1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <linux/llist.h> 40 #include <net/flow.h> 41 #include <net/page_pool.h> 42 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 43 #include <linux/netfilter/nf_conntrack_common.h> 44 #endif 45 46 /* The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * A. IP checksum related features 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * The checksum related features are: 57 * 58 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 59 * IP (one's complement) checksum for any combination 60 * of protocols or protocol layering. The checksum is 61 * computed and set in a packet per the CHECKSUM_PARTIAL 62 * interface (see below). 63 * 64 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 65 * TCP or UDP packets over IPv4. These are specifically 66 * unencapsulated packets of the form IPv4|TCP or 67 * IPv4|UDP where the Protocol field in the IPv4 header 68 * is TCP or UDP. The IPv4 header may contain IP options. 69 * This feature cannot be set in features for a device 70 * with NETIF_F_HW_CSUM also set. This feature is being 71 * DEPRECATED (see below). 72 * 73 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv6. These are specifically 75 * unencapsulated packets of the form IPv6|TCP or 76 * IPv6|UDP where the Next Header field in the IPv6 77 * header is either TCP or UDP. IPv6 extension headers 78 * are not supported with this feature. This feature 79 * cannot be set in features for a device with 80 * NETIF_F_HW_CSUM also set. This feature is being 81 * DEPRECATED (see below). 82 * 83 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 84 * This flag is only used to disable the RX checksum 85 * feature for a device. The stack will accept receive 86 * checksum indication in packets received on a device 87 * regardless of whether NETIF_F_RXCSUM is set. 88 * 89 * B. Checksumming of received packets by device. Indication of checksum 90 * verification is set in skb->ip_summed. Possible values are: 91 * 92 * CHECKSUM_NONE: 93 * 94 * Device did not checksum this packet e.g. due to lack of capabilities. 95 * The packet contains full (though not verified) checksum in packet but 96 * not in skb->csum. Thus, skb->csum is undefined in this case. 97 * 98 * CHECKSUM_UNNECESSARY: 99 * 100 * The hardware you're dealing with doesn't calculate the full checksum 101 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 102 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 103 * if their checksums are okay. skb->csum is still undefined in this case 104 * though. A driver or device must never modify the checksum field in the 105 * packet even if checksum is verified. 106 * 107 * CHECKSUM_UNNECESSARY is applicable to following protocols: 108 * TCP: IPv6 and IPv4. 109 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 110 * zero UDP checksum for either IPv4 or IPv6, the networking stack 111 * may perform further validation in this case. 112 * GRE: only if the checksum is present in the header. 113 * SCTP: indicates the CRC in SCTP header has been validated. 114 * FCOE: indicates the CRC in FC frame has been validated. 115 * 116 * skb->csum_level indicates the number of consecutive checksums found in 117 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 118 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 119 * and a device is able to verify the checksums for UDP (possibly zero), 120 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to 121 * two. If the device were only able to verify the UDP checksum and not 122 * GRE, either because it doesn't support GRE checksum or because GRE 123 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 124 * not considered in this case). 125 * 126 * CHECKSUM_COMPLETE: 127 * 128 * This is the most generic way. The device supplied checksum of the _whole_ 129 * packet as seen by netif_rx() and fills in skb->csum. This means the 130 * hardware doesn't need to parse L3/L4 headers to implement this. 131 * 132 * Notes: 133 * - Even if device supports only some protocols, but is able to produce 134 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 135 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 136 * 137 * CHECKSUM_PARTIAL: 138 * 139 * A checksum is set up to be offloaded to a device as described in the 140 * output description for CHECKSUM_PARTIAL. This may occur on a packet 141 * received directly from another Linux OS, e.g., a virtualized Linux kernel 142 * on the same host, or it may be set in the input path in GRO or remote 143 * checksum offload. For the purposes of checksum verification, the checksum 144 * referred to by skb->csum_start + skb->csum_offset and any preceding 145 * checksums in the packet are considered verified. Any checksums in the 146 * packet that are after the checksum being offloaded are not considered to 147 * be verified. 148 * 149 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 150 * in the skb->ip_summed for a packet. Values are: 151 * 152 * CHECKSUM_PARTIAL: 153 * 154 * The driver is required to checksum the packet as seen by hard_start_xmit() 155 * from skb->csum_start up to the end, and to record/write the checksum at 156 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 157 * csum_start and csum_offset values are valid values given the length and 158 * offset of the packet, but it should not attempt to validate that the 159 * checksum refers to a legitimate transport layer checksum -- it is the 160 * purview of the stack to validate that csum_start and csum_offset are set 161 * correctly. 162 * 163 * When the stack requests checksum offload for a packet, the driver MUST 164 * ensure that the checksum is set correctly. A driver can either offload the 165 * checksum calculation to the device, or call skb_checksum_help (in the case 166 * that the device does not support offload for a particular checksum). 167 * 168 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 169 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 170 * checksum offload capability. 171 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 172 * on network device checksumming capabilities: if a packet does not match 173 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 174 * csum_not_inet, see item D.) is called to resolve the checksum. 175 * 176 * CHECKSUM_NONE: 177 * 178 * The skb was already checksummed by the protocol, or a checksum is not 179 * required. 180 * 181 * CHECKSUM_UNNECESSARY: 182 * 183 * This has the same meaning as CHECKSUM_NONE for checksum offload on 184 * output. 185 * 186 * CHECKSUM_COMPLETE: 187 * Not used in checksum output. If a driver observes a packet with this value 188 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. 189 * 190 * D. Non-IP checksum (CRC) offloads 191 * 192 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 193 * offloading the SCTP CRC in a packet. To perform this offload the stack 194 * will set csum_start and csum_offset accordingly, set ip_summed to 195 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 196 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 197 * A driver that supports both IP checksum offload and SCTP CRC32c offload 198 * must verify which offload is configured for a packet by testing the 199 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 200 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 201 * 202 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 203 * offloading the FCOE CRC in a packet. To perform this offload the stack 204 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 205 * accordingly. Note that there is no indication in the skbuff that the 206 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 207 * both IP checksum offload and FCOE CRC offload must verify which offload 208 * is configured for a packet, presumably by inspecting packet headers. 209 * 210 * E. Checksumming on output with GSO. 211 * 212 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 213 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 214 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 215 * part of the GSO operation is implied. If a checksum is being offloaded 216 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and 217 * csum_offset are set to refer to the outermost checksum being offloaded 218 * (two offloaded checksums are possible with UDP encapsulation). 219 */ 220 221 /* Don't change this without changing skb_csum_unnecessary! */ 222 #define CHECKSUM_NONE 0 223 #define CHECKSUM_UNNECESSARY 1 224 #define CHECKSUM_COMPLETE 2 225 #define CHECKSUM_PARTIAL 3 226 227 /* Maximum value in skb->csum_level */ 228 #define SKB_MAX_CSUM_LEVEL 3 229 230 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 231 #define SKB_WITH_OVERHEAD(X) \ 232 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 233 #define SKB_MAX_ORDER(X, ORDER) \ 234 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 235 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 236 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 237 238 /* return minimum truesize of one skb containing X bytes of data */ 239 #define SKB_TRUESIZE(X) ((X) + \ 240 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 242 243 struct ahash_request; 244 struct net_device; 245 struct scatterlist; 246 struct pipe_inode_info; 247 struct iov_iter; 248 struct napi_struct; 249 struct bpf_prog; 250 union bpf_attr; 251 struct skb_ext; 252 253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254 struct nf_bridge_info { 255 enum { 256 BRNF_PROTO_UNCHANGED, 257 BRNF_PROTO_8021Q, 258 BRNF_PROTO_PPPOE 259 } orig_proto:8; 260 u8 pkt_otherhost:1; 261 u8 in_prerouting:1; 262 u8 bridged_dnat:1; 263 __u16 frag_max_size; 264 struct net_device *physindev; 265 266 /* always valid & non-NULL from FORWARD on, for physdev match */ 267 struct net_device *physoutdev; 268 union { 269 /* prerouting: detect dnat in orig/reply direction */ 270 __be32 ipv4_daddr; 271 struct in6_addr ipv6_daddr; 272 273 /* after prerouting + nat detected: store original source 274 * mac since neigh resolution overwrites it, only used while 275 * skb is out in neigh layer. 276 */ 277 char neigh_header[8]; 278 }; 279 }; 280 #endif 281 282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 283 /* Chain in tc_skb_ext will be used to share the tc chain with 284 * ovs recirc_id. It will be set to the current chain by tc 285 * and read by ovs to recirc_id. 286 */ 287 struct tc_skb_ext { 288 __u32 chain; 289 __u16 mru; 290 __u16 zone; 291 u8 post_ct:1; 292 u8 post_ct_snat:1; 293 u8 post_ct_dnat:1; 294 }; 295 #endif 296 297 struct sk_buff_head { 298 /* These two members must be first to match sk_buff. */ 299 struct_group_tagged(sk_buff_list, list, 300 struct sk_buff *next; 301 struct sk_buff *prev; 302 ); 303 304 __u32 qlen; 305 spinlock_t lock; 306 }; 307 308 struct sk_buff; 309 310 /* The reason of skb drop, which is used in kfree_skb_reason(). 311 * en...maybe they should be splited by group? 312 * 313 * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is 314 * used to translate the reason to string. 315 */ 316 enum skb_drop_reason { 317 SKB_NOT_DROPPED_YET = 0, 318 SKB_DROP_REASON_NOT_SPECIFIED, /* drop reason is not specified */ 319 SKB_DROP_REASON_NO_SOCKET, /* socket not found */ 320 SKB_DROP_REASON_PKT_TOO_SMALL, /* packet size is too small */ 321 SKB_DROP_REASON_TCP_CSUM, /* TCP checksum error */ 322 SKB_DROP_REASON_SOCKET_FILTER, /* dropped by socket filter */ 323 SKB_DROP_REASON_UDP_CSUM, /* UDP checksum error */ 324 SKB_DROP_REASON_NETFILTER_DROP, /* dropped by netfilter */ 325 SKB_DROP_REASON_OTHERHOST, /* packet don't belong to current 326 * host (interface is in promisc 327 * mode) 328 */ 329 SKB_DROP_REASON_IP_CSUM, /* IP checksum error */ 330 SKB_DROP_REASON_IP_INHDR, /* there is something wrong with 331 * IP header (see 332 * IPSTATS_MIB_INHDRERRORS) 333 */ 334 SKB_DROP_REASON_IP_RPFILTER, /* IP rpfilter validate failed. 335 * see the document for rp_filter 336 * in ip-sysctl.rst for more 337 * information 338 */ 339 SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2 340 * is multicast, but L3 is 341 * unicast. 342 */ 343 SKB_DROP_REASON_XFRM_POLICY, /* xfrm policy check failed */ 344 SKB_DROP_REASON_IP_NOPROTO, /* no support for IP protocol */ 345 SKB_DROP_REASON_SOCKET_RCVBUFF, /* socket receive buff is full */ 346 SKB_DROP_REASON_PROTO_MEM, /* proto memory limition, such as 347 * udp packet drop out of 348 * udp_memory_allocated. 349 */ 350 SKB_DROP_REASON_TCP_MD5NOTFOUND, /* no MD5 hash and one 351 * expected, corresponding 352 * to LINUX_MIB_TCPMD5NOTFOUND 353 */ 354 SKB_DROP_REASON_TCP_MD5UNEXPECTED, /* MD5 hash and we're not 355 * expecting one, corresponding 356 * to LINUX_MIB_TCPMD5UNEXPECTED 357 */ 358 SKB_DROP_REASON_TCP_MD5FAILURE, /* MD5 hash and its wrong, 359 * corresponding to 360 * LINUX_MIB_TCPMD5FAILURE 361 */ 362 SKB_DROP_REASON_SOCKET_BACKLOG, /* failed to add skb to socket 363 * backlog (see 364 * LINUX_MIB_TCPBACKLOGDROP) 365 */ 366 SKB_DROP_REASON_TCP_FLAGS, /* TCP flags invalid */ 367 SKB_DROP_REASON_TCP_ZEROWINDOW, /* TCP receive window size is zero, 368 * see LINUX_MIB_TCPZEROWINDOWDROP 369 */ 370 SKB_DROP_REASON_TCP_OLD_DATA, /* the TCP data reveived is already 371 * received before (spurious retrans 372 * may happened), see 373 * LINUX_MIB_DELAYEDACKLOST 374 */ 375 SKB_DROP_REASON_TCP_OVERWINDOW, /* the TCP data is out of window, 376 * the seq of the first byte exceed 377 * the right edges of receive 378 * window 379 */ 380 SKB_DROP_REASON_TCP_OFOMERGE, /* the data of skb is already in 381 * the ofo queue, corresponding to 382 * LINUX_MIB_TCPOFOMERGE 383 */ 384 SKB_DROP_REASON_TCP_RFC7323_PAWS, /* PAWS check, corresponding to 385 * LINUX_MIB_PAWSESTABREJECTED 386 */ 387 SKB_DROP_REASON_TCP_INVALID_SEQUENCE, /* Not acceptable SEQ field */ 388 SKB_DROP_REASON_TCP_RESET, /* Invalid RST packet */ 389 SKB_DROP_REASON_TCP_INVALID_SYN, /* Incoming packet has unexpected SYN flag */ 390 SKB_DROP_REASON_TCP_CLOSE, /* TCP socket in CLOSE state */ 391 SKB_DROP_REASON_TCP_FASTOPEN, /* dropped by FASTOPEN request socket */ 392 SKB_DROP_REASON_TCP_OLD_ACK, /* TCP ACK is old, but in window */ 393 SKB_DROP_REASON_TCP_TOO_OLD_ACK, /* TCP ACK is too old */ 394 SKB_DROP_REASON_TCP_ACK_UNSENT_DATA, /* TCP ACK for data we haven't sent yet */ 395 SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE, /* pruned from TCP OFO queue */ 396 SKB_DROP_REASON_TCP_OFO_DROP, /* data already in receive queue */ 397 SKB_DROP_REASON_IP_OUTNOROUTES, /* route lookup failed */ 398 SKB_DROP_REASON_BPF_CGROUP_EGRESS, /* dropped by 399 * BPF_PROG_TYPE_CGROUP_SKB 400 * eBPF program 401 */ 402 SKB_DROP_REASON_IPV6DISABLED, /* IPv6 is disabled on the device */ 403 SKB_DROP_REASON_NEIGH_CREATEFAIL, /* failed to create neigh 404 * entry 405 */ 406 SKB_DROP_REASON_NEIGH_FAILED, /* neigh entry in failed state */ 407 SKB_DROP_REASON_NEIGH_QUEUEFULL, /* arp_queue for neigh 408 * entry is full 409 */ 410 SKB_DROP_REASON_NEIGH_DEAD, /* neigh entry is dead */ 411 SKB_DROP_REASON_TC_EGRESS, /* dropped in TC egress HOOK */ 412 SKB_DROP_REASON_QDISC_DROP, /* dropped by qdisc when packet 413 * outputting (failed to enqueue to 414 * current qdisc) 415 */ 416 SKB_DROP_REASON_CPU_BACKLOG, /* failed to enqueue the skb to 417 * the per CPU backlog queue. This 418 * can be caused by backlog queue 419 * full (see netdev_max_backlog in 420 * net.rst) or RPS flow limit 421 */ 422 SKB_DROP_REASON_XDP, /* dropped by XDP in input path */ 423 SKB_DROP_REASON_TC_INGRESS, /* dropped in TC ingress HOOK */ 424 SKB_DROP_REASON_UNHANDLED_PROTO, /* protocol not implemented 425 * or not supported 426 */ 427 SKB_DROP_REASON_SKB_CSUM, /* sk_buff checksum computation 428 * error 429 */ 430 SKB_DROP_REASON_SKB_GSO_SEG, /* gso segmentation error */ 431 SKB_DROP_REASON_SKB_UCOPY_FAULT, /* failed to copy data from 432 * user space, e.g., via 433 * zerocopy_sg_from_iter() 434 * or skb_orphan_frags_rx() 435 */ 436 SKB_DROP_REASON_DEV_HDR, /* device driver specific 437 * header/metadata is invalid 438 */ 439 /* the device is not ready to xmit/recv due to any of its data 440 * structure that is not up/ready/initialized, e.g., the IFF_UP is 441 * not set, or driver specific tun->tfiles[txq] is not initialized 442 */ 443 SKB_DROP_REASON_DEV_READY, 444 SKB_DROP_REASON_FULL_RING, /* ring buffer is full */ 445 SKB_DROP_REASON_NOMEM, /* error due to OOM */ 446 SKB_DROP_REASON_HDR_TRUNC, /* failed to trunc/extract the header 447 * from networking data, e.g., failed 448 * to pull the protocol header from 449 * frags via pskb_may_pull() 450 */ 451 SKB_DROP_REASON_TAP_FILTER, /* dropped by (ebpf) filter directly 452 * attached to tun/tap, e.g., via 453 * TUNSETFILTEREBPF 454 */ 455 SKB_DROP_REASON_TAP_TXFILTER, /* dropped by tx filter implemented 456 * at tun/tap, e.g., check_filter() 457 */ 458 SKB_DROP_REASON_ICMP_CSUM, /* ICMP checksum error */ 459 SKB_DROP_REASON_INVALID_PROTO, /* the packet doesn't follow RFC 460 * 2211, such as a broadcasts 461 * ICMP_TIMESTAMP 462 */ 463 SKB_DROP_REASON_IP_INADDRERRORS, /* host unreachable, corresponding 464 * to IPSTATS_MIB_INADDRERRORS 465 */ 466 SKB_DROP_REASON_IP_INNOROUTES, /* network unreachable, corresponding 467 * to IPSTATS_MIB_INADDRERRORS 468 */ 469 SKB_DROP_REASON_PKT_TOO_BIG, /* packet size is too big (maybe exceed 470 * the MTU) 471 */ 472 SKB_DROP_REASON_MAX, 473 }; 474 475 #define SKB_DR_INIT(name, reason) \ 476 enum skb_drop_reason name = SKB_DROP_REASON_##reason 477 #define SKB_DR(name) \ 478 SKB_DR_INIT(name, NOT_SPECIFIED) 479 #define SKB_DR_SET(name, reason) \ 480 (name = SKB_DROP_REASON_##reason) 481 #define SKB_DR_OR(name, reason) \ 482 do { \ 483 if (name == SKB_DROP_REASON_NOT_SPECIFIED) \ 484 SKB_DR_SET(name, reason); \ 485 } while (0) 486 487 /* To allow 64K frame to be packed as single skb without frag_list we 488 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 489 * buffers which do not start on a page boundary. 490 * 491 * Since GRO uses frags we allocate at least 16 regardless of page 492 * size. 493 */ 494 #if (65536/PAGE_SIZE + 1) < 16 495 #define MAX_SKB_FRAGS 16UL 496 #else 497 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 498 #endif 499 extern int sysctl_max_skb_frags; 500 501 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 502 * segment using its current segmentation instead. 