1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 #include <linux/rbtree.h> 24 #include <linux/socket.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * 113 * skb->csum_level indicates the number of consecutive checksums found in 114 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 115 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 116 * and a device is able to verify the checksums for UDP (possibly zero), 117 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 118 * two. If the device were only able to verify the UDP checksum and not 119 * GRE, either because it doesn't support GRE checksum of because GRE 120 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 121 * not considered in this case). 122 * 123 * CHECKSUM_COMPLETE: 124 * 125 * This is the most generic way. The device supplied checksum of the _whole_ 126 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 127 * hardware doesn't need to parse L3/L4 headers to implement this. 128 * 129 * Note: Even if device supports only some protocols, but is able to produce 130 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 131 * 132 * CHECKSUM_PARTIAL: 133 * 134 * A checksum is set up to be offloaded to a device as described in the 135 * output description for CHECKSUM_PARTIAL. This may occur on a packet 136 * received directly from another Linux OS, e.g., a virtualized Linux kernel 137 * on the same host, or it may be set in the input path in GRO or remote 138 * checksum offload. For the purposes of checksum verification, the checksum 139 * referred to by skb->csum_start + skb->csum_offset and any preceding 140 * checksums in the packet are considered verified. Any checksums in the 141 * packet that are after the checksum being offloaded are not considered to 142 * be verified. 143 * 144 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 145 * in the skb->ip_summed for a packet. Values are: 146 * 147 * CHECKSUM_PARTIAL: 148 * 149 * The driver is required to checksum the packet as seen by hard_start_xmit() 150 * from skb->csum_start up to the end, and to record/write the checksum at 151 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 152 * csum_start and csum_offset values are valid values given the length and 153 * offset of the packet, however they should not attempt to validate that the 154 * checksum refers to a legitimate transport layer checksum-- it is the 155 * purview of the stack to validate that csum_start and csum_offset are set 156 * correctly. 157 * 158 * When the stack requests checksum offload for a packet, the driver MUST 159 * ensure that the checksum is set correctly. A driver can either offload the 160 * checksum calculation to the device, or call skb_checksum_help (in the case 161 * that the device does not support offload for a particular checksum). 162 * 163 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 164 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 165 * checksum offload capability. If a device has limited checksum capabilities 166 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as 167 * described above) a helper function can be called to resolve 168 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper 169 * function takes a spec argument that describes the protocol layer that is 170 * supported for checksum offload and can be called for each packet. If a 171 * packet does not match the specification for offload, skb_checksum_help 172 * is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 193 * accordingly. Note the there is no indication in the skbuff that the 194 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports 195 * both IP checksum offload and SCTP CRC offload must verify which offload 196 * is configured for a packet presumably by inspecting packet headers. 197 * 198 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 199 * offloading the FCOE CRC in a packet. To perform this offload the stack 200 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 201 * accordingly. Note the there is no indication in the skbuff that the 202 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 203 * both IP checksum offload and FCOE CRC offload must verify which offload 204 * is configured for a packet presumably by inspecting packet headers. 205 * 206 * E. Checksumming on output with GSO. 207 * 208 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 209 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 210 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 211 * part of the GSO operation is implied. If a checksum is being offloaded 212 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 213 * are set to refer to the outermost checksum being offload (two offloaded 214 * checksums are possible with UDP encapsulation). 215 */ 216 217 /* Don't change this without changing skb_csum_unnecessary! */ 218 #define CHECKSUM_NONE 0 219 #define CHECKSUM_UNNECESSARY 1 220 #define CHECKSUM_COMPLETE 2 221 #define CHECKSUM_PARTIAL 3 222 223 /* Maximum value in skb->csum_level */ 224 #define SKB_MAX_CSUM_LEVEL 3 225 226 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 227 #define SKB_WITH_OVERHEAD(X) \ 228 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 229 #define SKB_MAX_ORDER(X, ORDER) \ 230 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 231 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 232 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 233 234 /* return minimum truesize of one skb containing X bytes of data */ 235 #define SKB_TRUESIZE(X) ((X) + \ 236 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 237 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 238 239 struct net_device; 240 struct scatterlist; 241 struct pipe_inode_info; 242 struct iov_iter; 243 struct napi_struct; 244 245 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 246 struct nf_conntrack { 247 atomic_t use; 248 }; 249 #endif 250 251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 252 struct nf_bridge_info { 253 atomic_t use; 254 enum { 255 BRNF_PROTO_UNCHANGED, 256 BRNF_PROTO_8021Q, 257 BRNF_PROTO_PPPOE 258 } orig_proto:8; 259 u8 pkt_otherhost:1; 260 u8 in_prerouting:1; 261 u8 bridged_dnat:1; 262 __u16 frag_max_size; 263 struct net_device *physindev; 264 265 /* always valid & non-NULL from FORWARD on, for physdev match */ 266 struct net_device *physoutdev; 267 union { 268 /* prerouting: detect dnat in orig/reply direction */ 269 __be32 ipv4_daddr; 270 struct in6_addr ipv6_daddr; 271 272 /* after prerouting + nat detected: store original source 273 * mac since neigh resolution overwrites it, only used while 274 * skb is out in neigh layer. 275 */ 276 char neigh_header[8]; 277 }; 278 }; 279 #endif 280 281 struct sk_buff_head { 282 /* These two members must be first. */ 283 struct sk_buff *next; 284 struct sk_buff *prev; 285 286 __u32 qlen; 287 spinlock_t lock; 288 }; 289 290 struct sk_buff; 291 292 /* To allow 64K frame to be packed as single skb without frag_list we 293 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 294 * buffers which do not start on a page boundary. 295 * 296 * Since GRO uses frags we allocate at least 16 regardless of page 297 * size. 298 */ 299 #if (65536/PAGE_SIZE + 1) < 16 300 #define MAX_SKB_FRAGS 16UL 301 #else 302 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 303 #endif 304 extern int sysctl_max_skb_frags; 305 306 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 307 * segment using its current segmentation instead. 308 */ 309 #define GSO_BY_FRAGS 0xFFFF 310 311 typedef struct skb_frag_struct skb_frag_t; 312 313 struct skb_frag_struct { 314 struct { 315 struct page *p; 316 } page; 317 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 318 __u32 page_offset; 319 __u32 size; 320 #else 321 __u16 page_offset; 322 __u16 size; 323 #endif 324 }; 325 326 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 327 { 328 return frag->size; 329 } 330 331 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 332 { 333 frag->size = size; 334 } 335 336 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 337 { 338 frag->size += delta; 339 } 340 341 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 342 { 343 frag->size -= delta; 344 } 345 346 #define HAVE_HW_TIME_STAMP 347 348 /** 349 * struct skb_shared_hwtstamps - hardware time stamps 350 * @hwtstamp: hardware time stamp transformed into duration 351 * since arbitrary point in time 352 * 353 * Software time stamps generated by ktime_get_real() are stored in 354 * skb->tstamp. 355 * 356 * hwtstamps can only be compared against other hwtstamps from 357 * the same device. 358 * 359 * This structure is attached to packets as part of the 360 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 361 */ 362 struct skb_shared_hwtstamps { 363 ktime_t hwtstamp; 364 }; 365 366 /* Definitions for tx_flags in struct skb_shared_info */ 367 enum { 368 /* generate hardware time stamp */ 369 SKBTX_HW_TSTAMP = 1 << 0, 370 371 /* generate software time stamp when queueing packet to NIC */ 372 SKBTX_SW_TSTAMP = 1 << 1, 373 374 /* device driver is going to provide hardware time stamp */ 375 SKBTX_IN_PROGRESS = 1 << 2, 376 377 /* device driver supports TX zero-copy buffers */ 378 SKBTX_DEV_ZEROCOPY = 1 << 3, 379 380 /* generate wifi status information (where possible) */ 381 SKBTX_WIFI_STATUS = 1 << 4, 382 383 /* This indicates at least one fragment might be overwritten 384 * (as in vmsplice(), sendfile() ...) 385 * If we need to compute a TX checksum, we'll need to copy 386 * all frags to avoid possible bad checksum 387 */ 388 SKBTX_SHARED_FRAG = 1 << 5, 389 390 /* generate software time stamp when entering packet scheduling */ 391 SKBTX_SCHED_TSTAMP = 1 << 6, 392 }; 393 394 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 395 SKBTX_SCHED_TSTAMP) 396 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 397 398 /* 399 * The callback notifies userspace to release buffers when skb DMA is done in 400 * lower device, the skb last reference should be 0 when calling this. 401 * The zerocopy_success argument is true if zero copy transmit occurred, 402 * false on data copy or out of memory error caused by data copy attempt. 403 * The ctx field is used to track device context. 404 * The desc field is used to track userspace buffer index. 405 */ 406 struct ubuf_info { 407 void (*callback)(struct ubuf_info *, bool zerocopy_success); 408 void *ctx; 409 unsigned long desc; 410 }; 411 412 /* This data is invariant across clones and lives at 413 * the end of the header data, ie. at skb->end. 414 */ 415 struct skb_shared_info { 416 unsigned short _unused; 417 unsigned char nr_frags; 418 __u8 tx_flags; 419 unsigned short gso_size; 420 /* Warning: this field is not always filled in (UFO)! */ 421 unsigned short gso_segs; 422 struct sk_buff *frag_list; 423 struct skb_shared_hwtstamps hwtstamps; 424 unsigned int gso_type; 425 u32 tskey; 426 __be32 ip6_frag_id; 427 428 /* 429 * Warning : all fields before dataref are cleared in __alloc_skb() 430 */ 431 atomic_t dataref; 432 433 /* Intermediate layers must ensure that destructor_arg 434 * remains valid until skb destructor */ 435 void * destructor_arg; 436 437 /* must be last field, see pskb_expand_head() */ 438 skb_frag_t frags[MAX_SKB_FRAGS]; 439 }; 440 441 /* We divide dataref into two halves. The higher 16 bits hold references 442 * to the payload part of skb->data. The lower 16 bits hold references to 443 * the entire skb->data. A clone of a headerless skb holds the length of 444 * the header in skb->hdr_len. 445 * 446 * All users must obey the rule that the skb->data reference count must be 447 * greater than or equal to the payload reference count. 448 * 449 * Holding a reference to the payload part means that the user does not 450 * care about modifications to the header part of skb->data. 451 */ 452 #define SKB_DATAREF_SHIFT 16 453 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 454 455 456 enum { 457 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 458 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 459 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 460 }; 461 462 enum { 463 SKB_GSO_TCPV4 = 1 << 0, 464 SKB_GSO_UDP = 1 << 1, 465 466 /* This indicates the skb is from an untrusted source. */ 467 SKB_GSO_DODGY = 1 << 2, 468 469 /* This indicates the tcp segment has CWR set. */ 470 SKB_GSO_TCP_ECN = 1 << 3, 471 472 SKB_GSO_TCP_FIXEDID = 1 << 4, 473 474 SKB_GSO_TCPV6 = 1 << 5, 475 476 SKB_GSO_FCOE = 1 << 6, 477 478 SKB_GSO_GRE = 1 << 7, 479 480 SKB_GSO_GRE_CSUM = 1 << 8, 481 482 SKB_GSO_IPXIP4 = 1 << 9, 483 484 SKB_GSO_IPXIP6 = 1 << 10, 485 486 SKB_GSO_UDP_TUNNEL = 1 << 11, 487 488 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12, 489 490 SKB_GSO_PARTIAL = 1 << 13, 491 492 SKB_GSO_TUNNEL_REMCSUM = 1 << 14, 493 494 SKB_GSO_SCTP = 1 << 15, 495 496 SKB_GSO_ESP = 1 << 16, 497 }; 498 499 #if BITS_PER_LONG > 32 500 #define NET_SKBUFF_DATA_USES_OFFSET 1 501 #endif 502 503 #ifdef NET_SKBUFF_DATA_USES_OFFSET 504 typedef unsigned int sk_buff_data_t; 505 #else 506 typedef unsigned char *sk_buff_data_t; 507 #endif 508 509 /** 510 * struct skb_mstamp - multi resolution time stamps 511 * @stamp_us: timestamp in us resolution 512 * @stamp_jiffies: timestamp in jiffies 513 */ 514 struct skb_mstamp { 515 union { 516 u64 v64; 517 struct { 518 u32 stamp_us; 519 u32 stamp_jiffies; 520 }; 521 }; 522 }; 523 524 /** 525 * skb_mstamp_get - get current timestamp 526 * @cl: place to store timestamps 527 */ 528 static inline void skb_mstamp_get(struct skb_mstamp *cl) 529 { 530 u64 val = local_clock(); 531 532 do_div(val, NSEC_PER_USEC); 533 cl->stamp_us = (u32)val; 534 cl->stamp_jiffies = (u32)jiffies; 535 } 536 537 /** 538 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 539 * @t1: pointer to newest sample 540 * @t0: pointer to oldest sample 541 */ 542 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 543 const struct skb_mstamp *t0) 544 { 545 s32 delta_us = t1->stamp_us - t0->stamp_us; 546 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 547 548 /* If delta_us is negative, this might be because interval is too big, 549 * or local_clock() drift is too big : fallback using jiffies. 