xref: /linux-6.15/include/linux/skbuff.h (revision fbce3bef)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41 
42 /* The interface for checksum offload between the stack and networking drivers
43  * is as follows...
44  *
45  * A. IP checksum related features
46  *
47  * Drivers advertise checksum offload capabilities in the features of a device.
48  * From the stack's point of view these are capabilities offered by the driver,
49  * a driver typically only advertises features that it is capable of offloading
50  * to its device.
51  *
52  * The checksum related features are:
53  *
54  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
55  *			  IP (one's complement) checksum for any combination
56  *			  of protocols or protocol layering. The checksum is
57  *			  computed and set in a packet per the CHECKSUM_PARTIAL
58  *			  interface (see below).
59  *
60  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
61  *			  TCP or UDP packets over IPv4. These are specifically
62  *			  unencapsulated packets of the form IPv4|TCP or
63  *			  IPv4|UDP where the Protocol field in the IPv4 header
64  *			  is TCP or UDP. The IPv4 header may contain IP options
65  *			  This feature cannot be set in features for a device
66  *			  with NETIF_F_HW_CSUM also set. This feature is being
67  *			  DEPRECATED (see below).
68  *
69  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
70  *			  TCP or UDP packets over IPv6. These are specifically
71  *			  unencapsulated packets of the form IPv6|TCP or
72  *			  IPv4|UDP where the Next Header field in the IPv6
73  *			  header is either TCP or UDP. IPv6 extension headers
74  *			  are not supported with this feature. This feature
75  *			  cannot be set in features for a device with
76  *			  NETIF_F_HW_CSUM also set. This feature is being
77  *			  DEPRECATED (see below).
78  *
79  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
80  *			 This flag is used only used to disable the RX checksum
81  *			 feature for a device. The stack will accept receive
82  *			 checksum indication in packets received on a device
83  *			 regardless of whether NETIF_F_RXCSUM is set.
84  *
85  * B. Checksumming of received packets by device. Indication of checksum
86  *    verification is in set skb->ip_summed. Possible values are:
87  *
88  * CHECKSUM_NONE:
89  *
90  *   Device did not checksum this packet e.g. due to lack of capabilities.
91  *   The packet contains full (though not verified) checksum in packet but
92  *   not in skb->csum. Thus, skb->csum is undefined in this case.
93  *
94  * CHECKSUM_UNNECESSARY:
95  *
96  *   The hardware you're dealing with doesn't calculate the full checksum
97  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
98  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
99  *   if their checksums are okay. skb->csum is still undefined in this case
100  *   though. A driver or device must never modify the checksum field in the
101  *   packet even if checksum is verified.
102  *
103  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
104  *     TCP: IPv6 and IPv4.
105  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
106  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
107  *       may perform further validation in this case.
108  *     GRE: only if the checksum is present in the header.
109  *     SCTP: indicates the CRC in SCTP header has been validated.
110  *
111  *   skb->csum_level indicates the number of consecutive checksums found in
112  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
113  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
114  *   and a device is able to verify the checksums for UDP (possibly zero),
115  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
116  *   two. If the device were only able to verify the UDP checksum and not
117  *   GRE, either because it doesn't support GRE checksum of because GRE
118  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
119  *   not considered in this case).
120  *
121  * CHECKSUM_COMPLETE:
122  *
123  *   This is the most generic way. The device supplied checksum of the _whole_
124  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
125  *   hardware doesn't need to parse L3/L4 headers to implement this.
126  *
127  *   Note: Even if device supports only some protocols, but is able to produce
128  *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129  *
130  * CHECKSUM_PARTIAL:
131  *
132  *   A checksum is set up to be offloaded to a device as described in the
133  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
134  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
135  *   on the same host, or it may be set in the input path in GRO or remote
136  *   checksum offload. For the purposes of checksum verification, the checksum
137  *   referred to by skb->csum_start + skb->csum_offset and any preceding
138  *   checksums in the packet are considered verified. Any checksums in the
139  *   packet that are after the checksum being offloaded are not considered to
140  *   be verified.
141  *
142  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
143  *    in the skb->ip_summed for a packet. Values are:
144  *
145  * CHECKSUM_PARTIAL:
146  *
147  *   The driver is required to checksum the packet as seen by hard_start_xmit()
148  *   from skb->csum_start up to the end, and to record/write the checksum at
149  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
150  *   csum_start and csum_offset values are valid values given the length and
151  *   offset of the packet, however they should not attempt to validate that the
152  *   checksum refers to a legitimate transport layer checksum-- it is the
153  *   purview of the stack to validate that csum_start and csum_offset are set
154  *   correctly.
155  *
156  *   When the stack requests checksum offload for a packet, the driver MUST
157  *   ensure that the checksum is set correctly. A driver can either offload the
158  *   checksum calculation to the device, or call skb_checksum_help (in the case
159  *   that the device does not support offload for a particular checksum).
160  *
161  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
162  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
163  *   checksum offload capability. If a	device has limited checksum capabilities
164  *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
165  *   described above) a helper function can be called to resolve
166  *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
167  *   function takes a spec argument that describes the protocol layer that is
168  *   supported for checksum offload and can be called for each packet. If a
169  *   packet does not match the specification for offload, skb_checksum_help
170  *   is called to resolve the checksum.
171  *
172  * CHECKSUM_NONE:
173  *
174  *   The skb was already checksummed by the protocol, or a checksum is not
175  *   required.
176  *
177  * CHECKSUM_UNNECESSARY:
178  *
179  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
180  *   output.
181  *
182  * CHECKSUM_COMPLETE:
183  *   Not used in checksum output. If a driver observes a packet with this value
184  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
185  *
186  * D. Non-IP checksum (CRC) offloads
187  *
188  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
189  *     offloading the SCTP CRC in a packet. To perform this offload the stack
190  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
191  *     accordingly. Note the there is no indication in the skbuff that the
192  *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
193  *     both IP checksum offload and SCTP CRC offload must verify which offload
194  *     is configured for a packet presumably by inspecting packet headers.
195  *
196  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197  *     offloading the FCOE CRC in a packet. To perform this offload the stack
198  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199  *     accordingly. Note the there is no indication in the skbuff that the
200  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201  *     both IP checksum offload and FCOE CRC offload must verify which offload
202  *     is configured for a packet presumably by inspecting packet headers.
203  *
204  * E. Checksumming on output with GSO.
205  *
206  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209  * part of the GSO operation is implied. If a checksum is being offloaded
210  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211  * are set to refer to the outermost checksum being offload (two offloaded
212  * checksums are possible with UDP encapsulation).
213  */
214 
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE		0
217 #define CHECKSUM_UNNECESSARY	1
218 #define CHECKSUM_COMPLETE	2
219 #define CHECKSUM_PARTIAL	3
220 
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL	3
223 
224 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X)	\
226 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
231 
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) +						\
234 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
235 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236 
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242 
243 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
244 struct nf_conntrack {
245 	atomic_t use;
246 };
247 #endif
248 
249 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
250 struct nf_bridge_info {
251 	atomic_t		use;
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 struct sk_buff_head {
280 	/* These two members must be first. */
281 	struct sk_buff	*next;
282 	struct sk_buff	*prev;
283 
284 	__u32		qlen;
285 	spinlock_t	lock;
286 };
287 
288 struct sk_buff;
289 
290 /* To allow 64K frame to be packed as single skb without frag_list we
291  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
292  * buffers which do not start on a page boundary.
293  *
294  * Since GRO uses frags we allocate at least 16 regardless of page
295  * size.
296  */
297 #if (65536/PAGE_SIZE + 1) < 16
298 #define MAX_SKB_FRAGS 16UL
299 #else
300 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
301 #endif
302 extern int sysctl_max_skb_frags;
303 
304 typedef struct skb_frag_struct skb_frag_t;
305 
306 struct skb_frag_struct {
307 	struct {
308 		struct page *p;
309 	} page;
310 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
311 	__u32 page_offset;
312 	__u32 size;
313 #else
314 	__u16 page_offset;
315 	__u16 size;
316 #endif
317 };
318 
319 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
320 {
321 	return frag->size;
322 }
323 
324 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
325 {
326 	frag->size = size;
327 }
328 
329 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
330 {
331 	frag->size += delta;
332 }
333 
334 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
335 {
336 	frag->size -= delta;
337 }
338 
339 #define HAVE_HW_TIME_STAMP
340 
341 /**
342  * struct skb_shared_hwtstamps - hardware time stamps
343  * @hwtstamp:	hardware time stamp transformed into duration
344  *		since arbitrary point in time
345  *
346  * Software time stamps generated by ktime_get_real() are stored in
347  * skb->tstamp.
348  *
349  * hwtstamps can only be compared against other hwtstamps from
350  * the same device.
351  *
352  * This structure is attached to packets as part of the
353  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
354  */
355 struct skb_shared_hwtstamps {
356 	ktime_t	hwtstamp;
357 };
358 
359 /* Definitions for tx_flags in struct skb_shared_info */
360 enum {
361 	/* generate hardware time stamp */
362 	SKBTX_HW_TSTAMP = 1 << 0,
363 
364 	/* generate software time stamp when queueing packet to NIC */
365 	SKBTX_SW_TSTAMP = 1 << 1,
366 
367 	/* device driver is going to provide hardware time stamp */
368 	SKBTX_IN_PROGRESS = 1 << 2,
369 
370 	/* device driver supports TX zero-copy buffers */
371 	SKBTX_DEV_ZEROCOPY = 1 << 3,
372 
373 	/* generate wifi status information (where possible) */
374 	SKBTX_WIFI_STATUS = 1 << 4,
375 
376 	/* This indicates at least one fragment might be overwritten
377 	 * (as in vmsplice(), sendfile() ...)
378 	 * If we need to compute a TX checksum, we'll need to copy
379 	 * all frags to avoid possible bad checksum
380 	 */
381 	SKBTX_SHARED_FRAG = 1 << 5,
382 
383 	/* generate software time stamp when entering packet scheduling */
384 	SKBTX_SCHED_TSTAMP = 1 << 6,
385 
386 	/* generate software timestamp on peer data acknowledgment */
387 	SKBTX_ACK_TSTAMP = 1 << 7,
388 };
389 
390 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
391 				 SKBTX_SCHED_TSTAMP | \
392 				 SKBTX_ACK_TSTAMP)
393 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
394 
395 /*
396  * The callback notifies userspace to release buffers when skb DMA is done in
397  * lower device, the skb last reference should be 0 when calling this.
398  * The zerocopy_success argument is true if zero copy transmit occurred,
399  * false on data copy or out of memory error caused by data copy attempt.
400  * The ctx field is used to track device context.
401  * The desc field is used to track userspace buffer index.
402  */
403 struct ubuf_info {
404 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
405 	void *ctx;
406 	unsigned long desc;
407 };
408 
409 /* This data is invariant across clones and lives at
410  * the end of the header data, ie. at skb->end.
411  */
412 struct skb_shared_info {
413 	unsigned char	nr_frags;
414 	__u8		tx_flags;
415 	unsigned short	gso_size;
416 	/* Warning: this field is not always filled in (UFO)! */
417 	unsigned short	gso_segs;
418 	unsigned short  gso_type;
419 	struct sk_buff	*frag_list;
420 	struct skb_shared_hwtstamps hwtstamps;
421 	u32		tskey;
422 	__be32          ip6_frag_id;
423 
424 	/*
425 	 * Warning : all fields before dataref are cleared in __alloc_skb()
426 	 */
427 	atomic_t	dataref;
428 
429 	/* Intermediate layers must ensure that destructor_arg
430 	 * remains valid until skb destructor */
431 	void *		destructor_arg;
432 
433 	/* must be last field, see pskb_expand_head() */
434 	skb_frag_t	frags[MAX_SKB_FRAGS];
435 };
436 
437 /* We divide dataref into two halves.  The higher 16 bits hold references
438  * to the payload part of skb->data.  The lower 16 bits hold references to
439  * the entire skb->data.  A clone of a headerless skb holds the length of
440  * the header in skb->hdr_len.
441  *
442  * All users must obey the rule that the skb->data reference count must be
443  * greater than or equal to the payload reference count.
444  *
445  * Holding a reference to the payload part means that the user does not
446  * care about modifications to the header part of skb->data.
