xref: /linux-6.15/include/linux/skbuff.h (revision ff39eefd)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <net/netmem.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 extern int sysctl_max_skb_frags;
357 
358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
359  * segment using its current segmentation instead.
360  */
361 #define GSO_BY_FRAGS	0xFFFF
362 
363 typedef struct skb_frag {
364 	netmem_ref netmem;
365 	unsigned int len;
366 	unsigned int offset;
367 } skb_frag_t;
368 
369 /**
370  * skb_frag_size() - Returns the size of a skb fragment
371  * @frag: skb fragment
372  */
373 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
374 {
375 	return frag->len;
376 }
377 
378 /**
379  * skb_frag_size_set() - Sets the size of a skb fragment
380  * @frag: skb fragment
381  * @size: size of fragment
382  */
383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
384 {
385 	frag->len = size;
386 }
387 
388 /**
389  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
390  * @frag: skb fragment
391  * @delta: value to add
392  */
393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
394 {
395 	frag->len += delta;
396 }
397 
398 /**
399  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
400  * @frag: skb fragment
401  * @delta: value to subtract
402  */
403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
404 {
405 	frag->len -= delta;
406 }
407 
408 /**
409  * skb_frag_must_loop - Test if %p is a high memory page
410  * @p: fragment's page
411  */
412 static inline bool skb_frag_must_loop(struct page *p)
413 {
414 #if defined(CONFIG_HIGHMEM)
415 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
416 		return true;
417 #endif
418 	return false;
419 }
420 
421 /**
422  *	skb_frag_foreach_page - loop over pages in a fragment
423  *
424  *	@f:		skb frag to operate on
425  *	@f_off:		offset from start of f->netmem
426  *	@f_len:		length from f_off to loop over
427  *	@p:		(temp var) current page
428  *	@p_off:		(temp var) offset from start of current page,
429  *	                           non-zero only on first page.
430  *	@p_len:		(temp var) length in current page,
431  *				   < PAGE_SIZE only on first and last page.
432  *	@copied:	(temp var) length so far, excluding current p_len.
433  *
434  *	A fragment can hold a compound page, in which case per-page
435  *	operations, notably kmap_atomic, must be called for each
436  *	regular page.
437  */
438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
439 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
440 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
441 	     p_len = skb_frag_must_loop(p) ?				\
442 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
443 	     copied = 0;						\
444 	     copied < f_len;						\
445 	     copied += p_len, p++, p_off = 0,				\
446 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
447 
448 /**
449  * struct skb_shared_hwtstamps - hardware time stamps
450  * @hwtstamp:		hardware time stamp transformed into duration
451  *			since arbitrary point in time
452  * @netdev_data:	address/cookie of network device driver used as
453  *			reference to actual hardware time stamp
454  *
455  * Software time stamps generated by ktime_get_real() are stored in
456  * skb->tstamp.
457  *
458  * hwtstamps can only be compared against other hwtstamps from
459  * the same device.
460  *
461  * This structure is attached to packets as part of the
462  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
463  */
464 struct skb_shared_hwtstamps {
465 	union {
466 		ktime_t	hwtstamp;
467 		void *netdev_data;
468 	};
469 };
470 
471 /* Definitions for tx_flags in struct skb_shared_info */
472 enum {
473 	/* generate hardware time stamp */
474 	SKBTX_HW_TSTAMP = 1 << 0,
475 
476 	/* generate software time stamp when queueing packet to NIC */
477 	SKBTX_SW_TSTAMP = 1 << 1,
478 
479 	/* device driver is going to provide hardware time stamp */
480 	SKBTX_IN_PROGRESS = 1 << 2,
481 
482 	/* generate hardware time stamp based on cycles if supported */
483 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
484 
485 	/* generate wifi status information (where possible) */
486 	SKBTX_WIFI_STATUS = 1 << 4,
487 
488 	/* determine hardware time stamp based on time or cycles */
489 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
490 
491 	/* generate software time stamp when entering packet scheduling */
492 	SKBTX_SCHED_TSTAMP = 1 << 6,
493 };
494 
495 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
496 				 SKBTX_SCHED_TSTAMP)
497 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
498 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
499 				 SKBTX_ANY_SW_TSTAMP)
500 
501 /* Definitions for flags in struct skb_shared_info */
502 enum {
503 	/* use zcopy routines */
504 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
505 
506 	/* This indicates at least one fragment might be overwritten
507 	 * (as in vmsplice(), sendfile() ...)
508 	 * If we need to compute a TX checksum, we'll need to copy
509 	 * all frags to avoid possible bad checksum
510 	 */
511 	SKBFL_SHARED_FRAG = BIT(1),
512 
513 	/* segment contains only zerocopy data and should not be
514 	 * charged to the kernel memory.
515 	 */
516 	SKBFL_PURE_ZEROCOPY = BIT(2),
517 
518 	SKBFL_DONT_ORPHAN = BIT(3),
519 
520 	/* page references are managed by the ubuf_info, so it's safe to
521 	 * use frags only up until ubuf_info is released
522 	 */
523 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
524 };
525 
526 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
527 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
528 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
529 
530 /*
531  * The callback notifies userspace to release buffers when skb DMA is done in
532  * lower device, the skb last reference should be 0 when calling this.
533  * The zerocopy_success argument is true if zero copy transmit occurred,
534  * false on data copy or out of memory error caused by data copy attempt.
535  * The ctx field is used to track device context.
536  * The desc field is used to track userspace buffer index.
537  */
538 struct ubuf_info {
539 	void (*callback)(struct sk_buff *, struct ubuf_info *,
540 			 bool zerocopy_success);
541 	refcount_t refcnt;
542 	u8 flags;
543 };
544 
545 struct ubuf_info_msgzc {
546 	struct ubuf_info ubuf;
547 
548 	union {
549 		struct {
550 			unsigned long desc;
551 			void *ctx;
552 		};
553 		struct {
554 			u32 id;
555 			u16 len;
556 			u16 zerocopy:1;
557 			u32 bytelen;
558 		};
559 	};
560 
561 	struct mmpin {
562 		struct user_struct *user;
563 		unsigned int num_pg;
564 	} mmp;
565 };
566 
567 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
568 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
569 					     ubuf)
570 
571 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
572 void mm_unaccount_pinned_pages(struct mmpin *mmp);
573 
574 /* Preserve some data across TX submission and completion.
575  *
576  * Note, this state is stored in the driver. Extending the layout
577  * might need some special care.
578  */
579 struct xsk_tx_metadata_compl {
580 	__u64 *tx_timestamp;
581 };
582 
583 /* This data is invariant across clones and lives at
584  * the end of the header data, ie. at skb->end.
585  */
586 struct skb_shared_info {
587 	__u8		flags;
588 	__u8		meta_len;
589 	__u8		nr_frags;
590 	__u8		tx_flags;
591 	unsigned short	gso_size;
592 	/* Warning: this field is not always filled in (UFO)! */
593 	unsigned short	gso_segs;
594 	struct sk_buff	*frag_list;
595 	union {
596 		struct skb_shared_hwtstamps hwtstamps;
597 		struct xsk_tx_metadata_compl xsk_meta;
598 	};
599 	unsigned int	gso_type;
600 	u32		tskey;
601 
602 	/*
603 	 * Warning : all fields before dataref are cleared in __alloc_skb()
604 	 */
605 	atomic_t	dataref;
606 	unsigned int	xdp_frags_size;
607 
608 	/* Intermediate layers must ensure that destructor_arg
609 	 * remains valid until skb destructor */
610 	void *		destructor_arg;
611 
612 	/* must be last field, see pskb_expand_head() */
613 	skb_frag_t	frags[MAX_SKB_FRAGS];
614 };
615 
616 /**
617  * DOC: dataref and headerless skbs
618  *
619  * Transport layers send out clones of payload skbs they hold for
620  * retransmissions. To allow lower layers of the stack to prepend their headers
621  * we split &skb_shared_info.dataref into two halves.
622  * The lower 16 bits count the overall number of references.
623  * The higher 16 bits indicate how many of the references are payload-only.
624  * skb_header_cloned() checks if skb is allowed to add / write the headers.
625  *
626  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
627  * (via __skb_header_release()). Any clone created from marked skb will get
628  * &sk_buff.hdr_len populated with the available headroom.
629  * If there's the only clone in existence it's able to modify the headroom
630  * at will. The sequence of calls inside the transport layer is::
631  *
632  *  <alloc skb>
633  *  skb_reserve()
634  *  __skb_header_release()
635  *  skb_clone()
636  *  // send the clone down the stack
637  *
638  * This is not a very generic construct and it depends on the transport layers
639  * doing the right thing. In practice there's usually only one payload-only skb.
640  * Having multiple payload-only skbs with different lengths of hdr_len is not
641  * possible. The payload-only skbs should never leave their owner.
642  */
643 #define SKB_DATAREF_SHIFT 16
644 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
645 
646 
647 enum {
648 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
649 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
650 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
651 };
652 
653 enum {
654 	SKB_GSO_TCPV4 = 1 << 0,
655 
656 	/* This indicates the skb is from an untrusted source. */
657 	SKB_GSO_DODGY = 1 << 1,
658 
659 	/* This indicates the tcp segment has CWR set. */
660 	SKB_GSO_TCP_ECN = 1 << 2,
661 
662 	SKB_GSO_TCP_FIXEDID = 1 << 3,
663 
664 	SKB_GSO_TCPV6 = 1 << 4,
665 
666 	SKB_GSO_FCOE = 1 << 5,
667 
668 	SKB_GSO_GRE = 1 << 6,
669 
670 	SKB_GSO_GRE_CSUM = 1 << 7,
671 
672 	SKB_GSO_IPXIP4 = 1 << 8,
673 
674 	SKB_GSO_IPXIP6 = 1 << 9,
675 
676 	SKB_GSO_UDP_TUNNEL = 1 << 10,
677 
678 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
679 
680 	SKB_GSO_PARTIAL = 1 << 12,
681 
682 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
683 
684 	SKB_GSO_SCTP = 1 << 14,
685 
686 	SKB_GSO_ESP = 1 << 15,
687 
688 	SKB_GSO_UDP = 1 << 16,
689 
690 	SKB_GSO_UDP_L4 = 1 << 17,
691 
692 	SKB_GSO_FRAGLIST = 1 << 18,
693 };
694 
695 #if BITS_PER_LONG > 32
696 #define NET_SKBUFF_DATA_USES_OFFSET 1
697 #endif
698 
699 #ifdef NET_SKBUFF_DATA_USES_OFFSET
700 typedef unsigned int sk_buff_data_t;
701 #else
702 typedef unsigned char *sk_buff_data_t;
703 #endif
704 
705 /**
706  * DOC: Basic sk_buff geometry
707  *
708  * struct sk_buff itself is a metadata structure and does not hold any packet
709  * data. All the data is held in associated buffers.
710  *
711  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
712  * into two parts:
713  *
714  *  - data buffer, containing headers and sometimes payload;
715  *    this is the part of the skb operated on by the common helpers
716  *    such as skb_put() or skb_pull();
717  *  - shared info (struct skb_shared_info) which holds an array of pointers
718  *    to read-only data in the (page, offset, length) format.
719  *
720  * Optionally &skb_shared_info.frag_list may point to another skb.
721  *
722  * Basic diagram may look like this::
723  *
724  *                                  ---------------
725  *                                 | sk_buff       |
726  *                                  ---------------
727  *     ,---------------------------  + head
728  *    /          ,-----------------  + data
729  *   /          /      ,-----------  + tail
730  *  |          |      |            , + end
731  *  |          |      |           |
732  *  v          v      v           v
733  *   -----------------------------------------------
734  *  | headroom | data |  tailroom | skb_shared_info |
735  *   -----------------------------------------------
736  *                                 + [page frag]
737  *                                 + [page frag]
738  *                                 + [page frag]
739  *                                 + [page frag]       ---------
740  *                                 + frag_list    --> | sk_buff |
741  *                                                     ---------
742  *
743  */
744 
745 /**
746  *	struct sk_buff - socket buffer
747  *	@next: Next buffer in list
748  *	@prev: Previous buffer in list
749  *	@tstamp: Time we arrived/left
750  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
751  *		for retransmit timer
752  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
753  *	@list: queue head
754  *	@ll_node: anchor in an llist (eg socket defer_list)
755  *	@sk: Socket we are owned by
756  *	@dev: Device we arrived on/are leaving by
757  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
758  *	@cb: Control buffer. Free for use by every layer. Put private vars here
759  *	@_skb_refdst: destination entry (with norefcount bit)
760  *	@len: Length of actual data
761  *	@data_len: Data length
762  *	@mac_len: Length of link layer header
763  *	@hdr_len: writable header length of cloned skb
764  *	@csum: Checksum (must include start/offset pair)
765  *	@csum_start: Offset from skb->head where checksumming should start
766  *	@csum_offset: Offset from csum_start where checksum should be stored
767  *	@priority: Packet queueing priority
768  *	@ignore_df: allow local fragmentation
769  *	@cloned: Head may be cloned (check refcnt to be sure)
770  *	@ip_summed: Driver fed us an IP checksum
771  *	@nohdr: Payload reference only, must not modify header
772  *	@pkt_type: Packet class
773  *	@fclone: skbuff clone status
774  *	@ipvs_property: skbuff is owned by ipvs
775  *	@inner_protocol_type: whether the inner protocol is
776  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
777  *	@remcsum_offload: remote checksum offload is enabled
778  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
779  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
780  *	@tc_skip_classify: do not classify packet. set by IFB device
781  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
782  *	@redirected: packet was redirected by packet classifier
783  *	@from_ingress: packet was redirected from the ingress path
784  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
785  *	@peeked: this packet has been seen already, so stats have been
786  *		done for it, don't do them again
787  *	@nf_trace: netfilter packet trace flag
788  *	@protocol: Packet protocol from driver
789  *	@destructor: Destruct function
790  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
791  *	@_sk_redir: socket redirection information for skmsg
792  *	@_nfct: Associated connection, if any (with nfctinfo bits)
793  *	@skb_iif: ifindex of device we arrived on
794  *	@tc_index: Traffic control index
795  *	@hash: the packet hash
796  *	@queue_mapping: Queue mapping for multiqueue devices
797  *	@head_frag: skb was allocated from page fragments,
798  *		not allocated by kmalloc() or vmalloc().
799  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
800  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
801  *		page_pool support on driver)
802  *	@active_extensions: active extensions (skb_ext_id types)
803  *	@ndisc_nodetype: router type (from link layer)
804  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
805  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
806  *		ports.
807  *	@sw_hash: indicates hash was computed in software stack
808  *	@wifi_acked_valid: wifi_acked was set
809  *	@wifi_acked: whether frame was acked on wifi or not
810  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
811  *	@encapsulation: indicates the inner headers in the skbuff are valid
812  *	@encap_hdr_csum: software checksum is needed
813  *	@csum_valid: checksum is already valid
814  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
815  *	@csum_complete_sw: checksum was completed by software
816  *	@csum_level: indicates the number of consecutive checksums found in
817  *		the packet minus one that have been verified as
818  *		CHECKSUM_UNNECESSARY (max 3)
819  *	@dst_pending_confirm: need to confirm neighbour
820  *	@decrypted: Decrypted SKB
821  *	@slow_gro: state present at GRO time, slower prepare step required
822  *	@mono_delivery_time: When set, skb->tstamp has the
823  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
824  *		skb->tstamp has the (rcv) timestamp at ingress and
825  *		delivery_time at egress.
826  *	@napi_id: id of the NAPI struct this skb came from
827  *	@sender_cpu: (aka @napi_id) source CPU in XPS
828  *	@alloc_cpu: CPU which did the skb allocation.
829  *	@secmark: security marking
830  *	@mark: Generic packet mark
831  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
832  *		at the tail of an sk_buff
833  *	@vlan_all: vlan fields (proto & tci)
834  *	@vlan_proto: vlan encapsulation protocol
835  *	@vlan_tci: vlan tag control information
836  *	@inner_protocol: Protocol (encapsulation)
837  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
838  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
839  *	@inner_transport_header: Inner transport layer header (encapsulation)
840  *	@inner_network_header: Network layer header (encapsulation)
841  *	@inner_mac_header: Link layer header (encapsulation)
842  *	@transport_header: Transport layer header
843  *	@network_header: Network layer header
844  *	@mac_header: Link layer header
845  *	@kcov_handle: KCOV remote handle for remote coverage collection
846  *	@tail: Tail pointer
847  *	@end: End pointer
848  *	@head: Head of buffer
849  *	@data: Data head pointer
850  *	@truesize: Buffer size
851  *	@users: User count - see {datagram,tcp}.c
852  *	@extensions: allocated extensions, valid if active_extensions is nonzero
853  */
854 
855 struct sk_buff {
856 	union {
857 		struct {
858 			/* These two members must be first to match sk_buff_head. */
859 			struct sk_buff		*next;
860 			struct sk_buff		*prev;
861 
862 			union {
863 				struct net_device	*dev;
864 				/* Some protocols might use this space to store information,
865 				 * while device pointer would be NULL.
