1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 36 #include <linux/netfilter/nf_conntrack_common.h> 37 #endif 38 #include <net/net_debug.h> 39 #include <net/dropreason-core.h> 40 #include <net/netmem.h> 41 42 /** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246 /* Don't change this without changing skb_csum_unnecessary! */ 247 #define CHECKSUM_NONE 0 248 #define CHECKSUM_UNNECESSARY 1 249 #define CHECKSUM_COMPLETE 2 250 #define CHECKSUM_PARTIAL 3 251 252 /* Maximum value in skb->csum_level */ 253 #define SKB_MAX_CSUM_LEVEL 3 254 255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256 #define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259 /* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266 #define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271 /* return minimum truesize of one skb containing X bytes of data */ 272 #define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276 struct ahash_request; 277 struct net_device; 278 struct scatterlist; 279 struct pipe_inode_info; 280 struct iov_iter; 281 struct napi_struct; 282 struct bpf_prog; 283 union bpf_attr; 284 struct skb_ext; 285 struct ts_config; 286 287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288 struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 u8 sabotage_in_done:1; 298 __u16 frag_max_size; 299 int physinif; 300 301 /* always valid & non-NULL from FORWARD on, for physdev match */ 302 struct net_device *physoutdev; 303 union { 304 /* prerouting: detect dnat in orig/reply direction */ 305 __be32 ipv4_daddr; 306 struct in6_addr ipv6_daddr; 307 308 /* after prerouting + nat detected: store original source 309 * mac since neigh resolution overwrites it, only used while 310 * skb is out in neigh layer. 311 */ 312 char neigh_header[8]; 313 }; 314 }; 315 #endif 316 317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 318 /* Chain in tc_skb_ext will be used to share the tc chain with 319 * ovs recirc_id. It will be set to the current chain by tc 320 * and read by ovs to recirc_id. 321 */ 322 struct tc_skb_ext { 323 union { 324 u64 act_miss_cookie; 325 __u32 chain; 326 }; 327 __u16 mru; 328 __u16 zone; 329 u8 post_ct:1; 330 u8 post_ct_snat:1; 331 u8 post_ct_dnat:1; 332 u8 act_miss:1; /* Set if act_miss_cookie is used */ 333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 334 }; 335 #endif 336 337 struct sk_buff_head { 338 /* These two members must be first to match sk_buff. */ 339 struct_group_tagged(sk_buff_list, list, 340 struct sk_buff *next; 341 struct sk_buff *prev; 342 ); 343 344 __u32 qlen; 345 spinlock_t lock; 346 }; 347 348 struct sk_buff; 349 350 #ifndef CONFIG_MAX_SKB_FRAGS 351 # define CONFIG_MAX_SKB_FRAGS 17 352 #endif 353 354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 355 356 extern int sysctl_max_skb_frags; 357 358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 359 * segment using its current segmentation instead. 360 */ 361 #define GSO_BY_FRAGS 0xFFFF 362 363 typedef struct skb_frag { 364 netmem_ref netmem; 365 unsigned int len; 366 unsigned int offset; 367 } skb_frag_t; 368 369 /** 370 * skb_frag_size() - Returns the size of a skb fragment 371 * @frag: skb fragment 372 */ 373 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 374 { 375 return frag->len; 376 } 377 378 /** 379 * skb_frag_size_set() - Sets the size of a skb fragment 380 * @frag: skb fragment 381 * @size: size of fragment 382 */ 383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 384 { 385 frag->len = size; 386 } 387 388 /** 389 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 390 * @frag: skb fragment 391 * @delta: value to add 392 */ 393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 394 { 395 frag->len += delta; 396 } 397 398 /** 399 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 400 * @frag: skb fragment 401 * @delta: value to subtract 402 */ 403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 404 { 405 frag->len -= delta; 406 } 407 408 /** 409 * skb_frag_must_loop - Test if %p is a high memory page 410 * @p: fragment's page 411 */ 412 static inline bool skb_frag_must_loop(struct page *p) 413 { 414 #if defined(CONFIG_HIGHMEM) 415 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 416 return true; 417 #endif 418 return false; 419 } 420 421 /** 422 * skb_frag_foreach_page - loop over pages in a fragment 423 * 424 * @f: skb frag to operate on 425 * @f_off: offset from start of f->netmem 426 * @f_len: length from f_off to loop over 427 * @p: (temp var) current page 428 * @p_off: (temp var) offset from start of current page, 429 * non-zero only on first page. 430 * @p_len: (temp var) length in current page, 431 * < PAGE_SIZE only on first and last page. 432 * @copied: (temp var) length so far, excluding current p_len. 433 * 434 * A fragment can hold a compound page, in which case per-page 435 * operations, notably kmap_atomic, must be called for each 436 * regular page. 437 */ 438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 439 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 440 p_off = (f_off) & (PAGE_SIZE - 1), \ 441 p_len = skb_frag_must_loop(p) ? \ 442 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 443 copied = 0; \ 444 copied < f_len; \ 445 copied += p_len, p++, p_off = 0, \ 446 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 447 448 /** 449 * struct skb_shared_hwtstamps - hardware time stamps 450 * @hwtstamp: hardware time stamp transformed into duration 451 * since arbitrary point in time 452 * @netdev_data: address/cookie of network device driver used as 453 * reference to actual hardware time stamp 454 * 455 * Software time stamps generated by ktime_get_real() are stored in 456 * skb->tstamp. 457 * 458 * hwtstamps can only be compared against other hwtstamps from 459 * the same device. 460 * 461 * This structure is attached to packets as part of the 462 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 463 */ 464 struct skb_shared_hwtstamps { 465 union { 466 ktime_t hwtstamp; 467 void *netdev_data; 468 }; 469 }; 470 471 /* Definitions for tx_flags in struct skb_shared_info */ 472 enum { 473 /* generate hardware time stamp */ 474 SKBTX_HW_TSTAMP = 1 << 0, 475 476 /* generate software time stamp when queueing packet to NIC */ 477 SKBTX_SW_TSTAMP = 1 << 1, 478 479 /* device driver is going to provide hardware time stamp */ 480 SKBTX_IN_PROGRESS = 1 << 2, 481 482 /* generate hardware time stamp based on cycles if supported */ 483 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 484 485 /* generate wifi status information (where possible) */ 486 SKBTX_WIFI_STATUS = 1 << 4, 487 488 /* determine hardware time stamp based on time or cycles */ 489 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 490 491 /* generate software time stamp when entering packet scheduling */ 492 SKBTX_SCHED_TSTAMP = 1 << 6, 493 }; 494 495 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 496 SKBTX_SCHED_TSTAMP) 497 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 498 SKBTX_HW_TSTAMP_USE_CYCLES | \ 499 SKBTX_ANY_SW_TSTAMP) 500 501 /* Definitions for flags in struct skb_shared_info */ 502 enum { 503 /* use zcopy routines */ 504 SKBFL_ZEROCOPY_ENABLE = BIT(0), 505 506 /* This indicates at least one fragment might be overwritten 507 * (as in vmsplice(), sendfile() ...) 508 * If we need to compute a TX checksum, we'll need to copy 509 * all frags to avoid possible bad checksum 510 */ 511 SKBFL_SHARED_FRAG = BIT(1), 512 513 /* segment contains only zerocopy data and should not be 514 * charged to the kernel memory. 515 */ 516 SKBFL_PURE_ZEROCOPY = BIT(2), 517 518 SKBFL_DONT_ORPHAN = BIT(3), 519 520 /* page references are managed by the ubuf_info, so it's safe to 521 * use frags only up until ubuf_info is released 522 */ 523 SKBFL_MANAGED_FRAG_REFS = BIT(4), 524 }; 525 526 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 527 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 528 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 529 530 /* 531 * The callback notifies userspace to release buffers when skb DMA is done in 532 * lower device, the skb last reference should be 0 when calling this. 533 * The zerocopy_success argument is true if zero copy transmit occurred, 534 * false on data copy or out of memory error caused by data copy attempt. 535 * The ctx field is used to track device context. 536 * The desc field is used to track userspace buffer index. 537 */ 538 struct ubuf_info { 539 void (*callback)(struct sk_buff *, struct ubuf_info *, 540 bool zerocopy_success); 541 refcount_t refcnt; 542 u8 flags; 543 }; 544 545 struct ubuf_info_msgzc { 546 struct ubuf_info ubuf; 547 548 union { 549 struct { 550 unsigned long desc; 551 void *ctx; 552 }; 553 struct { 554 u32 id; 555 u16 len; 556 u16 zerocopy:1; 557 u32 bytelen; 558 }; 559 }; 560 561 struct mmpin { 562 struct user_struct *user; 563 unsigned int num_pg; 564 } mmp; 565 }; 566 567 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 568 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 569 ubuf) 570 571 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 572 void mm_unaccount_pinned_pages(struct mmpin *mmp); 573 574 /* Preserve some data across TX submission and completion. 575 * 576 * Note, this state is stored in the driver. Extending the layout 577 * might need some special care. 578 */ 579 struct xsk_tx_metadata_compl { 580 __u64 *tx_timestamp; 581 }; 582 583 /* This data is invariant across clones and lives at 584 * the end of the header data, ie. at skb->end. 585 */ 586 struct skb_shared_info { 587 __u8 flags; 588 __u8 meta_len; 589 __u8 nr_frags; 590 __u8 tx_flags; 591 unsigned short gso_size; 592 /* Warning: this field is not always filled in (UFO)! */ 593 unsigned short gso_segs; 594 struct sk_buff *frag_list; 595 union { 596 struct skb_shared_hwtstamps hwtstamps; 597 struct xsk_tx_metadata_compl xsk_meta; 598 }; 599 unsigned int gso_type; 600 u32 tskey; 601 602 /* 603 * Warning : all fields before dataref are cleared in __alloc_skb() 604 */ 605 atomic_t dataref; 606 unsigned int xdp_frags_size; 607 608 /* Intermediate layers must ensure that destructor_arg 609 * remains valid until skb destructor */ 610 void * destructor_arg; 611 612 /* must be last field, see pskb_expand_head() */ 613 skb_frag_t frags[MAX_SKB_FRAGS]; 614 }; 615 616 /** 617 * DOC: dataref and headerless skbs 618 * 619 * Transport layers send out clones of payload skbs they hold for 620 * retransmissions. To allow lower layers of the stack to prepend their headers 621 * we split &skb_shared_info.dataref into two halves. 622 * The lower 16 bits count the overall number of references. 623 * The higher 16 bits indicate how many of the references are payload-only. 624 * skb_header_cloned() checks if skb is allowed to add / write the headers. 625 * 626 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 627 * (via __skb_header_release()). Any clone created from marked skb will get 628 * &sk_buff.hdr_len populated with the available headroom. 629 * If there's the only clone in existence it's able to modify the headroom 630 * at will. The sequence of calls inside the transport layer is:: 631 * 632 * <alloc skb> 633 * skb_reserve() 634 * __skb_header_release() 635 * skb_clone() 636 * // send the clone down the stack 637 * 638 * This is not a very generic construct and it depends on the transport layers 639 * doing the right thing. In practice there's usually only one payload-only skb. 640 * Having multiple payload-only skbs with different lengths of hdr_len is not 641 * possible. The payload-only skbs should never leave their owner. 642 */ 643 #define SKB_DATAREF_SHIFT 16 644 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 645 646 647 enum { 648 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 649 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 650 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 651 }; 652 653 enum { 654 SKB_GSO_TCPV4 = 1 << 0, 655 656 /* This indicates the skb is from an untrusted source. */ 657 SKB_GSO_DODGY = 1 << 1, 658 659 /* This indicates the tcp segment has CWR set. */ 660 SKB_GSO_TCP_ECN = 1 << 2, 661 662 SKB_GSO_TCP_FIXEDID = 1 << 3, 663 664 SKB_GSO_TCPV6 = 1 << 4, 665 666 SKB_GSO_FCOE = 1 << 5, 667 668 SKB_GSO_GRE = 1 << 6, 669 670 SKB_GSO_GRE_CSUM = 1 << 7, 671 672 SKB_GSO_IPXIP4 = 1 << 8, 673 674 SKB_GSO_IPXIP6 = 1 << 9, 675 676 SKB_GSO_UDP_TUNNEL = 1 << 10, 677 678 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 679 680 SKB_GSO_PARTIAL = 1 << 12, 681 682 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 683 684 SKB_GSO_SCTP = 1 << 14, 685 686 SKB_GSO_ESP = 1 << 15, 687 688 SKB_GSO_UDP = 1 << 16, 689 690 SKB_GSO_UDP_L4 = 1 << 17, 691 692 SKB_GSO_FRAGLIST = 1 << 18, 693 }; 694 695 #if BITS_PER_LONG > 32 696 #define NET_SKBUFF_DATA_USES_OFFSET 1 697 #endif 698 699 #ifdef NET_SKBUFF_DATA_USES_OFFSET 700 typedef unsigned int sk_buff_data_t; 701 #else 702 typedef unsigned char *sk_buff_data_t; 703 #endif 704 705 /** 706 * DOC: Basic sk_buff geometry 707 * 708 * struct sk_buff itself is a metadata structure and does not hold any packet 709 * data. All the data is held in associated buffers. 710 * 711 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 712 * into two parts: 713 * 714 * - data buffer, containing headers and sometimes payload; 715 * this is the part of the skb operated on by the common helpers 716 * such as skb_put() or skb_pull(); 717 * - shared info (struct skb_shared_info) which holds an array of pointers 718 * to read-only data in the (page, offset, length) format. 719 * 720 * Optionally &skb_shared_info.frag_list may point to another skb. 721 * 722 * Basic diagram may look like this:: 723 * 724 * --------------- 725 * | sk_buff | 726 * --------------- 727 * ,--------------------------- + head 728 * / ,----------------- + data 729 * / / ,----------- + tail 730 * | | | , + end 731 * | | | | 732 * v v v v 733 * ----------------------------------------------- 734 * | headroom | data | tailroom | skb_shared_info | 735 * ----------------------------------------------- 736 * + [page frag] 737 * + [page frag] 738 * + [page frag] 739 * + [page frag] --------- 740 * + frag_list --> | sk_buff | 741 * --------- 742 * 743 */ 744 745 /** 746 * struct sk_buff - socket buffer 747 * @next: Next buffer in list 748 * @prev: Previous buffer in list 749 * @tstamp: Time we arrived/left 750 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 751 * for retransmit timer 752 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 753 * @list: queue head 754 * @ll_node: anchor in an llist (eg socket defer_list) 755 * @sk: Socket we are owned by 756 * @dev: Device we arrived on/are leaving by 757 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 758 * @cb: Control buffer. Free for use by every layer. Put private vars here 759 * @_skb_refdst: destination entry (with norefcount bit) 760 * @len: Length of actual data 761 * @data_len: Data length 762 * @mac_len: Length of link layer header 763 * @hdr_len: writable header length of cloned skb 764 * @csum: Checksum (must include start/offset pair) 765 * @csum_start: Offset from skb->head where checksumming should start 766 * @csum_offset: Offset from csum_start where checksum should be stored 767 * @priority: Packet queueing priority 768 * @ignore_df: allow local fragmentation 769 * @cloned: Head may be cloned (check refcnt to be sure) 770 * @ip_summed: Driver fed us an IP checksum 771 * @nohdr: Payload reference only, must not modify header 772 * @pkt_type: Packet class 773 * @fclone: skbuff clone status 774 * @ipvs_property: skbuff is owned by ipvs 775 * @inner_protocol_type: whether the inner protocol is 776 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 777 * @remcsum_offload: remote checksum offload is enabled 778 * @offload_fwd_mark: Packet was L2-forwarded in hardware 779 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 780 * @tc_skip_classify: do not classify packet. set by IFB device 781 * @tc_at_ingress: used within tc_classify to distinguish in/egress 782 * @redirected: packet was redirected by packet classifier 783 * @from_ingress: packet was redirected from the ingress path 784 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 785 * @peeked: this packet has been seen already, so stats have been 786 * done for it, don't do them again 787 * @nf_trace: netfilter packet trace flag 788 * @protocol: Packet protocol from driver 789 * @destructor: Destruct function 790 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 791 * @_sk_redir: socket redirection information for skmsg 792 * @_nfct: Associated connection, if any (with nfctinfo bits) 793 * @skb_iif: ifindex of device we arrived on 794 * @tc_index: Traffic control index 795 * @hash: the packet hash 796 * @queue_mapping: Queue mapping for multiqueue devices 797 * @head_frag: skb was allocated from page fragments, 798 * not allocated by kmalloc() or vmalloc(). 799 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 800 * @pp_recycle: mark the packet for recycling instead of freeing (implies 801 * page_pool support on driver) 802 * @active_extensions: active extensions (skb_ext_id types) 803 * @ndisc_nodetype: router type (from link layer) 804 * @ooo_okay: allow the mapping of a socket to a queue to be changed 805 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 806 * ports. 807 * @sw_hash: indicates hash was computed in software stack 808 * @wifi_acked_valid: wifi_acked was set 809 * @wifi_acked: whether frame was acked on wifi or not 810 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 811 * @encapsulation: indicates the inner headers in the skbuff are valid 812 * @encap_hdr_csum: software checksum is needed 813 * @csum_valid: checksum is already valid 814 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 815 * @csum_complete_sw: checksum was completed by software 816 * @csum_level: indicates the number of consecutive checksums found in 817 * the packet minus one that have been verified as 818 * CHECKSUM_UNNECESSARY (max 3) 819 * @dst_pending_confirm: need to confirm neighbour 820 * @decrypted: Decrypted SKB 821 * @slow_gro: state present at GRO time, slower prepare step required 822 * @mono_delivery_time: When set, skb->tstamp has the 823 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 824 * skb->tstamp has the (rcv) timestamp at ingress and 825 * delivery_time at egress. 