1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 36 #include <linux/netfilter/nf_conntrack_common.h> 37 #endif 38 #include <net/net_debug.h> 39 #include <net/dropreason-core.h> 40 #include <net/netmem.h> 41 42 /** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246 /* Don't change this without changing skb_csum_unnecessary! */ 247 #define CHECKSUM_NONE 0 248 #define CHECKSUM_UNNECESSARY 1 249 #define CHECKSUM_COMPLETE 2 250 #define CHECKSUM_PARTIAL 3 251 252 /* Maximum value in skb->csum_level */ 253 #define SKB_MAX_CSUM_LEVEL 3 254 255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256 #define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259 /* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266 #define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271 /* return minimum truesize of one skb containing X bytes of data */ 272 #define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276 struct ahash_request; 277 struct net_device; 278 struct scatterlist; 279 struct pipe_inode_info; 280 struct iov_iter; 281 struct napi_struct; 282 struct bpf_prog; 283 union bpf_attr; 284 struct skb_ext; 285 struct ts_config; 286 287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288 struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 u8 sabotage_in_done:1; 298 __u16 frag_max_size; 299 int physinif; 300 301 /* always valid & non-NULL from FORWARD on, for physdev match */ 302 struct net_device *physoutdev; 303 union { 304 /* prerouting: detect dnat in orig/reply direction */ 305 __be32 ipv4_daddr; 306 struct in6_addr ipv6_daddr; 307 308 /* after prerouting + nat detected: store original source 309 * mac since neigh resolution overwrites it, only used while 310 * skb is out in neigh layer. 311 */ 312 char neigh_header[8]; 313 }; 314 }; 315 #endif 316 317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 318 /* Chain in tc_skb_ext will be used to share the tc chain with 319 * ovs recirc_id. It will be set to the current chain by tc 320 * and read by ovs to recirc_id. 321 */ 322 struct tc_skb_ext { 323 union { 324 u64 act_miss_cookie; 325 __u32 chain; 326 }; 327 __u16 mru; 328 __u16 zone; 329 u8 post_ct:1; 330 u8 post_ct_snat:1; 331 u8 post_ct_dnat:1; 332 u8 act_miss:1; /* Set if act_miss_cookie is used */ 333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 334 }; 335 #endif 336 337 struct sk_buff_head { 338 /* These two members must be first to match sk_buff. */ 339 struct_group_tagged(sk_buff_list, list, 340 struct sk_buff *next; 341 struct sk_buff *prev; 342 ); 343 344 __u32 qlen; 345 spinlock_t lock; 346 }; 347 348 struct sk_buff; 349 350 #ifndef CONFIG_MAX_SKB_FRAGS 351 # define CONFIG_MAX_SKB_FRAGS 17 352 #endif 353 354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 355 356 extern int sysctl_max_skb_frags; 357 358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 359 * segment using its current segmentation instead. 360 */ 361 #define GSO_BY_FRAGS 0xFFFF 362 363 typedef struct skb_frag { 364 netmem_ref netmem; 365 unsigned int len; 366 unsigned int offset; 367 } skb_frag_t; 368 369 /** 370 * skb_frag_size() - Returns the size of a skb fragment 371 * @frag: skb fragment 372 */ 373 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 374 { 375 return frag->len; 376 } 377 378 /** 379 * skb_frag_size_set() - Sets the size of a skb fragment 380 * @frag: skb fragment 381 * @size: size of fragment 382 */ 383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 384 { 385 frag->len = size; 386 } 387 388 /** 389 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 390 * @frag: skb fragment 391 * @delta: value to add 392 */ 393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 394 { 395 frag->len += delta; 396 } 397 398 /** 399 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 400 * @frag: skb fragment 401 * @delta: value to subtract 402 */ 403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 404 { 405 frag->len -= delta; 406 } 407 408 /** 409 * skb_frag_must_loop - Test if %p is a high memory page 410 * @p: fragment's page 411 */ 412 static inline bool skb_frag_must_loop(struct page *p) 413 { 414 #if defined(CONFIG_HIGHMEM) 415 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 416 return true; 417 #endif 418 return false; 419 } 420 421 /** 422 * skb_frag_foreach_page - loop over pages in a fragment 423 * 424 * @f: skb frag to operate on 425 * @f_off: offset from start of f->netmem 426 * @f_len: length from f_off to loop over 427 * @p: (temp var) current page 428 * @p_off: (temp var) offset from start of current page, 429 * non-zero only on first page. 430 * @p_len: (temp var) length in current page, 431 * < PAGE_SIZE only on first and last page. 432 * @copied: (temp var) length so far, excluding current p_len. 433 * 434 * A fragment can hold a compound page, in which case per-page 435 * operations, notably kmap_atomic, must be called for each 436 * regular page. 437 */ 438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 439 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 440 p_off = (f_off) & (PAGE_SIZE - 1), \ 441 p_len = skb_frag_must_loop(p) ? \ 442 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 443 copied = 0; \ 444 copied < f_len; \ 445 copied += p_len, p++, p_off = 0, \ 446 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 447 448 /** 449 * struct skb_shared_hwtstamps - hardware time stamps 450 * @hwtstamp: hardware time stamp transformed into duration 451 * since arbitrary point in time 452 * @netdev_data: address/cookie of network device driver used as 453 * reference to actual hardware time stamp 454 * 455 * Software time stamps generated by ktime_get_real() are stored in 456 * skb->tstamp. 457 * 458 * hwtstamps can only be compared against other hwtstamps from 459 * the same device. 460 * 461 * This structure is attached to packets as part of the 462 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 463 */ 464 struct skb_shared_hwtstamps { 465 union { 466 ktime_t hwtstamp; 467 void *netdev_data; 468 }; 469 }; 470 471 /* Definitions for tx_flags in struct skb_shared_info */ 472 enum { 473 /* generate hardware time stamp */ 474 SKBTX_HW_TSTAMP = 1 << 0, 475 476 /* generate software time stamp when queueing packet to NIC */ 477 SKBTX_SW_TSTAMP = 1 << 1, 478 479 /* device driver is going to provide hardware time stamp */ 480 SKBTX_IN_PROGRESS = 1 << 2, 481 482 /* generate hardware time stamp based on cycles if supported */ 483 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 484 485 /* generate wifi status information (where possible) */ 486 SKBTX_WIFI_STATUS = 1 << 4, 487 488 /* determine hardware time stamp based on time or cycles */ 489 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 490 491 /* generate software time stamp when entering packet scheduling */ 492 SKBTX_SCHED_TSTAMP = 1 << 6, 493 }; 494 495 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 496 SKBTX_SCHED_TSTAMP) 497 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 498 SKBTX_HW_TSTAMP_USE_CYCLES | \ 499 SKBTX_ANY_SW_TSTAMP) 500 501 /* Definitions for flags in struct skb_shared_info */ 502 enum { 503 /* use zcopy routines */ 504 SKBFL_ZEROCOPY_ENABLE = BIT(0), 505 506 /* This indicates at least one fragment might be overwritten 507 * (as in vmsplice(), sendfile() ...) 508 * If we need to compute a TX checksum, we'll need to copy 509 * all frags to avoid possible bad checksum 510 */ 511 SKBFL_SHARED_FRAG = BIT(1), 512 513 /* segment contains only zerocopy data and should not be 514 * charged to the kernel memory. 515 */ 516 SKBFL_PURE_ZEROCOPY = BIT(2), 517 518 SKBFL_DONT_ORPHAN = BIT(3), 519 520 /* page references are managed by the ubuf_info, so it's safe to 521 * use frags only up until ubuf_info is released 522 */ 523 SKBFL_MANAGED_FRAG_REFS = BIT(4), 524 }; 525 526 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 527 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 528 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 529 530 struct ubuf_info_ops { 531 void (*complete)(struct sk_buff *, struct ubuf_info *, 532 bool zerocopy_success); 533 /* has to be compatible with skb_zcopy_set() */ 534 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); 535 }; 536 537 /* 538 * The callback notifies userspace to release buffers when skb DMA is done in 539 * lower device, the skb last reference should be 0 when calling this. 540 * The zerocopy_success argument is true if zero copy transmit occurred, 541 * false on data copy or out of memory error caused by data copy attempt. 542 * The ctx field is used to track device context. 543 * The desc field is used to track userspace buffer index. 544 */ 545 struct ubuf_info { 546 const struct ubuf_info_ops *ops; 547 refcount_t refcnt; 548 u8 flags; 549 }; 550 551 struct ubuf_info_msgzc { 552 struct ubuf_info ubuf; 553 554 union { 555 struct { 556 unsigned long desc; 557 void *ctx; 558 }; 559 struct { 560 u32 id; 561 u16 len; 562 u16 zerocopy:1; 563 u32 bytelen; 564 }; 565 }; 566 567 struct mmpin { 568 struct user_struct *user; 569 unsigned int num_pg; 570 } mmp; 571 }; 572 573 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 574 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 575 ubuf) 576 577 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 578 void mm_unaccount_pinned_pages(struct mmpin *mmp); 579 580 /* Preserve some data across TX submission and completion. 581 * 582 * Note, this state is stored in the driver. Extending the layout 583 * might need some special care. 584 */ 585 struct xsk_tx_metadata_compl { 586 __u64 *tx_timestamp; 587 }; 588 589 /* This data is invariant across clones and lives at 590 * the end of the header data, ie. at skb->end. 591 */ 592 struct skb_shared_info { 593 __u8 flags; 594 __u8 meta_len; 595 __u8 nr_frags; 596 __u8 tx_flags; 597 unsigned short gso_size; 598 /* Warning: this field is not always filled in (UFO)! */ 599 unsigned short gso_segs; 600 struct sk_buff *frag_list; 601 union { 602 struct skb_shared_hwtstamps hwtstamps; 603 struct xsk_tx_metadata_compl xsk_meta; 604 }; 605 unsigned int gso_type; 606 u32 tskey; 607 608 /* 609 * Warning : all fields before dataref are cleared in __alloc_skb() 610 */ 611 atomic_t dataref; 612 unsigned int xdp_frags_size; 613 614 /* Intermediate layers must ensure that destructor_arg 615 * remains valid until skb destructor */ 616 void * destructor_arg; 617 618 /* must be last field, see pskb_expand_head() */ 619 skb_frag_t frags[MAX_SKB_FRAGS]; 620 }; 621 622 /** 623 * DOC: dataref and headerless skbs 624 * 625 * Transport layers send out clones of payload skbs they hold for 626 * retransmissions. To allow lower layers of the stack to prepend their headers 627 * we split &skb_shared_info.dataref into two halves. 628 * The lower 16 bits count the overall number of references. 629 * The higher 16 bits indicate how many of the references are payload-only. 630 * skb_header_cloned() checks if skb is allowed to add / write the headers. 631 * 632 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 633 * (via __skb_header_release()). Any clone created from marked skb will get 634 * &sk_buff.hdr_len populated with the available headroom. 635 * If there's the only clone in existence it's able to modify the headroom 636 * at will. The sequence of calls inside the transport layer is:: 637 * 638 * <alloc skb> 639 * skb_reserve() 640 * __skb_header_release() 641 * skb_clone() 642 * // send the clone down the stack 643 * 644 * This is not a very generic construct and it depends on the transport layers 645 * doing the right thing. In practice there's usually only one payload-only skb. 646 * Having multiple payload-only skbs with different lengths of hdr_len is not 647 * possible. The payload-only skbs should never leave their owner. 648 */ 649 #define SKB_DATAREF_SHIFT 16 650 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 651 652 653 enum { 654 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 655 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 656 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 657 }; 658 659 enum { 660 SKB_GSO_TCPV4 = 1 << 0, 661 662 /* This indicates the skb is from an untrusted source. */ 663 SKB_GSO_DODGY = 1 << 1, 664 665 /* This indicates the tcp segment has CWR set. */ 666 SKB_GSO_TCP_ECN = 1 << 2, 667 668 SKB_GSO_TCP_FIXEDID = 1 << 3, 669 670 SKB_GSO_TCPV6 = 1 << 4, 671 672 SKB_GSO_FCOE = 1 << 5, 673 674 SKB_GSO_GRE = 1 << 6, 675 676 SKB_GSO_GRE_CSUM = 1 << 7, 677 678 SKB_GSO_IPXIP4 = 1 << 8, 679 680 SKB_GSO_IPXIP6 = 1 << 9, 681 682 SKB_GSO_UDP_TUNNEL = 1 << 10, 683 684 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 685 686 SKB_GSO_PARTIAL = 1 << 12, 687 688 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 689 690 SKB_GSO_SCTP = 1 << 14, 691 692 SKB_GSO_ESP = 1 << 15, 693 694 SKB_GSO_UDP = 1 << 16, 695 696 SKB_GSO_UDP_L4 = 1 << 17, 697 698 SKB_GSO_FRAGLIST = 1 << 18, 699 }; 700 701 #if BITS_PER_LONG > 32 702 #define NET_SKBUFF_DATA_USES_OFFSET 1 703 #endif 704 705 #ifdef NET_SKBUFF_DATA_USES_OFFSET 706 typedef unsigned int sk_buff_data_t; 707 #else 708 typedef unsigned char *sk_buff_data_t; 709 #endif 710 711 /** 712 * DOC: Basic sk_buff geometry 713 * 714 * struct sk_buff itself is a metadata structure and does not hold any packet 715 * data. All the data is held in associated buffers. 716 * 717 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 718 * into two parts: 719 * 720 * - data buffer, containing headers and sometimes payload; 721 * this is the part of the skb operated on by the common helpers 722 * such as skb_put() or skb_pull(); 723 * - shared info (struct skb_shared_info) which holds an array of pointers 724 * to read-only data in the (page, offset, length) format. 725 * 726 * Optionally &skb_shared_info.frag_list may point to another skb. 727 * 728 * Basic diagram may look like this:: 729 * 730 * --------------- 731 * | sk_buff | 732 * --------------- 733 * ,--------------------------- + head 734 * / ,----------------- + data 735 * / / ,----------- + tail 736 * | | | , + end 737 * | | | | 738 * v v v v 739 * ----------------------------------------------- 740 * | headroom | data | tailroom | skb_shared_info | 741 * ----------------------------------------------- 742 * + [page frag] 743 * + [page frag] 744 * + [page frag] 745 * + [page frag] --------- 746 * + frag_list --> | sk_buff | 747 * --------- 748 * 749 */ 750 751 /** 752 * struct sk_buff - socket buffer 753 * @next: Next buffer in list 754 * @prev: Previous buffer in list 755 * @tstamp: Time we arrived/left 756 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 757 * for retransmit timer 758 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 759 * @list: queue head 760 * @ll_node: anchor in an llist (eg socket defer_list) 761 * @sk: Socket we are owned by 762 * @dev: Device we arrived on/are leaving by 763 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 764 * @cb: Control buffer. Free for use by every layer. Put private vars here 765 * @_skb_refdst: destination entry (with norefcount bit) 766 * @len: Length of actual data 767 * @data_len: Data length 768 * @mac_len: Length of link layer header 769 * @hdr_len: writable header length of cloned skb 770 * @csum: Checksum (must include start/offset pair) 771 * @csum_start: Offset from skb->head where checksumming should start 772 * @csum_offset: Offset from csum_start where checksum should be stored 773 * @priority: Packet queueing priority 774 * @ignore_df: allow local fragmentation 775 * @cloned: Head may be cloned (check refcnt to be sure) 776 * @ip_summed: Driver fed us an IP checksum 777 * @nohdr: Payload reference only, must not modify header 778 * @pkt_type: Packet class 779 * @fclone: skbuff clone status 780 * @ipvs_property: skbuff is owned by ipvs 781 * @inner_protocol_type: whether the inner protocol is 782 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 783 * @remcsum_offload: remote checksum offload is enabled 784 * @offload_fwd_mark: Packet was L2-forwarded in hardware 785 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 786 * @tc_skip_classify: do not classify packet. set by IFB device 787 * @tc_at_ingress: used within tc_classify to distinguish in/egress 788 * @redirected: packet was redirected by packet classifier 789 * @from_ingress: packet was redirected from the ingress path 790 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 791 * @peeked: this packet has been seen already, so stats have been 792 * done for it, don't do them again 793 * @nf_trace: netfilter packet trace flag 794 * @protocol: Packet protocol from driver 795 * @destructor: Destruct function 796 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 797 * @_sk_redir: socket redirection information for skmsg 798 * @_nfct: Associated connection, if any (with nfctinfo bits) 799 * @skb_iif: ifindex of device we arrived on 800 * @tc_index: Traffic control index 801 * @hash: the packet hash 802 * @queue_mapping: Queue mapping for multiqueue devices 803 * @head_frag: skb was allocated from page fragments, 804 * not allocated by kmalloc() or vmalloc(). 805 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 806 * @pp_recycle: mark the packet for recycling instead of freeing (implies 807 * page_pool support on driver) 808 * @active_extensions: active extensions (skb_ext_id types) 809 * @ndisc_nodetype: router type (from link layer) 810 * @ooo_okay: allow the mapping of a socket to a queue to be changed 811 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 812 * ports. 813 * @sw_hash: indicates hash was computed in software stack 814 * @wifi_acked_valid: wifi_acked was set 815 * @wifi_acked: whether frame was acked on wifi or not 816 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 817 * @encapsulation: indicates the inner headers in the skbuff are valid 818 * @encap_hdr_csum: software checksum is needed 819 * @csum_valid: checksum is already valid 820 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 821 * @csum_complete_sw: checksum was completed by software 822 * @csum_level: indicates the number of consecutive checksums found in 823 * the packet minus one that have been verified as 824 * CHECKSUM_UNNECESSARY (max 3) 825 * @dst_pending_confirm: need to confirm neighbour 826 * @decrypted: Decrypted SKB 827 * @slow_gro: state present at GRO time, slower prepare step required 828 * @mono_delivery_time: When set, skb->tstamp has the 829 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 830 * skb->tstamp has the (rcv) timestamp at ingress and 831 * delivery_time at egress. 