866 				 * UDP receive path is one user.
867 				 */
868 				unsigned long		dev_scratch;
869 			};
870 		};
871 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
872 		struct list_head	list;
873 		struct llist_node	ll_node;
874 	};
875 
876 	struct sock		*sk;
877 
878 	union {
879 		ktime_t		tstamp;
880 		u64		skb_mstamp_ns; /* earliest departure time */
881 	};
882 	/*
883 	 * This is the control buffer. It is free to use for every
884 	 * layer. Please put your private variables there. If you
885 	 * want to keep them across layers you have to do a skb_clone()
886 	 * first. This is owned by whoever has the skb queued ATM.
887 	 */
888 	char			cb[48] __aligned(8);
889 
890 	union {
891 		struct {
892 			unsigned long	_skb_refdst;
893 			void		(*destructor)(struct sk_buff *skb);
894 		};
895 		struct list_head	tcp_tsorted_anchor;
896 #ifdef CONFIG_NET_SOCK_MSG
897 		unsigned long		_sk_redir;
898 #endif
899 	};
900 
901 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
902 	unsigned long		 _nfct;
903 #endif
904 	unsigned int		len,
905 				data_len;
906 	__u16			mac_len,
907 				hdr_len;
908 
909 	/* Following fields are _not_ copied in __copy_skb_header()
910 	 * Note that queue_mapping is here mostly to fill a hole.
911 	 */
912 	__u16			queue_mapping;
913 
914 /* if you move cloned around you also must adapt those constants */
915 #ifdef __BIG_ENDIAN_BITFIELD
916 #define CLONED_MASK	(1 << 7)
917 #else
918 #define CLONED_MASK	1
919 #endif
920 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
921 
922 	/* private: */
923 	__u8			__cloned_offset[0];
924 	/* public: */
925 	__u8			cloned:1,
926 				nohdr:1,
927 				fclone:2,
928 				peeked:1,
929 				head_frag:1,
930 				pfmemalloc:1,
931 				pp_recycle:1; /* page_pool recycle indicator */
932 #ifdef CONFIG_SKB_EXTENSIONS
933 	__u8			active_extensions;
934 #endif
935 
936 	/* Fields enclosed in headers group are copied
937 	 * using a single memcpy() in __copy_skb_header()
938 	 */
939 	struct_group(headers,
940 
941 	/* private: */
942 	__u8			__pkt_type_offset[0];
943 	/* public: */
944 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
945 	__u8			ignore_df:1;
946 	__u8			dst_pending_confirm:1;
947 	__u8			ip_summed:2;
948 	__u8			ooo_okay:1;
949 
950 	/* private: */
951 	__u8			__mono_tc_offset[0];
952 	/* public: */
953 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
954 #ifdef CONFIG_NET_XGRESS
955 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
956 	__u8			tc_skip_classify:1;
957 #endif
958 	__u8			remcsum_offload:1;
959 	__u8			csum_complete_sw:1;
960 	__u8			csum_level:2;
961 	__u8			inner_protocol_type:1;
962 
963 	__u8			l4_hash:1;
964 	__u8			sw_hash:1;
965 #ifdef CONFIG_WIRELESS
966 	__u8			wifi_acked_valid:1;
967 	__u8			wifi_acked:1;
968 #endif
969 	__u8			no_fcs:1;
970 	/* Indicates the inner headers are valid in the skbuff. */
971 	__u8			encapsulation:1;
972 	__u8			encap_hdr_csum:1;
973 	__u8			csum_valid:1;
974 #ifdef CONFIG_IPV6_NDISC_NODETYPE
975 	__u8			ndisc_nodetype:2;
976 #endif
977 
978 #if IS_ENABLED(CONFIG_IP_VS)
979 	__u8			ipvs_property:1;
980 #endif
981 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
982 	__u8			nf_trace:1;
983 #endif
984 #ifdef CONFIG_NET_SWITCHDEV
985 	__u8			offload_fwd_mark:1;
986 	__u8			offload_l3_fwd_mark:1;
987 #endif
988 	__u8			redirected:1;
989 #ifdef CONFIG_NET_REDIRECT
990 	__u8			from_ingress:1;
991 #endif
992 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
993 	__u8			nf_skip_egress:1;
994 #endif
995 #ifdef CONFIG_SKB_DECRYPTED
996 	__u8			decrypted:1;
997 #endif
998 	__u8			slow_gro:1;
999 #if IS_ENABLED(CONFIG_IP_SCTP)
1000 	__u8			csum_not_inet:1;
1001 #endif
1002 
1003 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1004 	__u16			tc_index;	/* traffic control index */
1005 #endif
1006 
1007 	u16			alloc_cpu;
1008 
1009 	union {
1010 		__wsum		csum;
1011 		struct {
1012 			__u16	csum_start;
1013 			__u16	csum_offset;
1014 		};
1015 	};
1016 	__u32			priority;
1017 	int			skb_iif;
1018 	__u32			hash;
1019 	union {
1020 		u32		vlan_all;
1021 		struct {
1022 			__be16	vlan_proto;
1023 			__u16	vlan_tci;
1024 		};
1025 	};
1026 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1027 	union {
1028 		unsigned int	napi_id;
1029 		unsigned int	sender_cpu;
1030 	};
1031 #endif
1032 #ifdef CONFIG_NETWORK_SECMARK
1033 	__u32		secmark;
1034 #endif
1035 
1036 	union {
1037 		__u32		mark;
1038 		__u32		reserved_tailroom;
1039 	};
1040 
1041 	union {
1042 		__be16		inner_protocol;
1043 		__u8		inner_ipproto;
1044 	};
1045 
1046 	__u16			inner_transport_header;
1047 	__u16			inner_network_header;
1048 	__u16			inner_mac_header;
1049 
1050 	__be16			protocol;
1051 	__u16			transport_header;
1052 	__u16			network_header;
1053 	__u16			mac_header;
1054 
1055 #ifdef CONFIG_KCOV
1056 	u64			kcov_handle;
1057 #endif
1058 
1059 	); /* end headers group */
1060 
1061 	/* These elements must be at the end, see alloc_skb() for details.  */
1062 	sk_buff_data_t		tail;
1063 	sk_buff_data_t		end;
1064 	unsigned char		*head,
1065 				*data;
1066 	unsigned int		truesize;
1067 	refcount_t		users;
1068 
1069 #ifdef CONFIG_SKB_EXTENSIONS
1070 	/* only usable after checking ->active_extensions != 0 */
1071 	struct skb_ext		*extensions;
1072 #endif
1073 };
1074 
1075 /* if you move pkt_type around you also must adapt those constants */
1076 #ifdef __BIG_ENDIAN_BITFIELD
1077 #define PKT_TYPE_MAX	(7 << 5)
1078 #else
1079 #define PKT_TYPE_MAX	7
1080 #endif
1081 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1082 
1083 /* if you move tc_at_ingress or mono_delivery_time
1084  * around, you also must adapt these constants.
1085  */
1086 #ifdef __BIG_ENDIAN_BITFIELD
1087 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1088 #define TC_AT_INGRESS_MASK		(1 << 6)
1089 #else
1090 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1091 #define TC_AT_INGRESS_MASK		(1 << 1)
1092 #endif
1093 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1094 
1095 #ifdef __KERNEL__
1096 /*
1097  *	Handling routines are only of interest to the kernel
1098  */
1099 
1100 #define SKB_ALLOC_FCLONE	0x01
1101 #define SKB_ALLOC_RX		0x02
1102 #define SKB_ALLOC_NAPI		0x04
1103 
1104 /**
1105  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1106  * @skb: buffer
1107  */
1108 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1109 {
1110 	return unlikely(skb->pfmemalloc);
1111 }
1112 
1113 /*
1114  * skb might have a dst pointer attached, refcounted or not.
1115  * _skb_refdst low order bit is set if refcount was _not_ taken
1116  */
1117 #define SKB_DST_NOREF	1UL
1118 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1119 
1120 /**
1121  * skb_dst - returns skb dst_entry
1122  * @skb: buffer
1123  *
1124  * Returns skb dst_entry, regardless of reference taken or not.
1125  */
1126 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1127 {
1128 	/* If refdst was not refcounted, check we still are in a
1129 	 * rcu_read_lock section
1130 	 */
1131 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1132 		!rcu_read_lock_held() &&
1133 		!rcu_read_lock_bh_held());
1134 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1135 }
1136 
1137 /**
1138  * skb_dst_set - sets skb dst
1139  * @skb: buffer
1140  * @dst: dst entry
1141  *
1142  * Sets skb dst, assuming a reference was taken on dst and should
1143  * be released by skb_dst_drop()
1144  */
1145 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1146 {
1147 	skb->slow_gro |= !!dst;
1148 	skb->_skb_refdst = (unsigned long)dst;
1149 }
1150 
1151 /**
1152  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1153  * @skb: buffer
1154  * @dst: dst entry
1155  *
1156  * Sets skb dst, assuming a reference was not taken on dst.
1157  * If dst entry is cached, we do not take reference and dst_release
1158  * will be avoided by refdst_drop. If dst entry is not cached, we take
1159  * reference, so that last dst_release can destroy the dst immediately.
1160  */
1161 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1162 {
1163 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1164 	skb->slow_gro |= !!dst;
1165 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1166 }
1167 
1168 /**
1169  * skb_dst_is_noref - Test if skb dst isn't refcounted
1170  * @skb: buffer
1171  */
1172 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1173 {
1174 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1175 }
1176 
1177 /**
1178  * skb_rtable - Returns the skb &rtable
1179  * @skb: buffer
1180  */
1181 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1182 {
1183 	return (struct rtable *)skb_dst(skb);
1184 }
1185 
1186 /* For mangling skb->pkt_type from user space side from applications
1187  * such as nft, tc, etc, we only allow a conservative subset of
1188  * possible pkt_types to be set.
1189 */
1190 static inline bool skb_pkt_type_ok(u32 ptype)
1191 {
1192 	return ptype <= PACKET_OTHERHOST;
1193 }
1194 
1195 /**
1196  * skb_napi_id - Returns the skb's NAPI id
1197  * @skb: buffer
1198  */
1199 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1200 {
1201 #ifdef CONFIG_NET_RX_BUSY_POLL
1202 	return skb->napi_id;
1203 #else
1204 	return 0;
1205 #endif
1206 }
1207 
1208 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1209 {
1210 #ifdef CONFIG_WIRELESS
1211 	return skb->wifi_acked_valid;
1212 #else
1213 	return 0;
1214 #endif
1215 }
1216 
1217 /**
1218  * skb_unref - decrement the skb's reference count
1219  * @skb: buffer
1220  *
1221  * Returns true if we can free the skb.
1222  */
1223 static inline bool skb_unref(struct sk_buff *skb)
1224 {
1225 	if (unlikely(!skb))
1226 		return false;
1227 	if (likely(refcount_read(&skb->users) == 1))
1228 		smp_rmb();
1229 	else if (likely(!refcount_dec_and_test(&skb->users)))
1230 		return false;
1231 
1232 	return true;
1233 }
1234 
1235 static inline bool skb_data_unref(const struct sk_buff *skb,
1236 				  struct skb_shared_info *shinfo)
1237 {
1238 	int bias;
1239 
1240 	if (!skb->cloned)
1241 		return true;
1242 
1243 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1244 
1245 	if (atomic_read(&shinfo->dataref) == bias)
1246 		smp_rmb();
1247 	else if (atomic_sub_return(bias, &shinfo->dataref))
1248 		return false;
1249 
1250 	return true;
1251 }
1252 
1253 void __fix_address
1254 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1255 
1256 /**
1257  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1258  *	@skb: buffer to free
1259  */
1260 static inline void kfree_skb(struct sk_buff *skb)
1261 {
1262 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1263 }
1264 
1265 void skb_release_head_state(struct sk_buff *skb);
1266 void kfree_skb_list_reason(struct sk_buff *segs,
1267 			   enum skb_drop_reason reason);
1268 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1269 void skb_tx_error(struct sk_buff *skb);
1270 
1271 static inline void kfree_skb_list(struct sk_buff *segs)
1272 {
1273 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1274 }
1275 
1276 #ifdef CONFIG_TRACEPOINTS
1277 void consume_skb(struct sk_buff *skb);
1278 #else
1279 static inline void consume_skb(struct sk_buff *skb)
1280 {
1281 	return kfree_skb(skb);
1282 }
1283 #endif
1284 
1285 void __consume_stateless_skb(struct sk_buff *skb);
1286 void  __kfree_skb(struct sk_buff *skb);
1287 
1288 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1289 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1290 		      bool *fragstolen, int *delta_truesize);
1291 
1292 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1293 			    int node);
1294 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1295 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1296 struct sk_buff *build_skb_around(struct sk_buff *skb,
1297 				 void *data, unsigned int frag_size);
1298 void skb_attempt_defer_free(struct sk_buff *skb);
1299 
1300 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1301 struct sk_buff *slab_build_skb(void *data);
1302 
1303 /**
1304  * alloc_skb - allocate a network buffer
1305  * @size: size to allocate
1306  * @priority: allocation mask
1307  *
1308  * This function is a convenient wrapper around __alloc_skb().
1309  */
1310 static inline struct sk_buff *alloc_skb(unsigned int size,
1311 					gfp_t priority)
1312 {
1313 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1314 }
1315 
1316 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1317 				     unsigned long data_len,
1318 				     int max_page_order,
1319 				     int *errcode,
1320 				     gfp_t gfp_mask);
1321 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1322 
1323 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1324 struct sk_buff_fclones {
1325 	struct sk_buff	skb1;
1326 
1327 	struct sk_buff	skb2;
1328 
1329 	refcount_t	fclone_ref;
1330 };
1331 
1332 /**
1333  *	skb_fclone_busy - check if fclone is busy
1334  *	@sk: socket
1335  *	@skb: buffer
1336  *
1337  * Returns true if skb is a fast clone, and its clone is not freed.
1338  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1339  * so we also check that didn't happen.
1340  */
1341 static inline bool skb_fclone_busy(const struct sock *sk,
1342 				   const struct sk_buff *skb)
1343 {
1344 	const struct sk_buff_fclones *fclones;
1345 
1346 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1347 
1348 	return skb->fclone == SKB_FCLONE_ORIG &&
1349 	       refcount_read(&fclones->fclone_ref) > 1 &&
1350 	       READ_ONCE(fclones->skb2.sk) == sk;
1351 }
1352 
1353 /**
1354  * alloc_skb_fclone - allocate a network buffer from fclone cache
1355  * @size: size to allocate
1356  * @priority: allocation mask
1357  *
1358  * This function is a convenient wrapper around __alloc_skb().
1359  */
1360 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1361 					       gfp_t priority)
1362 {
1363 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1364 }
1365 
1366 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1367 void skb_headers_offset_update(struct sk_buff *skb, int off);
1368 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1369 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1370 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1371 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1372 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1373 				   gfp_t gfp_mask, bool fclone);
1374 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1375 					  gfp_t gfp_mask)
1376 {
1377 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1378 }
1379 
1380 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1381 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1382 				     unsigned int headroom);
1383 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1384 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1385 				int newtailroom, gfp_t priority);
1386 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1387 				     int offset, int len);
1388 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1389 			      int offset, int len);
1390 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1391 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1392 
1393 /**
1394  *	skb_pad			-	zero pad the tail of an skb
1395  *	@skb: buffer to pad
1396  *	@pad: space to pad
1397  *
1398  *	Ensure that a buffer is followed by a padding area that is zero
1399  *	filled. Used by network drivers which may DMA or transfer data
1400  *	beyond the buffer end onto the wire.
1401  *
1402  *	May return error in out of memory cases. The skb is freed on error.
1403  */
1404 static inline int skb_pad(struct sk_buff *skb, int pad)
1405 {
1406 	return __skb_pad(skb, pad, true);
1407 }
1408 #define dev_kfree_skb(a)	consume_skb(a)
1409 
1410 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1411 			 int offset, size_t size, size_t max_frags);
1412 
1413 struct skb_seq_state {
1414 	__u32		lower_offset;
1415 	__u32		upper_offset;
1416 	__u32		frag_idx;
1417 	__u32		stepped_offset;
1418 	struct sk_buff	*root_skb;
1419 	struct sk_buff	*cur_skb;
1420 	__u8		*frag_data;
1421 	__u32		frag_off;
1422 };
1423 
1424 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1425 			  unsigned int to, struct skb_seq_state *st);
1426 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1427 			  struct skb_seq_state *st);
1428 void skb_abort_seq_read(struct skb_seq_state *st);
1429 
1430 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1431 			   unsigned int to, struct ts_config *config);
1432 
1433 /*
1434  * Packet hash types specify the type of hash in skb_set_hash.