550 */ 551 if (delta_us <= 0 || 552 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 553 554 delta_us = jiffies_to_usecs(delta_jiffies); 555 556 return delta_us; 557 } 558 559 static inline bool skb_mstamp_after(const struct skb_mstamp *t1, 560 const struct skb_mstamp *t0) 561 { 562 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies; 563 564 if (!diff) 565 diff = t1->stamp_us - t0->stamp_us; 566 return diff > 0; 567 } 568 569 /** 570 * struct sk_buff - socket buffer 571 * @next: Next buffer in list 572 * @prev: Previous buffer in list 573 * @tstamp: Time we arrived/left 574 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 575 * @sk: Socket we are owned by 576 * @dev: Device we arrived on/are leaving by 577 * @cb: Control buffer. Free for use by every layer. Put private vars here 578 * @_skb_refdst: destination entry (with norefcount bit) 579 * @sp: the security path, used for xfrm 580 * @len: Length of actual data 581 * @data_len: Data length 582 * @mac_len: Length of link layer header 583 * @hdr_len: writable header length of cloned skb 584 * @csum: Checksum (must include start/offset pair) 585 * @csum_start: Offset from skb->head where checksumming should start 586 * @csum_offset: Offset from csum_start where checksum should be stored 587 * @priority: Packet queueing priority 588 * @ignore_df: allow local fragmentation 589 * @cloned: Head may be cloned (check refcnt to be sure) 590 * @ip_summed: Driver fed us an IP checksum 591 * @nohdr: Payload reference only, must not modify header 592 * @pkt_type: Packet class 593 * @fclone: skbuff clone status 594 * @ipvs_property: skbuff is owned by ipvs 595 * @tc_skip_classify: do not classify packet. set by IFB device 596 * @tc_at_ingress: used within tc_classify to distinguish in/egress 597 * @tc_redirected: packet was redirected by a tc action 598 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 599 * @peeked: this packet has been seen already, so stats have been 600 * done for it, don't do them again 601 * @nf_trace: netfilter packet trace flag 602 * @protocol: Packet protocol from driver 603 * @destructor: Destruct function 604 * @_nfct: Associated connection, if any (with nfctinfo bits) 605 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 606 * @skb_iif: ifindex of device we arrived on 607 * @tc_index: Traffic control index 608 * @hash: the packet hash 609 * @queue_mapping: Queue mapping for multiqueue devices 610 * @xmit_more: More SKBs are pending for this queue 611 * @ndisc_nodetype: router type (from link layer) 612 * @ooo_okay: allow the mapping of a socket to a queue to be changed 613 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 614 * ports. 615 * @sw_hash: indicates hash was computed in software stack 616 * @wifi_acked_valid: wifi_acked was set 617 * @wifi_acked: whether frame was acked on wifi or not 618 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 619 * @dst_pending_confirm: need to confirm neighbour 620 * @napi_id: id of the NAPI struct this skb came from 621 * @secmark: security marking 622 * @mark: Generic packet mark 623 * @vlan_proto: vlan encapsulation protocol 624 * @vlan_tci: vlan tag control information 625 * @inner_protocol: Protocol (encapsulation) 626 * @inner_transport_header: Inner transport layer header (encapsulation) 627 * @inner_network_header: Network layer header (encapsulation) 628 * @inner_mac_header: Link layer header (encapsulation) 629 * @transport_header: Transport layer header 630 * @network_header: Network layer header 631 * @mac_header: Link layer header 632 * @tail: Tail pointer 633 * @end: End pointer 634 * @head: Head of buffer 635 * @data: Data head pointer 636 * @truesize: Buffer size 637 * @users: User count - see {datagram,tcp}.c 638 */ 639 640 struct sk_buff { 641 union { 642 struct { 643 /* These two members must be first. */ 644 struct sk_buff *next; 645 struct sk_buff *prev; 646 647 union { 648 ktime_t tstamp; 649 struct skb_mstamp skb_mstamp; 650 }; 651 }; 652 struct rb_node rbnode; /* used in netem & tcp stack */ 653 }; 654 struct sock *sk; 655 656 union { 657 struct net_device *dev; 658 /* Some protocols might use this space to store information, 659 * while device pointer would be NULL. 660 * UDP receive path is one user. 661 */ 662 unsigned long dev_scratch; 663 }; 664 /* 665 * This is the control buffer. It is free to use for every 666 * layer. Please put your private variables there. If you 667 * want to keep them across layers you have to do a skb_clone() 668 * first. This is owned by whoever has the skb queued ATM. 669 */ 670 char cb[48] __aligned(8); 671 672 unsigned long _skb_refdst; 673 void (*destructor)(struct sk_buff *skb); 674 #ifdef CONFIG_XFRM 675 struct sec_path *sp; 676 #endif 677 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 678 unsigned long _nfct; 679 #endif 680 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 681 struct nf_bridge_info *nf_bridge; 682 #endif 683 unsigned int len, 684 data_len; 685 __u16 mac_len, 686 hdr_len; 687 688 /* Following fields are _not_ copied in __copy_skb_header() 689 * Note that queue_mapping is here mostly to fill a hole. 690 */ 691 kmemcheck_bitfield_begin(flags1); 692 __u16 queue_mapping; 693 694 /* if you move cloned around you also must adapt those constants */ 695 #ifdef __BIG_ENDIAN_BITFIELD 696 #define CLONED_MASK (1 << 7) 697 #else 698 #define CLONED_MASK 1 699 #endif 700 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 701 702 __u8 __cloned_offset[0]; 703 __u8 cloned:1, 704 nohdr:1, 705 fclone:2, 706 peeked:1, 707 head_frag:1, 708 xmit_more:1, 709 __unused:1; /* one bit hole */ 710 kmemcheck_bitfield_end(flags1); 711 712 /* fields enclosed in headers_start/headers_end are copied 713 * using a single memcpy() in __copy_skb_header() 714 */ 715 /* private: */ 716 __u32 headers_start[0]; 717 /* public: */ 718 719 /* if you move pkt_type around you also must adapt those constants */ 720 #ifdef __BIG_ENDIAN_BITFIELD 721 #define PKT_TYPE_MAX (7 << 5) 722 #else 723 #define PKT_TYPE_MAX 7 724 #endif 725 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 726 727 __u8 __pkt_type_offset[0]; 728 __u8 pkt_type:3; 729 __u8 pfmemalloc:1; 730 __u8 ignore_df:1; 731 732 __u8 nf_trace:1; 733 __u8 ip_summed:2; 734 __u8 ooo_okay:1; 735 __u8 l4_hash:1; 736 __u8 sw_hash:1; 737 __u8 wifi_acked_valid:1; 738 __u8 wifi_acked:1; 739 740 __u8 no_fcs:1; 741 /* Indicates the inner headers are valid in the skbuff. */ 742 __u8 encapsulation:1; 743 __u8 encap_hdr_csum:1; 744 __u8 csum_valid:1; 745 __u8 csum_complete_sw:1; 746 __u8 csum_level:2; 747 __u8 csum_bad:1; 748 749 __u8 dst_pending_confirm:1; 750 #ifdef CONFIG_IPV6_NDISC_NODETYPE 751 __u8 ndisc_nodetype:2; 752 #endif 753 __u8 ipvs_property:1; 754 __u8 inner_protocol_type:1; 755 __u8 remcsum_offload:1; 756 #ifdef CONFIG_NET_SWITCHDEV 757 __u8 offload_fwd_mark:1; 758 #endif 759 #ifdef CONFIG_NET_CLS_ACT 760 __u8 tc_skip_classify:1; 761 __u8 tc_at_ingress:1; 762 __u8 tc_redirected:1; 763 __u8 tc_from_ingress:1; 764 #endif 765 766 #ifdef CONFIG_NET_SCHED 767 __u16 tc_index; /* traffic control index */ 768 #endif 769 770 union { 771 __wsum csum; 772 struct { 773 __u16 csum_start; 774 __u16 csum_offset; 775 }; 776 }; 777 __u32 priority; 778 int skb_iif; 779 __u32 hash; 780 __be16 vlan_proto; 781 __u16 vlan_tci; 782 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 783 union { 784 unsigned int napi_id; 785 unsigned int sender_cpu; 786 }; 787 #endif 788 #ifdef CONFIG_NETWORK_SECMARK 789 __u32 secmark; 790 #endif 791 792 union { 793 __u32 mark; 794 __u32 reserved_tailroom; 795 }; 796 797 union { 798 __be16 inner_protocol; 799 __u8 inner_ipproto; 800 }; 801 802 __u16 inner_transport_header; 803 __u16 inner_network_header; 804 __u16 inner_mac_header; 805 806 __be16 protocol; 807 __u16 transport_header; 808 __u16 network_header; 809 __u16 mac_header; 810 811 /* private: */ 812 __u32 headers_end[0]; 813 /* public: */ 814 815 /* These elements must be at the end, see alloc_skb() for details. */ 816 sk_buff_data_t tail; 817 sk_buff_data_t end; 818 unsigned char *head, 819 *data; 820 unsigned int truesize; 821 atomic_t users; 822 }; 823 824 #ifdef __KERNEL__ 825 /* 826 * Handling routines are only of interest to the kernel 827 */ 828 #include <linux/slab.h> 829 830 831 #define SKB_ALLOC_FCLONE 0x01 832 #define SKB_ALLOC_RX 0x02 833 #define SKB_ALLOC_NAPI 0x04 834 835 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 836 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 837 { 838 return unlikely(skb->pfmemalloc); 839 } 840 841 /* 842 * skb might have a dst pointer attached, refcounted or not. 843 * _skb_refdst low order bit is set if refcount was _not_ taken 844 */ 845 #define SKB_DST_NOREF 1UL 846 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 847 848 #define SKB_NFCT_PTRMASK ~(7UL) 849 /** 850 * skb_dst - returns skb dst_entry 851 * @skb: buffer 852 * 853 * Returns skb dst_entry, regardless of reference taken or not. 854 */ 855 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 856 { 857 /* If refdst was not refcounted, check we still are in a 858 * rcu_read_lock section 859 */ 860 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 861 !rcu_read_lock_held() && 862 !rcu_read_lock_bh_held()); 863 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 864 } 865 866 /** 867 * skb_dst_set - sets skb dst 868 * @skb: buffer 869 * @dst: dst entry 870 * 871 * Sets skb dst, assuming a reference was taken on dst and should 872 * be released by skb_dst_drop() 873 */ 874 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 875 { 876 skb->_skb_refdst = (unsigned long)dst; 877 } 878 879 /** 880 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 881 * @skb: buffer 882 * @dst: dst entry 883 * 884 * Sets skb dst, assuming a reference was not taken on dst. 885 * If dst entry is cached, we do not take reference and dst_release 886 * will be avoided by refdst_drop. If dst entry is not cached, we take 887 * reference, so that last dst_release can destroy the dst immediately. 888 */ 889 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 890 { 891 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 892 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 893 } 894 895 /** 896 * skb_dst_is_noref - Test if skb dst isn't refcounted 897 * @skb: buffer 898 */ 899 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 900 { 901 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 902 } 903 904 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 905 { 906 return (struct rtable *)skb_dst(skb); 907 } 908 909 /* For mangling skb->pkt_type from user space side from applications 910 * such as nft, tc, etc, we only allow a conservative subset of 911 * possible pkt_types to be set. 912 */ 913 static inline bool skb_pkt_type_ok(u32 ptype) 914 { 915 return ptype <= PACKET_OTHERHOST; 916 } 917 918 void kfree_skb(struct sk_buff *skb); 919 void kfree_skb_list(struct sk_buff *segs); 920 void skb_tx_error(struct sk_buff *skb); 921 void consume_skb(struct sk_buff *skb); 922 void __kfree_skb(struct sk_buff *skb); 923 extern struct kmem_cache *skbuff_head_cache; 924 925 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 926 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 927 bool *fragstolen, int *delta_truesize); 928 929 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 930 int node); 931 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 932 struct sk_buff *build_skb(void *data, unsigned int frag_size); 933 static inline struct sk_buff *alloc_skb(unsigned int size, 934 gfp_t priority) 935 { 936 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 937 } 938 939 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 940 unsigned long data_len, 941 int max_page_order, 942 int *errcode, 943 gfp_t gfp_mask); 944 945 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 946 struct sk_buff_fclones { 947 struct sk_buff skb1; 948 949 struct sk_buff skb2; 950 951 atomic_t fclone_ref; 952 }; 953 954 /** 955 * skb_fclone_busy - check if fclone is busy 956 * @sk: socket 957 * @skb: buffer 958 * 959 * Returns true if skb is a fast clone, and its clone is not freed. 960 * Some drivers call skb_orphan() in their ndo_start_xmit(), 961 * so we also check that this didnt happen. 962 */ 963 static inline bool skb_fclone_busy(const struct sock *sk, 964 const struct sk_buff *skb) 965 { 966 const struct sk_buff_fclones *fclones; 967 968 fclones = container_of(skb, struct sk_buff_fclones, skb1); 969 970 return skb->fclone == SKB_FCLONE_ORIG && 971 atomic_read(&fclones->fclone_ref) > 1 && 972 fclones->skb2.sk == sk; 973 } 974 975 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 976 gfp_t priority) 977 { 978 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 979 } 980 981 struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 982 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 983 { 984 return __alloc_skb_head(priority, -1); 985 } 986 987 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 988 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 989 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 990 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 991 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 992 gfp_t gfp_mask, bool fclone); 993 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 994 gfp_t gfp_mask) 995 { 996 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 997 } 998 999 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1000 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1001 unsigned int headroom); 1002 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1003 int newtailroom, gfp_t priority); 1004 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1005 int offset, int len); 1006 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 1007 int len); 1008 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1009 int skb_pad(struct sk_buff *skb, int pad); 1010 #define dev_kfree_skb(a) consume_skb(a) 1011 1012 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 1013 int getfrag(void *from, char *to, int offset, 1014 int len, int odd, struct sk_buff *skb), 1015 void *from, int length); 1016 1017 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1018 int offset, size_t size); 1019 1020 struct skb_seq_state { 1021 __u32 lower_offset; 1022 __u32 upper_offset; 1023 __u32 frag_idx; 1024 __u32 stepped_offset; 1025 struct sk_buff *root_skb; 1026 struct sk_buff *cur_skb; 1027 __u8 *frag_data; 1028 }; 1029 1030 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1031 unsigned int to, struct skb_seq_state *st); 1032 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1033 struct skb_seq_state *st); 1034 void skb_abort_seq_read(struct skb_seq_state *st); 1035 1036 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1037 unsigned int to, struct ts_config *config); 1038 1039 /* 1040 * Packet hash types specify the type of hash in skb_set_hash. 1041 * 1042 * Hash types refer to the protocol layer addresses which are used to 1043 * construct a packet's hash. The hashes are used to differentiate or identify 1044 * flows of the protocol layer for the hash type. Hash types are either 1045 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1046 * 1047 * Properties of hashes: 1048 * 1049 * 1) Two packets in different flows have different hash values 1050 * 2) Two packets in the same flow should have the same hash value 1051 * 1052 * A hash at a higher layer is considered to be more specific. A driver should 1053 * set the most specific hash possible. 