xref: /linux-6.15/include/linux/skbuff.h (revision fbcdaa19)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv6|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250 
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282  * ovs recirc_id. It will be set to the current chain by tc
283  * and read by ovs to recirc_id.
284  */
285 struct tc_skb_ext {
286 	__u32 chain;
287 	__u16 mru;
288 };
289 #endif
290 
291 struct sk_buff_head {
292 	/* These two members must be first. */
293 	struct sk_buff	*next;
294 	struct sk_buff	*prev;
295 
296 	__u32		qlen;
297 	spinlock_t	lock;
298 };
299 
300 struct sk_buff;
301 
302 /* To allow 64K frame to be packed as single skb without frag_list we
303  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304  * buffers which do not start on a page boundary.
305  *
306  * Since GRO uses frags we allocate at least 16 regardless of page
307  * size.
308  */
309 #if (65536/PAGE_SIZE + 1) < 16
310 #define MAX_SKB_FRAGS 16UL
311 #else
312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313 #endif
314 extern int sysctl_max_skb_frags;
315 
316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317  * segment using its current segmentation instead.
318  */
319 #define GSO_BY_FRAGS	0xFFFF
320 
321 typedef struct bio_vec skb_frag_t;
322 
323 /**
324  * skb_frag_size() - Returns the size of a skb fragment
325  * @frag: skb fragment
326  */
327 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328 {
329 	return frag->bv_len;
330 }
331 
332 /**
333  * skb_frag_size_set() - Sets the size of a skb fragment
334  * @frag: skb fragment
335  * @size: size of fragment
336  */
337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 {
339 	frag->bv_len = size;
340 }
341 
342 /**
343  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344  * @frag: skb fragment
345  * @delta: value to add
346  */
347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348 {
349 	frag->bv_len += delta;
350 }
351 
352 /**
353  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354  * @frag: skb fragment
355  * @delta: value to subtract
356  */
357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358 {
359 	frag->bv_len -= delta;
360 }
361 
362 /**
363  * skb_frag_must_loop - Test if %p is a high memory page
364  * @p: fragment's page
365  */
366 static inline bool skb_frag_must_loop(struct page *p)
367 {
368 #if defined(CONFIG_HIGHMEM)
369 	if (PageHighMem(p))
370 		return true;
371 #endif
372 	return false;
373 }
374 
375 /**
376  *	skb_frag_foreach_page - loop over pages in a fragment
377  *
378  *	@f:		skb frag to operate on
379  *	@f_off:		offset from start of f->bv_page
380  *	@f_len:		length from f_off to loop over
381  *	@p:		(temp var) current page
382  *	@p_off:		(temp var) offset from start of current page,
383  *	                           non-zero only on first page.
384  *	@p_len:		(temp var) length in current page,
385  *				   < PAGE_SIZE only on first and last page.
386  *	@copied:	(temp var) length so far, excluding current p_len.
387  *
388  *	A fragment can hold a compound page, in which case per-page
389  *	operations, notably kmap_atomic, must be called for each
390  *	regular page.
391  */
392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
393 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
394 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
395 	     p_len = skb_frag_must_loop(p) ?				\
396 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
397 	     copied = 0;						\
398 	     copied < f_len;						\
399 	     copied += p_len, p++, p_off = 0,				\
400 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
401 
402 #define HAVE_HW_TIME_STAMP
403 
404 /**
405  * struct skb_shared_hwtstamps - hardware time stamps
406  * @hwtstamp:	hardware time stamp transformed into duration
407  *		since arbitrary point in time
408  *
409  * Software time stamps generated by ktime_get_real() are stored in
410  * skb->tstamp.
411  *
412  * hwtstamps can only be compared against other hwtstamps from
413  * the same device.
414  *
415  * This structure is attached to packets as part of the
416  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417  */
418 struct skb_shared_hwtstamps {
419 	ktime_t	hwtstamp;
420 };
421 
422 /* Definitions for tx_flags in struct skb_shared_info */
423 enum {
424 	/* generate hardware time stamp */
425 	SKBTX_HW_TSTAMP = 1 << 0,
426 
427 	/* generate software time stamp when queueing packet to NIC */
428 	SKBTX_SW_TSTAMP = 1 << 1,
429 
430 	/* device driver is going to provide hardware time stamp */
431 	SKBTX_IN_PROGRESS = 1 << 2,
432 
433 	/* device driver supports TX zero-copy buffers */
434 	SKBTX_DEV_ZEROCOPY = 1 << 3,
435 
436 	/* generate wifi status information (where possible) */
437 	SKBTX_WIFI_STATUS = 1 << 4,
438 
439 	/* This indicates at least one fragment might be overwritten
440 	 * (as in vmsplice(), sendfile() ...)
441 	 * If we need to compute a TX checksum, we'll need to copy
442 	 * all frags to avoid possible bad checksum
443 	 */
444 	SKBTX_SHARED_FRAG = 1 << 5,
445 
446 	/* generate software time stamp when entering packet scheduling */
447 	SKBTX_SCHED_TSTAMP = 1 << 6,
448 };
449 
450 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
452 				 SKBTX_SCHED_TSTAMP)
453 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454 
455 /*
456  * The callback notifies userspace to release buffers when skb DMA is done in
457  * lower device, the skb last reference should be 0 when calling this.
458  * The zerocopy_success argument is true if zero copy transmit occurred,
459  * false on data copy or out of memory error caused by data copy attempt.
460  * The ctx field is used to track device context.
461  * The desc field is used to track userspace buffer index.
462  */
463 struct ubuf_info {
464 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
465 	union {
466 		struct {
467 			unsigned long desc;
468 			void *ctx;
469 		};
470 		struct {
471 			u32 id;
472 			u16 len;
473 			u16 zerocopy:1;
474 			u32 bytelen;
475 		};
476 	};
477 	refcount_t refcnt;
478 
479 	struct mmpin {
480 		struct user_struct *user;
481 		unsigned int num_pg;
482 	} mmp;
483 };
484 
485 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486 
487 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488 void mm_unaccount_pinned_pages(struct mmpin *mmp);
489 
490 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492 					struct ubuf_info *uarg);
493 
494 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495 {
496 	refcount_inc(&uarg->refcnt);
497 }
498 
499 void sock_zerocopy_put(struct ubuf_info *uarg);
500 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501 
502 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503 
504 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506 			     struct msghdr *msg, int len,
507 			     struct ubuf_info *uarg);
508 
509 /* This data is invariant across clones and lives at
510  * the end of the header data, ie. at skb->end.
511  */
512 struct skb_shared_info {
513 	__u8		__unused;
514 	__u8		meta_len;
515 	__u8		nr_frags;
516 	__u8		tx_flags;
517 	unsigned short	gso_size;
518 	/* Warning: this field is not always filled in (UFO)! */
519 	unsigned short	gso_segs;
520 	struct sk_buff	*frag_list;
521 	struct skb_shared_hwtstamps hwtstamps;
522 	unsigned int	gso_type;
523 	u32		tskey;
524 
525 	/*
526 	 * Warning : all fields before dataref are cleared in __alloc_skb()
527 	 */
528 	atomic_t	dataref;
529 
530 	/* Intermediate layers must ensure that destructor_arg
531 	 * remains valid until skb destructor */
532 	void *		destructor_arg;
533 
534 	/* must be last field, see pskb_expand_head() */
535 	skb_frag_t	frags[MAX_SKB_FRAGS];
536 };
537 
538 /* We divide dataref into two halves.  The higher 16 bits hold references
539  * to the payload part of skb->data.  The lower 16 bits hold references to
540  * the entire skb->data.  A clone of a headerless skb holds the length of
541  * the header in skb->hdr_len.
542  *
543  * All users must obey the rule that the skb->data reference count must be
544  * greater than or equal to the payload reference count.