1435  *
1436  * Hash types refer to the protocol layer addresses which are used to
1437  * construct a packet's hash. The hashes are used to differentiate or identify
1438  * flows of the protocol layer for the hash type. Hash types are either
1439  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1440  *
1441  * Properties of hashes:
1442  *
1443  * 1) Two packets in different flows have different hash values
1444  * 2) Two packets in the same flow should have the same hash value
1445  *
1446  * A hash at a higher layer is considered to be more specific. A driver should
1447  * set the most specific hash possible.
1448  *
1449  * A driver cannot indicate a more specific hash than the layer at which a hash
1450  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1451  *
1452  * A driver may indicate a hash level which is less specific than the
1453  * actual layer the hash was computed on. For instance, a hash computed
1454  * at L4 may be considered an L3 hash. This should only be done if the
1455  * driver can't unambiguously determine that the HW computed the hash at
1456  * the higher layer. Note that the "should" in the second property above
1457  * permits this.
1458  */
1459 enum pkt_hash_types {
1460 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1461 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1462 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1463 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1464 };
1465 
1466 static inline void skb_clear_hash(struct sk_buff *skb)
1467 {
1468 	skb->hash = 0;
1469 	skb->sw_hash = 0;
1470 	skb->l4_hash = 0;
1471 }
1472 
1473 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1474 {
1475 	if (!skb->l4_hash)
1476 		skb_clear_hash(skb);
1477 }
1478 
1479 static inline void
1480 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1481 {
1482 	skb->l4_hash = is_l4;
1483 	skb->sw_hash = is_sw;
1484 	skb->hash = hash;
1485 }
1486 
1487 static inline void
1488 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1489 {
1490 	/* Used by drivers to set hash from HW */
1491 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1492 }
1493 
1494 static inline void
1495 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1496 {
1497 	__skb_set_hash(skb, hash, true, is_l4);
1498 }
1499 
1500 void __skb_get_hash(struct sk_buff *skb);
1501 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1502 u32 skb_get_poff(const struct sk_buff *skb);
1503 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1504 		   const struct flow_keys_basic *keys, int hlen);
1505 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1506 			    const void *data, int hlen_proto);
1507 
1508 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1509 					int thoff, u8 ip_proto)
1510 {
1511 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1512 }
1513 
1514 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1515 			     const struct flow_dissector_key *key,
1516 			     unsigned int key_count);
1517 
1518 struct bpf_flow_dissector;
1519 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1520 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1521 
1522 bool __skb_flow_dissect(const struct net *net,
1523 			const struct sk_buff *skb,
1524 			struct flow_dissector *flow_dissector,
1525 			void *target_container, const void *data,
1526 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1527 
1528 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1529 				    struct flow_dissector *flow_dissector,
1530 				    void *target_container, unsigned int flags)
1531 {
1532 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1533 				  target_container, NULL, 0, 0, 0, flags);
1534 }
1535 
1536 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1537 					      struct flow_keys *flow,
1538 					      unsigned int flags)
1539 {
1540 	memset(flow, 0, sizeof(*flow));
1541 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1542 				  flow, NULL, 0, 0, 0, flags);
1543 }
1544 
1545 static inline bool
1546 skb_flow_dissect_flow_keys_basic(const struct net *net,
1547 				 const struct sk_buff *skb,
1548 				 struct flow_keys_basic *flow,
1549 				 const void *data, __be16 proto,
1550 				 int nhoff, int hlen, unsigned int flags)
1551 {
1552 	memset(flow, 0, sizeof(*flow));
1553 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1554 				  data, proto, nhoff, hlen, flags);
1555 }
1556 
1557 void skb_flow_dissect_meta(const struct sk_buff *skb,
1558 			   struct flow_dissector *flow_dissector,
1559 			   void *target_container);
1560 
1561 /* Gets a skb connection tracking info, ctinfo map should be a
1562  * map of mapsize to translate enum ip_conntrack_info states
1563  * to user states.
1564  */
1565 void
1566 skb_flow_dissect_ct(const struct sk_buff *skb,
1567 		    struct flow_dissector *flow_dissector,
1568 		    void *target_container,
1569 		    u16 *ctinfo_map, size_t mapsize,
1570 		    bool post_ct, u16 zone);
1571 void
1572 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1573 			     struct flow_dissector *flow_dissector,
1574 			     void *target_container);
1575 
1576 void skb_flow_dissect_hash(const struct sk_buff *skb,
1577 			   struct flow_dissector *flow_dissector,
1578 			   void *target_container);
1579 
1580 static inline __u32 skb_get_hash(struct sk_buff *skb)
1581 {
1582 	if (!skb->l4_hash && !skb->sw_hash)
1583 		__skb_get_hash(skb);
1584 
1585 	return skb->hash;
1586 }
1587 
1588 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1589 {
1590 	if (!skb->l4_hash && !skb->sw_hash) {
1591 		struct flow_keys keys;
1592 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1593 
1594 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1595 	}
1596 
1597 	return skb->hash;
1598 }
1599 
1600 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1601 			   const siphash_key_t *perturb);
1602 
1603 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1604 {
1605 	return skb->hash;
1606 }
1607 
1608 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1609 {
1610 	to->hash = from->hash;
1611 	to->sw_hash = from->sw_hash;
1612 	to->l4_hash = from->l4_hash;
1613 };
1614 
1615 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1616 				    const struct sk_buff *skb2)
1617 {
1618 #ifdef CONFIG_SKB_DECRYPTED
1619 	return skb2->decrypted - skb1->decrypted;
1620 #else
1621 	return 0;
1622 #endif
1623 }
1624 
1625 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1626 {
1627 #ifdef CONFIG_SKB_DECRYPTED
1628 	return skb->decrypted;
1629 #else
1630 	return false;
1631 #endif
1632 }
1633 
1634 static inline void skb_copy_decrypted(struct sk_buff *to,
1635 				      const struct sk_buff *from)
1636 {
1637 #ifdef CONFIG_SKB_DECRYPTED
1638 	to->decrypted = from->decrypted;
1639 #endif
1640 }
1641 
1642 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1643 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1644 {
1645 	return skb->head + skb->end;
1646 }
1647 
1648 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1649 {
1650 	return skb->end;
1651 }
1652 
1653 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1654 {
1655 	skb->end = offset;
1656 }
1657 #else
1658 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1659 {
1660 	return skb->end;
1661 }
1662 
1663 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1664 {
1665 	return skb->end - skb->head;
1666 }
1667 
1668 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1669 {
1670 	skb->end = skb->head + offset;
1671 }
1672 #endif
1673 
1674 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1675 				       struct ubuf_info *uarg);
1676 
1677 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1678 
1679 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1680 			   bool success);
1681 
1682 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1683 			    struct sk_buff *skb, struct iov_iter *from,
1684 			    size_t length);
1685 
1686 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1687 					  struct msghdr *msg, int len)
1688 {
1689 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1690 }
1691 
1692 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1693 			     struct msghdr *msg, int len,
1694 			     struct ubuf_info *uarg);
1695 
1696 /* Internal */
1697 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1698 
1699 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1700 {
1701 	return &skb_shinfo(skb)->hwtstamps;
1702 }
1703 
1704 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1705 {
1706 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1707 
1708 	return is_zcopy ? skb_uarg(skb) : NULL;
1709 }
1710 
1711 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1712 {
1713 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1714 }
1715 
1716 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1717 {
1718 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1719 }
1720 
1721 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1722 				       const struct sk_buff *skb2)
1723 {
1724 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1725 }
1726 
1727 static inline void net_zcopy_get(struct ubuf_info *uarg)
1728 {
1729 	refcount_inc(&uarg->refcnt);
1730 }
1731 
1732 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1733 {
1734 	skb_shinfo(skb)->destructor_arg = uarg;
1735 	skb_shinfo(skb)->flags |= uarg->flags;
1736 }
1737 
1738 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1739 				 bool *have_ref)
1740 {
1741 	if (skb && uarg && !skb_zcopy(skb)) {
1742 		if (unlikely(have_ref && *have_ref))
1743 			*have_ref = false;
1744 		else
1745 			net_zcopy_get(uarg);
1746 		skb_zcopy_init(skb, uarg);
1747 	}
1748 }
1749 
1750 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1751 {
1752 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1753 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1754 }
1755 
1756 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1757 {
1758 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1759 }
1760 
1761 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1762 {
1763 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1764 }
1765 
1766 static inline void net_zcopy_put(struct ubuf_info *uarg)
1767 {
1768 	if (uarg)
1769 		uarg->callback(NULL, uarg, true);
1770 }
1771 
1772 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1773 {
1774 	if (uarg) {
1775 		if (uarg->callback == msg_zerocopy_callback)
1776 			msg_zerocopy_put_abort(uarg, have_uref);
1777 		else if (have_uref)
1778 			net_zcopy_put(uarg);
1779 	}
1780 }
1781 
1782 /* Release a reference on a zerocopy structure */
1783 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1784 {
1785 	struct ubuf_info *uarg = skb_zcopy(skb);
1786 
1787 	if (uarg) {
1788 		if (!skb_zcopy_is_nouarg(skb))
1789 			uarg->callback(skb, uarg, zerocopy_success);
1790 
1791 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1792 	}
1793 }
1794 
1795 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1796 
1797 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1798 {
1799 	if (unlikely(skb_zcopy_managed(skb)))
1800 		__skb_zcopy_downgrade_managed(skb);
1801 }
1802 
1803 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1804 {
1805 	skb->next = NULL;
1806 }
1807 
1808 static inline void skb_poison_list(struct sk_buff *skb)
1809 {
1810 #ifdef CONFIG_DEBUG_NET
1811 	skb->next = SKB_LIST_POISON_NEXT;
1812 #endif
1813 }
1814 
1815 /* Iterate through singly-linked GSO fragments of an skb. */
1816 #define skb_list_walk_safe(first, skb, next_skb)                               \
1817 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1818 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1819 
1820 static inline void skb_list_del_init(struct sk_buff *skb)
1821 {
1822 	__list_del_entry(&skb->list);
1823 	skb_mark_not_on_list(skb);
1824 }
1825 
1826 /**
1827  *	skb_queue_empty - check if a queue is empty
1828  *	@list: queue head
1829  *
1830  *	Returns true if the queue is empty, false otherwise.
1831  */
1832 static inline int skb_queue_empty(const struct sk_buff_head *list)
1833 {
1834 	return list->next == (const struct sk_buff *) list;
1835 }
1836 
1837 /**
1838  *	skb_queue_empty_lockless - check if a queue is empty
1839  *	@list: queue head
1840  *
1841  *	Returns true if the queue is empty, false otherwise.
1842  *	This variant can be used in lockless contexts.
1843  */
1844 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1845 {
1846 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1847 }
1848 
1849 
1850 /**
1851  *	skb_queue_is_last - check if skb is the last entry in the queue
1852  *	@list: queue head
1853  *	@skb: buffer
1854  *
1855  *	Returns true if @skb is the last buffer on the list.
1856  */
1857 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1858 				     const struct sk_buff *skb)
1859 {
1860 	return skb->next == (const struct sk_buff *) list;
1861 }
1862 
1863 /**
1864  *	skb_queue_is_first - check if skb is the first entry in the queue
1865  *	@list: queue head
1866  *	@skb: buffer
1867  *
1868  *	Returns true if @skb is the first buffer on the list.
1869  */
1870 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1871 				      const struct sk_buff *skb)
1872 {
1873 	return skb->prev == (const struct sk_buff *) list;
1874 }
1875 
1876 /**
1877  *	skb_queue_next - return the next packet in the queue
1878  *	@list: queue head
1879  *	@skb: current buffer
1880  *
1881  *	Return the next packet in @list after @skb.  It is only valid to
1882  *	call this if skb_queue_is_last() evaluates to false.
1883  */
1884 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1885 					     const struct sk_buff *skb)
1886 {
1887 	/* This BUG_ON may seem severe, but if we just return then we
1888 	 * are going to dereference garbage.
1889 	 */
1890 	BUG_ON(skb_queue_is_last(list, skb));
1891 	return skb->next;
1892 }
1893 
1894 /**
1895  *	skb_queue_prev - return the prev packet in the queue
1896  *	@list: queue head
1897  *	@skb: current buffer
1898  *
1899  *	Return the prev packet in @list before @skb.  It is only valid to
1900  *	call this if skb_queue_is_first() evaluates to false.
1901  */
1902 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1903 					     const struct sk_buff *skb)
1904 {
1905 	/* This BUG_ON may seem severe, but if we just return then we
1906 	 * are going to dereference garbage.
1907 	 */
1908 	BUG_ON(skb_queue_is_first(list, skb));
1909 	return skb->prev;
1910 }
1911 
1912 /**
1913  *	skb_get - reference buffer
1914  *	@skb: buffer to reference
1915  *
1916  *	Makes another reference to a socket buffer and returns a pointer
1917  *	to the buffer.
1918  */
1919 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1920 {
1921 	refcount_inc(&skb->users);
1922 	return skb;
1923 }
1924 
1925 /*
1926  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1927  */
1928 
1929 /**
1930  *	skb_cloned - is the buffer a clone
1931  *	@skb: buffer to check
1932  *
1933  *	Returns true if the buffer was generated with skb_clone() and is
1934  *	one of multiple shared copies of the buffer. Cloned buffers are
1935  *	shared data so must not be written to under normal circumstances.
1936  */
1937 static inline int skb_cloned(const struct sk_buff *skb)
1938 {
1939 	return skb->cloned &&
1940 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1941 }
1942 
1943 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1944 {
1945 	might_sleep_if(gfpflags_allow_blocking(pri));
1946 
1947 	if (skb_cloned(skb))
1948 		return pskb_expand_head(skb, 0, 0, pri);
1949 
1950 	return 0;
1951 }
1952 
1953 /* This variant of skb_unclone() makes sure skb->truesize
1954  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1955  *
1956  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1957  * when various debugging features are in place.
1958  */
1959 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1960 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1961 {
1962 	might_sleep_if(gfpflags_allow_blocking(pri));
1963 
1964 	if (skb_cloned(skb))
1965 		return __skb_unclone_keeptruesize(skb, pri);
1966 	return 0;
1967 }
1968 
1969 /**
1970  *	skb_header_cloned - is the header a clone
1971  *	@skb: buffer to check
1972  *
1973  *	Returns true if modifying the header part of the buffer requires
1974  *	the data to be copied.
1975  */
1976 static inline int skb_header_cloned(const struct sk_buff *skb)
1977 {
1978 	int dataref;
1979 
1980 	if (!skb->cloned)
1981 		return 0;
1982 
1983 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1984 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1985 	return dataref != 1;
1986 }
1987 
1988 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1989 {
1990 	might_sleep_if(gfpflags_allow_blocking(pri));
1991 
1992 	if (skb_header_cloned(skb))
1993 		return pskb_expand_head(skb, 0, 0, pri);
1994 
1995 	return 0;
1996 }
1997 
1998 /**
1999  * __skb_header_release() - allow clones to use the headroom
2000  * @skb: buffer to operate on
2001  *
2002  * See "DOC: dataref and headerless skbs".
2003  */
2004 static inline void __skb_header_release(struct sk_buff *skb)
2005 {
2006 	skb->nohdr = 1;
2007 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2008 }
2009 
2010 
2011 /**
2012  *	skb_shared - is the buffer shared
2013  *	@skb: buffer to check
2014  *
2015  *	Returns true if more than one person has a reference to this
2016  *	buffer.
2017  */
2018 static inline int skb_shared(const struct sk_buff *skb)
2019 {
2020 	return refcount_read(&skb->users) != 1;
2021 }
2022 
2023 /**
2024  *	skb_share_check - check if buffer is shared and if so clone it
2025  *	@skb: buffer to check
2026  *	@pri: priority for memory allocation
2027  *
2028  *	If the buffer is shared the buffer is cloned and the old copy
2029  *	drops a reference. A new clone with a single reference is returned.
2030  *	If the buffer is not shared the original buffer is returned. When
2031  *	being called from interrupt status or with spinlocks held pri must
2032  *	be GFP_ATOMIC.
2033  *
2034  *	NULL is returned on a memory allocation failure.
