) 3974 3975 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3976 { 3977 return skb_shinfo(skb)->frag_list != NULL; 3978 } 3979 3980 static inline void skb_frag_list_init(struct sk_buff *skb) 3981 { 3982 skb_shinfo(skb)->frag_list = NULL; 3983 } 3984 3985 #define skb_walk_frags(skb, iter) \ 3986 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3987 3988 3989 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3990 int *err, long *timeo_p, 3991 const struct sk_buff *skb); 3992 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3993 struct sk_buff_head *queue, 3994 unsigned int flags, 3995 int *off, int *err, 3996 struct sk_buff **last); 3997 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3998 struct sk_buff_head *queue, 3999 unsigned int flags, int *off, int *err, 4000 struct sk_buff **last); 4001 struct sk_buff *__skb_recv_datagram(struct sock *sk, 4002 struct sk_buff_head *sk_queue, 4003 unsigned int flags, int *off, int *err); 4004 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 4005 __poll_t datagram_poll(struct file *file, struct socket *sock, 4006 struct poll_table_struct *wait); 4007 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 4008 struct iov_iter *to, int size); 4009 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 4010 struct msghdr *msg, int size) 4011 { 4012 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 4013 } 4014 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 4015 struct msghdr *msg); 4016 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 4017 struct iov_iter *to, int len, 4018 struct ahash_request *hash); 4019 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 4020 struct iov_iter *from, int len); 4021 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 4022 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4023 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4024 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4025 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4026 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4027 int len); 4028 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4029 struct pipe_inode_info *pipe, unsigned int len, 4030 unsigned int flags); 4031 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4032 int len); 4033 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4034 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4035 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4036 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4037 int len, int hlen); 4038 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4039 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4040 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4041 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4042 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4043 unsigned int offset); 4044 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4045 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4046 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4047 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4048 int skb_vlan_pop(struct sk_buff *skb); 4049 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4050 int skb_eth_pop(struct sk_buff *skb); 4051 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4052 const unsigned char *src); 4053 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4054 int mac_len, bool ethernet); 4055 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4056 bool ethernet); 4057 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4058 int skb_mpls_dec_ttl(struct sk_buff *skb); 4059 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4060 gfp_t gfp); 4061 4062 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4063 { 4064 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4065 } 4066 4067 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4068 { 4069 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4070 } 4071 4072 struct skb_checksum_ops { 4073 __wsum (*update)(const void *mem, int len, __wsum wsum); 4074 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4075 }; 4076 4077 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4078 4079 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4080 __wsum csum, const struct skb_checksum_ops *ops); 4081 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4082 __wsum