545  *
546  * Holding a reference to the payload part means that the user does not
547  * care about modifications to the header part of skb->data.
548  */
549 #define SKB_DATAREF_SHIFT 16
550 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551 
552 
553 enum {
554 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
555 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
556 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
557 };
558 
559 enum {
560 	SKB_GSO_TCPV4 = 1 << 0,
561 
562 	/* This indicates the skb is from an untrusted source. */
563 	SKB_GSO_DODGY = 1 << 1,
564 
565 	/* This indicates the tcp segment has CWR set. */
566 	SKB_GSO_TCP_ECN = 1 << 2,
567 
568 	SKB_GSO_TCP_FIXEDID = 1 << 3,
569 
570 	SKB_GSO_TCPV6 = 1 << 4,
571 
572 	SKB_GSO_FCOE = 1 << 5,
573 
574 	SKB_GSO_GRE = 1 << 6,
575 
576 	SKB_GSO_GRE_CSUM = 1 << 7,
577 
578 	SKB_GSO_IPXIP4 = 1 << 8,
579 
580 	SKB_GSO_IPXIP6 = 1 << 9,
581 
582 	SKB_GSO_UDP_TUNNEL = 1 << 10,
583 
584 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585 
586 	SKB_GSO_PARTIAL = 1 << 12,
587 
588 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589 
590 	SKB_GSO_SCTP = 1 << 14,
591 
592 	SKB_GSO_ESP = 1 << 15,
593 
594 	SKB_GSO_UDP = 1 << 16,
595 
596 	SKB_GSO_UDP_L4 = 1 << 17,
597 
598 	SKB_GSO_FRAGLIST = 1 << 18,
599 };
600 
601 #if BITS_PER_LONG > 32
602 #define NET_SKBUFF_DATA_USES_OFFSET 1
603 #endif
604 
605 #ifdef NET_SKBUFF_DATA_USES_OFFSET
606 typedef unsigned int sk_buff_data_t;
607 #else
608 typedef unsigned char *sk_buff_data_t;
609 #endif
610 
611 /**
612  *	struct sk_buff - socket buffer
613  *	@next: Next buffer in list
614  *	@prev: Previous buffer in list
615  *	@tstamp: Time we arrived/left
616  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617  *		for retransmit timer
618  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
619  *	@list: queue head
620  *	@sk: Socket we are owned by
621  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622  *		fragmentation management
623  *	@dev: Device we arrived on/are leaving by
624  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625  *	@cb: Control buffer. Free for use by every layer. Put private vars here
626  *	@_skb_refdst: destination entry (with norefcount bit)
627  *	@sp: the security path, used for xfrm
628  *	@len: Length of actual data
629  *	@data_len: Data length
630  *	@mac_len: Length of link layer header
631  *	@hdr_len: writable header length of cloned skb
632  *	@csum: Checksum (must include start/offset pair)
633  *	@csum_start: Offset from skb->head where checksumming should start
634  *	@csum_offset: Offset from csum_start where checksum should be stored
635  *	@priority: Packet queueing priority
636  *	@ignore_df: allow local fragmentation
637  *	@cloned: Head may be cloned (check refcnt to be sure)
638  *	@ip_summed: Driver fed us an IP checksum
639  *	@nohdr: Payload reference only, must not modify header
640  *	@pkt_type: Packet class
641  *	@fclone: skbuff clone status
642  *	@ipvs_property: skbuff is owned by ipvs
643  *	@inner_protocol_type: whether the inner protocol is
644  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645  *	@remcsum_offload: remote checksum offload is enabled
646  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
647  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648  *	@tc_skip_classify: do not classify packet. set by IFB device
649  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
650  *	@redirected: packet was redirected by packet classifier
651  *	@from_ingress: packet was redirected from the ingress path
652  *	@peeked: this packet has been seen already, so stats have been
653  *		done for it, don't do them again
654  *	@nf_trace: netfilter packet trace flag
655  *	@protocol: Packet protocol from driver
656  *	@destructor: Destruct function
657  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658  *	@_nfct: Associated connection, if any (with nfctinfo bits)
659  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660  *	@skb_iif: ifindex of device we arrived on
661  *	@tc_index: Traffic control index
662  *	@hash: the packet hash
663  *	@queue_mapping: Queue mapping for multiqueue devices
664  *	@head_frag: skb was allocated from page fragments,
665  *		not allocated by kmalloc() or vmalloc().
666  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667  *	@active_extensions: active extensions (skb_ext_id types)
668  *	@ndisc_nodetype: router type (from link layer)
669  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
670  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
671  *		ports.
672  *	@sw_hash: indicates hash was computed in software stack
673  *	@wifi_acked_valid: wifi_acked was set
674  *	@wifi_acked: whether frame was acked on wifi or not
675  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
676  *	@encapsulation: indicates the inner headers in the skbuff are valid
677  *	@encap_hdr_csum: software checksum is needed
678  *	@csum_valid: checksum is already valid
679  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680  *	@csum_complete_sw: checksum was completed by software
681  *	@csum_level: indicates the number of consecutive checksums found in
682  *		the packet minus one that have been verified as
683  *		CHECKSUM_UNNECESSARY (max 3)
684  *	@dst_pending_confirm: need to confirm neighbour
685  *	@decrypted: Decrypted SKB
686  *	@napi_id: id of the NAPI struct this skb came from
687  *	@sender_cpu: (aka @napi_id) source CPU in XPS
688  *	@secmark: security marking
689  *	@mark: Generic packet mark
690  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
691  *		at the tail of an sk_buff
692  *	@vlan_present: VLAN tag is present
693  *	@vlan_proto: vlan encapsulation protocol
694  *	@vlan_tci: vlan tag control information
695  *	@inner_protocol: Protocol (encapsulation)
696  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
697  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
698  *	@inner_transport_header: Inner transport layer header (encapsulation)
699  *	@inner_network_header: Network layer header (encapsulation)
700  *	@inner_mac_header: Link layer header (encapsulation)
701  *	@transport_header: Transport layer header
702  *	@network_header: Network layer header
703  *	@mac_header: Link layer header
704  *	@kcov_handle: KCOV remote handle for remote coverage collection
705  *	@tail: Tail pointer
706  *	@end: End pointer
707  *	@head: Head of buffer
708  *	@data: Data head pointer
709  *	@truesize: Buffer size
710  *	@users: User count - see {datagram,tcp}.c
711  *	@extensions: allocated extensions, valid if active_extensions is nonzero
712  */
713 
714 struct sk_buff {
715 	union {
716 		struct {
717 			/* These two members must be first. */
718 			struct sk_buff		*next;
719 			struct sk_buff		*prev;
720 
721 			union {
722 				struct net_device	*dev;
723 				/* Some protocols might use this space to store information,
724 				 * while device pointer would be NULL.
725 				 * UDP receive path is one user.
726 				 */
727 				unsigned long		dev_scratch;
728 			};
729 		};
730 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
731 		struct list_head	list;
732 	};
733 
734 	union {
735 		struct sock		*sk;
736 		int			ip_defrag_offset;
737 	};
738 
739 	union {
740 		ktime_t		tstamp;
741 		u64		skb_mstamp_ns; /* earliest departure time */
742 	};
743 	/*
744 	 * This is the control buffer. It is free to use for every
745 	 * layer. Please put your private variables there. If you
746 	 * want to keep them across layers you have to do a skb_clone()
747 	 * first. This is owned by whoever has the skb queued ATM.
748 	 */
749 	char			cb[48] __aligned(8);
750 
751 	union {
752 		struct {
753 			unsigned long	_skb_refdst;
754 			void		(*destructor)(struct sk_buff *skb);
755 		};
756 		struct list_head	tcp_tsorted_anchor;
757 	};
758 
759 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
760 	unsigned long		 _nfct;
761 #endif
762 	unsigned int		len,
763 				data_len;
764 	__u16			mac_len,
765 				hdr_len;
766 
767 	/* Following fields are _not_ copied in __copy_skb_header()
768 	 * Note that queue_mapping is here mostly to fill a hole.