2035  */
2036 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2037 {
2038 	might_sleep_if(gfpflags_allow_blocking(pri));
2039 	if (skb_shared(skb)) {
2040 		struct sk_buff *nskb = skb_clone(skb, pri);
2041 
2042 		if (likely(nskb))
2043 			consume_skb(skb);
2044 		else
2045 			kfree_skb(skb);
2046 		skb = nskb;
2047 	}
2048 	return skb;
2049 }
2050 
2051 /*
2052  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2053  *	packets to handle cases where we have a local reader and forward
2054  *	and a couple of other messy ones. The normal one is tcpdumping
2055  *	a packet that's being forwarded.
2056  */
2057 
2058 /**
2059  *	skb_unshare - make a copy of a shared buffer
2060  *	@skb: buffer to check
2061  *	@pri: priority for memory allocation
2062  *
2063  *	If the socket buffer is a clone then this function creates a new
2064  *	copy of the data, drops a reference count on the old copy and returns
2065  *	the new copy with the reference count at 1. If the buffer is not a clone
2066  *	the original buffer is returned. When called with a spinlock held or
2067  *	from interrupt state @pri must be %GFP_ATOMIC
2068  *
2069  *	%NULL is returned on a memory allocation failure.
2070  */
2071 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2072 					  gfp_t pri)
2073 {
2074 	might_sleep_if(gfpflags_allow_blocking(pri));
2075 	if (skb_cloned(skb)) {
2076 		struct sk_buff *nskb = skb_copy(skb, pri);
2077 
2078 		/* Free our shared copy */
2079 		if (likely(nskb))
2080 			consume_skb(skb);
2081 		else
2082 			kfree_skb(skb);
2083 		skb = nskb;
2084 	}
2085 	return skb;
2086 }
2087 
2088 /**
2089  *	skb_peek - peek at the head of an &sk_buff_head
2090  *	@list_: list to peek at
2091  *
2092  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2093  *	be careful with this one. A peek leaves the buffer on the
2094  *	list and someone else may run off with it. You must hold
2095  *	the appropriate locks or have a private queue to do this.
2096  *
2097  *	Returns %NULL for an empty list or a pointer to the head element.
2098  *	The reference count is not incremented and the reference is therefore
2099  *	volatile. Use with caution.
2100  */
2101 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2102 {
2103 	struct sk_buff *skb = list_->next;
2104 
2105 	if (skb == (struct sk_buff *)list_)
2106 		skb = NULL;
2107 	return skb;
2108 }
2109 
2110 /**
2111  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2112  *	@list_: list to peek at
2113  *
2114  *	Like skb_peek(), but the caller knows that the list is not empty.
2115  */
2116 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2117 {
2118 	return list_->next;
2119 }
2120 
2121 /**
2122  *	skb_peek_next - peek skb following the given one from a queue
2123  *	@skb: skb to start from
2124  *	@list_: list to peek at
2125  *
2126  *	Returns %NULL when the end of the list is met or a pointer to the
2127  *	next element. The reference count is not incremented and the
2128  *	reference is therefore volatile. Use with caution.
2129  */
2130 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2131 		const struct sk_buff_head *list_)
2132 {
2133 	struct sk_buff *next = skb->next;
2134 
2135 	if (next == (struct sk_buff *)list_)
2136 		next = NULL;
2137 	return next;
2138 }
2139 
2140 /**
2141  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2142  *	@list_: list to peek at
2143  *
2144  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2145  *	be careful with this one. A peek leaves the buffer on the
2146  *	list and someone else may run off with it. You must hold
2147  *	the appropriate locks or have a private queue to do this.
2148  *
2149  *	Returns %NULL for an empty list or a pointer to the tail element.
2150  *	The reference count is not incremented and the reference is therefore
2151  *	volatile. Use with caution.
2152  */
2153 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2154 {
2155 	struct sk_buff *skb = READ_ONCE(list_->prev);
2156 
2157 	if (skb == (struct sk_buff *)list_)
2158 		skb = NULL;
2159 	return skb;
2160 
2161 }
2162 
2163 /**
2164  *	skb_queue_len	- get queue length
2165  *	@list_: list to measure
2166  *
2167  *	Return the length of an &sk_buff queue.
2168  */
2169 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2170 {
2171 	return list_->qlen;
2172 }
2173 
2174 /**
2175  *	skb_queue_len_lockless	- get queue length
2176  *	@list_: list to measure
2177  *
2178  *	Return the length of an &sk_buff queue.
2179  *	This variant can be used in lockless contexts.
2180  */
2181 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2182 {
2183 	return READ_ONCE(list_->qlen);
2184 }
2185 
2186 /**
2187  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2188  *	@list: queue to initialize
2189  *
2190  *	This initializes only the list and queue length aspects of
2191  *	an sk_buff_head object.  This allows to initialize the list
2192  *	aspects of an sk_buff_head without reinitializing things like
2193  *	the spinlock.  It can also be used for on-stack sk_buff_head
2194  *	objects where the spinlock is known to not be used.
2195  */
2196 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2197 {
2198 	list->prev = list->next = (struct sk_buff *)list;
2199 	list->qlen = 0;
2200 }
2201 
2202 /*
2203  * This function creates a split out lock class for each invocation;
2204  * this is needed for now since a whole lot of users of the skb-queue
2205  * infrastructure in drivers have different locking usage (in hardirq)
2206  * than the networking core (in softirq only). In the long run either the
2207  * network layer or drivers should need annotation to consolidate the
2208  * main types of usage into 3 classes.
2209  */
2210 static inline void skb_queue_head_init(struct sk_buff_head *list)
2211 {
2212 	spin_lock_init(&list->lock);
2213 	__skb_queue_head_init(list);
2214 }
2215 
2216 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2217 		struct lock_class_key *class)
2218 {
2219 	skb_queue_head_init(list);
2220 	lockdep_set_class(&list->lock, class);
2221 }
2222 
2223 /*
2224  *	Insert an sk_buff on a list.
2225  *
2226  *	The "__skb_xxxx()" functions are the non-atomic ones that
2227  *	can only be called with interrupts disabled.
2228  */
2229 static inline void __skb_insert(struct sk_buff *newsk,
2230 				struct sk_buff *prev, struct sk_buff *next,
2231 				struct sk_buff_head *list)
2232 {
2233 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2234 	 * for the opposite READ_ONCE()
2235 	 */
2236 	WRITE_ONCE(newsk->next, next);
2237 	WRITE_ONCE(newsk->prev, prev);
2238 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2239 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2240 	WRITE_ONCE(list->qlen, list->qlen + 1);
2241 }
2242 
2243 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2244 				      struct sk_buff *prev,
2245 				      struct sk_buff *next)
2246 {
2247 	struct sk_buff *first = list->next;
2248 	struct sk_buff *last = list->prev;
2249 
2250 	WRITE_ONCE(first->prev, prev);
2251 	WRITE_ONCE(prev->next, first);
2252 
2253 	WRITE_ONCE(last->next, next);
2254 	WRITE_ONCE(next->prev, last);
2255 }
2256 
2257 /**
2258  *	skb_queue_splice - join two skb lists, this is designed for stacks
2259  *	@list: the new list to add
2260  *	@head: the place to add it in the first list
2261  */
2262 static inline void skb_queue_splice(const struct sk_buff_head *list,
2263 				    struct sk_buff_head *head)
2264 {
2265 	if (!skb_queue_empty(list)) {
2266 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2267 		head->qlen += list->qlen;
2268 	}
2269 }
2270 
2271 /**
2272  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2273  *	@list: the new list to add
2274  *	@head: the place to add it in the first list
2275  *
2276  *	The list at @list is reinitialised
2277  */
2278 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2279 					 struct sk_buff_head *head)
2280 {
2281 	if (!skb_queue_empty(list)) {
2282 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2283 		head->qlen += list->qlen;
2284 		__skb_queue_head_init(list);
2285 	}
2286 }
2287 
2288 /**
2289  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2290  *	@list: the new list to add
2291  *	@head: the place to add it in the first list
2292  */
2293 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2294 					 struct sk_buff_head *head)
2295 {
2296 	if (!skb_queue_empty(list)) {
2297 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2298 		head->qlen += list->qlen;
2299 	}
2300 }
2301 
2302 /**
2303  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2304  *	@list: the new list to add
2305  *	@head: the place to add it in the first list
2306  *
2307  *	Each of the lists is a queue.
2308  *	The list at @list is reinitialised
2309  */
2310 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2311 					      struct sk_buff_head *head)
2312 {
2313 	if (!skb_queue_empty(list)) {
2314 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2315 		head->qlen += list->qlen;
2316 		__skb_queue_head_init(list);
2317 	}
2318 }
2319 
2320 /**
2321  *	__skb_queue_after - queue a buffer at the list head
2322  *	@list: list to use
2323  *	@prev: place after this buffer
2324  *	@newsk: buffer to queue
2325  *
2326  *	Queue a buffer int the middle of a list. This function takes no locks
2327  *	and you must therefore hold required locks before calling it.
2328  *
2329  *	A buffer cannot be placed on two lists at the same time.
2330  */
2331 static inline void __skb_queue_after(struct sk_buff_head *list,
2332 				     struct sk_buff *prev,
2333 				     struct sk_buff *newsk)
2334 {
2335 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2336 }
2337 
2338 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2339 		struct sk_buff_head *list);
2340 
2341 static inline void __skb_queue_before(struct sk_buff_head *list,
2342 				      struct sk_buff *next,
2343 				      struct sk_buff *newsk)
2344 {
2345 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2346 }
2347 
2348 /**
2349  *	__skb_queue_head - queue a buffer at the list head
2350  *	@list: list to use
2351  *	@newsk: buffer to queue
2352  *
2353  *	Queue a buffer at the start of a list. This function takes no locks
2354  *	and you must therefore hold required locks before calling it.
2355  *
2356  *	A buffer cannot be placed on two lists at the same time.
2357  */
2358 static inline void __skb_queue_head(struct sk_buff_head *list,
2359 				    struct sk_buff *newsk)
2360 {
2361 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2362 }
2363 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2364 
2365 /**
2366  *	__skb_queue_tail - queue a buffer at the list tail
2367  *	@list: list to use
2368  *	@newsk: buffer to queue
2369  *
2370  *	Queue a buffer at the end of a list. This function takes no locks
2371  *	and you must therefore hold required locks before calling it.
2372  *
2373  *	A buffer cannot be placed on two lists at the same time.
2374  */
2375 static inline void __skb_queue_tail(struct sk_buff_head *list,
2376 				   struct sk_buff *newsk)
2377 {
2378 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2379 }
2380 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2381 
2382 /*
2383  * remove sk_buff from list. _Must_ be called atomically, and with
2384  * the list known..
2385  */
2386 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2387 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2388 {
2389 	struct sk_buff *next, *prev;
2390 
2391 	WRITE_ONCE(list->qlen, list->qlen - 1);
2392 	next	   = skb->next;
2393 	prev	   = skb->prev;
2394 	skb->next  = skb->prev = NULL;
2395 	WRITE_ONCE(next->prev, prev);
2396 	WRITE_ONCE(prev->next, next);
2397 }
2398 
2399 /**
2400  *	__skb_dequeue - remove from the head of the queue
2401  *	@list: list to dequeue from
2402  *
2403  *	Remove the head of the list. This function does not take any locks
2404  *	so must be used with appropriate locks held only. The head item is
2405  *	returned or %NULL if the list is empty.
2406  */
2407 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2408 {
2409 	struct sk_buff *skb = skb_peek(list);
2410 	if (skb)
2411 		__skb_unlink(skb, list);
2412 	return skb;
2413 }
2414 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2415 
2416 /**
2417  *	__skb_dequeue_tail - remove from the tail of the queue
2418  *	@list: list to dequeue from
2419  *
2420  *	Remove the tail of the list. This function does not take any locks
2421  *	so must be used with appropriate locks held only. The tail item is
2422  *	returned or %NULL if the list is empty.
2423  */
2424 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2425 {
2426 	struct sk_buff *skb = skb_peek_tail(list);
2427 	if (skb)
2428 		__skb_unlink(skb, list);
2429 	return skb;
2430 }
2431 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2432 
2433 
2434 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2435 {
2436 	return skb->data_len;
2437 }
2438 
2439 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2440 {
2441 	return skb->len - skb->data_len;
2442 }
2443 
2444 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2445 {
2446 	unsigned int i, len = 0;
2447 
2448 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2449 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2450 	return len;
2451 }
2452 
2453 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2454 {
2455 	return skb_headlen(skb) + __skb_pagelen(skb);
2456 }
2457 
2458 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2459 					     netmem_ref netmem, int off,
2460 					     int size)
2461 {
2462 	frag->netmem = netmem;
2463 	frag->offset = off;
2464 	skb_frag_size_set(frag, size);
2465 }
2466 
2467 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2468 					   struct page *page,
2469 					   int off, int size)
2470 {
2471 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2472 }
2473 
2474 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2475 						int i, netmem_ref netmem,
2476 						int off, int size)
2477 {
2478 	skb_frag_t *frag = &shinfo->frags[i];
2479 
2480 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2481 }
2482 
2483 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2484 					      int i, struct page *page,
2485 					      int off, int size)
2486 {
2487 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2488 				     size);
2489 }
2490 
2491 /**
2492  * skb_len_add - adds a number to len fields of skb
2493  * @skb: buffer to add len to
2494  * @delta: number of bytes to add
2495  */
2496 static inline void skb_len_add(struct sk_buff *skb, int delta)
2497 {
2498 	skb->len += delta;
2499 	skb->data_len += delta;
2500 	skb->truesize += delta;
2501 }
2502 
2503 /**
2504  * __skb_fill_netmem_desc - initialise a fragment in an skb
2505  * @skb: buffer containing fragment to be initialised
2506  * @i: fragment index to initialise
2507  * @netmem: the netmem to use for this fragment
2508  * @off: the offset to the data with @page
2509  * @size: the length of the data
2510  *
2511  * Initialises the @i'th fragment of @skb to point to &size bytes at
2512  * offset @off within @page.
2513  *
2514  * Does not take any additional reference on the fragment.
2515  */
2516 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2517 					  netmem_ref netmem, int off, int size)
2518 {
2519 	struct page *page = netmem_to_page(netmem);
2520 
2521 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2522 
2523 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2524 	 * that not all callers have unique ownership of the page but rely
2525 	 * on page_is_pfmemalloc doing the right thing(tm).
2526 	 */
2527 	page = compound_head(page);
2528 	if (page_is_pfmemalloc(page))
2529 		skb->pfmemalloc = true;
2530 }
2531 
2532 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2533 					struct page *page, int off, int size)
2534 {
2535 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2536 }
2537 
2538 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2539 					netmem_ref netmem, int off, int size)
2540 {
2541 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2542 	skb_shinfo(skb)->nr_frags = i + 1;
2543 }
2544 
2545 /**
2546  * skb_fill_page_desc - initialise a paged fragment in an skb
2547  * @skb: buffer containing fragment to be initialised
2548  * @i: paged fragment index to initialise
2549  * @page: the page to use for this fragment
2550  * @off: the offset to the data with @page
2551  * @size: the length of the data
2552  *
2553  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2554  * @skb to point to @size bytes at offset @off within @page. In
2555  * addition updates @skb such that @i is the last fragment.
2556  *
2557  * Does not take any additional reference on the fragment.
2558  */
2559 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2560 				      struct page *page, int off, int size)
2561 {
2562 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2563 }
2564 
2565 /**
2566  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2567  * @skb: buffer containing fragment to be initialised
2568  * @i: paged fragment index to initialise
2569  * @page: the page to use for this fragment
2570  * @off: the offset to the data with @page
2571  * @size: the length of the data
2572  *
2573  * Variant of skb_fill_page_desc() which does not deal with
2574  * pfmemalloc, if page is not owned by us.