csum); 4083 4084 static inline void * __must_check 4085 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4086 const void *data, int hlen, void *buffer) 4087 { 4088 if (likely(hlen - offset >= len)) 4089 return (void *)data + offset; 4090 4091 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4092 return NULL; 4093 4094 return buffer; 4095 } 4096 4097 static inline void * __must_check 4098 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4099 { 4100 return __skb_header_pointer(skb, offset, len, skb->data, 4101 skb_headlen(skb), buffer); 4102 } 4103 4104 static inline void * __must_check 4105 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4106 { 4107 if (likely(skb_headlen(skb) - offset >= len)) 4108 return skb->data + offset; 4109 return NULL; 4110 } 4111 4112 /** 4113 * skb_needs_linearize - check if we need to linearize a given skb 4114 * depending on the given device features. 4115 * @skb: socket buffer to check 4116 * @features: net device features 4117 * 4118 * Returns true if either: 4119 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4120 * 2. skb is fragmented and the device does not support SG. 4121 */ 4122 static inline bool skb_needs_linearize(struct sk_buff *skb, 4123 netdev_features_t features) 4124 { 4125 return skb_is_nonlinear(skb) && 4126 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4127 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4128 } 4129 4130 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4131 void *to, 4132 const unsigned int len) 4133 { 4134 memcpy(to, skb->data, len); 4135 } 4136 4137 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4138 const int offset, void *to, 4139 const unsigned int len) 4140 { 4141 memcpy(to, skb->data + offset, len); 4142 } 4143 4144 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4145 const void *from, 4146 const unsigned int len) 4147 { 4148 memcpy(skb->data, from, len); 4149 } 4150 4151 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4152 const int offset, 4153 const void *from, 4154 const unsigned int len) 4155 { 4156 memcpy(skb->data + offset, from, len); 4157 } 4158 4159 void skb_init(void); 4160 4161 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4162 { 4163 return skb->tstamp; 4164 } 4165 4166 /** 4167 * skb_get_timestamp - get timestamp from a skb 4168 * @skb: skb to get stamp from 4169 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4170 * 4171 * Timestamps are stored in the skb as offsets to a base timestamp. 4172 * This function converts the offset back to a struct timeval and stores 4173 * it in stamp. 4174 */ 4175 static inline void skb_get_timestamp(const struct sk_buff *skb, 4176 struct __kernel_old_timeval *stamp) 4177 { 4178 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4179 } 4180 4181 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4182 struct __kernel_sock_timeval *stamp) 4183 { 4184 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4185 4186 stamp->tv_sec = ts.tv_sec; 4187 stamp->tv_usec = ts.tv_nsec / 1000; 4188 } 4189 4190 static inline void skb_get_timestampns(const struct sk_buff *skb, 4191 struct __kernel_old_timespec *stamp) 4192 { 4193 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4194 4195 stamp->tv_sec = ts.tv_sec; 4196 stamp->tv_nsec = ts.tv_nsec; 4197 } 4198 4199 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4200 struct __kernel_timespec *stamp) 4201 { 4202 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4203 4204 stamp->tv_sec = ts.tv_sec; 4205 stamp->tv_nsec = ts.tv_nsec; 4206 } 4207 4208 static inline void __net_timestamp(struct sk_buff *skb) 4209 { 4210 skb->tstamp = ktime_get_real(); 4211 skb->tstamp_type = SKB_CLOCK_REALTIME; 4212 } 4213 4214 static inline ktime_t net_timedelta(ktime_t t) 4215 { 4216 return ktime_sub(ktime_get_real(), t); 4217 } 4218 4219 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4220 u8 tstamp_type) 4221 { 4222 skb->tstamp = kt; 4223 4224 if (kt) 4225 skb->tstamp_type = tstamp_type; 4226 else 4227 skb->tstamp_type = SKB_CLOCK_REALTIME; 4228 } 4229 4230 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, 4231 ktime_t kt, clockid_t clockid) 4232 { 4233 u8 tstamp_type = SKB_CLOCK_REALTIME; 4234 4235 switch (clockid) { 4236 case CLOCK_REALTIME: 4237 break; 4238 case CLOCK_MONOTONIC: 4239 tstamp_type = SKB_CLOCK_MONOTONIC; 4240 break; 4241 case CLOCK_TAI: 4242 tstamp_type = SKB_CLOCK_TAI; 4243 break; 4244 default: 4245 WARN_ON_ONCE(1); 4246 kt = 0; 4247 } 4248 4249 skb_set_delivery_time(skb, kt, tstamp_type); 4250 } 4251 4252 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4253 4254 /* It is used in the ingress path to clear the delivery_time. 4255 * If needed, set the skb->tstamp to the (rcv) timestamp. 