1054 * 1055 * A driver cannot indicate a more specific hash than the layer at which a hash 1056 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1057 * 1058 * A driver may indicate a hash level which is less specific than the 1059 * actual layer the hash was computed on. For instance, a hash computed 1060 * at L4 may be considered an L3 hash. This should only be done if the 1061 * driver can't unambiguously determine that the HW computed the hash at 1062 * the higher layer. Note that the "should" in the second property above 1063 * permits this. 1064 */ 1065 enum pkt_hash_types { 1066 PKT_HASH_TYPE_NONE, /* Undefined type */ 1067 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1068 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1069 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1070 }; 1071 1072 static inline void skb_clear_hash(struct sk_buff *skb) 1073 { 1074 skb->hash = 0; 1075 skb->sw_hash = 0; 1076 skb->l4_hash = 0; 1077 } 1078 1079 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1080 { 1081 if (!skb->l4_hash) 1082 skb_clear_hash(skb); 1083 } 1084 1085 static inline void 1086 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1087 { 1088 skb->l4_hash = is_l4; 1089 skb->sw_hash = is_sw; 1090 skb->hash = hash; 1091 } 1092 1093 static inline void 1094 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1095 { 1096 /* Used by drivers to set hash from HW */ 1097 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1098 } 1099 1100 static inline void 1101 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1102 { 1103 __skb_set_hash(skb, hash, true, is_l4); 1104 } 1105 1106 void __skb_get_hash(struct sk_buff *skb); 1107 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1108 u32 skb_get_poff(const struct sk_buff *skb); 1109 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1110 const struct flow_keys *keys, int hlen); 1111 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1112 void *data, int hlen_proto); 1113 1114 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1115 int thoff, u8 ip_proto) 1116 { 1117 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1118 } 1119 1120 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1121 const struct flow_dissector_key *key, 1122 unsigned int key_count); 1123 1124 bool __skb_flow_dissect(const struct sk_buff *skb, 1125 struct flow_dissector *flow_dissector, 1126 void *target_container, 1127 void *data, __be16 proto, int nhoff, int hlen, 1128 unsigned int flags); 1129 1130 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1131 struct flow_dissector *flow_dissector, 1132 void *target_container, unsigned int flags) 1133 { 1134 return __skb_flow_dissect(skb, flow_dissector, target_container, 1135 NULL, 0, 0, 0, flags); 1136 } 1137 1138 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1139 struct flow_keys *flow, 1140 unsigned int flags) 1141 { 1142 memset(flow, 0, sizeof(*flow)); 1143 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1144 NULL, 0, 0, 0, flags); 1145 } 1146 1147 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1148 void *data, __be16 proto, 1149 int nhoff, int hlen, 1150 unsigned int flags) 1151 { 1152 memset(flow, 0, sizeof(*flow)); 1153 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1154 data, proto, nhoff, hlen, flags); 1155 } 1156 1157 static inline __u32 skb_get_hash(struct sk_buff *skb) 1158 { 1159 if (!skb->l4_hash && !skb->sw_hash) 1160 __skb_get_hash(skb); 1161 1162 return skb->hash; 1163 } 1164 1165 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1166 1167 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1168 { 1169 if (!skb->l4_hash && !skb->sw_hash) { 1170 struct flow_keys keys; 1171 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1172 1173 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1174 } 1175 1176 return skb->hash; 1177 } 1178 1179 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1180 1181 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1182 { 1183 if (!skb->l4_hash && !skb->sw_hash) { 1184 struct flow_keys keys; 1185 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1186 1187 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1188 } 1189 1190 return skb->hash; 1191 } 1192 1193 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1194 1195 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1196 { 1197 return skb->hash; 1198 } 1199 1200 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1201 { 1202 to->hash = from->hash; 1203 to->sw_hash = from->sw_hash; 1204 to->l4_hash = from->l4_hash; 1205 }; 1206 1207 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1208 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1209 { 1210 return skb->head + skb->end; 1211 } 1212 1213 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1214 { 1215 return skb->end; 1216 } 1217 #else 1218 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1219 { 1220 return skb->end; 1221 } 1222 1223 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1224 { 1225 return skb->end - skb->head; 1226 } 1227 #endif 1228 1229 /* Internal */ 1230 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1231 1232 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1233 { 1234 return &skb_shinfo(skb)->hwtstamps; 1235 } 1236 1237 /** 1238 * skb_queue_empty - check if a queue is empty 1239 * @list: queue head 1240 * 1241 * Returns true if the queue is empty, false otherwise. 1242 */ 1243 static inline int skb_queue_empty(const struct sk_buff_head *list) 1244 { 1245 return list->next == (const struct sk_buff *) list; 1246 } 1247 1248 /** 1249 * skb_queue_is_last - check if skb is the last entry in the queue 1250 * @list: queue head 1251 * @skb: buffer 1252 * 1253 * Returns true if @skb is the last buffer on the list. 1254 */ 1255 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1256 const struct sk_buff *skb) 1257 { 1258 return skb->next == (const struct sk_buff *) list; 1259 } 1260 1261 /** 1262 * skb_queue_is_first - check if skb is the first entry in the queue 1263 * @list: queue head 1264 * @skb: buffer 1265 * 1266 * Returns true if @skb is the first buffer on the list. 1267 */ 1268 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1269 const struct sk_buff *skb) 1270 { 1271 return skb->prev == (const struct sk_buff *) list; 1272 } 1273 1274 /** 1275 * skb_queue_next - return the next packet in the queue 1276 * @list: queue head 1277 * @skb: current buffer 1278 * 1279 * Return the next packet in @list after @skb. It is only valid to 1280 * call this if skb_queue_is_last() evaluates to false. 1281 */ 1282 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1283 const struct sk_buff *skb) 1284 { 1285 /* This BUG_ON may seem severe, but if we just return then we 1286 * are going to dereference garbage. 1287 */ 1288 BUG_ON(skb_queue_is_last(list, skb)); 1289 return skb->next; 1290 } 1291 1292 /** 1293 * skb_queue_prev - return the prev packet in the queue 1294 * @list: queue head 1295 * @skb: current buffer 1296 * 1297 * Return the prev packet in @list before @skb. It is only valid to 1298 * call this if skb_queue_is_first() evaluates to false. 1299 */ 1300 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1301 const struct sk_buff *skb) 1302 { 1303 /* This BUG_ON may seem severe, but if we just return then we 1304 * are going to dereference garbage. 1305 */ 1306 BUG_ON(skb_queue_is_first(list, skb)); 1307 return skb->prev; 1308 } 1309 1310 /** 1311 * skb_get - reference buffer 1312 * @skb: buffer to reference 1313 * 1314 * Makes another reference to a socket buffer and returns a pointer 1315 * to the buffer. 1316 */ 1317 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1318 { 1319 atomic_inc(&skb->users); 1320 return skb; 1321 } 1322 1323 /* 1324 * If users == 1, we are the only owner and are can avoid redundant 1325 * atomic change. 1326 */ 1327 1328 /** 1329 * skb_cloned - is the buffer a clone 1330 * @skb: buffer to check 1331 * 1332 * Returns true if the buffer was generated with skb_clone() and is 1333 * one of multiple shared copies of the buffer. Cloned buffers are 1334 * shared data so must not be written to under normal circumstances. 1335 */ 1336 static inline int skb_cloned(const struct sk_buff *skb) 1337 { 1338 return skb->cloned && 1339 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1340 } 1341 1342 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1343 { 1344 might_sleep_if(gfpflags_allow_blocking(pri)); 1345 1346 if (skb_cloned(skb)) 1347 return pskb_expand_head(skb, 0, 0, pri); 1348 1349 return 0; 1350 } 1351 1352 /** 1353 * skb_header_cloned - is the header a clone 1354 * @skb: buffer to check 1355 * 1356 * Returns true if modifying the header part of the buffer requires 1357 * the data to be copied. 1358 */ 1359 static inline int skb_header_cloned(const struct sk_buff *skb) 1360 { 1361 int dataref; 1362 1363 if (!skb->cloned) 1364 return 0; 1365 1366 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1367 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1368 return dataref != 1; 1369 } 1370 1371 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1372 { 1373 might_sleep_if(gfpflags_allow_blocking(pri)); 1374 1375 if (skb_header_cloned(skb)) 1376 return pskb_expand_head(skb, 0, 0, pri); 1377 1378 return 0; 1379 } 1380 1381 /** 1382 * skb_header_release - release reference to header 1383 * @skb: buffer to operate on 1384 * 1385 * Drop a reference to the header part of the buffer. This is done 1386 * by acquiring a payload reference. You must not read from the header 1387 * part of skb->data after this. 1388 * Note : Check if you can use __skb_header_release() instead. 1389 */ 1390 static inline void skb_header_release(struct sk_buff *skb) 1391 { 1392 BUG_ON(skb->nohdr); 1393 skb->nohdr = 1; 1394 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1395 } 1396 1397 /** 1398 * __skb_header_release - release reference to header 1399 * @skb: buffer to operate on 1400 * 1401 * Variant of skb_header_release() assuming skb is private to caller. 1402 * We can avoid one atomic operation. 1403 */ 1404 static inline void __skb_header_release(struct sk_buff *skb) 1405 { 1406 skb->nohdr = 1; 1407 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1408 } 1409 1410 1411 /** 1412 * skb_shared - is the buffer shared 1413 * @skb: buffer to check 1414 * 1415 * Returns true if more than one person has a reference to this 1416 * buffer. 1417 */ 1418 static inline int skb_shared(const struct sk_buff *skb) 1419 { 1420 return atomic_read(&skb->users) != 1; 1421 } 1422 1423 /** 1424 * skb_share_check - check if buffer is shared and if so clone it 1425 * @skb: buffer to check 1426 * @pri: priority for memory allocation 1427 * 1428 * If the buffer is shared the buffer is cloned and the old copy 1429 * drops a reference. A new clone with a single reference is returned. 1430 * If the buffer is not shared the original buffer is returned. When 1431 * being called from interrupt status or with spinlocks held pri must 1432 * be GFP_ATOMIC. 1433 * 1434 * NULL is returned on a memory allocation failure. 1435 */ 1436 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1437 { 1438 might_sleep_if(gfpflags_allow_blocking(pri)); 1439 if (skb_shared(skb)) { 1440 struct sk_buff *nskb = skb_clone(skb, pri); 1441 1442 if (likely(nskb)) 1443 consume_skb(skb); 1444 else 1445 kfree_skb(skb); 1446 skb = nskb; 1447 } 1448 return skb; 1449 } 1450 1451 /* 1452 * Copy shared buffers into a new sk_buff. We effectively do COW on 1453 * packets to handle cases where we have a local reader and forward 1454 * and a couple of other messy ones. The normal one is tcpdumping 1455 * a packet thats being forwarded. 1456 */ 1457 1458 /** 1459 * skb_unshare - make a copy of a shared buffer 1460 * @skb: buffer to check 1461 * @pri: priority for memory allocation 1462 * 1463 * If the socket buffer is a clone then this function creates a new 1464 * copy of the data, drops a reference count on the old copy and returns 1465 * the new copy with the reference count at 1. If the buffer is not a clone 1466 * the original buffer is returned. When called with a spinlock held or 1467 * from interrupt state @pri must be %GFP_ATOMIC 1468 * 1469 * %NULL is returned on a memory allocation failure. 1470 */ 1471 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1472 gfp_t pri) 1473 { 1474 might_sleep_if(gfpflags_allow_blocking(pri)); 1475 if (skb_cloned(skb)) { 1476 struct sk_buff *nskb = skb_copy(skb, pri); 1477 1478 /* Free our shared copy */ 1479 if (likely(nskb)) 1480 consume_skb(skb); 1481 else 1482 kfree_skb(skb); 1483 skb = nskb; 1484 } 1485 return skb; 1486 } 1487 1488 /** 1489 * skb_peek - peek at the head of an &sk_buff_head 1490 * @list_: list to peek at 1491 * 1492 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1493 * be careful with this one. A peek leaves the buffer on the 1494 * list and someone else may run off with it. You must hold 1495 * the appropriate locks or have a private queue to do this. 1496 * 1497 * Returns %NULL for an empty list or a pointer to the head element. 1498 * The reference count is not incremented and the reference is therefore 1499 * volatile. Use with caution. 1500 */ 1501 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1502 { 1503 struct sk_buff *skb = list_->next; 1504 1505 if (skb == (struct sk_buff *)list_) 1506 skb = NULL; 1507 return skb; 1508 } 1509 1510 /** 1511 * skb_peek_next - peek skb following the given one from a queue 1512 * @skb: skb to start from 1513 * @list_: list to peek at 1514 * 1515 * Returns %NULL when the end of the list is met or a pointer to the 1516 * next element. The reference count is not incremented and the 1517 * reference is therefore volatile. Use with caution. 1518 */ 1519 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1520 const struct sk_buff_head *list_) 1521 { 1522 struct sk_buff *next = skb->next; 1523 1524 if (next == (struct sk_buff *)list_) 1525 next = NULL; 1526 return next; 1527 } 1528 1529 /** 1530 * skb_peek_tail - peek at the tail of an &sk_buff_head 1531 * @list_: list to peek at 1532 * 1533 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1534 * be careful with this one. A peek leaves the buffer on the 1535 * list and someone else may run off with it. You must hold 1536 * the appropriate locks or have a private queue to do this. 1537 * 1538 * Returns %NULL for an empty list or a pointer to the tail element. 