832 * @napi_id: id of the NAPI struct this skb came from 833 * @sender_cpu: (aka @napi_id) source CPU in XPS 834 * @alloc_cpu: CPU which did the skb allocation. 835 * @secmark: security marking 836 * @mark: Generic packet mark 837 * @reserved_tailroom: (aka @mark) number of bytes of free space available 838 * at the tail of an sk_buff 839 * @vlan_all: vlan fields (proto & tci) 840 * @vlan_proto: vlan encapsulation protocol 841 * @vlan_tci: vlan tag control information 842 * @inner_protocol: Protocol (encapsulation) 843 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 844 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 845 * @inner_transport_header: Inner transport layer header (encapsulation) 846 * @inner_network_header: Network layer header (encapsulation) 847 * @inner_mac_header: Link layer header (encapsulation) 848 * @transport_header: Transport layer header 849 * @network_header: Network layer header 850 * @mac_header: Link layer header 851 * @kcov_handle: KCOV remote handle for remote coverage collection 852 * @tail: Tail pointer 853 * @end: End pointer 854 * @head: Head of buffer 855 * @data: Data head pointer 856 * @truesize: Buffer size 857 * @users: User count - see {datagram,tcp}.c 858 * @extensions: allocated extensions, valid if active_extensions is nonzero 859 */ 860 861 struct sk_buff { 862 union { 863 struct { 864 /* These two members must be first to match sk_buff_head. */ 865 struct sk_buff *next; 866 struct sk_buff *prev; 867 868 union { 869 struct net_device *dev; 870 /* Some protocols might use this space to store information, 871 * while device pointer would be NULL. 872 * UDP receive path is one user. 873 */ 874 unsigned long dev_scratch; 875 }; 876 }; 877 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 878 struct list_head list; 879 struct llist_node ll_node; 880 }; 881 882 struct sock *sk; 883 884 union { 885 ktime_t tstamp; 886 u64 skb_mstamp_ns; /* earliest departure time */ 887 }; 888 /* 889 * This is the control buffer. It is free to use for every 890 * layer. Please put your private variables there. If you 891 * want to keep them across layers you have to do a skb_clone() 892 * first. This is owned by whoever has the skb queued ATM. 893 */ 894 char cb[48] __aligned(8); 895 896 union { 897 struct { 898 unsigned long _skb_refdst; 899 void (*destructor)(struct sk_buff *skb); 900 }; 901 struct list_head tcp_tsorted_anchor; 902 #ifdef CONFIG_NET_SOCK_MSG 903 unsigned long _sk_redir; 904 #endif 905 }; 906 907 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 908 unsigned long _nfct; 909 #endif 910 unsigned int len, 911 data_len; 912 __u16 mac_len, 913 hdr_len; 914 915 /* Following fields are _not_ copied in __copy_skb_header() 916 * Note that queue_mapping is here mostly to fill a hole. 917 */ 918 __u16 queue_mapping; 919 920 /* if you move cloned around you also must adapt those constants */ 921 #ifdef __BIG_ENDIAN_BITFIELD 922 #define CLONED_MASK (1 << 7) 923 #else 924 #define CLONED_MASK 1 925 #endif 926 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 927 928 /* private: */ 929 __u8 __cloned_offset[0]; 930 /* public: */ 931 __u8 cloned:1, 932 nohdr:1, 933 fclone:2, 934 peeked:1, 935 head_frag:1, 936 pfmemalloc:1, 937 pp_recycle:1; /* page_pool recycle indicator */ 938 #ifdef CONFIG_SKB_EXTENSIONS 939 __u8 active_extensions; 940 #endif 941 942 /* Fields enclosed in headers group are copied 943 * using a single memcpy() in __copy_skb_header() 944 */ 945 struct_group(headers, 946 947 /* private: */ 948 __u8 __pkt_type_offset[0]; 949 /* public: */ 950 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 951 __u8 ignore_df:1; 952 __u8 dst_pending_confirm:1; 953 __u8 ip_summed:2; 954 __u8 ooo_okay:1; 955 956 /* private: */ 957 __u8 __mono_tc_offset[0]; 958 /* public: */ 959 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 960 #ifdef CONFIG_NET_XGRESS 961 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 962 __u8 tc_skip_classify:1; 963 #endif 964 __u8 remcsum_offload:1; 965 __u8 csum_complete_sw:1; 966 __u8 csum_level:2; 967 __u8 inner_protocol_type:1; 968 969 __u8 l4_hash:1; 970 __u8 sw_hash:1; 971 #ifdef CONFIG_WIRELESS 972 __u8 wifi_acked_valid:1; 973 __u8 wifi_acked:1; 974 #endif 975 __u8 no_fcs:1; 976 /* Indicates the inner headers are valid in the skbuff. */ 977 __u8 encapsulation:1; 978 __u8 encap_hdr_csum:1; 979 __u8 csum_valid:1; 980 #ifdef CONFIG_IPV6_NDISC_NODETYPE 981 __u8 ndisc_nodetype:2; 982 #endif 983 984 #if IS_ENABLED(CONFIG_IP_VS) 985 __u8 ipvs_property:1; 986 #endif 987 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 988 __u8 nf_trace:1; 989 #endif 990 #ifdef CONFIG_NET_SWITCHDEV 991 __u8 offload_fwd_mark:1; 992 __u8 offload_l3_fwd_mark:1; 993 #endif 994 __u8 redirected:1; 995 #ifdef CONFIG_NET_REDIRECT 996 __u8 from_ingress:1; 997 #endif 998 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 999 __u8 nf_skip_egress:1; 1000 #endif 1001 #ifdef CONFIG_SKB_DECRYPTED 1002 __u8 decrypted:1; 1003 #endif 1004 __u8 slow_gro:1; 1005 #if IS_ENABLED(CONFIG_IP_SCTP) 1006 __u8 csum_not_inet:1; 1007 #endif 1008 1009 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1010 __u16 tc_index; /* traffic control index */ 1011 #endif 1012 1013 u16 alloc_cpu; 1014 1015 union { 1016 __wsum csum; 1017 struct { 1018 __u16 csum_start; 1019 __u16 csum_offset; 1020 }; 1021 }; 1022 __u32 priority; 1023 int skb_iif; 1024 __u32 hash; 1025 union { 1026 u32 vlan_all; 1027 struct { 1028 __be16 vlan_proto; 1029 __u16 vlan_tci; 1030 }; 1031 }; 1032 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1033 union { 1034 unsigned int napi_id; 1035 unsigned int sender_cpu; 1036 }; 1037 #endif 1038 #ifdef CONFIG_NETWORK_SECMARK 1039 __u32 secmark; 1040 #endif 1041 1042 union { 1043 __u32 mark; 1044 __u32 reserved_tailroom; 1045 }; 1046 1047 union { 1048 __be16 inner_protocol; 1049 __u8 inner_ipproto; 1050 }; 1051 1052 __u16 inner_transport_header; 1053 __u16 inner_network_header; 1054 __u16 inner_mac_header; 1055 1056 __be16 protocol; 1057 __u16 transport_header; 1058 __u16 network_header; 1059 __u16 mac_header; 1060 1061 #ifdef CONFIG_KCOV 1062 u64 kcov_handle; 1063 #endif 1064 1065 ); /* end headers group */ 1066 1067 /* These elements must be at the end, see alloc_skb() for details. */ 1068 sk_buff_data_t tail; 1069 sk_buff_data_t end; 1070 unsigned char *head, 1071 *data; 1072 unsigned int truesize; 1073 refcount_t users; 1074 1075 #ifdef CONFIG_SKB_EXTENSIONS 1076 /* only usable after checking ->active_extensions != 0 */ 1077 struct skb_ext *extensions; 1078 #endif 1079 }; 1080 1081 /* if you move pkt_type around you also must adapt those constants */ 1082 #ifdef __BIG_ENDIAN_BITFIELD 1083 #define PKT_TYPE_MAX (7 << 5) 1084 #else 1085 #define PKT_TYPE_MAX 7 1086 #endif 1087 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1088 1089 /* if you move tc_at_ingress or mono_delivery_time 1090 * around, you also must adapt these constants. 1091 */ 1092 #ifdef __BIG_ENDIAN_BITFIELD 1093 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7) 1094 #define TC_AT_INGRESS_MASK (1 << 6) 1095 #else 1096 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0) 1097 #define TC_AT_INGRESS_MASK (1 << 1) 1098 #endif 1099 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1100 1101 #ifdef __KERNEL__ 1102 /* 1103 * Handling routines are only of interest to the kernel 1104 */ 1105 1106 #define SKB_ALLOC_FCLONE 0x01 1107 #define SKB_ALLOC_RX 0x02 1108 #define SKB_ALLOC_NAPI 0x04 1109 1110 /** 1111 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1112 * @skb: buffer 1113 */ 1114 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1115 { 1116 return unlikely(skb->pfmemalloc); 1117 } 1118 1119 /* 1120 * skb might have a dst pointer attached, refcounted or not. 1121 * _skb_refdst low order bit is set if refcount was _not_ taken 1122 */ 1123 #define SKB_DST_NOREF 1UL 1124 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1125 1126 /** 1127 * skb_dst - returns skb dst_entry 1128 * @skb: buffer 1129 * 1130 * Returns skb dst_entry, regardless of reference taken or not. 1131 */ 1132 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1133 { 1134 /* If refdst was not refcounted, check we still are in a 1135 * rcu_read_lock section 1136 */ 1137 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1138 !rcu_read_lock_held() && 1139 !rcu_read_lock_bh_held()); 1140 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1141 } 1142 1143 /** 1144 * skb_dst_set - sets skb dst 1145 * @skb: buffer 1146 * @dst: dst entry 1147 * 1148 * Sets skb dst, assuming a reference was taken on dst and should 1149 * be released by skb_dst_drop() 1150 */ 1151 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1152 { 1153 skb->slow_gro |= !!dst; 1154 skb->_skb_refdst = (unsigned long)dst; 1155 } 1156 1157 /** 1158 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1159 * @skb: buffer 1160 * @dst: dst entry 1161 * 1162 * Sets skb dst, assuming a reference was not taken on dst. 1163 * If dst entry is cached, we do not take reference and dst_release 1164 * will be avoided by refdst_drop. If dst entry is not cached, we take 1165 * reference, so that last dst_release can destroy the dst immediately. 1166 */ 1167 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1168 { 1169 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1170 skb->slow_gro |= !!dst; 1171 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1172 } 1173 1174 /** 1175 * skb_dst_is_noref - Test if skb dst isn't refcounted 1176 * @skb: buffer 1177 */ 1178 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1179 { 1180 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1181 } 1182 1183 /** 1184 * skb_rtable - Returns the skb &rtable 1185 * @skb: buffer 1186 */ 1187 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1188 { 1189 return (struct rtable *)skb_dst(skb); 1190 } 1191 1192 /* For mangling skb->pkt_type from user space side from applications 1193 * such as nft, tc, etc, we only allow a conservative subset of 1194 * possible pkt_types to be set. 1195 */ 1196 static inline bool skb_pkt_type_ok(u32 ptype) 1197 { 1198 return ptype <= PACKET_OTHERHOST; 1199 } 1200 1201 /** 1202 * skb_napi_id - Returns the skb's NAPI id 1203 * @skb: buffer 1204 */ 1205 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1206 { 1207 #ifdef CONFIG_NET_RX_BUSY_POLL 1208 return skb->napi_id; 1209 #else 1210 return 0; 1211 #endif 1212 } 1213 1214 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1215 { 1216 #ifdef CONFIG_WIRELESS 1217 return skb->wifi_acked_valid; 1218 #else 1219 return 0; 1220 #endif 1221 } 1222 1223 /** 1224 * skb_unref - decrement the skb's reference count 1225 * @skb: buffer 1226 * 1227 * Returns true if we can free the skb. 1228 */ 1229 static inline bool skb_unref(struct sk_buff *skb) 1230 { 1231 if (unlikely(!skb)) 1232 return false; 1233 if (likely(refcount_read(&skb->users) == 1)) 1234 smp_rmb(); 1235 else if (likely(!refcount_dec_and_test(&skb->users))) 1236 return false; 1237 1238 return true; 1239 } 1240 1241 static inline bool skb_data_unref(const struct sk_buff *skb, 1242 struct skb_shared_info *shinfo) 1243 { 1244 int bias; 1245 1246 if (!skb->cloned) 1247 return true; 1248 1249 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1250 1251 if (atomic_read(&shinfo->dataref) == bias) 1252 smp_rmb(); 1253 else if (atomic_sub_return(bias, &shinfo->dataref)) 1254 return false; 1255 1256 return true; 1257 } 1258 1259 void __fix_address 1260 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1261 1262 /** 1263 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1264 * @skb: buffer to free 1265 */ 1266 static inline void kfree_skb(struct sk_buff *skb) 1267 { 1268 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1269 } 1270 1271 void skb_release_head_state(struct sk_buff *skb); 1272 void kfree_skb_list_reason(struct sk_buff *segs, 1273 enum skb_drop_reason reason); 1274 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1275 void skb_tx_error(struct sk_buff *skb); 1276 1277 static inline void kfree_skb_list(struct sk_buff *segs) 1278 { 1279 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1280 } 1281 1282 #ifdef CONFIG_TRACEPOINTS 1283 void consume_skb(struct sk_buff *skb); 1284 #else 1285 static inline void consume_skb(struct sk_buff *skb) 1286 { 1287 return kfree_skb(skb); 1288 } 1289 #endif 1290 1291 void __consume_stateless_skb(struct sk_buff *skb); 1292 void __kfree_skb(struct sk_buff *skb); 1293 1294 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1295 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1296 bool *fragstolen, int *delta_truesize); 1297 1298 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1299 int node); 1300 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1301 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1302 struct sk_buff *build_skb_around(struct sk_buff *skb, 1303 void *data, unsigned int frag_size); 1304 void skb_attempt_defer_free(struct sk_buff *skb); 1305 1306 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1307 struct sk_buff *slab_build_skb(void *data); 1308 1309 /** 1310 * alloc_skb - allocate a network buffer 1311 * @size: size to allocate 1312 * @priority: allocation mask 1313 * 1314 * This function is a convenient wrapper around __alloc_skb(). 1315 */ 1316 static inline struct sk_buff *alloc_skb(unsigned int size, 1317 gfp_t priority) 1318 { 1319 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1320 } 1321 1322 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1323 unsigned long data_len, 1324 int max_page_order, 1325 int *errcode, 1326 gfp_t gfp_mask); 1327 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1328 1329 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1330 struct sk_buff_fclones { 1331 struct sk_buff skb1; 1332 1333 struct sk_buff skb2; 1334 1335 refcount_t fclone_ref; 1336 }; 1337 1338 /** 1339 * skb_fclone_busy - check if fclone is busy 1340 * @sk: socket 1341 * @skb: buffer 1342 * 1343 * Returns true if skb is a fast clone, and its clone is not freed. 1344 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1345 * so we also check that didn't happen. 1346 */ 1347 static inline bool skb_fclone_busy(const struct sock *sk, 1348 const struct sk_buff *skb) 1349 { 1350 const struct sk_buff_fclones *fclones; 1351 1352 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1353 1354 return skb->fclone == SKB_FCLONE_ORIG && 1355 refcount_read(&fclones->fclone_ref) > 1 && 1356 READ_ONCE(fclones->skb2.sk) == sk; 1357 } 1358 1359 /** 1360 * alloc_skb_fclone - allocate a network buffer from fclone cache 1361 * @size: size to allocate 1362 * @priority: allocation mask 1363 * 1364 * This function is a convenient wrapper around __alloc_skb(). 1365 */ 1366 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1367 gfp_t priority) 1368 { 1369 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1370 } 1371 1372 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1373 void skb_headers_offset_update(struct sk_buff *skb, int off); 1374 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1375 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1376 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1377 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1378 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1379 gfp_t gfp_mask, bool fclone); 1380 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1381 gfp_t gfp_mask) 1382 { 1383 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1384 } 1385 1386 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1387 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1388 unsigned int headroom); 1389 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1390 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1391 int newtailroom, gfp_t priority); 1392 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1393 int offset, int len); 1394 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1395 int offset, int len); 1396 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1397 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1398 1399 /** 1400 * skb_pad - zero pad the tail of an skb 1401 * @skb: buffer to pad 1402 * @pad: space to pad 1403 * 1404 * Ensure that a buffer is followed by a padding area that is zero 1405 * filled. Used by network drivers which may DMA or transfer data 1406 * beyond the buffer end onto the wire. 1407 * 1408 * May return error in out of memory cases. The skb is freed on error. 1409 */ 1410 static inline int skb_pad(struct sk_buff *skb, int pad) 1411 { 1412 return __skb_pad(skb, pad, true); 1413 } 1414 #define dev_kfree_skb(a) consume_skb(a) 1415 1416 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1417 int offset, size_t size, size_t max_frags); 1418 1419 struct skb_seq_state { 1420 __u32 lower_offset; 1421 __u32 upper_offset; 1422 __u32 frag_idx; 1423 __u32 stepped_offset; 1424 struct sk_buff *root_skb; 1425 struct sk_buff *cur_skb; 1426 __u8 *frag_data; 1427 __u32 frag_off; 1428 }; 1429 1430 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1431 unsigned int to, struct skb_seq_state *st); 1432 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1433 struct skb_seq_state *st); 1434 void skb_abort_seq_read(struct skb_seq_state *st); 1435 1436 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1437 unsigned int to, struct ts_config *config); 1438 1439 /* 1440 * Packet hash types specify the type of hash in skb_set_hash. 1441 * 1442 * Hash types refer to the protocol layer addresses which are used to 1443 * construct a packet's hash. The hashes are used to differentiate or identify 1444 * flows of the protocol layer for the hash type. Hash types are either 1445 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1446 * 1447 * Properties of hashes: 1448 * 1449 * 1) Two packets in different flows have different hash values 1450 * 2) Two packets in the same flow should have the same hash value 1451 * 1452 * A hash at a higher layer is considered to be more specific. A driver should 1453 * set the most specific hash possible. 