769 	 */
770 	__u16			queue_mapping;
771 
772 /* if you move cloned around you also must adapt those constants */
773 #ifdef __BIG_ENDIAN_BITFIELD
774 #define CLONED_MASK	(1 << 7)
775 #else
776 #define CLONED_MASK	1
777 #endif
778 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
779 
780 	/* private: */
781 	__u8			__cloned_offset[0];
782 	/* public: */
783 	__u8			cloned:1,
784 				nohdr:1,
785 				fclone:2,
786 				peeked:1,
787 				head_frag:1,
788 				pfmemalloc:1;
789 #ifdef CONFIG_SKB_EXTENSIONS
790 	__u8			active_extensions;
791 #endif
792 	/* fields enclosed in headers_start/headers_end are copied
793 	 * using a single memcpy() in __copy_skb_header()
794 	 */
795 	/* private: */
796 	__u32			headers_start[0];
797 	/* public: */
798 
799 /* if you move pkt_type around you also must adapt those constants */
800 #ifdef __BIG_ENDIAN_BITFIELD
801 #define PKT_TYPE_MAX	(7 << 5)
802 #else
803 #define PKT_TYPE_MAX	7
804 #endif
805 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
806 
807 	/* private: */
808 	__u8			__pkt_type_offset[0];
809 	/* public: */
810 	__u8			pkt_type:3;
811 	__u8			ignore_df:1;
812 	__u8			nf_trace:1;
813 	__u8			ip_summed:2;
814 	__u8			ooo_okay:1;
815 
816 	__u8			l4_hash:1;
817 	__u8			sw_hash:1;
818 	__u8			wifi_acked_valid:1;
819 	__u8			wifi_acked:1;
820 	__u8			no_fcs:1;
821 	/* Indicates the inner headers are valid in the skbuff. */
822 	__u8			encapsulation:1;
823 	__u8			encap_hdr_csum:1;
824 	__u8			csum_valid:1;
825 
826 #ifdef __BIG_ENDIAN_BITFIELD
827 #define PKT_VLAN_PRESENT_BIT	7
828 #else
829 #define PKT_VLAN_PRESENT_BIT	0
830 #endif
831 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
832 	/* private: */
833 	__u8			__pkt_vlan_present_offset[0];
834 	/* public: */
835 	__u8			vlan_present:1;
836 	__u8			csum_complete_sw:1;
837 	__u8			csum_level:2;
838 	__u8			csum_not_inet:1;
839 	__u8			dst_pending_confirm:1;
840 #ifdef CONFIG_IPV6_NDISC_NODETYPE
841 	__u8			ndisc_nodetype:2;
842 #endif
843 
844 	__u8			ipvs_property:1;
845 	__u8			inner_protocol_type:1;
846 	__u8			remcsum_offload:1;
847 #ifdef CONFIG_NET_SWITCHDEV
848 	__u8			offload_fwd_mark:1;
849 	__u8			offload_l3_fwd_mark:1;
850 #endif
851 #ifdef CONFIG_NET_CLS_ACT
852 	__u8			tc_skip_classify:1;
853 	__u8			tc_at_ingress:1;
854 #endif
855 #ifdef CONFIG_NET_REDIRECT
856 	__u8			redirected:1;
857 	__u8			from_ingress:1;
858 #endif
859 #ifdef CONFIG_TLS_DEVICE
860 	__u8			decrypted:1;
861 #endif
862 
863 #ifdef CONFIG_NET_SCHED
864 	__u16			tc_index;	/* traffic control index */
865 #endif
866 
867 	union {
868 		__wsum		csum;
869 		struct {
870 			__u16	csum_start;
871 			__u16	csum_offset;
872 		};
873 	};
874 	__u32			priority;
875 	int			skb_iif;
876 	__u32			hash;
877 	__be16			vlan_proto;
878 	__u16			vlan_tci;
879 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
880 	union {
881 		unsigned int	napi_id;
882 		unsigned int	sender_cpu;
883 	};
884 #endif
885 #ifdef CONFIG_NETWORK_SECMARK
886 	__u32		secmark;
887 #endif
888 
889 	union {
890 		__u32		mark;
891 		__u32		reserved_tailroom;
892 	};
893 
894 	union {
895 		__be16		inner_protocol;
896 		__u8		inner_ipproto;
897 	};
898 
899 	__u16			inner_transport_header;
900 	__u16			inner_network_header;
901 	__u16			inner_mac_header;
902 
903 	__be16			protocol;
904 	__u16			transport_header;
905 	__u16			network_header;
906 	__u16			mac_header;
907 
908 #ifdef CONFIG_KCOV
909 	u64			kcov_handle;
910 #endif
911 
912 	/* private: */
913 	__u32			headers_end[0];
914 	/* public: */
915 
916 	/* These elements must be at the end, see alloc_skb() for details.  */
917 	sk_buff_data_t		tail;
918 	sk_buff_data_t		end;
919 	unsigned char		*head,
920 				*data;
921 	unsigned int		truesize;
922 	refcount_t		users;
923 
924 #ifdef CONFIG_SKB_EXTENSIONS
925 	/* only useable after checking ->active_extensions != 0 */
926 	struct skb_ext		*extensions;
927 #endif
928 };
929 
930 #ifdef __KERNEL__
931 /*
932  *	Handling routines are only of interest to the kernel
933  */
934 
935 #define SKB_ALLOC_FCLONE	0x01
936 #define SKB_ALLOC_RX		0x02
937 #define SKB_ALLOC_NAPI		0x04
938 
939 /**
940  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
941  * @skb: buffer
942  */
943 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
944 {
945 	return unlikely(skb->pfmemalloc);
946 }
947 
948 /*
949  * skb might have a dst pointer attached, refcounted or not.
950  * _skb_refdst low order bit is set if refcount was _not_ taken
951  */
952 #define SKB_DST_NOREF	1UL
953 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
954 
955 /**
956  * skb_dst - returns skb dst_entry
957  * @skb: buffer
958  *
959  * Returns skb dst_entry, regardless of reference taken or not.
960  */
961 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
962 {
963 	/* If refdst was not refcounted, check we still are in a
964 	 * rcu_read_lock section
965 	 */
966 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
967 		!rcu_read_lock_held() &&
968 		!rcu_read_lock_bh_held());
969 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
970 }
971 
972 /**
973  * skb_dst_set - sets skb dst
974  * @skb: buffer
975  * @dst: dst entry
976  *
977  * Sets skb dst, assuming a reference was taken on dst and should
978  * be released by skb_dst_drop()
979  */
980 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
981 {
982 	skb->_skb_refdst = (unsigned long)dst;
983 }
984 
985 /**
986  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
987  * @skb: buffer
988  * @dst: dst entry
989  *
990  * Sets skb dst, assuming a reference was not taken on dst.
991  * If dst entry is cached, we do not take reference and dst_release
992  * will be avoided by refdst_drop. If dst entry is not cached, we take
993  * reference, so that last dst_release can destroy the dst immediately.
994  */
995 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
996 {
997 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
998 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
999 }
1000 
1001 /**
1002  * skb_dst_is_noref - Test if skb dst isn't refcounted
1003  * @skb: buffer
1004  */
1005 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1006 {
1007 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1008 }
1009 
1010 /**
1011  * skb_rtable - Returns the skb &rtable
1012  * @skb: buffer
1013  */
1014 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1015 {
1016 	return (struct rtable *)skb_dst(skb);
1017 }
1018 
1019 /* For mangling skb->pkt_type from user space side from applications
1020  * such as nft, tc, etc, we only allow a conservative subset of
1021  * possible pkt_types to be set.