447  */
448 #define SKB_DATAREF_SHIFT 16
449 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
450 
451 
452 enum {
453 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
454 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
455 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
456 };
457 
458 enum {
459 	SKB_GSO_TCPV4 = 1 << 0,
460 	SKB_GSO_UDP = 1 << 1,
461 
462 	/* This indicates the skb is from an untrusted source. */
463 	SKB_GSO_DODGY = 1 << 2,
464 
465 	/* This indicates the tcp segment has CWR set. */
466 	SKB_GSO_TCP_ECN = 1 << 3,
467 
468 	SKB_GSO_TCPV6 = 1 << 4,
469 
470 	SKB_GSO_FCOE = 1 << 5,
471 
472 	SKB_GSO_GRE = 1 << 6,
473 
474 	SKB_GSO_GRE_CSUM = 1 << 7,
475 
476 	SKB_GSO_IPIP = 1 << 8,
477 
478 	SKB_GSO_SIT = 1 << 9,
479 
480 	SKB_GSO_UDP_TUNNEL = 1 << 10,
481 
482 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
483 
484 	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
485 };
486 
487 #if BITS_PER_LONG > 32
488 #define NET_SKBUFF_DATA_USES_OFFSET 1
489 #endif
490 
491 #ifdef NET_SKBUFF_DATA_USES_OFFSET
492 typedef unsigned int sk_buff_data_t;
493 #else
494 typedef unsigned char *sk_buff_data_t;
495 #endif
496 
497 /**
498  * struct skb_mstamp - multi resolution time stamps
499  * @stamp_us: timestamp in us resolution
500  * @stamp_jiffies: timestamp in jiffies
501  */
502 struct skb_mstamp {
503 	union {
504 		u64		v64;
505 		struct {
506 			u32	stamp_us;
507 			u32	stamp_jiffies;
508 		};
509 	};
510 };
511 
512 /**
513  * skb_mstamp_get - get current timestamp
514  * @cl: place to store timestamps
515  */
516 static inline void skb_mstamp_get(struct skb_mstamp *cl)
517 {
518 	u64 val = local_clock();
519 
520 	do_div(val, NSEC_PER_USEC);
521 	cl->stamp_us = (u32)val;
522 	cl->stamp_jiffies = (u32)jiffies;
523 }
524 
525 /**
526  * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
527  * @t1: pointer to newest sample
528  * @t0: pointer to oldest sample
529  */
530 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
531 				      const struct skb_mstamp *t0)
532 {
533 	s32 delta_us = t1->stamp_us - t0->stamp_us;
534 	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
535 
536 	/* If delta_us is negative, this might be because interval is too big,
537 	 * or local_clock() drift is too big : fallback using jiffies.
538 	 */
539 	if (delta_us <= 0 ||
540 	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
541 
542 		delta_us = jiffies_to_usecs(delta_jiffies);
543 
544 	return delta_us;
545 }
546 
547 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
548 				    const struct skb_mstamp *t0)
549 {
550 	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
551 
552 	if (!diff)
553 		diff = t1->stamp_us - t0->stamp_us;
554 	return diff > 0;
555 }
556 
557 /**
558  *	struct sk_buff - socket buffer
559  *	@next: Next buffer in list
560  *	@prev: Previous buffer in list
561  *	@tstamp: Time we arrived/left
562  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
563  *	@sk: Socket we are owned by
564  *	@dev: Device we arrived on/are leaving by
565  *	@cb: Control buffer. Free for use by every layer. Put private vars here
566  *	@_skb_refdst: destination entry (with norefcount bit)
567  *	@sp: the security path, used for xfrm
568  *	@len: Length of actual data
569  *	@data_len: Data length
570  *	@mac_len: Length of link layer header
571  *	@hdr_len: writable header length of cloned skb
572  *	@csum: Checksum (must include start/offset pair)
573  *	@csum_start: Offset from skb->head where checksumming should start
574  *	@csum_offset: Offset from csum_start where checksum should be stored
575  *	@priority: Packet queueing priority
576  *	@ignore_df: allow local fragmentation
577  *	@cloned: Head may be cloned (check refcnt to be sure)
578  *	@ip_summed: Driver fed us an IP checksum
579  *	@nohdr: Payload reference only, must not modify header
580  *	@nfctinfo: Relationship of this skb to the connection
581  *	@pkt_type: Packet class
582  *	@fclone: skbuff clone status
583  *	@ipvs_property: skbuff is owned by ipvs
584  *	@peeked: this packet has been seen already, so stats have been
585  *		done for it, don't do them again
586  *	@nf_trace: netfilter packet trace flag
587  *	@protocol: Packet protocol from driver
588  *	@destructor: Destruct function
589  *	@nfct: Associated connection, if any
590  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
591  *	@skb_iif: ifindex of device we arrived on
592  *	@tc_index: Traffic control index
593  *	@tc_verd: traffic control verdict
594  *	@hash: the packet hash
595  *	@queue_mapping: Queue mapping for multiqueue devices
596  *	@xmit_more: More SKBs are pending for this queue
597  *	@ndisc_nodetype: router type (from link layer)
598  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
599  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
600  *		ports.
601  *	@sw_hash: indicates hash was computed in software stack
602  *	@wifi_acked_valid: wifi_acked was set
603  *	@wifi_acked: whether frame was acked on wifi or not
604  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
605   *	@napi_id: id of the NAPI struct this skb came from
606  *	@secmark: security marking
607  *	@offload_fwd_mark: fwding offload mark
608  *	@mark: Generic packet mark
609  *	@vlan_proto: vlan encapsulation protocol
610  *	@vlan_tci: vlan tag control information
611  *	@inner_protocol: Protocol (encapsulation)
612  *	@inner_transport_header: Inner transport layer header (encapsulation)
613  *	@inner_network_header: Network layer header (encapsulation)
614  *	@inner_mac_header: Link layer header (encapsulation)
615  *	@transport_header: Transport layer header
616  *	@network_header: Network layer header
617  *	@mac_header: Link layer header
618  *	@tail: Tail pointer
619  *	@end: End pointer
620  *	@head: Head of buffer
621  *	@data: Data head pointer
622  *	@truesize: Buffer size
623  *	@users: User count - see {datagram,tcp}.c
624  */
625 
626 struct sk_buff {
627 	union {
628 		struct {
629 			/* These two members must be first. */
630 			struct sk_buff		*next;
631 			struct sk_buff		*prev;
632 
633 			union {
634 				ktime_t		tstamp;
635 				struct skb_mstamp skb_mstamp;
636 			};
637 		};
638 		struct rb_node	rbnode; /* used in netem & tcp stack */
639 	};
640 	struct sock		*sk;
641 	struct net_device	*dev;
642 
643 	/*
644 	 * This is the control buffer. It is free to use for every
645 	 * layer. Please put your private variables there. If you
646 	 * want to keep them across layers you have to do a skb_clone()
647 	 * first. This is owned by whoever has the skb queued ATM.
648 	 */
649 	char			cb[48] __aligned(8);
650 
651 	unsigned long		_skb_refdst;
652 	void			(*destructor)(struct sk_buff *skb);
653 #ifdef CONFIG_XFRM
654 	struct	sec_path	*sp;
655 #endif
656 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
657 	struct nf_conntrack	*nfct;
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 	struct nf_bridge_info	*nf_bridge;
661 #endif
662 	unsigned int		len,
663 				data_len;
664 	__u16			mac_len,
665 				hdr_len;
666 
667 	/* Following fields are _not_ copied in __copy_skb_header()
668 	 * Note that queue_mapping is here mostly to fill a hole.
669 	 */
670 	kmemcheck_bitfield_begin(flags1);
671 	__u16			queue_mapping;
672 	__u8			cloned:1,
673 				nohdr:1,
674 				fclone:2,
675 				peeked:1,
676 				head_frag:1,
677 				xmit_more:1;
678 	/* one bit hole */
679 	kmemcheck_bitfield_end(flags1);
680 
681 	/* fields enclosed in headers_start/headers_end are copied
682 	 * using a single memcpy() in __copy_skb_header()
683 	 */
684 	/* private: */
685 	__u32			headers_start[0];
686 	/* public: */
687 
688 /* if you move pkt_type around you also must adapt those constants */
689 #ifdef __BIG_ENDIAN_BITFIELD
690 #define PKT_TYPE_MAX	(7 << 5)
691 #else
692 #define PKT_TYPE_MAX	7
693 #endif
694 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
695 
696 	__u8			__pkt_type_offset[0];
697 	__u8			pkt_type:3;
698 	__u8			pfmemalloc:1;
699 	__u8			ignore_df:1;
700 	__u8			nfctinfo:3;
701 
702 	__u8			nf_trace:1;
703 	__u8			ip_summed:2;
704 	__u8			ooo_okay:1;
705 	__u8			l4_hash:1;
706 	__u8			sw_hash:1;
707 	__u8			wifi_acked_valid:1;
708 	__u8			wifi_acked:1;
709 
710 	__u8			no_fcs:1;
711 	/* Indicates the inner headers are valid in the skbuff. */
712 	__u8			encapsulation:1;
713 	__u8			encap_hdr_csum:1;
714 	__u8			csum_valid:1;
715 	__u8			csum_complete_sw:1;
716 	__u8			csum_level:2;
717 	__u8			csum_bad:1;
718 
719 #ifdef CONFIG_IPV6_NDISC_NODETYPE
720 	__u8			ndisc_nodetype:2;
721 #endif
722 	__u8			ipvs_property:1;
723 	__u8			inner_protocol_type:1;
724 	__u8			remcsum_offload:1;
725 	/* 3 or 5 bit hole */
726 
727 #ifdef CONFIG_NET_SCHED
728 	__u16			tc_index;	/* traffic control index */
729 #ifdef CONFIG_NET_CLS_ACT
730 	__u16			tc_verd;	/* traffic control verdict */
731 #endif
732 #endif
733 
734 	union {
735 		__wsum		csum;
736 		struct {
737 			__u16	csum_start;
738 			__u16	csum_offset;
739 		};
740 	};
741 	__u32			priority;
742 	int			skb_iif;
743 	__u32			hash;
744 	__be16			vlan_proto;
745 	__u16			vlan_tci;
746 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
747 	union {
748 		unsigned int	napi_id;
749 		unsigned int	sender_cpu;
750 	};
751 #endif
752 	union {
753 #ifdef CONFIG_NETWORK_SECMARK
754 		__u32		secmark;
755 #endif
756 #ifdef CONFIG_NET_SWITCHDEV
757 		__u32		offload_fwd_mark;
758 #endif
759 	};
760 
761 	union {
762 		__u32		mark;
763 		__u32		reserved_tailroom;
764 	};
765 
766 	union {
767 		__be16		inner_protocol;
768 		__u8		inner_ipproto;
769 	};
770 
771 	__u16			inner_transport_header;
772 	__u16			inner_network_header;
773 	__u16			inner_mac_header;
774 
775 	__be16			protocol;
776 	__u16			transport_header;
777 	__u16			network_header;
778 	__u16			mac_header;
779 
780 	/* private: */
781 	__u32			headers_end[0];
782 	/* public: */
783 
784 	/* These elements must be at the end, see alloc_skb() for details.  */
785 	sk_buff_data_t		tail;
786 	sk_buff_data_t		end;
787 	unsigned char		*head,
788 				*data;
789 	unsigned int		truesize;
790 	atomic_t		users;
791 };
792 
793 #ifdef __KERNEL__
794 /*
795  *	Handling routines are only of interest to the kernel
796  */
797 #include <linux/slab.h>
798 
799 
800 #define SKB_ALLOC_FCLONE	0x01
801 #define SKB_ALLOC_RX		0x02
802 #define SKB_ALLOC_NAPI		0x04
803 
804 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
805 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
806 {
807 	return unlikely(skb->pfmemalloc);
808 }
809 
810 /*
811  * skb might have a dst pointer attached, refcounted or not.
812  * _skb_refdst low order bit is set if refcount was _not_ taken
813  */
814 #define SKB_DST_NOREF	1UL
815 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
816 
817 /**
818  * skb_dst - returns skb dst_entry
819  * @skb: buffer
820  *
821  * Returns skb dst_entry, regardless of reference taken or not.
822  */
823 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
824 {
825 	/* If refdst was not refcounted, check we still are in a
826 	 * rcu_read_lock section
827 	 */
828 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
829 		!rcu_read_lock_held() &&
830 		!rcu_read_lock_bh_held());
831 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
832 }
833 
834 /**
835  * skb_dst_set - sets skb dst
836  * @skb: buffer
837  * @dst: dst entry
838  *
839  * Sets skb dst, assuming a reference was taken on dst and should
840  * be released by skb_dst_drop()
841  */
842 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
843 {
844 	skb->_skb_refdst = (unsigned long)dst;
845 }
846 
847 /**
848  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
849  * @skb: buffer
850  * @dst: dst entry
851  *
852  * Sets skb dst, assuming a reference was not taken on dst.
853  * If dst entry is cached, we do not take reference and dst_release
854  * will be avoided by refdst_drop. If dst entry is not cached, we take
855  * reference, so that last dst_release can destroy the dst immediately.
856  */
857 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
858 {
859 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
860 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
861 }
862 
863 /**
864  * skb_dst_is_noref - Test if skb dst isn't refcounted
865  * @skb: buffer
866  */
867 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
868 {
869 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
870 }
871 
872 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
873 {
874 	return (struct rtable *)skb_dst(skb);
875 }
876 
877 void kfree_skb(struct sk_buff *skb);
878 void kfree_skb_list(struct sk_buff *segs);
879 void skb_tx_error(struct sk_buff *skb);
880 void consume_skb(struct sk_buff *skb);
881 void  __kfree_skb(struct sk_buff *skb);
882 extern struct kmem_cache *skbuff_head_cache;
883 
884 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
885 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
886 		      bool *fragstolen, int *delta_truesize);
887 
888 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
889 			    int node);
890 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
891 struct sk_buff *build_skb(void *data, unsigned int frag_size);
892 static inline struct sk_buff *alloc_skb(unsigned int size,
893 					gfp_t priority)
894 {
895 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
896 }
897 
898 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
899 				     unsigned long data_len,
900 				     int max_page_order,
901 				     int *errcode,
902 				     gfp_t gfp_mask);
903 
904 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
905 struct sk_buff_fclones {
906 	struct sk_buff	skb1;
907 
908 	struct sk_buff	skb2;
909 
910 	atomic_t	fclone_ref;
911 };
912 
913 /**
914  *	skb_fclone_busy - check if fclone is busy
915  *	@skb: buffer
916  *
917  * Returns true if skb is a fast clone, and its clone is not freed.