1539 * The reference count is not incremented and the reference is therefore 1540 * volatile. Use with caution. 1541 */ 1542 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1543 { 1544 struct sk_buff *skb = list_->prev; 1545 1546 if (skb == (struct sk_buff *)list_) 1547 skb = NULL; 1548 return skb; 1549 1550 } 1551 1552 /** 1553 * skb_queue_len - get queue length 1554 * @list_: list to measure 1555 * 1556 * Return the length of an &sk_buff queue. 1557 */ 1558 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1559 { 1560 return list_->qlen; 1561 } 1562 1563 /** 1564 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1565 * @list: queue to initialize 1566 * 1567 * This initializes only the list and queue length aspects of 1568 * an sk_buff_head object. This allows to initialize the list 1569 * aspects of an sk_buff_head without reinitializing things like 1570 * the spinlock. It can also be used for on-stack sk_buff_head 1571 * objects where the spinlock is known to not be used. 1572 */ 1573 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1574 { 1575 list->prev = list->next = (struct sk_buff *)list; 1576 list->qlen = 0; 1577 } 1578 1579 /* 1580 * This function creates a split out lock class for each invocation; 1581 * this is needed for now since a whole lot of users of the skb-queue 1582 * infrastructure in drivers have different locking usage (in hardirq) 1583 * than the networking core (in softirq only). In the long run either the 1584 * network layer or drivers should need annotation to consolidate the 1585 * main types of usage into 3 classes. 1586 */ 1587 static inline void skb_queue_head_init(struct sk_buff_head *list) 1588 { 1589 spin_lock_init(&list->lock); 1590 __skb_queue_head_init(list); 1591 } 1592 1593 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1594 struct lock_class_key *class) 1595 { 1596 skb_queue_head_init(list); 1597 lockdep_set_class(&list->lock, class); 1598 } 1599 1600 /* 1601 * Insert an sk_buff on a list. 1602 * 1603 * The "__skb_xxxx()" functions are the non-atomic ones that 1604 * can only be called with interrupts disabled. 1605 */ 1606 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1607 struct sk_buff_head *list); 1608 static inline void __skb_insert(struct sk_buff *newsk, 1609 struct sk_buff *prev, struct sk_buff *next, 1610 struct sk_buff_head *list) 1611 { 1612 newsk->next = next; 1613 newsk->prev = prev; 1614 next->prev = prev->next = newsk; 1615 list->qlen++; 1616 } 1617 1618 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1619 struct sk_buff *prev, 1620 struct sk_buff *next) 1621 { 1622 struct sk_buff *first = list->next; 1623 struct sk_buff *last = list->prev; 1624 1625 first->prev = prev; 1626 prev->next = first; 1627 1628 last->next = next; 1629 next->prev = last; 1630 } 1631 1632 /** 1633 * skb_queue_splice - join two skb lists, this is designed for stacks 1634 * @list: the new list to add 1635 * @head: the place to add it in the first list 1636 */ 1637 static inline void skb_queue_splice(const struct sk_buff_head *list, 1638 struct sk_buff_head *head) 1639 { 1640 if (!skb_queue_empty(list)) { 1641 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1642 head->qlen += list->qlen; 1643 } 1644 } 1645 1646 /** 1647 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1648 * @list: the new list to add 1649 * @head: the place to add it in the first list 1650 * 1651 * The list at @list is reinitialised 1652 */ 1653 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1654 struct sk_buff_head *head) 1655 { 1656 if (!skb_queue_empty(list)) { 1657 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1658 head->qlen += list->qlen; 1659 __skb_queue_head_init(list); 1660 } 1661 } 1662 1663 /** 1664 * skb_queue_splice_tail - join two skb lists, each list being a queue 1665 * @list: the new list to add 1666 * @head: the place to add it in the first list 1667 */ 1668 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1669 struct sk_buff_head *head) 1670 { 1671 if (!skb_queue_empty(list)) { 1672 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1673 head->qlen += list->qlen; 1674 } 1675 } 1676 1677 /** 1678 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1679 * @list: the new list to add 1680 * @head: the place to add it in the first list 1681 * 1682 * Each of the lists is a queue. 1683 * The list at @list is reinitialised 1684 */ 1685 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1686 struct sk_buff_head *head) 1687 { 1688 if (!skb_queue_empty(list)) { 1689 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1690 head->qlen += list->qlen; 1691 __skb_queue_head_init(list); 1692 } 1693 } 1694 1695 /** 1696 * __skb_queue_after - queue a buffer at the list head 1697 * @list: list to use 1698 * @prev: place after this buffer 1699 * @newsk: buffer to queue 1700 * 1701 * Queue a buffer int the middle of a list. This function takes no locks 1702 * and you must therefore hold required locks before calling it. 1703 * 1704 * A buffer cannot be placed on two lists at the same time. 1705 */ 1706 static inline void __skb_queue_after(struct sk_buff_head *list, 1707 struct sk_buff *prev, 1708 struct sk_buff *newsk) 1709 { 1710 __skb_insert(newsk, prev, prev->next, list); 1711 } 1712 1713 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1714 struct sk_buff_head *list); 1715 1716 static inline void __skb_queue_before(struct sk_buff_head *list, 1717 struct sk_buff *next, 1718 struct sk_buff *newsk) 1719 { 1720 __skb_insert(newsk, next->prev, next, list); 1721 } 1722 1723 /** 1724 * __skb_queue_head - queue a buffer at the list head 1725 * @list: list to use 1726 * @newsk: buffer to queue 1727 * 1728 * Queue a buffer at the start of a list. This function takes no locks 1729 * and you must therefore hold required locks before calling it. 1730 * 1731 * A buffer cannot be placed on two lists at the same time. 1732 */ 1733 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1734 static inline void __skb_queue_head(struct sk_buff_head *list, 1735 struct sk_buff *newsk) 1736 { 1737 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1738 } 1739 1740 /** 1741 * __skb_queue_tail - queue a buffer at the list tail 1742 * @list: list to use 1743 * @newsk: buffer to queue 1744 * 1745 * Queue a buffer at the end of a list. This function takes no locks 1746 * and you must therefore hold required locks before calling it. 1747 * 1748 * A buffer cannot be placed on two lists at the same time. 1749 */ 1750 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1751 static inline void __skb_queue_tail(struct sk_buff_head *list, 1752 struct sk_buff *newsk) 1753 { 1754 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1755 } 1756 1757 /* 1758 * remove sk_buff from list. _Must_ be called atomically, and with 1759 * the list known.. 1760 */ 1761 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1762 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1763 { 1764 struct sk_buff *next, *prev; 1765 1766 list->qlen--; 1767 next = skb->next; 1768 prev = skb->prev; 1769 skb->next = skb->prev = NULL; 1770 next->prev = prev; 1771 prev->next = next; 1772 } 1773 1774 /** 1775 * __skb_dequeue - remove from the head of the queue 1776 * @list: list to dequeue from 1777 * 1778 * Remove the head of the list. This function does not take any locks 1779 * so must be used with appropriate locks held only. The head item is 1780 * returned or %NULL if the list is empty. 1781 */ 1782 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1783 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1784 { 1785 struct sk_buff *skb = skb_peek(list); 1786 if (skb) 1787 __skb_unlink(skb, list); 1788 return skb; 1789 } 1790 1791 /** 1792 * __skb_dequeue_tail - remove from the tail of the queue 1793 * @list: list to dequeue from 1794 * 1795 * Remove the tail of the list. This function does not take any locks 1796 * so must be used with appropriate locks held only. The tail item is 1797 * returned or %NULL if the list is empty. 1798 */ 1799 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1800 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1801 { 1802 struct sk_buff *skb = skb_peek_tail(list); 1803 if (skb) 1804 __skb_unlink(skb, list); 1805 return skb; 1806 } 1807 1808 1809 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1810 { 1811 return skb->data_len; 1812 } 1813 1814 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1815 { 1816 return skb->len - skb->data_len; 1817 } 1818 1819 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1820 { 1821 unsigned int i, len = 0; 1822 1823 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1824 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1825 return len + skb_headlen(skb); 1826 } 1827 1828 /** 1829 * __skb_fill_page_desc - initialise a paged fragment in an skb 1830 * @skb: buffer containing fragment to be initialised 1831 * @i: paged fragment index to initialise 1832 * @page: the page to use for this fragment 1833 * @off: the offset to the data with @page 1834 * @size: the length of the data 1835 * 1836 * Initialises the @i'th fragment of @skb to point to &size bytes at 1837 * offset @off within @page. 1838 * 1839 * Does not take any additional reference on the fragment. 1840 */ 1841 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1842 struct page *page, int off, int size) 1843 { 1844 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1845 1846 /* 1847 * Propagate page pfmemalloc to the skb if we can. The problem is 1848 * that not all callers have unique ownership of the page but rely 1849 * on page_is_pfmemalloc doing the right thing(tm). 1850 */ 1851 frag->page.p = page; 1852 frag->page_offset = off; 1853 skb_frag_size_set(frag, size); 1854 1855 page = compound_head(page); 1856 if (page_is_pfmemalloc(page)) 1857 skb->pfmemalloc = true; 1858 } 1859 1860 /** 1861 * skb_fill_page_desc - initialise a paged fragment in an skb 1862 * @skb: buffer containing fragment to be initialised 1863 * @i: paged fragment index to initialise 1864 * @page: the page to use for this fragment 1865 * @off: the offset to the data with @page 1866 * @size: the length of the data 1867 * 1868 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1869 * @skb to point to @size bytes at offset @off within @page. In 1870 * addition updates @skb such that @i is the last fragment. 1871 * 1872 * Does not take any additional reference on the fragment. 1873 */ 1874 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1875 struct page *page, int off, int size) 1876 { 1877 __skb_fill_page_desc(skb, i, page, off, size); 1878 skb_shinfo(skb)->nr_frags = i + 1; 1879 } 1880 1881 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1882 int size, unsigned int truesize); 1883 1884 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1885 unsigned int truesize); 1886 1887 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1888 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1889 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1890 1891 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1892 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1893 { 1894 return skb->head + skb->tail; 1895 } 1896 1897 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1898 { 1899 skb->tail = skb->data - skb->head; 1900 } 1901 1902 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1903 { 1904 skb_reset_tail_pointer(skb); 1905 skb->tail += offset; 1906 } 1907 1908 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1909 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1910 { 1911 return skb->tail; 1912 } 1913 1914 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1915 { 1916 skb->tail = skb->data; 1917 } 1918 1919 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1920 { 1921 skb->tail = skb->data + offset; 1922 } 1923 1924 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1925 1926 /* 1927 * Add data to an sk_buff 1928 */ 1929 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1930 unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1931 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1932 { 1933 unsigned char *tmp = skb_tail_pointer(skb); 1934 SKB_LINEAR_ASSERT(skb); 1935 skb->tail += len; 1936 skb->len += len; 1937 return tmp; 1938 } 1939 1940 unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1941 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1942 { 1943 skb->data -= len; 1944 skb->len += len; 1945 return skb->data; 1946 } 1947 1948 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1949 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1950 { 1951 skb->len -= len; 1952 BUG_ON(skb->len < skb->data_len); 1953 return skb->data += len; 1954 } 1955 1956 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1957 { 1958 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1959 } 1960 1961 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1962 1963 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1964 { 1965 if (len > skb_headlen(skb) && 1966 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1967 return NULL; 1968 skb->len -= len; 1969 return skb->data += len; 1970 } 1971 1972 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1973 { 1974 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1975 } 1976 1977 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1978 { 1979 if (likely(len <= skb_headlen(skb))) 1980 return 1; 1981 if (unlikely(len > skb->len)) 1982 return 0; 1983 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1984 } 1985 1986 void skb_condense(struct sk_buff *skb); 1987 1988 /** 1989 * skb_headroom - bytes at buffer head 1990 * @skb: buffer to check 1991 * 1992 * Return the number of bytes of free space at the head of an &sk_buff. 1993 */ 1994 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1995 { 1996 return skb->data - skb->head; 1997 } 1998 1999 /** 2000 * skb_tailroom - bytes at buffer end 2001 * @skb: buffer to check 2002 * 2003 * Return the number of bytes of free space at the tail of an sk_buff 2004 */ 2005 static inline int skb_tailroom(const struct sk_buff *skb) 2006 { 2007 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2008 } 2009 2010 /** 2011 * skb_availroom - bytes at buffer end 2012 * @skb: buffer to check 2013 * 2014 * Return the number of bytes of free space at the tail of an sk_buff 2015 * allocated by sk_stream_alloc() 2016 */ 2017 static inline int skb_availroom(const struct sk_buff *skb) 2018 { 2019 if (skb_is_nonlinear(skb)) 2020 return 0; 2021 2022 return skb->end - skb->tail - skb->reserved_tailroom; 2023 } 2024 2025 /** 2026 * skb_reserve - adjust headroom 2027 * @skb: buffer to alter 2028 * @len: bytes to move 2029 * 2030 * Increase the headroom of an empty &sk_buff by reducing the tail 2031 * room. This is only allowed for an empty buffer. 