1022 */
1023 static inline bool skb_pkt_type_ok(u32 ptype)
1024 {
1025 	return ptype <= PACKET_OTHERHOST;
1026 }
1027 
1028 /**
1029  * skb_napi_id - Returns the skb's NAPI id
1030  * @skb: buffer
1031  */
1032 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1033 {
1034 #ifdef CONFIG_NET_RX_BUSY_POLL
1035 	return skb->napi_id;
1036 #else
1037 	return 0;
1038 #endif
1039 }
1040 
1041 /**
1042  * skb_unref - decrement the skb's reference count
1043  * @skb: buffer
1044  *
1045  * Returns true if we can free the skb.
1046  */
1047 static inline bool skb_unref(struct sk_buff *skb)
1048 {
1049 	if (unlikely(!skb))
1050 		return false;
1051 	if (likely(refcount_read(&skb->users) == 1))
1052 		smp_rmb();
1053 	else if (likely(!refcount_dec_and_test(&skb->users)))
1054 		return false;
1055 
1056 	return true;
1057 }
1058 
1059 void skb_release_head_state(struct sk_buff *skb);
1060 void kfree_skb(struct sk_buff *skb);
1061 void kfree_skb_list(struct sk_buff *segs);
1062 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1063 void skb_tx_error(struct sk_buff *skb);
1064 
1065 #ifdef CONFIG_TRACEPOINTS
1066 void consume_skb(struct sk_buff *skb);
1067 #else
1068 static inline void consume_skb(struct sk_buff *skb)
1069 {
1070 	return kfree_skb(skb);
1071 }
1072 #endif
1073 
1074 void __consume_stateless_skb(struct sk_buff *skb);
1075 void  __kfree_skb(struct sk_buff *skb);
1076 extern struct kmem_cache *skbuff_head_cache;
1077 
1078 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1079 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1080 		      bool *fragstolen, int *delta_truesize);
1081 
1082 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1083 			    int node);
1084 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1085 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1086 struct sk_buff *build_skb_around(struct sk_buff *skb,
1087 				 void *data, unsigned int frag_size);
1088 
1089 /**
1090  * alloc_skb - allocate a network buffer
1091  * @size: size to allocate
1092  * @priority: allocation mask
1093  *
1094  * This function is a convenient wrapper around __alloc_skb().
1095  */
1096 static inline struct sk_buff *alloc_skb(unsigned int size,
1097 					gfp_t priority)
1098 {
1099 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1100 }
1101 
1102 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1103 				     unsigned long data_len,
1104 				     int max_page_order,
1105 				     int *errcode,
1106 				     gfp_t gfp_mask);
1107 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1108 
1109 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1110 struct sk_buff_fclones {
1111 	struct sk_buff	skb1;
1112 
1113 	struct sk_buff	skb2;
1114 
1115 	refcount_t	fclone_ref;
1116 };
1117 
1118 /**
1119  *	skb_fclone_busy - check if fclone is busy
1120  *	@sk: socket
1121  *	@skb: buffer
1122  *
1123  * Returns true if skb is a fast clone, and its clone is not freed.
1124  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1125  * so we also check that this didnt happen.
1126  */
1127 static inline bool skb_fclone_busy(const struct sock *sk,
1128 				   const struct sk_buff *skb)
1129 {
1130 	const struct sk_buff_fclones *fclones;
1131 
1132 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1133 
1134 	return skb->fclone == SKB_FCLONE_ORIG &&
1135 	       refcount_read(&fclones->fclone_ref) > 1 &&
1136 	       fclones->skb2.sk == sk;
1137 }
1138 
1139 /**
1140  * alloc_skb_fclone - allocate a network buffer from fclone cache
1141  * @size: size to allocate
1142  * @priority: allocation mask
1143  *
1144  * This function is a convenient wrapper around __alloc_skb().
1145  */
1146 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1147 					       gfp_t priority)
1148 {
1149 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1150 }
1151 
1152 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1153 void skb_headers_offset_update(struct sk_buff *skb, int off);
1154 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1155 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1156 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1157 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1158 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1159 				   gfp_t gfp_mask, bool fclone);
1160 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1161 					  gfp_t gfp_mask)
1162 {
1163 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1164 }
1165 
1166 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1167 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1168 				     unsigned int headroom);
1169 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1170 				int newtailroom, gfp_t priority);
1171 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1172 				     int offset, int len);
1173 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1174 			      int offset, int len);
1175 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1176 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1177 
1178 /**
1179  *	skb_pad			-	zero pad the tail of an skb
1180  *	@skb: buffer to pad
1181  *	@pad: space to pad
1182  *
1183  *	Ensure that a buffer is followed by a padding area that is zero
1184  *	filled. Used by network drivers which may DMA or transfer data
1185  *	beyond the buffer end onto the wire.
1186  *
1187  *	May return error in out of memory cases. The skb is freed on error.
1188  */
1189 static inline int skb_pad(struct sk_buff *skb, int pad)
1190 {
1191 	return __skb_pad(skb, pad, true);
1192 }
1193 #define dev_kfree_skb(a)	consume_skb(a)
1194 
1195 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1196 			 int offset, size_t size);
1197 
1198 struct skb_seq_state {
1199 	__u32		lower_offset;
1200 	__u32		upper_offset;
1201 	__u32		frag_idx;
1202 	__u32		stepped_offset;
1203 	struct sk_buff	*root_skb;
1204 	struct sk_buff	*cur_skb;
1205 	__u8		*frag_data;
1206 };
1207 
1208 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1209 			  unsigned int to, struct skb_seq_state *st);
1210 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1211 			  struct skb_seq_state *st);
1212 void skb_abort_seq_read(struct skb_seq_state *st);
1213 
1214 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1215 			   unsigned int to, struct ts_config *config);
1216 
1217 /*
1218  * Packet hash types specify the type of hash in skb_set_hash.
1219  *
1220  * Hash types refer to the protocol layer addresses which are used to
1221  * construct a packet's hash. The hashes are used to differentiate or identify
1222  * flows of the protocol layer for the hash type. Hash types are either
1223  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1224  *
1225  * Properties of hashes:
1226  *
1227  * 1) Two packets in different flows have different hash values
1228  * 2) Two packets in the same flow should have the same hash value
1229  *
1230  * A hash at a higher layer is considered to be more specific. A driver should
1231  * set the most specific hash possible.
1232  *
1233  * A driver cannot indicate a more specific hash than the layer at which a hash
1234  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1235  *
1236  * A driver may indicate a hash level which is less specific than the
1237  * actual layer the hash was computed on. For instance, a hash computed
1238  * at L4 may be considered an L3 hash. This should only be done if the
1239  * driver can't unambiguously determine that the HW computed the hash at
1240  * the higher layer. Note that the "should" in the second property above
1241  * permits this.