1454 * 1455 * A driver cannot indicate a more specific hash than the layer at which a hash 1456 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1457 * 1458 * A driver may indicate a hash level which is less specific than the 1459 * actual layer the hash was computed on. For instance, a hash computed 1460 * at L4 may be considered an L3 hash. This should only be done if the 1461 * driver can't unambiguously determine that the HW computed the hash at 1462 * the higher layer. Note that the "should" in the second property above 1463 * permits this. 1464 */ 1465 enum pkt_hash_types { 1466 PKT_HASH_TYPE_NONE, /* Undefined type */ 1467 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1468 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1469 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1470 }; 1471 1472 static inline void skb_clear_hash(struct sk_buff *skb) 1473 { 1474 skb->hash = 0; 1475 skb->sw_hash = 0; 1476 skb->l4_hash = 0; 1477 } 1478 1479 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1480 { 1481 if (!skb->l4_hash) 1482 skb_clear_hash(skb); 1483 } 1484 1485 static inline void 1486 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1487 { 1488 skb->l4_hash = is_l4; 1489 skb->sw_hash = is_sw; 1490 skb->hash = hash; 1491 } 1492 1493 static inline void 1494 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1495 { 1496 /* Used by drivers to set hash from HW */ 1497 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1498 } 1499 1500 static inline void 1501 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1502 { 1503 __skb_set_hash(skb, hash, true, is_l4); 1504 } 1505 1506 void __skb_get_hash(struct sk_buff *skb); 1507 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1508 u32 skb_get_poff(const struct sk_buff *skb); 1509 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1510 const struct flow_keys_basic *keys, int hlen); 1511 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1512 const void *data, int hlen_proto); 1513 1514 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1515 int thoff, u8 ip_proto) 1516 { 1517 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1518 } 1519 1520 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1521 const struct flow_dissector_key *key, 1522 unsigned int key_count); 1523 1524 struct bpf_flow_dissector; 1525 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1526 __be16 proto, int nhoff, int hlen, unsigned int flags); 1527 1528 bool __skb_flow_dissect(const struct net *net, 1529 const struct sk_buff *skb, 1530 struct flow_dissector *flow_dissector, 1531 void *target_container, const void *data, 1532 __be16 proto, int nhoff, int hlen, unsigned int flags); 1533 1534 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1535 struct flow_dissector *flow_dissector, 1536 void *target_container, unsigned int flags) 1537 { 1538 return __skb_flow_dissect(NULL, skb, flow_dissector, 1539 target_container, NULL, 0, 0, 0, flags); 1540 } 1541 1542 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1543 struct flow_keys *flow, 1544 unsigned int flags) 1545 { 1546 memset(flow, 0, sizeof(*flow)); 1547 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1548 flow, NULL, 0, 0, 0, flags); 1549 } 1550 1551 static inline bool 1552 skb_flow_dissect_flow_keys_basic(const struct net *net, 1553 const struct sk_buff *skb, 1554 struct flow_keys_basic *flow, 1555 const void *data, __be16 proto, 1556 int nhoff, int hlen, unsigned int flags) 1557 { 1558 memset(flow, 0, sizeof(*flow)); 1559 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1560 data, proto, nhoff, hlen, flags); 1561 } 1562 1563 void skb_flow_dissect_meta(const struct sk_buff *skb, 1564 struct flow_dissector *flow_dissector, 1565 void *target_container); 1566 1567 /* Gets a skb connection tracking info, ctinfo map should be a 1568 * map of mapsize to translate enum ip_conntrack_info states 1569 * to user states. 1570 */ 1571 void 1572 skb_flow_dissect_ct(const struct sk_buff *skb, 1573 struct flow_dissector *flow_dissector, 1574 void *target_container, 1575 u16 *ctinfo_map, size_t mapsize, 1576 bool post_ct, u16 zone); 1577 void 1578 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1579 struct flow_dissector *flow_dissector, 1580 void *target_container); 1581 1582 void skb_flow_dissect_hash(const struct sk_buff *skb, 1583 struct flow_dissector *flow_dissector, 1584 void *target_container); 1585 1586 static inline __u32 skb_get_hash(struct sk_buff *skb) 1587 { 1588 if (!skb->l4_hash && !skb->sw_hash) 1589 __skb_get_hash(skb); 1590 1591 return skb->hash; 1592 } 1593 1594 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1595 { 1596 if (!skb->l4_hash && !skb->sw_hash) { 1597 struct flow_keys keys; 1598 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1599 1600 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1601 } 1602 1603 return skb->hash; 1604 } 1605 1606 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1607 const siphash_key_t *perturb); 1608 1609 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1610 { 1611 return skb->hash; 1612 } 1613 1614 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1615 { 1616 to->hash = from->hash; 1617 to->sw_hash = from->sw_hash; 1618 to->l4_hash = from->l4_hash; 1619 }; 1620 1621 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1622 const struct sk_buff *skb2) 1623 { 1624 #ifdef CONFIG_SKB_DECRYPTED 1625 return skb2->decrypted - skb1->decrypted; 1626 #else 1627 return 0; 1628 #endif 1629 } 1630 1631 static inline bool skb_is_decrypted(const struct sk_buff *skb) 1632 { 1633 #ifdef CONFIG_SKB_DECRYPTED 1634 return skb->decrypted; 1635 #else 1636 return false; 1637 #endif 1638 } 1639 1640 static inline void skb_copy_decrypted(struct sk_buff *to, 1641 const struct sk_buff *from) 1642 { 1643 #ifdef CONFIG_SKB_DECRYPTED 1644 to->decrypted = from->decrypted; 1645 #endif 1646 } 1647 1648 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1649 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1650 { 1651 return skb->head + skb->end; 1652 } 1653 1654 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1655 { 1656 return skb->end; 1657 } 1658 1659 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1660 { 1661 skb->end = offset; 1662 } 1663 #else 1664 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1665 { 1666 return skb->end; 1667 } 1668 1669 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1670 { 1671 return skb->end - skb->head; 1672 } 1673 1674 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1675 { 1676 skb->end = skb->head + offset; 1677 } 1678 #endif 1679 1680 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; 1681 1682 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1683 struct ubuf_info *uarg); 1684 1685 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1686 1687 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1688 struct sk_buff *skb, struct iov_iter *from, 1689 size_t length); 1690 1691 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1692 struct msghdr *msg, int len) 1693 { 1694 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1695 } 1696 1697 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1698 struct msghdr *msg, int len, 1699 struct ubuf_info *uarg); 1700 1701 /* Internal */ 1702 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1703 1704 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1705 { 1706 return &skb_shinfo(skb)->hwtstamps; 1707 } 1708 1709 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1710 { 1711 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1712 1713 return is_zcopy ? skb_uarg(skb) : NULL; 1714 } 1715 1716 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1717 { 1718 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1719 } 1720 1721 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1722 { 1723 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1724 } 1725 1726 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1727 const struct sk_buff *skb2) 1728 { 1729 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1730 } 1731 1732 static inline void net_zcopy_get(struct ubuf_info *uarg) 1733 { 1734 refcount_inc(&uarg->refcnt); 1735 } 1736 1737 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1738 { 1739 skb_shinfo(skb)->destructor_arg = uarg; 1740 skb_shinfo(skb)->flags |= uarg->flags; 1741 } 1742 1743 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1744 bool *have_ref) 1745 { 1746 if (skb && uarg && !skb_zcopy(skb)) { 1747 if (unlikely(have_ref && *have_ref)) 1748 *have_ref = false; 1749 else 1750 net_zcopy_get(uarg); 1751 skb_zcopy_init(skb, uarg); 1752 } 1753 } 1754 1755 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1756 { 1757 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1758 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1759 } 1760 1761 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1762 { 1763 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1764 } 1765 1766 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1767 { 1768 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1769 } 1770 1771 static inline void net_zcopy_put(struct ubuf_info *uarg) 1772 { 1773 if (uarg) 1774 uarg->ops->complete(NULL, uarg, true); 1775 } 1776 1777 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1778 { 1779 if (uarg) { 1780 if (uarg->ops == &msg_zerocopy_ubuf_ops) 1781 msg_zerocopy_put_abort(uarg, have_uref); 1782 else if (have_uref) 1783 net_zcopy_put(uarg); 1784 } 1785 } 1786 1787 /* Release a reference on a zerocopy structure */ 1788 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1789 { 1790 struct ubuf_info *uarg = skb_zcopy(skb); 1791 1792 if (uarg) { 1793 if (!skb_zcopy_is_nouarg(skb)) 1794 uarg->ops->complete(skb, uarg, zerocopy_success); 1795 1796 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1797 } 1798 } 1799 1800 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1801 1802 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1803 { 1804 if (unlikely(skb_zcopy_managed(skb))) 1805 __skb_zcopy_downgrade_managed(skb); 1806 } 1807 1808 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1809 { 1810 skb->next = NULL; 1811 } 1812 1813 static inline void skb_poison_list(struct sk_buff *skb) 1814 { 1815 #ifdef CONFIG_DEBUG_NET 1816 skb->next = SKB_LIST_POISON_NEXT; 1817 #endif 1818 } 1819 1820 /* Iterate through singly-linked GSO fragments of an skb. */ 1821 #define skb_list_walk_safe(first, skb, next_skb) \ 1822 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1823 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1824 1825 static inline void skb_list_del_init(struct sk_buff *skb) 1826 { 1827 __list_del_entry(&skb->list); 1828 skb_mark_not_on_list(skb); 1829 } 1830 1831 /** 1832 * skb_queue_empty - check if a queue is empty 1833 * @list: queue head 1834 * 1835 * Returns true if the queue is empty, false otherwise. 1836 */ 1837 static inline int skb_queue_empty(const struct sk_buff_head *list) 1838 { 1839 return list->next == (const struct sk_buff *) list; 1840 } 1841 1842 /** 1843 * skb_queue_empty_lockless - check if a queue is empty 1844 * @list: queue head 1845 * 1846 * Returns true if the queue is empty, false otherwise. 1847 * This variant can be used in lockless contexts. 1848 */ 1849 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1850 { 1851 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1852 } 1853 1854 1855 /** 1856 * skb_queue_is_last - check if skb is the last entry in the queue 1857 * @list: queue head 1858 * @skb: buffer 1859 * 1860 * Returns true if @skb is the last buffer on the list. 1861 */ 1862 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1863 const struct sk_buff *skb) 1864 { 1865 return skb->next == (const struct sk_buff *) list; 1866 } 1867 1868 /** 1869 * skb_queue_is_first - check if skb is the first entry in the queue 1870 * @list: queue head 1871 * @skb: buffer 1872 * 1873 * Returns true if @skb is the first buffer on the list. 1874 */ 1875 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1876 const struct sk_buff *skb) 1877 { 1878 return skb->prev == (const struct sk_buff *) list; 1879 } 1880 1881 /** 1882 * skb_queue_next - return the next packet in the queue 1883 * @list: queue head 1884 * @skb: current buffer 1885 * 1886 * Return the next packet in @list after @skb. It is only valid to 1887 * call this if skb_queue_is_last() evaluates to false. 1888 */ 1889 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1890 const struct sk_buff *skb) 1891 { 1892 /* This BUG_ON may seem severe, but if we just return then we 1893 * are going to dereference garbage. 1894 */ 1895 BUG_ON(skb_queue_is_last(list, skb)); 1896 return skb->next; 1897 } 1898 1899 /** 1900 * skb_queue_prev - return the prev packet in the queue 1901 * @list: queue head 1902 * @skb: current buffer 1903 * 1904 * Return the prev packet in @list before @skb. It is only valid to 1905 * call this if skb_queue_is_first() evaluates to false. 1906 */ 1907 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1908 const struct sk_buff *skb) 1909 { 1910 /* This BUG_ON may seem severe, but if we just return then we 1911 * are going to dereference garbage. 1912 */ 1913 BUG_ON(skb_queue_is_first(list, skb)); 1914 return skb->prev; 1915 } 1916 1917 /** 1918 * skb_get - reference buffer 1919 * @skb: buffer to reference 1920 * 1921 * Makes another reference to a socket buffer and returns a pointer 1922 * to the buffer. 1923 */ 1924 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1925 { 1926 refcount_inc(&skb->users); 1927 return skb; 1928 } 1929 1930 /* 1931 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1932 */ 1933 1934 /** 1935 * skb_cloned - is the buffer a clone 1936 * @skb: buffer to check 1937 * 1938 * Returns true if the buffer was generated with skb_clone() and is 1939 * one of multiple shared copies of the buffer. Cloned buffers are 1940 * shared data so must not be written to under normal circumstances. 1941 */ 1942 static inline int skb_cloned(const struct sk_buff *skb) 1943 { 1944 return skb->cloned && 1945 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1946 } 1947 1948 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1949 { 1950 might_sleep_if(gfpflags_allow_blocking(pri)); 1951 1952 if (skb_cloned(skb)) 1953 return pskb_expand_head(skb, 0, 0, pri); 1954 1955 return 0; 1956 } 1957 1958 /* This variant of skb_unclone() makes sure skb->truesize 1959 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1960 * 1961 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1962 * when various debugging features are in place. 1963 */ 1964 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1965 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1966 { 1967 might_sleep_if(gfpflags_allow_blocking(pri)); 1968 1969 if (skb_cloned(skb)) 1970 return __skb_unclone_keeptruesize(skb, pri); 1971 return 0; 1972 } 1973 1974 /** 1975 * skb_header_cloned - is the header a clone 1976 * @skb: buffer to check 1977 * 1978 * Returns true if modifying the header part of the buffer requires 1979 * the data to be copied. 1980 */ 1981 static inline int skb_header_cloned(const struct sk_buff *skb) 1982 { 1983 int dataref; 1984 1985 if (!skb->cloned) 1986 return 0; 1987 1988 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1989 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1990 return dataref != 1; 1991 } 1992 1993 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1994 { 1995 might_sleep_if(gfpflags_allow_blocking(pri)); 1996 1997 if (skb_header_cloned(skb)) 1998 return pskb_expand_head(skb, 0, 0, pri); 1999 2000 return 0; 2001 } 2002 2003 /** 2004 * __skb_header_release() - allow clones to use the headroom 2005 * @skb: buffer to operate on 2006 * 2007 * See "DOC: dataref and headerless skbs". 2008 */ 2009 static inline void __skb_header_release(struct sk_buff *skb) 2010 { 2011 skb->nohdr = 1; 2012 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2013 } 2014 2015 2016 /** 2017 * skb_shared - is the buffer shared 2018 * @skb: buffer to check 2019 * 2020 * Returns true if more than one person has a reference to this 2021 * buffer. 2022 */ 2023 static inline int skb_shared(const struct sk_buff *skb) 2024 { 2025 return refcount_read(&skb->users) != 1; 2026 } 2027 2028 /** 2029 * skb_share_check - check if buffer is shared and if so clone it 2030 * @skb: buffer to check 2031 * @pri: priority for memory allocation 2032 * 2033 * If the buffer is shared the buffer is cloned and the old copy 2034 * drops a reference. A new clone with a single reference is returned. 2035 * If the buffer is not shared the original buffer is returned. When 2036 * being called from interrupt status or with spinlocks held pri must 2037 * be GFP_ATOMIC. 2038 * 2039 * NULL is returned on a memory allocation failure. 2040 */ 2041 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2042 { 2043 might_sleep_if(gfpflags_allow_blocking(pri)); 2044 if (skb_shared(skb)) { 2045 struct sk_buff *nskb = skb_clone(skb, pri); 2046 2047 if (likely(nskb)) 2048 consume_skb(skb); 2049 else 2050 kfree_skb(skb); 2051 skb = nskb; 2052 } 2053 return skb; 2054 } 2055 2056 /* 2057 * Copy shared buffers into a new sk_buff. We effectively do COW on 2058 * packets to handle cases where we have a local reader and forward 2059 * and a couple of other messy ones. The normal one is tcpdumping 2060 * a packet that's being forwarded. 2061 */ 2062 2063 /** 2064 * skb_unshare - make a copy of a shared buffer 2065 * @skb: buffer to check 2066 * @pri: priority for memory allocation 2067 * 2068 * If the socket buffer is a clone then this function creates a new 2069 * copy of the data, drops a reference count on the old copy and returns 2070 * the new copy with the reference count at 1. If the buffer is not a clone 2071 * the original buffer is returned. When called with a spinlock held or 2072 * from interrupt state @pri must be %GFP_ATOMIC 2073 * 2074 * %NULL is returned on a memory allocation failure. 