2032 */ 2033 static inline void skb_reserve(struct sk_buff *skb, int len) 2034 { 2035 skb->data += len; 2036 skb->tail += len; 2037 } 2038 2039 /** 2040 * skb_tailroom_reserve - adjust reserved_tailroom 2041 * @skb: buffer to alter 2042 * @mtu: maximum amount of headlen permitted 2043 * @needed_tailroom: minimum amount of reserved_tailroom 2044 * 2045 * Set reserved_tailroom so that headlen can be as large as possible but 2046 * not larger than mtu and tailroom cannot be smaller than 2047 * needed_tailroom. 2048 * The required headroom should already have been reserved before using 2049 * this function. 2050 */ 2051 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2052 unsigned int needed_tailroom) 2053 { 2054 SKB_LINEAR_ASSERT(skb); 2055 if (mtu < skb_tailroom(skb) - needed_tailroom) 2056 /* use at most mtu */ 2057 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2058 else 2059 /* use up to all available space */ 2060 skb->reserved_tailroom = needed_tailroom; 2061 } 2062 2063 #define ENCAP_TYPE_ETHER 0 2064 #define ENCAP_TYPE_IPPROTO 1 2065 2066 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2067 __be16 protocol) 2068 { 2069 skb->inner_protocol = protocol; 2070 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2071 } 2072 2073 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2074 __u8 ipproto) 2075 { 2076 skb->inner_ipproto = ipproto; 2077 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2078 } 2079 2080 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2081 { 2082 skb->inner_mac_header = skb->mac_header; 2083 skb->inner_network_header = skb->network_header; 2084 skb->inner_transport_header = skb->transport_header; 2085 } 2086 2087 static inline void skb_reset_mac_len(struct sk_buff *skb) 2088 { 2089 skb->mac_len = skb->network_header - skb->mac_header; 2090 } 2091 2092 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2093 *skb) 2094 { 2095 return skb->head + skb->inner_transport_header; 2096 } 2097 2098 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2099 { 2100 return skb_inner_transport_header(skb) - skb->data; 2101 } 2102 2103 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2104 { 2105 skb->inner_transport_header = skb->data - skb->head; 2106 } 2107 2108 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2109 const int offset) 2110 { 2111 skb_reset_inner_transport_header(skb); 2112 skb->inner_transport_header += offset; 2113 } 2114 2115 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2116 { 2117 return skb->head + skb->inner_network_header; 2118 } 2119 2120 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2121 { 2122 skb->inner_network_header = skb->data - skb->head; 2123 } 2124 2125 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2126 const int offset) 2127 { 2128 skb_reset_inner_network_header(skb); 2129 skb->inner_network_header += offset; 2130 } 2131 2132 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2133 { 2134 return skb->head + skb->inner_mac_header; 2135 } 2136 2137 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2138 { 2139 skb->inner_mac_header = skb->data - skb->head; 2140 } 2141 2142 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2143 const int offset) 2144 { 2145 skb_reset_inner_mac_header(skb); 2146 skb->inner_mac_header += offset; 2147 } 2148 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2149 { 2150 return skb->transport_header != (typeof(skb->transport_header))~0U; 2151 } 2152 2153 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2154 { 2155 return skb->head + skb->transport_header; 2156 } 2157 2158 static inline void skb_reset_transport_header(struct sk_buff *skb) 2159 { 2160 skb->transport_header = skb->data - skb->head; 2161 } 2162 2163 static inline void skb_set_transport_header(struct sk_buff *skb, 2164 const int offset) 2165 { 2166 skb_reset_transport_header(skb); 2167 skb->transport_header += offset; 2168 } 2169 2170 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2171 { 2172 return skb->head + skb->network_header; 2173 } 2174 2175 static inline void skb_reset_network_header(struct sk_buff *skb) 2176 { 2177 skb->network_header = skb->data - skb->head; 2178 } 2179 2180 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2181 { 2182 skb_reset_network_header(skb); 2183 skb->network_header += offset; 2184 } 2185 2186 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2187 { 2188 return skb->head + skb->mac_header; 2189 } 2190 2191 static inline int skb_mac_offset(const struct sk_buff *skb) 2192 { 2193 return skb_mac_header(skb) - skb->data; 2194 } 2195 2196 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2197 { 2198 return skb->mac_header != (typeof(skb->mac_header))~0U; 2199 } 2200 2201 static inline void skb_reset_mac_header(struct sk_buff *skb) 2202 { 2203 skb->mac_header = skb->data - skb->head; 2204 } 2205 2206 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2207 { 2208 skb_reset_mac_header(skb); 2209 skb->mac_header += offset; 2210 } 2211 2212 static inline void skb_pop_mac_header(struct sk_buff *skb) 2213 { 2214 skb->mac_header = skb->network_header; 2215 } 2216 2217 static inline void skb_probe_transport_header(struct sk_buff *skb, 2218 const int offset_hint) 2219 { 2220 struct flow_keys keys; 2221 2222 if (skb_transport_header_was_set(skb)) 2223 return; 2224 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2225 skb_set_transport_header(skb, keys.control.thoff); 2226 else 2227 skb_set_transport_header(skb, offset_hint); 2228 } 2229 2230 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2231 { 2232 if (skb_mac_header_was_set(skb)) { 2233 const unsigned char *old_mac = skb_mac_header(skb); 2234 2235 skb_set_mac_header(skb, -skb->mac_len); 2236 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2237 } 2238 } 2239 2240 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2241 { 2242 return skb->csum_start - skb_headroom(skb); 2243 } 2244 2245 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2246 { 2247 return skb->head + skb->csum_start; 2248 } 2249 2250 static inline int skb_transport_offset(const struct sk_buff *skb) 2251 { 2252 return skb_transport_header(skb) - skb->data; 2253 } 2254 2255 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2256 { 2257 return skb->transport_header - skb->network_header; 2258 } 2259 2260 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2261 { 2262 return skb->inner_transport_header - skb->inner_network_header; 2263 } 2264 2265 static inline int skb_network_offset(const struct sk_buff *skb) 2266 { 2267 return skb_network_header(skb) - skb->data; 2268 } 2269 2270 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2271 { 2272 return skb_inner_network_header(skb) - skb->data; 2273 } 2274 2275 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2276 { 2277 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2278 } 2279 2280 /* 2281 * CPUs often take a performance hit when accessing unaligned memory 2282 * locations. The actual performance hit varies, it can be small if the 2283 * hardware handles it or large if we have to take an exception and fix it 2284 * in software. 2285 * 2286 * Since an ethernet header is 14 bytes network drivers often end up with 2287 * the IP header at an unaligned offset. The IP header can be aligned by 2288 * shifting the start of the packet by 2 bytes. Drivers should do this 2289 * with: 2290 * 2291 * skb_reserve(skb, NET_IP_ALIGN); 2292 * 2293 * The downside to this alignment of the IP header is that the DMA is now 2294 * unaligned. On some architectures the cost of an unaligned DMA is high 2295 * and this cost outweighs the gains made by aligning the IP header. 2296 * 2297 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2298 * to be overridden. 2299 */ 2300 #ifndef NET_IP_ALIGN 2301 #define NET_IP_ALIGN 2 2302 #endif 2303 2304 /* 2305 * The networking layer reserves some headroom in skb data (via 2306 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2307 * the header has to grow. In the default case, if the header has to grow 2308 * 32 bytes or less we avoid the reallocation. 2309 * 2310 * Unfortunately this headroom changes the DMA alignment of the resulting 2311 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2312 * on some architectures. An architecture can override this value, 2313 * perhaps setting it to a cacheline in size (since that will maintain 2314 * cacheline alignment of the DMA). It must be a power of 2. 2315 * 2316 * Various parts of the networking layer expect at least 32 bytes of 2317 * headroom, you should not reduce this. 2318 * 2319 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2320 * to reduce average number of cache lines per packet. 2321 * get_rps_cpus() for example only access one 64 bytes aligned block : 2322 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2323 */ 2324 #ifndef NET_SKB_PAD 2325 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2326 #endif 2327 2328 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2329 2330 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2331 { 2332 if (unlikely(skb_is_nonlinear(skb))) { 2333 WARN_ON(1); 2334 return; 2335 } 2336 skb->len = len; 2337 skb_set_tail_pointer(skb, len); 2338 } 2339 2340 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2341 { 2342 __skb_set_length(skb, len); 2343 } 2344 2345 void skb_trim(struct sk_buff *skb, unsigned int len); 2346 2347 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2348 { 2349 if (skb->data_len) 2350 return ___pskb_trim(skb, len); 2351 __skb_trim(skb, len); 2352 return 0; 2353 } 2354 2355 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2356 { 2357 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2358 } 2359 2360 /** 2361 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2362 * @skb: buffer to alter 2363 * @len: new length 2364 * 2365 * This is identical to pskb_trim except that the caller knows that 2366 * the skb is not cloned so we should never get an error due to out- 2367 * of-memory. 2368 */ 2369 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2370 { 2371 int err = pskb_trim(skb, len); 2372 BUG_ON(err); 2373 } 2374 2375 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2376 { 2377 unsigned int diff = len - skb->len; 2378 2379 if (skb_tailroom(skb) < diff) { 2380 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2381 GFP_ATOMIC); 2382 if (ret) 2383 return ret; 2384 } 2385 __skb_set_length(skb, len); 2386 return 0; 2387 } 2388 2389 /** 2390 * skb_orphan - orphan a buffer 2391 * @skb: buffer to orphan 2392 * 2393 * If a buffer currently has an owner then we call the owner's 2394 * destructor function and make the @skb unowned. The buffer continues 2395 * to exist but is no longer charged to its former owner. 2396 */ 2397 static inline void skb_orphan(struct sk_buff *skb) 2398 { 2399 if (skb->destructor) { 2400 skb->destructor(skb); 2401 skb->destructor = NULL; 2402 skb->sk = NULL; 2403 } else { 2404 BUG_ON(skb->sk); 2405 } 2406 } 2407 2408 /** 2409 * skb_orphan_frags - orphan the frags contained in a buffer 2410 * @skb: buffer to orphan frags from 2411 * @gfp_mask: allocation mask for replacement pages 2412 * 2413 * For each frag in the SKB which needs a destructor (i.e. has an 2414 * owner) create a copy of that frag and release the original 2415 * page by calling the destructor. 2416 */ 2417 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2418 { 2419 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2420 return 0; 2421 return skb_copy_ubufs(skb, gfp_mask); 2422 } 2423 2424 /** 2425 * __skb_queue_purge - empty a list 2426 * @list: list to empty 2427 * 2428 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2429 * the list and one reference dropped. This function does not take the 2430 * list lock and the caller must hold the relevant locks to use it. 2431 */ 2432 void skb_queue_purge(struct sk_buff_head *list); 2433 static inline void __skb_queue_purge(struct sk_buff_head *list) 2434 { 2435 struct sk_buff *skb; 2436 while ((skb = __skb_dequeue(list)) != NULL) 2437 kfree_skb(skb); 2438 } 2439 2440 void skb_rbtree_purge(struct rb_root *root); 2441 2442 void *netdev_alloc_frag(unsigned int fragsz); 2443 2444 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2445 gfp_t gfp_mask); 2446 2447 /** 2448 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2449 * @dev: network device to receive on 2450 * @length: length to allocate 2451 * 2452 * Allocate a new &sk_buff and assign it a usage count of one. The 2453 * buffer has unspecified headroom built in. Users should allocate 2454 * the headroom they think they need without accounting for the 2455 * built in space. The built in space is used for optimisations. 2456 * 2457 * %NULL is returned if there is no free memory. Although this function 2458 * allocates memory it can be called from an interrupt. 2459 */ 2460 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2461 unsigned int length) 2462 { 2463 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2464 } 2465 2466 /* legacy helper around __netdev_alloc_skb() */ 2467 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2468 gfp_t gfp_mask) 2469 { 2470 return __netdev_alloc_skb(NULL, length, gfp_mask); 2471 } 2472 2473 /* legacy helper around netdev_alloc_skb() */ 2474 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2475 { 2476 return netdev_alloc_skb(NULL, length); 2477 } 2478 2479 2480 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2481 unsigned int length, gfp_t gfp) 2482 { 2483 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2484 2485 if (NET_IP_ALIGN && skb) 2486 skb_reserve(skb, NET_IP_ALIGN); 2487 return skb; 2488 } 2489 2490 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2491 unsigned int length) 2492 { 2493 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2494 } 2495 2496 static inline void skb_free_frag(void *addr) 2497 { 2498 page_frag_free(addr); 2499 } 2500 2501 void *napi_alloc_frag(unsigned int fragsz); 2502 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2503 unsigned int length, gfp_t gfp_mask); 2504 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2505 unsigned int length) 2506 { 2507 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2508 } 2509 void napi_consume_skb(struct sk_buff *skb, int budget); 2510 2511 void __kfree_skb_flush(void); 2512 void __kfree_skb_defer(struct sk_buff *skb); 2513 2514 /** 2515 * __dev_alloc_pages - allocate page for network Rx 2516 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2517 * @order: size of the allocation 2518 * 2519 * Allocate a new page. 2520 * 2521 * %NULL is returned if there is no free memory. 