918  * Some drivers call skb_orphan() in their ndo_start_xmit(),
919  * so we also check that this didnt happen.
920  */
921 static inline bool skb_fclone_busy(const struct sock *sk,
922 				   const struct sk_buff *skb)
923 {
924 	const struct sk_buff_fclones *fclones;
925 
926 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
927 
928 	return skb->fclone == SKB_FCLONE_ORIG &&
929 	       atomic_read(&fclones->fclone_ref) > 1 &&
930 	       fclones->skb2.sk == sk;
931 }
932 
933 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
934 					       gfp_t priority)
935 {
936 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
937 }
938 
939 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
940 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
941 {
942 	return __alloc_skb_head(priority, -1);
943 }
944 
945 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
946 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
947 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
948 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
949 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
950 				   gfp_t gfp_mask, bool fclone);
951 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
952 					  gfp_t gfp_mask)
953 {
954 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
955 }
956 
957 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
958 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
959 				     unsigned int headroom);
960 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
961 				int newtailroom, gfp_t priority);
962 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
963 			int offset, int len);
964 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
965 		 int len);
966 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
967 int skb_pad(struct sk_buff *skb, int pad);
968 #define dev_kfree_skb(a)	consume_skb(a)
969 
970 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
971 			    int getfrag(void *from, char *to, int offset,
972 					int len, int odd, struct sk_buff *skb),
973 			    void *from, int length);
974 
975 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
976 			 int offset, size_t size);
977 
978 struct skb_seq_state {
979 	__u32		lower_offset;
980 	__u32		upper_offset;
981 	__u32		frag_idx;
982 	__u32		stepped_offset;
983 	struct sk_buff	*root_skb;
984 	struct sk_buff	*cur_skb;
985 	__u8		*frag_data;
986 };
987 
988 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
989 			  unsigned int to, struct skb_seq_state *st);
990 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
991 			  struct skb_seq_state *st);
992 void skb_abort_seq_read(struct skb_seq_state *st);
993 
994 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
995 			   unsigned int to, struct ts_config *config);
996 
997 /*
998  * Packet hash types specify the type of hash in skb_set_hash.
999  *
1000  * Hash types refer to the protocol layer addresses which are used to
1001  * construct a packet's hash. The hashes are used to differentiate or identify
1002  * flows of the protocol layer for the hash type. Hash types are either
1003  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1004  *
1005  * Properties of hashes:
1006  *
1007  * 1) Two packets in different flows have different hash values
1008  * 2) Two packets in the same flow should have the same hash value
1009  *
1010  * A hash at a higher layer is considered to be more specific. A driver should
1011  * set the most specific hash possible.
1012  *
1013  * A driver cannot indicate a more specific hash than the layer at which a hash
1014  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1015  *
1016  * A driver may indicate a hash level which is less specific than the
1017  * actual layer the hash was computed on. For instance, a hash computed
1018  * at L4 may be considered an L3 hash. This should only be done if the
1019  * driver can't unambiguously determine that the HW computed the hash at
1020  * the higher layer. Note that the "should" in the second property above
1021  * permits this.
1022  */
1023 enum pkt_hash_types {
1024 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1025 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1026 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1027 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1028 };
1029 
1030 static inline void skb_clear_hash(struct sk_buff *skb)
1031 {
1032 	skb->hash = 0;
1033 	skb->sw_hash = 0;
1034 	skb->l4_hash = 0;
1035 }
1036 
1037 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1038 {
1039 	if (!skb->l4_hash)
1040 		skb_clear_hash(skb);
1041 }
1042 
1043 static inline void
1044 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1045 {
1046 	skb->l4_hash = is_l4;
1047 	skb->sw_hash = is_sw;
1048 	skb->hash = hash;
1049 }
1050 
1051 static inline void
1052 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1053 {
1054 	/* Used by drivers to set hash from HW */
1055 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1056 }
1057 
1058 static inline void
1059 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1060 {
1061 	__skb_set_hash(skb, hash, true, is_l4);
1062 }
1063 
1064 void __skb_get_hash(struct sk_buff *skb);
1065 u32 skb_get_poff(const struct sk_buff *skb);
1066 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1067 		   const struct flow_keys *keys, int hlen);
1068 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1069 			    void *data, int hlen_proto);
1070 
1071 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1072 					int thoff, u8 ip_proto)
1073 {
1074 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1075 }
1076 
1077 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1078 			     const struct flow_dissector_key *key,
1079 			     unsigned int key_count);
1080 
1081 bool __skb_flow_dissect(const struct sk_buff *skb,
1082 			struct flow_dissector *flow_dissector,
1083 			void *target_container,
1084 			void *data, __be16 proto, int nhoff, int hlen,
1085 			unsigned int flags);
1086 
1087 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1088 				    struct flow_dissector *flow_dissector,
1089 				    void *target_container, unsigned int flags)
1090 {
1091 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1092 				  NULL, 0, 0, 0, flags);
1093 }
1094 
1095 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1096 					      struct flow_keys *flow,
1097 					      unsigned int flags)
1098 {
1099 	memset(flow, 0, sizeof(*flow));
1100 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1101 				  NULL, 0, 0, 0, flags);
1102 }
1103 
1104 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1105 						  void *data, __be16 proto,
1106 						  int nhoff, int hlen,
1107 						  unsigned int flags)
1108 {
1109 	memset(flow, 0, sizeof(*flow));
1110 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1111 				  data, proto, nhoff, hlen, flags);
1112 }
1113 
1114 static inline __u32 skb_get_hash(struct sk_buff *skb)
1115 {
1116 	if (!skb->l4_hash && !skb->sw_hash)
1117 		__skb_get_hash(skb);
1118 
1119 	return skb->hash;
1120 }
1121 
1122 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1123 
1124 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1125 {
1126 	if (!skb->l4_hash && !skb->sw_hash) {
1127 		struct flow_keys keys;
1128 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1129 
1130 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1131 	}
1132 
1133 	return skb->hash;
1134 }
1135 
1136 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1137 
1138 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1139 {
1140 	if (!skb->l4_hash && !skb->sw_hash) {
1141 		struct flow_keys keys;
1142 		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1143 
1144 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1145 	}
1146 
1147 	return skb->hash;
1148 }
1149 
1150 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1151 
1152 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1153 {
1154 	return skb->hash;
1155 }
1156 
1157 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1158 {
1159 	to->hash = from->hash;
1160 	to->sw_hash = from->sw_hash;
1161 	to->l4_hash = from->l4_hash;
1162 };
1163 
1164 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1165 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1166 {
1167 	return skb->head + skb->end;
1168 }
1169 
1170 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1171 {
1172 	return skb->end;
1173 }
1174 #else
1175 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1176 {
1177 	return skb->end;
1178 }
1179 
1180 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1181 {
1182 	return skb->end - skb->head;
1183 }
1184 #endif
1185 
1186 /* Internal */
1187 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1188 
1189 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1190 {
1191 	return &skb_shinfo(skb)->hwtstamps;
1192 }
1193 
1194 /**
1195  *	skb_queue_empty - check if a queue is empty
1196  *	@list: queue head
1197  *
1198  *	Returns true if the queue is empty, false otherwise.
1199  */
1200 static inline int skb_queue_empty(const struct sk_buff_head *list)
1201 {
1202 	return list->next == (const struct sk_buff *) list;
1203 }
1204 
1205 /**
1206  *	skb_queue_is_last - check if skb is the last entry in the queue
1207  *	@list: queue head
1208  *	@skb: buffer
1209  *
1210  *	Returns true if @skb is the last buffer on the list.
1211  */
1212 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1213 				     const struct sk_buff *skb)
1214 {
1215 	return skb->next == (const struct sk_buff *) list;
1216 }
1217 
1218 /**
1219  *	skb_queue_is_first - check if skb is the first entry in the queue
1220  *	@list: queue head
1221  *	@skb: buffer
1222  *
1223  *	Returns true if @skb is the first buffer on the list.
1224  */
1225 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1226 				      const struct sk_buff *skb)
1227 {
1228 	return skb->prev == (const struct sk_buff *) list;
1229 }
1230 
1231 /**
1232  *	skb_queue_next - return the next packet in the queue
1233  *	@list: queue head
1234  *	@skb: current buffer
1235  *
1236  *	Return the next packet in @list after @skb.  It is only valid to
1237  *	call this if skb_queue_is_last() evaluates to false.
1238  */
1239 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1240 					     const struct sk_buff *skb)
1241 {
1242 	/* This BUG_ON may seem severe, but if we just return then we
1243 	 * are going to dereference garbage.
1244 	 */
1245 	BUG_ON(skb_queue_is_last(list, skb));
1246 	return skb->next;
1247 }
1248 
1249 /**
1250  *	skb_queue_prev - return the prev packet in the queue
1251  *	@list: queue head
1252  *	@skb: current buffer
1253  *
1254  *	Return the prev packet in @list before @skb.  It is only valid to
1255  *	call this if skb_queue_is_first() evaluates to false.
1256  */
1257 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1258 					     const struct sk_buff *skb)
1259 {
1260 	/* This BUG_ON may seem severe, but if we just return then we
1261 	 * are going to dereference garbage.
1262 	 */
1263 	BUG_ON(skb_queue_is_first(list, skb));
1264 	return skb->prev;
1265 }
1266 
1267 /**
1268  *	skb_get - reference buffer
1269  *	@skb: buffer to reference
1270  *
1271  *	Makes another reference to a socket buffer and returns a pointer
1272  *	to the buffer.
1273  */
1274 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1275 {
1276 	atomic_inc(&skb->users);
1277 	return skb;
1278 }
1279 
1280 /*
1281  * If users == 1, we are the only owner and are can avoid redundant
1282  * atomic change.
1283  */
1284 
1285 /**
1286  *	skb_cloned - is the buffer a clone
1287  *	@skb: buffer to check
1288  *
1289  *	Returns true if the buffer was generated with skb_clone() and is
1290  *	one of multiple shared copies of the buffer. Cloned buffers are
1291  *	shared data so must not be written to under normal circumstances.
1292  */
1293 static inline int skb_cloned(const struct sk_buff *skb)
1294 {
1295 	return skb->cloned &&
1296 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1297 }
1298 
1299 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1300 {
1301 	might_sleep_if(gfpflags_allow_blocking(pri));
1302 
1303 	if (skb_cloned(skb))
1304 		return pskb_expand_head(skb, 0, 0, pri);
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  *	skb_header_cloned - is the header a clone
1311  *	@skb: buffer to check
1312  *
1313  *	Returns true if modifying the header part of the buffer requires
1314  *	the data to be copied.
1315  */
1316 static inline int skb_header_cloned(const struct sk_buff *skb)
1317 {
1318 	int dataref;
1319 
1320 	if (!skb->cloned)
1321 		return 0;
1322 
1323 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1324 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1325 	return dataref != 1;
1326 }
1327 
1328 /**
1329  *	skb_header_release - release reference to header
1330  *	@skb: buffer to operate on
1331  *
1332  *	Drop a reference to the header part of the buffer.  This is done
1333  *	by acquiring a payload reference.  You must not read from the header
1334  *	part of skb->data after this.
1335  *	Note : Check if you can use __skb_header_release() instead.
1336  */
1337 static inline void skb_header_release(struct sk_buff *skb)
1338 {
1339 	BUG_ON(skb->nohdr);
1340 	skb->nohdr = 1;
1341 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1342 }
1343 
1344 /**
1345  *	__skb_header_release - release reference to header
1346  *	@skb: buffer to operate on
1347  *
1348  *	Variant of skb_header_release() assuming skb is private to caller.
1349  *	We can avoid one atomic operation.
1350  */
1351 static inline void __skb_header_release(struct sk_buff *skb)
1352 {
1353 	skb->nohdr = 1;
1354 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1355 }
1356 
1357 
1358 /**
1359  *	skb_shared - is the buffer shared
1360  *	@skb: buffer to check
1361  *
1362  *	Returns true if more than one person has a reference to this
1363  *	buffer.
1364  */
1365 static inline int skb_shared(const struct sk_buff *skb)
1366 {
1367 	return atomic_read(&skb->users) != 1;
1368 }
1369 
1370 /**
1371  *	skb_share_check - check if buffer is shared and if so clone it
1372  *	@skb: buffer to check
1373  *	@pri: priority for memory allocation
1374  *
1375  *	If the buffer is shared the buffer is cloned and the old copy
1376  *	drops a reference. A new clone with a single reference is returned.
1377  *	If the buffer is not shared the original buffer is returned. When
1378  *	being called from interrupt status or with spinlocks held pri must
1379  *	be GFP_ATOMIC.
1380  *
1381  *	NULL is returned on a memory allocation failure.