826 * @napi_id: id of the NAPI struct this skb came from 827 * @sender_cpu: (aka @napi_id) source CPU in XPS 828 * @alloc_cpu: CPU which did the skb allocation. 829 * @secmark: security marking 830 * @mark: Generic packet mark 831 * @reserved_tailroom: (aka @mark) number of bytes of free space available 832 * at the tail of an sk_buff 833 * @vlan_all: vlan fields (proto & tci) 834 * @vlan_proto: vlan encapsulation protocol 835 * @vlan_tci: vlan tag control information 836 * @inner_protocol: Protocol (encapsulation) 837 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 838 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 839 * @inner_transport_header: Inner transport layer header (encapsulation) 840 * @inner_network_header: Network layer header (encapsulation) 841 * @inner_mac_header: Link layer header (encapsulation) 842 * @transport_header: Transport layer header 843 * @network_header: Network layer header 844 * @mac_header: Link layer header 845 * @kcov_handle: KCOV remote handle for remote coverage collection 846 * @tail: Tail pointer 847 * @end: End pointer 848 * @head: Head of buffer 849 * @data: Data head pointer 850 * @truesize: Buffer size 851 * @users: User count - see {datagram,tcp}.c 852 * @extensions: allocated extensions, valid if active_extensions is nonzero 853 */ 854 855 struct sk_buff { 856 union { 857 struct { 858 /* These two members must be first to match sk_buff_head. */ 859 struct sk_buff *next; 860 struct sk_buff *prev; 861 862 union { 863 struct net_device *dev; 864 /* Some protocols might use this space to store information, 865 * while device pointer would be NULL. 866 * UDP receive path is one user. 867 */ 868 unsigned long dev_scratch; 869 }; 870 }; 871 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 872 struct list_head list; 873 struct llist_node ll_node; 874 }; 875 876 struct sock *sk; 877 878 union { 879 ktime_t tstamp; 880 u64 skb_mstamp_ns; /* earliest departure time */ 881 }; 882 /* 883 * This is the control buffer. It is free to use for every 884 * layer. Please put your private variables there. If you 885 * want to keep them across layers you have to do a skb_clone() 886 * first. This is owned by whoever has the skb queued ATM. 887 */ 888 char cb[48] __aligned(8); 889 890 union { 891 struct { 892 unsigned long _skb_refdst; 893 void (*destructor)(struct sk_buff *skb); 894 }; 895 struct list_head tcp_tsorted_anchor; 896 #ifdef CONFIG_NET_SOCK_MSG 897 unsigned long _sk_redir; 898 #endif 899 }; 900 901 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 902 unsigned long _nfct; 903 #endif 904 unsigned int len, 905 data_len; 906 __u16 mac_len, 907 hdr_len; 908 909 /* Following fields are _not_ copied in __copy_skb_header() 910 * Note that queue_mapping is here mostly to fill a hole. 911 */ 912 __u16 queue_mapping; 913 914 /* if you move cloned around you also must adapt those constants */ 915 #ifdef __BIG_ENDIAN_BITFIELD 916 #define CLONED_MASK (1 << 7) 917 #else 918 #define CLONED_MASK 1 919 #endif 920 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 921 922 /* private: */ 923 __u8 __cloned_offset[0]; 924 /* public: */ 925 __u8 cloned:1, 926 nohdr:1, 927 fclone:2, 928 peeked:1, 929 head_frag:1, 930 pfmemalloc:1, 931 pp_recycle:1; /* page_pool recycle indicator */ 932 #ifdef CONFIG_SKB_EXTENSIONS 933 __u8 active_extensions; 934 #endif 935 936 /* Fields enclosed in headers group are copied 937 * using a single memcpy() in __copy_skb_header() 938 */ 939 struct_group(headers, 940 941 /* private: */ 942 __u8 __pkt_type_offset[0]; 943 /* public: */ 944 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 945 __u8 ignore_df:1; 946 __u8 dst_pending_confirm:1; 947 __u8 ip_summed:2; 948 __u8 ooo_okay:1; 949 950 /* private: */ 951 __u8 __mono_tc_offset[0]; 952 /* public: */ 953 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 954 #ifdef CONFIG_NET_XGRESS 955 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 956 __u8 tc_skip_classify:1; 957 #endif 958 __u8 remcsum_offload:1; 959 __u8 csum_complete_sw:1; 960 __u8 csum_level:2; 961 __u8 inner_protocol_type:1; 962 963 __u8 l4_hash:1; 964 __u8 sw_hash:1; 965 #ifdef CONFIG_WIRELESS 966 __u8 wifi_acked_valid:1; 967 __u8 wifi_acked:1; 968 #endif 969 __u8 no_fcs:1; 970 /* Indicates the inner headers are valid in the skbuff. */ 971 __u8 encapsulation:1; 972 __u8 encap_hdr_csum:1; 973 __u8 csum_valid:1; 974 #ifdef CONFIG_IPV6_NDISC_NODETYPE 975 __u8 ndisc_nodetype:2; 976 #endif 977 978 #if IS_ENABLED(CONFIG_IP_VS) 979 __u8 ipvs_property:1; 980 #endif 981 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 982 __u8 nf_trace:1; 983 #endif 984 #ifdef CONFIG_NET_SWITCHDEV 985 __u8 offload_fwd_mark:1; 986 __u8 offload_l3_fwd_mark:1; 987 #endif 988 __u8 redirected:1; 989 #ifdef CONFIG_NET_REDIRECT 990 __u8 from_ingress:1; 991 #endif 992 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 993 __u8 nf_skip_egress:1; 994 #endif 995 #ifdef CONFIG_SKB_DECRYPTED 996 __u8 decrypted:1; 997 #endif 998 __u8 slow_gro:1; 999 #if IS_ENABLED(CONFIG_IP_SCTP) 1000 __u8 csum_not_inet:1; 1001 #endif 1002 1003 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1004 __u16 tc_index; /* traffic control index */ 1005 #endif 1006 1007 u16 alloc_cpu; 1008 1009 union { 1010 __wsum csum; 1011 struct { 1012 __u16 csum_start; 1013 __u16 csum_offset; 1014 }; 1015 }; 1016 __u32 priority; 1017 int skb_iif; 1018 __u32 hash; 1019 union { 1020 u32 vlan_all; 1021 struct { 1022 __be16 vlan_proto; 1023 __u16 vlan_tci; 1024 }; 1025 }; 1026 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1027 union { 1028 unsigned int napi_id; 1029 unsigned int sender_cpu; 1030 }; 1031 #endif 1032 #ifdef CONFIG_NETWORK_SECMARK 1033 __u32 secmark; 1034 #endif 1035 1036 union { 1037 __u32 mark; 1038 __u32 reserved_tailroom; 1039 }; 1040 1041 union { 1042 __be16 inner_protocol; 1043 __u8 inner_ipproto; 1044 }; 1045 1046 __u16 inner_transport_header; 1047 __u16 inner_network_header; 1048 __u16 inner_mac_header; 1049 1050 __be16 protocol; 1051 __u16 transport_header; 1052 __u16 network_header; 1053 __u16 mac_header; 1054 1055 #ifdef CONFIG_KCOV 1056 u64 kcov_handle; 1057 #endif 1058 1059 ); /* end headers group */ 1060 1061 /* These elements must be at the end, see alloc_skb() for details. */ 1062 sk_buff_data_t tail; 1063 sk_buff_data_t end; 1064 unsigned char *head, 1065 *data; 1066 unsigned int truesize; 1067 refcount_t users; 1068 1069 #ifdef CONFIG_SKB_EXTENSIONS 1070 /* only usable after checking ->active_extensions != 0 */ 1071 struct skb_ext *extensions; 1072 #endif 1073 }; 1074 1075 /* if you move pkt_type around you also must adapt those constants */ 1076 #ifdef __BIG_ENDIAN_BITFIELD 1077 #define PKT_TYPE_MAX (7 << 5) 1078 #else 1079 #define PKT_TYPE_MAX 7 1080 #endif 1081 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1082 1083 /* if you move tc_at_ingress or mono_delivery_time 1084 * around, you also must adapt these constants. 1085 */ 1086 #ifdef __BIG_ENDIAN_BITFIELD 1087 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7) 1088 #define TC_AT_INGRESS_MASK (1 << 6) 1089 #else 1090 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0) 1091 #define TC_AT_INGRESS_MASK (1 << 1) 1092 #endif 1093 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1094 1095 #ifdef __KERNEL__ 1096 /* 1097 * Handling routines are only of interest to the kernel 1098 */ 1099 1100 #define SKB_ALLOC_FCLONE 0x01 1101 #define SKB_ALLOC_RX 0x02 1102 #define SKB_ALLOC_NAPI 0x04 1103 1104 /** 1105 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1106 * @skb: buffer 1107 */ 1108 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1109 { 1110 return unlikely(skb->pfmemalloc); 1111 } 1112 1113 /* 1114 * skb might have a dst pointer attached, refcounted or not. 1115 * _skb_refdst low order bit is set if refcount was _not_ taken 1116 */ 1117 #define SKB_DST_NOREF 1UL 1118 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1119 1120 /** 1121 * skb_dst - returns skb dst_entry 1122 * @skb: buffer 1123 * 1124 * Returns skb dst_entry, regardless of reference taken or not. 1125 */ 1126 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1127 { 1128 /* If refdst was not refcounted, check we still are in a 1129 * rcu_read_lock section 1130 */ 1131 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1132 !rcu_read_lock_held() && 1133 !rcu_read_lock_bh_held()); 1134 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1135 } 1136 1137 /** 1138 * skb_dst_set - sets skb dst 1139 * @skb: buffer 1140 * @dst: dst entry 1141 * 1142 * Sets skb dst, assuming a reference was taken on dst and should 1143 * be released by skb_dst_drop() 1144 */ 1145 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1146 { 1147 skb->slow_gro |= !!dst; 1148 skb->_skb_refdst = (unsigned long)dst; 1149 } 1150 1151 /** 1152 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1153 * @skb: buffer 1154 * @dst: dst entry 1155 * 1156 * Sets skb dst, assuming a reference was not taken on dst. 1157 * If dst entry is cached, we do not take reference and dst_release 1158 * will be avoided by refdst_drop. If dst entry is not cached, we take 1159 * reference, so that last dst_release can destroy the dst immediately. 1160 */ 1161 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1162 { 1163 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1164 skb->slow_gro |= !!dst; 1165 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1166 } 1167 1168 /** 1169 * skb_dst_is_noref - Test if skb dst isn't refcounted 1170 * @skb: buffer 1171 */ 1172 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1173 { 1174 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1175 } 1176 1177 /** 1178 * skb_rtable - Returns the skb &rtable 1179 * @skb: buffer 1180 */ 1181 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1182 { 1183 return (struct rtable *)skb_dst(skb); 1184 } 1185 1186 /* For mangling skb->pkt_type from user space side from applications 1187 * such as nft, tc, etc, we only allow a conservative subset of 1188 * possible pkt_types to be set. 1189 */ 1190 static inline bool skb_pkt_type_ok(u32 ptype) 1191 { 1192 return ptype <= PACKET_OTHERHOST; 1193 } 1194 1195 /** 1196 * skb_napi_id - Returns the skb's NAPI id 1197 * @skb: buffer 1198 */ 1199 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1200 { 1201 #ifdef CONFIG_NET_RX_BUSY_POLL 1202 return skb->napi_id; 1203 #else 1204 return 0; 1205 #endif 1206 } 1207 1208 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1209 { 1210 #ifdef CONFIG_WIRELESS 1211 return skb->wifi_acked_valid; 1212 #else 1213 return 0; 1214 #endif 1215 } 1216 1217 /** 1218 * skb_unref - decrement the skb's reference count 1219 * @skb: buffer 1220 * 1221 * Returns true if we can free the skb. 1222 */ 1223 static inline bool skb_unref(struct sk_buff *skb) 1224 { 1225 if (unlikely(!skb)) 1226 return false; 1227 if (likely(refcount_read(&skb->users) == 1)) 1228 smp_rmb(); 1229 else if (likely(!refcount_dec_and_test(&skb->users))) 1230 return false; 1231 1232 return true; 1233 } 1234 1235 static inline bool skb_data_unref(const struct sk_buff *skb, 1236 struct skb_shared_info *shinfo) 1237 { 1238 int bias; 1239 1240 if (!skb->cloned) 1241 return true; 1242 1243 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1244 1245 if (atomic_read(&shinfo->dataref) == bias) 1246 smp_rmb(); 1247 else if (atomic_sub_return(bias, &shinfo->dataref)) 1248 return false; 1249 1250 return true; 1251 } 1252 1253 void __fix_address 1254 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1255 1256 /** 1257 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1258 * @skb: buffer to free 1259 */ 1260 static inline void kfree_skb(struct sk_buff *skb) 1261 { 1262 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1263 } 1264 1265 void skb_release_head_state(struct sk_buff *skb); 1266 void kfree_skb_list_reason(struct sk_buff *segs, 1267 enum skb_drop_reason reason); 1268 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1269 void skb_tx_error(struct sk_buff *skb); 1270 1271 static inline void kfree_skb_list(struct sk_buff *segs) 1272 { 1273 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1274 } 1275 1276 #ifdef CONFIG_TRACEPOINTS 1277 void consume_skb(struct sk_buff *skb); 1278 #else 1279 static inline void consume_skb(struct sk_buff *skb) 1280 { 1281 return kfree_skb(skb); 1282 } 1283 #endif 1284 1285 void __consume_stateless_skb(struct sk_buff *skb); 1286 void __kfree_skb(struct sk_buff *skb); 1287 1288 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1289 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1290 bool *fragstolen, int *delta_truesize); 1291 1292 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1293 int node); 1294 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1295 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1296 struct sk_buff *build_skb_around(struct sk_buff *skb, 1297 void *data, unsigned int frag_size); 1298 void skb_attempt_defer_free(struct sk_buff *skb); 1299 1300 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1301 struct sk_buff *slab_build_skb(void *data); 1302 1303 /** 1304 * alloc_skb - allocate a network buffer 1305 * @size: size to allocate 1306 * @priority: allocation mask 1307 * 1308 * This function is a convenient wrapper around __alloc_skb(). 1309 */ 1310 static inline struct sk_buff *alloc_skb(unsigned int size, 1311 gfp_t priority) 1312 { 1313 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1314 } 1315 1316 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1317 unsigned long data_len, 1318 int max_page_order, 1319 int *errcode, 1320 gfp_t gfp_mask); 1321 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1322 1323 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1324 struct sk_buff_fclones { 1325 struct sk_buff skb1; 1326 1327 struct sk_buff skb2; 1328 1329 refcount_t fclone_ref; 1330 }; 1331 1332 /** 1333 * skb_fclone_busy - check if fclone is busy 1334 * @sk: socket 1335 * @skb: buffer 1336 * 1337 * Returns true if skb is a fast clone, and its clone is not freed. 1338 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1339 * so we also check that didn't happen. 1340 */ 1341 static inline bool skb_fclone_busy(const struct sock *sk, 1342 const struct sk_buff *skb) 1343 { 1344 const struct sk_buff_fclones *fclones; 1345 1346 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1347 1348 return skb->fclone == SKB_FCLONE_ORIG && 1349 refcount_read(&fclones->fclone_ref) > 1 && 1350 READ_ONCE(fclones->skb2.sk) == sk; 1351 } 1352 1353 /** 1354 * alloc_skb_fclone - allocate a network buffer from fclone cache 1355 * @size: size to allocate 1356 * @priority: allocation mask 1357 * 1358 * This function is a convenient wrapper around __alloc_skb(). 1359 */ 1360 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1361 gfp_t priority) 1362 { 1363 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1364 } 1365 1366 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1367 void skb_headers_offset_update(struct sk_buff *skb, int off); 1368 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1369 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1370 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1371 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1372 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1373 gfp_t gfp_mask, bool fclone); 1374 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1375 gfp_t gfp_mask) 1376 { 1377 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1378 } 1379 1380 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1381 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1382 unsigned int headroom); 1383 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1384 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1385 int newtailroom, gfp_t priority); 1386 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1387 int offset, int len); 1388 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1389 int offset, int len); 1390 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1391 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1392 1393 /** 1394 * skb_pad - zero pad the tail of an skb 1395 * @skb: buffer to pad 1396 * @pad: space to pad 1397 * 1398 * Ensure that a buffer is followed by a padding area that is zero 1399 * filled. Used by network drivers which may DMA or transfer data 1400 * beyond the buffer end onto the wire. 1401 * 1402 * May return error in out of memory cases. The skb is freed on error. 1403 */ 1404 static inline int skb_pad(struct sk_buff *skb, int pad) 1405 { 1406 return __skb_pad(skb, pad, true); 1407 } 1408 #define dev_kfree_skb(a) consume_skb(a) 1409 1410 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1411 int offset, size_t size, size_t max_frags); 1412 1413 struct skb_seq_state { 1414 __u32 lower_offset; 1415 __u32 upper_offset; 1416 __u32 frag_idx; 1417 __u32 stepped_offset; 1418 struct sk_buff *root_skb; 1419 struct sk_buff *cur_skb; 1420 __u8 *frag_data; 1421 __u32 frag_off; 1422 }; 1423 1424 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1425 unsigned int to, struct skb_seq_state *st); 1426 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1427 struct skb_seq_state *st); 1428 void skb_abort_seq_read(struct skb_seq_state *st); 1429 1430 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1431 unsigned int to, struct ts_config *config); 1432 1433 /* 1434 * Packet hash types specify the type of hash in skb_set_hash. 1435 * 1436 * Hash types refer to the protocol layer addresses which are used to 1437 * construct a packet's hash. The hashes are used to differentiate or identify 1438 * flows of the protocol layer for the hash type. Hash types are either 1439 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1440 * 1441 * Properties of hashes: 1442 * 1443 * 1) Two packets in different flows have different hash values 1444 * 2) Two packets in the same flow should have the same hash value 1445 * 1446 * A hash at a higher layer is considered to be more specific. A driver should 1447 * set the most specific hash possible. 