503 */ 504 #define GSO_BY_FRAGS 0xFFFF 505 506 typedef struct bio_vec skb_frag_t; 507 508 /** 509 * skb_frag_size() - Returns the size of a skb fragment 510 * @frag: skb fragment 511 */ 512 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 513 { 514 return frag->bv_len; 515 } 516 517 /** 518 * skb_frag_size_set() - Sets the size of a skb fragment 519 * @frag: skb fragment 520 * @size: size of fragment 521 */ 522 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 523 { 524 frag->bv_len = size; 525 } 526 527 /** 528 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 529 * @frag: skb fragment 530 * @delta: value to add 531 */ 532 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 533 { 534 frag->bv_len += delta; 535 } 536 537 /** 538 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 539 * @frag: skb fragment 540 * @delta: value to subtract 541 */ 542 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 543 { 544 frag->bv_len -= delta; 545 } 546 547 /** 548 * skb_frag_must_loop - Test if %p is a high memory page 549 * @p: fragment's page 550 */ 551 static inline bool skb_frag_must_loop(struct page *p) 552 { 553 #if defined(CONFIG_HIGHMEM) 554 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 555 return true; 556 #endif 557 return false; 558 } 559 560 /** 561 * skb_frag_foreach_page - loop over pages in a fragment 562 * 563 * @f: skb frag to operate on 564 * @f_off: offset from start of f->bv_page 565 * @f_len: length from f_off to loop over 566 * @p: (temp var) current page 567 * @p_off: (temp var) offset from start of current page, 568 * non-zero only on first page. 569 * @p_len: (temp var) length in current page, 570 * < PAGE_SIZE only on first and last page. 571 * @copied: (temp var) length so far, excluding current p_len. 572 * 573 * A fragment can hold a compound page, in which case per-page 574 * operations, notably kmap_atomic, must be called for each 575 * regular page. 576 */ 577 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 578 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 579 p_off = (f_off) & (PAGE_SIZE - 1), \ 580 p_len = skb_frag_must_loop(p) ? \ 581 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 582 copied = 0; \ 583 copied < f_len; \ 584 copied += p_len, p++, p_off = 0, \ 585 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 586 587 #define HAVE_HW_TIME_STAMP 588 589 /** 590 * struct skb_shared_hwtstamps - hardware time stamps 591 * @hwtstamp: hardware time stamp transformed into duration 592 * since arbitrary point in time 593 * @netdev_data: address/cookie of network device driver used as 594 * reference to actual hardware time stamp 595 * 596 * Software time stamps generated by ktime_get_real() are stored in 597 * skb->tstamp. 598 * 599 * hwtstamps can only be compared against other hwtstamps from 600 * the same device. 601 * 602 * This structure is attached to packets as part of the 603 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 604 */ 605 struct skb_shared_hwtstamps { 606 union { 607 ktime_t hwtstamp; 608 void *netdev_data; 609 }; 610 }; 611 612 /* Definitions for tx_flags in struct skb_shared_info */ 613 enum { 614 /* generate hardware time stamp */ 615 SKBTX_HW_TSTAMP = 1 << 0, 616 617 /* generate software time stamp when queueing packet to NIC */ 618 SKBTX_SW_TSTAMP = 1 << 1, 619 620 /* device driver is going to provide hardware time stamp */ 621 SKBTX_IN_PROGRESS = 1 << 2, 622 623 /* generate hardware time stamp based on cycles if supported */ 624 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 625 626 /* generate wifi status information (where possible) */ 627 SKBTX_WIFI_STATUS = 1 << 4, 628 629 /* determine hardware time stamp based on time or cycles */ 630 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 631 632 /* generate software time stamp when entering packet scheduling */ 633 SKBTX_SCHED_TSTAMP = 1 << 6, 634 }; 635 636 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 637 SKBTX_SCHED_TSTAMP) 638 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 639 SKBTX_HW_TSTAMP_USE_CYCLES | \ 640 SKBTX_ANY_SW_TSTAMP) 641 642 /* Definitions for flags in struct skb_shared_info */ 643 enum { 644 /* use zcopy routines */ 645 SKBFL_ZEROCOPY_ENABLE = BIT(0), 646 647 /* This indicates at least one fragment might be overwritten 648 * (as in vmsplice(), sendfile() ...) 649 * If we need to compute a TX checksum, we'll need to copy 650 * all frags to avoid possible bad checksum 651 */ 652 SKBFL_SHARED_FRAG = BIT(1), 653 654 /* segment contains only zerocopy data and should not be 655 * charged to the kernel memory. 656 */ 657 SKBFL_PURE_ZEROCOPY = BIT(2), 658 }; 659 660 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 661 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY) 662 663 /* 664 * The callback notifies userspace to release buffers when skb DMA is done in 665 * lower device, the skb last reference should be 0 when calling this. 666 * The zerocopy_success argument is true if zero copy transmit occurred, 667 * false on data copy or out of memory error caused by data copy attempt. 668 * The ctx field is used to track device context. 669 * The desc field is used to track userspace buffer index. 670 */ 671 struct ubuf_info { 672 void (*callback)(struct sk_buff *, struct ubuf_info *, 673 bool zerocopy_success); 674 union { 675 struct { 676 unsigned long desc; 677 void *ctx; 678 }; 679 struct { 680 u32 id; 681 u16 len; 682 u16 zerocopy:1; 683 u32 bytelen; 684 }; 685 }; 686 refcount_t refcnt; 687 u8 flags; 688 689 struct mmpin { 690 struct user_struct *user; 691 unsigned int num_pg; 692 } mmp; 693 }; 694 695 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 696 697 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 698 void mm_unaccount_pinned_pages(struct mmpin *mmp); 699 700 /* This data is invariant across clones and lives at 701 * the end of the header data, ie. at skb->end. 702 */ 703 struct skb_shared_info { 704 __u8 flags; 705 __u8 meta_len; 706 __u8 nr_frags; 707 __u8 tx_flags; 708 unsigned short gso_size; 709 /* Warning: this field is not always filled in (UFO)! */ 710 unsigned short gso_segs; 711 struct sk_buff *frag_list; 712 struct skb_shared_hwtstamps hwtstamps; 713 unsigned int gso_type; 714 u32 tskey; 715 716 /* 717 * Warning : all fields before dataref are cleared in __alloc_skb() 718 */ 719 atomic_t dataref; 720 unsigned int xdp_frags_size; 721 722 /* Intermediate layers must ensure that destructor_arg 723 * remains valid until skb destructor */ 724 void * destructor_arg; 725 726 /* must be last field, see pskb_expand_head() */ 727 skb_frag_t frags[MAX_SKB_FRAGS]; 728 }; 729 730 /* We divide dataref into two halves. The higher 16 bits hold references 731 * to the payload part of skb->data. The lower 16 bits hold references to 732 * the entire skb->data. A clone of a headerless skb holds the length of 733 * the header in skb->hdr_len. 734 * 735 * All users must obey the rule that the skb->data reference count must be 736 * greater than or equal to the payload reference count. 737 * 738 * Holding a reference to the payload part means that the user does not 739 * care about modifications to the header part of skb->data. 740 */ 741 #define SKB_DATAREF_SHIFT 16 742 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 743 744 745 enum { 746 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 747 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 748 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 749 }; 750 751 enum { 752 SKB_GSO_TCPV4 = 1 << 0, 753 754 /* This indicates the skb is from an untrusted source. */ 755 SKB_GSO_DODGY = 1 << 1, 756 757 /* This indicates the tcp segment has CWR set. */ 758 SKB_GSO_TCP_ECN = 1 << 2, 759 760 SKB_GSO_TCP_FIXEDID = 1 << 3, 761 762 SKB_GSO_TCPV6 = 1 << 4, 763 764 SKB_GSO_FCOE = 1 << 5, 765 766 SKB_GSO_GRE = 1 << 6, 767 768 SKB_GSO_GRE_CSUM = 1 << 7, 769 770 SKB_GSO_IPXIP4 = 1 << 8, 771 772 SKB_GSO_IPXIP6 = 1 << 9, 773 774 SKB_GSO_UDP_TUNNEL = 1 << 10, 775 776 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 777 778 SKB_GSO_PARTIAL = 1 << 12, 779 780 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 781 782 SKB_GSO_SCTP = 1 << 14, 783 784 SKB_GSO_ESP = 1 << 15, 785 786 SKB_GSO_UDP = 1 << 16, 787 788 SKB_GSO_UDP_L4 = 1 << 17, 789 790 SKB_GSO_FRAGLIST = 1 << 18, 791 }; 792 793 #if BITS_PER_LONG > 32 794 #define NET_SKBUFF_DATA_USES_OFFSET 1 795 #endif 796 797 #ifdef NET_SKBUFF_DATA_USES_OFFSET 798 typedef unsigned int sk_buff_data_t; 799 #else 800 typedef unsigned char *sk_buff_data_t; 801 #endif 802 803 /** 804 * struct sk_buff - socket buffer 805 * @next: Next buffer in list 806 * @prev: Previous buffer in list 807 * @tstamp: Time we arrived/left 808 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 809 * for retransmit timer 810 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 811 * @list: queue head 812 * @ll_node: anchor in an llist (eg socket defer_list) 813 * @sk: Socket we are owned by 814 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 815 * fragmentation management 816 * @dev: Device we arrived on/are leaving by 817 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 818 * @cb: Control buffer. Free for use by every layer. Put private vars here 819 * @_skb_refdst: destination entry (with norefcount bit) 820 * @sp: the security path, used for xfrm 821 * @len: Length of actual data 822 * @data_len: Data length 823 * @mac_len: Length of link layer header 824 * @hdr_len: writable header length of cloned skb 825 * @csum: Checksum (must include start/offset pair) 826 * @csum_start: Offset from skb->head where checksumming should start 827 * @csum_offset: Offset from csum_start where checksum should be stored 828 * @priority: Packet queueing priority 829 * @ignore_df: allow local fragmentation 830 * @cloned: Head may be cloned (check refcnt to be sure) 831 * @ip_summed: Driver fed us an IP checksum 832 * @nohdr: Payload reference only, must not modify header 833 * @pkt_type: Packet class 834 * @fclone: skbuff clone status 835 * @ipvs_property: skbuff is owned by ipvs 836 * @inner_protocol_type: whether the inner protocol is 837 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 838 * @remcsum_offload: remote checksum offload is enabled 839 * @offload_fwd_mark: Packet was L2-forwarded in hardware 840 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 841 * @tc_skip_classify: do not classify packet. set by IFB device 842 * @tc_at_ingress: used within tc_classify to distinguish in/egress 843 * @redirected: packet was redirected by packet classifier 844 * @from_ingress: packet was redirected from the ingress path 845 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 846 * @peeked: this packet has been seen already, so stats have been 847 * done for it, don't do them again 848 * @nf_trace: netfilter packet trace flag 849 * @protocol: Packet protocol from driver 850 * @destructor: Destruct function 851 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 852 * @_sk_redir: socket redirection information for skmsg 853 * @_nfct: Associated connection, if any (with nfctinfo bits) 854 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 855 * @skb_iif: ifindex of device we arrived on 856 * @tc_index: Traffic control index 857 * @hash: the packet hash 858 * @queue_mapping: Queue mapping for multiqueue devices 859 * @head_frag: skb was allocated from page fragments, 860 * not allocated by kmalloc() or vmalloc(). 861 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 862 * @pp_recycle: mark the packet for recycling instead of freeing (implies 863 * page_pool support on driver) 864 * @active_extensions: active extensions (skb_ext_id types) 865 * @ndisc_nodetype: router type (from link layer) 866 * @ooo_okay: allow the mapping of a socket to a queue to be changed 867 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 868 * ports. 869 * @sw_hash: indicates hash was computed in software stack 870 * @wifi_acked_valid: wifi_acked was set 871 * @wifi_acked: whether frame was acked on wifi or not 872 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 873 * @encapsulation: indicates the inner headers in the skbuff are valid 874 * @encap_hdr_csum: software checksum is needed 875 * @csum_valid: checksum is already valid 876 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 877 * @csum_complete_sw: checksum was completed by software 878 * @csum_level: indicates the number of consecutive checksums found in 879 * the packet minus one that have been verified as 880 * CHECKSUM_UNNECESSARY (max 3) 881 * @dst_pending_confirm: need to confirm neighbour 882 * @decrypted: Decrypted SKB 883 * @slow_gro: state present at GRO time, slower prepare step required 884 * @mono_delivery_time: When set, skb->tstamp has the 885 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 886 * skb->tstamp has the (rcv) timestamp at ingress and 887 * delivery_time at egress. 888 * @napi_id: id of the NAPI struct this skb came from 889 * @sender_cpu: (aka @napi_id) source CPU in XPS 890 * @alloc_cpu: CPU which did the skb allocation. 891 * @secmark: security marking 892 * @mark: Generic packet mark 893 * @reserved_tailroom: (aka @mark) number of bytes of free space available 894 * at the tail of an sk_buff 895 * @vlan_present: VLAN tag is present 896 * @vlan_proto: vlan encapsulation protocol 897 * @vlan_tci: vlan tag control information 898 * @inner_protocol: Protocol (encapsulation) 899 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 900 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 901 * @inner_transport_header: Inner transport layer header (encapsulation) 902 * @inner_network_header: Network layer header (encapsulation) 903 * @inner_mac_header: Link layer header (encapsulation) 904 * @transport_header: Transport layer header 905 * @network_header: Network layer header 906 * @mac_header: Link layer header 907 * @kcov_handle: KCOV remote handle for remote coverage collection 908 * @tail: Tail pointer 909 * @end: End pointer 910 * @head: Head of buffer 911 * @data: Data head pointer 912 * @truesize: Buffer size 913 * @users: User count - see {datagram,tcp}.c 914 * @extensions: allocated extensions, valid if active_extensions is nonzero 915 */ 916 917 struct sk_buff { 918 union { 919 struct { 920 /* These two members must be first to match sk_buff_head. */ 921 struct sk_buff *next; 922 struct sk_buff *prev; 923 924 union { 925 struct net_device *dev; 926 /* Some protocols might use this space to store information, 927 * while device pointer would be NULL. 928 * UDP receive path is one user. 929 */ 930 unsigned long dev_scratch; 931 }; 932 }; 933 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 934 struct list_head list; 935 struct llist_node ll_node; 936 }; 937 938 union { 939 struct sock *sk; 940 int ip_defrag_offset; 941 }; 942 943 union { 944 ktime_t tstamp; 945 u64 skb_mstamp_ns; /* earliest departure time */ 946 }; 947 /* 948 * This is the control buffer. It is free to use for every 949 * layer. Please put your private variables there. If you 950 * want to keep them across layers you have to do a skb_clone() 951 * first. This is owned by whoever has the skb queued ATM. 952 */ 953 char cb[48] __aligned(8); 954 955 union { 956 struct { 957 unsigned long _skb_refdst; 958 void (*destructor)(struct sk_buff *skb); 959 }; 960 struct list_head tcp_tsorted_anchor; 961 #ifdef CONFIG_NET_SOCK_MSG 962 unsigned long _sk_redir; 963 #endif 964 }; 965 966 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 967 unsigned long _nfct; 968 #endif 969 unsigned int len, 970 data_len; 971 __u16 mac_len, 972 hdr_len; 973 974 /* Following fields are _not_ copied in __copy_skb_header() 975 * Note that queue_mapping is here mostly to fill a hole. 976 */ 977 __u16 queue_mapping; 978 979 /* if you move cloned around you also must adapt those constants */ 980 #ifdef __BIG_ENDIAN_BITFIELD 981 #define CLONED_MASK (1 << 7) 982 #else 983 #define CLONED_MASK 1 984 #endif 985 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 986 987 /* private: */ 988 __u8 __cloned_offset[0]; 989 /* public: */ 990 __u8 cloned:1, 991 nohdr:1, 992 fclone:2, 993 peeked:1, 994 head_frag:1, 995 pfmemalloc:1, 996 pp_recycle:1; /* page_pool recycle indicator */ 997 #ifdef CONFIG_SKB_EXTENSIONS 998 __u8 active_extensions; 999 #endif 1000 1001 /* Fields enclosed in headers group are copied 1002 * using a single memcpy() in __copy_skb_header() 1003 */ 1004 struct_group(headers, 1005 1006 /* private: */ 1007 __u8 __pkt_type_offset[0]; 1008 /* public: */ 1009 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 1010 __u8 ignore_df:1; 1011 __u8 nf_trace:1; 1012 __u8 ip_summed:2; 1013 __u8 ooo_okay:1; 1014 1015 __u8 l4_hash:1; 1016 __u8 sw_hash:1; 1017 __u8 wifi_acked_valid:1; 1018 __u8 wifi_acked:1; 1019 __u8 no_fcs:1; 1020 /* Indicates the inner headers are valid in the skbuff. */ 1021 __u8 encapsulation:1; 1022 __u8 encap_hdr_csum:1; 1023 __u8 csum_valid:1; 1024 1025 /* private: */ 1026 __u8 __pkt_vlan_present_offset[0]; 1027 /* public: */ 1028 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 1029 __u8 csum_complete_sw:1; 1030 __u8 csum_level:2; 1031 __u8 dst_pending_confirm:1; 1032 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 1033 #ifdef CONFIG_NET_CLS_ACT 1034 __u8 tc_skip_classify:1; 1035 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 1036 #endif 1037 #ifdef CONFIG_IPV6_NDISC_NODETYPE 1038 __u8 ndisc_nodetype:2; 1039 #endif 1040 1041 __u8 ipvs_property:1; 1042 __u8 inner_protocol_type:1; 1043 __u8 remcsum_offload:1; 1044 #ifdef CONFIG_NET_SWITCHDEV 1045 __u8 offload_fwd_mark:1; 1046 __u8 offload_l3_fwd_mark:1; 1047 #endif 1048 __u8 redirected:1; 1049 #ifdef CONFIG_NET_REDIRECT 1050 __u8 from_ingress:1; 1051 #endif 1052 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 1053 __u8 nf_skip_egress:1; 1054 #endif 1055 #ifdef CONFIG_TLS_DEVICE 1056 __u8 decrypted:1; 1057 #endif 1058 __u8 slow_gro:1; 1059 __u8 csum_not_inet:1; 1060 1061 #ifdef CONFIG_NET_SCHED 1062 __u16 tc_index; /* traffic control index */ 1063 #endif 1064 1065 union { 1066 __wsum csum; 1067 struct { 1068 __u16 csum_start; 1069 __u16 csum_offset; 1070 }; 1071 }; 1072 __u32 priority; 1073 int skb_iif; 1074 __u32 hash; 1075 __be16 vlan_proto; 1076 __u16 vlan_tci; 1077 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1078 union { 1079 unsigned int napi_id; 1080 unsigned int sender_cpu; 1081 }; 1082 #endif 1083 u16 alloc_cpu; 1084 #ifdef CONFIG_NETWORK_SECMARK 1085 __u32 secmark; 1086 #endif 1087 1088 union { 1089 __u32 mark; 1090 __u32 reserved_tailroom; 1091 }; 1092 1093 union { 1094 __be16 inner_protocol; 1095 __u8 inner_ipproto; 1096 }; 1097 1098 __u16 inner_transport_header; 1099 __u16 inner_network_header; 1100 __u16 inner_mac_header; 1101 1102 __be16 protocol; 1103 __u16 transport_header; 1104 __u16 network_header; 1105 __u16 mac_header; 1106 1107 #ifdef CONFIG_KCOV 1108 u64 kcov_handle; 1109 #endif 1110 1111 ); /* end headers group */ 1112 1113 /* These elements must be at the end, see alloc_skb() for details. */ 1114 sk_buff_data_t tail; 1115 sk_buff_data_t end; 1116 unsigned char *head, 1117 *data; 1118 unsigned int truesize; 1119 refcount_t users; 1120 1121 #ifdef CONFIG_SKB_EXTENSIONS 1122 /* only useable after checking ->active_extensions != 0 */ 1123 struct skb_ext *extensions; 1124 #endif 1125 }; 1126 1127 /* if you move pkt_type around you also must adapt those constants */ 1128 #ifdef __BIG_ENDIAN_BITFIELD 1129 #define PKT_TYPE_MAX (7 << 5) 1130 #else 1131 #define PKT_TYPE_MAX 7 1132 #endif 1133 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1134 1135 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time 1136 * around, you also must adapt these constants. 