1382  */
1383 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1384 {
1385 	might_sleep_if(gfpflags_allow_blocking(pri));
1386 	if (skb_shared(skb)) {
1387 		struct sk_buff *nskb = skb_clone(skb, pri);
1388 
1389 		if (likely(nskb))
1390 			consume_skb(skb);
1391 		else
1392 			kfree_skb(skb);
1393 		skb = nskb;
1394 	}
1395 	return skb;
1396 }
1397 
1398 /*
1399  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1400  *	packets to handle cases where we have a local reader and forward
1401  *	and a couple of other messy ones. The normal one is tcpdumping
1402  *	a packet thats being forwarded.
1403  */
1404 
1405 /**
1406  *	skb_unshare - make a copy of a shared buffer
1407  *	@skb: buffer to check
1408  *	@pri: priority for memory allocation
1409  *
1410  *	If the socket buffer is a clone then this function creates a new
1411  *	copy of the data, drops a reference count on the old copy and returns
1412  *	the new copy with the reference count at 1. If the buffer is not a clone
1413  *	the original buffer is returned. When called with a spinlock held or
1414  *	from interrupt state @pri must be %GFP_ATOMIC
1415  *
1416  *	%NULL is returned on a memory allocation failure.
1417  */
1418 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1419 					  gfp_t pri)
1420 {
1421 	might_sleep_if(gfpflags_allow_blocking(pri));
1422 	if (skb_cloned(skb)) {
1423 		struct sk_buff *nskb = skb_copy(skb, pri);
1424 
1425 		/* Free our shared copy */
1426 		if (likely(nskb))
1427 			consume_skb(skb);
1428 		else
1429 			kfree_skb(skb);
1430 		skb = nskb;
1431 	}
1432 	return skb;
1433 }
1434 
1435 /**
1436  *	skb_peek - peek at the head of an &sk_buff_head
1437  *	@list_: list to peek at
1438  *
1439  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1440  *	be careful with this one. A peek leaves the buffer on the
1441  *	list and someone else may run off with it. You must hold
1442  *	the appropriate locks or have a private queue to do this.
1443  *
1444  *	Returns %NULL for an empty list or a pointer to the head element.
1445  *	The reference count is not incremented and the reference is therefore
1446  *	volatile. Use with caution.
1447  */
1448 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1449 {
1450 	struct sk_buff *skb = list_->next;
1451 
1452 	if (skb == (struct sk_buff *)list_)
1453 		skb = NULL;
1454 	return skb;
1455 }
1456 
1457 /**
1458  *	skb_peek_next - peek skb following the given one from a queue
1459  *	@skb: skb to start from
1460  *	@list_: list to peek at
1461  *
1462  *	Returns %NULL when the end of the list is met or a pointer to the
1463  *	next element. The reference count is not incremented and the
1464  *	reference is therefore volatile. Use with caution.
1465  */
1466 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1467 		const struct sk_buff_head *list_)
1468 {
1469 	struct sk_buff *next = skb->next;
1470 
1471 	if (next == (struct sk_buff *)list_)
1472 		next = NULL;
1473 	return next;
1474 }
1475 
1476 /**
1477  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1478  *	@list_: list to peek at
1479  *
1480  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1481  *	be careful with this one. A peek leaves the buffer on the
1482  *	list and someone else may run off with it. You must hold
1483  *	the appropriate locks or have a private queue to do this.
1484  *
1485  *	Returns %NULL for an empty list or a pointer to the tail element.
1486  *	The reference count is not incremented and the reference is therefore
1487  *	volatile. Use with caution.
1488  */
1489 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1490 {
1491 	struct sk_buff *skb = list_->prev;
1492 
1493 	if (skb == (struct sk_buff *)list_)
1494 		skb = NULL;
1495 	return skb;
1496 
1497 }
1498 
1499 /**
1500  *	skb_queue_len	- get queue length
1501  *	@list_: list to measure
1502  *
1503  *	Return the length of an &sk_buff queue.
1504  */
1505 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1506 {
1507 	return list_->qlen;
1508 }
1509 
1510 /**
1511  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1512  *	@list: queue to initialize
1513  *
1514  *	This initializes only the list and queue length aspects of
1515  *	an sk_buff_head object.  This allows to initialize the list
1516  *	aspects of an sk_buff_head without reinitializing things like
1517  *	the spinlock.  It can also be used for on-stack sk_buff_head
1518  *	objects where the spinlock is known to not be used.
1519  */
1520 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1521 {
1522 	list->prev = list->next = (struct sk_buff *)list;
1523 	list->qlen = 0;
1524 }
1525 
1526 /*
1527  * This function creates a split out lock class for each invocation;
1528  * this is needed for now since a whole lot of users of the skb-queue
1529  * infrastructure in drivers have different locking usage (in hardirq)
1530  * than the networking core (in softirq only). In the long run either the
1531  * network layer or drivers should need annotation to consolidate the
1532  * main types of usage into 3 classes.
1533  */
1534 static inline void skb_queue_head_init(struct sk_buff_head *list)
1535 {
1536 	spin_lock_init(&list->lock);
1537 	__skb_queue_head_init(list);
1538 }
1539 
1540 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1541 		struct lock_class_key *class)
1542 {
1543 	skb_queue_head_init(list);
1544 	lockdep_set_class(&list->lock, class);
1545 }
1546 
1547 /*
1548  *	Insert an sk_buff on a list.
1549  *
1550  *	The "__skb_xxxx()" functions are the non-atomic ones that
1551  *	can only be called with interrupts disabled.
1552  */
1553 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1554 		struct sk_buff_head *list);
1555 static inline void __skb_insert(struct sk_buff *newsk,
1556 				struct sk_buff *prev, struct sk_buff *next,
1557 				struct sk_buff_head *list)
1558 {
1559 	newsk->next = next;
1560 	newsk->prev = prev;
1561 	next->prev  = prev->next = newsk;
1562 	list->qlen++;
1563 }
1564 
1565 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1566 				      struct sk_buff *prev,
1567 				      struct sk_buff *next)
1568 {
1569 	struct sk_buff *first = list->next;
1570 	struct sk_buff *last = list->prev;
1571 
1572 	first->prev = prev;
1573 	prev->next = first;
1574 
1575 	last->next = next;
1576 	next->prev = last;
1577 }
1578 
1579 /**
1580  *	skb_queue_splice - join two skb lists, this is designed for stacks
1581  *	@list: the new list to add
1582  *	@head: the place to add it in the first list
1583  */
1584 static inline void skb_queue_splice(const struct sk_buff_head *list,
1585 				    struct sk_buff_head *head)
1586 {
1587 	if (!skb_queue_empty(list)) {
1588 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1589 		head->qlen += list->qlen;
1590 	}
1591 }
1592 
1593 /**
1594  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1595  *	@list: the new list to add
1596  *	@head: the place to add it in the first list
1597  *
1598  *	The list at @list is reinitialised
1599  */
1600 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1601 					 struct sk_buff_head *head)
1602 {
1603 	if (!skb_queue_empty(list)) {
1604 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1605 		head->qlen += list->qlen;
1606 		__skb_queue_head_init(list);
1607 	}
1608 }
1609 
1610 /**
1611  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1612  *	@list: the new list to add
1613  *	@head: the place to add it in the first list
1614  */
1615 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1616 					 struct sk_buff_head *head)
1617 {
1618 	if (!skb_queue_empty(list)) {
1619 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1620 		head->qlen += list->qlen;
1621 	}
1622 }
1623 
1624 /**
1625  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1626  *	@list: the new list to add
1627  *	@head: the place to add it in the first list
1628  *
1629  *	Each of the lists is a queue.
1630  *	The list at @list is reinitialised
1631  */
1632 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1633 					      struct sk_buff_head *head)
1634 {
1635 	if (!skb_queue_empty(list)) {
1636 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1637 		head->qlen += list->qlen;
1638 		__skb_queue_head_init(list);
1639 	}
1640 }
1641 
1642 /**
1643  *	__skb_queue_after - queue a buffer at the list head
1644  *	@list: list to use
1645  *	@prev: place after this buffer
1646  *	@newsk: buffer to queue
1647  *
1648  *	Queue a buffer int the middle of a list. This function takes no locks
1649  *	and you must therefore hold required locks before calling it.
1650  *
1651  *	A buffer cannot be placed on two lists at the same time.
1652  */
1653 static inline void __skb_queue_after(struct sk_buff_head *list,
1654 				     struct sk_buff *prev,
1655 				     struct sk_buff *newsk)
1656 {
1657 	__skb_insert(newsk, prev, prev->next, list);
1658 }
1659 
1660 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1661 		struct sk_buff_head *list);
1662 
1663 static inline void __skb_queue_before(struct sk_buff_head *list,
1664 				      struct sk_buff *next,
1665 				      struct sk_buff *newsk)
1666 {
1667 	__skb_insert(newsk, next->prev, next, list);
1668 }
1669 
1670 /**
1671  *	__skb_queue_head - queue a buffer at the list head
1672  *	@list: list to use
1673  *	@newsk: buffer to queue
1674  *
1675  *	Queue a buffer at the start of a list. This function takes no locks
1676  *	and you must therefore hold required locks before calling it.
1677  *
1678  *	A buffer cannot be placed on two lists at the same time.
1679  */
1680 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1681 static inline void __skb_queue_head(struct sk_buff_head *list,
1682 				    struct sk_buff *newsk)
1683 {
1684 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1685 }
1686 
1687 /**
1688  *	__skb_queue_tail - queue a buffer at the list tail
1689  *	@list: list to use
1690  *	@newsk: buffer to queue
1691  *
1692  *	Queue a buffer at the end of a list. This function takes no locks
1693  *	and you must therefore hold required locks before calling it.
1694  *
1695  *	A buffer cannot be placed on two lists at the same time.
1696  */
1697 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1698 static inline void __skb_queue_tail(struct sk_buff_head *list,
1699 				   struct sk_buff *newsk)
1700 {
1701 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1702 }
1703 
1704 /*
1705  * remove sk_buff from list. _Must_ be called atomically, and with
1706  * the list known..
1707  */
1708 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1709 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1710 {
1711 	struct sk_buff *next, *prev;
1712 
1713 	list->qlen--;
1714 	next	   = skb->next;
1715 	prev	   = skb->prev;
1716 	skb->next  = skb->prev = NULL;
1717 	next->prev = prev;
1718 	prev->next = next;
1719 }
1720 
1721 /**
1722  *	__skb_dequeue - remove from the head of the queue
1723  *	@list: list to dequeue from
1724  *
1725  *	Remove the head of the list. This function does not take any locks
1726  *	so must be used with appropriate locks held only. The head item is
1727  *	returned or %NULL if the list is empty.
1728  */
1729 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1730 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1731 {
1732 	struct sk_buff *skb = skb_peek(list);
1733 	if (skb)
1734 		__skb_unlink(skb, list);
1735 	return skb;
1736 }
1737 
1738 /**
1739  *	__skb_dequeue_tail - remove from the tail of the queue
1740  *	@list: list to dequeue from
1741  *
1742  *	Remove the tail of the list. This function does not take any locks
1743  *	so must be used with appropriate locks held only. The tail item is
1744  *	returned or %NULL if the list is empty.
1745  */
1746 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1747 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1748 {
1749 	struct sk_buff *skb = skb_peek_tail(list);
1750 	if (skb)
1751 		__skb_unlink(skb, list);
1752 	return skb;
1753 }
1754 
1755 
1756 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1757 {
1758 	return skb->data_len;
1759 }
1760 
1761 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1762 {
1763 	return skb->len - skb->data_len;
1764 }
1765 
1766 static inline int skb_pagelen(const struct sk_buff *skb)
1767 {
1768 	int i, len = 0;
1769 
1770 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1771 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1772 	return len + skb_headlen(skb);
1773 }
1774 
1775 /**
1776  * __skb_fill_page_desc - initialise a paged fragment in an skb
1777  * @skb: buffer containing fragment to be initialised
1778  * @i: paged fragment index to initialise
1779  * @page: the page to use for this fragment
1780  * @off: the offset to the data with @page
1781  * @size: the length of the data
1782  *
1783  * Initialises the @i'th fragment of @skb to point to &size bytes at
1784  * offset @off within @page.
1785  *
1786  * Does not take any additional reference on the fragment.
1787  */
1788 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1789 					struct page *page, int off, int size)
1790 {
1791 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1792 
1793 	/*
1794 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1795 	 * that not all callers have unique ownership of the page but rely
1796 	 * on page_is_pfmemalloc doing the right thing(tm).
1797 	 */
1798 	frag->page.p		  = page;
1799 	frag->page_offset	  = off;
1800 	skb_frag_size_set(frag, size);
1801 
1802 	page = compound_head(page);
1803 	if (page_is_pfmemalloc(page))
1804 		skb->pfmemalloc	= true;
1805 }
1806 
1807 /**
1808  * skb_fill_page_desc - initialise a paged fragment in an skb
1809  * @skb: buffer containing fragment to be initialised
1810  * @i: paged fragment index to initialise
1811  * @page: the page to use for this fragment
1812  * @off: the offset to the data with @page
1813  * @size: the length of the data
1814  *
1815  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1816  * @skb to point to @size bytes at offset @off within @page. In
1817  * addition updates @skb such that @i is the last fragment.
1818  *
1819  * Does not take any additional reference on the fragment.