2575  */
2576 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2577 					    struct page *page, int off,
2578 					    int size)
2579 {
2580 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2581 
2582 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2583 	shinfo->nr_frags = i + 1;
2584 }
2585 
2586 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2587 			    int off, int size, unsigned int truesize);
2588 
2589 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2590 				   struct page *page, int off, int size,
2591 				   unsigned int truesize)
2592 {
2593 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2594 			       truesize);
2595 }
2596 
2597 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2598 			  unsigned int truesize);
2599 
2600 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2601 
2602 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2603 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2604 {
2605 	return skb->head + skb->tail;
2606 }
2607 
2608 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2609 {
2610 	skb->tail = skb->data - skb->head;
2611 }
2612 
2613 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2614 {
2615 	skb_reset_tail_pointer(skb);
2616 	skb->tail += offset;
2617 }
2618 
2619 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2620 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2621 {
2622 	return skb->tail;
2623 }
2624 
2625 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2626 {
2627 	skb->tail = skb->data;
2628 }
2629 
2630 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2631 {
2632 	skb->tail = skb->data + offset;
2633 }
2634 
2635 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2636 
2637 static inline void skb_assert_len(struct sk_buff *skb)
2638 {
2639 #ifdef CONFIG_DEBUG_NET
2640 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2641 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2642 #endif /* CONFIG_DEBUG_NET */
2643 }
2644 
2645 /*
2646  *	Add data to an sk_buff
2647  */
2648 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2649 void *skb_put(struct sk_buff *skb, unsigned int len);
2650 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2651 {
2652 	void *tmp = skb_tail_pointer(skb);
2653 	SKB_LINEAR_ASSERT(skb);
2654 	skb->tail += len;
2655 	skb->len  += len;
2656 	return tmp;
2657 }
2658 
2659 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2660 {
2661 	void *tmp = __skb_put(skb, len);
2662 
2663 	memset(tmp, 0, len);
2664 	return tmp;
2665 }
2666 
2667 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2668 				   unsigned int len)
2669 {
2670 	void *tmp = __skb_put(skb, len);
2671 
2672 	memcpy(tmp, data, len);
2673 	return tmp;
2674 }
2675 
2676 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2677 {
2678 	*(u8 *)__skb_put(skb, 1) = val;
2679 }
2680 
2681 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2682 {
2683 	void *tmp = skb_put(skb, len);
2684 
2685 	memset(tmp, 0, len);
2686 
2687 	return tmp;
2688 }
2689 
2690 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2691 				 unsigned int len)
2692 {
2693 	void *tmp = skb_put(skb, len);
2694 
2695 	memcpy(tmp, data, len);
2696 
2697 	return tmp;
2698 }
2699 
2700 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2701 {
2702 	*(u8 *)skb_put(skb, 1) = val;
2703 }
2704 
2705 void *skb_push(struct sk_buff *skb, unsigned int len);
2706 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2707 {
2708 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2709 
2710 	skb->data -= len;
2711 	skb->len  += len;
2712 	return skb->data;
2713 }
2714 
2715 void *skb_pull(struct sk_buff *skb, unsigned int len);
2716 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2717 {
2718 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2719 
2720 	skb->len -= len;
2721 	if (unlikely(skb->len < skb->data_len)) {
2722 #if defined(CONFIG_DEBUG_NET)
2723 		skb->len += len;
2724 		pr_err("__skb_pull(len=%u)\n", len);
2725 		skb_dump(KERN_ERR, skb, false);
2726 #endif
2727 		BUG();
2728 	}
2729 	return skb->data += len;
2730 }
2731 
2732 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2733 {
2734 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2735 }
2736 
2737 void *skb_pull_data(struct sk_buff *skb, size_t len);
2738 
2739 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2740 
2741 static inline enum skb_drop_reason
2742 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2743 {
2744 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2745 
2746 	if (likely(len <= skb_headlen(skb)))
2747 		return SKB_NOT_DROPPED_YET;
2748 
2749 	if (unlikely(len > skb->len))
2750 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2751 
2752 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2753 		return SKB_DROP_REASON_NOMEM;
2754 
2755 	return SKB_NOT_DROPPED_YET;
2756 }
2757 
2758 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2759 {
2760 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2761 }
2762 
2763 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2764 {
2765 	if (!pskb_may_pull(skb, len))
2766 		return NULL;
2767 
2768 	skb->len -= len;
2769 	return skb->data += len;
2770 }
2771 
2772 void skb_condense(struct sk_buff *skb);
2773 
2774 /**
2775  *	skb_headroom - bytes at buffer head
2776  *	@skb: buffer to check
2777  *
2778  *	Return the number of bytes of free space at the head of an &sk_buff.
2779  */
2780 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2781 {
2782 	return skb->data - skb->head;
2783 }
2784 
2785 /**
2786  *	skb_tailroom - bytes at buffer end
2787  *	@skb: buffer to check
2788  *
2789  *	Return the number of bytes of free space at the tail of an sk_buff
2790  */
2791 static inline int skb_tailroom(const struct sk_buff *skb)
2792 {
2793 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2794 }
2795 
2796 /**
2797  *	skb_availroom - bytes at buffer end
2798  *	@skb: buffer to check
2799  *
2800  *	Return the number of bytes of free space at the tail of an sk_buff
2801  *	allocated by sk_stream_alloc()
2802  */
2803 static inline int skb_availroom(const struct sk_buff *skb)
2804 {
2805 	if (skb_is_nonlinear(skb))
2806 		return 0;
2807 
2808 	return skb->end - skb->tail - skb->reserved_tailroom;
2809 }
2810 
2811 /**
2812  *	skb_reserve - adjust headroom
2813  *	@skb: buffer to alter
2814  *	@len: bytes to move
2815  *
2816  *	Increase the headroom of an empty &sk_buff by reducing the tail
2817  *	room. This is only allowed for an empty buffer.
2818  */
2819 static inline void skb_reserve(struct sk_buff *skb, int len)
2820 {
2821 	skb->data += len;
2822 	skb->tail += len;
2823 }
2824 
2825 /**
2826  *	skb_tailroom_reserve - adjust reserved_tailroom
2827  *	@skb: buffer to alter
2828  *	@mtu: maximum amount of headlen permitted
2829  *	@needed_tailroom: minimum amount of reserved_tailroom
2830  *
2831  *	Set reserved_tailroom so that headlen can be as large as possible but
2832  *	not larger than mtu and tailroom cannot be smaller than
2833  *	needed_tailroom.
2834  *	The required headroom should already have been reserved before using
2835  *	this function.
2836  */
2837 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2838 					unsigned int needed_tailroom)
2839 {
2840 	SKB_LINEAR_ASSERT(skb);
2841 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2842 		/* use at most mtu */
2843 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2844 	else
2845 		/* use up to all available space */
2846 		skb->reserved_tailroom = needed_tailroom;
2847 }
2848 
2849 #define ENCAP_TYPE_ETHER	0
2850 #define ENCAP_TYPE_IPPROTO	1
2851 
2852 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2853 					  __be16 protocol)
2854 {
2855 	skb->inner_protocol = protocol;
2856 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2857 }
2858 
2859 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2860 					 __u8 ipproto)
2861 {
2862 	skb->inner_ipproto = ipproto;
2863 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2864 }
2865 
2866 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2867 {
2868 	skb->inner_mac_header = skb->mac_header;
2869 	skb->inner_network_header = skb->network_header;
2870 	skb->inner_transport_header = skb->transport_header;
2871 }
2872 
2873 static inline void skb_reset_mac_len(struct sk_buff *skb)
2874 {
2875 	skb->mac_len = skb->network_header - skb->mac_header;
2876 }
2877 
2878 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2879 							*skb)
2880 {
2881 	return skb->head + skb->inner_transport_header;
2882 }
2883 
2884 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2885 {
2886 	return skb_inner_transport_header(skb) - skb->data;
2887 }
2888 
2889 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2890 {
2891 	skb->inner_transport_header = skb->data - skb->head;
2892 }
2893 
2894 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2895 						   const int offset)
2896 {
2897 	skb_reset_inner_transport_header(skb);
2898 	skb->inner_transport_header += offset;
2899 }
2900 
2901 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2902 {
2903 	return skb->head + skb->inner_network_header;
2904 }
2905 
2906 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2907 {
2908 	skb->inner_network_header = skb->data - skb->head;
2909 }
2910 
2911 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2912 						const int offset)
2913 {
2914 	skb_reset_inner_network_header(skb);
2915 	skb->inner_network_header += offset;
2916 }
2917 
2918 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2919 {
2920 	return skb->inner_network_header > 0;
2921 }
2922 
2923 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2924 {
2925 	return skb->head + skb->inner_mac_header;
2926 }
2927 
2928 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2929 {
2930 	skb->inner_mac_header = skb->data - skb->head;
2931 }
2932 
2933 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2934 					    const int offset)
2935 {
2936 	skb_reset_inner_mac_header(skb);
2937 	skb->inner_mac_header += offset;
2938 }
2939 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2940 {
2941 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2942 }
2943 
2944 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2945 {
2946 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2947 	return skb->head + skb->transport_header;
2948 }
2949 
2950 static inline void skb_reset_transport_header(struct sk_buff *skb)
2951 {
2952 	skb->transport_header = skb->data - skb->head;
2953 }
2954 
2955 static inline void skb_set_transport_header(struct sk_buff *skb,
2956 					    const int offset)
2957 {
2958 	skb_reset_transport_header(skb);
2959 	skb->transport_header += offset;
2960 }
2961 
2962 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2963 {
2964 	return skb->head + skb->network_header;
2965 }
2966 
2967 static inline void skb_reset_network_header(struct sk_buff *skb)
2968 {
2969 	skb->network_header = skb->data - skb->head;
2970 }
2971 
2972 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2973 {
2974 	skb_reset_network_header(skb);
2975 	skb->network_header += offset;
2976 }
2977 
2978 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2979 {
2980 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2981 }
2982 
2983 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2984 {
2985 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2986 	return skb->head + skb->mac_header;
2987 }
2988 
2989 static inline int skb_mac_offset(const struct sk_buff *skb)
2990 {
2991 	return skb_mac_header(skb) - skb->data;
2992 }
2993 
2994 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2995 {
2996 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2997 	return skb->network_header - skb->mac_header;
2998 }
2999 
3000 static inline void skb_unset_mac_header(struct sk_buff *skb)
3001 {
3002 	skb->mac_header = (typeof(skb->mac_header))~0U;
3003 }
3004 
3005 static inline void skb_reset_mac_header(struct sk_buff *skb)
3006 {
3007 	skb->mac_header = skb->data - skb->head;
3008 }
3009 
3010 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3011 {
3012 	skb_reset_mac_header(skb);
3013 	skb->mac_header += offset;
3014 }
3015 
3016 static inline void skb_pop_mac_header(struct sk_buff *skb)
3017 {
3018 	skb->mac_header = skb->network_header;
3019 }
3020 
3021 static inline void skb_probe_transport_header(struct sk_buff *skb)
3022 {
3023 	struct flow_keys_basic keys;
3024 
3025 	if (skb_transport_header_was_set(skb))
3026 		return;
3027 
3028 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3029 					     NULL, 0, 0, 0, 0))
3030 		skb_set_transport_header(skb, keys.control.thoff);
3031 }
3032 
3033 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3034 {
3035 	if (skb_mac_header_was_set(skb)) {
3036 		const unsigned char *old_mac = skb_mac_header(skb);
3037 
3038 		skb_set_mac_header(skb, -skb->mac_len);
3039 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3040 	}
3041 }
3042 
3043 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3044 {
3045 	return skb->csum_start - skb_headroom(skb);
3046 }
3047 
3048 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3049 {
3050 	return skb->head + skb->csum_start;
3051 }
3052 
3053 static inline int skb_transport_offset(const struct sk_buff *skb)
3054 {
3055 	return skb_transport_header(skb) - skb->data;
3056 }
3057 
3058 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3059 {
3060 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3061 	return skb->transport_header - skb->network_header;
3062 }
3063 
3064 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3065 {
3066 	return skb->inner_transport_header - skb->inner_network_header;
3067 }
3068 
3069 static inline int skb_network_offset(const struct sk_buff *skb)
3070 {
3071 	return skb_network_header(skb) - skb->data;
3072 }
3073 
3074 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3075 {
3076 	return skb_inner_network_header(skb) - skb->data;
3077 }
3078 
3079 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3080 {
3081 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3082 }
3083 
3084 /*
3085  * CPUs often take a performance hit when accessing unaligned memory
3086  * locations. The actual performance hit varies, it can be small if the
3087  * hardware handles it or large if we have to take an exception and fix it
3088  * in software.
3089  *
3090  * Since an ethernet header is 14 bytes network drivers often end up with
3091  * the IP header at an unaligned offset. The IP header can be aligned by
3092  * shifting the start of the packet by 2 bytes. Drivers should do this
3093  * with:
3094  *
3095  * skb_reserve(skb, NET_IP_ALIGN);
3096  *
3097  * The downside to this alignment of the IP header is that the DMA is now
3098  * unaligned. On some architectures the cost of an unaligned DMA is high
3099  * and this cost outweighs the gains made by aligning the IP header.
3100  *
3101  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3102  * to be overridden.
3103  */
3104 #ifndef NET_IP_ALIGN
3105 #define NET_IP_ALIGN	2
3106 #endif
3107 
3108 /*
3109  * The networking layer reserves some headroom in skb data (via
3110  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3111  * the header has to grow. In the default case, if the header has to grow
3112  * 32 bytes or less we avoid the reallocation.
3113  *
3114  * Unfortunately this headroom changes the DMA alignment of the resulting
3115  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3116  * on some architectures. An architecture can override this value,
3117  * perhaps setting it to a cacheline in size (since that will maintain
3118  * cacheline alignment of the DMA). It must be a power of 2.
3119  *
3120  * Various parts of the networking layer expect at least 32 bytes of
3121  * headroom, you should not reduce this.
3122  *
3123  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3124  * to reduce average number of cache lines per packet.
3125  * get_rps_cpu() for example only access one 64 bytes aligned block :
3126  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3127  */
3128 #ifndef NET_SKB_PAD
3129 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3130 #endif
3131 
3132 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3133 
3134 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3135 {
3136 	if (WARN_ON(skb_is_nonlinear(skb)))
3137 		return;
3138 	skb->len = len;
3139 	skb_set_tail_pointer(skb, len);
3140 }
3141 
3142 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3143 {
3144 	__skb_set_length(skb, len);
3145 }
3146 
3147 void skb_trim(struct sk_buff *skb, unsigned int len);
3148 
3149 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3150 {
3151 	if (skb->data_len)
3152 		return ___pskb_trim(skb, len);
3153 	__skb_trim(skb, len);
3154 	return 0;
3155 }
3156 
3157 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3158 {
3159 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3160 }
3161 
3162 /**
3163  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3164  *	@skb: buffer to alter
3165  *	@len: new length
3166  *
3167  *	This is identical to pskb_trim except that the caller knows that
3168  *	the skb is not cloned so we should never get an error due to out-
3169  *	of-memory.
3170  */
3171 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3172 {
3173 	int err = pskb_trim(skb, len);
3174 	BUG_ON(err);
3175 }
3176 
3177 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3178 {
3179 	unsigned int diff = len - skb->len;
3180 
3181 	if (skb_tailroom(skb) < diff) {
3182 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3183 					   GFP_ATOMIC);
3184 		if (ret)
3185 			return ret;
3186 	}
3187 	__skb_set_length(skb, len);
3188 	return 0;
3189 }
3190 
3191 /**
3192  *	skb_orphan - orphan a buffer
3193  *	@skb: buffer to orphan
3194  *
3195  *	If a buffer currently has an owner then we call the owner's
3196  *	destructor function and make the @skb unowned. The buffer continues
3197  *	to exist but is no longer charged to its former owner.
3198  */
3199 static inline void skb_orphan(struct sk_buff *skb)
3200 {
3201 	if (skb->destructor) {
3202 		skb->destructor(skb);
3203 		skb->destructor = NULL;
3204 		skb->sk		= NULL;
3205 	} else {
3206 		BUG_ON(skb->sk);
3207 	}
3208 }
3209 
3210 /**
3211  *	skb_orphan_frags - orphan the frags contained in a buffer
3212  *	@skb: buffer to orphan frags from
3213  *	@gfp_mask: allocation mask for replacement pages
3214  *
3215  *	For each frag in the SKB which needs a destructor (i.e. has an
3216  *	owner) create a copy of that frag and release the original
3217  *	page by calling the destructor.
3218  */
3219 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3220 {
3221 	if (likely(!skb_zcopy(skb)))
3222 		return 0;
3223 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3224 		return 0;
3225 	return skb_copy_ubufs(skb, gfp_mask);
3226 }
3227 
3228 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3229 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3230 {
3231 	if (likely(!skb_zcopy(skb)))
3232 		return 0;
3233 	return skb_copy_ubufs(skb, gfp_mask);
3234 }
3235 
3236 /**
3237  *	__skb_queue_purge_reason - empty a list
3238  *	@list: list to empty
3239  *	@reason: drop reason
3240  *
3241  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3242  *	the list and one reference dropped. This function does not take the
3243  *	list lock and the caller must hold the relevant locks to use it.