1137 */ 1138 #ifdef __BIG_ENDIAN_BITFIELD 1139 #define PKT_VLAN_PRESENT_BIT 7 1140 #define TC_AT_INGRESS_MASK (1 << 0) 1141 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1142 #else 1143 #define PKT_VLAN_PRESENT_BIT 0 1144 #define TC_AT_INGRESS_MASK (1 << 7) 1145 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1146 #endif 1147 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1148 1149 #ifdef __KERNEL__ 1150 /* 1151 * Handling routines are only of interest to the kernel 1152 */ 1153 1154 #define SKB_ALLOC_FCLONE 0x01 1155 #define SKB_ALLOC_RX 0x02 1156 #define SKB_ALLOC_NAPI 0x04 1157 1158 /** 1159 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1160 * @skb: buffer 1161 */ 1162 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1163 { 1164 return unlikely(skb->pfmemalloc); 1165 } 1166 1167 /* 1168 * skb might have a dst pointer attached, refcounted or not. 1169 * _skb_refdst low order bit is set if refcount was _not_ taken 1170 */ 1171 #define SKB_DST_NOREF 1UL 1172 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1173 1174 /** 1175 * skb_dst - returns skb dst_entry 1176 * @skb: buffer 1177 * 1178 * Returns skb dst_entry, regardless of reference taken or not. 1179 */ 1180 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1181 { 1182 /* If refdst was not refcounted, check we still are in a 1183 * rcu_read_lock section 1184 */ 1185 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1186 !rcu_read_lock_held() && 1187 !rcu_read_lock_bh_held()); 1188 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1189 } 1190 1191 /** 1192 * skb_dst_set - sets skb dst 1193 * @skb: buffer 1194 * @dst: dst entry 1195 * 1196 * Sets skb dst, assuming a reference was taken on dst and should 1197 * be released by skb_dst_drop() 1198 */ 1199 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1200 { 1201 skb->slow_gro |= !!dst; 1202 skb->_skb_refdst = (unsigned long)dst; 1203 } 1204 1205 /** 1206 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1207 * @skb: buffer 1208 * @dst: dst entry 1209 * 1210 * Sets skb dst, assuming a reference was not taken on dst. 1211 * If dst entry is cached, we do not take reference and dst_release 1212 * will be avoided by refdst_drop. If dst entry is not cached, we take 1213 * reference, so that last dst_release can destroy the dst immediately. 1214 */ 1215 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1216 { 1217 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1218 skb->slow_gro |= !!dst; 1219 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1220 } 1221 1222 /** 1223 * skb_dst_is_noref - Test if skb dst isn't refcounted 1224 * @skb: buffer 1225 */ 1226 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1227 { 1228 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1229 } 1230 1231 /** 1232 * skb_rtable - Returns the skb &rtable 1233 * @skb: buffer 1234 */ 1235 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1236 { 1237 return (struct rtable *)skb_dst(skb); 1238 } 1239 1240 /* For mangling skb->pkt_type from user space side from applications 1241 * such as nft, tc, etc, we only allow a conservative subset of 1242 * possible pkt_types to be set. 1243 */ 1244 static inline bool skb_pkt_type_ok(u32 ptype) 1245 { 1246 return ptype <= PACKET_OTHERHOST; 1247 } 1248 1249 /** 1250 * skb_napi_id - Returns the skb's NAPI id 1251 * @skb: buffer 1252 */ 1253 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1254 { 1255 #ifdef CONFIG_NET_RX_BUSY_POLL 1256 return skb->napi_id; 1257 #else 1258 return 0; 1259 #endif 1260 } 1261 1262 /** 1263 * skb_unref - decrement the skb's reference count 1264 * @skb: buffer 1265 * 1266 * Returns true if we can free the skb. 1267 */ 1268 static inline bool skb_unref(struct sk_buff *skb) 1269 { 1270 if (unlikely(!skb)) 1271 return false; 1272 if (likely(refcount_read(&skb->users) == 1)) 1273 smp_rmb(); 1274 else if (likely(!refcount_dec_and_test(&skb->users))) 1275 return false; 1276 1277 return true; 1278 } 1279 1280 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1281 1282 /** 1283 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1284 * @skb: buffer to free 1285 */ 1286 static inline void kfree_skb(struct sk_buff *skb) 1287 { 1288 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1289 } 1290 1291 void skb_release_head_state(struct sk_buff *skb); 1292 void kfree_skb_list_reason(struct sk_buff *segs, 1293 enum skb_drop_reason reason); 1294 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1295 void skb_tx_error(struct sk_buff *skb); 1296 1297 static inline void kfree_skb_list(struct sk_buff *segs) 1298 { 1299 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1300 } 1301 1302 #ifdef CONFIG_TRACEPOINTS 1303 void consume_skb(struct sk_buff *skb); 1304 #else 1305 static inline void consume_skb(struct sk_buff *skb) 1306 { 1307 return kfree_skb(skb); 1308 } 1309 #endif 1310 1311 void __consume_stateless_skb(struct sk_buff *skb); 1312 void __kfree_skb(struct sk_buff *skb); 1313 extern struct kmem_cache *skbuff_head_cache; 1314 1315 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1316 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1317 bool *fragstolen, int *delta_truesize); 1318 1319 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1320 int node); 1321 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1322 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1323 struct sk_buff *build_skb_around(struct sk_buff *skb, 1324 void *data, unsigned int frag_size); 1325 void skb_attempt_defer_free(struct sk_buff *skb); 1326 1327 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1328 1329 /** 1330 * alloc_skb - allocate a network buffer 1331 * @size: size to allocate 1332 * @priority: allocation mask 1333 * 1334 * This function is a convenient wrapper around __alloc_skb(). 1335 */ 1336 static inline struct sk_buff *alloc_skb(unsigned int size, 1337 gfp_t priority) 1338 { 1339 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1340 } 1341 1342 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1343 unsigned long data_len, 1344 int max_page_order, 1345 int *errcode, 1346 gfp_t gfp_mask); 1347 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1348 1349 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1350 struct sk_buff_fclones { 1351 struct sk_buff skb1; 1352 1353 struct sk_buff skb2; 1354 1355 refcount_t fclone_ref; 1356 }; 1357 1358 /** 1359 * skb_fclone_busy - check if fclone is busy 1360 * @sk: socket 1361 * @skb: buffer 1362 * 1363 * Returns true if skb is a fast clone, and its clone is not freed. 1364 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1365 * so we also check that this didnt happen. 1366 */ 1367 static inline bool skb_fclone_busy(const struct sock *sk, 1368 const struct sk_buff *skb) 1369 { 1370 const struct sk_buff_fclones *fclones; 1371 1372 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1373 1374 return skb->fclone == SKB_FCLONE_ORIG && 1375 refcount_read(&fclones->fclone_ref) > 1 && 1376 READ_ONCE(fclones->skb2.sk) == sk; 1377 } 1378 1379 /** 1380 * alloc_skb_fclone - allocate a network buffer from fclone cache 1381 * @size: size to allocate 1382 * @priority: allocation mask 1383 * 1384 * This function is a convenient wrapper around __alloc_skb(). 1385 */ 1386 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1387 gfp_t priority) 1388 { 1389 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1390 } 1391 1392 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1393 void skb_headers_offset_update(struct sk_buff *skb, int off); 1394 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1395 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1396 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1397 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1398 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1399 gfp_t gfp_mask, bool fclone); 1400 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1401 gfp_t gfp_mask) 1402 { 1403 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1404 } 1405 1406 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1407 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1408 unsigned int headroom); 1409 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1410 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1411 int newtailroom, gfp_t priority); 1412 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1413 int offset, int len); 1414 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1415 int offset, int len); 1416 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1417 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1418 1419 /** 1420 * skb_pad - zero pad the tail of an skb 1421 * @skb: buffer to pad 1422 * @pad: space to pad 1423 * 1424 * Ensure that a buffer is followed by a padding area that is zero 1425 * filled. Used by network drivers which may DMA or transfer data 1426 * beyond the buffer end onto the wire. 1427 * 1428 * May return error in out of memory cases. The skb is freed on error. 1429 */ 1430 static inline int skb_pad(struct sk_buff *skb, int pad) 1431 { 1432 return __skb_pad(skb, pad, true); 1433 } 1434 #define dev_kfree_skb(a) consume_skb(a) 1435 1436 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1437 int offset, size_t size); 1438 1439 struct skb_seq_state { 1440 __u32 lower_offset; 1441 __u32 upper_offset; 1442 __u32 frag_idx; 1443 __u32 stepped_offset; 1444 struct sk_buff *root_skb; 1445 struct sk_buff *cur_skb; 1446 __u8 *frag_data; 1447 __u32 frag_off; 1448 }; 1449 1450 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1451 unsigned int to, struct skb_seq_state *st); 1452 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1453 struct skb_seq_state *st); 1454 void skb_abort_seq_read(struct skb_seq_state *st); 1455 1456 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1457 unsigned int to, struct ts_config *config); 1458 1459 /* 1460 * Packet hash types specify the type of hash in skb_set_hash. 1461 * 1462 * Hash types refer to the protocol layer addresses which are used to 1463 * construct a packet's hash. The hashes are used to differentiate or identify 1464 * flows of the protocol layer for the hash type. Hash types are either 1465 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1466 * 1467 * Properties of hashes: 1468 * 1469 * 1) Two packets in different flows have different hash values 1470 * 2) Two packets in the same flow should have the same hash value 1471 * 1472 * A hash at a higher layer is considered to be more specific. A driver should 1473 * set the most specific hash possible. 1474 * 1475 * A driver cannot indicate a more specific hash than the layer at which a hash 1476 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1477 * 1478 * A driver may indicate a hash level which is less specific than the 1479 * actual layer the hash was computed on. For instance, a hash computed 1480 * at L4 may be considered an L3 hash. This should only be done if the 1481 * driver can't unambiguously determine that the HW computed the hash at 1482 * the higher layer. Note that the "should" in the second property above 1483 * permits this. 1484 */ 1485 enum pkt_hash_types { 1486 PKT_HASH_TYPE_NONE, /* Undefined type */ 1487 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1488 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1489 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1490 }; 1491 1492 static inline void skb_clear_hash(struct sk_buff *skb) 1493 { 1494 skb->hash = 0; 1495 skb->sw_hash = 0; 1496 skb->l4_hash = 0; 1497 } 1498 1499 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1500 { 1501 if (!skb->l4_hash) 1502 skb_clear_hash(skb); 1503 } 1504 1505 static inline void 1506 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1507 { 1508 skb->l4_hash = is_l4; 1509 skb->sw_hash = is_sw; 1510 skb->hash = hash; 1511 } 1512 1513 static inline void 1514 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1515 { 1516 /* Used by drivers to set hash from HW */ 1517 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1518 } 1519 1520 static inline void 1521 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1522 { 1523 __skb_set_hash(skb, hash, true, is_l4); 1524 } 1525 1526 void __skb_get_hash(struct sk_buff *skb); 1527 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1528 u32 skb_get_poff(const struct sk_buff *skb); 1529 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1530 const struct flow_keys_basic *keys, int hlen); 1531 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1532 const void *data, int hlen_proto); 1533 1534 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1535 int thoff, u8 ip_proto) 1536 { 1537 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1538 } 1539 1540 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1541 const struct flow_dissector_key *key, 1542 unsigned int key_count); 1543 1544 struct bpf_flow_dissector; 1545 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1546 __be16 proto, int nhoff, int hlen, unsigned int flags); 1547 1548 bool __skb_flow_dissect(const struct net *net, 1549 const struct sk_buff *skb, 1550 struct flow_dissector *flow_dissector, 1551 void *target_container, const void *data, 1552 __be16 proto, int nhoff, int hlen, unsigned int flags); 1553 1554 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1555 struct flow_dissector *flow_dissector, 1556 void *target_container, unsigned int flags) 1557 { 1558 return __skb_flow_dissect(NULL, skb, flow_dissector, 1559 target_container, NULL, 0, 0, 0, flags); 1560 } 1561 1562 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1563 struct flow_keys *flow, 1564 unsigned int flags) 1565 { 1566 memset(flow, 0, sizeof(*flow)); 1567 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1568 flow, NULL, 0, 0, 0, flags); 1569 } 1570 1571 static inline bool 1572 skb_flow_dissect_flow_keys_basic(const struct net *net, 1573 const struct sk_buff *skb, 1574 struct flow_keys_basic *flow, 1575 const void *data, __be16 proto, 1576 int nhoff, int hlen, unsigned int flags) 1577 { 1578 memset(flow, 0, sizeof(*flow)); 1579 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1580 data, proto, nhoff, hlen, flags); 1581 } 1582 1583 void skb_flow_dissect_meta(const struct sk_buff *skb, 1584 struct flow_dissector *flow_dissector, 1585 void *target_container); 1586 1587 /* Gets a skb connection tracking info, ctinfo map should be a 1588 * map of mapsize to translate enum ip_conntrack_info states 1589 * to user states. 1590 */ 1591 void 1592 skb_flow_dissect_ct(const struct sk_buff *skb, 1593 struct flow_dissector *flow_dissector, 1594 void *target_container, 1595 u16 *ctinfo_map, size_t mapsize, 1596 bool post_ct, u16 zone); 1597 void 1598 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1599 struct flow_dissector *flow_dissector, 1600 void *target_container); 1601 1602 void skb_flow_dissect_hash(const struct sk_buff *skb, 1603 struct flow_dissector *flow_dissector, 1604 void *target_container); 1605 1606 static inline __u32 skb_get_hash(struct sk_buff *skb) 1607 { 1608 if (!skb->l4_hash && !skb->sw_hash) 1609 __skb_get_hash(skb); 1610 1611 return skb->hash; 1612 } 1613 1614 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1615 { 1616 if (!skb->l4_hash && !skb->sw_hash) { 1617 struct flow_keys keys; 1618 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1619 1620 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1621 } 1622 1623 return skb->hash; 1624 } 1625 1626 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1627 const siphash_key_t *perturb); 1628 1629 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1630 { 1631 return skb->hash; 1632 } 1633 1634 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1635 { 1636 to->hash = from->hash; 1637 to->sw_hash = from->sw_hash; 1638 to->l4_hash = from->l4_hash; 1639 }; 1640 1641 static inline void skb_copy_decrypted(struct sk_buff *to, 1642 const struct sk_buff *from) 1643 { 1644 #ifdef CONFIG_TLS_DEVICE 1645 to->decrypted = from->decrypted; 1646 #endif 1647 } 1648 1649 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1650 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1651 { 1652 return skb->head + skb->end; 1653 } 1654 1655 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1656 { 1657 return skb->end; 1658 } 1659 1660 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1661 { 1662 skb->end = offset; 1663 } 1664 #else 1665 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1666 { 1667 return skb->end; 1668 } 1669 1670 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1671 { 1672 return skb->end - skb->head; 1673 } 1674 1675 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1676 { 1677 skb->end = skb->head + offset; 1678 } 1679 #endif 1680 1681 static inline unsigned int skb_data_area_size(struct sk_buff *skb) 1682 { 1683 return skb_end_pointer(skb) - skb->data; 1684 } 1685 1686 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1687 struct ubuf_info *uarg); 1688 1689 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1690 1691 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1692 bool success); 1693 1694 int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1695 struct iov_iter *from, size_t length); 1696 1697 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1698 struct msghdr *msg, int len) 1699 { 1700 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1701 } 1702 1703 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1704 struct msghdr *msg, int len, 1705 struct ubuf_info *uarg); 1706 1707 /* Internal */ 1708 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1709 1710 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1711 { 1712 return &skb_shinfo(skb)->hwtstamps; 1713 } 1714 1715 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1716 { 1717 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1718 1719 return is_zcopy ? skb_uarg(skb) : NULL; 1720 } 1721 1722 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1723 { 1724 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1725 } 1726 1727 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1728 const struct sk_buff *skb2) 1729 { 1730 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1731 } 1732 1733 static inline void net_zcopy_get(struct ubuf_info *uarg) 1734 { 1735 refcount_inc(&uarg->refcnt); 1736 } 1737 1738 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1739 { 1740 skb_shinfo(skb)->destructor_arg = uarg; 1741 skb_shinfo(skb)->flags |= uarg->flags; 1742 } 1743 1744 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1745 bool *have_ref) 1746 { 1747 if (skb && uarg && !skb_zcopy(skb)) { 1748 if (unlikely(have_ref && *have_ref)) 1749 *have_ref = false; 1750 else 1751 net_zcopy_get(uarg); 1752 skb_zcopy_init(skb, uarg); 1753 } 1754 } 1755 1756 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1757 { 1758 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1759 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1760 } 1761 1762 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1763 { 1764 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1765 } 1766 1767 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1768 { 1769 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1770 } 1771 1772 static inline void net_zcopy_put(struct ubuf_info *uarg) 1773 { 1774 if (uarg) 1775 uarg->callback(NULL, uarg, true); 1776 } 1777 1778 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1779 { 1780 if (uarg) { 1781 if (uarg->callback == msg_zerocopy_callback) 1782 msg_zerocopy_put_abort(uarg, have_uref); 1783 else if (have_uref) 1784 net_zcopy_put(uarg); 1785 } 1786 } 1787 1788 /* Release a reference on a zerocopy structure */ 1789 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1790 { 1791 struct ubuf_info *uarg = skb_zcopy(skb); 1792 1793 if (uarg) { 1794 if (!skb_zcopy_is_nouarg(skb)) 1795 uarg->callback(skb, uarg, zerocopy_success); 1796 1797 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1798 } 1799 } 1800 1801 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1802 { 1803 skb->next = NULL; 1804 } 1805 1806 /* Iterate through singly-linked GSO fragments of an skb. */ 1807 #define skb_list_walk_safe(first, skb, next_skb) \ 1808 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1809 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1810 1811 static inline void skb_list_del_init(struct sk_buff *skb) 1812 { 1813 __list_del_entry(&skb->list); 1814 skb_mark_not_on_list(skb); 1815 } 1816 1817 /** 1818 * skb_queue_empty - check if a queue is empty 1819 * @list: queue head 1820 * 1821 * Returns true if the queue is empty, false otherwise. 