1820  */
1821 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1822 				      struct page *page, int off, int size)
1823 {
1824 	__skb_fill_page_desc(skb, i, page, off, size);
1825 	skb_shinfo(skb)->nr_frags = i + 1;
1826 }
1827 
1828 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1829 		     int size, unsigned int truesize);
1830 
1831 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1832 			  unsigned int truesize);
1833 
1834 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1835 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1836 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1837 
1838 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1839 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1840 {
1841 	return skb->head + skb->tail;
1842 }
1843 
1844 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1845 {
1846 	skb->tail = skb->data - skb->head;
1847 }
1848 
1849 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1850 {
1851 	skb_reset_tail_pointer(skb);
1852 	skb->tail += offset;
1853 }
1854 
1855 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1856 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1857 {
1858 	return skb->tail;
1859 }
1860 
1861 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1862 {
1863 	skb->tail = skb->data;
1864 }
1865 
1866 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1867 {
1868 	skb->tail = skb->data + offset;
1869 }
1870 
1871 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1872 
1873 /*
1874  *	Add data to an sk_buff
1875  */
1876 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1877 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1878 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1879 {
1880 	unsigned char *tmp = skb_tail_pointer(skb);
1881 	SKB_LINEAR_ASSERT(skb);
1882 	skb->tail += len;
1883 	skb->len  += len;
1884 	return tmp;
1885 }
1886 
1887 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1888 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1889 {
1890 	skb->data -= len;
1891 	skb->len  += len;
1892 	return skb->data;
1893 }
1894 
1895 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1896 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1897 {
1898 	skb->len -= len;
1899 	BUG_ON(skb->len < skb->data_len);
1900 	return skb->data += len;
1901 }
1902 
1903 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1904 {
1905 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1906 }
1907 
1908 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1909 
1910 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1911 {
1912 	if (len > skb_headlen(skb) &&
1913 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1914 		return NULL;
1915 	skb->len -= len;
1916 	return skb->data += len;
1917 }
1918 
1919 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1920 {
1921 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1922 }
1923 
1924 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1925 {
1926 	if (likely(len <= skb_headlen(skb)))
1927 		return 1;
1928 	if (unlikely(len > skb->len))
1929 		return 0;
1930 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1931 }
1932 
1933 /**
1934  *	skb_headroom - bytes at buffer head
1935  *	@skb: buffer to check
1936  *
1937  *	Return the number of bytes of free space at the head of an &sk_buff.
1938  */
1939 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1940 {
1941 	return skb->data - skb->head;
1942 }
1943 
1944 /**
1945  *	skb_tailroom - bytes at buffer end
1946  *	@skb: buffer to check
1947  *
1948  *	Return the number of bytes of free space at the tail of an sk_buff
1949  */
1950 static inline int skb_tailroom(const struct sk_buff *skb)
1951 {
1952 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1953 }
1954 
1955 /**
1956  *	skb_availroom - bytes at buffer end
1957  *	@skb: buffer to check
1958  *
1959  *	Return the number of bytes of free space at the tail of an sk_buff
1960  *	allocated by sk_stream_alloc()
1961  */
1962 static inline int skb_availroom(const struct sk_buff *skb)
1963 {
1964 	if (skb_is_nonlinear(skb))
1965 		return 0;
1966 
1967 	return skb->end - skb->tail - skb->reserved_tailroom;
1968 }
1969 
1970 /**
1971  *	skb_reserve - adjust headroom
1972  *	@skb: buffer to alter
1973  *	@len: bytes to move
1974  *
1975  *	Increase the headroom of an empty &sk_buff by reducing the tail
1976  *	room. This is only allowed for an empty buffer.
1977  */
1978 static inline void skb_reserve(struct sk_buff *skb, int len)
1979 {
1980 	skb->data += len;
1981 	skb->tail += len;
1982 }
1983 
1984 /**
1985  *	skb_tailroom_reserve - adjust reserved_tailroom
1986  *	@skb: buffer to alter
1987  *	@mtu: maximum amount of headlen permitted
1988  *	@needed_tailroom: minimum amount of reserved_tailroom
1989  *
1990  *	Set reserved_tailroom so that headlen can be as large as possible but
1991  *	not larger than mtu and tailroom cannot be smaller than
1992  *	needed_tailroom.
1993  *	The required headroom should already have been reserved before using
1994  *	this function.
1995  */
1996 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
1997 					unsigned int needed_tailroom)
1998 {
1999 	SKB_LINEAR_ASSERT(skb);
2000 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2001 		/* use at most mtu */
2002 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2003 	else
2004 		/* use up to all available space */
2005 		skb->reserved_tailroom = needed_tailroom;
2006 }
2007 
2008 #define ENCAP_TYPE_ETHER	0
2009 #define ENCAP_TYPE_IPPROTO	1
2010 
2011 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2012 					  __be16 protocol)
2013 {
2014 	skb->inner_protocol = protocol;
2015 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2016 }
2017 
2018 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2019 					 __u8 ipproto)
2020 {
2021 	skb->inner_ipproto = ipproto;
2022 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2023 }
2024 
2025 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2026 {
2027 	skb->inner_mac_header = skb->mac_header;
2028 	skb->inner_network_header = skb->network_header;
2029 	skb->inner_transport_header = skb->transport_header;
2030 }
2031 
2032 static inline void skb_reset_mac_len(struct sk_buff *skb)
2033 {
2034 	skb->mac_len = skb->network_header - skb->mac_header;
2035 }
2036 
2037 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2038 							*skb)
2039 {
2040 	return skb->head + skb->inner_transport_header;
2041 }
2042 
2043 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2044 {
2045 	return skb_inner_transport_header(skb) - skb->data;
2046 }
2047 
2048 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2049 {
2050 	skb->inner_transport_header = skb->data - skb->head;
2051 }
2052 
2053 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2054 						   const int offset)
2055 {
2056 	skb_reset_inner_transport_header(skb);
2057 	skb->inner_transport_header += offset;
2058 }
2059 
2060 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2061 {
2062 	return skb->head + skb->inner_network_header;
2063 }
2064 
2065 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2066 {
2067 	skb->inner_network_header = skb->data - skb->head;
2068 }
2069 
2070 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2071 						const int offset)
2072 {
2073 	skb_reset_inner_network_header(skb);
2074 	skb->inner_network_header += offset;
2075 }
2076 
2077 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2078 {
2079 	return skb->head + skb->inner_mac_header;
2080 }
2081 
2082 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2083 {
2084 	skb->inner_mac_header = skb->data - skb->head;
2085 }
2086 
2087 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2088 					    const int offset)
2089 {
2090 	skb_reset_inner_mac_header(skb);
2091 	skb->inner_mac_header += offset;
2092 }
2093 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2094 {
2095 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2096 }
2097 
2098 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2099 {
2100 	return skb->head + skb->transport_header;
2101 }
2102 
2103 static inline void skb_reset_transport_header(struct sk_buff *skb)
2104 {
2105 	skb->transport_header = skb->data - skb->head;
2106 }
2107 
2108 static inline void skb_set_transport_header(struct sk_buff *skb,
2109 					    const int offset)
2110 {
2111 	skb_reset_transport_header(skb);
2112 	skb->transport_header += offset;
2113 }
2114 
2115 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2116 {
2117 	return skb->head + skb->network_header;
2118 }
2119 
2120 static inline void skb_reset_network_header(struct sk_buff *skb)
2121 {
2122 	skb->network_header = skb->data - skb->head;
2123 }
2124 
2125 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2126 {
2127 	skb_reset_network_header(skb);
2128 	skb->network_header += offset;
2129 }
2130 
2131 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2132 {
2133 	return skb->head + skb->mac_header;
2134 }
2135 
2136 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2137 {
2138 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2139 }
2140 
2141 static inline void skb_reset_mac_header(struct sk_buff *skb)
2142 {
2143 	skb->mac_header = skb->data - skb->head;
2144 }
2145 
2146 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2147 {
2148 	skb_reset_mac_header(skb);
2149 	skb->mac_header += offset;
2150 }
2151 
2152 static inline void skb_pop_mac_header(struct sk_buff *skb)
2153 {
2154 	skb->mac_header = skb->network_header;
2155 }
2156 
2157 static inline void skb_probe_transport_header(struct sk_buff *skb,
2158 					      const int offset_hint)
2159 {
2160 	struct flow_keys keys;
2161 
2162 	if (skb_transport_header_was_set(skb))
2163 		return;
2164 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2165 		skb_set_transport_header(skb, keys.control.thoff);
2166 	else
2167 		skb_set_transport_header(skb, offset_hint);
2168 }
2169 
2170 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2171 {
2172 	if (skb_mac_header_was_set(skb)) {
2173 		const unsigned char *old_mac = skb_mac_header(skb);
2174 
2175 		skb_set_mac_header(skb, -skb->mac_len);
2176 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2177 	}
2178 }
2179 
2180 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2181 {
2182 	return skb->csum_start - skb_headroom(skb);
2183 }
2184 
2185 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2186 {
2187 	return skb->head + skb->csum_start;
2188 }
2189 
2190 static inline int skb_transport_offset(const struct sk_buff *skb)
2191 {
2192 	return skb_transport_header(skb) - skb->data;
2193 }
2194 
2195 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2196 {
2197 	return skb->transport_header - skb->network_header;
2198 }
2199 
2200 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2201 {
2202 	return skb->inner_transport_header - skb->inner_network_header;
2203 }
2204 
2205 static inline int skb_network_offset(const struct sk_buff *skb)
2206 {
2207 	return skb_network_header(skb) - skb->data;
2208 }
2209 
2210 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2211 {
2212 	return skb_inner_network_header(skb) - skb->data;
2213 }
2214 
2215 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2216 {
2217 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2218 }
2219 
2220 /*
2221  * CPUs often take a performance hit when accessing unaligned memory
2222  * locations. The actual performance hit varies, it can be small if the
2223  * hardware handles it or large if we have to take an exception and fix it
2224  * in software.
2225  *
2226  * Since an ethernet header is 14 bytes network drivers often end up with
2227  * the IP header at an unaligned offset. The IP header can be aligned by
2228  * shifting the start of the packet by 2 bytes. Drivers should do this
2229  * with:
2230  *
2231  * skb_reserve(skb, NET_IP_ALIGN);
2232  *
2233  * The downside to this alignment of the IP header is that the DMA is now
2234  * unaligned. On some architectures the cost of an unaligned DMA is high
2235  * and this cost outweighs the gains made by aligning the IP header.
2236  *
2237  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2238  * to be overridden.
2239  */
2240 #ifndef NET_IP_ALIGN
2241 #define NET_IP_ALIGN	2
2242 #endif
2243 
2244 /*
2245  * The networking layer reserves some headroom in skb data (via
2246  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2247  * the header has to grow. In the default case, if the header has to grow
2248  * 32 bytes or less we avoid the reallocation.
2249  *
2250  * Unfortunately this headroom changes the DMA alignment of the resulting
2251  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2252  * on some architectures. An architecture can override this value,
2253  * perhaps setting it to a cacheline in size (since that will maintain
2254  * cacheline alignment of the DMA). It must be a power of 2.
2255  *
2256  * Various parts of the networking layer expect at least 32 bytes of
2257  * headroom, you should not reduce this.
2258  *
2259  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2260  * to reduce average number of cache lines per packet.
2261  * get_rps_cpus() for example only access one 64 bytes aligned block :
2262  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2263  */
2264 #ifndef NET_SKB_PAD
2265 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2266 #endif
2267 
2268 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2269 
2270 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2271 {
2272 	if (unlikely(skb_is_nonlinear(skb))) {
2273 		WARN_ON(1);
2274 		return;
2275 	}
2276 	skb->len = len;
2277 	skb_set_tail_pointer(skb, len);
2278 }
2279 
2280 void skb_trim(struct sk_buff *skb, unsigned int len);
2281 
2282 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2283 {
2284 	if (skb->data_len)
2285 		return ___pskb_trim(skb, len);
2286 	__skb_trim(skb, len);
2287 	return 0;
2288 }
2289 
2290 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2291 {
2292 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2293 }
2294 
2295 /**
2296  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2297  *	@skb: buffer to alter
2298  *	@len: new length
2299  *
2300  *	This is identical to pskb_trim except that the caller knows that
2301  *	the skb is not cloned so we should never get an error due to out-
2302  *	of-memory.
2303  */
2304 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2305 {
2306 	int err = pskb_trim(skb, len);
2307 	BUG_ON(err);
2308 }
2309 
2310 /**
2311  *	skb_orphan - orphan a buffer
2312  *	@skb: buffer to orphan
2313  *
2314  *	If a buffer currently has an owner then we call the owner's
2315  *	destructor function and make the @skb unowned. The buffer continues
2316  *	to exist but is no longer charged to its former owner.
2317  */
2318 static inline void skb_orphan(struct sk_buff *skb)
2319 {
2320 	if (skb->destructor) {
2321 		skb->destructor(skb);
2322 		skb->destructor = NULL;
2323 		skb->sk		= NULL;
2324 	} else {
2325 		BUG_ON(skb->sk);
2326 	}
2327 }
2328 
2329 /**
2330  *	skb_orphan_frags - orphan the frags contained in a buffer
2331  *	@skb: buffer to orphan frags from
2332  *	@gfp_mask: allocation mask for replacement pages
2333  *
2334  *	For each frag in the SKB which needs a destructor (i.e. has an
2335  *	owner) create a copy of that frag and release the original
2336  *	page by calling the destructor.