4256 */ 4257 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4258 { 4259 if (skb->tstamp_type) { 4260 skb->tstamp_type = SKB_CLOCK_REALTIME; 4261 if (static_branch_unlikely(&netstamp_needed_key)) 4262 skb->tstamp = ktime_get_real(); 4263 else 4264 skb->tstamp = 0; 4265 } 4266 } 4267 4268 static inline void skb_clear_tstamp(struct sk_buff *skb) 4269 { 4270 if (skb->tstamp_type) 4271 return; 4272 4273 skb->tstamp = 0; 4274 } 4275 4276 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4277 { 4278 if (skb->tstamp_type) 4279 return 0; 4280 4281 return skb->tstamp; 4282 } 4283 4284 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4285 { 4286 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) 4287 return skb->tstamp; 4288 4289 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4290 return ktime_get_real(); 4291 4292 return 0; 4293 } 4294 4295 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4296 { 4297 return skb_shinfo(skb)->meta_len; 4298 } 4299 4300 static inline void *skb_metadata_end(const struct sk_buff *skb) 4301 { 4302 return skb_mac_header(skb); 4303 } 4304 4305 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4306 const struct sk_buff *skb_b, 4307 u8 meta_len) 4308 { 4309 const void *a = skb_metadata_end(skb_a); 4310 const void *b = skb_metadata_end(skb_b); 4311 u64 diffs = 0; 4312 4313 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4314 BITS_PER_LONG != 64) 4315 goto slow; 4316 4317 /* Using more efficient variant than plain call to memcmp(). */ 4318 switch (meta_len) { 4319 #define __it(x, op) (x -= sizeof(u##op)) 4320 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4321 case 32: diffs |= __it_diff(a, b, 64); 4322 fallthrough; 4323 case 24: diffs |= __it_diff(a, b, 64); 4324 fallthrough; 4325 case 16: diffs |= __it_diff(a, b, 64); 4326 fallthrough; 4327 case 8: diffs |= __it_diff(a, b, 64); 4328 break; 4329 case 28: diffs |= __it_diff(a, b, 64); 4330 fallthrough; 4331 case 20: diffs |= __it_diff(a, b, 64); 4332 fallthrough; 4333 case 12: diffs |= __it_diff(a, b, 64); 4334 fallthrough; 4335 case 4: diffs |= __it_diff(a, b, 32); 4336 break; 4337 default: 4338 slow: 4339 return memcmp(a - meta_len, b - meta_len, meta_len); 4340 } 4341 return diffs; 4342 } 4343 4344 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4345 const struct sk_buff *skb_b) 4346 { 4347 u8 len_a = skb_metadata_len(skb_a); 4348 u8 len_b = skb_metadata_len(skb_b); 4349 4350 if (!(len_a | len_b)) 4351 return false; 4352 4353 return len_a != len_b ? 4354 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4355 } 4356 4357 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4358 { 4359 skb_shinfo(skb)->meta_len = meta_len; 4360 } 4361 4362 static inline void skb_metadata_clear(struct sk_buff *skb) 4363 { 4364 skb_metadata_set(skb, 0); 4365 } 4366 4367 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4368 4369 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4370 4371 void skb_clone_tx_timestamp(struct sk_buff *skb); 4372 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4373 4374 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4375 4376 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4377 { 4378 } 4379 4380 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4381 { 4382 return false; 4383 } 4384 4385 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4386 4387 /** 4388 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4389 * 4390 * PHY drivers may accept clones of transmitted packets for 4391 * timestamping via their phy_driver.txtstamp method. These drivers 4392 * must call this function to return the skb back to the stack with a 4393 * timestamp. 