1822 */ 1823 static inline int skb_queue_empty(const struct sk_buff_head *list) 1824 { 1825 return list->next == (const struct sk_buff *) list; 1826 } 1827 1828 /** 1829 * skb_queue_empty_lockless - check if a queue is empty 1830 * @list: queue head 1831 * 1832 * Returns true if the queue is empty, false otherwise. 1833 * This variant can be used in lockless contexts. 1834 */ 1835 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1836 { 1837 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1838 } 1839 1840 1841 /** 1842 * skb_queue_is_last - check if skb is the last entry in the queue 1843 * @list: queue head 1844 * @skb: buffer 1845 * 1846 * Returns true if @skb is the last buffer on the list. 1847 */ 1848 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1849 const struct sk_buff *skb) 1850 { 1851 return skb->next == (const struct sk_buff *) list; 1852 } 1853 1854 /** 1855 * skb_queue_is_first - check if skb is the first entry in the queue 1856 * @list: queue head 1857 * @skb: buffer 1858 * 1859 * Returns true if @skb is the first buffer on the list. 1860 */ 1861 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1862 const struct sk_buff *skb) 1863 { 1864 return skb->prev == (const struct sk_buff *) list; 1865 } 1866 1867 /** 1868 * skb_queue_next - return the next packet in the queue 1869 * @list: queue head 1870 * @skb: current buffer 1871 * 1872 * Return the next packet in @list after @skb. It is only valid to 1873 * call this if skb_queue_is_last() evaluates to false. 1874 */ 1875 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1876 const struct sk_buff *skb) 1877 { 1878 /* This BUG_ON may seem severe, but if we just return then we 1879 * are going to dereference garbage. 1880 */ 1881 BUG_ON(skb_queue_is_last(list, skb)); 1882 return skb->next; 1883 } 1884 1885 /** 1886 * skb_queue_prev - return the prev packet in the queue 1887 * @list: queue head 1888 * @skb: current buffer 1889 * 1890 * Return the prev packet in @list before @skb. It is only valid to 1891 * call this if skb_queue_is_first() evaluates to false. 1892 */ 1893 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1894 const struct sk_buff *skb) 1895 { 1896 /* This BUG_ON may seem severe, but if we just return then we 1897 * are going to dereference garbage. 1898 */ 1899 BUG_ON(skb_queue_is_first(list, skb)); 1900 return skb->prev; 1901 } 1902 1903 /** 1904 * skb_get - reference buffer 1905 * @skb: buffer to reference 1906 * 1907 * Makes another reference to a socket buffer and returns a pointer 1908 * to the buffer. 1909 */ 1910 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1911 { 1912 refcount_inc(&skb->users); 1913 return skb; 1914 } 1915 1916 /* 1917 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1918 */ 1919 1920 /** 1921 * skb_cloned - is the buffer a clone 1922 * @skb: buffer to check 1923 * 1924 * Returns true if the buffer was generated with skb_clone() and is 1925 * one of multiple shared copies of the buffer. Cloned buffers are 1926 * shared data so must not be written to under normal circumstances. 1927 */ 1928 static inline int skb_cloned(const struct sk_buff *skb) 1929 { 1930 return skb->cloned && 1931 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1932 } 1933 1934 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1935 { 1936 might_sleep_if(gfpflags_allow_blocking(pri)); 1937 1938 if (skb_cloned(skb)) 1939 return pskb_expand_head(skb, 0, 0, pri); 1940 1941 return 0; 1942 } 1943 1944 /* This variant of skb_unclone() makes sure skb->truesize 1945 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1946 * 1947 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1948 * when various debugging features are in place. 1949 */ 1950 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1951 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1952 { 1953 might_sleep_if(gfpflags_allow_blocking(pri)); 1954 1955 if (skb_cloned(skb)) 1956 return __skb_unclone_keeptruesize(skb, pri); 1957 return 0; 1958 } 1959 1960 /** 1961 * skb_header_cloned - is the header a clone 1962 * @skb: buffer to check 1963 * 1964 * Returns true if modifying the header part of the buffer requires 1965 * the data to be copied. 1966 */ 1967 static inline int skb_header_cloned(const struct sk_buff *skb) 1968 { 1969 int dataref; 1970 1971 if (!skb->cloned) 1972 return 0; 1973 1974 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1975 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1976 return dataref != 1; 1977 } 1978 1979 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1980 { 1981 might_sleep_if(gfpflags_allow_blocking(pri)); 1982 1983 if (skb_header_cloned(skb)) 1984 return pskb_expand_head(skb, 0, 0, pri); 1985 1986 return 0; 1987 } 1988 1989 /** 1990 * __skb_header_release - release reference to header 1991 * @skb: buffer to operate on 1992 */ 1993 static inline void __skb_header_release(struct sk_buff *skb) 1994 { 1995 skb->nohdr = 1; 1996 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1997 } 1998 1999 2000 /** 2001 * skb_shared - is the buffer shared 2002 * @skb: buffer to check 2003 * 2004 * Returns true if more than one person has a reference to this 2005 * buffer. 2006 */ 2007 static inline int skb_shared(const struct sk_buff *skb) 2008 { 2009 return refcount_read(&skb->users) != 1; 2010 } 2011 2012 /** 2013 * skb_share_check - check if buffer is shared and if so clone it 2014 * @skb: buffer to check 2015 * @pri: priority for memory allocation 2016 * 2017 * If the buffer is shared the buffer is cloned and the old copy 2018 * drops a reference. A new clone with a single reference is returned. 2019 * If the buffer is not shared the original buffer is returned. When 2020 * being called from interrupt status or with spinlocks held pri must 2021 * be GFP_ATOMIC. 2022 * 2023 * NULL is returned on a memory allocation failure. 2024 */ 2025 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2026 { 2027 might_sleep_if(gfpflags_allow_blocking(pri)); 2028 if (skb_shared(skb)) { 2029 struct sk_buff *nskb = skb_clone(skb, pri); 2030 2031 if (likely(nskb)) 2032 consume_skb(skb); 2033 else 2034 kfree_skb(skb); 2035 skb = nskb; 2036 } 2037 return skb; 2038 } 2039 2040 /* 2041 * Copy shared buffers into a new sk_buff. We effectively do COW on 2042 * packets to handle cases where we have a local reader and forward 2043 * and a couple of other messy ones. The normal one is tcpdumping 2044 * a packet thats being forwarded. 2045 */ 2046 2047 /** 2048 * skb_unshare - make a copy of a shared buffer 2049 * @skb: buffer to check 2050 * @pri: priority for memory allocation 2051 * 2052 * If the socket buffer is a clone then this function creates a new 2053 * copy of the data, drops a reference count on the old copy and returns 2054 * the new copy with the reference count at 1. If the buffer is not a clone 2055 * the original buffer is returned. When called with a spinlock held or 2056 * from interrupt state @pri must be %GFP_ATOMIC 2057 * 2058 * %NULL is returned on a memory allocation failure. 2059 */ 2060 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2061 gfp_t pri) 2062 { 2063 might_sleep_if(gfpflags_allow_blocking(pri)); 2064 if (skb_cloned(skb)) { 2065 struct sk_buff *nskb = skb_copy(skb, pri); 2066 2067 /* Free our shared copy */ 2068 if (likely(nskb)) 2069 consume_skb(skb); 2070 else 2071 kfree_skb(skb); 2072 skb = nskb; 2073 } 2074 return skb; 2075 } 2076 2077 /** 2078 * skb_peek - peek at the head of an &sk_buff_head 2079 * @list_: list to peek at 2080 * 2081 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2082 * be careful with this one. A peek leaves the buffer on the 2083 * list and someone else may run off with it. You must hold 2084 * the appropriate locks or have a private queue to do this. 2085 * 2086 * Returns %NULL for an empty list or a pointer to the head element. 2087 * The reference count is not incremented and the reference is therefore 2088 * volatile. Use with caution. 2089 */ 2090 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2091 { 2092 struct sk_buff *skb = list_->next; 2093 2094 if (skb == (struct sk_buff *)list_) 2095 skb = NULL; 2096 return skb; 2097 } 2098 2099 /** 2100 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2101 * @list_: list to peek at 2102 * 2103 * Like skb_peek(), but the caller knows that the list is not empty. 2104 */ 2105 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2106 { 2107 return list_->next; 2108 } 2109 2110 /** 2111 * skb_peek_next - peek skb following the given one from a queue 2112 * @skb: skb to start from 2113 * @list_: list to peek at 2114 * 2115 * Returns %NULL when the end of the list is met or a pointer to the 2116 * next element. The reference count is not incremented and the 2117 * reference is therefore volatile. Use with caution. 2118 */ 2119 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2120 const struct sk_buff_head *list_) 2121 { 2122 struct sk_buff *next = skb->next; 2123 2124 if (next == (struct sk_buff *)list_) 2125 next = NULL; 2126 return next; 2127 } 2128 2129 /** 2130 * skb_peek_tail - peek at the tail of an &sk_buff_head 2131 * @list_: list to peek at 2132 * 2133 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2134 * be careful with this one. A peek leaves the buffer on the 2135 * list and someone else may run off with it. You must hold 2136 * the appropriate locks or have a private queue to do this. 2137 * 2138 * Returns %NULL for an empty list or a pointer to the tail element. 2139 * The reference count is not incremented and the reference is therefore 2140 * volatile. Use with caution. 2141 */ 2142 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2143 { 2144 struct sk_buff *skb = READ_ONCE(list_->prev); 2145 2146 if (skb == (struct sk_buff *)list_) 2147 skb = NULL; 2148 return skb; 2149 2150 } 2151 2152 /** 2153 * skb_queue_len - get queue length 2154 * @list_: list to measure 2155 * 2156 * Return the length of an &sk_buff queue. 2157 */ 2158 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2159 { 2160 return list_->qlen; 2161 } 2162 2163 /** 2164 * skb_queue_len_lockless - get queue length 2165 * @list_: list to measure 2166 * 2167 * Return the length of an &sk_buff queue. 2168 * This variant can be used in lockless contexts. 2169 */ 2170 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2171 { 2172 return READ_ONCE(list_->qlen); 2173 } 2174 2175 /** 2176 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2177 * @list: queue to initialize 2178 * 2179 * This initializes only the list and queue length aspects of 2180 * an sk_buff_head object. This allows to initialize the list 2181 * aspects of an sk_buff_head without reinitializing things like 2182 * the spinlock. It can also be used for on-stack sk_buff_head 2183 * objects where the spinlock is known to not be used. 2184 */ 2185 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2186 { 2187 list->prev = list->next = (struct sk_buff *)list; 2188 list->qlen = 0; 2189 } 2190 2191 /* 2192 * This function creates a split out lock class for each invocation; 2193 * this is needed for now since a whole lot of users of the skb-queue 2194 * infrastructure in drivers have different locking usage (in hardirq) 2195 * than the networking core (in softirq only). In the long run either the 2196 * network layer or drivers should need annotation to consolidate the 2197 * main types of usage into 3 classes. 2198 */ 2199 static inline void skb_queue_head_init(struct sk_buff_head *list) 2200 { 2201 spin_lock_init(&list->lock); 2202 __skb_queue_head_init(list); 2203 } 2204 2205 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2206 struct lock_class_key *class) 2207 { 2208 skb_queue_head_init(list); 2209 lockdep_set_class(&list->lock, class); 2210 } 2211 2212 /* 2213 * Insert an sk_buff on a list. 2214 * 2215 * The "__skb_xxxx()" functions are the non-atomic ones that 2216 * can only be called with interrupts disabled. 2217 */ 2218 static inline void __skb_insert(struct sk_buff *newsk, 2219 struct sk_buff *prev, struct sk_buff *next, 2220 struct sk_buff_head *list) 2221 { 2222 /* See skb_queue_empty_lockless() and skb_peek_tail() 2223 * for the opposite READ_ONCE() 2224 */ 2225 WRITE_ONCE(newsk->next, next); 2226 WRITE_ONCE(newsk->prev, prev); 2227 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2228 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2229 WRITE_ONCE(list->qlen, list->qlen + 1); 2230 } 2231 2232 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2233 struct sk_buff *prev, 2234 struct sk_buff *next) 2235 { 2236 struct sk_buff *first = list->next; 2237 struct sk_buff *last = list->prev; 2238 2239 WRITE_ONCE(first->prev, prev); 2240 WRITE_ONCE(prev->next, first); 2241 2242 WRITE_ONCE(last->next, next); 2243 WRITE_ONCE(next->prev, last); 2244 } 2245 2246 /** 2247 * skb_queue_splice - join two skb lists, this is designed for stacks 2248 * @list: the new list to add 2249 * @head: the place to add it in the first list 2250 */ 2251 static inline void skb_queue_splice(const struct sk_buff_head *list, 2252 struct sk_buff_head *head) 2253 { 2254 if (!skb_queue_empty(list)) { 2255 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2256 head->qlen += list->qlen; 2257 } 2258 } 2259 2260 /** 2261 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2262 * @list: the new list to add 2263 * @head: the place to add it in the first list 2264 * 2265 * The list at @list is reinitialised 2266 */ 2267 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2268 struct sk_buff_head *head) 2269 { 2270 if (!skb_queue_empty(list)) { 2271 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2272 head->qlen += list->qlen; 2273 __skb_queue_head_init(list); 2274 } 2275 } 2276 2277 /** 2278 * skb_queue_splice_tail - join two skb lists, each list being a queue 2279 * @list: the new list to add 2280 * @head: the place to add it in the first list 2281 */ 2282 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2283 struct sk_buff_head *head) 2284 { 2285 if (!skb_queue_empty(list)) { 2286 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2287 head->qlen += list->qlen; 2288 } 2289 } 2290 2291 /** 2292 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2293 * @list: the new list to add 2294 * @head: the place to add it in the first list 2295 * 2296 * Each of the lists is a queue. 2297 * The list at @list is reinitialised 2298 */ 2299 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2300 struct sk_buff_head *head) 2301 { 2302 if (!skb_queue_empty(list)) { 2303 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2304 head->qlen += list->qlen; 2305 __skb_queue_head_init(list); 2306 } 2307 } 2308 2309 /** 2310 * __skb_queue_after - queue a buffer at the list head 2311 * @list: list to use 2312 * @prev: place after this buffer 2313 * @newsk: buffer to queue 2314 * 2315 * Queue a buffer int the middle of a list. This function takes no locks 2316 * and you must therefore hold required locks before calling it. 2317 * 2318 * A buffer cannot be placed on two lists at the same time. 2319 */ 2320 static inline void __skb_queue_after(struct sk_buff_head *list, 2321 struct sk_buff *prev, 2322 struct sk_buff *newsk) 2323 { 2324 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2325 } 2326 2327 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2328 struct sk_buff_head *list); 2329 2330 static inline void __skb_queue_before(struct sk_buff_head *list, 2331 struct sk_buff *next, 2332 struct sk_buff *newsk) 2333 { 2334 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2335 } 2336 2337 /** 2338 * __skb_queue_head - queue a buffer at the list head 2339 * @list: list to use 2340 * @newsk: buffer to queue 2341 * 2342 * Queue a buffer at the start of a list. This function takes no locks 2343 * and you must therefore hold required locks before calling it. 2344 * 2345 * A buffer cannot be placed on two lists at the same time. 2346 */ 2347 static inline void __skb_queue_head(struct sk_buff_head *list, 2348 struct sk_buff *newsk) 2349 { 2350 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2351 } 2352 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2353 2354 /** 2355 * __skb_queue_tail - queue a buffer at the list tail 2356 * @list: list to use 2357 * @newsk: buffer to queue 2358 * 2359 * Queue a buffer at the end of a list. This function takes no locks 2360 * and you must therefore hold required locks before calling it. 2361 * 2362 * A buffer cannot be placed on two lists at the same time. 2363 */ 2364 static inline void __skb_queue_tail(struct sk_buff_head *list, 2365 struct sk_buff *newsk) 2366 { 2367 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2368 } 2369 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2370 2371 /* 2372 * remove sk_buff from list. _Must_ be called atomically, and with 2373 * the list known.. 2374 */ 2375 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2376 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2377 { 2378 struct sk_buff *next, *prev; 2379 2380 WRITE_ONCE(list->qlen, list->qlen - 1); 2381 next = skb->next; 2382 prev = skb->prev; 2383 skb->next = skb->prev = NULL; 2384 WRITE_ONCE(next->prev, prev); 2385 WRITE_ONCE(prev->next, next); 2386 } 2387 2388 /** 2389 * __skb_dequeue - remove from the head of the queue 2390 * @list: list to dequeue from 2391 * 2392 * Remove the head of the list. This function does not take any locks 2393 * so must be used with appropriate locks held only. The head item is 2394 * returned or %NULL if the list is empty. 2395 */ 2396 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2397 { 2398 struct sk_buff *skb = skb_peek(list); 2399 if (skb) 2400 __skb_unlink(skb, list); 2401 return skb; 2402 } 2403 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2404 2405 /** 2406 * __skb_dequeue_tail - remove from the tail of the queue 2407 * @list: list to dequeue from 2408 * 2409 * Remove the tail of the list. This function does not take any locks 2410 * so must be used with appropriate locks held only. The tail item is 2411 * returned or %NULL if the list is empty. 2412 */ 2413 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2414 { 2415 struct sk_buff *skb = skb_peek_tail(list); 2416 if (skb) 2417 __skb_unlink(skb, list); 2418 return skb; 2419 } 2420 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2421 2422 2423 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2424 { 2425 return skb->data_len; 2426 } 2427 2428 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2429 { 2430 return skb->len - skb->data_len; 2431 } 2432 2433 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2434 { 2435 unsigned int i, len = 0; 2436 2437 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2438 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2439 return len; 2440 } 2441 2442 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2443 { 2444 return skb_headlen(skb) + __skb_pagelen(skb); 2445 } 2446 2447 /** 2448 * __skb_fill_page_desc - initialise a paged fragment in an skb 2449 * @skb: buffer containing fragment to be initialised 2450 * @i: paged fragment index to initialise 2451 * @page: the page to use for this fragment 2452 * @off: the offset to the data with @page 2453 * @size: the length of the data 2454 * 2455 * Initialises the @i'th fragment of @skb to point to &size bytes at 2456 * offset @off within @page. 2457 * 2458 * Does not take any additional reference on the fragment. 