3244  */
3245 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3246 					    enum skb_drop_reason reason)
3247 {
3248 	struct sk_buff *skb;
3249 
3250 	while ((skb = __skb_dequeue(list)) != NULL)
3251 		kfree_skb_reason(skb, reason);
3252 }
3253 
3254 static inline void __skb_queue_purge(struct sk_buff_head *list)
3255 {
3256 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3257 }
3258 
3259 void skb_queue_purge_reason(struct sk_buff_head *list,
3260 			    enum skb_drop_reason reason);
3261 
3262 static inline void skb_queue_purge(struct sk_buff_head *list)
3263 {
3264 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3265 }
3266 
3267 unsigned int skb_rbtree_purge(struct rb_root *root);
3268 void skb_errqueue_purge(struct sk_buff_head *list);
3269 
3270 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3271 
3272 /**
3273  * netdev_alloc_frag - allocate a page fragment
3274  * @fragsz: fragment size
3275  *
3276  * Allocates a frag from a page for receive buffer.
3277  * Uses GFP_ATOMIC allocations.
3278  */
3279 static inline void *netdev_alloc_frag(unsigned int fragsz)
3280 {
3281 	return __netdev_alloc_frag_align(fragsz, ~0u);
3282 }
3283 
3284 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3285 					    unsigned int align)
3286 {
3287 	WARN_ON_ONCE(!is_power_of_2(align));
3288 	return __netdev_alloc_frag_align(fragsz, -align);
3289 }
3290 
3291 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3292 				   gfp_t gfp_mask);
3293 
3294 /**
3295  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3296  *	@dev: network device to receive on
3297  *	@length: length to allocate
3298  *
3299  *	Allocate a new &sk_buff and assign it a usage count of one. The
3300  *	buffer has unspecified headroom built in. Users should allocate
3301  *	the headroom they think they need without accounting for the
3302  *	built in space. The built in space is used for optimisations.
3303  *
3304  *	%NULL is returned if there is no free memory. Although this function
3305  *	allocates memory it can be called from an interrupt.
3306  */
3307 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3308 					       unsigned int length)
3309 {
3310 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3311 }
3312 
3313 /* legacy helper around __netdev_alloc_skb() */
3314 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3315 					      gfp_t gfp_mask)
3316 {
3317 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3318 }
3319 
3320 /* legacy helper around netdev_alloc_skb() */
3321 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3322 {
3323 	return netdev_alloc_skb(NULL, length);
3324 }
3325 
3326 
3327 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3328 		unsigned int length, gfp_t gfp)
3329 {
3330 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3331 
3332 	if (NET_IP_ALIGN && skb)
3333 		skb_reserve(skb, NET_IP_ALIGN);
3334 	return skb;
3335 }
3336 
3337 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3338 		unsigned int length)
3339 {
3340 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3341 }
3342 
3343 static inline void skb_free_frag(void *addr)
3344 {
3345 	page_frag_free(addr);
3346 }
3347 
3348 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3349 
3350 static inline void *napi_alloc_frag(unsigned int fragsz)
3351 {
3352 	return __napi_alloc_frag_align(fragsz, ~0u);
3353 }
3354 
3355 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3356 					  unsigned int align)
3357 {
3358 	WARN_ON_ONCE(!is_power_of_2(align));
3359 	return __napi_alloc_frag_align(fragsz, -align);
3360 }
3361 
3362 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3363 void napi_consume_skb(struct sk_buff *skb, int budget);
3364 
3365 void napi_skb_free_stolen_head(struct sk_buff *skb);
3366 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3367 
3368 /**
3369  * __dev_alloc_pages - allocate page for network Rx
3370  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3371  * @order: size of the allocation
3372  *
3373  * Allocate a new page.
3374  *
3375  * %NULL is returned if there is no free memory.
3376 */
3377 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3378 					     unsigned int order)
3379 {
3380 	/* This piece of code contains several assumptions.
3381 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3382 	 * 2.  The expectation is the user wants a compound page.
3383 	 * 3.  If requesting a order 0 page it will not be compound
3384 	 *     due to the check to see if order has a value in prep_new_page
3385 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3386 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3387 	 */
3388 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3389 
3390 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3391 }
3392 
3393 static inline struct page *dev_alloc_pages(unsigned int order)
3394 {
3395 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3396 }
3397 
3398 /**
3399  * __dev_alloc_page - allocate a page for network Rx
3400  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3401  *
3402  * Allocate a new page.
3403  *
3404  * %NULL is returned if there is no free memory.
3405  */
3406 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3407 {
3408 	return __dev_alloc_pages(gfp_mask, 0);
3409 }
3410 
3411 static inline struct page *dev_alloc_page(void)
3412 {
3413 	return dev_alloc_pages(0);
3414 }
3415 
3416 /**
3417  * dev_page_is_reusable - check whether a page can be reused for network Rx
3418  * @page: the page to test
3419  *
3420  * A page shouldn't be considered for reusing/recycling if it was allocated
3421  * under memory pressure or at a distant memory node.
3422  *
3423  * Returns false if this page should be returned to page allocator, true
3424  * otherwise.
3425  */
3426 static inline bool dev_page_is_reusable(const struct page *page)
3427 {
3428 	return likely(page_to_nid(page) == numa_mem_id() &&
3429 		      !page_is_pfmemalloc(page));
3430 }
3431 
3432 /**
3433  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3434  *	@page: The page that was allocated from skb_alloc_page
3435  *	@skb: The skb that may need pfmemalloc set
3436  */
3437 static inline void skb_propagate_pfmemalloc(const struct page *page,
3438 					    struct sk_buff *skb)
3439 {
3440 	if (page_is_pfmemalloc(page))
3441 		skb->pfmemalloc = true;
3442 }
3443 
3444 /**
3445  * skb_frag_off() - Returns the offset of a skb fragment
3446  * @frag: the paged fragment
3447  */
3448 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3449 {
3450 	return frag->offset;
3451 }
3452 
3453 /**
3454  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3455  * @frag: skb fragment
3456  * @delta: value to add
3457  */
3458 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3459 {
3460 	frag->offset += delta;
3461 }
3462 
3463 /**
3464  * skb_frag_off_set() - Sets the offset of a skb fragment
3465  * @frag: skb fragment
3466  * @offset: offset of fragment
3467  */
3468 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3469 {
3470 	frag->offset = offset;
3471 }
3472 
3473 /**
3474  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3475  * @fragto: skb fragment where offset is set
3476  * @fragfrom: skb fragment offset is copied from
3477  */
3478 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3479 				     const skb_frag_t *fragfrom)
3480 {
3481 	fragto->offset = fragfrom->offset;
3482 }
3483 
3484 /**
3485  * skb_frag_page - retrieve the page referred to by a paged fragment
3486  * @frag: the paged fragment
3487  *
3488  * Returns the &struct page associated with @frag.
3489  */
3490 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3491 {
3492 	return netmem_to_page(frag->netmem);
3493 }
3494 
3495 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3496 		    unsigned int headroom);
3497 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3498 			 struct bpf_prog *prog);
3499 /**
3500  * skb_frag_address - gets the address of the data contained in a paged fragment
3501  * @frag: the paged fragment buffer
3502  *
3503  * Returns the address of the data within @frag. The page must already
3504  * be mapped.
3505  */
3506 static inline void *skb_frag_address(const skb_frag_t *frag)
3507 {
3508 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3509 }
3510 
3511 /**
3512  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3513  * @frag: the paged fragment buffer
3514  *
3515  * Returns the address of the data within @frag. Checks that the page
3516  * is mapped and returns %NULL otherwise.
3517  */
3518 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3519 {
3520 	void *ptr = page_address(skb_frag_page(frag));
3521 	if (unlikely(!ptr))
3522 		return NULL;
3523 
3524 	return ptr + skb_frag_off(frag);
3525 }
3526 
3527 /**
3528  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3529  * @fragto: skb fragment where page is set
3530  * @fragfrom: skb fragment page is copied from
3531  */
3532 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3533 				      const skb_frag_t *fragfrom)
3534 {
3535 	fragto->netmem = fragfrom->netmem;
3536 }
3537 
3538 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3539 
3540 /**
3541  * skb_frag_dma_map - maps a paged fragment via the DMA API
3542  * @dev: the device to map the fragment to
3543  * @frag: the paged fragment to map
3544  * @offset: the offset within the fragment (starting at the
3545  *          fragment's own offset)
3546  * @size: the number of bytes to map
3547  * @dir: the direction of the mapping (``PCI_DMA_*``)
3548  *
3549  * Maps the page associated with @frag to @device.
3550  */
3551 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3552 					  const skb_frag_t *frag,
3553 					  size_t offset, size_t size,
3554 					  enum dma_data_direction dir)
3555 {
3556 	return dma_map_page(dev, skb_frag_page(frag),
3557 			    skb_frag_off(frag) + offset, size, dir);
3558 }
3559 
3560 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3561 					gfp_t gfp_mask)
3562 {
3563 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3564 }
3565 
3566 
3567 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3568 						  gfp_t gfp_mask)
3569 {
3570 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3571 }
3572 
3573 
3574 /**
3575  *	skb_clone_writable - is the header of a clone writable
3576  *	@skb: buffer to check
3577  *	@len: length up to which to write
3578  *
3579  *	Returns true if modifying the header part of the cloned buffer
3580  *	does not requires the data to be copied.
3581  */
3582 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3583 {
3584 	return !skb_header_cloned(skb) &&
3585 	       skb_headroom(skb) + len <= skb->hdr_len;
3586 }
3587 
3588 static inline int skb_try_make_writable(struct sk_buff *skb,
3589 					unsigned int write_len)
3590 {
3591 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3592 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3593 }
3594 
3595 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3596 			    int cloned)
3597 {
3598 	int delta = 0;
3599 
3600 	if (headroom > skb_headroom(skb))
3601 		delta = headroom - skb_headroom(skb);
3602 
3603 	if (delta || cloned)
3604 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3605 					GFP_ATOMIC);
3606 	return 0;
3607 }
3608 
3609 /**
3610  *	skb_cow - copy header of skb when it is required
3611  *	@skb: buffer to cow
3612  *	@headroom: needed headroom
3613  *
3614  *	If the skb passed lacks sufficient headroom or its data part
3615  *	is shared, data is reallocated. If reallocation fails, an error
3616  *	is returned and original skb is not changed.
3617  *
3618  *	The result is skb with writable area skb->head...skb->tail
3619  *	and at least @headroom of space at head.
3620  */
3621 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3622 {
3623 	return __skb_cow(skb, headroom, skb_cloned(skb));
3624 }
3625 
3626 /**
3627  *	skb_cow_head - skb_cow but only making the head writable
3628  *	@skb: buffer to cow
3629  *	@headroom: needed headroom
3630  *
3631  *	This function is identical to skb_cow except that we replace the
3632  *	skb_cloned check by skb_header_cloned.  It should be used when
3633  *	you only need to push on some header and do not need to modify
3634  *	the data.
3635  */
3636 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3637 {
3638 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3639 }
3640 
3641 /**
3642  *	skb_padto	- pad an skbuff up to a minimal size
3643  *	@skb: buffer to pad
3644  *	@len: minimal length
3645  *
3646  *	Pads up a buffer to ensure the trailing bytes exist and are
3647  *	blanked. If the buffer already contains sufficient data it
3648  *	is untouched. Otherwise it is extended. Returns zero on
3649  *	success. The skb is freed on error.
3650  */
3651 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3652 {
3653 	unsigned int size = skb->len;
3654 	if (likely(size >= len))
3655 		return 0;
3656 	return skb_pad(skb, len - size);
3657 }
3658 
3659 /**
3660  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3661  *	@skb: buffer to pad
3662  *	@len: minimal length
3663  *	@free_on_error: free buffer on error
3664  *
3665  *	Pads up a buffer to ensure the trailing bytes exist and are
3666  *	blanked. If the buffer already contains sufficient data it
3667  *	is untouched. Otherwise it is extended. Returns zero on
3668  *	success. The skb is freed on error if @free_on_error is true.
3669  */
3670 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3671 					       unsigned int len,
3672 					       bool free_on_error)
3673 {
3674 	unsigned int size = skb->len;
3675 
3676 	if (unlikely(size < len)) {
3677 		len -= size;
3678 		if (__skb_pad(skb, len, free_on_error))
3679 			return -ENOMEM;
3680 		__skb_put(skb, len);
3681 	}
3682 	return 0;
3683 }
3684 
3685 /**
3686  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3687  *	@skb: buffer to pad
3688  *	@len: minimal length
3689  *
3690  *	Pads up a buffer to ensure the trailing bytes exist and are
3691  *	blanked. If the buffer already contains sufficient data it
3692  *	is untouched. Otherwise it is extended. Returns zero on
3693  *	success. The skb is freed on error.
3694  */
3695 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3696 {
3697 	return __skb_put_padto(skb, len, true);
3698 }
3699 
3700 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3701 	__must_check;
3702 
3703 static inline int skb_add_data(struct sk_buff *skb,
3704 			       struct iov_iter *from, int copy)
3705 {
3706 	const int off = skb->len;
3707 
3708 	if (skb->ip_summed == CHECKSUM_NONE) {
3709 		__wsum csum = 0;
3710 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3711 					         &csum, from)) {
3712 			skb->csum = csum_block_add(skb->csum, csum, off);
3713 			return 0;
3714 		}
3715 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3716 		return 0;
3717 
3718 	__skb_trim(skb, off);
3719 	return -EFAULT;
3720 }
3721 
3722 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3723 				    const struct page *page, int off)
3724 {
3725 	if (skb_zcopy(skb))
3726 		return false;
3727 	if (i) {
3728 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3729 
3730 		return page == skb_frag_page(frag) &&
3731 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3732 	}
3733 	return false;
3734 }
3735 
3736 static inline int __skb_linearize(struct sk_buff *skb)
3737 {
3738 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3739 }
3740 
3741 /**
3742  *	skb_linearize - convert paged skb to linear one
3743  *	@skb: buffer to linarize
3744  *
3745  *	If there is no free memory -ENOMEM is returned, otherwise zero
3746  *	is returned and the old skb data released.
3747  */
3748 static inline int skb_linearize(struct sk_buff *skb)
3749 {
3750 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3751 }
3752 
3753 /**
3754  * skb_has_shared_frag - can any frag be overwritten
3755  * @skb: buffer to test
3756  *
3757  * Return true if the skb has at least one frag that might be modified
3758  * by an external entity (as in vmsplice()/sendfile())
3759  */
3760 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3761 {
3762 	return skb_is_nonlinear(skb) &&
3763 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3764 }
3765 
3766 /**
3767  *	skb_linearize_cow - make sure skb is linear and writable
3768  *	@skb: buffer to process
3769  *
3770  *	If there is no free memory -ENOMEM is returned, otherwise zero
3771  *	is returned and the old skb data released.
3772  */
3773 static inline int skb_linearize_cow(struct sk_buff *skb)
3774 {
3775 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3776 	       __skb_linearize(skb) : 0;
3777 }
3778 
3779 static __always_inline void
3780 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3781 		     unsigned int off)
3782 {
3783 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3784 		skb->csum = csum_block_sub(skb->csum,
3785 					   csum_partial(start, len, 0), off);
3786 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3787 		 skb_checksum_start_offset(skb) < 0)
3788 		skb->ip_summed = CHECKSUM_NONE;
3789 }
3790 
3791 /**
3792  *	skb_postpull_rcsum - update checksum for received skb after pull
3793  *	@skb: buffer to update
3794  *	@start: start of data before pull
3795  *	@len: length of data pulled
3796  *
3797  *	After doing a pull on a received packet, you need to call this to
3798  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3799  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3800  */
3801 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3802 				      const void *start, unsigned int len)
3803 {
3804 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3805 		skb->csum = wsum_negate(csum_partial(start, len,
3806 						     wsum_negate(skb->csum)));
3807 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3808 		 skb_checksum_start_offset(skb) < 0)
3809 		skb->ip_summed = CHECKSUM_NONE;
3810 }
3811 
3812 static __always_inline void
3813 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3814 		     unsigned int off)
3815 {
3816 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3817 		skb->csum = csum_block_add(skb->csum,
3818 					   csum_partial(start, len, 0), off);
3819 }
3820 
3821 /**
3822  *	skb_postpush_rcsum - update checksum for received skb after push
3823  *	@skb: buffer to update
3824  *	@start: start of data after push
3825  *	@len: length of data pushed
3826  *
3827  *	After doing a push on a received packet, you need to call this to
3828  *	update the CHECKSUM_COMPLETE checksum.
3829  */
3830 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3831 				      const void *start, unsigned int len)
3832 {
3833 	__skb_postpush_rcsum(skb, start, len, 0);
3834 }
3835 
3836 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3837 
3838 /**
3839  *	skb_push_rcsum - push skb and update receive checksum
3840  *	@skb: buffer to update
3841  *	@len: length of data pulled
3842  *
3843  *	This function performs an skb_push on the packet and updates
3844  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3845  *	receive path processing instead of skb_push unless you know
3846  *	that the checksum difference is zero (e.g., a valid IP header)
3847  *	or you are setting ip_summed to CHECKSUM_NONE.