4394 * 4395 * @skb: clone of the original outgoing packet 4396 * @hwtstamps: hardware time stamps 4397 * 4398 */ 4399 void skb_complete_tx_timestamp(struct sk_buff *skb, 4400 struct skb_shared_hwtstamps *hwtstamps); 4401 4402 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4403 struct skb_shared_hwtstamps *hwtstamps, 4404 struct sock *sk, int tstype); 4405 4406 /** 4407 * skb_tstamp_tx - queue clone of skb with send time stamps 4408 * @orig_skb: the original outgoing packet 4409 * @hwtstamps: hardware time stamps, may be NULL if not available 4410 * 4411 * If the skb has a socket associated, then this function clones the 4412 * skb (thus sharing the actual data and optional structures), stores 4413 * the optional hardware time stamping information (if non NULL) or 4414 * generates a software time stamp (otherwise), then queues the clone 4415 * to the error queue of the socket. Errors are silently ignored. 4416 */ 4417 void skb_tstamp_tx(struct sk_buff *orig_skb, 4418 struct skb_shared_hwtstamps *hwtstamps); 4419 4420 /** 4421 * skb_tx_timestamp() - Driver hook for transmit timestamping 4422 * 4423 * Ethernet MAC Drivers should call this function in their hard_xmit() 4424 * function immediately before giving the sk_buff to the MAC hardware. 4425 * 4426 * Specifically, one should make absolutely sure that this function is 4427 * called before TX completion of this packet can trigger. Otherwise 4428 * the packet could potentially already be freed. 4429 * 4430 * @skb: A socket buffer. 4431 */ 4432 static inline void skb_tx_timestamp(struct sk_buff *skb) 4433 { 4434 skb_clone_tx_timestamp(skb); 4435 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4436 skb_tstamp_tx(skb, NULL); 4437 } 4438 4439 /** 4440 * skb_complete_wifi_ack - deliver skb with wifi status 4441 * 4442 * @skb: the original outgoing packet 4443 * @acked: ack status 4444 * 4445 */ 4446 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4447 4448 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4449 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4450 4451 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4452 { 4453 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4454 skb->csum_valid || 4455 (skb->ip_summed == CHECKSUM_PARTIAL && 4456 skb_checksum_start_offset(skb) >= 0)); 4457 } 4458 4459 /** 4460 * skb_checksum_complete - Calculate checksum of an entire packet 4461 * @skb: packet to process 4462 * 4463 * This function calculates the checksum over the entire packet plus 4464 * the value of skb->csum. The latter can be used to supply the 4465 * checksum of a pseudo header as used by TCP/UDP. It returns the 4466 * checksum. 4467 * 4468 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4469 * this function can be used to verify that checksum on received 4470 * packets. In that case the function should return zero if the 4471 * checksum is correct. In particular, this function will return zero 4472 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4473 * hardware has already verified the correctness of the checksum. 4474 */ 4475 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4476 { 4477 return skb_csum_unnecessary(skb) ? 4478 0 : __skb_checksum_complete(skb); 4479 } 4480 4481 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4482 { 4483 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4484 if (skb->csum_level == 0) 4485 skb->ip_summed = CHECKSUM_NONE; 4486 else 4487 skb->csum_level--; 4488 } 4489 } 4490 4491 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4492 { 4493 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4494 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4495 skb->csum_level++; 4496 } else if (skb->ip_summed == CHECKSUM_NONE) { 4497 skb->ip_summed = CHECKSUM_UNNECESSARY; 4498 skb->csum_level = 0; 4499 } 4500 } 4501 4502 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4503 { 4504 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4505 skb->ip_summed = CHECKSUM_NONE; 4506 skb->csum_level = 0; 4507 } 4508 } 4509 4510 /* Check if we need to perform checksum complete validation. 4511 * 4512 * Returns true if checksum complete is needed, false otherwise 4513 * (either checksum is unnecessary or zero checksum is allowed). 4514 */ 4515 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4516 bool zero_okay, 4517 __sum16 check) 4518 { 4519 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4520 skb->csum_valid = 1; 4521 __skb_decr_checksum_unnecessary(skb); 4522 return false; 4523 } 4524 4525 return true; 4526 } 4527 4528 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4529 * in checksum_init. 4530 */ 4531 #define CHECKSUM_BREAK 76 4532 4533 /* Unset checksum-complete 4534 * 4535 * Unset checksum complete can be done when packet is being modified 4536 * (uncompressed for instance) and checksum-complete value is 4537 * invalidated. 