2337  */
2338 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2339 {
2340 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2341 		return 0;
2342 	return skb_copy_ubufs(skb, gfp_mask);
2343 }
2344 
2345 /**
2346  *	__skb_queue_purge - empty a list
2347  *	@list: list to empty
2348  *
2349  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2350  *	the list and one reference dropped. This function does not take the
2351  *	list lock and the caller must hold the relevant locks to use it.
2352  */
2353 void skb_queue_purge(struct sk_buff_head *list);
2354 static inline void __skb_queue_purge(struct sk_buff_head *list)
2355 {
2356 	struct sk_buff *skb;
2357 	while ((skb = __skb_dequeue(list)) != NULL)
2358 		kfree_skb(skb);
2359 }
2360 
2361 void *netdev_alloc_frag(unsigned int fragsz);
2362 
2363 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2364 				   gfp_t gfp_mask);
2365 
2366 /**
2367  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2368  *	@dev: network device to receive on
2369  *	@length: length to allocate
2370  *
2371  *	Allocate a new &sk_buff and assign it a usage count of one. The
2372  *	buffer has unspecified headroom built in. Users should allocate
2373  *	the headroom they think they need without accounting for the
2374  *	built in space. The built in space is used for optimisations.
2375  *
2376  *	%NULL is returned if there is no free memory. Although this function
2377  *	allocates memory it can be called from an interrupt.
2378  */
2379 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2380 					       unsigned int length)
2381 {
2382 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2383 }
2384 
2385 /* legacy helper around __netdev_alloc_skb() */
2386 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2387 					      gfp_t gfp_mask)
2388 {
2389 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2390 }
2391 
2392 /* legacy helper around netdev_alloc_skb() */
2393 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2394 {
2395 	return netdev_alloc_skb(NULL, length);
2396 }
2397 
2398 
2399 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2400 		unsigned int length, gfp_t gfp)
2401 {
2402 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2403 
2404 	if (NET_IP_ALIGN && skb)
2405 		skb_reserve(skb, NET_IP_ALIGN);
2406 	return skb;
2407 }
2408 
2409 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2410 		unsigned int length)
2411 {
2412 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2413 }
2414 
2415 static inline void skb_free_frag(void *addr)
2416 {
2417 	__free_page_frag(addr);
2418 }
2419 
2420 void *napi_alloc_frag(unsigned int fragsz);
2421 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2422 				 unsigned int length, gfp_t gfp_mask);
2423 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2424 					     unsigned int length)
2425 {
2426 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2427 }
2428 void napi_consume_skb(struct sk_buff *skb, int budget);
2429 
2430 void __kfree_skb_flush(void);
2431 void __kfree_skb_defer(struct sk_buff *skb);
2432 
2433 /**
2434  * __dev_alloc_pages - allocate page for network Rx
2435  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2436  * @order: size of the allocation
2437  *
2438  * Allocate a new page.
2439  *
2440  * %NULL is returned if there is no free memory.
2441 */
2442 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2443 					     unsigned int order)
2444 {
2445 	/* This piece of code contains several assumptions.
2446 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2447 	 * 2.  The expectation is the user wants a compound page.
2448 	 * 3.  If requesting a order 0 page it will not be compound
2449 	 *     due to the check to see if order has a value in prep_new_page
2450 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2451 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2452 	 */
2453 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2454 
2455 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2456 }
2457 
2458 static inline struct page *dev_alloc_pages(unsigned int order)
2459 {
2460 	return __dev_alloc_pages(GFP_ATOMIC, order);
2461 }
2462 
2463 /**
2464  * __dev_alloc_page - allocate a page for network Rx
2465  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2466  *
2467  * Allocate a new page.
2468  *
2469  * %NULL is returned if there is no free memory.
2470  */
2471 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2472 {
2473 	return __dev_alloc_pages(gfp_mask, 0);
2474 }
2475 
2476 static inline struct page *dev_alloc_page(void)
2477 {
2478 	return __dev_alloc_page(GFP_ATOMIC);
2479 }
2480 
2481 /**
2482  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2483  *	@page: The page that was allocated from skb_alloc_page
2484  *	@skb: The skb that may need pfmemalloc set
2485  */
2486 static inline void skb_propagate_pfmemalloc(struct page *page,
2487 					     struct sk_buff *skb)
2488 {
2489 	if (page_is_pfmemalloc(page))
2490 		skb->pfmemalloc = true;
2491 }
2492 
2493 /**
2494  * skb_frag_page - retrieve the page referred to by a paged fragment
2495  * @frag: the paged fragment
2496  *
2497  * Returns the &struct page associated with @frag.
2498  */
2499 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2500 {
2501 	return frag->page.p;
2502 }
2503 
2504 /**
2505  * __skb_frag_ref - take an addition reference on a paged fragment.
2506  * @frag: the paged fragment
2507  *
2508  * Takes an additional reference on the paged fragment @frag.
2509  */
2510 static inline void __skb_frag_ref(skb_frag_t *frag)
2511 {
2512 	get_page(skb_frag_page(frag));
2513 }
2514 
2515 /**
2516  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2517  * @skb: the buffer
2518  * @f: the fragment offset.
2519  *
2520  * Takes an additional reference on the @f'th paged fragment of @skb.
2521  */
2522 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2523 {
2524 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2525 }
2526 
2527 /**
2528  * __skb_frag_unref - release a reference on a paged fragment.
2529  * @frag: the paged fragment
2530  *
2531  * Releases a reference on the paged fragment @frag.
2532  */
2533 static inline void __skb_frag_unref(skb_frag_t *frag)
2534 {
2535 	put_page(skb_frag_page(frag));
2536 }
2537 
2538 /**
2539  * skb_frag_unref - release a reference on a paged fragment of an skb.
2540  * @skb: the buffer
2541  * @f: the fragment offset
2542  *
2543  * Releases a reference on the @f'th paged fragment of @skb.
2544  */
2545 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2546 {
2547 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2548 }
2549 
2550 /**
2551  * skb_frag_address - gets the address of the data contained in a paged fragment
2552  * @frag: the paged fragment buffer
2553  *
2554  * Returns the address of the data within @frag. The page must already
2555  * be mapped.
2556  */
2557 static inline void *skb_frag_address(const skb_frag_t *frag)
2558 {
2559 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2560 }
2561 
2562 /**
2563  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2564  * @frag: the paged fragment buffer
2565  *
2566  * Returns the address of the data within @frag. Checks that the page
2567  * is mapped and returns %NULL otherwise.
2568  */
2569 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2570 {
2571 	void *ptr = page_address(skb_frag_page(frag));
2572 	if (unlikely(!ptr))
2573 		return NULL;
2574 
2575 	return ptr + frag->page_offset;
2576 }
2577 
2578 /**
2579  * __skb_frag_set_page - sets the page contained in a paged fragment
2580  * @frag: the paged fragment
2581  * @page: the page to set
2582  *
2583  * Sets the fragment @frag to contain @page.
2584  */
2585 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2586 {
2587 	frag->page.p = page;
2588 }
2589 
2590 /**
2591  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2592  * @skb: the buffer
2593  * @f: the fragment offset
2594  * @page: the page to set
2595  *
2596  * Sets the @f'th fragment of @skb to contain @page.
2597  */
2598 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2599 				     struct page *page)
2600 {
2601 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2602 }
2603 
2604 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2605 
2606 /**
2607  * skb_frag_dma_map - maps a paged fragment via the DMA API
2608  * @dev: the device to map the fragment to
2609  * @frag: the paged fragment to map
2610  * @offset: the offset within the fragment (starting at the
2611  *          fragment's own offset)
2612  * @size: the number of bytes to map
2613  * @dir: the direction of the mapping (%PCI_DMA_*)
2614  *
2615  * Maps the page associated with @frag to @device.
2616  */
2617 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2618 					  const skb_frag_t *frag,
2619 					  size_t offset, size_t size,
2620 					  enum dma_data_direction dir)
2621 {
2622 	return dma_map_page(dev, skb_frag_page(frag),
2623 			    frag->page_offset + offset, size, dir);
2624 }
2625 
2626 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2627 					gfp_t gfp_mask)
2628 {
2629 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2630 }
2631 
2632 
2633 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2634 						  gfp_t gfp_mask)
2635 {
2636 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2637 }
2638 
2639 
2640 /**
2641  *	skb_clone_writable - is the header of a clone writable
2642  *	@skb: buffer to check
2643  *	@len: length up to which to write
2644  *
2645  *	Returns true if modifying the header part of the cloned buffer
2646  *	does not requires the data to be copied.
2647  */
2648 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2649 {
2650 	return !skb_header_cloned(skb) &&
2651 	       skb_headroom(skb) + len <= skb->hdr_len;
2652 }
2653 
2654 static inline int skb_try_make_writable(struct sk_buff *skb,
2655 					unsigned int write_len)
2656 {
2657 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2658 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2659 }
2660 
2661 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2662 			    int cloned)
2663 {
2664 	int delta = 0;
2665 
2666 	if (headroom > skb_headroom(skb))
2667 		delta = headroom - skb_headroom(skb);
2668 
2669 	if (delta || cloned)
2670 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2671 					GFP_ATOMIC);
2672 	return 0;
2673 }
2674 
2675 /**
2676  *	skb_cow - copy header of skb when it is required
2677  *	@skb: buffer to cow
2678  *	@headroom: needed headroom
2679  *
2680  *	If the skb passed lacks sufficient headroom or its data part
2681  *	is shared, data is reallocated. If reallocation fails, an error
2682  *	is returned and original skb is not changed.
2683  *
2684  *	The result is skb with writable area skb->head...skb->tail
2685  *	and at least @headroom of space at head.
2686  */
2687 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2688 {
2689 	return __skb_cow(skb, headroom, skb_cloned(skb));
2690 }
2691 
2692 /**
2693  *	skb_cow_head - skb_cow but only making the head writable
2694  *	@skb: buffer to cow
2695  *	@headroom: needed headroom
2696  *
2697  *	This function is identical to skb_cow except that we replace the
2698  *	skb_cloned check by skb_header_cloned.  It should be used when
2699  *	you only need to push on some header and do not need to modify
2700  *	the data.
2701  */
2702 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2703 {
2704 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2705 }
2706 
2707 /**
2708  *	skb_padto	- pad an skbuff up to a minimal size
2709  *	@skb: buffer to pad
2710  *	@len: minimal length
2711  *
2712  *	Pads up a buffer to ensure the trailing bytes exist and are
2713  *	blanked. If the buffer already contains sufficient data it
2714  *	is untouched. Otherwise it is extended. Returns zero on
2715  *	success. The skb is freed on error.
2716  */
2717 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2718 {
2719 	unsigned int size = skb->len;
2720 	if (likely(size >= len))
2721 		return 0;
2722 	return skb_pad(skb, len - size);
2723 }
2724 
2725 /**
2726  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2727  *	@skb: buffer to pad
2728  *	@len: minimal length
2729  *
2730  *	Pads up a buffer to ensure the trailing bytes exist and are
2731  *	blanked. If the buffer already contains sufficient data it
2732  *	is untouched. Otherwise it is extended. Returns zero on
2733  *	success. The skb is freed on error.
2734  */
2735 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2736 {
2737 	unsigned int size = skb->len;
2738 
2739 	if (unlikely(size < len)) {
2740 		len -= size;
2741 		if (skb_pad(skb, len))
2742 			return -ENOMEM;
2743 		__skb_put(skb, len);
2744 	}
2745 	return 0;
2746 }
2747 
2748 static inline int skb_add_data(struct sk_buff *skb,
2749 			       struct iov_iter *from, int copy)
2750 {
2751 	const int off = skb->len;
2752 
2753 	if (skb->ip_summed == CHECKSUM_NONE) {
2754 		__wsum csum = 0;
2755 		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2756 					    &csum, from) == copy) {
2757 			skb->csum = csum_block_add(skb->csum, csum, off);
2758 			return 0;
2759 		}
2760 	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2761 		return 0;
2762 
2763 	__skb_trim(skb, off);
2764 	return -EFAULT;
2765 }
2766 
2767 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2768 				    const struct page *page, int off)
2769 {
2770 	if (i) {
2771 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2772 
2773 		return page == skb_frag_page(frag) &&
2774 		       off == frag->page_offset + skb_frag_size(frag);
2775 	}
2776 	return false;
2777 }
2778 
2779 static inline int __skb_linearize(struct sk_buff *skb)
2780 {
2781 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2782 }
2783 
2784 /**
2785  *	skb_linearize - convert paged skb to linear one
2786  *	@skb: buffer to linarize
2787  *
2788  *	If there is no free memory -ENOMEM is returned, otherwise zero
2789  *	is returned and the old skb data released.
2790  */
2791 static inline int skb_linearize(struct sk_buff *skb)
2792 {
2793 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2794 }
2795 
2796 /**
2797  * skb_has_shared_frag - can any frag be overwritten
2798  * @skb: buffer to test
2799  *
2800  * Return true if the skb has at least one frag that might be modified
2801  * by an external entity (as in vmsplice()/sendfile())
2802  */
2803 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2804 {
2805 	return skb_is_nonlinear(skb) &&
2806 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2807 }
2808 
2809 /**
2810  *	skb_linearize_cow - make sure skb is linear and writable
2811  *	@skb: buffer to process
2812  *
2813  *	If there is no free memory -ENOMEM is returned, otherwise zero
2814  *	is returned and the old skb data released.