1242  */
1243 enum pkt_hash_types {
1244 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1245 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1246 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1247 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1248 };
1249 
1250 static inline void skb_clear_hash(struct sk_buff *skb)
1251 {
1252 	skb->hash = 0;
1253 	skb->sw_hash = 0;
1254 	skb->l4_hash = 0;
1255 }
1256 
1257 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1258 {
1259 	if (!skb->l4_hash)
1260 		skb_clear_hash(skb);
1261 }
1262 
1263 static inline void
1264 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1265 {
1266 	skb->l4_hash = is_l4;
1267 	skb->sw_hash = is_sw;
1268 	skb->hash = hash;
1269 }
1270 
1271 static inline void
1272 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1273 {
1274 	/* Used by drivers to set hash from HW */
1275 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1276 }
1277 
1278 static inline void
1279 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1280 {
1281 	__skb_set_hash(skb, hash, true, is_l4);
1282 }
1283 
1284 void __skb_get_hash(struct sk_buff *skb);
1285 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1286 u32 skb_get_poff(const struct sk_buff *skb);
1287 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1288 		   const struct flow_keys_basic *keys, int hlen);
1289 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1290 			    void *data, int hlen_proto);
1291 
1292 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1293 					int thoff, u8 ip_proto)
1294 {
1295 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1296 }
1297 
1298 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1299 			     const struct flow_dissector_key *key,
1300 			     unsigned int key_count);
1301 
1302 struct bpf_flow_dissector;
1303 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1304 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1305 
1306 bool __skb_flow_dissect(const struct net *net,
1307 			const struct sk_buff *skb,
1308 			struct flow_dissector *flow_dissector,
1309 			void *target_container,
1310 			void *data, __be16 proto, int nhoff, int hlen,
1311 			unsigned int flags);
1312 
1313 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1314 				    struct flow_dissector *flow_dissector,
1315 				    void *target_container, unsigned int flags)
1316 {
1317 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1318 				  target_container, NULL, 0, 0, 0, flags);
1319 }
1320 
1321 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1322 					      struct flow_keys *flow,
1323 					      unsigned int flags)
1324 {
1325 	memset(flow, 0, sizeof(*flow));
1326 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1327 				  flow, NULL, 0, 0, 0, flags);
1328 }
1329 
1330 static inline bool
1331 skb_flow_dissect_flow_keys_basic(const struct net *net,
1332 				 const struct sk_buff *skb,
1333 				 struct flow_keys_basic *flow, void *data,
1334 				 __be16 proto, int nhoff, int hlen,
1335 				 unsigned int flags)
1336 {
1337 	memset(flow, 0, sizeof(*flow));
1338 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1339 				  data, proto, nhoff, hlen, flags);
1340 }
1341 
1342 void skb_flow_dissect_meta(const struct sk_buff *skb,
1343 			   struct flow_dissector *flow_dissector,
1344 			   void *target_container);
1345 
1346 /* Gets a skb connection tracking info, ctinfo map should be a
1347  * map of mapsize to translate enum ip_conntrack_info states
1348  * to user states.
1349  */
1350 void
1351 skb_flow_dissect_ct(const struct sk_buff *skb,
1352 		    struct flow_dissector *flow_dissector,
1353 		    void *target_container,
1354 		    u16 *ctinfo_map,
1355 		    size_t mapsize);
1356 void
1357 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1358 			     struct flow_dissector *flow_dissector,
1359 			     void *target_container);
1360 
1361 void skb_flow_dissect_hash(const struct sk_buff *skb,
1362 			   struct flow_dissector *flow_dissector,
1363 			   void *target_container);
1364 
1365 static inline __u32 skb_get_hash(struct sk_buff *skb)
1366 {
1367 	if (!skb->l4_hash && !skb->sw_hash)
1368 		__skb_get_hash(skb);
1369 
1370 	return skb->hash;
1371 }
1372 
1373 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1374 {
1375 	if (!skb->l4_hash && !skb->sw_hash) {
1376 		struct flow_keys keys;
1377 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1378 
1379 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1380 	}
1381 
1382 	return skb->hash;
1383 }
1384 
1385 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1386 			   const siphash_key_t *perturb);
1387 
1388 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1389 {
1390 	return skb->hash;
1391 }
1392 
1393 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1394 {
1395 	to->hash = from->hash;
1396 	to->sw_hash = from->sw_hash;
1397 	to->l4_hash = from->l4_hash;
1398 };
1399 
1400 static inline void skb_copy_decrypted(struct sk_buff *to,
1401 				      const struct sk_buff *from)
1402 {
1403 #ifdef CONFIG_TLS_DEVICE
1404 	to->decrypted = from->decrypted;
1405 #endif
1406 }
1407 
1408 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1409 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1410 {
1411 	return skb->head + skb->end;
1412 }
1413 
1414 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1415 {
1416 	return skb->end;
1417 }
1418 #else
1419 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1420 {
1421 	return skb->end;
1422 }
1423 
1424 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1425 {
1426 	return skb->end - skb->head;
1427 }
1428 #endif
1429 
1430 /* Internal */
1431 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1432 
1433 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1434 {
1435 	return &skb_shinfo(skb)->hwtstamps;
1436 }
1437 
1438 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1439 {
1440 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1441 
1442 	return is_zcopy ? skb_uarg(skb) : NULL;
1443 }
1444 
1445 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1446 				 bool *have_ref)
1447 {
1448 	if (skb && uarg && !skb_zcopy(skb)) {
1449 		if (unlikely(have_ref && *have_ref))
1450 			*have_ref = false;
1451 		else
1452 			sock_zerocopy_get(uarg);
1453 		skb_shinfo(skb)->destructor_arg = uarg;
1454 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1455 	}
1456 }
1457 
1458 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1459 {
1460 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1461 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1462 }
1463 
1464 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1465 {
1466 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1467 }
1468 
1469 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1470 {
1471 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1472 }
1473 
1474 /* Release a reference on a zerocopy structure */
1475 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1476 {
1477 	struct ubuf_info *uarg = skb_zcopy(skb);
1478 
1479 	if (uarg) {
1480 		if (skb_zcopy_is_nouarg(skb)) {
1481 			/* no notification callback */
1482 		} else if (uarg->callback == sock_zerocopy_callback) {
1483 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1484 			sock_zerocopy_put(uarg);
1485 		} else {
1486 			uarg->callback(uarg, zerocopy);
1487 		}
1488 
1489 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1490 	}
1491 }
1492 
1493 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1494 static inline void skb_zcopy_abort(struct sk_buff *skb)
1495 {
1496 	struct ubuf_info *uarg = skb_zcopy(skb);
1497 
1498 	if (uarg) {
1499 		sock_zerocopy_put_abort(uarg, false);
1500 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1501 	}
1502 }
1503 
1504 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1505 {
1506 	skb->next = NULL;
1507 }
1508 
1509 /* Iterate through singly-linked GSO fragments of an skb. */
1510 #define skb_list_walk_safe(first, skb, next_skb)                               \
1511 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1512 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1513 
1514 static inline void skb_list_del_init(struct sk_buff *skb)
1515 {
1516 	__list_del_entry(&skb->list);
1517 	skb_mark_not_on_list(skb);
1518 }
1519 
1520 /**
1521  *	skb_queue_empty - check if a queue is empty
1522  *	@list: queue head
1523  *
1524  *	Returns true if the queue is empty, false otherwise.
1525  */
1526 static inline int skb_queue_empty(const struct sk_buff_head *list)
1527 {
1528 	return list->next == (const struct sk_buff *) list;
1529 }
1530 
1531 /**
1532  *	skb_queue_empty_lockless - check if a queue is empty
1533  *	@list: queue head
1534  *
1535  *	Returns true if the queue is empty, false otherwise.
1536  *	This variant can be used in lockless contexts.
1537  */
1538 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1539 {
1540 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1541 }
1542 
1543 
1544 /**
1545  *	skb_queue_is_last - check if skb is the last entry in the queue
1546  *	@list: queue head
1547  *	@skb: buffer
1548  *
1549  *	Returns true if @skb is the last buffer on the list.
1550  */
1551 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1552 				     const struct sk_buff *skb)
1553 {
1554 	return skb->next == (const struct sk_buff *) list;
1555 }
1556 
1557 /**
1558  *	skb_queue_is_first - check if skb is the first entry in the queue
1559  *	@list: queue head
1560  *	@skb: buffer
1561  *
1562  *	Returns true if @skb is the first buffer on the list.
1563  */
1564 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1565 				      const struct sk_buff *skb)
1566 {
1567 	return skb->prev == (const struct sk_buff *) list;
1568 }
1569 
1570 /**
1571  *	skb_queue_next - return the next packet in the queue
1572  *	@list: queue head
1573  *	@skb: current buffer
1574  *
1575  *	Return the next packet in @list after @skb.  It is only valid to
1576  *	call this if skb_queue_is_last() evaluates to false.