1448 * 1449 * A driver cannot indicate a more specific hash than the layer at which a hash 1450 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1451 * 1452 * A driver may indicate a hash level which is less specific than the 1453 * actual layer the hash was computed on. For instance, a hash computed 1454 * at L4 may be considered an L3 hash. This should only be done if the 1455 * driver can't unambiguously determine that the HW computed the hash at 1456 * the higher layer. Note that the "should" in the second property above 1457 * permits this. 1458 */ 1459 enum pkt_hash_types { 1460 PKT_HASH_TYPE_NONE, /* Undefined type */ 1461 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1462 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1463 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1464 }; 1465 1466 static inline void skb_clear_hash(struct sk_buff *skb) 1467 { 1468 skb->hash = 0; 1469 skb->sw_hash = 0; 1470 skb->l4_hash = 0; 1471 } 1472 1473 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1474 { 1475 if (!skb->l4_hash) 1476 skb_clear_hash(skb); 1477 } 1478 1479 static inline void 1480 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1481 { 1482 skb->l4_hash = is_l4; 1483 skb->sw_hash = is_sw; 1484 skb->hash = hash; 1485 } 1486 1487 static inline void 1488 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1489 { 1490 /* Used by drivers to set hash from HW */ 1491 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1492 } 1493 1494 static inline void 1495 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1496 { 1497 __skb_set_hash(skb, hash, true, is_l4); 1498 } 1499 1500 void __skb_get_hash(struct sk_buff *skb); 1501 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1502 u32 skb_get_poff(const struct sk_buff *skb); 1503 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1504 const struct flow_keys_basic *keys, int hlen); 1505 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1506 const void *data, int hlen_proto); 1507 1508 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1509 int thoff, u8 ip_proto) 1510 { 1511 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1512 } 1513 1514 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1515 const struct flow_dissector_key *key, 1516 unsigned int key_count); 1517 1518 struct bpf_flow_dissector; 1519 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1520 __be16 proto, int nhoff, int hlen, unsigned int flags); 1521 1522 bool __skb_flow_dissect(const struct net *net, 1523 const struct sk_buff *skb, 1524 struct flow_dissector *flow_dissector, 1525 void *target_container, const void *data, 1526 __be16 proto, int nhoff, int hlen, unsigned int flags); 1527 1528 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1529 struct flow_dissector *flow_dissector, 1530 void *target_container, unsigned int flags) 1531 { 1532 return __skb_flow_dissect(NULL, skb, flow_dissector, 1533 target_container, NULL, 0, 0, 0, flags); 1534 } 1535 1536 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1537 struct flow_keys *flow, 1538 unsigned int flags) 1539 { 1540 memset(flow, 0, sizeof(*flow)); 1541 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1542 flow, NULL, 0, 0, 0, flags); 1543 } 1544 1545 static inline bool 1546 skb_flow_dissect_flow_keys_basic(const struct net *net, 1547 const struct sk_buff *skb, 1548 struct flow_keys_basic *flow, 1549 const void *data, __be16 proto, 1550 int nhoff, int hlen, unsigned int flags) 1551 { 1552 memset(flow, 0, sizeof(*flow)); 1553 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1554 data, proto, nhoff, hlen, flags); 1555 } 1556 1557 void skb_flow_dissect_meta(const struct sk_buff *skb, 1558 struct flow_dissector *flow_dissector, 1559 void *target_container); 1560 1561 /* Gets a skb connection tracking info, ctinfo map should be a 1562 * map of mapsize to translate enum ip_conntrack_info states 1563 * to user states. 1564 */ 1565 void 1566 skb_flow_dissect_ct(const struct sk_buff *skb, 1567 struct flow_dissector *flow_dissector, 1568 void *target_container, 1569 u16 *ctinfo_map, size_t mapsize, 1570 bool post_ct, u16 zone); 1571 void 1572 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1573 struct flow_dissector *flow_dissector, 1574 void *target_container); 1575 1576 void skb_flow_dissect_hash(const struct sk_buff *skb, 1577 struct flow_dissector *flow_dissector, 1578 void *target_container); 1579 1580 static inline __u32 skb_get_hash(struct sk_buff *skb) 1581 { 1582 if (!skb->l4_hash && !skb->sw_hash) 1583 __skb_get_hash(skb); 1584 1585 return skb->hash; 1586 } 1587 1588 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1589 { 1590 if (!skb->l4_hash && !skb->sw_hash) { 1591 struct flow_keys keys; 1592 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1593 1594 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1595 } 1596 1597 return skb->hash; 1598 } 1599 1600 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1601 const siphash_key_t *perturb); 1602 1603 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1604 { 1605 return skb->hash; 1606 } 1607 1608 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1609 { 1610 to->hash = from->hash; 1611 to->sw_hash = from->sw_hash; 1612 to->l4_hash = from->l4_hash; 1613 }; 1614 1615 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1616 const struct sk_buff *skb2) 1617 { 1618 #ifdef CONFIG_SKB_DECRYPTED 1619 return skb2->decrypted - skb1->decrypted; 1620 #else 1621 return 0; 1622 #endif 1623 } 1624 1625 static inline bool skb_is_decrypted(const struct sk_buff *skb) 1626 { 1627 #ifdef CONFIG_SKB_DECRYPTED 1628 return skb->decrypted; 1629 #else 1630 return false; 1631 #endif 1632 } 1633 1634 static inline void skb_copy_decrypted(struct sk_buff *to, 1635 const struct sk_buff *from) 1636 { 1637 #ifdef CONFIG_SKB_DECRYPTED 1638 to->decrypted = from->decrypted; 1639 #endif 1640 } 1641 1642 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1643 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1644 { 1645 return skb->head + skb->end; 1646 } 1647 1648 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1649 { 1650 return skb->end; 1651 } 1652 1653 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1654 { 1655 skb->end = offset; 1656 } 1657 #else 1658 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1659 { 1660 return skb->end; 1661 } 1662 1663 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1664 { 1665 return skb->end - skb->head; 1666 } 1667 1668 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1669 { 1670 skb->end = skb->head + offset; 1671 } 1672 #endif 1673 1674 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1675 struct ubuf_info *uarg); 1676 1677 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1678 1679 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1680 bool success); 1681 1682 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1683 struct sk_buff *skb, struct iov_iter *from, 1684 size_t length); 1685 1686 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1687 struct msghdr *msg, int len) 1688 { 1689 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1690 } 1691 1692 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1693 struct msghdr *msg, int len, 1694 struct ubuf_info *uarg); 1695 1696 /* Internal */ 1697 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1698 1699 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1700 { 1701 return &skb_shinfo(skb)->hwtstamps; 1702 } 1703 1704 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1705 { 1706 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1707 1708 return is_zcopy ? skb_uarg(skb) : NULL; 1709 } 1710 1711 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1712 { 1713 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1714 } 1715 1716 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1717 { 1718 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1719 } 1720 1721 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1722 const struct sk_buff *skb2) 1723 { 1724 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1725 } 1726 1727 static inline void net_zcopy_get(struct ubuf_info *uarg) 1728 { 1729 refcount_inc(&uarg->refcnt); 1730 } 1731 1732 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1733 { 1734 skb_shinfo(skb)->destructor_arg = uarg; 1735 skb_shinfo(skb)->flags |= uarg->flags; 1736 } 1737 1738 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1739 bool *have_ref) 1740 { 1741 if (skb && uarg && !skb_zcopy(skb)) { 1742 if (unlikely(have_ref && *have_ref)) 1743 *have_ref = false; 1744 else 1745 net_zcopy_get(uarg); 1746 skb_zcopy_init(skb, uarg); 1747 } 1748 } 1749 1750 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1751 { 1752 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1753 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1754 } 1755 1756 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1757 { 1758 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1759 } 1760 1761 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1762 { 1763 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1764 } 1765 1766 static inline void net_zcopy_put(struct ubuf_info *uarg) 1767 { 1768 if (uarg) 1769 uarg->callback(NULL, uarg, true); 1770 } 1771 1772 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1773 { 1774 if (uarg) { 1775 if (uarg->callback == msg_zerocopy_callback) 1776 msg_zerocopy_put_abort(uarg, have_uref); 1777 else if (have_uref) 1778 net_zcopy_put(uarg); 1779 } 1780 } 1781 1782 /* Release a reference on a zerocopy structure */ 1783 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1784 { 1785 struct ubuf_info *uarg = skb_zcopy(skb); 1786 1787 if (uarg) { 1788 if (!skb_zcopy_is_nouarg(skb)) 1789 uarg->callback(skb, uarg, zerocopy_success); 1790 1791 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1792 } 1793 } 1794 1795 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1796 1797 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1798 { 1799 if (unlikely(skb_zcopy_managed(skb))) 1800 __skb_zcopy_downgrade_managed(skb); 1801 } 1802 1803 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1804 { 1805 skb->next = NULL; 1806 } 1807 1808 static inline void skb_poison_list(struct sk_buff *skb) 1809 { 1810 #ifdef CONFIG_DEBUG_NET 1811 skb->next = SKB_LIST_POISON_NEXT; 1812 #endif 1813 } 1814 1815 /* Iterate through singly-linked GSO fragments of an skb. */ 1816 #define skb_list_walk_safe(first, skb, next_skb) \ 1817 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1818 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1819 1820 static inline void skb_list_del_init(struct sk_buff *skb) 1821 { 1822 __list_del_entry(&skb->list); 1823 skb_mark_not_on_list(skb); 1824 } 1825 1826 /** 1827 * skb_queue_empty - check if a queue is empty 1828 * @list: queue head 1829 * 1830 * Returns true if the queue is empty, false otherwise. 1831 */ 1832 static inline int skb_queue_empty(const struct sk_buff_head *list) 1833 { 1834 return list->next == (const struct sk_buff *) list; 1835 } 1836 1837 /** 1838 * skb_queue_empty_lockless - check if a queue is empty 1839 * @list: queue head 1840 * 1841 * Returns true if the queue is empty, false otherwise. 1842 * This variant can be used in lockless contexts. 1843 */ 1844 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1845 { 1846 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1847 } 1848 1849 1850 /** 1851 * skb_queue_is_last - check if skb is the last entry in the queue 1852 * @list: queue head 1853 * @skb: buffer 1854 * 1855 * Returns true if @skb is the last buffer on the list. 1856 */ 1857 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1858 const struct sk_buff *skb) 1859 { 1860 return skb->next == (const struct sk_buff *) list; 1861 } 1862 1863 /** 1864 * skb_queue_is_first - check if skb is the first entry in the queue 1865 * @list: queue head 1866 * @skb: buffer 1867 * 1868 * Returns true if @skb is the first buffer on the list. 1869 */ 1870 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1871 const struct sk_buff *skb) 1872 { 1873 return skb->prev == (const struct sk_buff *) list; 1874 } 1875 1876 /** 1877 * skb_queue_next - return the next packet in the queue 1878 * @list: queue head 1879 * @skb: current buffer 1880 * 1881 * Return the next packet in @list after @skb. It is only valid to 1882 * call this if skb_queue_is_last() evaluates to false. 1883 */ 1884 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1885 const struct sk_buff *skb) 1886 { 1887 /* This BUG_ON may seem severe, but if we just return then we 1888 * are going to dereference garbage. 1889 */ 1890 BUG_ON(skb_queue_is_last(list, skb)); 1891 return skb->next; 1892 } 1893 1894 /** 1895 * skb_queue_prev - return the prev packet in the queue 1896 * @list: queue head 1897 * @skb: current buffer 1898 * 1899 * Return the prev packet in @list before @skb. It is only valid to 1900 * call this if skb_queue_is_first() evaluates to false. 1901 */ 1902 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1903 const struct sk_buff *skb) 1904 { 1905 /* This BUG_ON may seem severe, but if we just return then we 1906 * are going to dereference garbage. 1907 */ 1908 BUG_ON(skb_queue_is_first(list, skb)); 1909 return skb->prev; 1910 } 1911 1912 /** 1913 * skb_get - reference buffer 1914 * @skb: buffer to reference 1915 * 1916 * Makes another reference to a socket buffer and returns a pointer 1917 * to the buffer. 1918 */ 1919 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1920 { 1921 refcount_inc(&skb->users); 1922 return skb; 1923 } 1924 1925 /* 1926 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1927 */ 1928 1929 /** 1930 * skb_cloned - is the buffer a clone 1931 * @skb: buffer to check 1932 * 1933 * Returns true if the buffer was generated with skb_clone() and is 1934 * one of multiple shared copies of the buffer. Cloned buffers are 1935 * shared data so must not be written to under normal circumstances. 1936 */ 1937 static inline int skb_cloned(const struct sk_buff *skb) 1938 { 1939 return skb->cloned && 1940 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1941 } 1942 1943 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1944 { 1945 might_sleep_if(gfpflags_allow_blocking(pri)); 1946 1947 if (skb_cloned(skb)) 1948 return pskb_expand_head(skb, 0, 0, pri); 1949 1950 return 0; 1951 } 1952 1953 /* This variant of skb_unclone() makes sure skb->truesize 1954 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1955 * 1956 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1957 * when various debugging features are in place. 1958 */ 1959 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1960 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1961 { 1962 might_sleep_if(gfpflags_allow_blocking(pri)); 1963 1964 if (skb_cloned(skb)) 1965 return __skb_unclone_keeptruesize(skb, pri); 1966 return 0; 1967 } 1968 1969 /** 1970 * skb_header_cloned - is the header a clone 1971 * @skb: buffer to check 1972 * 1973 * Returns true if modifying the header part of the buffer requires 1974 * the data to be copied. 1975 */ 1976 static inline int skb_header_cloned(const struct sk_buff *skb) 1977 { 1978 int dataref; 1979 1980 if (!skb->cloned) 1981 return 0; 1982 1983 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1984 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1985 return dataref != 1; 1986 } 1987 1988 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1989 { 1990 might_sleep_if(gfpflags_allow_blocking(pri)); 1991 1992 if (skb_header_cloned(skb)) 1993 return pskb_expand_head(skb, 0, 0, pri); 1994 1995 return 0; 1996 } 1997 1998 /** 1999 * __skb_header_release() - allow clones to use the headroom 2000 * @skb: buffer to operate on 2001 * 2002 * See "DOC: dataref and headerless skbs". 2003 */ 2004 static inline void __skb_header_release(struct sk_buff *skb) 2005 { 2006 skb->nohdr = 1; 2007 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2008 } 2009 2010 2011 /** 2012 * skb_shared - is the buffer shared 2013 * @skb: buffer to check 2014 * 2015 * Returns true if more than one person has a reference to this 2016 * buffer. 2017 */ 2018 static inline int skb_shared(const struct sk_buff *skb) 2019 { 2020 return refcount_read(&skb->users) != 1; 2021 } 2022 2023 /** 2024 * skb_share_check - check if buffer is shared and if so clone it 2025 * @skb: buffer to check 2026 * @pri: priority for memory allocation 2027 * 2028 * If the buffer is shared the buffer is cloned and the old copy 2029 * drops a reference. A new clone with a single reference is returned. 2030 * If the buffer is not shared the original buffer is returned. When 2031 * being called from interrupt status or with spinlocks held pri must 2032 * be GFP_ATOMIC. 2033 * 2034 * NULL is returned on a memory allocation failure. 2035 */ 2036 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2037 { 2038 might_sleep_if(gfpflags_allow_blocking(pri)); 2039 if (skb_shared(skb)) { 2040 struct sk_buff *nskb = skb_clone(skb, pri); 2041 2042 if (likely(nskb)) 2043 consume_skb(skb); 2044 else 2045 kfree_skb(skb); 2046 skb = nskb; 2047 } 2048 return skb; 2049 } 2050 2051 /* 2052 * Copy shared buffers into a new sk_buff. We effectively do COW on 2053 * packets to handle cases where we have a local reader and forward 2054 * and a couple of other messy ones. The normal one is tcpdumping 2055 * a packet that's being forwarded. 2056 */ 2057 2058 /** 2059 * skb_unshare - make a copy of a shared buffer 2060 * @skb: buffer to check 2061 * @pri: priority for memory allocation 2062 * 2063 * If the socket buffer is a clone then this function creates a new 2064 * copy of the data, drops a reference count on the old copy and returns 2065 * the new copy with the reference count at 1. If the buffer is not a clone 2066 * the original buffer is returned. When called with a spinlock held or 2067 * from interrupt state @pri must be %GFP_ATOMIC 2068 * 2069 * %NULL is returned on a memory allocation failure. 