3848  */
3849 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3850 {
3851 	skb_push(skb, len);
3852 	skb_postpush_rcsum(skb, skb->data, len);
3853 	return skb->data;
3854 }
3855 
3856 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3857 /**
3858  *	pskb_trim_rcsum - trim received skb and update checksum
3859  *	@skb: buffer to trim
3860  *	@len: new length
3861  *
3862  *	This is exactly the same as pskb_trim except that it ensures the
3863  *	checksum of received packets are still valid after the operation.
3864  *	It can change skb pointers.
3865  */
3866 
3867 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3868 {
3869 	if (likely(len >= skb->len))
3870 		return 0;
3871 	return pskb_trim_rcsum_slow(skb, len);
3872 }
3873 
3874 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3875 {
3876 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3877 		skb->ip_summed = CHECKSUM_NONE;
3878 	__skb_trim(skb, len);
3879 	return 0;
3880 }
3881 
3882 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3883 {
3884 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3885 		skb->ip_summed = CHECKSUM_NONE;
3886 	return __skb_grow(skb, len);
3887 }
3888 
3889 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3890 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3891 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3892 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3893 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3894 
3895 #define skb_queue_walk(queue, skb) \
3896 		for (skb = (queue)->next;					\
3897 		     skb != (struct sk_buff *)(queue);				\
3898 		     skb = skb->next)
3899 
3900 #define skb_queue_walk_safe(queue, skb, tmp)					\
3901 		for (skb = (queue)->next, tmp = skb->next;			\
3902 		     skb != (struct sk_buff *)(queue);				\
3903 		     skb = tmp, tmp = skb->next)
3904 
3905 #define skb_queue_walk_from(queue, skb)						\
3906 		for (; skb != (struct sk_buff *)(queue);			\
3907 		     skb = skb->next)
3908 
3909 #define skb_rbtree_walk(skb, root)						\
3910 		for (skb = skb_rb_first(root); skb != NULL;			\
3911 		     skb = skb_rb_next(skb))
3912 
3913 #define skb_rbtree_walk_from(skb)						\
3914 		for (; skb != NULL;						\
3915 		     skb = skb_rb_next(skb))
3916 
3917 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3918 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3919 		     skb = tmp)
3920 
3921 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3922 		for (tmp = skb->next;						\
3923 		     skb != (struct sk_buff *)(queue);				\
3924 		     skb = tmp, tmp = skb->next)
3925 
3926 #define skb_queue_reverse_walk(queue, skb) \
3927 		for (skb = (queue)->prev;					\
3928 		     skb != (struct sk_buff *)(queue);				\
3929 		     skb = skb->prev)
3930 
3931 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3932 		for (skb = (queue)->prev, tmp = skb->prev;			\
3933 		     skb != (struct sk_buff *)(queue);				\
3934 		     skb = tmp, tmp = skb->prev)
3935 
3936 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3937 		for (tmp = skb->prev;						\
3938 		     skb != (struct sk_buff *)(queue);				\
3939 		     skb = tmp, tmp = skb->prev)
3940 
3941 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3942 {
3943 	return skb_shinfo(skb)->frag_list != NULL;
3944 }
3945 
3946 static inline void skb_frag_list_init(struct sk_buff *skb)
3947 {
3948 	skb_shinfo(skb)->frag_list = NULL;
3949 }
3950 
3951 #define skb_walk_frags(skb, iter)	\
3952 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3953 
3954 
3955 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3956 				int *err, long *timeo_p,
3957 				const struct sk_buff *skb);
3958 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3959 					  struct sk_buff_head *queue,
3960 					  unsigned int flags,
3961 					  int *off, int *err,
3962 					  struct sk_buff **last);
3963 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3964 					struct sk_buff_head *queue,
3965 					unsigned int flags, int *off, int *err,
3966 					struct sk_buff **last);
3967 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3968 				    struct sk_buff_head *sk_queue,
3969 				    unsigned int flags, int *off, int *err);
3970 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3971 __poll_t datagram_poll(struct file *file, struct socket *sock,
3972 			   struct poll_table_struct *wait);
3973 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3974 			   struct iov_iter *to, int size);
3975 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3976 					struct msghdr *msg, int size)
3977 {
3978 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3979 }
3980 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3981 				   struct msghdr *msg);
3982 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3983 			   struct iov_iter *to, int len,
3984 			   struct ahash_request *hash);
3985 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3986 				 struct iov_iter *from, int len);
3987 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3988 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3989 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3990 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3991 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3993 			      int len);
3994 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3995 		    struct pipe_inode_info *pipe, unsigned int len,
3996 		    unsigned int flags);
3997 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3998 			 int len);
3999 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4000 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4001 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4002 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4003 		 int len, int hlen);
4004 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4005 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4006 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4007 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4008 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4009 				 unsigned int offset);
4010 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4011 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4012 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4013 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4014 int skb_vlan_pop(struct sk_buff *skb);
4015 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4016 int skb_eth_pop(struct sk_buff *skb);
4017 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4018 		 const unsigned char *src);
4019 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4020 		  int mac_len, bool ethernet);
4021 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4022 		 bool ethernet);
4023 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4024 int skb_mpls_dec_ttl(struct sk_buff *skb);
4025 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4026 			     gfp_t gfp);
4027 
4028 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4029 {
4030 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4031 }
4032 
4033 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4034 {
4035 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4036 }
4037 
4038 struct skb_checksum_ops {
4039 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4040 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4041 };
4042 
4043 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4044 
4045 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4046 		      __wsum csum, const struct skb_checksum_ops *ops);
4047 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4048 		    __wsum csum);
4049 
4050 static inline void * __must_check
4051 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4052 		     const void *data, int hlen, void *buffer)
4053 {
4054 	if (likely(hlen - offset >= len))
4055 		return (void *)data + offset;
4056 
4057 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4058 		return NULL;
4059 
4060 	return buffer;
4061 }
4062 
4063 static inline void * __must_check
4064 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4065 {
4066 	return __skb_header_pointer(skb, offset, len, skb->data,
4067 				    skb_headlen(skb), buffer);
4068 }
4069 
4070 static inline void * __must_check
4071 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4072 {
4073 	if (likely(skb_headlen(skb) - offset >= len))
4074 		return skb->data + offset;
4075 	return NULL;
4076 }
4077 
4078 /**
4079  *	skb_needs_linearize - check if we need to linearize a given skb
4080  *			      depending on the given device features.
4081  *	@skb: socket buffer to check
4082  *	@features: net device features
4083  *
4084  *	Returns true if either:
4085  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4086  *	2. skb is fragmented and the device does not support SG.
4087  */
4088 static inline bool skb_needs_linearize(struct sk_buff *skb,
4089 				       netdev_features_t features)
4090 {
4091 	return skb_is_nonlinear(skb) &&
4092 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4093 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4094 }
4095 
4096 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4097 					     void *to,
4098 					     const unsigned int len)
4099 {
4100 	memcpy(to, skb->data, len);
4101 }
4102 
4103 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4104 						    const int offset, void *to,
4105 						    const unsigned int len)
4106 {
4107 	memcpy(to, skb->data + offset, len);
4108 }
4109 
4110 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4111 					   const void *from,
4112 					   const unsigned int len)
4113 {
4114 	memcpy(skb->data, from, len);
4115 }
4116 
4117 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4118 						  const int offset,
4119 						  const void *from,
4120 						  const unsigned int len)
4121 {
4122 	memcpy(skb->data + offset, from, len);
4123 }
4124 
4125 void skb_init(void);
4126 
4127 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4128 {
4129 	return skb->tstamp;
4130 }
4131 
4132 /**
4133  *	skb_get_timestamp - get timestamp from a skb
4134  *	@skb: skb to get stamp from
4135  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4136  *
4137  *	Timestamps are stored in the skb as offsets to a base timestamp.
4138  *	This function converts the offset back to a struct timeval and stores
4139  *	it in stamp.
4140  */
4141 static inline void skb_get_timestamp(const struct sk_buff *skb,
4142 				     struct __kernel_old_timeval *stamp)
4143 {
4144 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4145 }
4146 
4147 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4148 					 struct __kernel_sock_timeval *stamp)
4149 {
4150 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4151 
4152 	stamp->tv_sec = ts.tv_sec;
4153 	stamp->tv_usec = ts.tv_nsec / 1000;
4154 }
4155 
4156 static inline void skb_get_timestampns(const struct sk_buff *skb,
4157 				       struct __kernel_old_timespec *stamp)
4158 {
4159 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4160 
4161 	stamp->tv_sec = ts.tv_sec;
4162 	stamp->tv_nsec = ts.tv_nsec;
4163 }
4164 
4165 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4166 					   struct __kernel_timespec *stamp)
4167 {
4168 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4169 
4170 	stamp->tv_sec = ts.tv_sec;
4171 	stamp->tv_nsec = ts.tv_nsec;
4172 }
4173 
4174 static inline void __net_timestamp(struct sk_buff *skb)
4175 {
4176 	skb->tstamp = ktime_get_real();
4177 	skb->mono_delivery_time = 0;
4178 }
4179 
4180 static inline ktime_t net_timedelta(ktime_t t)
4181 {
4182 	return ktime_sub(ktime_get_real(), t);
4183 }
4184 
4185 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4186 					 bool mono)
4187 {
4188 	skb->tstamp = kt;
4189 	skb->mono_delivery_time = kt && mono;
4190 }
4191 
4192 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4193 
4194 /* It is used in the ingress path to clear the delivery_time.
4195  * If needed, set the skb->tstamp to the (rcv) timestamp.
4196  */
4197 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4198 {
4199 	if (skb->mono_delivery_time) {
4200 		skb->mono_delivery_time = 0;
4201 		if (static_branch_unlikely(&netstamp_needed_key))
4202 			skb->tstamp = ktime_get_real();
4203 		else
4204 			skb->tstamp = 0;
4205 	}
4206 }
4207 
4208 static inline void skb_clear_tstamp(struct sk_buff *skb)
4209 {
4210 	if (skb->mono_delivery_time)
4211 		return;
4212 
4213 	skb->tstamp = 0;
4214 }
4215 
4216 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4217 {
4218 	if (skb->mono_delivery_time)
4219 		return 0;
4220 
4221 	return skb->tstamp;
4222 }
4223 
4224 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4225 {
4226 	if (!skb->mono_delivery_time && skb->tstamp)
4227 		return skb->tstamp;
4228 
4229 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4230 		return ktime_get_real();
4231 
4232 	return 0;
4233 }
4234 
4235 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4236 {
4237 	return skb_shinfo(skb)->meta_len;
4238 }
4239 
4240 static inline void *skb_metadata_end(const struct sk_buff *skb)
4241 {
4242 	return skb_mac_header(skb);
4243 }
4244 
4245 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4246 					  const struct sk_buff *skb_b,
4247 					  u8 meta_len)
4248 {
4249 	const void *a = skb_metadata_end(skb_a);
4250 	const void *b = skb_metadata_end(skb_b);
4251 	u64 diffs = 0;
4252 
4253 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4254 	    BITS_PER_LONG != 64)
4255 		goto slow;
4256 
4257 	/* Using more efficient variant than plain call to memcmp(). */
4258 	switch (meta_len) {
4259 #define __it(x, op) (x -= sizeof(u##op))
4260 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4261 	case 32: diffs |= __it_diff(a, b, 64);
4262 		fallthrough;
4263 	case 24: diffs |= __it_diff(a, b, 64);
4264 		fallthrough;
4265 	case 16: diffs |= __it_diff(a, b, 64);
4266 		fallthrough;
4267 	case  8: diffs |= __it_diff(a, b, 64);
4268 		break;
4269 	case 28: diffs |= __it_diff(a, b, 64);
4270 		fallthrough;
4271 	case 20: diffs |= __it_diff(a, b, 64);
4272 		fallthrough;
4273 	case 12: diffs |= __it_diff(a, b, 64);
4274 		fallthrough;
4275 	case  4: diffs |= __it_diff(a, b, 32);
4276 		break;
4277 	default:
4278 slow:
4279 		return memcmp(a - meta_len, b - meta_len, meta_len);
4280 	}
4281 	return diffs;
4282 }
4283 
4284 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4285 					const struct sk_buff *skb_b)
4286 {
4287 	u8 len_a = skb_metadata_len(skb_a);
4288 	u8 len_b = skb_metadata_len(skb_b);
4289 
4290 	if (!(len_a | len_b))
4291 		return false;
4292 
4293 	return len_a != len_b ?
4294 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4295 }
4296 
4297 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4298 {
4299 	skb_shinfo(skb)->meta_len = meta_len;
4300 }
4301 
4302 static inline void skb_metadata_clear(struct sk_buff *skb)
4303 {
4304 	skb_metadata_set(skb, 0);
4305 }
4306 
4307 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4308 
4309 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4310 
4311 void skb_clone_tx_timestamp(struct sk_buff *skb);
4312 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4313 
4314 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4315 
4316 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4317 {
4318 }
4319 
4320 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4321 {
4322 	return false;
4323 }
4324 
4325 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4326 
4327 /**
4328  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4329  *
4330  * PHY drivers may accept clones of transmitted packets for
4331  * timestamping via their phy_driver.txtstamp method. These drivers
4332  * must call this function to return the skb back to the stack with a
4333  * timestamp.
4334  *
4335  * @skb: clone of the original outgoing packet
4336  * @hwtstamps: hardware time stamps
4337  *
4338  */
4339 void skb_complete_tx_timestamp(struct sk_buff *skb,
4340 			       struct skb_shared_hwtstamps *hwtstamps);
4341 
4342 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4343 		     struct skb_shared_hwtstamps *hwtstamps,
4344 		     struct sock *sk, int tstype);
4345 
4346 /**
4347  * skb_tstamp_tx - queue clone of skb with send time stamps
4348  * @orig_skb:	the original outgoing packet
4349  * @hwtstamps:	hardware time stamps, may be NULL if not available
4350  *
4351  * If the skb has a socket associated, then this function clones the
4352  * skb (thus sharing the actual data and optional structures), stores
4353  * the optional hardware time stamping information (if non NULL) or
4354  * generates a software time stamp (otherwise), then queues the clone
4355  * to the error queue of the socket.  Errors are silently ignored.
4356  */
4357 void skb_tstamp_tx(struct sk_buff *orig_skb,
4358 		   struct skb_shared_hwtstamps *hwtstamps);
4359 
4360 /**
4361  * skb_tx_timestamp() - Driver hook for transmit timestamping
4362  *
4363  * Ethernet MAC Drivers should call this function in their hard_xmit()
4364  * function immediately before giving the sk_buff to the MAC hardware.
4365  *
4366  * Specifically, one should make absolutely sure that this function is
4367  * called before TX completion of this packet can trigger.  Otherwise
4368  * the packet could potentially already be freed.
4369  *
4370  * @skb: A socket buffer.
4371  */
4372 static inline void skb_tx_timestamp(struct sk_buff *skb)
4373 {
4374 	skb_clone_tx_timestamp(skb);
4375 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4376 		skb_tstamp_tx(skb, NULL);
4377 }
4378 
4379 /**
4380  * skb_complete_wifi_ack - deliver skb with wifi status
4381  *
4382  * @skb: the original outgoing packet
4383  * @acked: ack status
4384  *
4385  */
4386 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4387 
4388 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4389 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4390 
4391 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4392 {
4393 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4394 		skb->csum_valid ||
4395 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4396 		 skb_checksum_start_offset(skb) >= 0));
4397 }
4398 
4399 /**
4400  *	skb_checksum_complete - Calculate checksum of an entire packet
4401  *	@skb: packet to process
4402  *
4403  *	This function calculates the checksum over the entire packet plus
4404  *	the value of skb->csum.  The latter can be used to supply the
4405  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4406  *	checksum.
4407  *
4408  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4409  *	this function can be used to verify that checksum on received
4410  *	packets.  In that case the function should return zero if the
4411  *	checksum is correct.  In particular, this function will return zero
4412  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4413  *	hardware has already verified the correctness of the checksum.
4414  */
4415 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4416 {
4417 	return skb_csum_unnecessary(skb) ?