2522 */ 2523 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2524 unsigned int order) 2525 { 2526 /* This piece of code contains several assumptions. 2527 * 1. This is for device Rx, therefor a cold page is preferred. 2528 * 2. The expectation is the user wants a compound page. 2529 * 3. If requesting a order 0 page it will not be compound 2530 * due to the check to see if order has a value in prep_new_page 2531 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2532 * code in gfp_to_alloc_flags that should be enforcing this. 2533 */ 2534 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2535 2536 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2537 } 2538 2539 static inline struct page *dev_alloc_pages(unsigned int order) 2540 { 2541 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2542 } 2543 2544 /** 2545 * __dev_alloc_page - allocate a page for network Rx 2546 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2547 * 2548 * Allocate a new page. 2549 * 2550 * %NULL is returned if there is no free memory. 2551 */ 2552 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2553 { 2554 return __dev_alloc_pages(gfp_mask, 0); 2555 } 2556 2557 static inline struct page *dev_alloc_page(void) 2558 { 2559 return dev_alloc_pages(0); 2560 } 2561 2562 /** 2563 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2564 * @page: The page that was allocated from skb_alloc_page 2565 * @skb: The skb that may need pfmemalloc set 2566 */ 2567 static inline void skb_propagate_pfmemalloc(struct page *page, 2568 struct sk_buff *skb) 2569 { 2570 if (page_is_pfmemalloc(page)) 2571 skb->pfmemalloc = true; 2572 } 2573 2574 /** 2575 * skb_frag_page - retrieve the page referred to by a paged fragment 2576 * @frag: the paged fragment 2577 * 2578 * Returns the &struct page associated with @frag. 2579 */ 2580 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2581 { 2582 return frag->page.p; 2583 } 2584 2585 /** 2586 * __skb_frag_ref - take an addition reference on a paged fragment. 2587 * @frag: the paged fragment 2588 * 2589 * Takes an additional reference on the paged fragment @frag. 2590 */ 2591 static inline void __skb_frag_ref(skb_frag_t *frag) 2592 { 2593 get_page(skb_frag_page(frag)); 2594 } 2595 2596 /** 2597 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2598 * @skb: the buffer 2599 * @f: the fragment offset. 2600 * 2601 * Takes an additional reference on the @f'th paged fragment of @skb. 2602 */ 2603 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2604 { 2605 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2606 } 2607 2608 /** 2609 * __skb_frag_unref - release a reference on a paged fragment. 2610 * @frag: the paged fragment 2611 * 2612 * Releases a reference on the paged fragment @frag. 2613 */ 2614 static inline void __skb_frag_unref(skb_frag_t *frag) 2615 { 2616 put_page(skb_frag_page(frag)); 2617 } 2618 2619 /** 2620 * skb_frag_unref - release a reference on a paged fragment of an skb. 2621 * @skb: the buffer 2622 * @f: the fragment offset 2623 * 2624 * Releases a reference on the @f'th paged fragment of @skb. 2625 */ 2626 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2627 { 2628 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2629 } 2630 2631 /** 2632 * skb_frag_address - gets the address of the data contained in a paged fragment 2633 * @frag: the paged fragment buffer 2634 * 2635 * Returns the address of the data within @frag. The page must already 2636 * be mapped. 2637 */ 2638 static inline void *skb_frag_address(const skb_frag_t *frag) 2639 { 2640 return page_address(skb_frag_page(frag)) + frag->page_offset; 2641 } 2642 2643 /** 2644 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2645 * @frag: the paged fragment buffer 2646 * 2647 * Returns the address of the data within @frag. Checks that the page 2648 * is mapped and returns %NULL otherwise. 2649 */ 2650 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2651 { 2652 void *ptr = page_address(skb_frag_page(frag)); 2653 if (unlikely(!ptr)) 2654 return NULL; 2655 2656 return ptr + frag->page_offset; 2657 } 2658 2659 /** 2660 * __skb_frag_set_page - sets the page contained in a paged fragment 2661 * @frag: the paged fragment 2662 * @page: the page to set 2663 * 2664 * Sets the fragment @frag to contain @page. 2665 */ 2666 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2667 { 2668 frag->page.p = page; 2669 } 2670 2671 /** 2672 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2673 * @skb: the buffer 2674 * @f: the fragment offset 2675 * @page: the page to set 2676 * 2677 * Sets the @f'th fragment of @skb to contain @page. 2678 */ 2679 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2680 struct page *page) 2681 { 2682 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2683 } 2684 2685 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2686 2687 /** 2688 * skb_frag_dma_map - maps a paged fragment via the DMA API 2689 * @dev: the device to map the fragment to 2690 * @frag: the paged fragment to map 2691 * @offset: the offset within the fragment (starting at the 2692 * fragment's own offset) 2693 * @size: the number of bytes to map 2694 * @dir: the direction of the mapping (%PCI_DMA_*) 2695 * 2696 * Maps the page associated with @frag to @device. 2697 */ 2698 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2699 const skb_frag_t *frag, 2700 size_t offset, size_t size, 2701 enum dma_data_direction dir) 2702 { 2703 return dma_map_page(dev, skb_frag_page(frag), 2704 frag->page_offset + offset, size, dir); 2705 } 2706 2707 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2708 gfp_t gfp_mask) 2709 { 2710 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2711 } 2712 2713 2714 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2715 gfp_t gfp_mask) 2716 { 2717 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2718 } 2719 2720 2721 /** 2722 * skb_clone_writable - is the header of a clone writable 2723 * @skb: buffer to check 2724 * @len: length up to which to write 2725 * 2726 * Returns true if modifying the header part of the cloned buffer 2727 * does not requires the data to be copied. 2728 */ 2729 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2730 { 2731 return !skb_header_cloned(skb) && 2732 skb_headroom(skb) + len <= skb->hdr_len; 2733 } 2734 2735 static inline int skb_try_make_writable(struct sk_buff *skb, 2736 unsigned int write_len) 2737 { 2738 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2739 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2740 } 2741 2742 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2743 int cloned) 2744 { 2745 int delta = 0; 2746 2747 if (headroom > skb_headroom(skb)) 2748 delta = headroom - skb_headroom(skb); 2749 2750 if (delta || cloned) 2751 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2752 GFP_ATOMIC); 2753 return 0; 2754 } 2755 2756 /** 2757 * skb_cow - copy header of skb when it is required 2758 * @skb: buffer to cow 2759 * @headroom: needed headroom 2760 * 2761 * If the skb passed lacks sufficient headroom or its data part 2762 * is shared, data is reallocated. If reallocation fails, an error 2763 * is returned and original skb is not changed. 2764 * 2765 * The result is skb with writable area skb->head...skb->tail 2766 * and at least @headroom of space at head. 2767 */ 2768 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2769 { 2770 return __skb_cow(skb, headroom, skb_cloned(skb)); 2771 } 2772 2773 /** 2774 * skb_cow_head - skb_cow but only making the head writable 2775 * @skb: buffer to cow 2776 * @headroom: needed headroom 2777 * 2778 * This function is identical to skb_cow except that we replace the 2779 * skb_cloned check by skb_header_cloned. It should be used when 2780 * you only need to push on some header and do not need to modify 2781 * the data. 2782 */ 2783 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2784 { 2785 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2786 } 2787 2788 /** 2789 * skb_padto - pad an skbuff up to a minimal size 2790 * @skb: buffer to pad 2791 * @len: minimal length 2792 * 2793 * Pads up a buffer to ensure the trailing bytes exist and are 2794 * blanked. If the buffer already contains sufficient data it 2795 * is untouched. Otherwise it is extended. Returns zero on 2796 * success. The skb is freed on error. 2797 */ 2798 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2799 { 2800 unsigned int size = skb->len; 2801 if (likely(size >= len)) 2802 return 0; 2803 return skb_pad(skb, len - size); 2804 } 2805 2806 /** 2807 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2808 * @skb: buffer to pad 2809 * @len: minimal length 2810 * 2811 * Pads up a buffer to ensure the trailing bytes exist and are 2812 * blanked. If the buffer already contains sufficient data it 2813 * is untouched. Otherwise it is extended. Returns zero on 2814 * success. The skb is freed on error. 2815 */ 2816 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2817 { 2818 unsigned int size = skb->len; 2819 2820 if (unlikely(size < len)) { 2821 len -= size; 2822 if (skb_pad(skb, len)) 2823 return -ENOMEM; 2824 __skb_put(skb, len); 2825 } 2826 return 0; 2827 } 2828 2829 static inline int skb_add_data(struct sk_buff *skb, 2830 struct iov_iter *from, int copy) 2831 { 2832 const int off = skb->len; 2833 2834 if (skb->ip_summed == CHECKSUM_NONE) { 2835 __wsum csum = 0; 2836 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 2837 &csum, from)) { 2838 skb->csum = csum_block_add(skb->csum, csum, off); 2839 return 0; 2840 } 2841 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 2842 return 0; 2843 2844 __skb_trim(skb, off); 2845 return -EFAULT; 2846 } 2847 2848 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2849 const struct page *page, int off) 2850 { 2851 if (i) { 2852 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2853 2854 return page == skb_frag_page(frag) && 2855 off == frag->page_offset + skb_frag_size(frag); 2856 } 2857 return false; 2858 } 2859 2860 static inline int __skb_linearize(struct sk_buff *skb) 2861 { 2862 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2863 } 2864 2865 /** 2866 * skb_linearize - convert paged skb to linear one 2867 * @skb: buffer to linarize 2868 * 2869 * If there is no free memory -ENOMEM is returned, otherwise zero 2870 * is returned and the old skb data released. 2871 */ 2872 static inline int skb_linearize(struct sk_buff *skb) 2873 { 2874 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2875 } 2876 2877 /** 2878 * skb_has_shared_frag - can any frag be overwritten 2879 * @skb: buffer to test 2880 * 2881 * Return true if the skb has at least one frag that might be modified 2882 * by an external entity (as in vmsplice()/sendfile()) 2883 */ 2884 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2885 { 2886 return skb_is_nonlinear(skb) && 2887 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2888 } 2889 2890 /** 2891 * skb_linearize_cow - make sure skb is linear and writable 2892 * @skb: buffer to process 2893 * 2894 * If there is no free memory -ENOMEM is returned, otherwise zero 2895 * is returned and the old skb data released. 2896 */ 2897 static inline int skb_linearize_cow(struct sk_buff *skb) 2898 { 2899 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2900 __skb_linearize(skb) : 0; 2901 } 2902 2903 static __always_inline void 2904 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2905 unsigned int off) 2906 { 2907 if (skb->ip_summed == CHECKSUM_COMPLETE) 2908 skb->csum = csum_block_sub(skb->csum, 2909 csum_partial(start, len, 0), off); 2910 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2911 skb_checksum_start_offset(skb) < 0) 2912 skb->ip_summed = CHECKSUM_NONE; 2913 } 2914 2915 /** 2916 * skb_postpull_rcsum - update checksum for received skb after pull 2917 * @skb: buffer to update 2918 * @start: start of data before pull 2919 * @len: length of data pulled 2920 * 2921 * After doing a pull on a received packet, you need to call this to 2922 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2923 * CHECKSUM_NONE so that it can be recomputed from scratch. 2924 */ 2925 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2926 const void *start, unsigned int len) 2927 { 2928 __skb_postpull_rcsum(skb, start, len, 0); 2929 } 2930 2931 static __always_inline void 2932 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2933 unsigned int off) 2934 { 2935 if (skb->ip_summed == CHECKSUM_COMPLETE) 2936 skb->csum = csum_block_add(skb->csum, 2937 csum_partial(start, len, 0), off); 2938 } 2939 2940 /** 2941 * skb_postpush_rcsum - update checksum for received skb after push 2942 * @skb: buffer to update 2943 * @start: start of data after push 2944 * @len: length of data pushed 2945 * 2946 * After doing a push on a received packet, you need to call this to 2947 * update the CHECKSUM_COMPLETE checksum. 2948 */ 2949 static inline void skb_postpush_rcsum(struct sk_buff *skb, 2950 const void *start, unsigned int len) 2951 { 2952 __skb_postpush_rcsum(skb, start, len, 0); 2953 } 2954 2955 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2956 2957 /** 2958 * skb_push_rcsum - push skb and update receive checksum 2959 * @skb: buffer to update 2960 * @len: length of data pulled 2961 * 2962 * This function performs an skb_push on the packet and updates 2963 * the CHECKSUM_COMPLETE checksum. It should be used on 2964 * receive path processing instead of skb_push unless you know 2965 * that the checksum difference is zero (e.g., a valid IP header) 2966 * or you are setting ip_summed to CHECKSUM_NONE. 2967 */ 2968 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb, 2969 unsigned int len) 2970 { 2971 skb_push(skb, len); 2972 skb_postpush_rcsum(skb, skb->data, len); 2973 return skb->data; 2974 } 2975 2976 /** 2977 * pskb_trim_rcsum - trim received skb and update checksum 2978 * @skb: buffer to trim 2979 * @len: new length 2980 * 2981 * This is exactly the same as pskb_trim except that it ensures the 2982 * checksum of received packets are still valid after the operation. 