2070 */ 2071 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2072 gfp_t pri) 2073 { 2074 might_sleep_if(gfpflags_allow_blocking(pri)); 2075 if (skb_cloned(skb)) { 2076 struct sk_buff *nskb = skb_copy(skb, pri); 2077 2078 /* Free our shared copy */ 2079 if (likely(nskb)) 2080 consume_skb(skb); 2081 else 2082 kfree_skb(skb); 2083 skb = nskb; 2084 } 2085 return skb; 2086 } 2087 2088 /** 2089 * skb_peek - peek at the head of an &sk_buff_head 2090 * @list_: list to peek at 2091 * 2092 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2093 * be careful with this one. A peek leaves the buffer on the 2094 * list and someone else may run off with it. You must hold 2095 * the appropriate locks or have a private queue to do this. 2096 * 2097 * Returns %NULL for an empty list or a pointer to the head element. 2098 * The reference count is not incremented and the reference is therefore 2099 * volatile. Use with caution. 2100 */ 2101 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2102 { 2103 struct sk_buff *skb = list_->next; 2104 2105 if (skb == (struct sk_buff *)list_) 2106 skb = NULL; 2107 return skb; 2108 } 2109 2110 /** 2111 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2112 * @list_: list to peek at 2113 * 2114 * Like skb_peek(), but the caller knows that the list is not empty. 2115 */ 2116 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2117 { 2118 return list_->next; 2119 } 2120 2121 /** 2122 * skb_peek_next - peek skb following the given one from a queue 2123 * @skb: skb to start from 2124 * @list_: list to peek at 2125 * 2126 * Returns %NULL when the end of the list is met or a pointer to the 2127 * next element. The reference count is not incremented and the 2128 * reference is therefore volatile. Use with caution. 2129 */ 2130 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2131 const struct sk_buff_head *list_) 2132 { 2133 struct sk_buff *next = skb->next; 2134 2135 if (next == (struct sk_buff *)list_) 2136 next = NULL; 2137 return next; 2138 } 2139 2140 /** 2141 * skb_peek_tail - peek at the tail of an &sk_buff_head 2142 * @list_: list to peek at 2143 * 2144 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2145 * be careful with this one. A peek leaves the buffer on the 2146 * list and someone else may run off with it. You must hold 2147 * the appropriate locks or have a private queue to do this. 2148 * 2149 * Returns %NULL for an empty list or a pointer to the tail element. 2150 * The reference count is not incremented and the reference is therefore 2151 * volatile. Use with caution. 2152 */ 2153 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2154 { 2155 struct sk_buff *skb = READ_ONCE(list_->prev); 2156 2157 if (skb == (struct sk_buff *)list_) 2158 skb = NULL; 2159 return skb; 2160 2161 } 2162 2163 /** 2164 * skb_queue_len - get queue length 2165 * @list_: list to measure 2166 * 2167 * Return the length of an &sk_buff queue. 2168 */ 2169 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2170 { 2171 return list_->qlen; 2172 } 2173 2174 /** 2175 * skb_queue_len_lockless - get queue length 2176 * @list_: list to measure 2177 * 2178 * Return the length of an &sk_buff queue. 2179 * This variant can be used in lockless contexts. 2180 */ 2181 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2182 { 2183 return READ_ONCE(list_->qlen); 2184 } 2185 2186 /** 2187 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2188 * @list: queue to initialize 2189 * 2190 * This initializes only the list and queue length aspects of 2191 * an sk_buff_head object. This allows to initialize the list 2192 * aspects of an sk_buff_head without reinitializing things like 2193 * the spinlock. It can also be used for on-stack sk_buff_head 2194 * objects where the spinlock is known to not be used. 2195 */ 2196 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2197 { 2198 list->prev = list->next = (struct sk_buff *)list; 2199 list->qlen = 0; 2200 } 2201 2202 /* 2203 * This function creates a split out lock class for each invocation; 2204 * this is needed for now since a whole lot of users of the skb-queue 2205 * infrastructure in drivers have different locking usage (in hardirq) 2206 * than the networking core (in softirq only). In the long run either the 2207 * network layer or drivers should need annotation to consolidate the 2208 * main types of usage into 3 classes. 2209 */ 2210 static inline void skb_queue_head_init(struct sk_buff_head *list) 2211 { 2212 spin_lock_init(&list->lock); 2213 __skb_queue_head_init(list); 2214 } 2215 2216 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2217 struct lock_class_key *class) 2218 { 2219 skb_queue_head_init(list); 2220 lockdep_set_class(&list->lock, class); 2221 } 2222 2223 /* 2224 * Insert an sk_buff on a list. 2225 * 2226 * The "__skb_xxxx()" functions are the non-atomic ones that 2227 * can only be called with interrupts disabled. 2228 */ 2229 static inline void __skb_insert(struct sk_buff *newsk, 2230 struct sk_buff *prev, struct sk_buff *next, 2231 struct sk_buff_head *list) 2232 { 2233 /* See skb_queue_empty_lockless() and skb_peek_tail() 2234 * for the opposite READ_ONCE() 2235 */ 2236 WRITE_ONCE(newsk->next, next); 2237 WRITE_ONCE(newsk->prev, prev); 2238 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2239 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2240 WRITE_ONCE(list->qlen, list->qlen + 1); 2241 } 2242 2243 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2244 struct sk_buff *prev, 2245 struct sk_buff *next) 2246 { 2247 struct sk_buff *first = list->next; 2248 struct sk_buff *last = list->prev; 2249 2250 WRITE_ONCE(first->prev, prev); 2251 WRITE_ONCE(prev->next, first); 2252 2253 WRITE_ONCE(last->next, next); 2254 WRITE_ONCE(next->prev, last); 2255 } 2256 2257 /** 2258 * skb_queue_splice - join two skb lists, this is designed for stacks 2259 * @list: the new list to add 2260 * @head: the place to add it in the first list 2261 */ 2262 static inline void skb_queue_splice(const struct sk_buff_head *list, 2263 struct sk_buff_head *head) 2264 { 2265 if (!skb_queue_empty(list)) { 2266 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2267 head->qlen += list->qlen; 2268 } 2269 } 2270 2271 /** 2272 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2273 * @list: the new list to add 2274 * @head: the place to add it in the first list 2275 * 2276 * The list at @list is reinitialised 2277 */ 2278 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2279 struct sk_buff_head *head) 2280 { 2281 if (!skb_queue_empty(list)) { 2282 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2283 head->qlen += list->qlen; 2284 __skb_queue_head_init(list); 2285 } 2286 } 2287 2288 /** 2289 * skb_queue_splice_tail - join two skb lists, each list being a queue 2290 * @list: the new list to add 2291 * @head: the place to add it in the first list 2292 */ 2293 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2294 struct sk_buff_head *head) 2295 { 2296 if (!skb_queue_empty(list)) { 2297 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2298 head->qlen += list->qlen; 2299 } 2300 } 2301 2302 /** 2303 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2304 * @list: the new list to add 2305 * @head: the place to add it in the first list 2306 * 2307 * Each of the lists is a queue. 2308 * The list at @list is reinitialised 2309 */ 2310 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2311 struct sk_buff_head *head) 2312 { 2313 if (!skb_queue_empty(list)) { 2314 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2315 head->qlen += list->qlen; 2316 __skb_queue_head_init(list); 2317 } 2318 } 2319 2320 /** 2321 * __skb_queue_after - queue a buffer at the list head 2322 * @list: list to use 2323 * @prev: place after this buffer 2324 * @newsk: buffer to queue 2325 * 2326 * Queue a buffer int the middle of a list. This function takes no locks 2327 * and you must therefore hold required locks before calling it. 2328 * 2329 * A buffer cannot be placed on two lists at the same time. 2330 */ 2331 static inline void __skb_queue_after(struct sk_buff_head *list, 2332 struct sk_buff *prev, 2333 struct sk_buff *newsk) 2334 { 2335 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2336 } 2337 2338 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2339 struct sk_buff_head *list); 2340 2341 static inline void __skb_queue_before(struct sk_buff_head *list, 2342 struct sk_buff *next, 2343 struct sk_buff *newsk) 2344 { 2345 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2346 } 2347 2348 /** 2349 * __skb_queue_head - queue a buffer at the list head 2350 * @list: list to use 2351 * @newsk: buffer to queue 2352 * 2353 * Queue a buffer at the start of a list. This function takes no locks 2354 * and you must therefore hold required locks before calling it. 2355 * 2356 * A buffer cannot be placed on two lists at the same time. 2357 */ 2358 static inline void __skb_queue_head(struct sk_buff_head *list, 2359 struct sk_buff *newsk) 2360 { 2361 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2362 } 2363 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2364 2365 /** 2366 * __skb_queue_tail - queue a buffer at the list tail 2367 * @list: list to use 2368 * @newsk: buffer to queue 2369 * 2370 * Queue a buffer at the end of a list. This function takes no locks 2371 * and you must therefore hold required locks before calling it. 2372 * 2373 * A buffer cannot be placed on two lists at the same time. 2374 */ 2375 static inline void __skb_queue_tail(struct sk_buff_head *list, 2376 struct sk_buff *newsk) 2377 { 2378 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2379 } 2380 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2381 2382 /* 2383 * remove sk_buff from list. _Must_ be called atomically, and with 2384 * the list known.. 2385 */ 2386 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2387 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2388 { 2389 struct sk_buff *next, *prev; 2390 2391 WRITE_ONCE(list->qlen, list->qlen - 1); 2392 next = skb->next; 2393 prev = skb->prev; 2394 skb->next = skb->prev = NULL; 2395 WRITE_ONCE(next->prev, prev); 2396 WRITE_ONCE(prev->next, next); 2397 } 2398 2399 /** 2400 * __skb_dequeue - remove from the head of the queue 2401 * @list: list to dequeue from 2402 * 2403 * Remove the head of the list. This function does not take any locks 2404 * so must be used with appropriate locks held only. The head item is 2405 * returned or %NULL if the list is empty. 2406 */ 2407 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2408 { 2409 struct sk_buff *skb = skb_peek(list); 2410 if (skb) 2411 __skb_unlink(skb, list); 2412 return skb; 2413 } 2414 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2415 2416 /** 2417 * __skb_dequeue_tail - remove from the tail of the queue 2418 * @list: list to dequeue from 2419 * 2420 * Remove the tail of the list. This function does not take any locks 2421 * so must be used with appropriate locks held only. The tail item is 2422 * returned or %NULL if the list is empty. 2423 */ 2424 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2425 { 2426 struct sk_buff *skb = skb_peek_tail(list); 2427 if (skb) 2428 __skb_unlink(skb, list); 2429 return skb; 2430 } 2431 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2432 2433 2434 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2435 { 2436 return skb->data_len; 2437 } 2438 2439 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2440 { 2441 return skb->len - skb->data_len; 2442 } 2443 2444 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2445 { 2446 unsigned int i, len = 0; 2447 2448 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2449 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2450 return len; 2451 } 2452 2453 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2454 { 2455 return skb_headlen(skb) + __skb_pagelen(skb); 2456 } 2457 2458 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2459 netmem_ref netmem, int off, 2460 int size) 2461 { 2462 frag->netmem = netmem; 2463 frag->offset = off; 2464 skb_frag_size_set(frag, size); 2465 } 2466 2467 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2468 struct page *page, 2469 int off, int size) 2470 { 2471 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2472 } 2473 2474 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2475 int i, netmem_ref netmem, 2476 int off, int size) 2477 { 2478 skb_frag_t *frag = &shinfo->frags[i]; 2479 2480 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2481 } 2482 2483 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2484 int i, struct page *page, 2485 int off, int size) 2486 { 2487 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2488 size); 2489 } 2490 2491 /** 2492 * skb_len_add - adds a number to len fields of skb 2493 * @skb: buffer to add len to 2494 * @delta: number of bytes to add 2495 */ 2496 static inline void skb_len_add(struct sk_buff *skb, int delta) 2497 { 2498 skb->len += delta; 2499 skb->data_len += delta; 2500 skb->truesize += delta; 2501 } 2502 2503 /** 2504 * __skb_fill_netmem_desc - initialise a fragment in an skb 2505 * @skb: buffer containing fragment to be initialised 2506 * @i: fragment index to initialise 2507 * @netmem: the netmem to use for this fragment 2508 * @off: the offset to the data with @page 2509 * @size: the length of the data 2510 * 2511 * Initialises the @i'th fragment of @skb to point to &size bytes at 2512 * offset @off within @page. 2513 * 2514 * Does not take any additional reference on the fragment. 2515 */ 2516 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2517 netmem_ref netmem, int off, int size) 2518 { 2519 struct page *page = netmem_to_page(netmem); 2520 2521 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2522 2523 /* Propagate page pfmemalloc to the skb if we can. The problem is 2524 * that not all callers have unique ownership of the page but rely 2525 * on page_is_pfmemalloc doing the right thing(tm). 2526 */ 2527 page = compound_head(page); 2528 if (page_is_pfmemalloc(page)) 2529 skb->pfmemalloc = true; 2530 } 2531 2532 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2533 struct page *page, int off, int size) 2534 { 2535 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2536 } 2537 2538 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2539 netmem_ref netmem, int off, int size) 2540 { 2541 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2542 skb_shinfo(skb)->nr_frags = i + 1; 2543 } 2544 2545 /** 2546 * skb_fill_page_desc - initialise a paged fragment in an skb 2547 * @skb: buffer containing fragment to be initialised 2548 * @i: paged fragment index to initialise 2549 * @page: the page to use for this fragment 2550 * @off: the offset to the data with @page 2551 * @size: the length of the data 2552 * 2553 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2554 * @skb to point to @size bytes at offset @off within @page. In 2555 * addition updates @skb such that @i is the last fragment. 2556 * 2557 * Does not take any additional reference on the fragment. 2558 */ 2559 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2560 struct page *page, int off, int size) 2561 { 2562 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2563 } 2564 2565 /** 2566 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2567 * @skb: buffer containing fragment to be initialised 2568 * @i: paged fragment index to initialise 2569 * @page: the page to use for this fragment 2570 * @off: the offset to the data with @page 2571 * @size: the length of the data 2572 * 2573 * Variant of skb_fill_page_desc() which does not deal with 2574 * pfmemalloc, if page is not owned by us. 2575 */ 2576 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2577 struct page *page, int off, 2578 int size) 2579 { 2580 struct skb_shared_info *shinfo = skb_shinfo(skb); 2581 2582 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2583 shinfo->nr_frags = i + 1; 2584 } 2585 2586 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2587 int off, int size, unsigned int truesize); 2588 2589 static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2590 struct page *page, int off, int size, 2591 unsigned int truesize) 2592 { 2593 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2594 truesize); 2595 } 2596 2597 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2598 unsigned int truesize); 2599 2600 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2601 2602 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2603 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2604 { 2605 return skb->head + skb->tail; 2606 } 2607 2608 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2609 { 2610 skb->tail = skb->data - skb->head; 2611 } 2612 2613 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2614 { 2615 skb_reset_tail_pointer(skb); 2616 skb->tail += offset; 2617 } 2618 2619 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2620 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2621 { 2622 return skb->tail; 2623 } 2624 2625 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2626 { 2627 skb->tail = skb->data; 2628 } 2629 2630 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2631 { 2632 skb->tail = skb->data + offset; 2633 } 2634 2635 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2636 2637 static inline void skb_assert_len(struct sk_buff *skb) 2638 { 2639 #ifdef CONFIG_DEBUG_NET 2640 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2641 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2642 #endif /* CONFIG_DEBUG_NET */ 2643 } 2644 2645 /* 2646 * Add data to an sk_buff 2647 */ 2648 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2649 void *skb_put(struct sk_buff *skb, unsigned int len); 2650 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2651 { 2652 void *tmp = skb_tail_pointer(skb); 2653 SKB_LINEAR_ASSERT(skb); 2654 skb->tail += len; 2655 skb->len += len; 2656 return tmp; 2657 } 2658 2659 