1577  */
1578 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1579 					     const struct sk_buff *skb)
1580 {
1581 	/* This BUG_ON may seem severe, but if we just return then we
1582 	 * are going to dereference garbage.
1583 	 */
1584 	BUG_ON(skb_queue_is_last(list, skb));
1585 	return skb->next;
1586 }
1587 
1588 /**
1589  *	skb_queue_prev - return the prev packet in the queue
1590  *	@list: queue head
1591  *	@skb: current buffer
1592  *
1593  *	Return the prev packet in @list before @skb.  It is only valid to
1594  *	call this if skb_queue_is_first() evaluates to false.
1595  */
1596 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1597 					     const struct sk_buff *skb)
1598 {
1599 	/* This BUG_ON may seem severe, but if we just return then we
1600 	 * are going to dereference garbage.
1601 	 */
1602 	BUG_ON(skb_queue_is_first(list, skb));
1603 	return skb->prev;
1604 }
1605 
1606 /**
1607  *	skb_get - reference buffer
1608  *	@skb: buffer to reference
1609  *
1610  *	Makes another reference to a socket buffer and returns a pointer
1611  *	to the buffer.
1612  */
1613 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1614 {
1615 	refcount_inc(&skb->users);
1616 	return skb;
1617 }
1618 
1619 /*
1620  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1621  */
1622 
1623 /**
1624  *	skb_cloned - is the buffer a clone
1625  *	@skb: buffer to check
1626  *
1627  *	Returns true if the buffer was generated with skb_clone() and is
1628  *	one of multiple shared copies of the buffer. Cloned buffers are
1629  *	shared data so must not be written to under normal circumstances.
1630  */
1631 static inline int skb_cloned(const struct sk_buff *skb)
1632 {
1633 	return skb->cloned &&
1634 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1635 }
1636 
1637 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1638 {
1639 	might_sleep_if(gfpflags_allow_blocking(pri));
1640 
1641 	if (skb_cloned(skb))
1642 		return pskb_expand_head(skb, 0, 0, pri);
1643 
1644 	return 0;
1645 }
1646 
1647 /**
1648  *	skb_header_cloned - is the header a clone
1649  *	@skb: buffer to check
1650  *
1651  *	Returns true if modifying the header part of the buffer requires
1652  *	the data to be copied.
1653  */
1654 static inline int skb_header_cloned(const struct sk_buff *skb)
1655 {
1656 	int dataref;
1657 
1658 	if (!skb->cloned)
1659 		return 0;
1660 
1661 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1662 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1663 	return dataref != 1;
1664 }
1665 
1666 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1667 {
1668 	might_sleep_if(gfpflags_allow_blocking(pri));
1669 
1670 	if (skb_header_cloned(skb))
1671 		return pskb_expand_head(skb, 0, 0, pri);
1672 
1673 	return 0;
1674 }
1675 
1676 /**
1677  *	__skb_header_release - release reference to header
1678  *	@skb: buffer to operate on
1679  */
1680 static inline void __skb_header_release(struct sk_buff *skb)
1681 {
1682 	skb->nohdr = 1;
1683 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1684 }
1685 
1686 
1687 /**
1688  *	skb_shared - is the buffer shared
1689  *	@skb: buffer to check
1690  *
1691  *	Returns true if more than one person has a reference to this
1692  *	buffer.
1693  */
1694 static inline int skb_shared(const struct sk_buff *skb)
1695 {
1696 	return refcount_read(&skb->users) != 1;
1697 }
1698 
1699 /**
1700  *	skb_share_check - check if buffer is shared and if so clone it
1701  *	@skb: buffer to check
1702  *	@pri: priority for memory allocation
1703  *
1704  *	If the buffer is shared the buffer is cloned and the old copy
1705  *	drops a reference. A new clone with a single reference is returned.
1706  *	If the buffer is not shared the original buffer is returned. When
1707  *	being called from interrupt status or with spinlocks held pri must
1708  *	be GFP_ATOMIC.
1709  *
1710  *	NULL is returned on a memory allocation failure.
1711  */
1712 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1713 {
1714 	might_sleep_if(gfpflags_allow_blocking(pri));
1715 	if (skb_shared(skb)) {
1716 		struct sk_buff *nskb = skb_clone(skb, pri);
1717 
1718 		if (likely(nskb))
1719 			consume_skb(skb);
1720 		else
1721 			kfree_skb(skb);
1722 		skb = nskb;
1723 	}
1724 	return skb;
1725 }
1726 
1727 /*
1728  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1729  *	packets to handle cases where we have a local reader and forward
1730  *	and a couple of other messy ones. The normal one is tcpdumping
1731  *	a packet thats being forwarded.
1732  */
1733 
1734 /**
1735  *	skb_unshare - make a copy of a shared buffer
1736  *	@skb: buffer to check
1737  *	@pri: priority for memory allocation
1738  *
1739  *	If the socket buffer is a clone then this function creates a new
1740  *	copy of the data, drops a reference count on the old copy and returns
1741  *	the new copy with the reference count at 1. If the buffer is not a clone
1742  *	the original buffer is returned. When called with a spinlock held or
1743  *	from interrupt state @pri must be %GFP_ATOMIC
1744  *
1745  *	%NULL is returned on a memory allocation failure.
1746  */
1747 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1748 					  gfp_t pri)
1749 {
1750 	might_sleep_if(gfpflags_allow_blocking(pri));
1751 	if (skb_cloned(skb)) {
1752 		struct sk_buff *nskb = skb_copy(skb, pri);
1753 
1754 		/* Free our shared copy */
1755 		if (likely(nskb))
1756 			consume_skb(skb);
1757 		else
1758 			kfree_skb(skb);
1759 		skb = nskb;
1760 	}
1761 	return skb;
1762 }
1763 
1764 /**
1765  *	skb_peek - peek at the head of an &sk_buff_head
1766  *	@list_: list to peek at
1767  *
1768  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1769  *	be careful with this one. A peek leaves the buffer on the
1770  *	list and someone else may run off with it. You must hold
1771  *	the appropriate locks or have a private queue to do this.
1772  *
1773  *	Returns %NULL for an empty list or a pointer to the head element.
1774  *	The reference count is not incremented and the reference is therefore
1775  *	volatile. Use with caution.
1776  */
1777 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1778 {
1779 	struct sk_buff *skb = list_->next;
1780 
1781 	if (skb == (struct sk_buff *)list_)
1782 		skb = NULL;
1783 	return skb;
1784 }
1785 
1786 /**
1787  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1788  *	@list_: list to peek at
1789  *
1790  *	Like skb_peek(), but the caller knows that the list is not empty.
1791  */
1792 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1793 {
1794 	return list_->next;
1795 }
1796 
1797 /**
1798  *	skb_peek_next - peek skb following the given one from a queue
1799  *	@skb: skb to start from
1800  *	@list_: list to peek at
1801  *
1802  *	Returns %NULL when the end of the list is met or a pointer to the
1803  *	next element. The reference count is not incremented and the
1804  *	reference is therefore volatile. Use with caution.
1805  */
1806 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1807 		const struct sk_buff_head *list_)
1808 {
1809 	struct sk_buff *next = skb->next;
1810 
1811 	if (next == (struct sk_buff *)list_)
1812 		next = NULL;
1813 	return next;
1814 }
1815 
1816 /**
1817  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1818  *	@list_: list to peek at
1819  *
1820  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1821  *	be careful with this one. A peek leaves the buffer on the
1822  *	list and someone else may run off with it. You must hold
1823  *	the appropriate locks or have a private queue to do this.
1824  *
1825  *	Returns %NULL for an empty list or a pointer to the tail element.