2459 */ 2460 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2461 struct page *page, int off, int size) 2462 { 2463 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2464 2465 /* 2466 * Propagate page pfmemalloc to the skb if we can. The problem is 2467 * that not all callers have unique ownership of the page but rely 2468 * on page_is_pfmemalloc doing the right thing(tm). 2469 */ 2470 frag->bv_page = page; 2471 frag->bv_offset = off; 2472 skb_frag_size_set(frag, size); 2473 2474 page = compound_head(page); 2475 if (page_is_pfmemalloc(page)) 2476 skb->pfmemalloc = true; 2477 } 2478 2479 /** 2480 * skb_fill_page_desc - initialise a paged fragment in an skb 2481 * @skb: buffer containing fragment to be initialised 2482 * @i: paged fragment index to initialise 2483 * @page: the page to use for this fragment 2484 * @off: the offset to the data with @page 2485 * @size: the length of the data 2486 * 2487 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2488 * @skb to point to @size bytes at offset @off within @page. In 2489 * addition updates @skb such that @i is the last fragment. 2490 * 2491 * Does not take any additional reference on the fragment. 2492 */ 2493 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2494 struct page *page, int off, int size) 2495 { 2496 __skb_fill_page_desc(skb, i, page, off, size); 2497 skb_shinfo(skb)->nr_frags = i + 1; 2498 } 2499 2500 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2501 int size, unsigned int truesize); 2502 2503 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2504 unsigned int truesize); 2505 2506 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2507 2508 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2509 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2510 { 2511 return skb->head + skb->tail; 2512 } 2513 2514 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2515 { 2516 skb->tail = skb->data - skb->head; 2517 } 2518 2519 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2520 { 2521 skb_reset_tail_pointer(skb); 2522 skb->tail += offset; 2523 } 2524 2525 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2526 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2527 { 2528 return skb->tail; 2529 } 2530 2531 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2532 { 2533 skb->tail = skb->data; 2534 } 2535 2536 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2537 { 2538 skb->tail = skb->data + offset; 2539 } 2540 2541 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2542 2543 /* 2544 * Add data to an sk_buff 2545 */ 2546 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2547 void *skb_put(struct sk_buff *skb, unsigned int len); 2548 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2549 { 2550 void *tmp = skb_tail_pointer(skb); 2551 SKB_LINEAR_ASSERT(skb); 2552 skb->tail += len; 2553 skb->len += len; 2554 return tmp; 2555 } 2556 2557 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2558 { 2559 void *tmp = __skb_put(skb, len); 2560 2561 memset(tmp, 0, len); 2562 return tmp; 2563 } 2564 2565 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2566 unsigned int len) 2567 { 2568 void *tmp = __skb_put(skb, len); 2569 2570 memcpy(tmp, data, len); 2571 return tmp; 2572 } 2573 2574 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2575 { 2576 *(u8 *)__skb_put(skb, 1) = val; 2577 } 2578 2579 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2580 { 2581 void *tmp = skb_put(skb, len); 2582 2583 memset(tmp, 0, len); 2584 2585 return tmp; 2586 } 2587 2588 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2589 unsigned int len) 2590 { 2591 void *tmp = skb_put(skb, len); 2592 2593 memcpy(tmp, data, len); 2594 2595 return tmp; 2596 } 2597 2598 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2599 { 2600 *(u8 *)skb_put(skb, 1) = val; 2601 } 2602 2603 void *skb_push(struct sk_buff *skb, unsigned int len); 2604 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2605 { 2606 skb->data -= len; 2607 skb->len += len; 2608 return skb->data; 2609 } 2610 2611 void *skb_pull(struct sk_buff *skb, unsigned int len); 2612 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2613 { 2614 skb->len -= len; 2615 BUG_ON(skb->len < skb->data_len); 2616 return skb->data += len; 2617 } 2618 2619 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2620 { 2621 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2622 } 2623 2624 void *skb_pull_data(struct sk_buff *skb, size_t len); 2625 2626 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2627 2628 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2629 { 2630 if (len > skb_headlen(skb) && 2631 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2632 return NULL; 2633 skb->len -= len; 2634 return skb->data += len; 2635 } 2636 2637 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2638 { 2639 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2640 } 2641 2642 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2643 { 2644 if (likely(len <= skb_headlen(skb))) 2645 return true; 2646 if (unlikely(len > skb->len)) 2647 return false; 2648 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2649 } 2650 2651 void skb_condense(struct sk_buff *skb); 2652 2653 /** 2654 * skb_headroom - bytes at buffer head 2655 * @skb: buffer to check 2656 * 2657 * Return the number of bytes of free space at the head of an &sk_buff. 2658 */ 2659 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2660 { 2661 return skb->data - skb->head; 2662 } 2663 2664 /** 2665 * skb_tailroom - bytes at buffer end 2666 * @skb: buffer to check 2667 * 2668 * Return the number of bytes of free space at the tail of an sk_buff 2669 */ 2670 static inline int skb_tailroom(const struct sk_buff *skb) 2671 { 2672 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2673 } 2674 2675 /** 2676 * skb_availroom - bytes at buffer end 2677 * @skb: buffer to check 2678 * 2679 * Return the number of bytes of free space at the tail of an sk_buff 2680 * allocated by sk_stream_alloc() 2681 */ 2682 static inline int skb_availroom(const struct sk_buff *skb) 2683 { 2684 if (skb_is_nonlinear(skb)) 2685 return 0; 2686 2687 return skb->end - skb->tail - skb->reserved_tailroom; 2688 } 2689 2690 /** 2691 * skb_reserve - adjust headroom 2692 * @skb: buffer to alter 2693 * @len: bytes to move 2694 * 2695 * Increase the headroom of an empty &sk_buff by reducing the tail 2696 * room. This is only allowed for an empty buffer. 2697 */ 2698 static inline void skb_reserve(struct sk_buff *skb, int len) 2699 { 2700 skb->data += len; 2701 skb->tail += len; 2702 } 2703 2704 /** 2705 * skb_tailroom_reserve - adjust reserved_tailroom 2706 * @skb: buffer to alter 2707 * @mtu: maximum amount of headlen permitted 2708 * @needed_tailroom: minimum amount of reserved_tailroom 2709 * 2710 * Set reserved_tailroom so that headlen can be as large as possible but 2711 * not larger than mtu and tailroom cannot be smaller than 2712 * needed_tailroom. 2713 * The required headroom should already have been reserved before using 2714 * this function. 2715 */ 2716 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2717 unsigned int needed_tailroom) 2718 { 2719 SKB_LINEAR_ASSERT(skb); 2720 if (mtu < skb_tailroom(skb) - needed_tailroom) 2721 /* use at most mtu */ 2722 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2723 else 2724 /* use up to all available space */ 2725 skb->reserved_tailroom = needed_tailroom; 2726 } 2727 2728 #define ENCAP_TYPE_ETHER 0 2729 #define ENCAP_TYPE_IPPROTO 1 2730 2731 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2732 __be16 protocol) 2733 { 2734 skb->inner_protocol = protocol; 2735 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2736 } 2737 2738 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2739 __u8 ipproto) 2740 { 2741 skb->inner_ipproto = ipproto; 2742 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2743 } 2744 2745 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2746 { 2747 skb->inner_mac_header = skb->mac_header; 2748 skb->inner_network_header = skb->network_header; 2749 skb->inner_transport_header = skb->transport_header; 2750 } 2751 2752 static inline void skb_reset_mac_len(struct sk_buff *skb) 2753 { 2754 skb->mac_len = skb->network_header - skb->mac_header; 2755 } 2756 2757 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2758 *skb) 2759 { 2760 return skb->head + skb->inner_transport_header; 2761 } 2762 2763 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2764 { 2765 return skb_inner_transport_header(skb) - skb->data; 2766 } 2767 2768 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2769 { 2770 skb->inner_transport_header = skb->data - skb->head; 2771 } 2772 2773 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2774 const int offset) 2775 { 2776 skb_reset_inner_transport_header(skb); 2777 skb->inner_transport_header += offset; 2778 } 2779 2780 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2781 { 2782 return skb->head + skb->inner_network_header; 2783 } 2784 2785 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2786 { 2787 skb->inner_network_header = skb->data - skb->head; 2788 } 2789 2790 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2791 const int offset) 2792 { 2793 skb_reset_inner_network_header(skb); 2794 skb->inner_network_header += offset; 2795 } 2796 2797 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2798 { 2799 return skb->head + skb->inner_mac_header; 2800 } 2801 2802 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2803 { 2804 skb->inner_mac_header = skb->data - skb->head; 2805 } 2806 2807 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2808 const int offset) 2809 { 2810 skb_reset_inner_mac_header(skb); 2811 skb->inner_mac_header += offset; 2812 } 2813 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2814 { 2815 return skb->transport_header != (typeof(skb->transport_header))~0U; 2816 } 2817 2818 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2819 { 2820 return skb->head + skb->transport_header; 2821 } 2822 2823 static inline void skb_reset_transport_header(struct sk_buff *skb) 2824 { 2825 skb->transport_header = skb->data - skb->head; 2826 } 2827 2828 static inline void skb_set_transport_header(struct sk_buff *skb, 2829 const int offset) 2830 { 2831 skb_reset_transport_header(skb); 2832 skb->transport_header += offset; 2833 } 2834 2835 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2836 { 2837 return skb->head + skb->network_header; 2838 } 2839 2840 static inline void skb_reset_network_header(struct sk_buff *skb) 2841 { 2842 skb->network_header = skb->data - skb->head; 2843 } 2844 2845 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2846 { 2847 skb_reset_network_header(skb); 2848 skb->network_header += offset; 2849 } 2850 2851 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2852 { 2853 return skb->head + skb->mac_header; 2854 } 2855 2856 static inline int skb_mac_offset(const struct sk_buff *skb) 2857 { 2858 return skb_mac_header(skb) - skb->data; 2859 } 2860 2861 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2862 { 2863 return skb->network_header - skb->mac_header; 2864 } 2865 2866 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2867 { 2868 return skb->mac_header != (typeof(skb->mac_header))~0U; 2869 } 2870 2871 static inline void skb_unset_mac_header(struct sk_buff *skb) 2872 { 2873 skb->mac_header = (typeof(skb->mac_header))~0U; 2874 } 2875 2876 static inline void skb_reset_mac_header(struct sk_buff *skb) 2877 { 2878 skb->mac_header = skb->data - skb->head; 2879 } 2880 2881 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2882 { 2883 skb_reset_mac_header(skb); 2884 skb->mac_header += offset; 2885 } 2886 2887 static inline void skb_pop_mac_header(struct sk_buff *skb) 2888 { 2889 skb->mac_header = skb->network_header; 2890 } 2891 2892 static inline void skb_probe_transport_header(struct sk_buff *skb) 2893 { 2894 struct flow_keys_basic keys; 2895 2896 if (skb_transport_header_was_set(skb)) 2897 return; 2898 2899 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2900 NULL, 0, 0, 0, 0)) 2901 skb_set_transport_header(skb, keys.control.thoff); 2902 } 2903 2904 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2905 { 2906 if (skb_mac_header_was_set(skb)) { 2907 const unsigned char *old_mac = skb_mac_header(skb); 2908 2909 skb_set_mac_header(skb, -skb->mac_len); 2910 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2911 } 2912 } 2913 2914 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2915 { 2916 return skb->csum_start - skb_headroom(skb); 2917 } 2918 2919 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2920 { 2921 return skb->head + skb->csum_start; 2922 } 2923 2924 static inline int skb_transport_offset(const struct sk_buff *skb) 2925 { 2926 return skb_transport_header(skb) - skb->data; 2927 } 2928 2929 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2930 { 2931 return skb->transport_header - skb->network_header; 2932 } 2933 2934 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2935 { 2936 return skb->inner_transport_header - skb->inner_network_header; 2937 } 2938 2939 static inline int skb_network_offset(const struct sk_buff *skb) 2940 { 2941 return skb_network_header(skb) - skb->data; 2942 } 2943 2944 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2945 { 2946 return skb_inner_network_header(skb) - skb->data; 2947 } 2948 2949 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2950 { 2951 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2952 } 2953 2954 /* 2955 * CPUs often take a performance hit when accessing unaligned memory 2956 * locations. The actual performance hit varies, it can be small if the 2957 * hardware handles it or large if we have to take an exception and fix it 2958 * in software. 2959 * 2960 * Since an ethernet header is 14 bytes network drivers often end up with 2961 * the IP header at an unaligned offset. The IP header can be aligned by 2962 * shifting the start of the packet by 2 bytes. Drivers should do this 2963 * with: 2964 * 2965 * skb_reserve(skb, NET_IP_ALIGN); 2966 * 2967 * The downside to this alignment of the IP header is that the DMA is now 2968 * unaligned. On some architectures the cost of an unaligned DMA is high 2969 * and this cost outweighs the gains made by aligning the IP header. 2970 * 2971 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2972 * to be overridden. 2973 */ 2974 #ifndef NET_IP_ALIGN 2975 #define NET_IP_ALIGN 2 2976 #endif 2977 2978 /* 2979 * The networking layer reserves some headroom in skb data (via 2980 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2981 * the header has to grow. In the default case, if the header has to grow 2982 * 32 bytes or less we avoid the reallocation. 2983 * 2984 * Unfortunately this headroom changes the DMA alignment of the resulting 2985 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2986 * on some architectures. An architecture can override this value, 2987 * perhaps setting it to a cacheline in size (since that will maintain 2988 * cacheline alignment of the DMA). It must be a power of 2. 2989 * 2990 * Various parts of the networking layer expect at least 32 bytes of 2991 * headroom, you should not reduce this. 2992 * 2993 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2994 * to reduce average number of cache lines per packet. 2995 * get_rps_cpu() for example only access one 64 bytes aligned block : 2996 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2997 */ 2998 #ifndef NET_SKB_PAD 2999 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3000 #endif 3001 3002 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3003 3004 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3005 { 3006 if (WARN_ON(skb_is_nonlinear(skb))) 3007 return; 3008 skb->len = len; 3009 skb_set_tail_pointer(skb, len); 3010 } 3011 3012 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3013 { 3014 __skb_set_length(skb, len); 3015 } 3016 3017 void skb_trim(struct sk_buff *skb, unsigned int len); 3018 3019 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3020 { 3021 if (skb->data_len) 3022 return ___pskb_trim(skb, len); 3023 __skb_trim(skb, len); 3024 return 0; 3025 } 3026 3027 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3028 { 3029 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3030 } 3031 3032 /** 3033 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3034 * @skb: buffer to alter 3035 * @len: new length 3036 * 3037 * This is identical to pskb_trim except that the caller knows that 3038 * the skb is not cloned so we should never get an error due to out- 3039 * of-memory. 3040 */ 3041 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3042 { 3043 int err = pskb_trim(skb, len); 3044 BUG_ON(err); 3045 } 3046 3047 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3048 { 3049 unsigned int diff = len - skb->len; 3050 3051 if (skb_tailroom(skb) < diff) { 3052 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3053 GFP_ATOMIC); 3054 if (ret) 3055 return ret; 3056 } 3057 __skb_set_length(skb, len); 3058 return 0; 3059 } 3060 3061 /** 3062 * skb_orphan - orphan a buffer 3063 * @skb: buffer to orphan 3064 * 3065 * If a buffer currently has an owner then we call the owner's 3066 * destructor function and make the @skb unowned. The buffer continues 3067 * to exist but is no longer charged to its former owner. 3068 */ 3069 static inline void skb_orphan(struct sk_buff *skb) 3070 { 3071 if (skb->destructor) { 3072 skb->destructor(skb); 3073 skb->destructor = NULL; 3074 skb->sk = NULL; 3075 } else { 3076 BUG_ON(skb->sk); 3077 } 3078 } 3079 3080 /** 3081 * skb_orphan_frags - orphan the frags contained in a buffer 3082 * @skb: buffer to orphan frags from 3083 * @gfp_mask: allocation mask for replacement pages 3084 * 3085 * For each frag in the SKB which needs a destructor (i.e. has an 3086 * owner) create a copy of that frag and release the original 3087 * page by calling the destructor. 3088 */ 3089 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3090 { 3091 if (likely(!skb_zcopy(skb))) 3092 return 0; 3093 if (!skb_zcopy_is_nouarg(skb) && 3094 skb_uarg(skb)->callback == msg_zerocopy_callback) 3095 return 0; 3096 return skb_copy_ubufs(skb, gfp_mask); 3097 } 3098 3099 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3100 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3101 { 3102 if (likely(!skb_zcopy(skb))) 3103 return 0; 3104 return skb_copy_ubufs(skb, gfp_mask); 3105 } 3106 3107 /** 3108 * __skb_queue_purge - empty a list 3109 * @list: list to empty 3110 * 3111 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3112 * the list and one reference dropped. This function does not take the 3113 * list lock and the caller must hold the relevant locks to use it. 3114 */ 3115 static inline void __skb_queue_purge(struct sk_buff_head *list) 3116 { 3117 struct sk_buff *skb; 3118 while ((skb = __skb_dequeue(list)) != NULL) 3119 kfree_skb(skb); 3120 } 3121 void skb_queue_purge(struct sk_buff_head *list); 3122 3123 unsigned int skb_rbtree_purge(struct rb_root *root); 3124 3125 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3126 3127 /** 3128 * netdev_alloc_frag - allocate a page fragment 3129 * @fragsz: fragment size 3130 * 3131 * Allocates a frag from a page for receive buffer. 3132 * Uses GFP_ATOMIC allocations. 