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2660 { 2661 void *tmp = __skb_put(skb, len); 2662 2663 memset(tmp, 0, len); 2664 return tmp; 2665 } 2666 2667 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2668 unsigned int len) 2669 { 2670 void *tmp = __skb_put(skb, len); 2671 2672 memcpy(tmp, data, len); 2673 return tmp; 2674 } 2675 2676 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2677 { 2678 *(u8 *)__skb_put(skb, 1) = val; 2679 } 2680 2681 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2682 { 2683 void *tmp = skb_put(skb, len); 2684 2685 memset(tmp, 0, len); 2686 2687 return tmp; 2688 } 2689 2690 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2691 unsigned int len) 2692 { 2693 void *tmp = skb_put(skb, len); 2694 2695 memcpy(tmp, data, len); 2696 2697 return tmp; 2698 } 2699 2700 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2701 { 2702 *(u8 *)skb_put(skb, 1) = val; 2703 } 2704 2705 void *skb_push(struct sk_buff *skb, unsigned int len); 2706 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2707 { 2708 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2709 2710 skb->data -= len; 2711 skb->len += len; 2712 return skb->data; 2713 } 2714 2715 void *skb_pull(struct sk_buff *skb, unsigned int len); 2716 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2717 { 2718 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2719 2720 skb->len -= len; 2721 if (unlikely(skb->len < skb->data_len)) { 2722 #if defined(CONFIG_DEBUG_NET) 2723 skb->len += len; 2724 pr_err("__skb_pull(len=%u)\n", len); 2725 skb_dump(KERN_ERR, skb, false); 2726 #endif 2727 BUG(); 2728 } 2729 return skb->data += len; 2730 } 2731 2732 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2733 { 2734 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2735 } 2736 2737 void *skb_pull_data(struct sk_buff *skb, size_t len); 2738 2739 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2740 2741 static inline enum skb_drop_reason 2742 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2743 { 2744 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2745 2746 if (likely(len <= skb_headlen(skb))) 2747 return SKB_NOT_DROPPED_YET; 2748 2749 if (unlikely(len > skb->len)) 2750 return SKB_DROP_REASON_PKT_TOO_SMALL; 2751 2752 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2753 return SKB_DROP_REASON_NOMEM; 2754 2755 return SKB_NOT_DROPPED_YET; 2756 } 2757 2758 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2759 { 2760 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2761 } 2762 2763 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2764 { 2765 if (!pskb_may_pull(skb, len)) 2766 return NULL; 2767 2768 skb->len -= len; 2769 return skb->data += len; 2770 } 2771 2772 void skb_condense(struct sk_buff *skb); 2773 2774 /** 2775 * skb_headroom - bytes at buffer head 2776 * @skb: buffer to check 2777 * 2778 * Return the number of bytes of free space at the head of an &sk_buff. 2779 */ 2780 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2781 { 2782 return skb->data - skb->head; 2783 } 2784 2785 /** 2786 * skb_tailroom - bytes at buffer end 2787 * @skb: buffer to check 2788 * 2789 * Return the number of bytes of free space at the tail of an sk_buff 2790 */ 2791 static inline int skb_tailroom(const struct sk_buff *skb) 2792 { 2793 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2794 } 2795 2796 /** 2797 * skb_availroom - bytes at buffer end 2798 * @skb: buffer to check 2799 * 2800 * Return the number of bytes of free space at the tail of an sk_buff 2801 * allocated by sk_stream_alloc() 2802 */ 2803 static inline int skb_availroom(const struct sk_buff *skb) 2804 { 2805 if (skb_is_nonlinear(skb)) 2806 return 0; 2807 2808 return skb->end - skb->tail - skb->reserved_tailroom; 2809 } 2810 2811 /** 2812 * skb_reserve - adjust headroom 2813 * @skb: buffer to alter 2814 * @len: bytes to move 2815 * 2816 * Increase the headroom of an empty &sk_buff by reducing the tail 2817 * room. This is only allowed for an empty buffer. 2818 */ 2819 static inline void skb_reserve(struct sk_buff *skb, int len) 2820 { 2821 skb->data += len; 2822 skb->tail += len; 2823 } 2824 2825 /** 2826 * skb_tailroom_reserve - adjust reserved_tailroom 2827 * @skb: buffer to alter 2828 * @mtu: maximum amount of headlen permitted 2829 * @needed_tailroom: minimum amount of reserved_tailroom 2830 * 2831 * Set reserved_tailroom so that headlen can be as large as possible but 2832 * not larger than mtu and tailroom cannot be smaller than 2833 * needed_tailroom. 2834 * The required headroom should already have been reserved before using 2835 * this function. 2836 */ 2837 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2838 unsigned int needed_tailroom) 2839 { 2840 SKB_LINEAR_ASSERT(skb); 2841 if (mtu < skb_tailroom(skb) - needed_tailroom) 2842 /* use at most mtu */ 2843 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2844 else 2845 /* use up to all available space */ 2846 skb->reserved_tailroom = needed_tailroom; 2847 } 2848 2849 #define ENCAP_TYPE_ETHER 0 2850 #define ENCAP_TYPE_IPPROTO 1 2851 2852 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2853 __be16 protocol) 2854 { 2855 skb->inner_protocol = protocol; 2856 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2857 } 2858 2859 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2860 __u8 ipproto) 2861 { 2862 skb->inner_ipproto = ipproto; 2863 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2864 } 2865 2866 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2867 { 2868 skb->inner_mac_header = skb->mac_header; 2869 skb->inner_network_header = skb->network_header; 2870 skb->inner_transport_header = skb->transport_header; 2871 } 2872 2873 static inline void skb_reset_mac_len(struct sk_buff *skb) 2874 { 2875 skb->mac_len = skb->network_header - skb->mac_header; 2876 } 2877 2878 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2879 *skb) 2880 { 2881 return skb->head + skb->inner_transport_header; 2882 } 2883 2884 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2885 { 2886 return skb_inner_transport_header(skb) - skb->data; 2887 } 2888 2889 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2890 { 2891 skb->inner_transport_header = skb->data - skb->head; 2892 } 2893 2894 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2895 const int offset) 2896 { 2897 skb_reset_inner_transport_header(skb); 2898 skb->inner_transport_header += offset; 2899 } 2900 2901 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2902 { 2903 return skb->head + skb->inner_network_header; 2904 } 2905 2906 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2907 { 2908 skb->inner_network_header = skb->data - skb->head; 2909 } 2910 2911 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2912 const int offset) 2913 { 2914 skb_reset_inner_network_header(skb); 2915 skb->inner_network_header += offset; 2916 } 2917 2918 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2919 { 2920 return skb->inner_network_header > 0; 2921 } 2922 2923 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2924 { 2925 return skb->head + skb->inner_mac_header; 2926 } 2927 2928 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2929 { 2930 skb->inner_mac_header = skb->data - skb->head; 2931 } 2932 2933 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2934 const int offset) 2935 { 2936 skb_reset_inner_mac_header(skb); 2937 skb->inner_mac_header += offset; 2938 } 2939 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2940 { 2941 return skb->transport_header != (typeof(skb->transport_header))~0U; 2942 } 2943 2944 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2945 { 2946 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2947 return skb->head + skb->transport_header; 2948 } 2949 2950 static inline void skb_reset_transport_header(struct sk_buff *skb) 2951 { 2952 skb->transport_header = skb->data - skb->head; 2953 } 2954 2955 static inline void skb_set_transport_header(struct sk_buff *skb, 2956 const int offset) 2957 { 2958 skb_reset_transport_header(skb); 2959 skb->transport_header += offset; 2960 } 2961 2962 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2963 { 2964 return skb->head + skb->network_header; 2965 } 2966 2967 static inline void skb_reset_network_header(struct sk_buff *skb) 2968 { 2969 skb->network_header = skb->data - skb->head; 2970 } 2971 2972 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2973 { 2974 skb_reset_network_header(skb); 2975 skb->network_header += offset; 2976 } 2977 2978 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2979 { 2980 return skb->mac_header != (typeof(skb->mac_header))~0U; 2981 } 2982 2983 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2984 { 2985 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2986 return skb->head + skb->mac_header; 2987 } 2988 2989 static inline int skb_mac_offset(const struct sk_buff *skb) 2990 { 2991 return skb_mac_header(skb) - skb->data; 2992 } 2993 2994 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2995 { 2996 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2997 return skb->network_header - skb->mac_header; 2998 } 2999 3000 static inline void skb_unset_mac_header(struct sk_buff *skb) 3001 { 3002 skb->mac_header = (typeof(skb->mac_header))~0U; 3003 } 3004 3005 static inline void skb_reset_mac_header(struct sk_buff *skb) 3006 { 3007 skb->mac_header = skb->data - skb->head; 3008 } 3009 3010 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3011 { 3012 skb_reset_mac_header(skb); 3013 skb->mac_header += offset; 3014 } 3015 3016 static inline void skb_pop_mac_header(struct sk_buff *skb) 3017 { 3018 skb->mac_header = skb->network_header; 3019 } 3020 3021 static inline void skb_probe_transport_header(struct sk_buff *skb) 3022 { 3023 struct flow_keys_basic keys; 3024 3025 if (skb_transport_header_was_set(skb)) 3026 return; 3027 3028 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3029 NULL, 0, 0, 0, 0)) 3030 skb_set_transport_header(skb, keys.control.thoff); 3031 } 3032 3033 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3034 { 3035 if (skb_mac_header_was_set(skb)) { 3036 const unsigned char *old_mac = skb_mac_header(skb); 3037 3038 skb_set_mac_header(skb, -skb->mac_len); 3039 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3040 } 3041 } 3042 3043 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3044 { 3045 return skb->csum_start - skb_headroom(skb); 3046 } 3047 3048 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3049 { 3050 return skb->head + skb->csum_start; 3051 } 3052 3053 static inline int skb_transport_offset(const struct sk_buff *skb) 3054 { 3055 return skb_transport_header(skb) - skb->data; 3056 } 3057 3058 static inline u32 skb_network_header_len(const struct sk_buff *skb) 3059 { 3060 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3061 return skb->transport_header - skb->network_header; 3062 } 3063 3064 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3065 { 3066 return skb->inner_transport_header - skb->inner_network_header; 3067 } 3068 3069 static inline int skb_network_offset(const struct sk_buff *skb) 3070 { 3071 return skb_network_header(skb) - skb->data; 3072 } 3073 3074 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3075 { 3076 return skb_inner_network_header(skb) - skb->data; 3077 } 3078 3079 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3080 { 3081 return pskb_may_pull(skb, skb_network_offset(skb) + len); 3082 } 3083 3084 /* 3085 * CPUs often take a performance hit when accessing unaligned memory 3086 * locations. The actual performance hit varies, it can be small if the 3087 * hardware handles it or large if we have to take an exception and fix it 3088 * in software. 3089 * 3090 * Since an ethernet header is 14 bytes network drivers often end up with 3091 * the IP header at an unaligned offset. The IP header can be aligned by 3092 * shifting the start of the packet by 2 bytes. Drivers should do this 3093 * with: 3094 * 3095 * skb_reserve(skb, NET_IP_ALIGN); 3096 * 3097 * The downside to this alignment of the IP header is that the DMA is now 3098 * unaligned. On some architectures the cost of an unaligned DMA is high 3099 * and this cost outweighs the gains made by aligning the IP header. 3100 * 3101 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3102 * to be overridden. 3103 */ 3104 #ifndef NET_IP_ALIGN 3105 #define NET_IP_ALIGN 2 3106 #endif 3107 3108 /* 3109 * The networking layer reserves some headroom in skb data (via 3110 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3111 * the header has to grow. In the default case, if the header has to grow 3112 * 32 bytes or less we avoid the reallocation. 3113 * 3114 * Unfortunately this headroom changes the DMA alignment of the resulting 3115 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3116 * on some architectures. An architecture can override this value, 3117 * perhaps setting it to a cacheline in size (since that will maintain 3118 * cacheline alignment of the DMA). It must be a power of 2. 3119 * 3120 * Various parts of the networking layer expect at least 32 bytes of 3121 * headroom, you should not reduce this. 3122 * 3123 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3124 * to reduce average number of cache lines per packet. 3125 * get_rps_cpu() for example only access one 64 bytes aligned block : 3126 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3127 */ 3128 #ifndef NET_SKB_PAD 3129 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3130 #endif 3131 3132 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3133 3134 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3135 { 3136 if (WARN_ON(skb_is_nonlinear(skb))) 3137 return; 3138 skb->len = len; 3139 skb_set_tail_pointer(skb, len); 3140 } 3141 3142 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3143 { 3144 __skb_set_length(skb, len); 3145 } 3146 3147 void skb_trim(struct sk_buff *skb, unsigned int len); 3148 3149 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3150 { 3151 if (skb->data_len) 3152 return ___pskb_trim(skb, len); 3153 __skb_trim(skb, len); 3154 return 0; 3155 } 3156 3157 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3158 { 3159 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3160 } 3161 3162 /** 3163 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3164 * @skb: buffer to alter 3165 * @len: new length 3166 * 3167 * This is identical to pskb_trim except that the caller knows that 3168 * the skb is not cloned so we should never get an error due to out- 3169 * of-memory. 3170 */ 3171 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3172 { 3173 int err = pskb_trim(skb, len); 3174 BUG_ON(err); 3175 } 3176 3177 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3178 { 3179 unsigned int diff = len - skb->len; 3180 3181 if (skb_tailroom(skb) < diff) { 3182 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3183 GFP_ATOMIC); 3184 if (ret) 3185 return ret; 3186 } 3187 __skb_set_length(skb, len); 3188 return 0; 3189 } 3190 3191 /** 3192 * skb_orphan - orphan a buffer 3193 * @skb: buffer to orphan 3194 * 3195 * If a buffer currently has an owner then we call the owner's 3196 * destructor function and make the @skb unowned. The buffer continues 3197 * to exist but is no longer charged to its former owner. 3198 */ 3199 static inline void skb_orphan(struct sk_buff *skb) 3200 { 3201 if (skb->destructor) { 3202 skb->destructor(skb); 3203 skb->destructor = NULL; 3204 skb->sk = NULL; 3205 } else { 3206 BUG_ON(skb->sk); 3207 } 3208 } 3209 3210 /** 3211 * skb_orphan_frags - orphan the frags contained in a buffer 3212 * @skb: buffer to orphan frags from 3213 * @gfp_mask: allocation mask for replacement pages 3214 * 3215 * For each frag in the SKB which needs a destructor (i.e. has an 3216 * owner) create a copy of that frag and release the original 3217 * page by calling the destructor. 3218 */ 3219 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3220 { 3221 if (likely(!skb_zcopy(skb))) 3222 return 0; 3223 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3224 return 0; 3225 return skb_copy_ubufs(skb, gfp_mask); 3226 } 3227 3228 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3229 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3230 { 3231 if (likely(!skb_zcopy(skb))) 3232 return 0; 3233 return skb_copy_ubufs(skb, gfp_mask); 3234 } 3235 3236 /** 3237 * __skb_queue_purge_reason - empty a list 3238 * @list: list to empty 3239 * @reason: drop reason 3240 * 3241 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3242 * the list and one reference dropped. This function does not take the 3243 * list lock and the caller must hold the relevant locks to use it. 3244 */ 3245 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3246 enum skb_drop_reason reason) 3247 { 3248 struct sk_buff *skb; 3249 3250 while ((skb = __skb_dequeue(list)) != NULL) 3251 kfree_skb_reason(skb, reason); 3252 } 3253 3254 static inline void __skb_queue_purge(struct sk_buff_head *list) 3255 { 3256 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3257 } 3258 3259 void skb_queue_purge_reason(struct sk_buff_head *list, 3260 enum skb_drop_reason reason); 3261 3262 static inline void skb_queue_purge(struct sk_buff_head *list) 3263 { 3264 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3265 } 3266 3267 unsigned int skb_rbtree_purge(struct rb_root *root); 3268 void skb_errqueue_purge(struct sk_buff_head *list); 3269 3270 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3271 3272 /** 3273 * netdev_alloc_frag - allocate a page fragment 3274 * @fragsz: fragment size 3275 * 3276 * Allocates a frag from a page for receive buffer. 3277 * Uses GFP_ATOMIC allocations. 3278 */ 3279 static inline void *netdev_alloc_frag(unsigned int fragsz) 3280 { 3281 return __netdev_alloc_frag_align(fragsz, ~0u); 3282 } 3283 3284 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3285 unsigned int align) 3286 { 3287 WARN_ON_ONCE(!is_power_of_2(align)); 3288 return __netdev_alloc_frag_align(fragsz, -align); 3289 } 3290 3291 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3292 gfp_t gfp_mask); 3293 3294 /** 3295 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3296 * @dev: network device to receive on 3297 * @length: length to allocate 3298 * 3299 * Allocate a new &sk_buff and assign it a usage count of one. The 3300 * buffer has unspecified headroom built in. Users should allocate 3301 * the headroom they think they need without accounting for the 3302 * built in space. The built in space is used for optimisations. 