1826  *	The reference count is not incremented and the reference is therefore
1827  *	volatile. Use with caution.
1828  */
1829 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1830 {
1831 	struct sk_buff *skb = READ_ONCE(list_->prev);
1832 
1833 	if (skb == (struct sk_buff *)list_)
1834 		skb = NULL;
1835 	return skb;
1836 
1837 }
1838 
1839 /**
1840  *	skb_queue_len	- get queue length
1841  *	@list_: list to measure
1842  *
1843  *	Return the length of an &sk_buff queue.
1844  */
1845 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1846 {
1847 	return list_->qlen;
1848 }
1849 
1850 /**
1851  *	skb_queue_len_lockless	- get queue length
1852  *	@list_: list to measure
1853  *
1854  *	Return the length of an &sk_buff queue.
1855  *	This variant can be used in lockless contexts.
1856  */
1857 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1858 {
1859 	return READ_ONCE(list_->qlen);
1860 }
1861 
1862 /**
1863  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1864  *	@list: queue to initialize
1865  *
1866  *	This initializes only the list and queue length aspects of
1867  *	an sk_buff_head object.  This allows to initialize the list
1868  *	aspects of an sk_buff_head without reinitializing things like
1869  *	the spinlock.  It can also be used for on-stack sk_buff_head
1870  *	objects where the spinlock is known to not be used.
1871  */
1872 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1873 {
1874 	list->prev = list->next = (struct sk_buff *)list;
1875 	list->qlen = 0;
1876 }
1877 
1878 /*
1879  * This function creates a split out lock class for each invocation;
1880  * this is needed for now since a whole lot of users of the skb-queue
1881  * infrastructure in drivers have different locking usage (in hardirq)
1882  * than the networking core (in softirq only). In the long run either the
1883  * network layer or drivers should need annotation to consolidate the
1884  * main types of usage into 3 classes.
1885  */
1886 static inline void skb_queue_head_init(struct sk_buff_head *list)
1887 {
1888 	spin_lock_init(&list->lock);
1889 	__skb_queue_head_init(list);
1890 }
1891 
1892 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1893 		struct lock_class_key *class)
1894 {
1895 	skb_queue_head_init(list);
1896 	lockdep_set_class(&list->lock, class);
1897 }
1898 
1899 /*
1900  *	Insert an sk_buff on a list.
1901  *
1902  *	The "__skb_xxxx()" functions are the non-atomic ones that
1903  *	can only be called with interrupts disabled.
1904  */
1905 static inline void __skb_insert(struct sk_buff *newsk,
1906 				struct sk_buff *prev, struct sk_buff *next,
1907 				struct sk_buff_head *list)
1908 {
1909 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1910 	 * for the opposite READ_ONCE()
1911 	 */
1912 	WRITE_ONCE(newsk->next, next);
1913 	WRITE_ONCE(newsk->prev, prev);
1914 	WRITE_ONCE(next->prev, newsk);
1915 	WRITE_ONCE(prev->next, newsk);
1916 	list->qlen++;
1917 }
1918 
1919 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1920 				      struct sk_buff *prev,
1921 				      struct sk_buff *next)
1922 {
1923 	struct sk_buff *first = list->next;
1924 	struct sk_buff *last = list->prev;
1925 
1926 	WRITE_ONCE(first->prev, prev);
1927 	WRITE_ONCE(prev->next, first);
1928 
1929 	WRITE_ONCE(last->next, next);
1930 	WRITE_ONCE(next->prev, last);
1931 }
1932 
1933 /**
1934  *	skb_queue_splice - join two skb lists, this is designed for stacks
1935  *	@list: the new list to add
1936  *	@head: the place to add it in the first list
1937  */
1938 static inline void skb_queue_splice(const struct sk_buff_head *list,
1939 				    struct sk_buff_head *head)
1940 {
1941 	if (!skb_queue_empty(list)) {
1942 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1943 		head->qlen += list->qlen;
1944 	}
1945 }
1946 
1947 /**
1948  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1949  *	@list: the new list to add
1950  *	@head: the place to add it in the first list
1951  *
1952  *	The list at @list is reinitialised
1953  */
1954 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1955 					 struct sk_buff_head *head)
1956 {
1957 	if (!skb_queue_empty(list)) {
1958 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1959 		head->qlen += list->qlen;
1960 		__skb_queue_head_init(list);
1961 	}
1962 }
1963 
1964 /**
1965  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1966  *	@list: the new list to add
1967  *	@head: the place to add it in the first list
1968  */
1969 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1970 					 struct sk_buff_head *head)
1971 {
1972 	if (!skb_queue_empty(list)) {
1973 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1974 		head->qlen += list->qlen;
1975 	}
1976 }
1977 
1978 /**
1979  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1980  *	@list: the new list to add
1981  *	@head: the place to add it in the first list
1982  *
1983  *	Each of the lists is a queue.
1984  *	The list at @list is reinitialised
1985  */
1986 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1987 					      struct sk_buff_head *head)
1988 {
1989 	if (!skb_queue_empty(list)) {
1990 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1991 		head->qlen += list->qlen;
1992 		__skb_queue_head_init(list);
1993 	}
1994 }
1995 
1996 /**
1997  *	__skb_queue_after - queue a buffer at the list head
1998  *	@list: list to use
1999  *	@prev: place after this buffer
2000  *	@newsk: buffer to queue
2001  *
2002  *	Queue a buffer int the middle of a list. This function takes no locks
2003  *	and you must therefore hold required locks before calling it.
2004  *
2005  *	A buffer cannot be placed on two lists at the same time.
2006  */
2007 static inline void __skb_queue_after(struct sk_buff_head *list,
2008 				     struct sk_buff *prev,
2009 				     struct sk_buff *newsk)
2010 {
2011 	__skb_insert(newsk, prev, prev->next, list);
2012 }
2013 
2014 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2015 		struct sk_buff_head *list);
2016 
2017 static inline void __skb_queue_before(struct sk_buff_head *list,
2018 				      struct sk_buff *next,
2019 				      struct sk_buff *newsk)
2020 {
2021 	__skb_insert(newsk, next->prev, next, list);
2022 }
2023 
2024 /**
2025  *	__skb_queue_head - queue a buffer at the list head
2026  *	@list: list to use
2027  *	@newsk: buffer to queue
2028  *
2029  *	Queue a buffer at the start of a list. This function takes no locks
2030  *	and you must therefore hold required locks before calling it.
2031  *
2032  *	A buffer cannot be placed on two lists at the same time.
2033  */
2034 static inline void __skb_queue_head(struct sk_buff_head *list,
2035 				    struct sk_buff *newsk)
2036 {
2037 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2038 }
2039 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2040 
2041 /**
2042  *	__skb_queue_tail - queue a buffer at the list tail
2043  *	@list: list to use
2044  *	@newsk: buffer to queue
2045  *
2046  *	Queue a buffer at the end of a list. This function takes no locks
2047  *	and you must therefore hold required locks before calling it.
2048  *
2049  *	A buffer cannot be placed on two lists at the same time.
2050  */
2051 static inline void __skb_queue_tail(struct sk_buff_head *list,
2052 				   struct sk_buff *newsk)
2053 {
2054 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2055 }
2056 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2057 
2058 /*
2059  * remove sk_buff from list. _Must_ be called atomically, and with
2060  * the list known..
2061  */
2062 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2063 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2064 {
2065 	struct sk_buff *next, *prev;
2066 
2067 	WRITE_ONCE(list->qlen, list->qlen - 1);
2068 	next	   = skb->next;
2069 	prev	   = skb->prev;
2070 	skb->next  = skb->prev = NULL;
2071 	WRITE_ONCE(next->prev, prev);
2072 	WRITE_ONCE(prev->next, next);
2073 }
2074 
2075 /**
2076  *	__skb_dequeue - remove from the head of the queue
2077  *	@list: list to dequeue from
2078  *
2079  *	Remove the head of the list. This function does not take any locks
2080  *	so must be used with appropriate locks held only. The head item is
2081  *	returned or %NULL if the list is empty.