2815  */
2816 static inline int skb_linearize_cow(struct sk_buff *skb)
2817 {
2818 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2819 	       __skb_linearize(skb) : 0;
2820 }
2821 
2822 /**
2823  *	skb_postpull_rcsum - update checksum for received skb after pull
2824  *	@skb: buffer to update
2825  *	@start: start of data before pull
2826  *	@len: length of data pulled
2827  *
2828  *	After doing a pull on a received packet, you need to call this to
2829  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2830  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2831  */
2832 
2833 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2834 				      const void *start, unsigned int len)
2835 {
2836 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2837 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2838 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2839 		 skb_checksum_start_offset(skb) < 0)
2840 		skb->ip_summed = CHECKSUM_NONE;
2841 }
2842 
2843 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2844 
2845 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2846 				      const void *start, unsigned int len)
2847 {
2848 	/* For performing the reverse operation to skb_postpull_rcsum(),
2849 	 * we can instead of ...
2850 	 *
2851 	 *   skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2852 	 *
2853 	 * ... just use this equivalent version here to save a few
2854 	 * instructions. Feeding csum of 0 in csum_partial() and later
2855 	 * on adding skb->csum is equivalent to feed skb->csum in the
2856 	 * first place.
2857 	 */
2858 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2859 		skb->csum = csum_partial(start, len, skb->csum);
2860 }
2861 
2862 /**
2863  *	pskb_trim_rcsum - trim received skb and update checksum
2864  *	@skb: buffer to trim
2865  *	@len: new length
2866  *
2867  *	This is exactly the same as pskb_trim except that it ensures the
2868  *	checksum of received packets are still valid after the operation.
2869  */
2870 
2871 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2872 {
2873 	if (likely(len >= skb->len))
2874 		return 0;
2875 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2876 		skb->ip_summed = CHECKSUM_NONE;
2877 	return __pskb_trim(skb, len);
2878 }
2879 
2880 #define skb_queue_walk(queue, skb) \
2881 		for (skb = (queue)->next;					\
2882 		     skb != (struct sk_buff *)(queue);				\
2883 		     skb = skb->next)
2884 
2885 #define skb_queue_walk_safe(queue, skb, tmp)					\
2886 		for (skb = (queue)->next, tmp = skb->next;			\
2887 		     skb != (struct sk_buff *)(queue);				\
2888 		     skb = tmp, tmp = skb->next)
2889 
2890 #define skb_queue_walk_from(queue, skb)						\
2891 		for (; skb != (struct sk_buff *)(queue);			\
2892 		     skb = skb->next)
2893 
2894 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2895 		for (tmp = skb->next;						\
2896 		     skb != (struct sk_buff *)(queue);				\
2897 		     skb = tmp, tmp = skb->next)
2898 
2899 #define skb_queue_reverse_walk(queue, skb) \
2900 		for (skb = (queue)->prev;					\
2901 		     skb != (struct sk_buff *)(queue);				\
2902 		     skb = skb->prev)
2903 
2904 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2905 		for (skb = (queue)->prev, tmp = skb->prev;			\
2906 		     skb != (struct sk_buff *)(queue);				\
2907 		     skb = tmp, tmp = skb->prev)
2908 
2909 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2910 		for (tmp = skb->prev;						\
2911 		     skb != (struct sk_buff *)(queue);				\
2912 		     skb = tmp, tmp = skb->prev)
2913 
2914 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2915 {
2916 	return skb_shinfo(skb)->frag_list != NULL;
2917 }
2918 
2919 static inline void skb_frag_list_init(struct sk_buff *skb)
2920 {
2921 	skb_shinfo(skb)->frag_list = NULL;
2922 }
2923 
2924 #define skb_walk_frags(skb, iter)	\
2925 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2926 
2927 
2928 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2929 				const struct sk_buff *skb);
2930 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2931 					int *peeked, int *off, int *err,
2932 					struct sk_buff **last);
2933 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2934 				    int *peeked, int *off, int *err);
2935 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2936 				  int *err);
2937 unsigned int datagram_poll(struct file *file, struct socket *sock,
2938 			   struct poll_table_struct *wait);
2939 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2940 			   struct iov_iter *to, int size);
2941 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2942 					struct msghdr *msg, int size)
2943 {
2944 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2945 }
2946 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2947 				   struct msghdr *msg);
2948 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2949 				 struct iov_iter *from, int len);
2950 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2951 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2952 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2953 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2954 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2955 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2956 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2957 			      int len, __wsum csum);
2958 ssize_t skb_socket_splice(struct sock *sk,
2959 			  struct pipe_inode_info *pipe,
2960 			  struct splice_pipe_desc *spd);
2961 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2962 		    struct pipe_inode_info *pipe, unsigned int len,
2963 		    unsigned int flags,
2964 		    ssize_t (*splice_cb)(struct sock *,
2965 					 struct pipe_inode_info *,
2966 					 struct splice_pipe_desc *));
2967 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2968 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2969 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2970 		 int len, int hlen);
2971 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2972 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2973 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2974 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2975 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2976 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2977 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2978 int skb_vlan_pop(struct sk_buff *skb);
2979 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2980 
2981 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2982 {
2983 	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2984 }
2985 
2986 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2987 {
2988 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2989 }
2990 
2991 struct skb_checksum_ops {
2992 	__wsum (*update)(const void *mem, int len, __wsum wsum);
2993 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2994 };
2995 
2996 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2997 		      __wsum csum, const struct skb_checksum_ops *ops);
2998 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2999 		    __wsum csum);
3000 
3001 static inline void * __must_check
3002 __skb_header_pointer(const struct sk_buff *skb, int offset,
3003 		     int len, void *data, int hlen, void *buffer)
3004 {
3005 	if (hlen - offset >= len)
3006 		return data + offset;
3007 
3008 	if (!skb ||
3009 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3010 		return NULL;
3011 
3012 	return buffer;
3013 }
3014 
3015 static inline void * __must_check
3016 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3017 {
3018 	return __skb_header_pointer(skb, offset, len, skb->data,
3019 				    skb_headlen(skb), buffer);
3020 }
3021 
3022 /**
3023  *	skb_needs_linearize - check if we need to linearize a given skb
3024  *			      depending on the given device features.
3025  *	@skb: socket buffer to check
3026  *	@features: net device features
3027  *
3028  *	Returns true if either:
3029  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3030  *	2. skb is fragmented and the device does not support SG.
3031  */
3032 static inline bool skb_needs_linearize(struct sk_buff *skb,
3033 				       netdev_features_t features)
3034 {
3035 	return skb_is_nonlinear(skb) &&
3036 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3037 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3038 }
3039 
3040 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3041 					     void *to,
3042 					     const unsigned int len)
3043 {
3044 	memcpy(to, skb->data, len);
3045 }
3046 
3047 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3048 						    const int offset, void *to,
3049 						    const unsigned int len)
3050 {
3051 	memcpy(to, skb->data + offset, len);
3052 }
3053 
3054 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3055 					   const void *from,
3056 					   const unsigned int len)
3057 {
3058 	memcpy(skb->data, from, len);
3059 }
3060 
3061 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3062 						  const int offset,
3063 						  const void *from,
3064 						  const unsigned int len)
3065 {
3066 	memcpy(skb->data + offset, from, len);
3067 }
3068 
3069 void skb_init(void);
3070 
3071 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3072 {
3073 	return skb->tstamp;
3074 }
3075 
3076 /**
3077  *	skb_get_timestamp - get timestamp from a skb
3078  *	@skb: skb to get stamp from
3079  *	@stamp: pointer to struct timeval to store stamp in
3080  *
3081  *	Timestamps are stored in the skb as offsets to a base timestamp.
3082  *	This function converts the offset back to a struct timeval and stores
3083  *	it in stamp.
3084  */
3085 static inline void skb_get_timestamp(const struct sk_buff *skb,
3086 				     struct timeval *stamp)
3087 {
3088 	*stamp = ktime_to_timeval(skb->tstamp);
3089 }
3090 
3091 static inline void skb_get_timestampns(const struct sk_buff *skb,
3092 				       struct timespec *stamp)
3093 {
3094 	*stamp = ktime_to_timespec(skb->tstamp);
3095 }
3096 
3097 static inline void __net_timestamp(struct sk_buff *skb)
3098 {
3099 	skb->tstamp = ktime_get_real();
3100 }
3101 
3102 static inline ktime_t net_timedelta(ktime_t t)
3103 {
3104 	return ktime_sub(ktime_get_real(), t);
3105 }
3106 
3107 static inline ktime_t net_invalid_timestamp(void)
3108 {
3109 	return ktime_set(0, 0);
3110 }
3111 
3112 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3113 
3114 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3115 
3116 void skb_clone_tx_timestamp(struct sk_buff *skb);
3117 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3118 
3119 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3120 
3121 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3122 {
3123 }
3124 
3125 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3126 {
3127 	return false;
3128 }
3129 
3130 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3131 
3132 /**
3133  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3134  *
3135  * PHY drivers may accept clones of transmitted packets for
3136  * timestamping via their phy_driver.txtstamp method. These drivers
3137  * must call this function to return the skb back to the stack with a
3138  * timestamp.
3139  *
3140  * @skb: clone of the the original outgoing packet
3141  * @hwtstamps: hardware time stamps
3142  *
3143  */
3144 void skb_complete_tx_timestamp(struct sk_buff *skb,
3145 			       struct skb_shared_hwtstamps *hwtstamps);
3146 
3147 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3148 		     struct skb_shared_hwtstamps *hwtstamps,
3149 		     struct sock *sk, int tstype);
3150 
3151 /**
3152  * skb_tstamp_tx - queue clone of skb with send time stamps
3153  * @orig_skb:	the original outgoing packet
3154  * @hwtstamps:	hardware time stamps, may be NULL if not available
3155  *
3156  * If the skb has a socket associated, then this function clones the
3157  * skb (thus sharing the actual data and optional structures), stores
3158  * the optional hardware time stamping information (if non NULL) or
3159  * generates a software time stamp (otherwise), then queues the clone
3160  * to the error queue of the socket.  Errors are silently ignored.
3161  */
3162 void skb_tstamp_tx(struct sk_buff *orig_skb,
3163 		   struct skb_shared_hwtstamps *hwtstamps);
3164 
3165 static inline void sw_tx_timestamp(struct sk_buff *skb)
3166 {
3167 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3168 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3169 		skb_tstamp_tx(skb, NULL);
3170 }
3171 
3172 /**
3173  * skb_tx_timestamp() - Driver hook for transmit timestamping
3174  *
3175  * Ethernet MAC Drivers should call this function in their hard_xmit()
3176  * function immediately before giving the sk_buff to the MAC hardware.
3177  *
3178  * Specifically, one should make absolutely sure that this function is
3179  * called before TX completion of this packet can trigger.  Otherwise
3180  * the packet could potentially already be freed.
3181  *
3182  * @skb: A socket buffer.
3183  */
3184 static inline void skb_tx_timestamp(struct sk_buff *skb)
3185 {
3186 	skb_clone_tx_timestamp(skb);
3187 	sw_tx_timestamp(skb);
3188 }
3189 
3190 /**
3191  * skb_complete_wifi_ack - deliver skb with wifi status
3192  *
3193  * @skb: the original outgoing packet
3194  * @acked: ack status
3195  *
3196  */
3197 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3198 
3199 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3200 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3201 
3202 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3203 {
3204 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3205 		skb->csum_valid ||
3206 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3207 		 skb_checksum_start_offset(skb) >= 0));
3208 }
3209 
3210 /**
3211  *	skb_checksum_complete - Calculate checksum of an entire packet
3212  *	@skb: packet to process
3213  *
3214  *	This function calculates the checksum over the entire packet plus
3215  *	the value of skb->csum.  The latter can be used to supply the
3216  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3217  *	checksum.
3218  *
3219  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3220  *	this function can be used to verify that checksum on received
3221  *	packets.  In that case the function should return zero if the
3222  *	checksum is correct.  In particular, this function will return zero
3223  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3224  *	hardware has already verified the correctness of the checksum.
3225  */
3226 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3227 {
3228 	return skb_csum_unnecessary(skb) ?
3229 	       0 : __skb_checksum_complete(skb);
3230 }
3231 
3232 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3233 {
3234 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3235 		if (skb->csum_level == 0)
3236 			skb->ip_summed = CHECKSUM_NONE;
3237 		else
3238 			skb->csum_level--;
3239 	}
3240 }
3241 
3242 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3243 {
3244 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3245 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3246 			skb->csum_level++;
3247 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3248 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3249 		skb->csum_level = 0;
3250 	}
3251 }
3252 
3253 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3254 {
3255 	/* Mark current checksum as bad (typically called from GRO
3256 	 * path). In the case that ip_summed is CHECKSUM_NONE
3257 	 * this must be the first checksum encountered in the packet.
3258 	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3259 	 * checksum after the last one validated. For UDP, a zero
3260 	 * checksum can not be marked as bad.