2075 */ 2076 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2077 gfp_t pri) 2078 { 2079 might_sleep_if(gfpflags_allow_blocking(pri)); 2080 if (skb_cloned(skb)) { 2081 struct sk_buff *nskb = skb_copy(skb, pri); 2082 2083 /* Free our shared copy */ 2084 if (likely(nskb)) 2085 consume_skb(skb); 2086 else 2087 kfree_skb(skb); 2088 skb = nskb; 2089 } 2090 return skb; 2091 } 2092 2093 /** 2094 * skb_peek - peek at the head of an &sk_buff_head 2095 * @list_: list to peek at 2096 * 2097 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2098 * be careful with this one. A peek leaves the buffer on the 2099 * list and someone else may run off with it. You must hold 2100 * the appropriate locks or have a private queue to do this. 2101 * 2102 * Returns %NULL for an empty list or a pointer to the head element. 2103 * The reference count is not incremented and the reference is therefore 2104 * volatile. Use with caution. 2105 */ 2106 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2107 { 2108 struct sk_buff *skb = list_->next; 2109 2110 if (skb == (struct sk_buff *)list_) 2111 skb = NULL; 2112 return skb; 2113 } 2114 2115 /** 2116 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2117 * @list_: list to peek at 2118 * 2119 * Like skb_peek(), but the caller knows that the list is not empty. 2120 */ 2121 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2122 { 2123 return list_->next; 2124 } 2125 2126 /** 2127 * skb_peek_next - peek skb following the given one from a queue 2128 * @skb: skb to start from 2129 * @list_: list to peek at 2130 * 2131 * Returns %NULL when the end of the list is met or a pointer to the 2132 * next element. The reference count is not incremented and the 2133 * reference is therefore volatile. Use with caution. 2134 */ 2135 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2136 const struct sk_buff_head *list_) 2137 { 2138 struct sk_buff *next = skb->next; 2139 2140 if (next == (struct sk_buff *)list_) 2141 next = NULL; 2142 return next; 2143 } 2144 2145 /** 2146 * skb_peek_tail - peek at the tail of an &sk_buff_head 2147 * @list_: list to peek at 2148 * 2149 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2150 * be careful with this one. A peek leaves the buffer on the 2151 * list and someone else may run off with it. You must hold 2152 * the appropriate locks or have a private queue to do this. 2153 * 2154 * Returns %NULL for an empty list or a pointer to the tail element. 2155 * The reference count is not incremented and the reference is therefore 2156 * volatile. Use with caution. 2157 */ 2158 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2159 { 2160 struct sk_buff *skb = READ_ONCE(list_->prev); 2161 2162 if (skb == (struct sk_buff *)list_) 2163 skb = NULL; 2164 return skb; 2165 2166 } 2167 2168 /** 2169 * skb_queue_len - get queue length 2170 * @list_: list to measure 2171 * 2172 * Return the length of an &sk_buff queue. 2173 */ 2174 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2175 { 2176 return list_->qlen; 2177 } 2178 2179 /** 2180 * skb_queue_len_lockless - get queue length 2181 * @list_: list to measure 2182 * 2183 * Return the length of an &sk_buff queue. 2184 * This variant can be used in lockless contexts. 2185 */ 2186 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2187 { 2188 return READ_ONCE(list_->qlen); 2189 } 2190 2191 /** 2192 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2193 * @list: queue to initialize 2194 * 2195 * This initializes only the list and queue length aspects of 2196 * an sk_buff_head object. This allows to initialize the list 2197 * aspects of an sk_buff_head without reinitializing things like 2198 * the spinlock. It can also be used for on-stack sk_buff_head 2199 * objects where the spinlock is known to not be used. 2200 */ 2201 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2202 { 2203 list->prev = list->next = (struct sk_buff *)list; 2204 list->qlen = 0; 2205 } 2206 2207 /* 2208 * This function creates a split out lock class for each invocation; 2209 * this is needed for now since a whole lot of users of the skb-queue 2210 * infrastructure in drivers have different locking usage (in hardirq) 2211 * than the networking core (in softirq only). In the long run either the 2212 * network layer or drivers should need annotation to consolidate the 2213 * main types of usage into 3 classes. 2214 */ 2215 static inline void skb_queue_head_init(struct sk_buff_head *list) 2216 { 2217 spin_lock_init(&list->lock); 2218 __skb_queue_head_init(list); 2219 } 2220 2221 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2222 struct lock_class_key *class) 2223 { 2224 skb_queue_head_init(list); 2225 lockdep_set_class(&list->lock, class); 2226 } 2227 2228 /* 2229 * Insert an sk_buff on a list. 2230 * 2231 * The "__skb_xxxx()" functions are the non-atomic ones that 2232 * can only be called with interrupts disabled. 2233 */ 2234 static inline void __skb_insert(struct sk_buff *newsk, 2235 struct sk_buff *prev, struct sk_buff *next, 2236 struct sk_buff_head *list) 2237 { 2238 /* See skb_queue_empty_lockless() and skb_peek_tail() 2239 * for the opposite READ_ONCE() 2240 */ 2241 WRITE_ONCE(newsk->next, next); 2242 WRITE_ONCE(newsk->prev, prev); 2243 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2244 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2245 WRITE_ONCE(list->qlen, list->qlen + 1); 2246 } 2247 2248 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2249 struct sk_buff *prev, 2250 struct sk_buff *next) 2251 { 2252 struct sk_buff *first = list->next; 2253 struct sk_buff *last = list->prev; 2254 2255 WRITE_ONCE(first->prev, prev); 2256 WRITE_ONCE(prev->next, first); 2257 2258 WRITE_ONCE(last->next, next); 2259 WRITE_ONCE(next->prev, last); 2260 } 2261 2262 /** 2263 * skb_queue_splice - join two skb lists, this is designed for stacks 2264 * @list: the new list to add 2265 * @head: the place to add it in the first list 2266 */ 2267 static inline void skb_queue_splice(const struct sk_buff_head *list, 2268 struct sk_buff_head *head) 2269 { 2270 if (!skb_queue_empty(list)) { 2271 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2272 head->qlen += list->qlen; 2273 } 2274 } 2275 2276 /** 2277 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2278 * @list: the new list to add 2279 * @head: the place to add it in the first list 2280 * 2281 * The list at @list is reinitialised 2282 */ 2283 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2284 struct sk_buff_head *head) 2285 { 2286 if (!skb_queue_empty(list)) { 2287 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2288 head->qlen += list->qlen; 2289 __skb_queue_head_init(list); 2290 } 2291 } 2292 2293 /** 2294 * skb_queue_splice_tail - join two skb lists, each list being a queue 2295 * @list: the new list to add 2296 * @head: the place to add it in the first list 2297 */ 2298 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2299 struct sk_buff_head *head) 2300 { 2301 if (!skb_queue_empty(list)) { 2302 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2303 head->qlen += list->qlen; 2304 } 2305 } 2306 2307 /** 2308 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2309 * @list: the new list to add 2310 * @head: the place to add it in the first list 2311 * 2312 * Each of the lists is a queue. 2313 * The list at @list is reinitialised 2314 */ 2315 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2316 struct sk_buff_head *head) 2317 { 2318 if (!skb_queue_empty(list)) { 2319 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2320 head->qlen += list->qlen; 2321 __skb_queue_head_init(list); 2322 } 2323 } 2324 2325 /** 2326 * __skb_queue_after - queue a buffer at the list head 2327 * @list: list to use 2328 * @prev: place after this buffer 2329 * @newsk: buffer to queue 2330 * 2331 * Queue a buffer int the middle of a list. This function takes no locks 2332 * and you must therefore hold required locks before calling it. 2333 * 2334 * A buffer cannot be placed on two lists at the same time. 2335 */ 2336 static inline void __skb_queue_after(struct sk_buff_head *list, 2337 struct sk_buff *prev, 2338 struct sk_buff *newsk) 2339 { 2340 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2341 } 2342 2343 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2344 struct sk_buff_head *list); 2345 2346 static inline void __skb_queue_before(struct sk_buff_head *list, 2347 struct sk_buff *next, 2348 struct sk_buff *newsk) 2349 { 2350 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2351 } 2352 2353 /** 2354 * __skb_queue_head - queue a buffer at the list head 2355 * @list: list to use 2356 * @newsk: buffer to queue 2357 * 2358 * Queue a buffer at the start of a list. This function takes no locks 2359 * and you must therefore hold required locks before calling it. 2360 * 2361 * A buffer cannot be placed on two lists at the same time. 2362 */ 2363 static inline void __skb_queue_head(struct sk_buff_head *list, 2364 struct sk_buff *newsk) 2365 { 2366 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2367 } 2368 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2369 2370 /** 2371 * __skb_queue_tail - queue a buffer at the list tail 2372 * @list: list to use 2373 * @newsk: buffer to queue 2374 * 2375 * Queue a buffer at the end of a list. This function takes no locks 2376 * and you must therefore hold required locks before calling it. 2377 * 2378 * A buffer cannot be placed on two lists at the same time. 2379 */ 2380 static inline void __skb_queue_tail(struct sk_buff_head *list, 2381 struct sk_buff *newsk) 2382 { 2383 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2384 } 2385 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2386 2387 /* 2388 * remove sk_buff from list. _Must_ be called atomically, and with 2389 * the list known.. 2390 */ 2391 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2392 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2393 { 2394 struct sk_buff *next, *prev; 2395 2396 WRITE_ONCE(list->qlen, list->qlen - 1); 2397 next = skb->next; 2398 prev = skb->prev; 2399 skb->next = skb->prev = NULL; 2400 WRITE_ONCE(next->prev, prev); 2401 WRITE_ONCE(prev->next, next); 2402 } 2403 2404 /** 2405 * __skb_dequeue - remove from the head of the queue 2406 * @list: list to dequeue from 2407 * 2408 * Remove the head of the list. This function does not take any locks 2409 * so must be used with appropriate locks held only. The head item is 2410 * returned or %NULL if the list is empty. 2411 */ 2412 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2413 { 2414 struct sk_buff *skb = skb_peek(list); 2415 if (skb) 2416 __skb_unlink(skb, list); 2417 return skb; 2418 } 2419 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2420 2421 /** 2422 * __skb_dequeue_tail - remove from the tail of the queue 2423 * @list: list to dequeue from 2424 * 2425 * Remove the tail of the list. This function does not take any locks 2426 * so must be used with appropriate locks held only. The tail item is 2427 * returned or %NULL if the list is empty. 2428 */ 2429 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2430 { 2431 struct sk_buff *skb = skb_peek_tail(list); 2432 if (skb) 2433 __skb_unlink(skb, list); 2434 return skb; 2435 } 2436 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2437 2438 2439 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2440 { 2441 return skb->data_len; 2442 } 2443 2444 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2445 { 2446 return skb->len - skb->data_len; 2447 } 2448 2449 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2450 { 2451 unsigned int i, len = 0; 2452 2453 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2454 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2455 return len; 2456 } 2457 2458 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2459 { 2460 return skb_headlen(skb) + __skb_pagelen(skb); 2461 } 2462 2463 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2464 netmem_ref netmem, int off, 2465 int size) 2466 { 2467 frag->netmem = netmem; 2468 frag->offset = off; 2469 skb_frag_size_set(frag, size); 2470 } 2471 2472 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2473 struct page *page, 2474 int off, int size) 2475 { 2476 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2477 } 2478 2479 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2480 int i, netmem_ref netmem, 2481 int off, int size) 2482 { 2483 skb_frag_t *frag = &shinfo->frags[i]; 2484 2485 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2486 } 2487 2488 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2489 int i, struct page *page, 2490 int off, int size) 2491 { 2492 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2493 size); 2494 } 2495 2496 /** 2497 * skb_len_add - adds a number to len fields of skb 2498 * @skb: buffer to add len to 2499 * @delta: number of bytes to add 2500 */ 2501 static inline void skb_len_add(struct sk_buff *skb, int delta) 2502 { 2503 skb->len += delta; 2504 skb->data_len += delta; 2505 skb->truesize += delta; 2506 } 2507 2508 /** 2509 * __skb_fill_netmem_desc - initialise a fragment in an skb 2510 * @skb: buffer containing fragment to be initialised 2511 * @i: fragment index to initialise 2512 * @netmem: the netmem to use for this fragment 2513 * @off: the offset to the data with @page 2514 * @size: the length of the data 2515 * 2516 * Initialises the @i'th fragment of @skb to point to &size bytes at 2517 * offset @off within @page. 2518 * 2519 * Does not take any additional reference on the fragment. 2520 */ 2521 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2522 netmem_ref netmem, int off, int size) 2523 { 2524 struct page *page = netmem_to_page(netmem); 2525 2526 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2527 2528 /* Propagate page pfmemalloc to the skb if we can. The problem is 2529 * that not all callers have unique ownership of the page but rely 2530 * on page_is_pfmemalloc doing the right thing(tm). 2531 */ 2532 page = compound_head(page); 2533 if (page_is_pfmemalloc(page)) 2534 skb->pfmemalloc = true; 2535 } 2536 2537 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2538 struct page *page, int off, int size) 2539 { 2540 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2541 } 2542 2543 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2544 netmem_ref netmem, int off, int size) 2545 { 2546 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2547 skb_shinfo(skb)->nr_frags = i + 1; 2548 } 2549 2550 /** 2551 * skb_fill_page_desc - initialise a paged fragment in an skb 2552 * @skb: buffer containing fragment to be initialised 2553 * @i: paged fragment index to initialise 2554 * @page: the page to use for this fragment 2555 * @off: the offset to the data with @page 2556 * @size: the length of the data 2557 * 2558 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2559 * @skb to point to @size bytes at offset @off within @page. In 2560 * addition updates @skb such that @i is the last fragment. 2561 * 2562 * Does not take any additional reference on the fragment. 2563 */ 2564 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2565 struct page *page, int off, int size) 2566 { 2567 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2568 } 2569 2570 /** 2571 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2572 * @skb: buffer containing fragment to be initialised 2573 * @i: paged fragment index to initialise 2574 * @page: the page to use for this fragment 2575 * @off: the offset to the data with @page 2576 * @size: the length of the data 2577 * 2578 * Variant of skb_fill_page_desc() which does not deal with 2579 * pfmemalloc, if page is not owned by us. 2580 */ 2581 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2582 struct page *page, int off, 2583 int size) 2584 { 2585 struct skb_shared_info *shinfo = skb_shinfo(skb); 2586 2587 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2588 shinfo->nr_frags = i + 1; 2589 } 2590 2591 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2592 int off, int size, unsigned int truesize); 2593 2594 static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2595 struct page *page, int off, int size, 2596 unsigned int truesize) 2597 { 2598 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2599 truesize); 2600 } 2601 2602 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2603 unsigned int truesize); 2604 2605 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2606 2607 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2608 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2609 { 2610 return skb->head + skb->tail; 2611 } 2612 2613 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2614 { 2615 skb->tail = skb->data - skb->head; 2616 } 2617 2618 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2619 { 2620 skb_reset_tail_pointer(skb); 2621 skb->tail += offset; 2622 } 2623 2624 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2625 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2626 { 2627 return skb->tail; 2628 } 2629 2630 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2631 { 2632 skb->tail = skb->data; 2633 } 2634 2635 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2636 { 2637 skb->tail = skb->data + offset; 2638 } 2639 2640 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2641 2642 static inline void skb_assert_len(struct sk_buff *skb) 2643 { 2644 #ifdef CONFIG_DEBUG_NET 2645 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2646 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2647 #endif /* CONFIG_DEBUG_NET */ 2648 } 2649 2650 /* 2651 * Add data to an sk_buff 2652 */ 2653 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2654 void *skb_put(struct sk_buff *skb, unsigned int len); 2655 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2656 { 2657 void *tmp = skb_tail_pointer(skb); 2658 SKB_LINEAR_ASSERT(skb); 2659 skb->tail += len; 2660 skb->len += len; 2661 return tmp; 2662 } 2663 2664 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2665 { 2666 void *tmp = __skb_put(skb, len); 2667 2668 memset(tmp, 0, len); 2669 return tmp; 2670 } 2671 2672 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2673 unsigned int len) 2674 { 2675 void *tmp = __skb_put(skb, len); 2676 2677 memcpy(tmp, data, len); 2678 return tmp; 2679 } 2680 2681 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2682 { 2683 *(u8 *)__skb_put(skb, 1) = val; 2684 } 2685 2686 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2687 { 2688 void *tmp = skb_put(skb, len); 2689 2690 memset(tmp, 0, len); 2691 2692 return tmp; 2693 } 2694 2695 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2696 unsigned int len) 2697 { 2698 void *tmp = skb_put(skb, len); 2699 2700 memcpy(tmp, data, len); 2701 2702 return tmp; 2703 } 2704 2705 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2706 { 2707 *(u8 *)skb_put(skb, 1) = val; 2708 } 2709 2710 void *skb_push(struct sk_buff *skb, unsigned int len); 2711 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2712 { 2713 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2714 2715 skb->data -= len; 2716 skb->len += len; 2717 return skb->data; 2718 } 2719 2720 void *skb_pull(struct sk_buff *skb, unsigned int len); 2721 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2722 { 2723 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2724 2725 skb->len -= len; 2726 if (unlikely(skb->len < skb->data_len)) { 2727 #if defined(CONFIG_DEBUG_NET) 2728 skb->len += len; 2729 pr_err("__skb_pull(len=%u)\n", len); 2730 skb_dump(KERN_ERR, skb, false); 2731 #endif 2732 BUG(); 2733 } 2734 return skb->data += len; 2735 } 2736 2737 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2738 { 2739 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2740 } 2741 2742 void *skb_pull_data(struct sk_buff *skb, size_t len); 2743 2744 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2745 2746 static inline enum skb_drop_reason 2747 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2748 { 2749 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2750 2751 if (likely(len <= skb_headlen(skb))) 2752 return SKB_NOT_DROPPED_YET; 2753 2754 if (unlikely(len > skb->len)) 2755 return SKB_DROP_REASON_PKT_TOO_SMALL; 2756 2757 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2758 return SKB_DROP_REASON_NOMEM; 2759 2760 return SKB_NOT_DROPPED_YET; 2761 } 2762 2763 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2764 { 2765 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2766 } 2767 2768 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2769 { 2770 if (!pskb_may_pull(skb, len)) 2771 return NULL; 2772 2773 skb->len -= len; 2774 return skb->data += len; 2775 } 2776 2777 void skb_condense(struct sk_buff *skb); 2778 2779 /** 2780 * skb_headroom - bytes at buffer head 2781 * @skb: buffer to check 2782 * 2783 * Return the number of bytes of free space at the head of an &sk_buff. 2784 */ 2785 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2786 { 2787 return skb->data - skb->head; 2788 } 2789 2790 /** 2791 * skb_tailroom - bytes at buffer end 2792 * @skb: buffer to check 2793 * 2794 * Return the number of bytes of free space at the tail of an sk_buff 2795 */ 2796 static inline int skb_tailroom(const struct sk_buff *skb) 2797 { 2798 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2799 } 2800 2801 /** 2802 * skb_availroom - bytes at buffer end 2803 * @skb: buffer to check 2804 * 2805 * Return the number of bytes of free space at the tail of an sk_buff 2806 * allocated by sk_stream_alloc() 2807 */ 2808 static inline int skb_availroom(const struct sk_buff *skb) 2809 { 2810 if (skb_is_nonlinear(skb)) 2811 return 0; 2812 2813 return skb->end - skb->tail - skb->reserved_tailroom; 2814 } 2815 2816 /** 2817 * skb_reserve - adjust headroom 2818 * @skb: buffer to alter 2819 * @len: bytes to move 2820 * 2821 * Increase the headroom of an empty &sk_buff by reducing the tail 2822 * room. This is only allowed for an empty buffer. 2823 */ 2824 static inline void skb_reserve(struct sk_buff *skb, int len) 2825 { 2826 skb->data += len; 2827 skb->tail += len; 2828 } 2829 2830 /** 2831 * skb_tailroom_reserve - adjust reserved_tailroom 2832 * @skb: buffer to alter 2833 * @mtu: maximum amount of headlen permitted 2834 * @needed_tailroom: minimum amount of reserved_tailroom 2835 * 2836 * Set reserved_tailroom so that headlen can be as large as possible but 2837 * not larger than mtu and tailroom cannot be smaller than 2838 * needed_tailroom. 2839 * The required headroom should already have been reserved before using 2840 * this function. 2841 */ 2842 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2843 unsigned int needed_tailroom) 2844 { 2845 SKB_LINEAR_ASSERT(skb); 2846 if (mtu < skb_tailroom(skb) - needed_tailroom) 2847 /* use at most mtu */ 2848 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2849 else 2850 /* use up to all available space */ 2851 skb->reserved_tailroom = needed_tailroom; 2852 } 2853 2854 #define ENCAP_TYPE_ETHER 0 2855 #define ENCAP_TYPE_IPPROTO 1 2856 2857 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2858 __be16 protocol) 2859 { 2860 skb->inner_protocol = protocol; 2861 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2862 } 2863 2864 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2865 __u8 ipproto) 2866 { 2867 skb->inner_ipproto = ipproto; 2868 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2869 } 2870 2871 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2872 { 2873 skb->inner_mac_header = skb->mac_header; 2874 skb->inner_network_header = skb->network_header; 2875 skb->inner_transport_header = skb->transport_header; 2876 } 2877 2878 static inline void skb_reset_mac_len(struct sk_buff *skb) 2879 { 2880 skb->mac_len = skb->network_header - skb->mac_header; 2881 } 2882 2883 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2884 *skb) 2885 { 2886 return skb->head + skb->inner_transport_header; 2887 } 2888 2889 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2890 { 2891 return skb_inner_transport_header(skb) - skb->data; 2892 } 2893 2894 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2895 { 2896 skb->inner_transport_header = skb->data - skb->head; 2897 } 2898 2899 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2900 const int offset) 2901 { 2902 skb_reset_inner_transport_header(skb); 2903 skb->inner_transport_header += offset; 2904 } 2905 2906 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2907 { 2908 return skb->head + skb->inner_network_header; 2909 } 2910 2911 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2912 { 2913 skb->inner_network_header = skb->data - skb->head; 2914 } 2915 2916 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2917 const int offset) 2918 { 2919 skb_reset_inner_network_header(skb); 2920 skb->inner_network_header += offset; 2921 } 2922 2923 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2924 { 2925 return skb->inner_network_header > 0; 2926 } 2927 2928 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2929 { 2930 return skb->head + skb->inner_mac_header; 2931 } 2932 2933 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2934 { 2935 skb->inner_mac_header = skb->data - skb->head; 2936 } 2937 2938 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2939 const int offset) 2940 { 2941 skb_reset_inner_mac_header(skb); 2942 skb->inner_mac_header += offset; 2943 } 2944 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2945 { 2946 return skb->transport_header != (typeof(skb->transport_header))~0U; 2947 } 2948 2949 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2950 { 2951 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2952 return skb->head + skb->transport_header; 2953 } 2954 2955 static inline void skb_reset_transport_header(struct sk_buff *skb) 2956 { 2957 skb->transport_header = skb->data - skb->head; 2958 } 2959 2960 static inline void skb_set_transport_header(struct sk_buff *skb, 2961 const int offset) 2962 { 2963 skb_reset_transport_header(skb); 2964 skb->transport_header += offset; 2965 } 2966 2967 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2968 { 2969 return skb->head + skb->network_header; 2970 } 2971 2972 static inline void skb_reset_network_header(struct sk_buff *skb) 2973 { 2974 skb->network_header = skb->data - skb->head; 2975 } 2976 2977 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2978 { 2979 skb_reset_network_header(skb); 2980 skb->network_header += offset; 2981 } 2982 2983 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2984 { 2985 return skb->mac_header != (typeof(skb->mac_header))~0U; 2986 } 2987 2988 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2989 { 2990 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2991 return skb->head + skb->mac_header; 2992 } 2993 2994 static inline int skb_mac_offset(const struct sk_buff *skb) 2995 { 2996 return skb_mac_header(skb) - skb->data; 2997 } 2998 2999 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 3000 { 3001 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3002 return skb->network_header - skb->mac_header; 3003 } 3004 3005 static inline void skb_unset_mac_header(struct sk_buff *skb) 3006 { 3007 skb->mac_header = (typeof(skb->mac_header))~0U; 3008 } 3009 3010 static inline void skb_reset_mac_header(struct sk_buff *skb) 3011 { 3012 skb->mac_header = skb->data - skb->head; 3013 } 3014 3015 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3016 { 3017 skb_reset_mac_header(skb); 3018 skb->mac_header += offset; 3019 } 3020 3021 static inline void skb_pop_mac_header(struct sk_buff *skb) 3022 { 3023 skb->mac_header = skb->network_header; 3024 } 3025 3026 static inline void skb_probe_transport_header(struct sk_buff *skb) 3027 { 3028 struct flow_keys_basic keys; 3029 3030 if (skb_transport_header_was_set(skb)) 3031 return; 3032 3033 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3034 NULL, 0, 0, 0, 0)) 3035 skb_set_transport_header(skb, keys.control.thoff); 3036 } 3037 3038 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3039 { 3040 if (skb_mac_header_was_set(skb)) { 3041 const unsigned char *old_mac = skb_mac_header(skb); 3042 3043 skb_set_mac_header(skb, -skb->mac_len); 3044 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3045 } 3046 } 3047 3048 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3049 { 3050 return skb->csum_start - skb_headroom(skb); 3051 } 3052 3053 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3054 { 3055 return skb->head + skb->csum_start; 3056 } 3057 3058 static inline int skb_transport_offset(const struct sk_buff *skb) 3059 { 3060 return skb_transport_header(skb) - skb->data; 3061 } 3062 3063 static inline u32 skb_network_header_len(const struct sk_buff *skb) 3064 { 3065 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3066 return skb->transport_header - skb->network_header; 3067 } 3068 3069 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3070 { 3071 return skb->inner_transport_header - skb->inner_network_header; 3072 } 3073 3074 static inline int skb_network_offset(const struct sk_buff *skb) 3075 { 3076 return skb_network_header(skb) - skb->data; 3077 } 3078 3079 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3080 { 3081 return skb_inner_network_header(skb) - skb->data; 3082 } 3083 3084 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3085 { 3086 return pskb_may_pull(skb, skb_network_offset(skb) + len); 3087 } 3088 3089 /* 3090 * CPUs often take a performance hit when accessing unaligned memory 3091 * locations. The actual performance hit varies, it can be small if the 3092 * hardware handles it or large if we have to take an exception and fix it 3093 * in software. 3094 * 3095 * Since an ethernet header is 14 bytes network drivers often end up with 3096 * the IP header at an unaligned offset. The IP header can be aligned by 3097 * shifting the start of the packet by 2 bytes. Drivers should do this 3098 * with: 3099 * 3100 * skb_reserve(skb, NET_IP_ALIGN); 3101 * 3102 * The downside to this alignment of the IP header is that the DMA is now 3103 * unaligned. On some architectures the cost of an unaligned DMA is high 3104 * and this cost outweighs the gains made by aligning the IP header. 3105 * 3106 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3107 * to be overridden. 3108 */ 3109 #ifndef NET_IP_ALIGN 3110 #define NET_IP_ALIGN 2 3111 #endif 3112 3113 /* 3114 * The networking layer reserves some headroom in skb data (via 3115 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3116 * the header has to grow. In the default case, if the header has to grow 3117 * 32 bytes or less we avoid the reallocation. 3118 * 3119 * Unfortunately this headroom changes the DMA alignment of the resulting 3120 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3121 * on some architectures. An architecture can override this value, 3122 * perhaps setting it to a cacheline in size (since that will maintain 3123 * cacheline alignment of the DMA). It must be a power of 2. 3124 * 3125 * Various parts of the networking layer expect at least 32 bytes of 3126 * headroom, you should not reduce this. 3127 * 3128 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3129 * to reduce average number of cache lines per packet. 3130 * get_rps_cpu() for example only access one 64 bytes aligned block : 3131 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3132 */ 3133 #ifndef NET_SKB_PAD 3134 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3135 #endif 3136 3137 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3138 3139 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3140 { 3141 if (WARN_ON(skb_is_nonlinear(skb))) 3142 return; 3143 skb->len = len; 3144 skb_set_tail_pointer(skb, len); 3145 } 3146 3147 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3148 { 3149 __skb_set_length(skb, len); 3150 } 3151 3152 void skb_trim(struct sk_buff *skb, unsigned int len); 3153 3154 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3155 { 3156 if (skb->data_len) 3157 return ___pskb_trim(skb, len); 3158 __skb_trim(skb, len); 3159 return 0; 3160 } 3161 3162 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3163 { 3164 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3165 } 3166 3167 /** 3168 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3169 * @skb: buffer to alter 3170 * @len: new length 3171 * 3172 * This is identical to pskb_trim except that the caller knows that 3173 * the skb is not cloned so we should never get an error due to out- 3174 * of-memory. 3175 */ 3176 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3177 { 3178 int err = pskb_trim(skb, len); 3179 BUG_ON(err); 3180 } 3181 3182 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3183 { 3184 unsigned int diff = len - skb->len; 3185 3186 if (skb_tailroom(skb) < diff) { 3187 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3188 GFP_ATOMIC); 3189 if (ret) 3190 return ret; 3191 } 3192 __skb_set_length(skb, len); 3193 return 0; 3194 } 3195 3196 /** 3197 * skb_orphan - orphan a buffer 3198 * @skb: buffer to orphan 3199 * 3200 * If a buffer currently has an owner then we call the owner's 3201 * destructor function and make the @skb unowned. The buffer continues 3202 * to exist but is no longer charged to its former owner. 3203 */ 3204 static inline void skb_orphan(struct sk_buff *skb) 3205 { 3206 if (skb->destructor) { 3207 skb->destructor(skb); 3208 skb->destructor = NULL; 3209 skb->sk = NULL; 3210 } else { 3211 BUG_ON(skb->sk); 3212 } 3213 } 3214 3215 /** 3216 * skb_orphan_frags - orphan the frags contained in a buffer 3217 * @skb: buffer to orphan frags from 3218 * @gfp_mask: allocation mask for replacement pages 3219 * 3220 * For each frag in the SKB which needs a destructor (i.e. has an 3221 * owner) create a copy of that frag and release the original 3222 * page by calling the destructor. 3223 */ 3224 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3225 { 3226 if (likely(!skb_zcopy(skb))) 3227 return 0; 3228 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3229 return 0; 3230 return skb_copy_ubufs(skb, gfp_mask); 3231 } 3232 3233 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3234 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3235 { 3236 if (likely(!skb_zcopy(skb))) 3237 return 0; 3238 return skb_copy_ubufs(skb, gfp_mask); 3239 } 3240 3241 /** 3242 * __skb_queue_purge_reason - empty a list 3243 * @list: list to empty 3244 * @reason: drop reason 3245 * 3246 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3247 * the list and one reference dropped. This function does not take the 3248 * list lock and the caller must hold the relevant locks to use it. 3249 */ 3250 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3251 enum skb_drop_reason reason) 3252 { 3253 struct sk_buff *skb; 3254 3255 while ((skb = __skb_dequeue(list)) != NULL) 3256 kfree_skb_reason(skb, reason); 3257 } 3258 3259 static inline void __skb_queue_purge(struct sk_buff_head *list) 3260 { 3261 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3262 } 3263 3264 void skb_queue_purge_reason(struct sk_buff_head *list, 3265 enum skb_drop_reason reason); 3266 3267 static inline void skb_queue_purge(struct sk_buff_head *list) 3268 { 3269 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3270 } 3271 3272 unsigned int skb_rbtree_purge(struct rb_root *root); 3273 void skb_errqueue_purge(struct sk_buff_head *list); 3274 3275 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3276 3277 /** 3278 * netdev_alloc_frag - allocate a page fragment 3279 * @fragsz: fragment size 3280 * 3281 * Allocates a frag from a page for receive buffer. 3282 * Uses GFP_ATOMIC allocations. 