4538 */ 4539 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4540 { 4541 if (skb->ip_summed == CHECKSUM_COMPLETE) 4542 skb->ip_summed = CHECKSUM_NONE; 4543 } 4544 4545 /* Validate (init) checksum based on checksum complete. 4546 * 4547 * Return values: 4548 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4549 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4550 * checksum is stored in skb->csum for use in __skb_checksum_complete 4551 * non-zero: value of invalid checksum 4552 * 4553 */ 4554 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4555 bool complete, 4556 __wsum psum) 4557 { 4558 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4559 if (!csum_fold(csum_add(psum, skb->csum))) { 4560 skb->csum_valid = 1; 4561 return 0; 4562 } 4563 } 4564 4565 skb->csum = psum; 4566 4567 if (complete || skb->len <= CHECKSUM_BREAK) { 4568 __sum16 csum; 4569 4570 csum = __skb_checksum_complete(skb); 4571 skb->csum_valid = !csum; 4572 return csum; 4573 } 4574 4575 return 0; 4576 } 4577 4578 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4579 { 4580 return 0; 4581 } 4582 4583 /* Perform checksum validate (init). Note that this is a macro since we only 4584 * want to calculate the pseudo header which is an input function if necessary. 4585 * First we try to validate without any computation (checksum unnecessary) and 4586 * then calculate based on checksum complete calling the function to compute 4587 * pseudo header. 4588 * 4589 * Return values: 4590 * 0: checksum is validated or try to in skb_checksum_complete 4591 * non-zero: value of invalid checksum 4592 */ 4593 #define __skb_checksum_validate(skb, proto, complete, \ 4594 zero_okay, check, compute_pseudo) \ 4595 ({ \ 4596 __sum16 __ret = 0; \ 4597 skb->csum_valid = 0; \ 4598 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4599 __ret = __skb_checksum_validate_complete(skb, \ 4600 complete, compute_pseudo(skb, proto)); \ 4601 __ret; \ 4602 }) 4603 4604 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4605 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4606 4607 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4608 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4609 4610 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4611 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4612 4613 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4614 compute_pseudo) \ 4615 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4616 4617 #define skb_checksum_simple_validate(skb) \ 4618 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4619 4620 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4621 { 4622 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4623 } 4624 4625 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4626 { 4627 skb->csum = ~pseudo; 4628 skb->ip_summed = CHECKSUM_COMPLETE; 4629 } 4630 4631 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4632 do { \ 4633 if (__skb_checksum_convert_check(skb)) \ 4634 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4635 } while (0) 4636 4637 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4638 u16 start, u16 offset) 4639 { 4640 skb->ip_summed = CHECKSUM_PARTIAL; 4641 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4642 skb->csum_offset = offset - start; 4643 } 4644 4645 /* Update skbuf and packet to reflect the remote checksum offload operation. 4646 * When called, ptr indicates the starting point for skb->csum when 4647 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4648 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4649 */ 4650 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4651 int start, int offset, bool nopartial) 4652 { 4653 __wsum delta; 4654 4655 if (!nopartial) { 4656 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4657 return; 4658 } 4659 4660 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4661 __skb_checksum_complete(skb); 4662 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4663 } 4664 4665 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4666 4667 /* Adjust skb->csum since we changed the packet */ 4668 skb->csum = csum_add(skb->csum, delta); 4669 } 4670 4671 