3261 	 */
3262 
3263 	if (skb->ip_summed == CHECKSUM_NONE ||
3264 	    skb->ip_summed == CHECKSUM_UNNECESSARY)
3265 		skb->csum_bad = 1;
3266 }
3267 
3268 /* Check if we need to perform checksum complete validation.
3269  *
3270  * Returns true if checksum complete is needed, false otherwise
3271  * (either checksum is unnecessary or zero checksum is allowed).
3272  */
3273 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3274 						  bool zero_okay,
3275 						  __sum16 check)
3276 {
3277 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3278 		skb->csum_valid = 1;
3279 		__skb_decr_checksum_unnecessary(skb);
3280 		return false;
3281 	}
3282 
3283 	return true;
3284 }
3285 
3286 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3287  * in checksum_init.
3288  */
3289 #define CHECKSUM_BREAK 76
3290 
3291 /* Unset checksum-complete
3292  *
3293  * Unset checksum complete can be done when packet is being modified
3294  * (uncompressed for instance) and checksum-complete value is
3295  * invalidated.
3296  */
3297 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3298 {
3299 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3300 		skb->ip_summed = CHECKSUM_NONE;
3301 }
3302 
3303 /* Validate (init) checksum based on checksum complete.
3304  *
3305  * Return values:
3306  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3307  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3308  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3309  *   non-zero: value of invalid checksum
3310  *
3311  */
3312 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3313 						       bool complete,
3314 						       __wsum psum)
3315 {
3316 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3317 		if (!csum_fold(csum_add(psum, skb->csum))) {
3318 			skb->csum_valid = 1;
3319 			return 0;
3320 		}
3321 	} else if (skb->csum_bad) {
3322 		/* ip_summed == CHECKSUM_NONE in this case */
3323 		return (__force __sum16)1;
3324 	}
3325 
3326 	skb->csum = psum;
3327 
3328 	if (complete || skb->len <= CHECKSUM_BREAK) {
3329 		__sum16 csum;
3330 
3331 		csum = __skb_checksum_complete(skb);
3332 		skb->csum_valid = !csum;
3333 		return csum;
3334 	}
3335 
3336 	return 0;
3337 }
3338 
3339 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3340 {
3341 	return 0;
3342 }
3343 
3344 /* Perform checksum validate (init). Note that this is a macro since we only
3345  * want to calculate the pseudo header which is an input function if necessary.
3346  * First we try to validate without any computation (checksum unnecessary) and
3347  * then calculate based on checksum complete calling the function to compute
3348  * pseudo header.
3349  *
3350  * Return values:
3351  *   0: checksum is validated or try to in skb_checksum_complete
3352  *   non-zero: value of invalid checksum
3353  */
3354 #define __skb_checksum_validate(skb, proto, complete,			\
3355 				zero_okay, check, compute_pseudo)	\
3356 ({									\
3357 	__sum16 __ret = 0;						\
3358 	skb->csum_valid = 0;						\
3359 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3360 		__ret = __skb_checksum_validate_complete(skb,		\
3361 				complete, compute_pseudo(skb, proto));	\
3362 	__ret;								\
3363 })
3364 
3365 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3366 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3367 
3368 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3369 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3370 
3371 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3372 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3373 
3374 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3375 					 compute_pseudo)		\
3376 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3377 
3378 #define skb_checksum_simple_validate(skb)				\
3379 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3380 
3381 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3382 {
3383 	return (skb->ip_summed == CHECKSUM_NONE &&
3384 		skb->csum_valid && !skb->csum_bad);
3385 }
3386 
3387 static inline void __skb_checksum_convert(struct sk_buff *skb,
3388 					  __sum16 check, __wsum pseudo)
3389 {
3390 	skb->csum = ~pseudo;
3391 	skb->ip_summed = CHECKSUM_COMPLETE;
3392 }
3393 
3394 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3395 do {									\
3396 	if (__skb_checksum_convert_check(skb))				\
3397 		__skb_checksum_convert(skb, check,			\
3398 				       compute_pseudo(skb, proto));	\
3399 } while (0)
3400 
3401 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3402 					      u16 start, u16 offset)
3403 {
3404 	skb->ip_summed = CHECKSUM_PARTIAL;
3405 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3406 	skb->csum_offset = offset - start;
3407 }
3408 
3409 /* Update skbuf and packet to reflect the remote checksum offload operation.
3410  * When called, ptr indicates the starting point for skb->csum when
3411  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3412  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3413  */
3414 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3415 				       int start, int offset, bool nopartial)
3416 {
3417 	__wsum delta;
3418 
3419 	if (!nopartial) {
3420 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3421 		return;
3422 	}
3423 
3424 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3425 		__skb_checksum_complete(skb);
3426 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3427 	}
3428 
3429 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3430 
3431 	/* Adjust skb->csum since we changed the packet */
3432 	skb->csum = csum_add(skb->csum, delta);
3433 }
3434 
3435 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3436 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3437 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3438 {
3439 	if (nfct && atomic_dec_and_test(&nfct->use))
3440 		nf_conntrack_destroy(nfct);
3441 }
3442 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3443 {
3444 	if (nfct)
3445 		atomic_inc(&nfct->use);
3446 }
3447 #endif
3448 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3449 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3450 {
3451 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3452 		kfree(nf_bridge);
3453 }
3454 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3455 {
3456 	if (nf_bridge)
3457 		atomic_inc(&nf_bridge->use);
3458 }
3459 #endif /* CONFIG_BRIDGE_NETFILTER */
3460 static inline void nf_reset(struct sk_buff *skb)
3461 {
3462 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3463 	nf_conntrack_put(skb->nfct);
3464 	skb->nfct = NULL;
3465 #endif
3466 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3467 	nf_bridge_put(skb->nf_bridge);
3468 	skb->nf_bridge = NULL;
3469 #endif
3470 }
3471 
3472 static inline void nf_reset_trace(struct sk_buff *skb)
3473 {
3474 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3475 	skb->nf_trace = 0;
3476 #endif
3477 }
3478 
3479 /* Note: This doesn't put any conntrack and bridge info in dst. */
3480 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3481 			     bool copy)
3482 {
3483 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3484 	dst->nfct = src->nfct;
3485 	nf_conntrack_get(src->nfct);
3486 	if (copy)
3487 		dst->nfctinfo = src->nfctinfo;
3488 #endif
3489 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3490 	dst->nf_bridge  = src->nf_bridge;
3491 	nf_bridge_get(src->nf_bridge);
3492 #endif
3493 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3494 	if (copy)
3495 		dst->nf_trace = src->nf_trace;
3496 #endif
3497 }
3498 
3499 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3500 {
3501 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3502 	nf_conntrack_put(dst->nfct);
3503 #endif
3504 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3505 	nf_bridge_put(dst->nf_bridge);
3506 #endif
3507 	__nf_copy(dst, src, true);
3508 }
3509 
3510 #ifdef CONFIG_NETWORK_SECMARK
3511 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3512 {
3513 	to->secmark = from->secmark;
3514 }
3515 
3516 static inline void skb_init_secmark(struct sk_buff *skb)
3517 {
3518 	skb->secmark = 0;
3519 }
3520 #else
3521 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3522 { }
3523 
3524 static inline void skb_init_secmark(struct sk_buff *skb)
3525 { }
3526 #endif
3527 
3528 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3529 {
3530 	return !skb->destructor &&
3531 #if IS_ENABLED(CONFIG_XFRM)
3532 		!skb->sp &&
3533 #endif
3534 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3535 		!skb->nfct &&
3536 #endif
3537 		!skb->_skb_refdst &&
3538 		!skb_has_frag_list(skb);
3539 }
3540 
3541 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3542 {
3543 	skb->queue_mapping = queue_mapping;
3544 }
3545 
3546 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3547 {
3548 	return skb->queue_mapping;
3549 }
3550 
3551 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3552 {
3553 	to->queue_mapping = from->queue_mapping;
3554 }
3555 
3556 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3557 {
3558 	skb->queue_mapping = rx_queue + 1;
3559 }
3560 
3561 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3562 {
3563 	return skb->queue_mapping - 1;
3564 }
3565 
3566 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3567 {
3568 	return skb->queue_mapping != 0;
3569 }
3570 
3571 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3572 {
3573 #ifdef CONFIG_XFRM
3574 	return skb->sp;
3575 #else
3576 	return NULL;
3577 #endif
3578 }
3579 
3580 /* Keeps track of mac header offset relative to skb->head.
3581  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3582  * For non-tunnel skb it points to skb_mac_header() and for
3583  * tunnel skb it points to outer mac header.
3584  * Keeps track of level of encapsulation of network headers.
3585  */
3586 struct skb_gso_cb {
3587 	int	mac_offset;
3588 	int	encap_level;
3589 	__wsum	csum;
3590 	__u16	csum_start;
3591 };
3592 #define SKB_SGO_CB_OFFSET	32
3593 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3594 
3595 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3596 {
3597 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3598 		SKB_GSO_CB(inner_skb)->mac_offset;
3599 }
3600 
3601 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3602 {
3603 	int new_headroom, headroom;
3604 	int ret;
3605 
3606 	headroom = skb_headroom(skb);
3607 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3608 	if (ret)
3609 		return ret;
3610 
3611 	new_headroom = skb_headroom(skb);
3612 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3613 	return 0;
3614 }
3615 
3616 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3617 {
3618 	/* Do not update partial checksums if remote checksum is enabled. */
3619 	if (skb->remcsum_offload)
3620 		return;
3621 
3622 	SKB_GSO_CB(skb)->csum = res;
3623 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3624 }
3625 
3626 /* Compute the checksum for a gso segment. First compute the checksum value
3627  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3628  * then add in skb->csum (checksum from csum_start to end of packet).
3629  * skb->csum and csum_start are then updated to reflect the checksum of the
3630  * resultant packet starting from the transport header-- the resultant checksum
3631  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3632  * header.
3633  */
3634 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3635 {
3636 	unsigned char *csum_start = skb_transport_header(skb);
3637 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3638 	__wsum partial = SKB_GSO_CB(skb)->csum;
3639 
3640 	SKB_GSO_CB(skb)->csum = res;
3641 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3642 
3643 	return csum_fold(csum_partial(csum_start, plen, partial));
3644 }
3645 
3646 static inline bool skb_is_gso(const struct sk_buff *skb)
3647 {
3648 	return skb_shinfo(skb)->gso_size;
3649 }
3650 
3651 /* Note: Should be called only if skb_is_gso(skb) is true */
3652 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3653 {
3654 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3655 }
3656 
3657 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3658 
3659 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3660 {
3661 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3662 	 * wanted then gso_type will be set. */
3663 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3664 
3665 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3666 	    unlikely(shinfo->gso_type == 0)) {
3667 		__skb_warn_lro_forwarding(skb);
3668 		return true;
3669 	}
3670 	return false;
3671 }
3672 
3673 static inline void skb_forward_csum(struct sk_buff *skb)
3674 {
3675 	/* Unfortunately we don't support this one.  Any brave souls? */
3676 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3677 		skb->ip_summed = CHECKSUM_NONE;
3678 }
3679 
3680 /**
3681  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3682  * @skb: skb to check
3683  *
3684  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3685  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3686  * use this helper, to document places where we make this assertion.
3687  */
3688 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3689 {
3690 #ifdef DEBUG
3691 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3692 #endif
3693 }
3694 
3695 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3696 
3697 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3698 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3699 				     unsigned int transport_len,
3700 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3701 
3702 /**
3703  * skb_head_is_locked - Determine if the skb->head is locked down
3704  * @skb: skb to check
3705  *
3706  * The head on skbs build around a head frag can be removed if they are
3707  * not cloned.  This function returns true if the skb head is locked down
3708  * due to either being allocated via kmalloc, or by being a clone with
3709  * multiple references to the head.
3710  */
3711 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3712 {
3713 	return !skb->head_frag || skb_cloned(skb);
3714 }
3715 
3716 /**
3717  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3718  *
3719  * @skb: GSO skb
3720  *
3721  * skb_gso_network_seglen is used to determine the real size of the
3722  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3723  *
3724  * The MAC/L2 header is not accounted for.
3725  */
3726 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3727 {
3728 	unsigned int hdr_len = skb_transport_header(skb) -
3729 			       skb_network_header(skb);
3730 	return hdr_len + skb_gso_transport_seglen(skb);
3731 }
3732 
3733 /* Local Checksum Offload.
3734  * Compute outer checksum based on the assumption that the
3735  * inner checksum will be offloaded later.
3736  * See Documentation/networking/checksum-offloads.txt for
3737  * explanation of how this works.
3738  * Fill in outer checksum adjustment (e.g. with sum of outer
3739  * pseudo-header) before calling.
3740  * Also ensure that inner checksum is in linear data area.
3741  */
3742 static inline __wsum lco_csum(struct sk_buff *skb)
3743 {
3744 	unsigned char *csum_start = skb_checksum_start(skb);
3745 	unsigned char *l4_hdr = skb_transport_header(skb);
3746 	__wsum partial;
3747 
3748 	/* Start with complement of inner checksum adjustment */
3749 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3750 						    skb->csum_offset));
3751 
3752 	/* Add in checksum of our headers (incl. outer checksum
3753 	 * adjustment filled in by caller) and return result.
3754 	 */
3755 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3756 }
3757 
3758 #endif	/* __KERNEL__ */
3759 #endif	/* _LINUX_SKBUFF_H */
3760