3283 */ 3284 static inline void *netdev_alloc_frag(unsigned int fragsz) 3285 { 3286 return __netdev_alloc_frag_align(fragsz, ~0u); 3287 } 3288 3289 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3290 unsigned int align) 3291 { 3292 WARN_ON_ONCE(!is_power_of_2(align)); 3293 return __netdev_alloc_frag_align(fragsz, -align); 3294 } 3295 3296 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3297 gfp_t gfp_mask); 3298 3299 /** 3300 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3301 * @dev: network device to receive on 3302 * @length: length to allocate 3303 * 3304 * Allocate a new &sk_buff and assign it a usage count of one. The 3305 * buffer has unspecified headroom built in. Users should allocate 3306 * the headroom they think they need without accounting for the 3307 * built in space. The built in space is used for optimisations. 3308 * 3309 * %NULL is returned if there is no free memory. Although this function 3310 * allocates memory it can be called from an interrupt. 3311 */ 3312 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3313 unsigned int length) 3314 { 3315 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3316 } 3317 3318 /* legacy helper around __netdev_alloc_skb() */ 3319 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3320 gfp_t gfp_mask) 3321 { 3322 return __netdev_alloc_skb(NULL, length, gfp_mask); 3323 } 3324 3325 /* legacy helper around netdev_alloc_skb() */ 3326 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3327 { 3328 return netdev_alloc_skb(NULL, length); 3329 } 3330 3331 3332 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3333 unsigned int length, gfp_t gfp) 3334 { 3335 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3336 3337 if (NET_IP_ALIGN && skb) 3338 skb_reserve(skb, NET_IP_ALIGN); 3339 return skb; 3340 } 3341 3342 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3343 unsigned int length) 3344 { 3345 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3346 } 3347 3348 static inline void skb_free_frag(void *addr) 3349 { 3350 page_frag_free(addr); 3351 } 3352 3353 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3354 3355 static inline void *napi_alloc_frag(unsigned int fragsz) 3356 { 3357 return __napi_alloc_frag_align(fragsz, ~0u); 3358 } 3359 3360 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3361 unsigned int align) 3362 { 3363 WARN_ON_ONCE(!is_power_of_2(align)); 3364 return __napi_alloc_frag_align(fragsz, -align); 3365 } 3366 3367 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3368 void napi_consume_skb(struct sk_buff *skb, int budget); 3369 3370 void napi_skb_free_stolen_head(struct sk_buff *skb); 3371 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3372 3373 /** 3374 * __dev_alloc_pages - allocate page for network Rx 3375 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3376 * @order: size of the allocation 3377 * 3378 * Allocate a new page. 3379 * 3380 * %NULL is returned if there is no free memory. 3381 */ 3382 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3383 unsigned int order) 3384 { 3385 /* This piece of code contains several assumptions. 3386 * 1. This is for device Rx, therefore a cold page is preferred. 3387 * 2. The expectation is the user wants a compound page. 3388 * 3. If requesting a order 0 page it will not be compound 3389 * due to the check to see if order has a value in prep_new_page 3390 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3391 * code in gfp_to_alloc_flags that should be enforcing this. 3392 */ 3393 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3394 3395 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3396 } 3397 3398 static inline struct page *dev_alloc_pages(unsigned int order) 3399 { 3400 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3401 } 3402 3403 /** 3404 * __dev_alloc_page - allocate a page for network Rx 3405 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3406 * 3407 * Allocate a new page. 3408 * 3409 * %NULL is returned if there is no free memory. 3410 */ 3411 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3412 { 3413 return __dev_alloc_pages(gfp_mask, 0); 3414 } 3415 3416 static inline struct page *dev_alloc_page(void) 3417 { 3418 return dev_alloc_pages(0); 3419 } 3420 3421 /** 3422 * dev_page_is_reusable - check whether a page can be reused for network Rx 3423 * @page: the page to test 3424 * 3425 * A page shouldn't be considered for reusing/recycling if it was allocated 3426 * under memory pressure or at a distant memory node. 3427 * 3428 * Returns false if this page should be returned to page allocator, true 3429 * otherwise. 3430 */ 3431 static inline bool dev_page_is_reusable(const struct page *page) 3432 { 3433 return likely(page_to_nid(page) == numa_mem_id() && 3434 !page_is_pfmemalloc(page)); 3435 } 3436 3437 /** 3438 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3439 * @page: The page that was allocated from skb_alloc_page 3440 * @skb: The skb that may need pfmemalloc set 3441 */ 3442 static inline void skb_propagate_pfmemalloc(const struct page *page, 3443 struct sk_buff *skb) 3444 { 3445 if (page_is_pfmemalloc(page)) 3446 skb->pfmemalloc = true; 3447 } 3448 3449 /** 3450 * skb_frag_off() - Returns the offset of a skb fragment 3451 * @frag: the paged fragment 3452 */ 3453 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3454 { 3455 return frag->offset; 3456 } 3457 3458 /** 3459 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3460 * @frag: skb fragment 3461 * @delta: value to add 3462 */ 3463 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3464 { 3465 frag->offset += delta; 3466 } 3467 3468 /** 3469 * skb_frag_off_set() - Sets the offset of a skb fragment 3470 * @frag: skb fragment 3471 * @offset: offset of fragment 3472 */ 3473 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3474 { 3475 frag->offset = offset; 3476 } 3477 3478 /** 3479 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3480 * @fragto: skb fragment where offset is set 3481 * @fragfrom: skb fragment offset is copied from 3482 */ 3483 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3484 const skb_frag_t *fragfrom) 3485 { 3486 fragto->offset = fragfrom->offset; 3487 } 3488 3489 /** 3490 * skb_frag_page - retrieve the page referred to by a paged fragment 3491 * @frag: the paged fragment 3492 * 3493 * Returns the &struct page associated with @frag. 3494 */ 3495 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3496 { 3497 return netmem_to_page(frag->netmem); 3498 } 3499 3500 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3501 unsigned int headroom); 3502 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3503 struct bpf_prog *prog); 3504 /** 3505 * skb_frag_address - gets the address of the data contained in a paged fragment 3506 * @frag: the paged fragment buffer 3507 * 3508 * Returns the address of the data within @frag. The page must already 3509 * be mapped. 3510 */ 3511 static inline void *skb_frag_address(const skb_frag_t *frag) 3512 { 3513 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3514 } 3515 3516 /** 3517 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3518 * @frag: the paged fragment buffer 3519 * 3520 * Returns the address of the data within @frag. Checks that the page 3521 * is mapped and returns %NULL otherwise. 3522 */ 3523 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3524 { 3525 void *ptr = page_address(skb_frag_page(frag)); 3526 if (unlikely(!ptr)) 3527 return NULL; 3528 3529 return ptr + skb_frag_off(frag); 3530 } 3531 3532 /** 3533 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3534 * @fragto: skb fragment where page is set 3535 * @fragfrom: skb fragment page is copied from 3536 */ 3537 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3538 const skb_frag_t *fragfrom) 3539 { 3540 fragto->netmem = fragfrom->netmem; 3541 } 3542 3543 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3544 3545 /** 3546 * skb_frag_dma_map - maps a paged fragment via the DMA API 3547 * @dev: the device to map the fragment to 3548 * @frag: the paged fragment to map 3549 * @offset: the offset within the fragment (starting at the 3550 * fragment's own offset) 3551 * @size: the number of bytes to map 3552 * @dir: the direction of the mapping (``PCI_DMA_*``) 3553 * 3554 * Maps the page associated with @frag to @device. 3555 */ 3556 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3557 const skb_frag_t *frag, 3558 size_t offset, size_t size, 3559 enum dma_data_direction dir) 3560 { 3561 return dma_map_page(dev, skb_frag_page(frag), 3562 skb_frag_off(frag) + offset, size, dir); 3563 } 3564 3565 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3566 gfp_t gfp_mask) 3567 { 3568 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3569 } 3570 3571 3572 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3573 gfp_t gfp_mask) 3574 { 3575 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3576 } 3577 3578 3579 /** 3580 * skb_clone_writable - is the header of a clone writable 3581 * @skb: buffer to check 3582 * @len: length up to which to write 3583 * 3584 * Returns true if modifying the header part of the cloned buffer 3585 * does not requires the data to be copied. 3586 */ 3587 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3588 { 3589 return !skb_header_cloned(skb) && 3590 skb_headroom(skb) + len <= skb->hdr_len; 3591 } 3592 3593 static inline int skb_try_make_writable(struct sk_buff *skb, 3594 unsigned int write_len) 3595 { 3596 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3597 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3598 } 3599 3600 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3601 int cloned) 3602 { 3603 int delta = 0; 3604 3605 if (headroom > skb_headroom(skb)) 3606 delta = headroom - skb_headroom(skb); 3607 3608 if (delta || cloned) 3609 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3610 GFP_ATOMIC); 3611 return 0; 3612 } 3613 3614 /** 3615 * skb_cow - copy header of skb when it is required 3616 * @skb: buffer to cow 3617 * @headroom: needed headroom 3618 * 3619 * If the skb passed lacks sufficient headroom or its data part 3620 * is shared, data is reallocated. If reallocation fails, an error 3621 * is returned and original skb is not changed. 3622 * 3623 * The result is skb with writable area skb->head...skb->tail 3624 * and at least @headroom of space at head. 3625 */ 3626 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3627 { 3628 return __skb_cow(skb, headroom, skb_cloned(skb)); 3629 } 3630 3631 /** 3632 * skb_cow_head - skb_cow but only making the head writable 3633 * @skb: buffer to cow 3634 * @headroom: needed headroom 3635 * 3636 * This function is identical to skb_cow except that we replace the 3637 * skb_cloned check by skb_header_cloned. It should be used when 3638 * you only need to push on some header and do not need to modify 3639 * the data. 3640 */ 3641 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3642 { 3643 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3644 } 3645 3646 /** 3647 * skb_padto - pad an skbuff up to a minimal size 3648 * @skb: buffer to pad 3649 * @len: minimal length 3650 * 3651 * Pads up a buffer to ensure the trailing bytes exist and are 3652 * blanked. If the buffer already contains sufficient data it 3653 * is untouched. Otherwise it is extended. Returns zero on 3654 * success. The skb is freed on error. 3655 */ 3656 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3657 { 3658 unsigned int size = skb->len; 3659 if (likely(size >= len)) 3660 return 0; 3661 return skb_pad(skb, len - size); 3662 } 3663 3664 /** 3665 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3666 * @skb: buffer to pad 3667 * @len: minimal length 3668 * @free_on_error: free buffer on error 3669 * 3670 * Pads up a buffer to ensure the trailing bytes exist and are 3671 * blanked. If the buffer already contains sufficient data it 3672 * is untouched. Otherwise it is extended. Returns zero on 3673 * success. The skb is freed on error if @free_on_error is true. 3674 */ 3675 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3676 unsigned int len, 3677 bool free_on_error) 3678 { 3679 unsigned int size = skb->len; 3680 3681 if (unlikely(size < len)) { 3682 len -= size; 3683 if (__skb_pad(skb, len, free_on_error)) 3684 return -ENOMEM; 3685 __skb_put(skb, len); 3686 } 3687 return 0; 3688 } 3689 3690 /** 3691 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3692 * @skb: buffer to pad 3693 * @len: minimal length 3694 * 3695 * Pads up a buffer to ensure the trailing bytes exist and are 3696 * blanked. If the buffer already contains sufficient data it 3697 * is untouched. Otherwise it is extended. Returns zero on 3698 * success. The skb is freed on error. 3699 */ 3700 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3701 { 3702 return __skb_put_padto(skb, len, true); 3703 } 3704 3705 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3706 __must_check; 3707 3708 static inline int skb_add_data(struct sk_buff *skb, 3709 struct iov_iter *from, int copy) 3710 { 3711 const int off = skb->len; 3712 3713 if (skb->ip_summed == CHECKSUM_NONE) { 3714 __wsum csum = 0; 3715 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3716 &csum, from)) { 3717 skb->csum = csum_block_add(skb->csum, csum, off); 3718 return 0; 3719 } 3720 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3721 return 0; 3722 3723 __skb_trim(skb, off); 3724 return -EFAULT; 3725 } 3726 3727 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3728 const struct page *page, int off) 3729 { 3730 if (skb_zcopy(skb)) 3731 return false; 3732 if (i) { 3733 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3734 3735 return page == skb_frag_page(frag) && 3736 off == skb_frag_off(frag) + skb_frag_size(frag); 3737 } 3738 return false; 3739 } 3740 3741 static inline int __skb_linearize(struct sk_buff *skb) 3742 { 3743 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3744 } 3745 3746 /** 3747 * skb_linearize - convert paged skb to linear one 3748 * @skb: buffer to linarize 3749 * 3750 * If there is no free memory -ENOMEM is returned, otherwise zero 3751 * is returned and the old skb data released. 3752 */ 3753 static inline int skb_linearize(struct sk_buff *skb) 3754 { 3755 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3756 } 3757 3758 /** 3759 * skb_has_shared_frag - can any frag be overwritten 3760 * @skb: buffer to test 3761 * 3762 * Return true if the skb has at least one frag that might be modified 3763 * by an external entity (as in vmsplice()/sendfile()) 3764 */ 3765 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3766 { 3767 return skb_is_nonlinear(skb) && 3768 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3769 } 3770 3771 /** 3772 * skb_linearize_cow - make sure skb is linear and writable 3773 * @skb: buffer to process 3774 * 3775 * If there is no free memory -ENOMEM is returned, otherwise zero 3776 * is returned and the old skb data released. 3777 */ 3778 static inline int skb_linearize_cow(struct sk_buff *skb) 3779 { 3780 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3781 __skb_linearize(skb) : 0; 3782 } 3783 3784 static __always_inline void 3785 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3786 unsigned int off) 3787 { 3788 if (skb->ip_summed == CHECKSUM_COMPLETE) 3789 skb->csum = csum_block_sub(skb->csum, 3790 csum_partial(start, len, 0), off); 3791 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3792 skb_checksum_start_offset(skb) < 0) 3793 skb->ip_summed = CHECKSUM_NONE; 3794 } 3795 3796 /** 3797 * skb_postpull_rcsum - update checksum for received skb after pull 3798 * @skb: buffer to update 3799 * @start: start of data before pull 3800 * @len: length of data pulled 3801 * 3802 * After doing a pull on a received packet, you need to call this to 3803 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3804 * CHECKSUM_NONE so that it can be recomputed from scratch. 3805 */ 3806 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3807 const void *start, unsigned int len) 3808 { 3809 if (skb->ip_summed == CHECKSUM_COMPLETE) 3810 skb->csum = wsum_negate(csum_partial(start, len, 3811 wsum_negate(skb->csum))); 3812 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3813 skb_checksum_start_offset(skb) < 0) 3814 skb->ip_summed = CHECKSUM_NONE; 3815 } 3816 3817 static __always_inline void 3818 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3819 unsigned int off) 3820 { 3821 if (skb->ip_summed == CHECKSUM_COMPLETE) 3822 skb->csum = csum_block_add(skb->csum, 3823 csum_partial(start, len, 0), off); 3824 } 3825 3826 /** 3827 * skb_postpush_rcsum - update checksum for received skb after push 3828 * @skb: buffer to update 3829 * @start: start of data after push 3830 * @len: length of data pushed 3831 * 3832 * After doing a push on a received packet, you need to call this to 3833 * update the CHECKSUM_COMPLETE checksum. 3834 */ 3835 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3836 const void *start, unsigned int len) 3837 { 3838 __skb_postpush_rcsum(skb, start, len, 0); 3839 } 3840 3841 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3842 3843 /** 3844 * skb_push_rcsum - push skb and update receive checksum 3845 * @skb: buffer to update 3846 * @len: length of data pulled 3847 * 3848 * This function performs an skb_push on the packet and updates 3849 * the CHECKSUM_COMPLETE checksum. It should be used on 3850 * receive path processing instead of skb_push unless you know 3851 * that the checksum difference is zero (e.g., a valid IP header) 3852 * or you are setting ip_summed to CHECKSUM_NONE. 3853 */ 3854 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3855 { 3856 skb_push(skb, len); 3857 skb_postpush_rcsum(skb, skb->data, len); 3858 return skb->data; 3859 } 3860 3861 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3862 /** 3863 * pskb_trim_rcsum - trim received skb and update checksum 3864 * @skb: buffer to trim 3865 * @len: new length 3866 * 3867 * This is exactly the same as pskb_trim except that it ensures the 3868 * checksum of received packets are still valid after the operation. 3869 * It can change skb pointers. 