3303 * 3304 * %NULL is returned if there is no free memory. Although this function 3305 * allocates memory it can be called from an interrupt. 3306 */ 3307 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3308 unsigned int length) 3309 { 3310 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3311 } 3312 3313 /* legacy helper around __netdev_alloc_skb() */ 3314 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3315 gfp_t gfp_mask) 3316 { 3317 return __netdev_alloc_skb(NULL, length, gfp_mask); 3318 } 3319 3320 /* legacy helper around netdev_alloc_skb() */ 3321 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3322 { 3323 return netdev_alloc_skb(NULL, length); 3324 } 3325 3326 3327 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3328 unsigned int length, gfp_t gfp) 3329 { 3330 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3331 3332 if (NET_IP_ALIGN && skb) 3333 skb_reserve(skb, NET_IP_ALIGN); 3334 return skb; 3335 } 3336 3337 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3338 unsigned int length) 3339 { 3340 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3341 } 3342 3343 static inline void skb_free_frag(void *addr) 3344 { 3345 page_frag_free(addr); 3346 } 3347 3348 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3349 3350 static inline void *napi_alloc_frag(unsigned int fragsz) 3351 { 3352 return __napi_alloc_frag_align(fragsz, ~0u); 3353 } 3354 3355 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3356 unsigned int align) 3357 { 3358 WARN_ON_ONCE(!is_power_of_2(align)); 3359 return __napi_alloc_frag_align(fragsz, -align); 3360 } 3361 3362 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3363 void napi_consume_skb(struct sk_buff *skb, int budget); 3364 3365 void napi_skb_free_stolen_head(struct sk_buff *skb); 3366 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3367 3368 /** 3369 * __dev_alloc_pages - allocate page for network Rx 3370 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3371 * @order: size of the allocation 3372 * 3373 * Allocate a new page. 3374 * 3375 * %NULL is returned if there is no free memory. 3376 */ 3377 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3378 unsigned int order) 3379 { 3380 /* This piece of code contains several assumptions. 3381 * 1. This is for device Rx, therefore a cold page is preferred. 3382 * 2. The expectation is the user wants a compound page. 3383 * 3. If requesting a order 0 page it will not be compound 3384 * due to the check to see if order has a value in prep_new_page 3385 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3386 * code in gfp_to_alloc_flags that should be enforcing this. 3387 */ 3388 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3389 3390 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3391 } 3392 3393 static inline struct page *dev_alloc_pages(unsigned int order) 3394 { 3395 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3396 } 3397 3398 /** 3399 * __dev_alloc_page - allocate a page for network Rx 3400 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3401 * 3402 * Allocate a new page. 3403 * 3404 * %NULL is returned if there is no free memory. 3405 */ 3406 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3407 { 3408 return __dev_alloc_pages(gfp_mask, 0); 3409 } 3410 3411 static inline struct page *dev_alloc_page(void) 3412 { 3413 return dev_alloc_pages(0); 3414 } 3415 3416 /** 3417 * dev_page_is_reusable - check whether a page can be reused for network Rx 3418 * @page: the page to test 3419 * 3420 * A page shouldn't be considered for reusing/recycling if it was allocated 3421 * under memory pressure or at a distant memory node. 3422 * 3423 * Returns false if this page should be returned to page allocator, true 3424 * otherwise. 3425 */ 3426 static inline bool dev_page_is_reusable(const struct page *page) 3427 { 3428 return likely(page_to_nid(page) == numa_mem_id() && 3429 !page_is_pfmemalloc(page)); 3430 } 3431 3432 /** 3433 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3434 * @page: The page that was allocated from skb_alloc_page 3435 * @skb: The skb that may need pfmemalloc set 3436 */ 3437 static inline void skb_propagate_pfmemalloc(const struct page *page, 3438 struct sk_buff *skb) 3439 { 3440 if (page_is_pfmemalloc(page)) 3441 skb->pfmemalloc = true; 3442 } 3443 3444 /** 3445 * skb_frag_off() - Returns the offset of a skb fragment 3446 * @frag: the paged fragment 3447 */ 3448 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3449 { 3450 return frag->offset; 3451 } 3452 3453 /** 3454 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3455 * @frag: skb fragment 3456 * @delta: value to add 3457 */ 3458 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3459 { 3460 frag->offset += delta; 3461 } 3462 3463 /** 3464 * skb_frag_off_set() - Sets the offset of a skb fragment 3465 * @frag: skb fragment 3466 * @offset: offset of fragment 3467 */ 3468 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3469 { 3470 frag->offset = offset; 3471 } 3472 3473 /** 3474 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3475 * @fragto: skb fragment where offset is set 3476 * @fragfrom: skb fragment offset is copied from 3477 */ 3478 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3479 const skb_frag_t *fragfrom) 3480 { 3481 fragto->offset = fragfrom->offset; 3482 } 3483 3484 /** 3485 * skb_frag_page - retrieve the page referred to by a paged fragment 3486 * @frag: the paged fragment 3487 * 3488 * Returns the &struct page associated with @frag. 3489 */ 3490 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3491 { 3492 return netmem_to_page(frag->netmem); 3493 } 3494 3495 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3496 unsigned int headroom); 3497 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3498 struct bpf_prog *prog); 3499 /** 3500 * skb_frag_address - gets the address of the data contained in a paged fragment 3501 * @frag: the paged fragment buffer 3502 * 3503 * Returns the address of the data within @frag. The page must already 3504 * be mapped. 3505 */ 3506 static inline void *skb_frag_address(const skb_frag_t *frag) 3507 { 3508 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3509 } 3510 3511 /** 3512 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3513 * @frag: the paged fragment buffer 3514 * 3515 * Returns the address of the data within @frag. Checks that the page 3516 * is mapped and returns %NULL otherwise. 3517 */ 3518 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3519 { 3520 void *ptr = page_address(skb_frag_page(frag)); 3521 if (unlikely(!ptr)) 3522 return NULL; 3523 3524 return ptr + skb_frag_off(frag); 3525 } 3526 3527 /** 3528 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3529 * @fragto: skb fragment where page is set 3530 * @fragfrom: skb fragment page is copied from 3531 */ 3532 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3533 const skb_frag_t *fragfrom) 3534 { 3535 fragto->netmem = fragfrom->netmem; 3536 } 3537 3538 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3539 3540 /** 3541 * skb_frag_dma_map - maps a paged fragment via the DMA API 3542 * @dev: the device to map the fragment to 3543 * @frag: the paged fragment to map 3544 * @offset: the offset within the fragment (starting at the 3545 * fragment's own offset) 3546 * @size: the number of bytes to map 3547 * @dir: the direction of the mapping (``PCI_DMA_*``) 3548 * 3549 * Maps the page associated with @frag to @device. 3550 */ 3551 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3552 const skb_frag_t *frag, 3553 size_t offset, size_t size, 3554 enum dma_data_direction dir) 3555 { 3556 return dma_map_page(dev, skb_frag_page(frag), 3557 skb_frag_off(frag) + offset, size, dir); 3558 } 3559 3560 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3561 gfp_t gfp_mask) 3562 { 3563 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3564 } 3565 3566 3567 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3568 gfp_t gfp_mask) 3569 { 3570 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3571 } 3572 3573 3574 /** 3575 * skb_clone_writable - is the header of a clone writable 3576 * @skb: buffer to check 3577 * @len: length up to which to write 3578 * 3579 * Returns true if modifying the header part of the cloned buffer 3580 * does not requires the data to be copied. 3581 */ 3582 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3583 { 3584 return !skb_header_cloned(skb) && 3585 skb_headroom(skb) + len <= skb->hdr_len; 3586 } 3587 3588 static inline int skb_try_make_writable(struct sk_buff *skb, 3589 unsigned int write_len) 3590 { 3591 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3592 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3593 } 3594 3595 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3596 int cloned) 3597 { 3598 int delta = 0; 3599 3600 if (headroom > skb_headroom(skb)) 3601 delta = headroom - skb_headroom(skb); 3602 3603 if (delta || cloned) 3604 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3605 GFP_ATOMIC); 3606 return 0; 3607 } 3608 3609 /** 3610 * skb_cow - copy header of skb when it is required 3611 * @skb: buffer to cow 3612 * @headroom: needed headroom 3613 * 3614 * If the skb passed lacks sufficient headroom or its data part 3615 * is shared, data is reallocated. If reallocation fails, an error 3616 * is returned and original skb is not changed. 3617 * 3618 * The result is skb with writable area skb->head...skb->tail 3619 * and at least @headroom of space at head. 3620 */ 3621 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3622 { 3623 return __skb_cow(skb, headroom, skb_cloned(skb)); 3624 } 3625 3626 /** 3627 * skb_cow_head - skb_cow but only making the head writable 3628 * @skb: buffer to cow 3629 * @headroom: needed headroom 3630 * 3631 * This function is identical to skb_cow except that we replace the 3632 * skb_cloned check by skb_header_cloned. It should be used when 3633 * you only need to push on some header and do not need to modify 3634 * the data. 3635 */ 3636 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3637 { 3638 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3639 } 3640 3641 /** 3642 * skb_padto - pad an skbuff up to a minimal size 3643 * @skb: buffer to pad 3644 * @len: minimal length 3645 * 3646 * Pads up a buffer to ensure the trailing bytes exist and are 3647 * blanked. If the buffer already contains sufficient data it 3648 * is untouched. Otherwise it is extended. Returns zero on 3649 * success. The skb is freed on error. 3650 */ 3651 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3652 { 3653 unsigned int size = skb->len; 3654 if (likely(size >= len)) 3655 return 0; 3656 return skb_pad(skb, len - size); 3657 } 3658 3659 /** 3660 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3661 * @skb: buffer to pad 3662 * @len: minimal length 3663 * @free_on_error: free buffer on error 3664 * 3665 * Pads up a buffer to ensure the trailing bytes exist and are 3666 * blanked. If the buffer already contains sufficient data it 3667 * is untouched. Otherwise it is extended. Returns zero on 3668 * success. The skb is freed on error if @free_on_error is true. 3669 */ 3670 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3671 unsigned int len, 3672 bool free_on_error) 3673 { 3674 unsigned int size = skb->len; 3675 3676 if (unlikely(size < len)) { 3677 len -= size; 3678 if (__skb_pad(skb, len, free_on_error)) 3679 return -ENOMEM; 3680 __skb_put(skb, len); 3681 } 3682 return 0; 3683 } 3684 3685 /** 3686 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3687 * @skb: buffer to pad 3688 * @len: minimal length 3689 * 3690 * Pads up a buffer to ensure the trailing bytes exist and are 3691 * blanked. If the buffer already contains sufficient data it 3692 * is untouched. Otherwise it is extended. Returns zero on 3693 * success. The skb is freed on error. 3694 */ 3695 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3696 { 3697 return __skb_put_padto(skb, len, true); 3698 } 3699 3700 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3701 __must_check; 3702 3703 static inline int skb_add_data(struct sk_buff *skb, 3704 struct iov_iter *from, int copy) 3705 { 3706 const int off = skb->len; 3707 3708 if (skb->ip_summed == CHECKSUM_NONE) { 3709 __wsum csum = 0; 3710 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3711 &csum, from)) { 3712 skb->csum = csum_block_add(skb->csum, csum, off); 3713 return 0; 3714 } 3715 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3716 return 0; 3717 3718 __skb_trim(skb, off); 3719 return -EFAULT; 3720 } 3721 3722 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3723 const struct page *page, int off) 3724 { 3725 if (skb_zcopy(skb)) 3726 return false; 3727 if (i) { 3728 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3729 3730 return page == skb_frag_page(frag) && 3731 off == skb_frag_off(frag) + skb_frag_size(frag); 3732 } 3733 return false; 3734 } 3735 3736 static inline int __skb_linearize(struct sk_buff *skb) 3737 { 3738 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3739 } 3740 3741 /** 3742 * skb_linearize - convert paged skb to linear one 3743 * @skb: buffer to linarize 3744 * 3745 * If there is no free memory -ENOMEM is returned, otherwise zero 3746 * is returned and the old skb data released. 3747 */ 3748 static inline int skb_linearize(struct sk_buff *skb) 3749 { 3750 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3751 } 3752 3753 /** 3754 * skb_has_shared_frag - can any frag be overwritten 3755 * @skb: buffer to test 3756 * 3757 * Return true if the skb has at least one frag that might be modified 3758 * by an external entity (as in vmsplice()/sendfile()) 3759 */ 3760 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3761 { 3762 return skb_is_nonlinear(skb) && 3763 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3764 } 3765 3766 /** 3767 * skb_linearize_cow - make sure skb is linear and writable 3768 * @skb: buffer to process 3769 * 3770 * If there is no free memory -ENOMEM is returned, otherwise zero 3771 * is returned and the old skb data released. 3772 */ 3773 static inline int skb_linearize_cow(struct sk_buff *skb) 3774 { 3775 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3776 __skb_linearize(skb) : 0; 3777 } 3778 3779 static __always_inline void 3780 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3781 unsigned int off) 3782 { 3783 if (skb->ip_summed == CHECKSUM_COMPLETE) 3784 skb->csum = csum_block_sub(skb->csum, 3785 csum_partial(start, len, 0), off); 3786 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3787 skb_checksum_start_offset(skb) < 0) 3788 skb->ip_summed = CHECKSUM_NONE; 3789 } 3790 3791 /** 3792 * skb_postpull_rcsum - update checksum for received skb after pull 3793 * @skb: buffer to update 3794 * @start: start of data before pull 3795 * @len: length of data pulled 3796 * 3797 * After doing a pull on a received packet, you need to call this to 3798 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3799 * CHECKSUM_NONE so that it can be recomputed from scratch. 3800 */ 3801 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3802 const void *start, unsigned int len) 3803 { 3804 if (skb->ip_summed == CHECKSUM_COMPLETE) 3805 skb->csum = wsum_negate(csum_partial(start, len, 3806 wsum_negate(skb->csum))); 3807 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3808 skb_checksum_start_offset(skb) < 0) 3809 skb->ip_summed = CHECKSUM_NONE; 3810 } 3811 3812 static __always_inline void 3813 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3814 unsigned int off) 3815 { 3816 if (skb->ip_summed == CHECKSUM_COMPLETE) 3817 skb->csum = csum_block_add(skb->csum, 3818 csum_partial(start, len, 0), off); 3819 } 3820 3821 /** 3822 * skb_postpush_rcsum - update checksum for received skb after push 3823 * @skb: buffer to update 3824 * @start: start of data after push 3825 * @len: length of data pushed 3826 * 3827 * After doing a push on a received packet, you need to call this to 3828 * update the CHECKSUM_COMPLETE checksum. 3829 */ 3830 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3831 const void *start, unsigned int len) 3832 { 3833 __skb_postpush_rcsum(skb, start, len, 0); 3834 } 3835 3836 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3837 3838 /** 3839 * skb_push_rcsum - push skb and update receive checksum 3840 * @skb: buffer to update 3841 * @len: length of data pulled 3842 * 3843 * This function performs an skb_push on the packet and updates 3844 * the CHECKSUM_COMPLETE checksum. It should be used on 3845 * receive path processing instead of skb_push unless you know 3846 * that the checksum difference is zero (e.g., a valid IP header) 3847 * or you are setting ip_summed to CHECKSUM_NONE. 3848 */ 3849 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3850 { 3851 skb_push(skb, len); 3852 skb_postpush_rcsum(skb, skb->data, len); 3853 return skb->data; 3854 } 3855 3856 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3857 /** 3858 * pskb_trim_rcsum - trim received skb and update checksum 3859 * @skb: buffer to trim 3860 * @len: new length 3861 * 3862 * This is exactly the same as pskb_trim except that it ensures the 3863 * checksum of received packets are still valid after the operation. 3864 * It can change skb pointers. 