2983 */ 2984 2985 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2986 { 2987 if (likely(len >= skb->len)) 2988 return 0; 2989 if (skb->ip_summed == CHECKSUM_COMPLETE) 2990 skb->ip_summed = CHECKSUM_NONE; 2991 return __pskb_trim(skb, len); 2992 } 2993 2994 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2995 { 2996 if (skb->ip_summed == CHECKSUM_COMPLETE) 2997 skb->ip_summed = CHECKSUM_NONE; 2998 __skb_trim(skb, len); 2999 return 0; 3000 } 3001 3002 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3003 { 3004 if (skb->ip_summed == CHECKSUM_COMPLETE) 3005 skb->ip_summed = CHECKSUM_NONE; 3006 return __skb_grow(skb, len); 3007 } 3008 3009 #define skb_queue_walk(queue, skb) \ 3010 for (skb = (queue)->next; \ 3011 skb != (struct sk_buff *)(queue); \ 3012 skb = skb->next) 3013 3014 #define skb_queue_walk_safe(queue, skb, tmp) \ 3015 for (skb = (queue)->next, tmp = skb->next; \ 3016 skb != (struct sk_buff *)(queue); \ 3017 skb = tmp, tmp = skb->next) 3018 3019 #define skb_queue_walk_from(queue, skb) \ 3020 for (; skb != (struct sk_buff *)(queue); \ 3021 skb = skb->next) 3022 3023 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3024 for (tmp = skb->next; \ 3025 skb != (struct sk_buff *)(queue); \ 3026 skb = tmp, tmp = skb->next) 3027 3028 #define skb_queue_reverse_walk(queue, skb) \ 3029 for (skb = (queue)->prev; \ 3030 skb != (struct sk_buff *)(queue); \ 3031 skb = skb->prev) 3032 3033 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3034 for (skb = (queue)->prev, tmp = skb->prev; \ 3035 skb != (struct sk_buff *)(queue); \ 3036 skb = tmp, tmp = skb->prev) 3037 3038 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3039 for (tmp = skb->prev; \ 3040 skb != (struct sk_buff *)(queue); \ 3041 skb = tmp, tmp = skb->prev) 3042 3043 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3044 { 3045 return skb_shinfo(skb)->frag_list != NULL; 3046 } 3047 3048 static inline void skb_frag_list_init(struct sk_buff *skb) 3049 { 3050 skb_shinfo(skb)->frag_list = NULL; 3051 } 3052 3053 #define skb_walk_frags(skb, iter) \ 3054 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3055 3056 3057 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3058 const struct sk_buff *skb); 3059 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3060 void (*destructor)(struct sock *sk, 3061 struct sk_buff *skb), 3062 int *peeked, int *off, int *err, 3063 struct sk_buff **last); 3064 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3065 void (*destructor)(struct sock *sk, 3066 struct sk_buff *skb), 3067 int *peeked, int *off, int *err); 3068 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3069 int *err); 3070 unsigned int datagram_poll(struct file *file, struct socket *sock, 3071 struct poll_table_struct *wait); 3072 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3073 struct iov_iter *to, int size); 3074 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3075 struct msghdr *msg, int size) 3076 { 3077 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3078 } 3079 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3080 struct msghdr *msg); 3081 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3082 struct iov_iter *from, int len); 3083 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3084 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3085 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3086 static inline void skb_free_datagram_locked(struct sock *sk, 3087 struct sk_buff *skb) 3088 { 3089 __skb_free_datagram_locked(sk, skb, 0); 3090 } 3091 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3092 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3093 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3094 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3095 int len, __wsum csum); 3096 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3097 struct pipe_inode_info *pipe, unsigned int len, 3098 unsigned int flags); 3099 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3100 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3101 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3102 int len, int hlen); 3103 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3104 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3105 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3106 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 3107 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 3108 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3109 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3110 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3111 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3112 int skb_vlan_pop(struct sk_buff *skb); 3113 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3114 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3115 gfp_t gfp); 3116 3117 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3118 { 3119 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3120 } 3121 3122 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3123 { 3124 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3125 } 3126 3127 struct skb_checksum_ops { 3128 __wsum (*update)(const void *mem, int len, __wsum wsum); 3129 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3130 }; 3131 3132 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3133 __wsum csum, const struct skb_checksum_ops *ops); 3134 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3135 __wsum csum); 3136 3137 static inline void * __must_check 3138 __skb_header_pointer(const struct sk_buff *skb, int offset, 3139 int len, void *data, int hlen, void *buffer) 3140 { 3141 if (hlen - offset >= len) 3142 return data + offset; 3143 3144 if (!skb || 3145 skb_copy_bits(skb, offset, buffer, len) < 0) 3146 return NULL; 3147 3148 return buffer; 3149 } 3150 3151 static inline void * __must_check 3152 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3153 { 3154 return __skb_header_pointer(skb, offset, len, skb->data, 3155 skb_headlen(skb), buffer); 3156 } 3157 3158 /** 3159 * skb_needs_linearize - check if we need to linearize a given skb 3160 * depending on the given device features. 3161 * @skb: socket buffer to check 3162 * @features: net device features 3163 * 3164 * Returns true if either: 3165 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3166 * 2. skb is fragmented and the device does not support SG. 3167 */ 3168 static inline bool skb_needs_linearize(struct sk_buff *skb, 3169 netdev_features_t features) 3170 { 3171 return skb_is_nonlinear(skb) && 3172 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3173 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3174 } 3175 3176 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3177 void *to, 3178 const unsigned int len) 3179 { 3180 memcpy(to, skb->data, len); 3181 } 3182 3183 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3184 const int offset, void *to, 3185 const unsigned int len) 3186 { 3187 memcpy(to, skb->data + offset, len); 3188 } 3189 3190 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3191 const void *from, 3192 const unsigned int len) 3193 { 3194 memcpy(skb->data, from, len); 3195 } 3196 3197 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3198 const int offset, 3199 const void *from, 3200 const unsigned int len) 3201 { 3202 memcpy(skb->data + offset, from, len); 3203 } 3204 3205 void skb_init(void); 3206 3207 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3208 { 3209 return skb->tstamp; 3210 } 3211 3212 /** 3213 * skb_get_timestamp - get timestamp from a skb 3214 * @skb: skb to get stamp from 3215 * @stamp: pointer to struct timeval to store stamp in 3216 * 3217 * Timestamps are stored in the skb as offsets to a base timestamp. 3218 * This function converts the offset back to a struct timeval and stores 3219 * it in stamp. 3220 */ 3221 static inline void skb_get_timestamp(const struct sk_buff *skb, 3222 struct timeval *stamp) 3223 { 3224 *stamp = ktime_to_timeval(skb->tstamp); 3225 } 3226 3227 static inline void skb_get_timestampns(const struct sk_buff *skb, 3228 struct timespec *stamp) 3229 { 3230 *stamp = ktime_to_timespec(skb->tstamp); 3231 } 3232 3233 static inline void __net_timestamp(struct sk_buff *skb) 3234 { 3235 skb->tstamp = ktime_get_real(); 3236 } 3237 3238 static inline ktime_t net_timedelta(ktime_t t) 3239 { 3240 return ktime_sub(ktime_get_real(), t); 3241 } 3242 3243 static inline ktime_t net_invalid_timestamp(void) 3244 { 3245 return 0; 3246 } 3247 3248 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3249 3250 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3251 3252 void skb_clone_tx_timestamp(struct sk_buff *skb); 3253 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3254 3255 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3256 3257 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3258 { 3259 } 3260 3261 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3262 { 3263 return false; 3264 } 3265 3266 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3267 3268 /** 3269 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3270 * 3271 * PHY drivers may accept clones of transmitted packets for 3272 * timestamping via their phy_driver.txtstamp method. These drivers 3273 * must call this function to return the skb back to the stack with a 3274 * timestamp. 3275 * 3276 * @skb: clone of the the original outgoing packet 3277 * @hwtstamps: hardware time stamps 3278 * 3279 */ 3280 void skb_complete_tx_timestamp(struct sk_buff *skb, 3281 struct skb_shared_hwtstamps *hwtstamps); 3282 3283 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3284 struct skb_shared_hwtstamps *hwtstamps, 3285 struct sock *sk, int tstype); 3286 3287 /** 3288 * skb_tstamp_tx - queue clone of skb with send time stamps 3289 * @orig_skb: the original outgoing packet 3290 * @hwtstamps: hardware time stamps, may be NULL if not available 3291 * 3292 * If the skb has a socket associated, then this function clones the 3293 * skb (thus sharing the actual data and optional structures), stores 3294 * the optional hardware time stamping information (if non NULL) or 3295 * generates a software time stamp (otherwise), then queues the clone 3296 * to the error queue of the socket. Errors are silently ignored. 3297 */ 3298 void skb_tstamp_tx(struct sk_buff *orig_skb, 3299 struct skb_shared_hwtstamps *hwtstamps); 3300 3301 static inline void sw_tx_timestamp(struct sk_buff *skb) 3302 { 3303 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 3304 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 3305 skb_tstamp_tx(skb, NULL); 3306 } 3307 3308 /** 3309 * skb_tx_timestamp() - Driver hook for transmit timestamping 3310 * 3311 * Ethernet MAC Drivers should call this function in their hard_xmit() 3312 * function immediately before giving the sk_buff to the MAC hardware. 3313 * 3314 * Specifically, one should make absolutely sure that this function is 3315 * called before TX completion of this packet can trigger. Otherwise 3316 * the packet could potentially already be freed. 3317 * 3318 * @skb: A socket buffer. 3319 */ 3320 static inline void skb_tx_timestamp(struct sk_buff *skb) 3321 { 3322 skb_clone_tx_timestamp(skb); 3323 sw_tx_timestamp(skb); 3324 } 3325 3326 /** 3327 * skb_complete_wifi_ack - deliver skb with wifi status 3328 * 3329 * @skb: the original outgoing packet 3330 * @acked: ack status 3331 * 3332 */ 3333 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3334 3335 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3336 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3337 3338 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3339 { 3340 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3341 skb->csum_valid || 3342 (skb->ip_summed == CHECKSUM_PARTIAL && 3343 skb_checksum_start_offset(skb) >= 0)); 3344 } 3345 3346 /** 3347 * skb_checksum_complete - Calculate checksum of an entire packet 3348 * @skb: packet to process 3349 * 3350 * This function calculates the checksum over the entire packet plus 3351 * the value of skb->csum. The latter can be used to supply the 3352 * checksum of a pseudo header as used by TCP/UDP. It returns the 3353 * checksum. 3354 * 3355 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3356 * this function can be used to verify that checksum on received 3357 * packets. In that case the function should return zero if the 3358 * checksum is correct. In particular, this function will return zero 3359 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3360 * hardware has already verified the correctness of the checksum. 3361 */ 3362 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3363 { 3364 return skb_csum_unnecessary(skb) ? 3365 0 : __skb_checksum_complete(skb); 3366 } 3367 3368 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3369 { 3370 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3371 if (skb->csum_level == 0) 3372 skb->ip_summed = CHECKSUM_NONE; 3373 else 3374 skb->csum_level--; 3375 } 3376 } 3377 3378 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3379 { 3380 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3381 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3382 skb->csum_level++; 3383 } else if (skb->ip_summed == CHECKSUM_NONE) { 3384 skb->ip_summed = CHECKSUM_UNNECESSARY; 3385 skb->csum_level = 0; 3386 } 3387 } 3388 3389 static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 3390 { 3391 /* Mark current checksum as bad (typically called from GRO 3392 * path). In the case that ip_summed is CHECKSUM_NONE 3393 * this must be the first checksum encountered in the packet. 3394 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 3395 * checksum after the last one validated. For UDP, a zero 3396 * checksum can not be marked as bad. 3397 */ 3398 3399 if (skb->ip_summed == CHECKSUM_NONE || 3400 skb->ip_summed == CHECKSUM_UNNECESSARY) 3401 skb->csum_bad = 1; 3402 } 3403 3404 /* Check if we need to perform checksum complete validation. 3405 * 3406 * Returns true if checksum complete is needed, false otherwise 3407 * (either checksum is unnecessary or zero checksum is allowed). 3408 */ 3409 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3410 bool zero_okay, 3411 __sum16 check) 3412 { 3413 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3414 skb->csum_valid = 1; 3415 __skb_decr_checksum_unnecessary(skb); 3416 return false; 3417 } 3418 3419 return true; 3420 } 3421 3422 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3423 * in checksum_init. 3424 */ 3425 #define CHECKSUM_BREAK 76 3426 3427 /* Unset checksum-complete 3428 * 3429 * Unset checksum complete can be done when packet is being modified 3430 * (uncompressed for instance) and checksum-complete value is 3431 * invalidated. 3432 */ 3433 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3434 { 3435 if (skb->ip_summed == CHECKSUM_COMPLETE) 3436 skb->ip_summed = CHECKSUM_NONE; 3437 } 3438 3439 /* Validate (init) checksum based on checksum complete. 