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4672 { 4673 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4674 return (void *)(skb->_nfct & NFCT_PTRMASK); 4675 #else 4676 return NULL; 4677 #endif 4678 } 4679 4680 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4681 { 4682 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4683 return skb->_nfct; 4684 #else 4685 return 0UL; 4686 #endif 4687 } 4688 4689 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4690 { 4691 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4692 skb->slow_gro |= !!nfct; 4693 skb->_nfct = nfct; 4694 #endif 4695 } 4696 4697 #ifdef CONFIG_SKB_EXTENSIONS 4698 enum skb_ext_id { 4699 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4700 SKB_EXT_BRIDGE_NF, 4701 #endif 4702 #ifdef CONFIG_XFRM 4703 SKB_EXT_SEC_PATH, 4704 #endif 4705 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4706 TC_SKB_EXT, 4707 #endif 4708 #if IS_ENABLED(CONFIG_MPTCP) 4709 SKB_EXT_MPTCP, 4710 #endif 4711 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4712 SKB_EXT_MCTP, 4713 #endif 4714 SKB_EXT_NUM, /* must be last */ 4715 }; 4716 4717 /** 4718 * struct skb_ext - sk_buff extensions 4719 * @refcnt: 1 on allocation, deallocated on 0 4720 * @offset: offset to add to @data to obtain extension address 4721 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4722 * @data: start of extension data, variable sized 4723 * 4724 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4725 * to use 'u8' types while allowing up to 2kb worth of extension data. 4726 */ 4727 struct skb_ext { 4728 refcount_t refcnt; 4729 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4730 u8 chunks; /* same */ 4731 char data[] __aligned(8); 4732 }; 4733 4734 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4735 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4736 struct skb_ext *ext); 4737 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4738 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4739 void __skb_ext_put(struct skb_ext *ext); 4740 4741 static inline void skb_ext_put(struct sk_buff *skb) 4742 { 4743 if (skb->active_extensions) 4744 __skb_ext_put(skb->extensions); 4745 } 4746 4747 static inline void __skb_ext_copy(struct sk_buff *dst, 4748 const struct sk_buff *src) 4749 { 4750 dst->active_extensions = src->active_extensions; 4751 4752 if (src->active_extensions) { 4753 struct skb_ext *ext = src->extensions; 4754 4755 refcount_inc(&ext->refcnt); 4756 dst->extensions = ext; 4757 } 4758 } 4759 4760 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4761 { 4762 skb_ext_put(dst); 4763 __skb_ext_copy(dst, src); 4764 } 4765 4766 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4767 { 4768 return !!ext->offset[i]; 4769 } 4770 4771 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4772 { 4773 return skb->active_extensions & (1 << id); 4774 } 4775 4776 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4777 { 4778 if (skb_ext_exist(skb, id)) 4779 __skb_ext_del(skb, id); 4780 } 4781 4782 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4783 { 4784 if (skb_ext_exist(skb, id)) { 4785 struct skb_ext *ext = skb->extensions; 4786 4787 return (void *)ext + (ext->offset[id] << 3); 4788 } 4789 4790 return NULL; 4791 } 4792 4793 static inline void skb_ext_reset(struct sk_buff *skb) 4794 { 4795 if (unlikely(skb->active_extensions)) { 4796 __skb_ext_put(skb->extensions); 4797 skb->active_extensions = 0; 4798 } 4799 } 4800 4801 static inline bool skb_has_extensions(struct sk_buff *skb) 4802 { 4803 return unlikely(skb->active_extensions); 4804 } 4805 #else 4806 static inline void skb_ext_put(struct sk_buff *skb) {} 4807 static inline void skb_ext_reset(struct sk_buff *skb) {} 4808 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4809 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4810 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4811 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4812 #endif /* CONFIG_SKB_EXTENSIONS */ 4813 4814 static inline void nf_reset_ct(struct sk_buff *skb) 4815 { 4816 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4817 nf_conntrack_put(skb_nfct(skb)); 4818 skb->_nfct = 0; 4819 #endif 4820 } 4821 4822 static inline void nf_reset_trace(struct sk_buff *skb) 4823 { 4824 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4825 skb->nf_trace = 0; 4826 #endif 4827 } 4828 4829 static