3870 */ 3871 3872 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3873 { 3874 if (likely(len >= skb->len)) 3875 return 0; 3876 return pskb_trim_rcsum_slow(skb, len); 3877 } 3878 3879 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3880 { 3881 if (skb->ip_summed == CHECKSUM_COMPLETE) 3882 skb->ip_summed = CHECKSUM_NONE; 3883 __skb_trim(skb, len); 3884 return 0; 3885 } 3886 3887 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3888 { 3889 if (skb->ip_summed == CHECKSUM_COMPLETE) 3890 skb->ip_summed = CHECKSUM_NONE; 3891 return __skb_grow(skb, len); 3892 } 3893 3894 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3895 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3896 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3897 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3898 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3899 3900 #define skb_queue_walk(queue, skb) \ 3901 for (skb = (queue)->next; \ 3902 skb != (struct sk_buff *)(queue); \ 3903 skb = skb->next) 3904 3905 #define skb_queue_walk_safe(queue, skb, tmp) \ 3906 for (skb = (queue)->next, tmp = skb->next; \ 3907 skb != (struct sk_buff *)(queue); \ 3908 skb = tmp, tmp = skb->next) 3909 3910 #define skb_queue_walk_from(queue, skb) \ 3911 for (; skb != (struct sk_buff *)(queue); \ 3912 skb = skb->next) 3913 3914 #define skb_rbtree_walk(skb, root) \ 3915 for (skb = skb_rb_first(root); skb != NULL; \ 3916 skb = skb_rb_next(skb)) 3917 3918 #define skb_rbtree_walk_from(skb) \ 3919 for (; skb != NULL; \ 3920 skb = skb_rb_next(skb)) 3921 3922 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3923 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3924 skb = tmp) 3925 3926 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3927 for (tmp = skb->next; \ 3928 skb != (struct sk_buff *)(queue); \ 3929 skb = tmp, tmp = skb->next) 3930 3931 #define skb_queue_reverse_walk(queue, skb) \ 3932 for (skb = (queue)->prev; \ 3933 skb != (struct sk_buff *)(queue); \ 3934 skb = skb->prev) 3935 3936 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3937 for (skb = (queue)->prev, tmp = skb->prev; \ 3938 skb != (struct sk_buff *)(queue); \ 3939 skb = tmp, tmp = skb->prev) 3940 3941 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3942 for (tmp = skb->prev; \ 3943 skb != (struct sk_buff *)(queue); \ 3944 skb = tmp, tmp = skb->prev) 3945 3946 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3947 { 3948 return skb_shinfo(skb)->frag_list != NULL; 3949 } 3950 3951 static inline void skb_frag_list_init(struct sk_buff *skb) 3952 { 3953 skb_shinfo(skb)->frag_list = NULL; 3954 } 3955 3956 #define skb_walk_frags(skb, iter) \ 3957 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3958 3959 3960 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3961 int *err, long *timeo_p, 3962 const struct sk_buff *skb); 3963 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3964 struct sk_buff_head *queue, 3965 unsigned int flags, 3966 int *off, int *err, 3967 struct sk_buff **last); 3968 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3969 struct sk_buff_head *queue, 3970 unsigned int flags, int *off, int *err, 3971 struct sk_buff **last); 3972 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3973 struct sk_buff_head *sk_queue, 3974 unsigned int flags, int *off, int *err); 3975 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3976 __poll_t datagram_poll(struct file *file, struct socket *sock, 3977 struct poll_table_struct *wait); 3978 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3979 struct iov_iter *to, int size); 3980 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3981 struct msghdr *msg, int size) 3982 { 3983 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3984 } 3985 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3986 struct msghdr *msg); 3987 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3988 struct iov_iter *to, int len, 3989 struct ahash_request *hash); 3990 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3991 struct iov_iter *from, int len); 3992 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3993 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3994 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3995 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3996 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3997 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3998 int len); 3999 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4000 struct pipe_inode_info *pipe, unsigned int len, 4001 unsigned int flags); 4002 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4003 int len); 4004 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4005 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4006 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4007 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4008 int len, int hlen); 4009 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4010 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4011 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4012 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4013 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4014 unsigned int offset); 4015 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4016 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4017 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4018 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4019 int skb_vlan_pop(struct sk_buff *skb); 4020 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4021 int skb_eth_pop(struct sk_buff *skb); 4022 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4023 const unsigned char *src); 4024 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4025 int mac_len, bool ethernet); 4026 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4027 bool ethernet); 4028 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4029 int skb_mpls_dec_ttl(struct sk_buff *skb); 4030 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4031 gfp_t gfp); 4032 4033 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4034 { 4035 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4036 } 4037 4038 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4039 { 4040 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4041 } 4042 4043 struct skb_checksum_ops { 4044 __wsum (*update)(const void *mem, int len, __wsum wsum); 4045 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4046 }; 4047 4048 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4049 4050 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4051 __wsum csum, const struct skb_checksum_ops *ops); 4052 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4053 __wsum csum); 4054 4055 static inline void * __must_check 4056 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4057 const void *data, int hlen, void *buffer) 4058 { 4059 if (likely(hlen - offset >= len)) 4060 return (void *)data + offset; 4061 4062 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4063 return NULL; 4064 4065 return buffer; 4066 } 4067 4068 static inline void * __must_check 4069 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4070 { 4071 return __skb_header_pointer(skb, offset, len, skb->data, 4072 skb_headlen(skb), buffer); 4073 } 4074 4075 static inline void * __must_check 4076 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4077 { 4078 if (likely(skb_headlen(skb) - offset >= len)) 4079 return skb->data + offset; 4080 return NULL; 4081 } 4082 4083 /** 4084 * skb_needs_linearize - check if we need to linearize a given skb 4085 * depending on the given device features. 4086 * @skb: socket buffer to check 4087 * @features: net device features 4088 * 4089 * Returns true if either: 4090 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4091 * 2. skb is fragmented and the device does not support SG. 4092 */ 4093 static inline bool skb_needs_linearize(struct sk_buff *skb, 4094 netdev_features_t features) 4095 { 4096 return skb_is_nonlinear(skb) && 4097 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4098 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4099 } 4100 4101 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4102 void *to, 4103 const unsigned int len) 4104 { 4105 memcpy(to, skb->data, len); 4106 } 4107 4108 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4109 const int offset, void *to, 4110 const unsigned int len) 4111 { 4112 memcpy(to, skb->data + offset, len); 4113 } 4114 4115 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4116 const void *from, 4117 const unsigned int len) 4118 { 4119 memcpy(skb->data, from, len); 4120 } 4121 4122 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4123 const int offset, 4124 const void *from, 4125 const unsigned int len) 4126 { 4127 memcpy(skb->data + offset, from, len); 4128 } 4129 4130 void skb_init(void); 4131 4132 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4133 { 4134 return skb->tstamp; 4135 } 4136 4137 /** 4138 * skb_get_timestamp - get timestamp from a skb 4139 * @skb: skb to get stamp from 4140 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4141 * 4142 * Timestamps are stored in the skb as offsets to a base timestamp. 4143 * This function converts the offset back to a struct timeval and stores 4144 * it in stamp. 4145 */ 4146 static inline void skb_get_timestamp(const struct sk_buff *skb, 4147 struct __kernel_old_timeval *stamp) 4148 { 4149 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4150 } 4151 4152 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4153 struct __kernel_sock_timeval *stamp) 4154 { 4155 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4156 4157 stamp->tv_sec = ts.tv_sec; 4158 stamp->tv_usec = ts.tv_nsec / 1000; 4159 } 4160 4161 static inline void skb_get_timestampns(const struct sk_buff *skb, 4162 struct __kernel_old_timespec *stamp) 4163 { 4164 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4165 4166 stamp->tv_sec = ts.tv_sec; 4167 stamp->tv_nsec = ts.tv_nsec; 4168 } 4169 4170 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4171 struct __kernel_timespec *stamp) 4172 { 4173 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4174 4175 stamp->tv_sec = ts.tv_sec; 4176 stamp->tv_nsec = ts.tv_nsec; 4177 } 4178 4179 static inline void __net_timestamp(struct sk_buff *skb) 4180 { 4181 skb->tstamp = ktime_get_real(); 4182 skb->mono_delivery_time = 0; 4183 } 4184 4185 static inline ktime_t net_timedelta(ktime_t t) 4186 { 4187 return ktime_sub(ktime_get_real(), t); 4188 } 4189 4190 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4191 bool mono) 4192 { 4193 skb->tstamp = kt; 4194 skb->mono_delivery_time = kt && mono; 4195 } 4196 4197 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4198 4199 /* It is used in the ingress path to clear the delivery_time. 4200 * If needed, set the skb->tstamp to the (rcv) timestamp. 4201 */ 4202 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4203 { 4204 if (skb->mono_delivery_time) { 4205 skb->mono_delivery_time = 0; 4206 if (static_branch_unlikely(&netstamp_needed_key)) 4207 skb->tstamp = ktime_get_real(); 4208 else 4209 skb->tstamp = 0; 4210 } 4211 } 4212 4213 static inline void skb_clear_tstamp(struct sk_buff *skb) 4214 { 4215 if (skb->mono_delivery_time) 4216 return; 4217 4218 skb->tstamp = 0; 4219 } 4220 4221 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4222 { 4223 if (skb->mono_delivery_time) 4224 return 0; 4225 4226 return skb->tstamp; 4227 } 4228 4229 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4230 { 4231 if (!skb->mono_delivery_time && skb->tstamp) 4232 return skb->tstamp; 4233 4234 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4235 return ktime_get_real(); 4236 4237 return 0; 4238 } 4239 4240 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4241 { 4242 return skb_shinfo(skb)->meta_len; 4243 } 4244 4245 static inline void *skb_metadata_end(const struct sk_buff *skb) 4246 { 4247 return skb_mac_header(skb); 4248 } 4249 4250 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4251 const struct sk_buff *skb_b, 4252 u8 meta_len) 4253 { 4254 const void *a = skb_metadata_end(skb_a); 4255 const void *b = skb_metadata_end(skb_b); 4256 u64 diffs = 0; 4257 4258 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4259 BITS_PER_LONG != 64) 4260 goto slow; 4261 4262 /* Using more efficient variant than plain call to memcmp(). */ 4263 switch (meta_len) { 4264 #define __it(x, op) (x -= sizeof(u##op)) 4265 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4266 case 32: diffs |= __it_diff(a, b, 64); 4267 fallthrough; 4268 case 24: diffs |= __it_diff(a, b, 64); 4269 fallthrough; 4270 case 16: diffs |= __it_diff(a, b, 64); 4271 fallthrough; 4272 case 8: diffs |= __it_diff(a, b, 64); 4273 break; 4274 case 28: diffs |= __it_diff(a, b, 64); 4275 fallthrough; 4276 case 20: diffs |= __it_diff(a, b, 64); 4277 fallthrough; 4278 case 12: diffs |= __it_diff(a, b, 64); 4279 fallthrough; 4280 case 4: diffs |= __it_diff(a, b, 32); 4281 break; 4282 default: 4283 slow: 4284 return memcmp(a - meta_len, b - meta_len, meta_len); 4285 } 4286 return diffs; 4287 } 4288 4289 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4290 const struct sk_buff *skb_b) 4291 { 4292 u8 len_a = skb_metadata_len(skb_a); 4293 u8 len_b = skb_metadata_len(skb_b); 4294 4295 if (!(len_a | len_b)) 4296 return false; 4297 4298 return len_a != len_b ? 4299 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4300 } 4301 4302 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4303 { 4304 skb_shinfo(skb)->meta_len = meta_len; 4305 } 4306 4307 static inline void skb_metadata_clear(struct sk_buff *skb) 4308 { 4309 skb_metadata_set(skb, 0); 4310 } 4311 4312 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4313 4314 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4315 4316 void skb_clone_tx_timestamp(struct sk_buff *skb); 4317 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4318 4319 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4320 4321 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4322 { 4323 } 4324 4325 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4326 { 4327 return false; 4328 } 4329 4330 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4331 4332 /** 4333 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4334 * 4335 * PHY drivers may accept clones of transmitted packets for 4336 * timestamping via their phy_driver.txtstamp method. These drivers 4337 * must call this function to return the skb back to the stack with a 4338 * timestamp. 4339 * 4340 * @skb: clone of the original outgoing packet 4341 * @hwtstamps: hardware time stamps 4342 * 4343 */ 4344 void skb_complete_tx_timestamp(struct sk_buff *skb, 4345 struct skb_shared_hwtstamps *hwtstamps); 4346 4347 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4348 struct skb_shared_hwtstamps *hwtstamps, 4349 struct sock *sk, int tstype); 4350 4351 /** 4352 * skb_tstamp_tx - queue clone of skb with send time stamps 4353 * @orig_skb: the original outgoing packet 4354 * @hwtstamps: hardware time stamps, may be NULL if not available 4355 * 4356 * If the skb has a socket associated, then this function clones the 4357 * skb (thus sharing the actual data and optional structures), stores 4358 * the optional hardware time stamping information (if non NULL) or 4359 * generates a software time stamp (otherwise), then queues the clone 4360 * to the error queue of the socket. Errors are silently ignored. 4361 */ 4362 void skb_tstamp_tx(struct sk_buff *orig_skb, 4363 struct skb_shared_hwtstamps *hwtstamps); 4364 4365 /** 4366 * skb_tx_timestamp() - Driver hook for transmit timestamping 4367 * 4368 * Ethernet MAC Drivers should call this function in their hard_xmit() 4369 * function immediately before giving the sk_buff to the MAC hardware. 4370 * 4371 * Specifically, one should make absolutely sure that this function is 4372 * called before TX completion of this packet can trigger. Otherwise 4373 * the packet could potentially already be freed. 4374 * 4375 * @skb: A socket buffer. 4376 */ 4377 static inline void skb_tx_timestamp(struct sk_buff *skb) 4378 { 4379 skb_clone_tx_timestamp(skb); 4380 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4381 skb_tstamp_tx(skb, NULL); 4382 } 4383 4384 /** 4385 * skb_complete_wifi_ack - deliver skb with wifi status 4386 * 4387 * @skb: the original outgoing packet 4388 * @acked: ack status 4389 * 4390 */ 4391 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4392 4393 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4394 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4395 4396 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4397 { 4398 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4399 skb->csum_valid || 4400 (skb->ip_summed == CHECKSUM_PARTIAL && 4401 skb_checksum_start_offset(skb) >= 0)); 4402 } 4403 4404 /** 4405 * skb_checksum_complete - Calculate checksum of an entire packet 4406 * @skb: packet to process 4407 * 4408 * This function calculates the checksum over the entire packet plus 4409 * the value of skb->csum. The latter can be used to supply the 4410 * checksum of a pseudo header as used by TCP/UDP. It returns the 4411 * checksum. 4412 * 4413 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4414 * this function can be used to verify that checksum on received 4415 * packets. In that case the function should return zero if the 4416 * checksum is correct. In particular, this function will return zero 4417 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4418 * hardware has already verified the correctness of the checksum. 4419 */ 4420 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4421 { 4422 return skb_csum_unnecessary(skb) ? 4423 0 : __skb_checksum_complete(skb); 4424 } 4425 4426 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4427 { 4428 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4429 if (skb->csum_level == 0) 4430 skb->ip_summed = CHECKSUM_NONE; 4431 else 4432 skb->csum_level--; 4433 } 4434 } 4435 4436 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4437 { 4438 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4439 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4440 skb->csum_level++; 4441 } else if (skb->ip_summed == CHECKSUM_NONE) { 4442 skb->ip_summed = CHECKSUM_UNNECESSARY; 4443 skb->csum_level = 0; 4444 } 4445 } 4446 4447 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4448 { 4449 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4450 skb->ip_summed = CHECKSUM_NONE; 4451 skb->csum_level = 0; 4452 } 4453 } 4454 4455 /* Check if we need to perform checksum complete validation. 