3440 * 3441 * Return values: 3442 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3443 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3444 * checksum is stored in skb->csum for use in __skb_checksum_complete 3445 * non-zero: value of invalid checksum 3446 * 3447 */ 3448 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3449 bool complete, 3450 __wsum psum) 3451 { 3452 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3453 if (!csum_fold(csum_add(psum, skb->csum))) { 3454 skb->csum_valid = 1; 3455 return 0; 3456 } 3457 } else if (skb->csum_bad) { 3458 /* ip_summed == CHECKSUM_NONE in this case */ 3459 return (__force __sum16)1; 3460 } 3461 3462 skb->csum = psum; 3463 3464 if (complete || skb->len <= CHECKSUM_BREAK) { 3465 __sum16 csum; 3466 3467 csum = __skb_checksum_complete(skb); 3468 skb->csum_valid = !csum; 3469 return csum; 3470 } 3471 3472 return 0; 3473 } 3474 3475 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3476 { 3477 return 0; 3478 } 3479 3480 /* Perform checksum validate (init). Note that this is a macro since we only 3481 * want to calculate the pseudo header which is an input function if necessary. 3482 * First we try to validate without any computation (checksum unnecessary) and 3483 * then calculate based on checksum complete calling the function to compute 3484 * pseudo header. 3485 * 3486 * Return values: 3487 * 0: checksum is validated or try to in skb_checksum_complete 3488 * non-zero: value of invalid checksum 3489 */ 3490 #define __skb_checksum_validate(skb, proto, complete, \ 3491 zero_okay, check, compute_pseudo) \ 3492 ({ \ 3493 __sum16 __ret = 0; \ 3494 skb->csum_valid = 0; \ 3495 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3496 __ret = __skb_checksum_validate_complete(skb, \ 3497 complete, compute_pseudo(skb, proto)); \ 3498 __ret; \ 3499 }) 3500 3501 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3502 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3503 3504 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3505 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3506 3507 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3508 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3509 3510 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3511 compute_pseudo) \ 3512 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3513 3514 #define skb_checksum_simple_validate(skb) \ 3515 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3516 3517 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3518 { 3519 return (skb->ip_summed == CHECKSUM_NONE && 3520 skb->csum_valid && !skb->csum_bad); 3521 } 3522 3523 static inline void __skb_checksum_convert(struct sk_buff *skb, 3524 __sum16 check, __wsum pseudo) 3525 { 3526 skb->csum = ~pseudo; 3527 skb->ip_summed = CHECKSUM_COMPLETE; 3528 } 3529 3530 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3531 do { \ 3532 if (__skb_checksum_convert_check(skb)) \ 3533 __skb_checksum_convert(skb, check, \ 3534 compute_pseudo(skb, proto)); \ 3535 } while (0) 3536 3537 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3538 u16 start, u16 offset) 3539 { 3540 skb->ip_summed = CHECKSUM_PARTIAL; 3541 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3542 skb->csum_offset = offset - start; 3543 } 3544 3545 /* Update skbuf and packet to reflect the remote checksum offload operation. 3546 * When called, ptr indicates the starting point for skb->csum when 3547 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3548 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3549 */ 3550 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3551 int start, int offset, bool nopartial) 3552 { 3553 __wsum delta; 3554 3555 if (!nopartial) { 3556 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3557 return; 3558 } 3559 3560 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3561 __skb_checksum_complete(skb); 3562 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3563 } 3564 3565 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3566 3567 /* Adjust skb->csum since we changed the packet */ 3568 skb->csum = csum_add(skb->csum, delta); 3569 } 3570 3571 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3572 { 3573 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3574 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3575 #else 3576 return NULL; 3577 #endif 3578 } 3579 3580 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3581 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3582 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3583 { 3584 if (nfct && atomic_dec_and_test(&nfct->use)) 3585 nf_conntrack_destroy(nfct); 3586 } 3587 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3588 { 3589 if (nfct) 3590 atomic_inc(&nfct->use); 3591 } 3592 #endif 3593 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3594 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3595 { 3596 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3597 kfree(nf_bridge); 3598 } 3599 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3600 { 3601 if (nf_bridge) 3602 atomic_inc(&nf_bridge->use); 3603 } 3604 #endif /* CONFIG_BRIDGE_NETFILTER */ 3605 static inline void nf_reset(struct sk_buff *skb) 3606 { 3607 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3608 nf_conntrack_put(skb_nfct(skb)); 3609 skb->_nfct = 0; 3610 #endif 3611 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3612 nf_bridge_put(skb->nf_bridge); 3613 skb->nf_bridge = NULL; 3614 #endif 3615 } 3616 3617 static inline void nf_reset_trace(struct sk_buff *skb) 3618 { 3619 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3620 skb->nf_trace = 0; 3621 #endif 3622 } 3623 3624 /* Note: This doesn't put any conntrack and bridge info in dst. */ 3625 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3626 bool copy) 3627 { 3628 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3629 dst->_nfct = src->_nfct; 3630 nf_conntrack_get(skb_nfct(src)); 3631 #endif 3632 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3633 dst->nf_bridge = src->nf_bridge; 3634 nf_bridge_get(src->nf_bridge); 3635 #endif 3636 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3637 if (copy) 3638 dst->nf_trace = src->nf_trace; 3639 #endif 3640 } 3641 3642 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3643 { 3644 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3645 nf_conntrack_put(skb_nfct(dst)); 3646 #endif 3647 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3648 nf_bridge_put(dst->nf_bridge); 3649 #endif 3650 __nf_copy(dst, src, true); 3651 } 3652 3653 #ifdef CONFIG_NETWORK_SECMARK 3654 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3655 { 3656 to->secmark = from->secmark; 3657 } 3658 3659 static inline void skb_init_secmark(struct sk_buff *skb) 3660 { 3661 skb->secmark = 0; 3662 } 3663 #else 3664 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3665 { } 3666 3667 static inline void skb_init_secmark(struct sk_buff *skb) 3668 { } 3669 #endif 3670 3671 static inline bool skb_irq_freeable(const struct sk_buff *skb) 3672 { 3673 return !skb->destructor && 3674 #if IS_ENABLED(CONFIG_XFRM) 3675 !skb->sp && 3676 #endif 3677 !skb_nfct(skb) && 3678 !skb->_skb_refdst && 3679 !skb_has_frag_list(skb); 3680 } 3681 3682 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3683 { 3684 skb->queue_mapping = queue_mapping; 3685 } 3686 3687 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3688 { 3689 return skb->queue_mapping; 3690 } 3691 3692 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3693 { 3694 to->queue_mapping = from->queue_mapping; 3695 } 3696 3697 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3698 { 3699 skb->queue_mapping = rx_queue + 1; 3700 } 3701 3702 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3703 { 3704 return skb->queue_mapping - 1; 3705 } 3706 3707 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3708 { 3709 return skb->queue_mapping != 0; 3710 } 3711 3712 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 3713 { 3714 skb->dst_pending_confirm = val; 3715 } 3716 3717 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 3718 { 3719 return skb->dst_pending_confirm != 0; 3720 } 3721 3722 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3723 { 3724 #ifdef CONFIG_XFRM 3725 return skb->sp; 3726 #else 3727 return NULL; 3728 #endif 3729 } 3730 3731 /* Keeps track of mac header offset relative to skb->head. 3732 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3733 * For non-tunnel skb it points to skb_mac_header() and for 3734 * tunnel skb it points to outer mac header. 3735 * Keeps track of level of encapsulation of network headers. 3736 */ 3737 struct skb_gso_cb { 3738 union { 3739 int mac_offset; 3740 int data_offset; 3741 }; 3742 int encap_level; 3743 __wsum csum; 3744 __u16 csum_start; 3745 }; 3746 #define SKB_SGO_CB_OFFSET 32 3747 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3748 3749 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3750 { 3751 return (skb_mac_header(inner_skb) - inner_skb->head) - 3752 SKB_GSO_CB(inner_skb)->mac_offset; 3753 } 3754 3755 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3756 { 3757 int new_headroom, headroom; 3758 int ret; 3759 3760 headroom = skb_headroom(skb); 3761 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3762 if (ret) 3763 return ret; 3764 3765 new_headroom = skb_headroom(skb); 3766 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3767 return 0; 3768 } 3769 3770 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3771 { 3772 /* Do not update partial checksums if remote checksum is enabled. */ 3773 if (skb->remcsum_offload) 3774 return; 3775 3776 SKB_GSO_CB(skb)->csum = res; 3777 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3778 } 3779 3780 /* Compute the checksum for a gso segment. First compute the checksum value 3781 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3782 * then add in skb->csum (checksum from csum_start to end of packet). 3783 * skb->csum and csum_start are then updated to reflect the checksum of the 3784 * resultant packet starting from the transport header-- the resultant checksum 3785 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3786 * header. 3787 */ 3788 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3789 { 3790 unsigned char *csum_start = skb_transport_header(skb); 3791 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3792 __wsum partial = SKB_GSO_CB(skb)->csum; 3793 3794 SKB_GSO_CB(skb)->csum = res; 3795 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3796 3797 return csum_fold(csum_partial(csum_start, plen, partial)); 3798 } 3799 3800 static inline bool skb_is_gso(const struct sk_buff *skb) 3801 { 3802 return skb_shinfo(skb)->gso_size; 3803 } 3804 3805 /* Note: Should be called only if skb_is_gso(skb) is true */ 3806 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3807 { 3808 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3809 } 3810 3811 static inline void skb_gso_reset(struct sk_buff *skb) 3812 { 3813 skb_shinfo(skb)->gso_size = 0; 3814 skb_shinfo(skb)->gso_segs = 0; 3815 skb_shinfo(skb)->gso_type = 0; 3816 } 3817 3818 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3819 3820 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3821 { 3822 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3823 * wanted then gso_type will be set. */ 3824 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3825 3826 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3827 unlikely(shinfo->gso_type == 0)) { 3828 __skb_warn_lro_forwarding(skb); 3829 return true; 3830 } 3831 return false; 3832 } 3833 3834 static inline void skb_forward_csum(struct sk_buff *skb) 3835 { 3836 /* Unfortunately we don't support this one. Any brave souls? */ 3837 if (skb->ip_summed == CHECKSUM_COMPLETE) 3838 skb->ip_summed = CHECKSUM_NONE; 3839 } 3840 3841 /** 3842 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3843 * @skb: skb to check 3844 * 3845 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3846 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3847 * use this helper, to document places where we make this assertion. 3848 */ 3849 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3850 { 3851 #ifdef DEBUG 3852 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3853 #endif 3854 } 3855 3856 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3857 3858 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3859 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3860 unsigned int transport_len, 3861 __sum16(*skb_chkf)(struct sk_buff *skb)); 3862 3863 /** 3864 * skb_head_is_locked - Determine if the skb->head is locked down 3865 * @skb: skb to check 3866 * 3867 * The head on skbs build around a head frag can be removed if they are 3868 * not cloned. This function returns true if the skb head is locked down 3869 * due to either being allocated via kmalloc, or by being a clone with 3870 * multiple references to the head. 3871 */ 3872 static inline bool skb_head_is_locked(const struct sk_buff *skb) 3873 { 3874 return !skb->head_frag || skb_cloned(skb); 3875 } 3876 3877 /** 3878 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3879 * 3880 * @skb: GSO skb 3881 * 3882 * skb_gso_network_seglen is used to determine the real size of the 3883 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3884 * 3885 * The MAC/L2 header is not accounted for. 3886 */ 3887 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3888 { 3889 unsigned int hdr_len = skb_transport_header(skb) - 3890 skb_network_header(skb); 3891 return hdr_len + skb_gso_transport_seglen(skb); 3892 } 3893 3894 /* Local Checksum Offload. 3895 * Compute outer checksum based on the assumption that the 3896 * inner checksum will be offloaded later. 3897 * See Documentation/networking/checksum-offloads.txt for 3898 * explanation of how this works. 3899 * Fill in outer checksum adjustment (e.g. with sum of outer 3900 * pseudo-header) before calling. 3901 * Also ensure that inner checksum is in linear data area. 3902 */ 3903 static inline __wsum lco_csum(struct sk_buff *skb) 3904 { 3905 unsigned char *csum_start = skb_checksum_start(skb); 3906 unsigned char *l4_hdr = skb_transport_header(skb); 3907 __wsum partial; 3908 3909 /* Start with complement of inner checksum adjustment */ 3910 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 3911 skb->csum_offset)); 3912 3913 /* Add in checksum of our headers (incl. outer checksum 3914 * adjustment filled in by caller) and return result. 3915 */ 3916 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 3917 } 3918 3919 #endif /* __KERNEL__ */ 3920 #endif /* _LINUX_SKBUFF_H */ 3921