3865 */ 3866 3867 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3868 { 3869 if (likely(len >= skb->len)) 3870 return 0; 3871 return pskb_trim_rcsum_slow(skb, len); 3872 } 3873 3874 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3875 { 3876 if (skb->ip_summed == CHECKSUM_COMPLETE) 3877 skb->ip_summed = CHECKSUM_NONE; 3878 __skb_trim(skb, len); 3879 return 0; 3880 } 3881 3882 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3883 { 3884 if (skb->ip_summed == CHECKSUM_COMPLETE) 3885 skb->ip_summed = CHECKSUM_NONE; 3886 return __skb_grow(skb, len); 3887 } 3888 3889 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3890 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3891 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3892 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3893 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3894 3895 #define skb_queue_walk(queue, skb) \ 3896 for (skb = (queue)->next; \ 3897 skb != (struct sk_buff *)(queue); \ 3898 skb = skb->next) 3899 3900 #define skb_queue_walk_safe(queue, skb, tmp) \ 3901 for (skb = (queue)->next, tmp = skb->next; \ 3902 skb != (struct sk_buff *)(queue); \ 3903 skb = tmp, tmp = skb->next) 3904 3905 #define skb_queue_walk_from(queue, skb) \ 3906 for (; skb != (struct sk_buff *)(queue); \ 3907 skb = skb->next) 3908 3909 #define skb_rbtree_walk(skb, root) \ 3910 for (skb = skb_rb_first(root); skb != NULL; \ 3911 skb = skb_rb_next(skb)) 3912 3913 #define skb_rbtree_walk_from(skb) \ 3914 for (; skb != NULL; \ 3915 skb = skb_rb_next(skb)) 3916 3917 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3918 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3919 skb = tmp) 3920 3921 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3922 for (tmp = skb->next; \ 3923 skb != (struct sk_buff *)(queue); \ 3924 skb = tmp, tmp = skb->next) 3925 3926 #define skb_queue_reverse_walk(queue, skb) \ 3927 for (skb = (queue)->prev; \ 3928 skb != (struct sk_buff *)(queue); \ 3929 skb = skb->prev) 3930 3931 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3932 for (skb = (queue)->prev, tmp = skb->prev; \ 3933 skb != (struct sk_buff *)(queue); \ 3934 skb = tmp, tmp = skb->prev) 3935 3936 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3937 for (tmp = skb->prev; \ 3938 skb != (struct sk_buff *)(queue); \ 3939 skb = tmp, tmp = skb->prev) 3940 3941 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3942 { 3943 return skb_shinfo(skb)->frag_list != NULL; 3944 } 3945 3946 static inline void skb_frag_list_init(struct sk_buff *skb) 3947 { 3948 skb_shinfo(skb)->frag_list = NULL; 3949 } 3950 3951 #define skb_walk_frags(skb, iter) \ 3952 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3953 3954 3955 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3956 int *err, long *timeo_p, 3957 const struct sk_buff *skb); 3958 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3959 struct sk_buff_head *queue, 3960 unsigned int flags, 3961 int *off, int *err, 3962 struct sk_buff **last); 3963 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3964 struct sk_buff_head *queue, 3965 unsigned int flags, int *off, int *err, 3966 struct sk_buff **last); 3967 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3968 struct sk_buff_head *sk_queue, 3969 unsigned int flags, int *off, int *err); 3970 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3971 __poll_t datagram_poll(struct file *file, struct socket *sock, 3972 struct poll_table_struct *wait); 3973 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3974 struct iov_iter *to, int size); 3975 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3976 struct msghdr *msg, int size) 3977 { 3978 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3979 } 3980 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3981 struct msghdr *msg); 3982 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3983 struct iov_iter *to, int len, 3984 struct ahash_request *hash); 3985 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3986 struct iov_iter *from, int len); 3987 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3988 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3989 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3990 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3991 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3993 int len); 3994 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3995 struct pipe_inode_info *pipe, unsigned int len, 3996 unsigned int flags); 3997 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3998 int len); 3999 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4000 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4001 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4002 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4003 int len, int hlen); 4004 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4005 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4006 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4007 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4008 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4009 unsigned int offset); 4010 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4011 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4012 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4013 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4014 int skb_vlan_pop(struct sk_buff *skb); 4015 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4016 int skb_eth_pop(struct sk_buff *skb); 4017 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4018 const unsigned char *src); 4019 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4020 int mac_len, bool ethernet); 4021 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4022 bool ethernet); 4023 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4024 int skb_mpls_dec_ttl(struct sk_buff *skb); 4025 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4026 gfp_t gfp); 4027 4028 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4029 { 4030 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4031 } 4032 4033 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4034 { 4035 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4036 } 4037 4038 struct skb_checksum_ops { 4039 __wsum (*update)(const void *mem, int len, __wsum wsum); 4040 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4041 }; 4042 4043 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4044 4045 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4046 __wsum csum, const struct skb_checksum_ops *ops); 4047 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4048 __wsum csum); 4049 4050 static inline void * __must_check 4051 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4052 const void *data, int hlen, void *buffer) 4053 { 4054 if (likely(hlen - offset >= len)) 4055 return (void *)data + offset; 4056 4057 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4058 return NULL; 4059 4060 return buffer; 4061 } 4062 4063 static inline void * __must_check 4064 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4065 { 4066 return __skb_header_pointer(skb, offset, len, skb->data, 4067 skb_headlen(skb), buffer); 4068 } 4069 4070 static inline void * __must_check 4071 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4072 { 4073 if (likely(skb_headlen(skb) - offset >= len)) 4074 return skb->data + offset; 4075 return NULL; 4076 } 4077 4078 /** 4079 * skb_needs_linearize - check if we need to linearize a given skb 4080 * depending on the given device features. 4081 * @skb: socket buffer to check 4082 * @features: net device features 4083 * 4084 * Returns true if either: 4085 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4086 * 2. skb is fragmented and the device does not support SG. 4087 */ 4088 static inline bool skb_needs_linearize(struct sk_buff *skb, 4089 netdev_features_t features) 4090 { 4091 return skb_is_nonlinear(skb) && 4092 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4093 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4094 } 4095 4096 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4097 void *to, 4098 const unsigned int len) 4099 { 4100 memcpy(to, skb->data, len); 4101 } 4102 4103 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4104 const int offset, void *to, 4105 const unsigned int len) 4106 { 4107 memcpy(to, skb->data + offset, len); 4108 } 4109 4110 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4111 const void *from, 4112 const unsigned int len) 4113 { 4114 memcpy(skb->data, from, len); 4115 } 4116 4117 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4118 const int offset, 4119 const void *from, 4120 const unsigned int len) 4121 { 4122 memcpy(skb->data + offset, from, len); 4123 } 4124 4125 void skb_init(void); 4126 4127 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4128 { 4129 return skb->tstamp; 4130 } 4131 4132 /** 4133 * skb_get_timestamp - get timestamp from a skb 4134 * @skb: skb to get stamp from 4135 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4136 * 4137 * Timestamps are stored in the skb as offsets to a base timestamp. 4138 * This function converts the offset back to a struct timeval and stores 4139 * it in stamp. 4140 */ 4141 static inline void skb_get_timestamp(const struct sk_buff *skb, 4142 struct __kernel_old_timeval *stamp) 4143 { 4144 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4145 } 4146 4147 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4148 struct __kernel_sock_timeval *stamp) 4149 { 4150 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4151 4152 stamp->tv_sec = ts.tv_sec; 4153 stamp->tv_usec = ts.tv_nsec / 1000; 4154 } 4155 4156 static inline void skb_get_timestampns(const struct sk_buff *skb, 4157 struct __kernel_old_timespec *stamp) 4158 { 4159 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4160 4161 stamp->tv_sec = ts.tv_sec; 4162 stamp->tv_nsec = ts.tv_nsec; 4163 } 4164 4165 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4166 struct __kernel_timespec *stamp) 4167 { 4168 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4169 4170 stamp->tv_sec = ts.tv_sec; 4171 stamp->tv_nsec = ts.tv_nsec; 4172 } 4173 4174 static inline void __net_timestamp(struct sk_buff *skb) 4175 { 4176 skb->tstamp = ktime_get_real(); 4177 skb->mono_delivery_time = 0; 4178 } 4179 4180 static inline ktime_t net_timedelta(ktime_t t) 4181 { 4182 return ktime_sub(ktime_get_real(), t); 4183 } 4184 4185 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4186 bool mono) 4187 { 4188 skb->tstamp = kt; 4189 skb->mono_delivery_time = kt && mono; 4190 } 4191 4192 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4193 4194 /* It is used in the ingress path to clear the delivery_time. 4195 * If needed, set the skb->tstamp to the (rcv) timestamp. 4196 */ 4197 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4198 { 4199 if (skb->mono_delivery_time) { 4200 skb->mono_delivery_time = 0; 4201 if (static_branch_unlikely(&netstamp_needed_key)) 4202 skb->tstamp = ktime_get_real(); 4203 else 4204 skb->tstamp = 0; 4205 } 4206 } 4207 4208 static inline void skb_clear_tstamp(struct sk_buff *skb) 4209 { 4210 if (skb->mono_delivery_time) 4211 return; 4212 4213 skb->tstamp = 0; 4214 } 4215 4216 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4217 { 4218 if (skb->mono_delivery_time) 4219 return 0; 4220 4221 return skb->tstamp; 4222 } 4223 4224 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4225 { 4226 if (!skb->mono_delivery_time && skb->tstamp) 4227 return skb->tstamp; 4228 4229 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4230 return ktime_get_real(); 4231 4232 return 0; 4233 } 4234 4235 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4236 { 4237 return skb_shinfo(skb)->meta_len; 4238 } 4239 4240 static inline void *skb_metadata_end(const struct sk_buff *skb) 4241 { 4242 return skb_mac_header(skb); 4243 } 4244 4245 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4246 const struct sk_buff *skb_b, 4247 u8 meta_len) 4248 { 4249 const void *a = skb_metadata_end(skb_a); 4250 const void *b = skb_metadata_end(skb_b); 4251 u64 diffs = 0; 4252 4253 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4254 BITS_PER_LONG != 64) 4255 goto slow; 4256 4257 /* Using more efficient variant than plain call to memcmp(). */ 4258 switch (meta_len) { 4259 #define __it(x, op) (x -= sizeof(u##op)) 4260 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4261 case 32: diffs |= __it_diff(a, b, 64); 4262 fallthrough; 4263 case 24: diffs |= __it_diff(a, b, 64); 4264 fallthrough; 4265 case 16: diffs |= __it_diff(a, b, 64); 4266 fallthrough; 4267 case 8: diffs |= __it_diff(a, b, 64); 4268 break; 4269 case 28: diffs |= __it_diff(a, b, 64); 4270 fallthrough; 4271 case 20: diffs |= __it_diff(a, b, 64); 4272 fallthrough; 4273 case 12: diffs |= __it_diff(a, b, 64); 4274 fallthrough; 4275 case 4: diffs |= __it_diff(a, b, 32); 4276 break; 4277 default: 4278 slow: 4279 return memcmp(a - meta_len, b - meta_len, meta_len); 4280 } 4281 return diffs; 4282 } 4283 4284 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4285 const struct sk_buff *skb_b) 4286 { 4287 u8 len_a = skb_metadata_len(skb_a); 4288 u8 len_b = skb_metadata_len(skb_b); 4289 4290 if (!(len_a | len_b)) 4291 return false; 4292 4293 return len_a != len_b ? 4294 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4295 } 4296 4297 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4298 { 4299 skb_shinfo(skb)->meta_len = meta_len; 4300 } 4301 4302 static inline void skb_metadata_clear(struct sk_buff *skb) 4303 { 4304 skb_metadata_set(skb, 0); 4305 } 4306 4307 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4308 4309 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4310 4311 void skb_clone_tx_timestamp(struct sk_buff *skb); 4312 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4313 4314 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4315 4316 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4317 { 4318 } 4319 4320 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4321 { 4322 return false; 4323 } 4324 4325 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4326 4327 /** 4328 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4329 * 4330 * PHY drivers may accept clones of transmitted packets for 4331 * timestamping via their phy_driver.txtstamp method. These drivers 4332 * must call this function to return the skb back to the stack with a 4333 * timestamp. 4334 * 4335 * @skb: clone of the original outgoing packet 4336 * @hwtstamps: hardware time stamps 4337 * 4338 */ 4339 void skb_complete_tx_timestamp(struct sk_buff *skb, 4340 struct skb_shared_hwtstamps *hwtstamps); 4341 4342 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4343 struct skb_shared_hwtstamps *hwtstamps, 4344 struct sock *sk, int tstype); 4345 4346 /** 4347 * skb_tstamp_tx - queue clone of skb with send time stamps 4348 * @orig_skb: the original outgoing packet 4349 * @hwtstamps: hardware time stamps, may be NULL if not available 4350 * 4351 * If the skb has a socket associated, then this function clones the 4352 * skb (thus sharing the actual data and optional structures), stores 4353 * the optional hardware time stamping information (if non NULL) or 4354 * generates a software time stamp (otherwise), then queues the clone 4355 * to the error queue of the socket. Errors are silently ignored. 4356 */ 4357 void skb_tstamp_tx(struct sk_buff *orig_skb, 4358 struct skb_shared_hwtstamps *hwtstamps); 4359 4360 /** 4361 * skb_tx_timestamp() - Driver hook for transmit timestamping 4362 * 4363 * Ethernet MAC Drivers should call this function in their hard_xmit() 4364 * function immediately before giving the sk_buff to the MAC hardware. 4365 * 4366 * Specifically, one should make absolutely sure that this function is 4367 * called before TX completion of this packet can trigger. Otherwise 4368 * the packet could potentially already be freed. 4369 * 4370 * @skb: A socket buffer. 4371 */ 4372 static inline void skb_tx_timestamp(struct sk_buff *skb) 4373 { 4374 skb_clone_tx_timestamp(skb); 4375 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4376 skb_tstamp_tx(skb, NULL); 4377 } 4378 4379 /** 4380 * skb_complete_wifi_ack - deliver skb with wifi status 4381 * 4382 * @skb: the original outgoing packet 4383 * @acked: ack status 4384 * 4385 */ 4386 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4387 4388 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4389 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4390 4391 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4392 { 4393 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4394 skb->csum_valid || 4395 (skb->ip_summed == CHECKSUM_PARTIAL && 4396 skb_checksum_start_offset(skb) >= 0)); 4397 } 4398 4399 /** 4400 * skb_checksum_complete - Calculate checksum of an entire packet 4401 * @skb: packet to process 4402 * 4403 * This function calculates the checksum over the entire packet plus 4404 * the value of skb->csum. The latter can be used to supply the 4405 * checksum of a pseudo header as used by TCP/UDP. It returns the 4406 * checksum. 4407 * 4408 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4409 * this function can be used to verify that checksum on received 4410 * packets. In that case the function should return zero if the 4411 * checksum is correct. In particular, this function will return zero 4412 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4413 * hardware has already verified the correctness of the checksum. 4414 */ 4415 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4416 { 4417 return skb_csum_unnecessary(skb) ? 4418 0 : __skb_checksum_complete(skb); 4419 } 4420 4421 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4422 { 4423 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4424 if (skb->csum_level == 0) 4425 skb->ip_summed = CHECKSUM_NONE; 4426 else 4427 skb->csum_level--; 4428 } 4429 } 4430 4431 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4432 { 4433 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4434 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4435 skb->csum_level++; 4436 } else if (skb->ip_summed == CHECKSUM_NONE) { 4437 skb->ip_summed = CHECKSUM_UNNECESSARY; 4438 skb->csum_level = 0; 4439 } 4440 } 4441 4442 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4443 { 4444 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4445 skb->ip_summed = CHECKSUM_NONE; 4446 skb->csum_level = 0; 4447 } 4448 } 4449 4450 /* Check if we need to perform checksum complete validation. 