4418 	       0 : __skb_checksum_complete(skb);
4419 }
4420 
4421 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4422 {
4423 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4424 		if (skb->csum_level == 0)
4425 			skb->ip_summed = CHECKSUM_NONE;
4426 		else
4427 			skb->csum_level--;
4428 	}
4429 }
4430 
4431 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4432 {
4433 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4434 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4435 			skb->csum_level++;
4436 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4437 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4438 		skb->csum_level = 0;
4439 	}
4440 }
4441 
4442 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4443 {
4444 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4445 		skb->ip_summed = CHECKSUM_NONE;
4446 		skb->csum_level = 0;
4447 	}
4448 }
4449 
4450 /* Check if we need to perform checksum complete validation.
4451  *
4452  * Returns true if checksum complete is needed, false otherwise
4453  * (either checksum is unnecessary or zero checksum is allowed).
4454  */
4455 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4456 						  bool zero_okay,
4457 						  __sum16 check)
4458 {
4459 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4460 		skb->csum_valid = 1;
4461 		__skb_decr_checksum_unnecessary(skb);
4462 		return false;
4463 	}
4464 
4465 	return true;
4466 }
4467 
4468 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4469  * in checksum_init.
4470  */
4471 #define CHECKSUM_BREAK 76
4472 
4473 /* Unset checksum-complete
4474  *
4475  * Unset checksum complete can be done when packet is being modified
4476  * (uncompressed for instance) and checksum-complete value is
4477  * invalidated.
4478  */
4479 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4480 {
4481 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4482 		skb->ip_summed = CHECKSUM_NONE;
4483 }
4484 
4485 /* Validate (init) checksum based on checksum complete.
4486  *
4487  * Return values:
4488  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4489  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4490  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4491  *   non-zero: value of invalid checksum
4492  *
4493  */
4494 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4495 						       bool complete,
4496 						       __wsum psum)
4497 {
4498 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4499 		if (!csum_fold(csum_add(psum, skb->csum))) {
4500 			skb->csum_valid = 1;
4501 			return 0;
4502 		}
4503 	}
4504 
4505 	skb->csum = psum;
4506 
4507 	if (complete || skb->len <= CHECKSUM_BREAK) {
4508 		__sum16 csum;
4509 
4510 		csum = __skb_checksum_complete(skb);
4511 		skb->csum_valid = !csum;
4512 		return csum;
4513 	}
4514 
4515 	return 0;
4516 }
4517 
4518 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4519 {
4520 	return 0;
4521 }
4522 
4523 /* Perform checksum validate (init). Note that this is a macro since we only
4524  * want to calculate the pseudo header which is an input function if necessary.
4525  * First we try to validate without any computation (checksum unnecessary) and
4526  * then calculate based on checksum complete calling the function to compute
4527  * pseudo header.
4528  *
4529  * Return values:
4530  *   0: checksum is validated or try to in skb_checksum_complete
4531  *   non-zero: value of invalid checksum
4532  */
4533 #define __skb_checksum_validate(skb, proto, complete,			\
4534 				zero_okay, check, compute_pseudo)	\
4535 ({									\
4536 	__sum16 __ret = 0;						\
4537 	skb->csum_valid = 0;						\
4538 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4539 		__ret = __skb_checksum_validate_complete(skb,		\
4540 				complete, compute_pseudo(skb, proto));	\
4541 	__ret;								\
4542 })
4543 
4544 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4545 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4546 
4547 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4548 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4549 
4550 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4551 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4552 
4553 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4554 					 compute_pseudo)		\
4555 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4556 
4557 #define skb_checksum_simple_validate(skb)				\
4558 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4559 
4560 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4561 {
4562 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4563 }
4564 
4565 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4566 {
4567 	skb->csum = ~pseudo;
4568 	skb->ip_summed = CHECKSUM_COMPLETE;
4569 }
4570 
4571 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4572 do {									\
4573 	if (__skb_checksum_convert_check(skb))				\
4574 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4575 } while (0)
4576 
4577 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4578 					      u16 start, u16 offset)
4579 {
4580 	skb->ip_summed = CHECKSUM_PARTIAL;
4581 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4582 	skb->csum_offset = offset - start;
4583 }
4584 
4585 /* Update skbuf and packet to reflect the remote checksum offload operation.
4586  * When called, ptr indicates the starting point for skb->csum when
4587  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4588  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4589  */
4590 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4591 				       int start, int offset, bool nopartial)
4592 {
4593 	__wsum delta;
4594 
4595 	if (!nopartial) {
4596 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4597 		return;
4598 	}
4599 
4600 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4601 		__skb_checksum_complete(skb);
4602 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4603 	}
4604 
4605 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4606 
4607 	/* Adjust skb->csum since we changed the packet */
4608 	skb->csum = csum_add(skb->csum, delta);
4609 }
4610 
4611 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4612 {
4613 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4614 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4615 #else
4616 	return NULL;
4617 #endif
4618 }
4619 
4620 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4621 {
4622 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4623 	return skb->_nfct;
4624 #else
4625 	return 0UL;
4626 #endif
4627 }
4628 
4629 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4630 {
4631 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4632 	skb->slow_gro |= !!nfct;
4633 	skb->_nfct = nfct;
4634 #endif
4635 }
4636 
4637 #ifdef CONFIG_SKB_EXTENSIONS
4638 enum skb_ext_id {
4639 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4640 	SKB_EXT_BRIDGE_NF,
4641 #endif
4642 #ifdef CONFIG_XFRM
4643 	SKB_EXT_SEC_PATH,
4644 #endif
4645 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4646 	TC_SKB_EXT,
4647 #endif
4648 #if IS_ENABLED(CONFIG_MPTCP)
4649 	SKB_EXT_MPTCP,
4650 #endif
4651 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4652 	SKB_EXT_MCTP,
4653 #endif
4654 	SKB_EXT_NUM, /* must be last */
4655 };
4656 
4657 /**
4658  *	struct skb_ext - sk_buff extensions
4659  *	@refcnt: 1 on allocation, deallocated on 0
4660  *	@offset: offset to add to @data to obtain extension address
4661  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4662  *	@data: start of extension data, variable sized
4663  *
4664  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4665  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4666  */
4667 struct skb_ext {
4668 	refcount_t refcnt;
4669 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4670 	u8 chunks;		/* same */
4671 	char data[] __aligned(8);
4672 };
4673 
4674 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4675 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4676 		    struct skb_ext *ext);
4677 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4678 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4679 void __skb_ext_put(struct skb_ext *ext);
4680 
4681 static inline void skb_ext_put(struct sk_buff *skb)
4682 {
4683 	if (skb->active_extensions)
4684 		__skb_ext_put(skb->extensions);
4685 }
4686 
4687 static inline void __skb_ext_copy(struct sk_buff *dst,
4688 				  const struct sk_buff *src)
4689 {
4690 	dst->active_extensions = src->active_extensions;
4691 
4692 	if (src->active_extensions) {
4693 		struct skb_ext *ext = src->extensions;
4694 
4695 		refcount_inc(&ext->refcnt);
4696 		dst->extensions = ext;
4697 	}
4698 }
4699 
4700 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4701 {
4702 	skb_ext_put(dst);
4703 	__skb_ext_copy(dst, src);
4704 }
4705 
4706 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4707 {
4708 	return !!ext->offset[i];
4709 }
4710 
4711 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4712 {
4713 	return skb->active_extensions & (1 << id);
4714 }
4715 
4716 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4717 {
4718 	if (skb_ext_exist(skb, id))
4719 		__skb_ext_del(skb, id);
4720 }
4721 
4722 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4723 {
4724 	if (skb_ext_exist(skb, id)) {
4725 		struct skb_ext *ext = skb->extensions;
4726 
4727 		return (void *)ext + (ext->offset[id] << 3);
4728 	}
4729 
4730 	return NULL;
4731 }
4732 
4733 static inline void skb_ext_reset(struct sk_buff *skb)
4734 {
4735 	if (unlikely(skb->active_extensions)) {
4736 		__skb_ext_put(skb->extensions);
4737 		skb->active_extensions = 0;
4738 	}
4739 }
4740 
4741 static inline bool skb_has_extensions(struct sk_buff *skb)
4742 {
4743 	return unlikely(skb->active_extensions);
4744 }
4745 #else
4746 static inline void skb_ext_put(struct sk_buff *skb) {}
4747 static inline void skb_ext_reset(struct sk_buff *skb) {}
4748 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4749 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4750 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4751 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4752 #endif /* CONFIG_SKB_EXTENSIONS */
4753 
4754 static inline void nf_reset_ct(struct sk_buff *skb)
4755 {
4756 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4757 	nf_conntrack_put(skb_nfct(skb));
4758 	skb->_nfct = 0;
4759 #endif
4760 }
4761 
4762 static inline void nf_reset_trace(struct sk_buff *skb)
4763 {
4764 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4765 	skb->nf_trace = 0;
4766 #endif
4767 }
4768 
4769 static inline void ipvs_reset(struct sk_buff *skb)
4770 {
4771 #if IS_ENABLED(CONFIG_IP_VS)
4772 	skb->ipvs_property = 0;
4773 #endif
4774 }
4775 
4776 /* Note: This doesn't put any conntrack info in dst. */
4777 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4778 			     bool copy)
4779 {
4780 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4781 	dst->_nfct = src->_nfct;
4782 	nf_conntrack_get(skb_nfct(src));
4783 #endif
4784 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4785 	if (copy)
4786 		dst->nf_trace = src->nf_trace;
4787 #endif
4788 }
4789 
4790 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4791 {
4792 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4793 	nf_conntrack_put(skb_nfct(dst));
4794 #endif
4795 	dst->slow_gro = src->slow_gro;
4796 	__nf_copy(dst, src, true);
4797 }
4798 
4799 #ifdef CONFIG_NETWORK_SECMARK
4800 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4801 {
4802 	to->secmark = from->secmark;
4803 }
4804 
4805 static inline void skb_init_secmark(struct sk_buff *skb)
4806 {
4807 	skb->secmark = 0;
4808 }
4809 #else
4810 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4811 { }
4812 
4813 static inline void skb_init_secmark(struct sk_buff *skb)
4814 { }
4815 #endif
4816 
4817 static inline int secpath_exists(const struct sk_buff *skb)
4818 {
4819 #ifdef CONFIG_XFRM
4820 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4821 #else
4822 	return 0;
4823 #endif
4824 }
4825 
4826 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4827 {
4828 	return !skb->destructor &&
4829 		!secpath_exists(skb) &&
4830 		!skb_nfct(skb) &&
4831 		!skb->_skb_refdst &&
4832 		!skb_has_frag_list(skb);
4833 }
4834 
4835 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4836 {
4837 	skb->queue_mapping = queue_mapping;
4838 }
4839 
4840 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4841 {
4842 	return skb->queue_mapping;
4843 }
4844 
4845 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4846 {
4847 	to->queue_mapping = from->queue_mapping;
4848 }
4849 
4850 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4851 {
4852 	skb->queue_mapping = rx_queue + 1;
4853 }
4854 
4855 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4856 {
4857 	return skb->queue_mapping - 1;
4858 }
4859 
4860 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4861 {
4862 	return skb->queue_mapping != 0;
4863 }
4864 
4865 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4866 {
4867 	skb->dst_pending_confirm = val;
4868 }
4869 
4870 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4871 {
4872 	return skb->dst_pending_confirm != 0;
4873 }
4874 
4875 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4876 {
4877 #ifdef CONFIG_XFRM
4878 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4879 #else
4880 	return NULL;
4881 #endif
4882 }
4883 
4884 static inline bool skb_is_gso(const struct sk_buff *skb)
4885 {
4886 	return skb_shinfo(skb)->gso_size;
4887 }
4888 
4889 /* Note: Should be called only if skb_is_gso(skb) is true */
4890 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4891 {
4892 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4893 }
4894 
4895 /* Note: Should be called only if skb_is_gso(skb) is true */
4896 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4897 {
4898 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4899 }
4900 
4901 /* Note: Should be called only if skb_is_gso(skb) is true */
4902 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4903 {
4904 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4905 }
4906 
4907 static inline void skb_gso_reset(struct sk_buff *skb)
4908 {
4909 	skb_shinfo(skb)->gso_size = 0;
4910 	skb_shinfo(skb)->gso_segs = 0;
4911 	skb_shinfo(skb)->gso_type = 0;
4912 }
4913 
4914 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4915 					 u16 increment)
4916 {
4917 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4918 		return;
4919 	shinfo->gso_size += increment;
4920 }
4921 
4922 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4923 					 u16 decrement)
4924 {
4925 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4926 		return;
4927 	shinfo->gso_size -= decrement;
4928 }
4929 
4930 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4931 
4932 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4933 {
4934 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4935 	 * wanted then gso_type will be set. */
4936 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4937 
4938 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4939 	    unlikely(shinfo->gso_type == 0)) {
4940 		__skb_warn_lro_forwarding(skb);
4941 		return true;
4942 	}
4943 	return false;
4944 }
4945 
4946 static inline void skb_forward_csum(struct sk_buff *skb)
4947 {
4948 	/* Unfortunately we don't support this one.  Any brave souls? */
4949 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4950 		skb->ip_summed = CHECKSUM_NONE;
4951 }
4952 
4953 /**
4954  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4955  * @skb: skb to check
4956  *
4957  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4958  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4959  * use this helper, to document places where we make this assertion.
4960  */
4961 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4962 {
4963 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4964 }
4965 
4966 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4967 
4968 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4969 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4970 				     unsigned int transport_len,
4971 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4972 
4973 /**
4974  * skb_head_is_locked - Determine if the skb->head is locked down
4975  * @skb: skb to check
4976  *
4977  * The head on skbs build around a head frag can be removed if they are
4978  * not cloned.  This function returns true if the skb head is locked down
4979  * due to either being allocated via kmalloc, or by being a clone with
4980  * multiple references to the head.
4981  */
4982 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4983 {
4984 	return !skb->head_frag || skb_cloned(skb);
4985 }
4986 
4987 /* Local Checksum Offload.
4988  * Compute outer checksum based on the assumption that the
4989  * inner checksum will be offloaded later.
4990  * See Documentation/networking/checksum-offloads.rst for
4991  * explanation of how this works.
4992  * Fill in outer checksum adjustment (e.g. with sum of outer
4993  * pseudo-header) before calling.
4994  * Also ensure that inner checksum is in linear data area.
4995  */
4996 static inline __wsum lco_csum(struct sk_buff *skb)
4997 {
4998 	unsigned char *csum_start = skb_checksum_start(skb);
4999 	unsigned char *l4_hdr = skb_transport_header(skb);
5000 	__wsum partial;
5001 
5002 	/* Start with complement of inner checksum adjustment */
5003 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5004 						    skb->csum_offset));
5005 
5006 	/* Add in checksum of our headers (incl. outer checksum
5007 	 * adjustment filled in by caller) and return result.
5008 	 */
5009 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5010 }
5011 
5012 static inline bool skb_is_redirected(const struct sk_buff *skb)
5013 {
5014 	return skb->redirected;
5015 }
5016 
5017 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5018 {
5019 	skb->redirected = 1;
5020 #ifdef CONFIG_NET_REDIRECT
5021 	skb->from_ingress = from_ingress;
5022 	if (skb->from_ingress)
5023 		skb_clear_tstamp(skb);
5024 #endif
5025 }
5026 
5027 static inline void skb_reset_redirect(struct sk_buff *skb)
5028 {
5029 	skb->redirected = 0;
5030 }
5031 
5032 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5033 					      bool from_ingress)
5034 {
5035 	skb->redirected = 1;
5036 #ifdef CONFIG_NET_REDIRECT
5037 	skb->from_ingress = from_ingress;
5038 #endif
5039 }
5040 
5041 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5042 {
5043 #if IS_ENABLED(CONFIG_IP_SCTP)
5044 	return skb->csum_not_inet;
5045 #else
5046 	return 0;
5047 #endif
5048 }
5049 
5050 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5051 {
5052 	skb->ip_summed = CHECKSUM_NONE;
5053 #if IS_ENABLED(CONFIG_IP_SCTP)
5054 	skb->csum_not_inet = 0;
5055 #endif
5056 }
5057 
5058 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5059 				       const u64 kcov_handle)
5060 {
5061 #ifdef CONFIG_KCOV
5062 	skb->kcov_handle = kcov_handle;
5063 #endif
5064 }
5065 
5066 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5067 {
5068 #ifdef CONFIG_KCOV
5069 	return skb->kcov_handle;
5070 #else
5071 	return 0;
5072 #endif
5073 }
5074 
5075 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5076 {
5077 #ifdef CONFIG_PAGE_POOL
5078 	skb->pp_recycle = 1;
5079 #endif
5080 }
5081 
5082 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5083 			     ssize_t maxsize, gfp_t gfp);
5084 
5085 #endif	/* __KERNEL__ */
5086 #endif	/* _LINUX_SKBUFF_H */
5087