inline void ipvs_reset(struct sk_buff *skb) 4830 { 4831 #if IS_ENABLED(CONFIG_IP_VS) 4832 skb->ipvs_property = 0; 4833 #endif 4834 } 4835 4836 /* Note: This doesn't put any conntrack info in dst. */ 4837 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4838 bool copy) 4839 { 4840 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4841 dst->_nfct = src->_nfct; 4842 nf_conntrack_get(skb_nfct(src)); 4843 #endif 4844 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4845 if (copy) 4846 dst->nf_trace = src->nf_trace; 4847 #endif 4848 } 4849 4850 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4851 { 4852 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4853 nf_conntrack_put(skb_nfct(dst)); 4854 #endif 4855 dst->slow_gro = src->slow_gro; 4856 __nf_copy(dst, src, true); 4857 } 4858 4859 #ifdef CONFIG_NETWORK_SECMARK 4860 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4861 { 4862 to->secmark = from->secmark; 4863 } 4864 4865 static inline void skb_init_secmark(struct sk_buff *skb) 4866 { 4867 skb->secmark = 0; 4868 } 4869 #else 4870 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4871 { } 4872 4873 static inline void skb_init_secmark(struct sk_buff *skb) 4874 { } 4875 #endif 4876 4877 static inline int secpath_exists(const struct sk_buff *skb) 4878 { 4879 #ifdef CONFIG_XFRM 4880 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4881 #else 4882 return 0; 4883 #endif 4884 } 4885 4886 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4887 { 4888 return !skb->destructor && 4889 !secpath_exists(skb) && 4890 !skb_nfct(skb) && 4891 !skb->_skb_refdst && 4892 !skb_has_frag_list(skb); 4893 } 4894 4895 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4896 { 4897 skb->queue_mapping = queue_mapping; 4898 } 4899 4900 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4901 { 4902 return skb->queue_mapping; 4903 } 4904 4905 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4906 { 4907 to->queue_mapping = from->queue_mapping; 4908 } 4909 4910 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4911 { 4912 skb->queue_mapping = rx_queue + 1; 4913 } 4914 4915 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4916 { 4917 return skb->queue_mapping - 1; 4918 } 4919 4920 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4921 { 4922 return skb->queue_mapping != 0; 4923 } 4924 4925 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4926 { 4927 skb->dst_pending_confirm = val; 4928 } 4929 4930 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4931 { 4932 return skb->dst_pending_confirm != 0; 4933 } 4934 4935 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4936 { 4937 #ifdef CONFIG_XFRM 4938 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4939 #else 4940 return NULL; 4941 #endif 4942 } 4943 4944 static inline bool skb_is_gso(const struct sk_buff *skb) 4945 { 4946 return skb_shinfo(skb)->gso_size; 4947 } 4948 4949 /* Note: Should be called only if skb_is_gso(skb) is true */ 4950 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4951 { 4952 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4953 } 4954 4955 /* Note: Should be called only if skb_is_gso(skb) is true */ 4956 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4957 { 4958 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4959 } 4960 4961 /* Note: Should be called only if skb_is_gso(skb) is true */ 4962 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4963 { 4964 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4965 } 4966 4967 static inline void skb_gso_reset(struct sk_buff *skb) 4968 { 4969 skb_shinfo(skb)->gso_size = 0; 4970 skb_shinfo(skb)->gso_segs = 0; 4971 skb_shinfo(skb)->gso_type = 0; 4972 } 4973 4974 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4975 u16 increment) 4976 { 4977 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4978 return; 4979 shinfo->gso_size += increment; 4980 } 4981 4982 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4983 u16 decrement) 4984 { 4985 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4986 return; 4987 shinfo->gso_size -= decrement; 4988 } 4989 4990 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4991 4992 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4993 { 4994 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4995 * wanted then gso_type will be set. */ 4996 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4997 