4451 * 4452 * Returns true if checksum complete is needed, false otherwise 4453 * (either checksum is unnecessary or zero checksum is allowed). 4454 */ 4455 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4456 bool zero_okay, 4457 __sum16 check) 4458 { 4459 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4460 skb->csum_valid = 1; 4461 __skb_decr_checksum_unnecessary(skb); 4462 return false; 4463 } 4464 4465 return true; 4466 } 4467 4468 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4469 * in checksum_init. 4470 */ 4471 #define CHECKSUM_BREAK 76 4472 4473 /* Unset checksum-complete 4474 * 4475 * Unset checksum complete can be done when packet is being modified 4476 * (uncompressed for instance) and checksum-complete value is 4477 * invalidated. 4478 */ 4479 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4480 { 4481 if (skb->ip_summed == CHECKSUM_COMPLETE) 4482 skb->ip_summed = CHECKSUM_NONE; 4483 } 4484 4485 /* Validate (init) checksum based on checksum complete. 4486 * 4487 * Return values: 4488 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4489 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4490 * checksum is stored in skb->csum for use in __skb_checksum_complete 4491 * non-zero: value of invalid checksum 4492 * 4493 */ 4494 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4495 bool complete, 4496 __wsum psum) 4497 { 4498 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4499 if (!csum_fold(csum_add(psum, skb->csum))) { 4500 skb->csum_valid = 1; 4501 return 0; 4502 } 4503 } 4504 4505 skb->csum = psum; 4506 4507 if (complete || skb->len <= CHECKSUM_BREAK) { 4508 __sum16 csum; 4509 4510 csum = __skb_checksum_complete(skb); 4511 skb->csum_valid = !csum; 4512 return csum; 4513 } 4514 4515 return 0; 4516 } 4517 4518 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4519 { 4520 return 0; 4521 } 4522 4523 /* Perform checksum validate (init). Note that this is a macro since we only 4524 * want to calculate the pseudo header which is an input function if necessary. 4525 * First we try to validate without any computation (checksum unnecessary) and 4526 * then calculate based on checksum complete calling the function to compute 4527 * pseudo header. 4528 * 4529 * Return values: 4530 * 0: checksum is validated or try to in skb_checksum_complete 4531 * non-zero: value of invalid checksum 4532 */ 4533 #define __skb_checksum_validate(skb, proto, complete, \ 4534 zero_okay, check, compute_pseudo) \ 4535 ({ \ 4536 __sum16 __ret = 0; \ 4537 skb->csum_valid = 0; \ 4538 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4539 __ret = __skb_checksum_validate_complete(skb, \ 4540 complete, compute_pseudo(skb, proto)); \ 4541 __ret; \ 4542 }) 4543 4544 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4545 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4546 4547 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4548 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4549 4550 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4551 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4552 4553 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4554 compute_pseudo) \ 4555 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4556 4557 #define skb_checksum_simple_validate(skb) \ 4558 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4559 4560 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4561 { 4562 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4563 } 4564 4565 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4566 { 4567 skb->csum = ~pseudo; 4568 skb->ip_summed = CHECKSUM_COMPLETE; 4569 } 4570 4571 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4572 do { \ 4573 if (__skb_checksum_convert_check(skb)) \ 4574 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4575 } while (0) 4576 4577 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4578 u16 start, u16 offset) 4579 { 4580 skb->ip_summed = CHECKSUM_PARTIAL; 4581 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4582 skb->csum_offset = offset - start; 4583 } 4584 4585 /* Update skbuf and packet to reflect the remote checksum offload operation. 4586 * When called, ptr indicates the starting point for skb->csum when 4587 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4588 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4589 */ 4590 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4591 int start, int offset, bool nopartial) 4592 { 4593 __wsum delta; 4594 4595 if (!nopartial) { 4596 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4597 return; 4598 } 4599 4600 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4601 __skb_checksum_complete(skb); 4602 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4603 } 4604 4605 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4606 4607 /* Adjust skb->csum since we changed the packet */ 4608 skb->csum = csum_add(skb->csum, delta); 4609 } 4610 4611 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4612 { 4613 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4614 return (void *)(skb->_nfct & NFCT_PTRMASK); 4615 #else 4616 return NULL; 4617 #endif 4618 } 4619 4620 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4621 { 4622 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4623 return skb->_nfct; 4624 #else 4625 return 0UL; 4626 #endif 4627 } 4628 4629 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4630 { 4631 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4632 skb->slow_gro |= !!nfct; 4633 skb->_nfct = nfct; 4634 #endif 4635 } 4636 4637 #ifdef CONFIG_SKB_EXTENSIONS 4638 enum skb_ext_id { 4639 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4640 SKB_EXT_BRIDGE_NF, 4641 #endif 4642 #ifdef CONFIG_XFRM 4643 SKB_EXT_SEC_PATH, 4644 #endif 4645 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4646 TC_SKB_EXT, 4647 #endif 4648 #if IS_ENABLED(CONFIG_MPTCP) 4649 SKB_EXT_MPTCP, 4650 #endif 4651 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4652 SKB_EXT_MCTP, 4653 #endif 4654 SKB_EXT_NUM, /* must be last */ 4655 }; 4656 4657 /** 4658 * struct skb_ext - sk_buff extensions 4659 * @refcnt: 1 on allocation, deallocated on 0 4660 * @offset: offset to add to @data to obtain extension address 4661 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4662 * @data: start of extension data, variable sized 4663 * 4664 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4665 * to use 'u8' types while allowing up to 2kb worth of extension data. 4666 */ 4667 struct skb_ext { 4668 refcount_t refcnt; 4669 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4670 u8 chunks; /* same */ 4671 char data[] __aligned(8); 4672 }; 4673 4674 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4675 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4676 struct skb_ext *ext); 4677 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4678 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4679 void __skb_ext_put(struct skb_ext *ext); 4680 4681 static inline void skb_ext_put(struct sk_buff *skb) 4682 { 4683 if (skb->active_extensions) 4684 __skb_ext_put(skb->extensions); 4685 } 4686 4687 static inline void __skb_ext_copy(struct sk_buff *dst, 4688 const struct sk_buff *src) 4689 { 4690 dst->active_extensions = src->active_extensions; 4691 4692 if (src->active_extensions) { 4693 struct skb_ext *ext = src->extensions; 4694 4695 refcount_inc(&ext->refcnt); 4696 dst->extensions = ext; 4697 } 4698 } 4699 4700 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4701 { 4702 skb_ext_put(dst); 4703 __skb_ext_copy(dst, src); 4704 } 4705 4706 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4707 { 4708 return !!ext->offset[i]; 4709 } 4710 4711 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4712 { 4713 return skb->active_extensions & (1 << id); 4714 } 4715 4716 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4717 { 4718 if (skb_ext_exist(skb, id)) 4719 __skb_ext_del(skb, id); 4720 } 4721 4722 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4723 { 4724 if (skb_ext_exist(skb, id)) { 4725 struct skb_ext *ext = skb->extensions; 4726 4727 return (void *)ext + (ext->offset[id] << 3); 4728 } 4729 4730 return NULL; 4731 } 4732 4733 static inline void skb_ext_reset(struct sk_buff *skb) 4734 { 4735 if (unlikely(skb->active_extensions)) { 4736 __skb_ext_put(skb->extensions); 4737 skb->active_extensions = 0; 4738 } 4739 } 4740 4741 static inline bool skb_has_extensions(struct sk_buff *skb) 4742 { 4743 return unlikely(skb->active_extensions); 4744 } 4745 #else 4746 static inline void skb_ext_put(struct sk_buff *skb) {} 4747 static inline void skb_ext_reset(struct sk_buff *skb) {} 4748 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4749 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4750 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4751 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4752 #endif /* CONFIG_SKB_EXTENSIONS */ 4753 4754 static inline void nf_reset_ct(struct sk_buff *skb) 4755 { 4756 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4757 nf_conntrack_put(skb_nfct(skb)); 4758 skb->_nfct = 0; 4759 #endif 4760 } 4761 4762 static inline void nf_reset_trace(struct sk_buff *skb) 4763 { 4764 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4765 skb->nf_trace = 0; 4766 #endif 4767 } 4768 4769 static inline void ipvs_reset(struct sk_buff *skb) 4770 { 4771 #if IS_ENABLED(CONFIG_IP_VS) 4772 skb->ipvs_property = 0; 4773 #endif 4774 } 4775 4776 /* Note: This doesn't put any conntrack info in dst. */ 4777 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4778 bool copy) 4779 { 4780 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4781 dst->_nfct = src->_nfct; 4782 nf_conntrack_get(skb_nfct(src)); 4783 #endif 4784 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4785 if (copy) 4786 dst->nf_trace = src->nf_trace; 4787 #endif 4788 } 4789 4790 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4791 { 4792 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4793 nf_conntrack_put(skb_nfct(dst)); 4794 #endif 4795 dst->slow_gro = src->slow_gro; 4796 __nf_copy(dst, src, true); 4797 } 4798 4799 #ifdef CONFIG_NETWORK_SECMARK 4800 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4801 { 4802 to->secmark = from->secmark; 4803 } 4804 4805 static inline void skb_init_secmark(struct sk_buff *skb) 4806 { 4807 skb->secmark = 0; 4808 } 4809 #else 4810 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4811 { } 4812 4813 static inline void skb_init_secmark(struct sk_buff *skb) 4814 { } 4815 #endif 4816 4817 static inline int secpath_exists(const struct sk_buff *skb) 4818 { 4819 #ifdef CONFIG_XFRM 4820 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4821 #else 4822 return 0; 4823 #endif 4824 } 4825 4826 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4827 { 4828 return !skb->destructor && 4829 !secpath_exists(skb) && 4830 !skb_nfct(skb) && 4831 !skb->_skb_refdst && 4832 !skb_has_frag_list(skb); 4833 } 4834 4835 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4836 { 4837 skb->queue_mapping = queue_mapping; 4838 } 4839 4840 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4841 { 4842 return skb->queue_mapping; 4843 } 4844 4845 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4846 { 4847 to->queue_mapping = from->queue_mapping; 4848 } 4849 4850 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4851 { 4852 skb->queue_mapping = rx_queue + 1; 4853 } 4854 4855 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4856 { 4857 return skb->queue_mapping - 1; 4858 } 4859 4860 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4861 { 4862 return skb->queue_mapping != 0; 4863 } 4864 4865 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4866 { 4867 skb->dst_pending_confirm = val; 4868 } 4869 4870 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4871 { 4872 return skb->dst_pending_confirm != 0; 4873 } 4874 4875 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4876 { 4877 #ifdef CONFIG_XFRM 4878 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4879 #else 4880 return NULL; 4881 #endif 4882 } 4883 4884 static inline bool skb_is_gso(const struct sk_buff *skb) 4885 { 4886 return skb_shinfo(skb)->gso_size; 4887 } 4888 4889 /* Note: Should be called only if skb_is_gso(skb) is true */ 4890 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4891 { 4892 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4893 } 4894 4895 /* Note: Should be called only if skb_is_gso(skb) is true */ 4896 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4897 { 4898 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4899 } 4900 4901 /* Note: Should be called only if skb_is_gso(skb) is true */ 4902 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4903 { 4904 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4905 } 4906 4907 static inline void skb_gso_reset(struct sk_buff *skb) 4908 { 4909 skb_shinfo(skb)->gso_size = 0; 4910 skb_shinfo(skb)->gso_segs = 0; 4911 skb_shinfo(skb)->gso_type = 0; 4912 } 4913 4914 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4915 u16 increment) 4916 { 4917 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4918 return; 4919 shinfo->gso_size += increment; 4920 } 4921 4922 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4923 u16 decrement) 4924 { 4925 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4926 return; 4927 shinfo->gso_size -= decrement; 4928 } 4929 4930 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4931 4932 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4933 { 4934 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4935 * wanted then gso_type will be set. */ 4936 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4937 4938 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4939 unlikely(shinfo->gso_type == 0)) { 4940 __skb_warn_lro_forwarding(skb); 4941 return true; 4942 } 4943 return false; 4944 } 4945 4946 static inline void skb_forward_csum(struct sk_buff *skb) 4947 { 4948 /* Unfortunately we don't support this one. Any brave souls? */ 4949 if (skb->ip_summed == CHECKSUM_COMPLETE) 4950 skb->ip_summed = CHECKSUM_NONE; 4951 } 4952 4953 /** 4954 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4955 * @skb: skb to check 4956 * 4957 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4958 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4959 * use this helper, to document places where we make this assertion. 4960 */ 4961 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4962 { 4963 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4964 } 4965 4966 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4967 4968 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4969 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4970 unsigned int transport_len, 4971 __sum16(*skb_chkf)(struct sk_buff *skb)); 4972 4973 /** 4974 * skb_head_is_locked - Determine if the skb->head is locked down 4975 * @skb: skb to check 4976 * 4977 * The head on skbs build around a head frag can be removed if they are 4978 * not cloned. This function returns true if the skb head is locked down 4979 * due to either being allocated via kmalloc, or by being a clone with 4980 * multiple references to the head. 4981 */ 4982 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4983 { 4984 return !skb->head_frag || skb_cloned(skb); 4985 } 4986 4987 /* Local Checksum Offload. 4988 * Compute outer checksum based on the assumption that the 4989 * inner checksum will be offloaded later. 4990 * See Documentation/networking/checksum-offloads.rst for 4991 * explanation of how this works. 4992 * Fill in outer checksum adjustment (e.g. with sum of outer 4993 * pseudo-header) before calling. 4994 * Also ensure that inner checksum is in linear data area. 4995 */ 4996 static inline __wsum lco_csum(struct sk_buff *skb) 4997 { 4998 unsigned char *csum_start = skb_checksum_start(skb); 4999 unsigned char *l4_hdr = skb_transport_header(skb); 5000 __wsum partial; 5001 5002 /* Start with complement of inner checksum adjustment */ 5003 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5004 skb->csum_offset)); 5005 5006 /* Add in checksum of our headers (incl. outer checksum 5007 * adjustment filled in by caller) and return result. 5008 */ 5009 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5010 } 5011 5012 static inline bool skb_is_redirected(const struct sk_buff *skb) 5013 { 5014 return skb->redirected; 5015 } 5016 5017 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5018 { 5019 skb->redirected = 1; 5020 #ifdef CONFIG_NET_REDIRECT 5021 skb->from_ingress = from_ingress; 5022 if (skb->from_ingress) 5023 skb_clear_tstamp(skb); 5024 #endif 5025 } 5026 5027 static inline void skb_reset_redirect(struct sk_buff *skb) 5028 { 5029 skb->redirected = 0; 5030 } 5031 5032 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5033 bool from_ingress) 5034 { 5035 skb->redirected = 1; 5036 #ifdef CONFIG_NET_REDIRECT 5037 skb->from_ingress = from_ingress; 5038 #endif 5039 } 5040 5041 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5042 { 5043 #if IS_ENABLED(CONFIG_IP_SCTP) 5044 return skb->csum_not_inet; 5045 #else 5046 return 0; 5047 #endif 5048 } 5049 5050 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5051 { 5052 skb->ip_summed = CHECKSUM_NONE; 5053 #if IS_ENABLED(CONFIG_IP_SCTP) 5054 skb->csum_not_inet = 0; 5055 #endif 5056 } 5057 5058 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5059 const u64 kcov_handle) 5060 { 5061 #ifdef CONFIG_KCOV 5062 skb->kcov_handle = kcov_handle; 5063 #endif 5064 } 5065 5066 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5067 { 5068 #ifdef CONFIG_KCOV 5069 return skb->kcov_handle; 5070 #else 5071 return 0; 5072 #endif 5073 } 5074 5075 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5076 { 5077 #ifdef CONFIG_PAGE_POOL 5078 skb->pp_recycle = 1; 5079 #endif 5080 } 5081 5082 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5083 ssize_t maxsize, gfp_t gfp); 5084 5085 #endif /* __KERNEL__ */ 5086 #endif /* _LINUX_SKBUFF_H */ 5087