4456 * 4457 * Returns true if checksum complete is needed, false otherwise 4458 * (either checksum is unnecessary or zero checksum is allowed). 4459 */ 4460 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4461 bool zero_okay, 4462 __sum16 check) 4463 { 4464 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4465 skb->csum_valid = 1; 4466 __skb_decr_checksum_unnecessary(skb); 4467 return false; 4468 } 4469 4470 return true; 4471 } 4472 4473 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4474 * in checksum_init. 4475 */ 4476 #define CHECKSUM_BREAK 76 4477 4478 /* Unset checksum-complete 4479 * 4480 * Unset checksum complete can be done when packet is being modified 4481 * (uncompressed for instance) and checksum-complete value is 4482 * invalidated. 4483 */ 4484 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4485 { 4486 if (skb->ip_summed == CHECKSUM_COMPLETE) 4487 skb->ip_summed = CHECKSUM_NONE; 4488 } 4489 4490 /* Validate (init) checksum based on checksum complete. 4491 * 4492 * Return values: 4493 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4494 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4495 * checksum is stored in skb->csum for use in __skb_checksum_complete 4496 * non-zero: value of invalid checksum 4497 * 4498 */ 4499 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4500 bool complete, 4501 __wsum psum) 4502 { 4503 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4504 if (!csum_fold(csum_add(psum, skb->csum))) { 4505 skb->csum_valid = 1; 4506 return 0; 4507 } 4508 } 4509 4510 skb->csum = psum; 4511 4512 if (complete || skb->len <= CHECKSUM_BREAK) { 4513 __sum16 csum; 4514 4515 csum = __skb_checksum_complete(skb); 4516 skb->csum_valid = !csum; 4517 return csum; 4518 } 4519 4520 return 0; 4521 } 4522 4523 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4524 { 4525 return 0; 4526 } 4527 4528 /* Perform checksum validate (init). Note that this is a macro since we only 4529 * want to calculate the pseudo header which is an input function if necessary. 4530 * First we try to validate without any computation (checksum unnecessary) and 4531 * then calculate based on checksum complete calling the function to compute 4532 * pseudo header. 4533 * 4534 * Return values: 4535 * 0: checksum is validated or try to in skb_checksum_complete 4536 * non-zero: value of invalid checksum 4537 */ 4538 #define __skb_checksum_validate(skb, proto, complete, \ 4539 zero_okay, check, compute_pseudo) \ 4540 ({ \ 4541 __sum16 __ret = 0; \ 4542 skb->csum_valid = 0; \ 4543 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4544 __ret = __skb_checksum_validate_complete(skb, \ 4545 complete, compute_pseudo(skb, proto)); \ 4546 __ret; \ 4547 }) 4548 4549 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4550 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4551 4552 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4553 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4554 4555 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4556 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4557 4558 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4559 compute_pseudo) \ 4560 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4561 4562 #define skb_checksum_simple_validate(skb) \ 4563 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4564 4565 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4566 { 4567 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4568 } 4569 4570 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4571 { 4572 skb->csum = ~pseudo; 4573 skb->ip_summed = CHECKSUM_COMPLETE; 4574 } 4575 4576 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4577 do { \ 4578 if (__skb_checksum_convert_check(skb)) \ 4579 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4580 } while (0) 4581 4582 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4583 u16 start, u16 offset) 4584 { 4585 skb->ip_summed = CHECKSUM_PARTIAL; 4586 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4587 skb->csum_offset = offset - start; 4588 } 4589 4590 /* Update skbuf and packet to reflect the remote checksum offload operation. 4591 * When called, ptr indicates the starting point for skb->csum when 4592 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4593 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4594 */ 4595 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4596 int start, int offset, bool nopartial) 4597 { 4598 __wsum delta; 4599 4600 if (!nopartial) { 4601 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4602 return; 4603 } 4604 4605 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4606 __skb_checksum_complete(skb); 4607 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4608 } 4609 4610 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4611 4612 /* Adjust skb->csum since we changed the packet */ 4613 skb->csum = csum_add(skb->csum, delta); 4614 } 4615 4616 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4617 { 4618 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4619 return (void *)(skb->_nfct & NFCT_PTRMASK); 4620 #else 4621 return NULL; 4622 #endif 4623 } 4624 4625 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4626 { 4627 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4628 return skb->_nfct; 4629 #else 4630 return 0UL; 4631 #endif 4632 } 4633 4634 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4635 { 4636 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4637 skb->slow_gro |= !!nfct; 4638 skb->_nfct = nfct; 4639 #endif 4640 } 4641 4642 #ifdef CONFIG_SKB_EXTENSIONS 4643 enum skb_ext_id { 4644 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4645 SKB_EXT_BRIDGE_NF, 4646 #endif 4647 #ifdef CONFIG_XFRM 4648 SKB_EXT_SEC_PATH, 4649 #endif 4650 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4651 TC_SKB_EXT, 4652 #endif 4653 #if IS_ENABLED(CONFIG_MPTCP) 4654 SKB_EXT_MPTCP, 4655 #endif 4656 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4657 SKB_EXT_MCTP, 4658 #endif 4659 SKB_EXT_NUM, /* must be last */ 4660 }; 4661 4662 /** 4663 * struct skb_ext - sk_buff extensions 4664 * @refcnt: 1 on allocation, deallocated on 0 4665 * @offset: offset to add to @data to obtain extension address 4666 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4667 * @data: start of extension data, variable sized 4668 * 4669 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4670 * to use 'u8' types while allowing up to 2kb worth of extension data. 4671 */ 4672 struct skb_ext { 4673 refcount_t refcnt; 4674 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4675 u8 chunks; /* same */ 4676 char data[] __aligned(8); 4677 }; 4678 4679 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4680 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4681 struct skb_ext *ext); 4682 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4683 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4684 void __skb_ext_put(struct skb_ext *ext); 4685 4686 static inline void skb_ext_put(struct sk_buff *skb) 4687 { 4688 if (skb->active_extensions) 4689 __skb_ext_put(skb->extensions); 4690 } 4691 4692 static inline void __skb_ext_copy(struct sk_buff *dst, 4693 const struct sk_buff *src) 4694 { 4695 dst->active_extensions = src->active_extensions; 4696 4697 if (src->active_extensions) { 4698 struct skb_ext *ext = src->extensions; 4699 4700 refcount_inc(&ext->refcnt); 4701 dst->extensions = ext; 4702 } 4703 } 4704 4705 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4706 { 4707 skb_ext_put(dst); 4708 __skb_ext_copy(dst, src); 4709 } 4710 4711 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4712 { 4713 return !!ext->offset[i]; 4714 } 4715 4716 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4717 { 4718 return skb->active_extensions & (1 << id); 4719 } 4720 4721 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4722 { 4723 if (skb_ext_exist(skb, id)) 4724 __skb_ext_del(skb, id); 4725 } 4726 4727 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4728 { 4729 if (skb_ext_exist(skb, id)) { 4730 struct skb_ext *ext = skb->extensions; 4731 4732 return (void *)ext + (ext->offset[id] << 3); 4733 } 4734 4735 return NULL; 4736 } 4737 4738 static inline void skb_ext_reset(struct sk_buff *skb) 4739 { 4740 if (unlikely(skb->active_extensions)) { 4741 __skb_ext_put(skb->extensions); 4742 skb->active_extensions = 0; 4743 } 4744 } 4745 4746 static inline bool skb_has_extensions(struct sk_buff *skb) 4747 { 4748 return unlikely(skb->active_extensions); 4749 } 4750 #else 4751 static inline void skb_ext_put(struct sk_buff *skb) {} 4752 static inline void skb_ext_reset(struct sk_buff *skb) {} 4753 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4754 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4755 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4756 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4757 #endif /* CONFIG_SKB_EXTENSIONS */ 4758 4759 static inline void nf_reset_ct(struct sk_buff *skb) 4760 { 4761 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4762 nf_conntrack_put(skb_nfct(skb)); 4763 skb->_nfct = 0; 4764 #endif 4765 } 4766 4767 static inline void nf_reset_trace(struct sk_buff *skb) 4768 { 4769 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4770 skb->nf_trace = 0; 4771 #endif 4772 } 4773 4774 static inline void ipvs_reset(struct sk_buff *skb) 4775 { 4776 #if IS_ENABLED(CONFIG_IP_VS) 4777 skb->ipvs_property = 0; 4778 #endif 4779 } 4780 4781 /* Note: This doesn't put any conntrack info in dst. */ 4782 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4783 bool copy) 4784 { 4785 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4786 dst->_nfct = src->_nfct; 4787 nf_conntrack_get(skb_nfct(src)); 4788 #endif 4789 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4790 if (copy) 4791 dst->nf_trace = src->nf_trace; 4792 #endif 4793 } 4794 4795 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4796 { 4797 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4798 nf_conntrack_put(skb_nfct(dst)); 4799 #endif 4800 dst->slow_gro = src->slow_gro; 4801 __nf_copy(dst, src, true); 4802 } 4803 4804 #ifdef CONFIG_NETWORK_SECMARK 4805 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4806 { 4807 to->secmark = from->secmark; 4808 } 4809 4810 static inline void skb_init_secmark(struct sk_buff *skb) 4811 { 4812 skb->secmark = 0; 4813 } 4814 #else 4815 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4816 { } 4817 4818 static inline void skb_init_secmark(struct sk_buff *skb) 4819 { } 4820 #endif 4821 4822 static inline int secpath_exists(const struct sk_buff *skb) 4823 { 4824 #ifdef CONFIG_XFRM 4825 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4826 #else 4827 return 0; 4828 #endif 4829 } 4830 4831 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4832 { 4833 return !skb->destructor && 4834 !secpath_exists(skb) && 4835 !skb_nfct(skb) && 4836 !skb->_skb_refdst && 4837 !skb_has_frag_list(skb); 4838 } 4839 4840 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4841 { 4842 skb->queue_mapping = queue_mapping; 4843 } 4844 4845 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4846 { 4847 return skb->queue_mapping; 4848 } 4849 4850 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4851 { 4852 to->queue_mapping = from->queue_mapping; 4853 } 4854 4855 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4856 { 4857 skb->queue_mapping = rx_queue + 1; 4858 } 4859 4860 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4861 { 4862 return skb->queue_mapping - 1; 4863 } 4864 4865 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4866 { 4867 return skb->queue_mapping != 0; 4868 } 4869 4870 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4871 { 4872 skb->dst_pending_confirm = val; 4873 } 4874 4875 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4876 { 4877 return skb->dst_pending_confirm != 0; 4878 } 4879 4880 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4881 { 4882 #ifdef CONFIG_XFRM 4883 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4884 #else 4885 return NULL; 4886 #endif 4887 } 4888 4889 static inline bool skb_is_gso(const struct sk_buff *skb) 4890 { 4891 return skb_shinfo(skb)->gso_size; 4892 } 4893 4894 /* Note: Should be called only if skb_is_gso(skb) is true */ 4895 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4896 { 4897 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4898 } 4899 4900 /* Note: Should be called only if skb_is_gso(skb) is true */ 4901 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4902 { 4903 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4904 } 4905 4906 /* Note: Should be called only if skb_is_gso(skb) is true */ 4907 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4908 { 4909 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4910 } 4911 4912 static inline void skb_gso_reset(struct sk_buff *skb) 4913 { 4914 skb_shinfo(skb)->gso_size = 0; 4915 skb_shinfo(skb)->gso_segs = 0; 4916 skb_shinfo(skb)->gso_type = 0; 4917 } 4918 4919 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4920 u16 increment) 4921 { 4922 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4923 return; 4924 shinfo->gso_size += increment; 4925 } 4926 4927 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4928 u16 decrement) 4929 { 4930 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4931 return; 4932 shinfo->gso_size -= decrement; 4933 } 4934 4935 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4936 4937 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4938 { 4939 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4940 * wanted then gso_type will be set. */ 4941 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4942 4943 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4944 unlikely(shinfo->gso_type == 0)) { 4945 __skb_warn_lro_forwarding(skb); 4946 return true; 4947 } 4948 return false; 4949 } 4950 4951 static inline void skb_forward_csum(struct sk_buff *skb) 4952 { 4953 /* Unfortunately we don't support this one. Any brave souls? */ 4954 if (skb->ip_summed == CHECKSUM_COMPLETE) 4955 skb->ip_summed = CHECKSUM_NONE; 4956 } 4957 4958 /** 4959 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4960 * @skb: skb to check 4961 * 4962 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4963 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4964 * use this helper, to document places where we make this assertion. 4965 */ 4966 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4967 { 4968 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4969 } 4970 4971 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4972 4973 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4974 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4975 unsigned int transport_len, 4976 __sum16(*skb_chkf)(struct sk_buff *skb)); 4977 4978 /** 4979 * skb_head_is_locked - Determine if the skb->head is locked down 4980 * @skb: skb to check 4981 * 4982 * The head on skbs build around a head frag can be removed if they are 4983 * not cloned. This function returns true if the skb head is locked down 4984 * due to either being allocated via kmalloc, or by being a clone with 4985 * multiple references to the head. 4986 */ 4987 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4988 { 4989 return !skb->head_frag || skb_cloned(skb); 4990 } 4991 4992 /* Local Checksum Offload. 4993 * Compute outer checksum based on the assumption that the 4994 * inner checksum will be offloaded later. 4995 * See Documentation/networking/checksum-offloads.rst for 4996 * explanation of how this works. 4997 * Fill in outer checksum adjustment (e.g. with sum of outer 4998 * pseudo-header) before calling. 4999 * Also ensure that inner checksum is in linear data area. 5000 */ 5001 static inline __wsum lco_csum(struct sk_buff *skb) 5002 { 5003 unsigned char *csum_start = skb_checksum_start(skb); 5004 unsigned char *l4_hdr = skb_transport_header(skb); 5005 __wsum partial; 5006 5007 /* Start with complement of inner checksum adjustment */ 5008 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5009 skb->csum_offset)); 5010 5011 /* Add in checksum of our headers (incl. outer checksum 5012 * adjustment filled in by caller) and return result. 5013 */ 5014 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5015 } 5016 5017 static inline bool skb_is_redirected(const struct sk_buff *skb) 5018 { 5019 return skb->redirected; 5020 } 5021 5022 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5023 { 5024 skb->redirected = 1; 5025 #ifdef CONFIG_NET_REDIRECT 5026 skb->from_ingress = from_ingress; 5027 if (skb->from_ingress) 5028 skb_clear_tstamp(skb); 5029 #endif 5030 } 5031 5032 static inline void skb_reset_redirect(struct sk_buff *skb) 5033 { 5034 skb->redirected = 0; 5035 } 5036 5037 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5038 bool from_ingress) 5039 { 5040 skb->redirected = 1; 5041 #ifdef CONFIG_NET_REDIRECT 5042 skb->from_ingress = from_ingress; 5043 #endif 5044 } 5045 5046 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5047 { 5048 #if IS_ENABLED(CONFIG_IP_SCTP) 5049 return skb->csum_not_inet; 5050 #else 5051 return 0; 5052 #endif 5053 } 5054 5055 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5056 { 5057 skb->ip_summed = CHECKSUM_NONE; 5058 #if IS_ENABLED(CONFIG_IP_SCTP) 5059 skb->csum_not_inet = 0; 5060 #endif 5061 } 5062 5063 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5064 const u64 kcov_handle) 5065 { 5066 #ifdef CONFIG_KCOV 5067 skb->kcov_handle = kcov_handle; 5068 #endif 5069 } 5070 5071 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5072 { 5073 #ifdef CONFIG_KCOV 5074 return skb->kcov_handle; 5075 #else 5076 return 0; 5077 #endif 5078 } 5079 5080 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5081 { 5082 #ifdef CONFIG_PAGE_POOL 5083 skb->pp_recycle = 1; 5084 #endif 5085 } 5086 5087 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5088 ssize_t maxsize, gfp_t gfp); 5089 5090 #endif /* __KERNEL__ */ 5091 #endif /* _LINUX_SKBUFF_H */ 5092