3133 */ 3134 static inline void *netdev_alloc_frag(unsigned int fragsz) 3135 { 3136 return __netdev_alloc_frag_align(fragsz, ~0u); 3137 } 3138 3139 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3140 unsigned int align) 3141 { 3142 WARN_ON_ONCE(!is_power_of_2(align)); 3143 return __netdev_alloc_frag_align(fragsz, -align); 3144 } 3145 3146 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3147 gfp_t gfp_mask); 3148 3149 /** 3150 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3151 * @dev: network device to receive on 3152 * @length: length to allocate 3153 * 3154 * Allocate a new &sk_buff and assign it a usage count of one. The 3155 * buffer has unspecified headroom built in. Users should allocate 3156 * the headroom they think they need without accounting for the 3157 * built in space. The built in space is used for optimisations. 3158 * 3159 * %NULL is returned if there is no free memory. Although this function 3160 * allocates memory it can be called from an interrupt. 3161 */ 3162 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3163 unsigned int length) 3164 { 3165 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3166 } 3167 3168 /* legacy helper around __netdev_alloc_skb() */ 3169 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3170 gfp_t gfp_mask) 3171 { 3172 return __netdev_alloc_skb(NULL, length, gfp_mask); 3173 } 3174 3175 /* legacy helper around netdev_alloc_skb() */ 3176 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3177 { 3178 return netdev_alloc_skb(NULL, length); 3179 } 3180 3181 3182 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3183 unsigned int length, gfp_t gfp) 3184 { 3185 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3186 3187 if (NET_IP_ALIGN && skb) 3188 skb_reserve(skb, NET_IP_ALIGN); 3189 return skb; 3190 } 3191 3192 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3193 unsigned int length) 3194 { 3195 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3196 } 3197 3198 static inline void skb_free_frag(void *addr) 3199 { 3200 page_frag_free(addr); 3201 } 3202 3203 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3204 3205 static inline void *napi_alloc_frag(unsigned int fragsz) 3206 { 3207 return __napi_alloc_frag_align(fragsz, ~0u); 3208 } 3209 3210 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3211 unsigned int align) 3212 { 3213 WARN_ON_ONCE(!is_power_of_2(align)); 3214 return __napi_alloc_frag_align(fragsz, -align); 3215 } 3216 3217 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3218 unsigned int length, gfp_t gfp_mask); 3219 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3220 unsigned int length) 3221 { 3222 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3223 } 3224 void napi_consume_skb(struct sk_buff *skb, int budget); 3225 3226 void napi_skb_free_stolen_head(struct sk_buff *skb); 3227 void __kfree_skb_defer(struct sk_buff *skb); 3228 3229 /** 3230 * __dev_alloc_pages - allocate page for network Rx 3231 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3232 * @order: size of the allocation 3233 * 3234 * Allocate a new page. 3235 * 3236 * %NULL is returned if there is no free memory. 3237 */ 3238 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3239 unsigned int order) 3240 { 3241 /* This piece of code contains several assumptions. 3242 * 1. This is for device Rx, therefor a cold page is preferred. 3243 * 2. The expectation is the user wants a compound page. 3244 * 3. If requesting a order 0 page it will not be compound 3245 * due to the check to see if order has a value in prep_new_page 3246 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3247 * code in gfp_to_alloc_flags that should be enforcing this. 3248 */ 3249 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3250 3251 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3252 } 3253 3254 static inline struct page *dev_alloc_pages(unsigned int order) 3255 { 3256 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3257 } 3258 3259 /** 3260 * __dev_alloc_page - allocate a page for network Rx 3261 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3262 * 3263 * Allocate a new page. 3264 * 3265 * %NULL is returned if there is no free memory. 3266 */ 3267 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3268 { 3269 return __dev_alloc_pages(gfp_mask, 0); 3270 } 3271 3272 static inline struct page *dev_alloc_page(void) 3273 { 3274 return dev_alloc_pages(0); 3275 } 3276 3277 /** 3278 * dev_page_is_reusable - check whether a page can be reused for network Rx 3279 * @page: the page to test 3280 * 3281 * A page shouldn't be considered for reusing/recycling if it was allocated 3282 * under memory pressure or at a distant memory node. 3283 * 3284 * Returns false if this page should be returned to page allocator, true 3285 * otherwise. 3286 */ 3287 static inline bool dev_page_is_reusable(const struct page *page) 3288 { 3289 return likely(page_to_nid(page) == numa_mem_id() && 3290 !page_is_pfmemalloc(page)); 3291 } 3292 3293 /** 3294 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3295 * @page: The page that was allocated from skb_alloc_page 3296 * @skb: The skb that may need pfmemalloc set 3297 */ 3298 static inline void skb_propagate_pfmemalloc(const struct page *page, 3299 struct sk_buff *skb) 3300 { 3301 if (page_is_pfmemalloc(page)) 3302 skb->pfmemalloc = true; 3303 } 3304 3305 /** 3306 * skb_frag_off() - Returns the offset of a skb fragment 3307 * @frag: the paged fragment 3308 */ 3309 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3310 { 3311 return frag->bv_offset; 3312 } 3313 3314 /** 3315 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3316 * @frag: skb fragment 3317 * @delta: value to add 3318 */ 3319 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3320 { 3321 frag->bv_offset += delta; 3322 } 3323 3324 /** 3325 * skb_frag_off_set() - Sets the offset of a skb fragment 3326 * @frag: skb fragment 3327 * @offset: offset of fragment 3328 */ 3329 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3330 { 3331 frag->bv_offset = offset; 3332 } 3333 3334 /** 3335 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3336 * @fragto: skb fragment where offset is set 3337 * @fragfrom: skb fragment offset is copied from 3338 */ 3339 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3340 const skb_frag_t *fragfrom) 3341 { 3342 fragto->bv_offset = fragfrom->bv_offset; 3343 } 3344 3345 /** 3346 * skb_frag_page - retrieve the page referred to by a paged fragment 3347 * @frag: the paged fragment 3348 * 3349 * Returns the &struct page associated with @frag. 3350 */ 3351 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3352 { 3353 return frag->bv_page; 3354 } 3355 3356 /** 3357 * __skb_frag_ref - take an addition reference on a paged fragment. 3358 * @frag: the paged fragment 3359 * 3360 * Takes an additional reference on the paged fragment @frag. 3361 */ 3362 static inline void __skb_frag_ref(skb_frag_t *frag) 3363 { 3364 get_page(skb_frag_page(frag)); 3365 } 3366 3367 /** 3368 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3369 * @skb: the buffer 3370 * @f: the fragment offset. 3371 * 3372 * Takes an additional reference on the @f'th paged fragment of @skb. 3373 */ 3374 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3375 { 3376 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3377 } 3378 3379 /** 3380 * __skb_frag_unref - release a reference on a paged fragment. 3381 * @frag: the paged fragment 3382 * @recycle: recycle the page if allocated via page_pool 3383 * 3384 * Releases a reference on the paged fragment @frag 3385 * or recycles the page via the page_pool API. 3386 */ 3387 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3388 { 3389 struct page *page = skb_frag_page(frag); 3390 3391 #ifdef CONFIG_PAGE_POOL 3392 if (recycle && page_pool_return_skb_page(page)) 3393 return; 3394 #endif 3395 put_page(page); 3396 } 3397 3398 /** 3399 * skb_frag_unref - release a reference on a paged fragment of an skb. 3400 * @skb: the buffer 3401 * @f: the fragment offset 3402 * 3403 * Releases a reference on the @f'th paged fragment of @skb. 3404 */ 3405 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3406 { 3407 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle); 3408 } 3409 3410 /** 3411 * skb_frag_address - gets the address of the data contained in a paged fragment 3412 * @frag: the paged fragment buffer 3413 * 3414 * Returns the address of the data within @frag. The page must already 3415 * be mapped. 3416 */ 3417 static inline void *skb_frag_address(const skb_frag_t *frag) 3418 { 3419 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3420 } 3421 3422 /** 3423 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3424 * @frag: the paged fragment buffer 3425 * 3426 * Returns the address of the data within @frag. Checks that the page 3427 * is mapped and returns %NULL otherwise. 3428 */ 3429 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3430 { 3431 void *ptr = page_address(skb_frag_page(frag)); 3432 if (unlikely(!ptr)) 3433 return NULL; 3434 3435 return ptr + skb_frag_off(frag); 3436 } 3437 3438 /** 3439 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3440 * @fragto: skb fragment where page is set 3441 * @fragfrom: skb fragment page is copied from 3442 */ 3443 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3444 const skb_frag_t *fragfrom) 3445 { 3446 fragto->bv_page = fragfrom->bv_page; 3447 } 3448 3449 /** 3450 * __skb_frag_set_page - sets the page contained in a paged fragment 3451 * @frag: the paged fragment 3452 * @page: the page to set 3453 * 3454 * Sets the fragment @frag to contain @page. 3455 */ 3456 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3457 { 3458 frag->bv_page = page; 3459 } 3460 3461 /** 3462 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3463 * @skb: the buffer 3464 * @f: the fragment offset 3465 * @page: the page to set 3466 * 3467 * Sets the @f'th fragment of @skb to contain @page. 3468 */ 3469 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3470 struct page *page) 3471 { 3472 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3473 } 3474 3475 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3476 3477 /** 3478 * skb_frag_dma_map - maps a paged fragment via the DMA API 3479 * @dev: the device to map the fragment to 3480 * @frag: the paged fragment to map 3481 * @offset: the offset within the fragment (starting at the 3482 * fragment's own offset) 3483 * @size: the number of bytes to map 3484 * @dir: the direction of the mapping (``PCI_DMA_*``) 3485 * 3486 * Maps the page associated with @frag to @device. 3487 */ 3488 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3489 const skb_frag_t *frag, 3490 size_t offset, size_t size, 3491 enum dma_data_direction dir) 3492 { 3493 return dma_map_page(dev, skb_frag_page(frag), 3494 skb_frag_off(frag) + offset, size, dir); 3495 } 3496 3497 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3498 gfp_t gfp_mask) 3499 { 3500 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3501 } 3502 3503 3504 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3505 gfp_t gfp_mask) 3506 { 3507 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3508 } 3509 3510 3511 /** 3512 * skb_clone_writable - is the header of a clone writable 3513 * @skb: buffer to check 3514 * @len: length up to which to write 3515 * 3516 * Returns true if modifying the header part of the cloned buffer 3517 * does not requires the data to be copied. 3518 */ 3519 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3520 { 3521 return !skb_header_cloned(skb) && 3522 skb_headroom(skb) + len <= skb->hdr_len; 3523 } 3524 3525 static inline int skb_try_make_writable(struct sk_buff *skb, 3526 unsigned int write_len) 3527 { 3528 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3529 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3530 } 3531 3532 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3533 int cloned) 3534 { 3535 int delta = 0; 3536 3537 if (headroom > skb_headroom(skb)) 3538 delta = headroom - skb_headroom(skb); 3539 3540 if (delta || cloned) 3541 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3542 GFP_ATOMIC); 3543 return 0; 3544 } 3545 3546 /** 3547 * skb_cow - copy header of skb when it is required 3548 * @skb: buffer to cow 3549 * @headroom: needed headroom 3550 * 3551 * If the skb passed lacks sufficient headroom or its data part 3552 * is shared, data is reallocated. If reallocation fails, an error 3553 * is returned and original skb is not changed. 3554 * 3555 * The result is skb with writable area skb->head...skb->tail 3556 * and at least @headroom of space at head. 3557 */ 3558 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3559 { 3560 return __skb_cow(skb, headroom, skb_cloned(skb)); 3561 } 3562 3563 /** 3564 * skb_cow_head - skb_cow but only making the head writable 3565 * @skb: buffer to cow 3566 * @headroom: needed headroom 3567 * 3568 * This function is identical to skb_cow except that we replace the 3569 * skb_cloned check by skb_header_cloned. It should be used when 3570 * you only need to push on some header and do not need to modify 3571 * the data. 3572 */ 3573 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3574 { 3575 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3576 } 3577 3578 /** 3579 * skb_padto - pad an skbuff up to a minimal size 3580 * @skb: buffer to pad 3581 * @len: minimal length 3582 * 3583 * Pads up a buffer to ensure the trailing bytes exist and are 3584 * blanked. If the buffer already contains sufficient data it 3585 * is untouched. Otherwise it is extended. Returns zero on 3586 * success. The skb is freed on error. 3587 */ 3588 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3589 { 3590 unsigned int size = skb->len; 3591 if (likely(size >= len)) 3592 return 0; 3593 return skb_pad(skb, len - size); 3594 } 3595 3596 /** 3597 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3598 * @skb: buffer to pad 3599 * @len: minimal length 3600 * @free_on_error: free buffer on error 3601 * 3602 * Pads up a buffer to ensure the trailing bytes exist and are 3603 * blanked. If the buffer already contains sufficient data it 3604 * is untouched. Otherwise it is extended. Returns zero on 3605 * success. The skb is freed on error if @free_on_error is true. 3606 */ 3607 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3608 unsigned int len, 3609 bool free_on_error) 3610 { 3611 unsigned int size = skb->len; 3612 3613 if (unlikely(size < len)) { 3614 len -= size; 3615 if (__skb_pad(skb, len, free_on_error)) 3616 return -ENOMEM; 3617 __skb_put(skb, len); 3618 } 3619 return 0; 3620 } 3621 3622 /** 3623 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3624 * @skb: buffer to pad 3625 * @len: minimal length 3626 * 3627 * Pads up a buffer to ensure the trailing bytes exist and are 3628 * blanked. If the buffer already contains sufficient data it 3629 * is untouched. Otherwise it is extended. Returns zero on 3630 * success. The skb is freed on error. 3631 */ 3632 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3633 { 3634 return __skb_put_padto(skb, len, true); 3635 } 3636 3637 static inline int skb_add_data(struct sk_buff *skb, 3638 struct iov_iter *from, int copy) 3639 { 3640 const int off = skb->len; 3641 3642 if (skb->ip_summed == CHECKSUM_NONE) { 3643 __wsum csum = 0; 3644 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3645 &csum, from)) { 3646 skb->csum = csum_block_add(skb->csum, csum, off); 3647 return 0; 3648 } 3649 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3650 return 0; 3651 3652 __skb_trim(skb, off); 3653 return -EFAULT; 3654 } 3655 3656 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3657 const struct page *page, int off) 3658 { 3659 if (skb_zcopy(skb)) 3660 return false; 3661 if (i) { 3662 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3663 3664 return page == skb_frag_page(frag) && 3665 off == skb_frag_off(frag) + skb_frag_size(frag); 3666 } 3667 return false; 3668 } 3669 3670 static inline int __skb_linearize(struct sk_buff *skb) 3671 { 3672 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3673 } 3674 3675 /** 3676 * skb_linearize - convert paged skb to linear one 3677 * @skb: buffer to linarize 3678 * 3679 * If there is no free memory -ENOMEM is returned, otherwise zero 3680 * is returned and the old skb data released. 3681 */ 3682 static inline int skb_linearize(struct sk_buff *skb) 3683 { 3684 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3685 } 3686 3687 /** 3688 * skb_has_shared_frag - can any frag be overwritten 3689 * @skb: buffer to test 3690 * 3691 * Return true if the skb has at least one frag that might be modified 3692 * by an external entity (as in vmsplice()/sendfile()) 3693 */ 3694 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3695 { 3696 return skb_is_nonlinear(skb) && 3697 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3698 } 3699 3700 /** 3701 * skb_linearize_cow - make sure skb is linear and writable 3702 * @skb: buffer to process 3703 * 3704 * If there is no free memory -ENOMEM is returned, otherwise zero 3705 * is returned and the old skb data released. 3706 */ 3707 static inline int skb_linearize_cow(struct sk_buff *skb) 3708 { 3709 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3710 __skb_linearize(skb) : 0; 3711 } 3712 3713 static __always_inline void 3714 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3715 unsigned int off) 3716 { 3717 if (skb->ip_summed == CHECKSUM_COMPLETE) 3718 skb->csum = csum_block_sub(skb->csum, 3719 csum_partial(start, len, 0), off); 3720 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3721 skb_checksum_start_offset(skb) < 0) 3722 skb->ip_summed = CHECKSUM_NONE; 3723 } 3724 3725 /** 3726 * skb_postpull_rcsum - update checksum for received skb after pull 3727 * @skb: buffer to update 3728 * @start: start of data before pull 3729 * @len: length of data pulled 3730 * 3731 * After doing a pull on a received packet, you need to call this to 3732 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3733 * CHECKSUM_NONE so that it can be recomputed from scratch. 3734 */ 3735 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3736 const void *start, unsigned int len) 3737 { 3738 if (skb->ip_summed == CHECKSUM_COMPLETE) 3739 skb->csum = wsum_negate(csum_partial(start, len, 3740 wsum_negate(skb->csum))); 3741 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3742 skb_checksum_start_offset(skb) < 0) 3743 skb->ip_summed = CHECKSUM_NONE; 3744 } 3745 3746 static __always_inline void 3747 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3748 unsigned int off) 3749 { 3750 if (skb->ip_summed == CHECKSUM_COMPLETE) 3751 skb->csum = csum_block_add(skb->csum, 3752 csum_partial(start, len, 0), off); 3753 } 3754 3755 /** 3756 * skb_postpush_rcsum - update checksum for received skb after push 3757 * @skb: buffer to update 3758 * @start: start of data after push 3759 * @len: length of data pushed 3760 * 3761 * After doing a push on a received packet, you need to call this to 3762 * update the CHECKSUM_COMPLETE checksum. 3763 */ 3764 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3765 const void *start, unsigned int len) 3766 { 3767 __skb_postpush_rcsum(skb, start, len, 0); 3768 } 3769 3770 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3771 3772 /** 3773 * skb_push_rcsum - push skb and update receive checksum 3774 * @skb: buffer to update 3775 * @len: length of data pulled 3776 * 3777 * This function performs an skb_push on the packet and updates 3778 * the CHECKSUM_COMPLETE checksum. It should be used on 3779 * receive path processing instead of skb_push unless you know 3780 * that the checksum difference is zero (e.g., a valid IP header) 3781 * or you are setting ip_summed to CHECKSUM_NONE. 3782 */ 3783 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3784 { 3785 skb_push(skb, len); 3786 skb_postpush_rcsum(skb, skb->data, len); 3787 return skb->data; 3788 } 3789 3790 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3791 /** 3792 * pskb_trim_rcsum - trim received skb and update checksum 3793 * @skb: buffer to trim 3794 * @len: new length 3795 * 3796 * This is exactly the same as pskb_trim except that it ensures the 3797 * checksum of received packets are still valid after the operation. 