4998 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4999 unlikely(shinfo->gso_type == 0)) { 5000 __skb_warn_lro_forwarding(skb); 5001 return true; 5002 } 5003 return false; 5004 } 5005 5006 static inline void skb_forward_csum(struct sk_buff *skb) 5007 { 5008 /* Unfortunately we don't support this one. Any brave souls? */ 5009 if (skb->ip_summed == CHECKSUM_COMPLETE) 5010 skb->ip_summed = CHECKSUM_NONE; 5011 } 5012 5013 /** 5014 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 5015 * @skb: skb to check 5016 * 5017 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 5018 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 5019 * use this helper, to document places where we make this assertion. 5020 */ 5021 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 5022 { 5023 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5024 } 5025 5026 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5027 5028 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5029 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5030 unsigned int transport_len, 5031 __sum16(*skb_chkf)(struct sk_buff *skb)); 5032 5033 /** 5034 * skb_head_is_locked - Determine if the skb->head is locked down 5035 * @skb: skb to check 5036 * 5037 * The head on skbs build around a head frag can be removed if they are 5038 * not cloned. This function returns true if the skb head is locked down 5039 * due to either being allocated via kmalloc, or by being a clone with 5040 * multiple references to the head. 5041 */ 5042 static inline bool skb_head_is_locked(const struct sk_buff *skb) 5043 { 5044 return !skb->head_frag || skb_cloned(skb); 5045 } 5046 5047 /* Local Checksum Offload. 5048 * Compute outer checksum based on the assumption that the 5049 * inner checksum will be offloaded later. 5050 * See Documentation/networking/checksum-offloads.rst for 5051 * explanation of how this works. 5052 * Fill in outer checksum adjustment (e.g. with sum of outer 5053 * pseudo-header) before calling. 5054 * Also ensure that inner checksum is in linear data area. 5055 */ 5056 static inline __wsum lco_csum(struct sk_buff *skb) 5057 { 5058 unsigned char *csum_start = skb_checksum_start(skb); 5059 unsigned char *l4_hdr = skb_transport_header(skb); 5060 __wsum partial; 5061 5062 /* Start with complement of inner checksum adjustment */ 5063 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5064 skb->csum_offset)); 5065 5066 /* Add in checksum of our headers (incl. outer checksum 5067 * adjustment filled in by caller) and return result. 5068 */ 5069 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5070 } 5071 5072 static inline bool skb_is_redirected(const struct sk_buff *skb) 5073 { 5074 return skb->redirected; 5075 } 5076 5077 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5078 { 5079 skb->redirected = 1; 5080 #ifdef CONFIG_NET_REDIRECT 5081 skb->from_ingress = from_ingress; 5082 if (skb->from_ingress) 5083 skb_clear_tstamp(skb); 5084 #endif 5085 } 5086 5087 static inline void skb_reset_redirect(struct sk_buff *skb) 5088 { 5089 skb->redirected = 0; 5090 } 5091 5092 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5093 bool from_ingress) 5094 { 5095 skb->redirected = 1; 5096 #ifdef CONFIG_NET_REDIRECT 5097 skb->from_ingress = from_ingress; 5098 #endif 5099 } 5100 5101 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5102 { 5103 #if IS_ENABLED(CONFIG_IP_SCTP) 5104 return skb->csum_not_inet; 5105 #else 5106 return 0; 5107 #endif 5108 } 5109 5110 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5111 { 5112 skb->ip_summed = CHECKSUM_NONE; 5113 #if IS_ENABLED(CONFIG_IP_SCTP) 5114 skb->csum_not_inet = 0; 5115 #endif 5116 } 5117 5118 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5119 const u64 kcov_handle) 5120 { 5121 #ifdef CONFIG_KCOV 5122 skb->kcov_handle = kcov_handle; 5123 #endif 5124 } 5125 5126 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5127 { 5128 #ifdef CONFIG_KCOV 5129 return skb->kcov_handle; 5130 #else 5131 return 0; 5132 #endif 5133 } 5134 5135 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5136 { 5137 #ifdef CONFIG_PAGE_POOL 5138 skb->pp_recycle = 1; 5139 #endif 5140 } 5141 5142 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5143 ssize_t maxsize, gfp_t gfp); 5144 5145 #endif /* __KERNEL__ */ 5146 #endif /* _LINUX_SKBUFF_H */ 5147