3798 * It can change skb pointers. 3799 */ 3800 3801 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3802 { 3803 if (likely(len >= skb->len)) 3804 return 0; 3805 return pskb_trim_rcsum_slow(skb, len); 3806 } 3807 3808 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3809 { 3810 if (skb->ip_summed == CHECKSUM_COMPLETE) 3811 skb->ip_summed = CHECKSUM_NONE; 3812 __skb_trim(skb, len); 3813 return 0; 3814 } 3815 3816 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3817 { 3818 if (skb->ip_summed == CHECKSUM_COMPLETE) 3819 skb->ip_summed = CHECKSUM_NONE; 3820 return __skb_grow(skb, len); 3821 } 3822 3823 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3824 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3825 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3826 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3827 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3828 3829 #define skb_queue_walk(queue, skb) \ 3830 for (skb = (queue)->next; \ 3831 skb != (struct sk_buff *)(queue); \ 3832 skb = skb->next) 3833 3834 #define skb_queue_walk_safe(queue, skb, tmp) \ 3835 for (skb = (queue)->next, tmp = skb->next; \ 3836 skb != (struct sk_buff *)(queue); \ 3837 skb = tmp, tmp = skb->next) 3838 3839 #define skb_queue_walk_from(queue, skb) \ 3840 for (; skb != (struct sk_buff *)(queue); \ 3841 skb = skb->next) 3842 3843 #define skb_rbtree_walk(skb, root) \ 3844 for (skb = skb_rb_first(root); skb != NULL; \ 3845 skb = skb_rb_next(skb)) 3846 3847 #define skb_rbtree_walk_from(skb) \ 3848 for (; skb != NULL; \ 3849 skb = skb_rb_next(skb)) 3850 3851 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3852 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3853 skb = tmp) 3854 3855 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3856 for (tmp = skb->next; \ 3857 skb != (struct sk_buff *)(queue); \ 3858 skb = tmp, tmp = skb->next) 3859 3860 #define skb_queue_reverse_walk(queue, skb) \ 3861 for (skb = (queue)->prev; \ 3862 skb != (struct sk_buff *)(queue); \ 3863 skb = skb->prev) 3864 3865 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3866 for (skb = (queue)->prev, tmp = skb->prev; \ 3867 skb != (struct sk_buff *)(queue); \ 3868 skb = tmp, tmp = skb->prev) 3869 3870 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3871 for (tmp = skb->prev; \ 3872 skb != (struct sk_buff *)(queue); \ 3873 skb = tmp, tmp = skb->prev) 3874 3875 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3876 { 3877 return skb_shinfo(skb)->frag_list != NULL; 3878 } 3879 3880 static inline void skb_frag_list_init(struct sk_buff *skb) 3881 { 3882 skb_shinfo(skb)->frag_list = NULL; 3883 } 3884 3885 #define skb_walk_frags(skb, iter) \ 3886 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3887 3888 3889 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3890 int *err, long *timeo_p, 3891 const struct sk_buff *skb); 3892 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3893 struct sk_buff_head *queue, 3894 unsigned int flags, 3895 int *off, int *err, 3896 struct sk_buff **last); 3897 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3898 struct sk_buff_head *queue, 3899 unsigned int flags, int *off, int *err, 3900 struct sk_buff **last); 3901 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3902 struct sk_buff_head *sk_queue, 3903 unsigned int flags, int *off, int *err); 3904 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3905 __poll_t datagram_poll(struct file *file, struct socket *sock, 3906 struct poll_table_struct *wait); 3907 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3908 struct iov_iter *to, int size); 3909 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3910 struct msghdr *msg, int size) 3911 { 3912 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3913 } 3914 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3915 struct msghdr *msg); 3916 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3917 struct iov_iter *to, int len, 3918 struct ahash_request *hash); 3919 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3920 struct iov_iter *from, int len); 3921 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3922 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3923 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3924 static inline void skb_free_datagram_locked(struct sock *sk, 3925 struct sk_buff *skb) 3926 { 3927 __skb_free_datagram_locked(sk, skb, 0); 3928 } 3929 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3930 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3931 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3932 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3933 int len); 3934 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3935 struct pipe_inode_info *pipe, unsigned int len, 3936 unsigned int flags); 3937 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3938 int len); 3939 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3940 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3941 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3942 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3943 int len, int hlen); 3944 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3945 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3946 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3947 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3948 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3949 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3950 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3951 unsigned int offset); 3952 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3953 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3954 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3955 int skb_vlan_pop(struct sk_buff *skb); 3956 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3957 int skb_eth_pop(struct sk_buff *skb); 3958 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3959 const unsigned char *src); 3960 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3961 int mac_len, bool ethernet); 3962 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3963 bool ethernet); 3964 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3965 int skb_mpls_dec_ttl(struct sk_buff *skb); 3966 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3967 gfp_t gfp); 3968 3969 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3970 { 3971 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3972 } 3973 3974 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3975 { 3976 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3977 } 3978 3979 struct skb_checksum_ops { 3980 __wsum (*update)(const void *mem, int len, __wsum wsum); 3981 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3982 }; 3983 3984 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3985 3986 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3987 __wsum csum, const struct skb_checksum_ops *ops); 3988 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3989 __wsum csum); 3990 3991 static inline void * __must_check 3992 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3993 const void *data, int hlen, void *buffer) 3994 { 3995 if (likely(hlen - offset >= len)) 3996 return (void *)data + offset; 3997 3998 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3999 return NULL; 4000 4001 return buffer; 4002 } 4003 4004 static inline void * __must_check 4005 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4006 { 4007 return __skb_header_pointer(skb, offset, len, skb->data, 4008 skb_headlen(skb), buffer); 4009 } 4010 4011 /** 4012 * skb_needs_linearize - check if we need to linearize a given skb 4013 * depending on the given device features. 4014 * @skb: socket buffer to check 4015 * @features: net device features 4016 * 4017 * Returns true if either: 4018 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4019 * 2. skb is fragmented and the device does not support SG. 4020 */ 4021 static inline bool skb_needs_linearize(struct sk_buff *skb, 4022 netdev_features_t features) 4023 { 4024 return skb_is_nonlinear(skb) && 4025 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4026 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4027 } 4028 4029 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4030 void *to, 4031 const unsigned int len) 4032 { 4033 memcpy(to, skb->data, len); 4034 } 4035 4036 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4037 const int offset, void *to, 4038 const unsigned int len) 4039 { 4040 memcpy(to, skb->data + offset, len); 4041 } 4042 4043 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4044 const void *from, 4045 const unsigned int len) 4046 { 4047 memcpy(skb->data, from, len); 4048 } 4049 4050 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4051 const int offset, 4052 const void *from, 4053 const unsigned int len) 4054 { 4055 memcpy(skb->data + offset, from, len); 4056 } 4057 4058 void skb_init(void); 4059 4060 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4061 { 4062 return skb->tstamp; 4063 } 4064 4065 /** 4066 * skb_get_timestamp - get timestamp from a skb 4067 * @skb: skb to get stamp from 4068 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4069 * 4070 * Timestamps are stored in the skb as offsets to a base timestamp. 4071 * This function converts the offset back to a struct timeval and stores 4072 * it in stamp. 4073 */ 4074 static inline void skb_get_timestamp(const struct sk_buff *skb, 4075 struct __kernel_old_timeval *stamp) 4076 { 4077 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4078 } 4079 4080 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4081 struct __kernel_sock_timeval *stamp) 4082 { 4083 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4084 4085 stamp->tv_sec = ts.tv_sec; 4086 stamp->tv_usec = ts.tv_nsec / 1000; 4087 } 4088 4089 static inline void skb_get_timestampns(const struct sk_buff *skb, 4090 struct __kernel_old_timespec *stamp) 4091 { 4092 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4093 4094 stamp->tv_sec = ts.tv_sec; 4095 stamp->tv_nsec = ts.tv_nsec; 4096 } 4097 4098 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4099 struct __kernel_timespec *stamp) 4100 { 4101 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4102 4103 stamp->tv_sec = ts.tv_sec; 4104 stamp->tv_nsec = ts.tv_nsec; 4105 } 4106 4107 static inline void __net_timestamp(struct sk_buff *skb) 4108 { 4109 skb->tstamp = ktime_get_real(); 4110 skb->mono_delivery_time = 0; 4111 } 4112 4113 static inline ktime_t net_timedelta(ktime_t t) 4114 { 4115 return ktime_sub(ktime_get_real(), t); 4116 } 4117 4118 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4119 bool mono) 4120 { 4121 skb->tstamp = kt; 4122 skb->mono_delivery_time = kt && mono; 4123 } 4124 4125 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4126 4127 /* It is used in the ingress path to clear the delivery_time. 4128 * If needed, set the skb->tstamp to the (rcv) timestamp. 4129 */ 4130 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4131 { 4132 if (skb->mono_delivery_time) { 4133 skb->mono_delivery_time = 0; 4134 if (static_branch_unlikely(&netstamp_needed_key)) 4135 skb->tstamp = ktime_get_real(); 4136 else 4137 skb->tstamp = 0; 4138 } 4139 } 4140 4141 static inline void skb_clear_tstamp(struct sk_buff *skb) 4142 { 4143 if (skb->mono_delivery_time) 4144 return; 4145 4146 skb->tstamp = 0; 4147 } 4148 4149 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4150 { 4151 if (skb->mono_delivery_time) 4152 return 0; 4153 4154 return skb->tstamp; 4155 } 4156 4157 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4158 { 4159 if (!skb->mono_delivery_time && skb->tstamp) 4160 return skb->tstamp; 4161 4162 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4163 return ktime_get_real(); 4164 4165 return 0; 4166 } 4167 4168 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4169 { 4170 return skb_shinfo(skb)->meta_len; 4171 } 4172 4173 static inline void *skb_metadata_end(const struct sk_buff *skb) 4174 { 4175 return skb_mac_header(skb); 4176 } 4177 4178 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4179 const struct sk_buff *skb_b, 4180 u8 meta_len) 4181 { 4182 const void *a = skb_metadata_end(skb_a); 4183 const void *b = skb_metadata_end(skb_b); 4184 /* Using more efficient varaiant than plain call to memcmp(). */ 4185 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4186 u64 diffs = 0; 4187 4188 switch (meta_len) { 4189 #define __it(x, op) (x -= sizeof(u##op)) 4190 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4191 case 32: diffs |= __it_diff(a, b, 64); 4192 fallthrough; 4193 case 24: diffs |= __it_diff(a, b, 64); 4194 fallthrough; 4195 case 16: diffs |= __it_diff(a, b, 64); 4196 fallthrough; 4197 case 8: diffs |= __it_diff(a, b, 64); 4198 break; 4199 case 28: diffs |= __it_diff(a, b, 64); 4200 fallthrough; 4201 case 20: diffs |= __it_diff(a, b, 64); 4202 fallthrough; 4203 case 12: diffs |= __it_diff(a, b, 64); 4204 fallthrough; 4205 case 4: diffs |= __it_diff(a, b, 32); 4206 break; 4207 } 4208 return diffs; 4209 #else 4210 return memcmp(a - meta_len, b - meta_len, meta_len); 4211 #endif 4212 } 4213 4214 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4215 const struct sk_buff *skb_b) 4216 { 4217 u8 len_a = skb_metadata_len(skb_a); 4218 u8 len_b = skb_metadata_len(skb_b); 4219 4220 if (!(len_a | len_b)) 4221 return false; 4222 4223 return len_a != len_b ? 4224 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4225 } 4226 4227 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4228 { 4229 skb_shinfo(skb)->meta_len = meta_len; 4230 } 4231 4232 static inline void skb_metadata_clear(struct sk_buff *skb) 4233 { 4234 skb_metadata_set(skb, 0); 4235 } 4236 4237 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4238 4239 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4240 4241 void skb_clone_tx_timestamp(struct sk_buff *skb); 4242 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4243 4244 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4245 4246 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4247 { 4248 } 4249 4250 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4251 { 4252 return false; 4253 } 4254 4255 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4256 4257 /** 4258 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4259 * 4260 * PHY drivers may accept clones of transmitted packets for 4261 * timestamping via their phy_driver.txtstamp method. These drivers 4262 * must call this function to return the skb back to the stack with a 4263 * timestamp. 4264 * 4265 * @skb: clone of the original outgoing packet 4266 * @hwtstamps: hardware time stamps 4267 * 4268 */ 4269 void skb_complete_tx_timestamp(struct sk_buff *skb, 4270 struct skb_shared_hwtstamps *hwtstamps); 4271 4272 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4273 struct skb_shared_hwtstamps *hwtstamps, 4274 struct sock *sk, int tstype); 4275 4276 /** 4277 * skb_tstamp_tx - queue clone of skb with send time stamps 4278 * @orig_skb: the original outgoing packet 4279 * @hwtstamps: hardware time stamps, may be NULL if not available 4280 * 4281 * If the skb has a socket associated, then this function clones the 4282 * skb (thus sharing the actual data and optional structures), stores 4283 * the optional hardware time stamping information (if non NULL) or 4284 * generates a software time stamp (otherwise), then queues the clone 4285 * to the error queue of the socket. Errors are silently ignored. 4286 */ 4287 void skb_tstamp_tx(struct sk_buff *orig_skb, 4288 struct skb_shared_hwtstamps *hwtstamps); 4289 4290 /** 4291 * skb_tx_timestamp() - Driver hook for transmit timestamping 4292 * 4293 * Ethernet MAC Drivers should call this function in their hard_xmit() 4294 * function immediately before giving the sk_buff to the MAC hardware. 4295 * 4296 * Specifically, one should make absolutely sure that this function is 4297 * called before TX completion of this packet can trigger. Otherwise 4298 * the packet could potentially already be freed. 4299 * 4300 * @skb: A socket buffer. 4301 */ 4302 static inline void skb_tx_timestamp(struct sk_buff *skb) 4303 { 4304 skb_clone_tx_timestamp(skb); 4305 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4306 skb_tstamp_tx(skb, NULL); 4307 } 4308 4309 /** 4310 * skb_complete_wifi_ack - deliver skb with wifi status 4311 * 4312 * @skb: the original outgoing packet 4313 * @acked: ack status 4314 * 4315 */ 4316 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4317 4318 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4319 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4320 4321 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4322 { 4323 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4324 skb->csum_valid || 4325 (skb->ip_summed == CHECKSUM_PARTIAL && 4326 skb_checksum_start_offset(skb) >= 0)); 4327 } 4328 4329 /** 4330 * skb_checksum_complete - Calculate checksum of an entire packet 4331 * @skb: packet to process 4332 * 4333 * This function calculates the checksum over the entire packet plus 4334 * the value of skb->csum. The latter can be used to supply the 4335 * checksum of a pseudo header as used by TCP/UDP. It returns the 4336 * checksum. 4337 * 4338 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4339 * this function can be used to verify that checksum on received 4340 * packets. In that case the function should return zero if the 4341 * checksum is correct. In particular, this function will return zero 4342 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4343 * hardware has already verified the correctness of the checksum. 4344 */ 4345 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4346 { 4347 return skb_csum_unnecessary(skb) ? 4348 0 : __skb_checksum_complete(skb); 4349 } 4350 4351 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4352 { 4353 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4354 if (skb->csum_level == 0) 4355 skb->ip_summed = CHECKSUM_NONE; 4356 else 4357 skb->csum_level--; 4358 } 4359 } 4360 4361 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4362 { 4363 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4364 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4365 skb->csum_level++; 4366 } else if (skb->ip_summed == CHECKSUM_NONE) { 4367 skb->ip_summed = CHECKSUM_UNNECESSARY; 4368 skb->csum_level = 0; 4369 } 4370 } 4371 4372 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4373 { 4374 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4375 skb->ip_summed = CHECKSUM_NONE; 4376 skb->csum_level = 0; 4377 } 4378 } 4379 4380 /* Check if we need to perform checksum complete validation. 4381 * 4382 * Returns true if checksum complete is needed, false otherwise 4383 * (either checksum is unnecessary or zero checksum is allowed). 4384 */ 4385 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4386 bool zero_okay, 4387 __sum16 check) 4388 { 4389 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4390 skb->csum_valid = 1; 4391 __skb_decr_checksum_unnecessary(skb); 4392 return false; 4393 } 4394 4395 return true; 4396 } 4397 4398 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4399 * in checksum_init. 4400 */ 4401 #define CHECKSUM_BREAK 76 4402 4403 /* Unset checksum-complete 4404 * 4405 * Unset checksum complete can be done when packet is being modified 4406 * (uncompressed for instance) and checksum-complete value is 4407 * invalidated. 4408 */ 4409 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4410 { 4411 if (skb->ip_summed == CHECKSUM_COMPLETE) 4412 skb->ip_summed = CHECKSUM_NONE; 4413 } 4414 4415 /* Validate (init) checksum based on checksum complete. 4416 * 4417 * Return values: 4418 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4419 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4420 * checksum is stored in skb->csum for use in __skb_checksum_complete 4421 * non-zero: value of invalid checksum 4422 * 4423 */ 4424 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4425 bool complete, 4426 __wsum psum) 4427 { 4428 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4429 if (!csum_fold(csum_add(psum, skb->csum))) { 4430 skb->csum_valid = 1; 4431 return 0; 4432 } 4433 } 4434 4435 skb->csum = psum; 4436 4437 if (complete || skb->len <= CHECKSUM_BREAK) { 4438 __sum16 csum; 4439 4440 csum = __skb_checksum_complete(skb); 4441 skb->csum_valid = !csum; 4442 return csum; 4443 } 4444 4445 return 0; 4446 } 4447 4448 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4449 { 4450 return 0; 4451 } 4452 4453 /* Perform checksum validate (init). Note that this is a macro since we only 4454 * want to calculate the pseudo header which is an input function if necessary. 4455 * First we try to validate without any computation (checksum unnecessary) and 4456 * then calculate based on checksum complete calling the function to compute 4457 * pseudo header. 4458 * 4459 * Return values: 4460 * 0: checksum is validated or try to in skb_checksum_complete 4461 * non-zero: value of invalid checksum 4462 */ 4463 #define __skb_checksum_validate(skb, proto, complete, \ 4464 zero_okay, check, compute_pseudo) \ 4465 ({ \ 4466 __sum16 __ret = 0; \ 4467 skb->csum_valid = 0; \ 4468 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4469 __ret = __skb_checksum_validate_complete(skb, \ 4470 complete, compute_pseudo(skb, proto)); \ 4471 __ret; \ 4472 }) 4473 4474 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4475 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4476 4477 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4478 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4479 4480 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4481 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4482 4483 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4484 compute_pseudo) \ 4485 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4486 4487 #define skb_checksum_simple_validate(skb) \ 4488 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4489 4490 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4491 { 4492 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4493 } 4494 4495 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4496 { 4497 skb->csum = ~pseudo; 4498 skb->ip_summed = CHECKSUM_COMPLETE; 4499 } 4500 4501 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4502 do { \ 4503 if (__skb_checksum_convert_check(skb)) \ 4504 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4505 } while (0) 4506 4507 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4508 u16 start, u16 offset) 4509 { 4510 skb->ip_summed = CHECKSUM_PARTIAL; 4511 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4512 skb->csum_offset = offset - start; 4513 } 4514 4515 /* Update skbuf and packet to reflect the remote checksum offload operation. 4516 * When called, ptr indicates the starting point for skb->csum when 4517 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4518 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4519 */ 4520 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4521 int start, int offset, bool nopartial) 4522 { 4523 __wsum delta; 4524 4525 if (!nopartial) { 4526 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4527 return; 4528 } 4529 4530 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4531 __skb_checksum_complete(skb); 4532 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4533 } 4534 4535 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4536 4537 /* Adjust skb->csum since we changed the packet */ 4538 skb->csum = csum_add(skb->csum, delta); 4539 } 4540 4541 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4542 { 4543 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4544 return (void *)(skb->_nfct & NFCT_PTRMASK); 4545 #else 4546 return NULL; 4547 #endif 4548 } 4549 4550 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4551 { 4552 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4553 return skb->_nfct; 4554 #else 4555 return 0UL; 4556 #endif 4557 } 4558 4559 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4560 { 4561 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4562 skb->slow_gro |= !!nfct; 4563 skb->_nfct = nfct; 4564 #endif 4565 } 4566 4567 #ifdef CONFIG_SKB_EXTENSIONS 4568 enum skb_ext_id { 4569 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4570 SKB_EXT_BRIDGE_NF, 4571 #endif 4572 #ifdef CONFIG_XFRM 4573 SKB_EXT_SEC_PATH, 4574 #endif 4575 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4576 TC_SKB_EXT, 4577 #endif 4578 #if IS_ENABLED(CONFIG_MPTCP) 4579 SKB_EXT_MPTCP, 4580 #endif 4581 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4582 SKB_EXT_MCTP, 4583 #endif 4584 SKB_EXT_NUM, /* must be last */ 4585 }; 4586 4587 /** 4588 * struct skb_ext - sk_buff extensions 4589 * @refcnt: 1 on allocation, deallocated on 0 4590 * @offset: offset to add to @data to obtain extension address 4591 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4592 * @data: start of extension data, variable sized 4593 * 4594 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4595 * to use 'u8' types while allowing up to 2kb worth of extension data. 4596 */ 4597 struct skb_ext { 4598 refcount_t refcnt; 4599 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4600 u8 chunks; /* same */ 4601 char data[] __aligned(8); 4602 }; 4603 4604 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4605 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4606 struct skb_ext *ext); 4607 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4608 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4609 void __skb_ext_put(struct skb_ext *ext); 4610 4611 static inline void skb_ext_put(struct sk_buff *skb) 4612 { 4613 if (skb->active_extensions) 4614 __skb_ext_put(skb->extensions); 4615 } 4616 4617 static inline void __skb_ext_copy(struct sk_buff *dst, 4618 const struct sk_buff *src) 4619 { 4620 dst->active_extensions = src->active_extensions; 4621 4622 if (src->active_extensions) { 4623 struct skb_ext *ext = src->extensions; 4624 4625 refcount_inc(&ext->refcnt); 4626 dst->extensions = ext; 4627 } 4628 } 4629 4630 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4631 { 4632 skb_ext_put(dst); 4633 __skb_ext_copy(dst, src); 4634 } 4635 4636 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4637 { 4638 return !!ext->offset[i]; 4639 } 4640 4641 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4642 { 4643 return skb->active_extensions & (1 << id); 4644 } 4645 4646 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4647 { 4648 if (skb_ext_exist(skb, id)) 4649 __skb_ext_del(skb, id); 4650 } 4651 4652 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4653 { 4654 if (skb_ext_exist(skb, id)) { 4655 struct skb_ext *ext = skb->extensions; 4656 4657 return (void *)ext + (ext->offset[id] << 3); 4658 } 4659 4660 return NULL; 4661 } 4662 4663 static inline void skb_ext_reset(struct sk_buff *skb) 4664 { 4665 if (unlikely(skb->active_extensions)) { 4666 __skb_ext_put(skb->extensions); 4667 skb->active_extensions = 0; 4668 } 4669 } 4670 4671 static inline bool skb_has_extensions(struct sk_buff *skb) 4672 { 4673 return unlikely(skb->active_extensions); 4674 } 4675 #else 4676 static inline void skb_ext_put(struct sk_buff *skb) {} 4677 static inline void skb_ext_reset(struct sk_buff *skb) {} 4678 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4679 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4680 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4681 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4682 #endif /* CONFIG_SKB_EXTENSIONS */ 4683 4684 static inline void nf_reset_ct(struct sk_buff *skb) 4685 { 4686 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4687 nf_conntrack_put(skb_nfct(skb)); 4688 skb->_nfct = 0; 4689 #endif 4690 } 4691 4692 static inline void nf_reset_trace(struct sk_buff *skb) 4693 { 4694 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4695 skb->nf_trace = 0; 4696 #endif 4697 } 4698 4699 static inline void ipvs_reset(struct sk_buff *skb) 4700 { 4701 #if IS_ENABLED(CONFIG_IP_VS) 4702 skb->ipvs_property = 0; 4703 #endif 4704 } 4705 4706 /* Note: This doesn't put any conntrack info in dst. */ 4707 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4708 bool copy) 4709 { 4710 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4711 dst->_nfct = src->_nfct; 4712 nf_conntrack_get(skb_nfct(src)); 4713 #endif 4714 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4715 if (copy) 4716 dst->nf_trace = src->nf_trace; 4717 #endif 4718 } 4719 4720 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4721 { 4722 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4723 nf_conntrack_put(skb_nfct(dst)); 4724 #endif 4725 dst->slow_gro = src->slow_gro; 4726 __nf_copy(dst, src, true); 4727 } 4728 4729 #ifdef CONFIG_NETWORK_SECMARK 4730 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4731 { 4732 to->secmark = from->secmark; 4733 } 4734 4735 static inline void skb_init_secmark(struct sk_buff *skb) 4736 { 4737 skb->secmark = 0; 4738 } 4739 #else 4740 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4741 { } 4742 4743 static inline void skb_init_secmark(struct sk_buff *skb) 4744 { } 4745 #endif 4746 4747 static inline int secpath_exists(const struct sk_buff *skb) 4748 { 4749 #ifdef CONFIG_XFRM 4750 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4751 #else 4752 return 0; 4753 #endif 4754 } 4755 4756 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4757 { 4758 return !skb->destructor && 4759 !secpath_exists(skb) && 4760 !skb_nfct(skb) && 4761 !skb->_skb_refdst && 4762 !skb_has_frag_list(skb); 4763 } 4764 4765 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4766 { 4767 skb->queue_mapping = queue_mapping; 4768 } 4769 4770 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4771 { 4772 return skb->queue_mapping; 4773 } 4774 4775 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4776 { 4777 to->queue_mapping = from->queue_mapping; 4778 } 4779 4780 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4781 { 4782 skb->queue_mapping = rx_queue + 1; 4783 } 4784 4785 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4786 { 4787 return skb->queue_mapping - 1; 4788 } 4789 4790 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4791 { 4792 return skb->queue_mapping != 0; 4793 } 4794 4795 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4796 { 4797 skb->dst_pending_confirm = val; 4798 } 4799 4800 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4801 { 4802 return skb->dst_pending_confirm != 0; 4803 } 4804 4805 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4806 { 4807 #ifdef CONFIG_XFRM 4808 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4809 #else 4810 return NULL; 4811 #endif 4812 } 4813 4814 /* Keeps track of mac header offset relative to skb->head. 4815 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4816 * For non-tunnel skb it points to skb_mac_header() and for 4817 * tunnel skb it points to outer mac header. 4818 * Keeps track of level of encapsulation of network headers. 4819 */ 4820 struct skb_gso_cb { 4821 union { 4822 int mac_offset; 4823 int data_offset; 4824 }; 4825 int encap_level; 4826 __wsum csum; 4827 __u16 csum_start; 4828 }; 4829 #define SKB_GSO_CB_OFFSET 32 4830 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4831 4832 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4833 { 4834 return (skb_mac_header(inner_skb) - inner_skb->head) - 4835 SKB_GSO_CB(inner_skb)->mac_offset; 4836 } 4837 4838 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4839 { 4840 int new_headroom, headroom; 4841 int ret; 4842 4843 headroom = skb_headroom(skb); 4844 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4845 if (ret) 4846 return ret; 4847 4848 new_headroom = skb_headroom(skb); 4849 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4850 return 0; 4851 } 4852 4853 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4854 { 4855 /* Do not update partial checksums if remote checksum is enabled. */ 4856 if (skb->remcsum_offload) 4857 return; 4858 4859 SKB_GSO_CB(skb)->csum = res; 4860 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4861 } 4862 4863 /* Compute the checksum for a gso segment. First compute the checksum value 4864 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4865 * then add in skb->csum (checksum from csum_start to end of packet). 4866 * skb->csum and csum_start are then updated to reflect the checksum of the 4867 * resultant packet starting from the transport header-- the resultant checksum 4868 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4869 * header. 4870 */ 4871 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4872 { 4873 unsigned char *csum_start = skb_transport_header(skb); 4874 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4875 __wsum partial = SKB_GSO_CB(skb)->csum; 4876 4877 SKB_GSO_CB(skb)->csum = res; 4878 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4879 4880 return csum_fold(csum_partial(csum_start, plen, partial)); 4881 } 4882 4883 static inline bool skb_is_gso(const struct sk_buff *skb) 4884 { 4885 return skb_shinfo(skb)->gso_size; 4886 } 4887 4888 /* Note: Should be called only if skb_is_gso(skb) is true */ 4889 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4890 { 4891 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4892 } 4893 4894 /* Note: Should be called only if skb_is_gso(skb) is true */ 4895 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4896 { 4897 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4898 } 4899 4900 /* Note: Should be called only if skb_is_gso(skb) is true */ 4901 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4902 { 4903 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4904 } 4905 4906 static inline void skb_gso_reset(struct sk_buff *skb) 4907 { 4908 skb_shinfo(skb)->gso_size = 0; 4909 skb_shinfo(skb)->gso_segs = 0; 4910 skb_shinfo(skb)->gso_type = 0; 4911 } 4912 4913 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4914 u16 increment) 4915 { 4916 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4917 return; 4918 shinfo->gso_size += increment; 4919 } 4920 4921 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4922 u16 decrement) 4923 { 4924 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4925 return; 4926 shinfo->gso_size -= decrement; 4927 } 4928 4929 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4930 4931 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4932 { 4933 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4934 * wanted then gso_type will be set. */ 4935 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4936 4937 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4938 unlikely(shinfo->gso_type == 0)) { 4939 __skb_warn_lro_forwarding(skb); 4940 return true; 4941 } 4942 return false; 4943 } 4944 4945 static inline void skb_forward_csum(struct sk_buff *skb) 4946 { 4947 /* Unfortunately we don't support this one. Any brave souls? */ 4948 if (skb->ip_summed == CHECKSUM_COMPLETE) 4949 skb->ip_summed = CHECKSUM_NONE; 4950 } 4951 4952 /** 4953 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4954 * @skb: skb to check 4955 * 4956 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4957 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4958 * use this helper, to document places where we make this assertion. 4959 */ 4960 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4961 { 4962 #ifdef DEBUG 4963 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4964 #endif 4965 } 4966 4967 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4968 4969 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4970 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4971 unsigned int transport_len, 4972 __sum16(*skb_chkf)(struct sk_buff *skb)); 4973 4974 /** 4975 * skb_head_is_locked - Determine if the skb->head is locked down 4976 * @skb: skb to check 4977 * 4978 * The head on skbs build around a head frag can be removed if they are 4979 * not cloned. This function returns true if the skb head is locked down 4980 * due to either being allocated via kmalloc, or by being a clone with 4981 * multiple references to the head. 4982 */ 4983 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4984 { 4985 return !skb->head_frag || skb_cloned(skb); 4986 } 4987 4988 /* Local Checksum Offload. 4989 * Compute outer checksum based on the assumption that the 4990 * inner checksum will be offloaded later. 4991 * See Documentation/networking/checksum-offloads.rst for 4992 * explanation of how this works. 4993 * Fill in outer checksum adjustment (e.g. with sum of outer 4994 * pseudo-header) before calling. 4995 * Also ensure that inner checksum is in linear data area. 4996 */ 4997 static inline __wsum lco_csum(struct sk_buff *skb) 4998 { 4999 unsigned char *csum_start = skb_checksum_start(skb); 5000 unsigned char *l4_hdr = skb_transport_header(skb); 5001 __wsum partial; 5002 5003 /* Start with complement of inner checksum adjustment */ 5004 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5005 skb->csum_offset)); 5006 5007 /* Add in checksum of our headers (incl. outer checksum 5008 * adjustment filled in by caller) and return result. 5009 */ 5010 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5011 } 5012 5013 static inline bool skb_is_redirected(const struct sk_buff *skb) 5014 { 5015 return skb->redirected; 5016 } 5017 5018 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5019 { 5020 skb->redirected = 1; 5021 #ifdef CONFIG_NET_REDIRECT 5022 skb->from_ingress = from_ingress; 5023 if (skb->from_ingress) 5024 skb_clear_tstamp(skb); 5025 #endif 5026 } 5027 5028 static inline void skb_reset_redirect(struct sk_buff *skb) 5029 { 5030 skb->redirected = 0; 5031 } 5032 5033 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5034 { 5035 return skb->csum_not_inet; 5036 } 5037 5038 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5039 const u64 kcov_handle) 5040 { 5041 #ifdef CONFIG_KCOV 5042 skb->kcov_handle = kcov_handle; 5043 #endif 5044 } 5045 5046 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5047 { 5048 #ifdef CONFIG_KCOV 5049 return skb->kcov_handle; 5050 #else 5051 return 0; 5052 #endif 5053 } 5054 5055 #ifdef CONFIG_PAGE_POOL 5056 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5057 { 5058 skb->pp_recycle = 1; 5059 } 5060 #endif 5061 5062 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 5063 { 5064 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 5065 return false; 5066 return page_pool_return_skb_page(virt_to_page(data)); 5067 } 5068 5069 #endif /* __KERNEL__ */ 5070 #endif /* _LINUX_SKBUFF_H */ 5071