2082  */
2083 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2084 {
2085 	struct sk_buff *skb = skb_peek(list);
2086 	if (skb)
2087 		__skb_unlink(skb, list);
2088 	return skb;
2089 }
2090 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2091 
2092 /**
2093  *	__skb_dequeue_tail - remove from the tail of the queue
2094  *	@list: list to dequeue from
2095  *
2096  *	Remove the tail of the list. This function does not take any locks
2097  *	so must be used with appropriate locks held only. The tail item is
2098  *	returned or %NULL if the list is empty.
2099  */
2100 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2101 {
2102 	struct sk_buff *skb = skb_peek_tail(list);
2103 	if (skb)
2104 		__skb_unlink(skb, list);
2105 	return skb;
2106 }
2107 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2108 
2109 
2110 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2111 {
2112 	return skb->data_len;
2113 }
2114 
2115 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2116 {
2117 	return skb->len - skb->data_len;
2118 }
2119 
2120 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2121 {
2122 	unsigned int i, len = 0;
2123 
2124 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2125 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2126 	return len;
2127 }
2128 
2129 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2130 {
2131 	return skb_headlen(skb) + __skb_pagelen(skb);
2132 }
2133 
2134 /**
2135  * __skb_fill_page_desc - initialise a paged fragment in an skb
2136  * @skb: buffer containing fragment to be initialised
2137  * @i: paged fragment index to initialise
2138  * @page: the page to use for this fragment
2139  * @off: the offset to the data with @page
2140  * @size: the length of the data
2141  *
2142  * Initialises the @i'th fragment of @skb to point to &size bytes at
2143  * offset @off within @page.
2144  *
2145  * Does not take any additional reference on the fragment.
2146  */
2147 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2148 					struct page *page, int off, int size)
2149 {
2150 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2151 
2152 	/*
2153 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2154 	 * that not all callers have unique ownership of the page but rely
2155 	 * on page_is_pfmemalloc doing the right thing(tm).
2156 	 */
2157 	frag->bv_page		  = page;
2158 	frag->bv_offset		  = off;
2159 	skb_frag_size_set(frag, size);
2160 
2161 	page = compound_head(page);
2162 	if (page_is_pfmemalloc(page))
2163 		skb->pfmemalloc	= true;
2164 }
2165 
2166 /**
2167  * skb_fill_page_desc - initialise a paged fragment in an skb
2168  * @skb: buffer containing fragment to be initialised
2169  * @i: paged fragment index to initialise
2170  * @page: the page to use for this fragment
2171  * @off: the offset to the data with @page
2172  * @size: the length of the data
2173  *
2174  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2175  * @skb to point to @size bytes at offset @off within @page. In
2176  * addition updates @skb such that @i is the last fragment.
2177  *
2178  * Does not take any additional reference on the fragment.
2179  */
2180 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2181 				      struct page *page, int off, int size)
2182 {
2183 	__skb_fill_page_desc(skb, i, page, off, size);
2184 	skb_shinfo(skb)->nr_frags = i + 1;
2185 }
2186 
2187 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2188 		     int size, unsigned int truesize);
2189 
2190 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2191 			  unsigned int truesize);
2192 
2193 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2194 
2195 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2196 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2197 {
2198 	return skb->head + skb->tail;
2199 }
2200 
2201 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2202 {
2203 	skb->tail = skb->data - skb->head;
2204 }
2205 
2206 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2207 {
2208 	skb_reset_tail_pointer(skb);
2209 	skb->tail += offset;
2210 }
2211 
2212 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2213 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2214 {
2215 	return skb->tail;
2216 }
2217 
2218 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2219 {
2220 	skb->tail = skb->data;
2221 }
2222 
2223 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2224 {
2225 	skb->tail = skb->data + offset;
2226 }
2227 
2228 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2229 
2230 /*
2231  *	Add data to an sk_buff
2232  */
2233 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2234 void *skb_put(struct sk_buff *skb, unsigned int len);
2235 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2236 {
2237 	void *tmp = skb_tail_pointer(skb);
2238 	SKB_LINEAR_ASSERT(skb);
2239 	skb->tail += len;
2240 	skb->len  += len;
2241 	return tmp;
2242 }
2243 
2244 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2245 {
2246 	void *tmp = __skb_put(skb, len);
2247 
2248 	memset(tmp, 0, len);
2249 	return tmp;
2250 }
2251 
2252 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2253 				   unsigned int len)
2254 {
2255 	void *tmp = __skb_put(skb, len);
2256 
2257 	memcpy(tmp, data, len);
2258 	return tmp;
2259 }
2260 
2261 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2262 {
2263 	*(u8 *)__skb_put(skb, 1) = val;
2264 }
2265 
2266 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2267 {
2268 	void *tmp = skb_put(skb, len);
2269 
2270 	memset(tmp, 0, len);
2271 
2272 	return tmp;
2273 }
2274 
2275 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2276 				 unsigned int len)
2277 {
2278 	void *tmp = skb_put(skb, len);
2279 
2280 	memcpy(tmp, data, len);
2281 
2282 	return tmp;
2283 }
2284 
2285 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2286 {
2287 	*(u8 *)skb_put(skb, 1) = val;
2288 }
2289 
2290 void *skb_push(struct sk_buff *skb, unsigned int len);
2291 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2292 {
2293 	skb->data -= len;
2294 	skb->len  += len;
2295 	return skb->data;
2296 }
2297 
2298 void *skb_pull(struct sk_buff *skb, unsigned int len);
2299 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2300 {
2301 	skb->len -= len;
2302 	BUG_ON(skb->len < skb->data_len);
2303 	return skb->data += len;
2304 }
2305 
2306 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2307 {
2308 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2309 }
2310 
2311 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2312 
2313 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2314 {
2315 	if (len > skb_headlen(skb) &&
2316 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2317 		return NULL;
2318 	skb->len -= len;
2319 	return skb->data += len;
2320 }
2321 
2322 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2323 {
2324 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2325 }
2326 
2327 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2328 {
2329 	if (likely(len <= skb_headlen(skb)))
2330 		return true;
2331 	if (unlikely(len > skb->len))
2332 		return false;
2333 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2334 }
2335 
2336 void skb_condense(struct sk_buff *skb);
2337 
2338 /**
2339  *	skb_headroom - bytes at buffer head
2340  *	@skb: buffer to check
2341  *
2342  *	Return the number of bytes of free space at the head of an &sk_buff.
2343  */
2344 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2345 {
2346 	return skb->data - skb->head;
2347 }
2348 
2349 /**
2350  *	skb_tailroom - bytes at buffer end
2351  *	@skb: buffer to check
2352  *
2353  *	Return the number of bytes of free space at the tail of an sk_buff
2354  */
2355 static inline int skb_tailroom(const struct sk_buff *skb)
2356 {
2357 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2358 }
2359 
2360 /**
2361  *	skb_availroom - bytes at buffer end
2362  *	@skb: buffer to check
2363  *
2364  *	Return the number of bytes of free space at the tail of an sk_buff
2365  *	allocated by sk_stream_alloc()
2366  */
2367 static inline int skb_availroom(const struct sk_buff *skb)
2368 {
2369 	if (skb_is_nonlinear(skb))
2370 		return 0;
2371 
2372 	return skb->end - skb->tail - skb->reserved_tailroom;
2373 }
2374 
2375 /**
2376  *	skb_reserve - adjust headroom
2377  *	@skb: buffer to alter
2378  *	@len: bytes to move
2379  *
2380  *	Increase the headroom of an empty &sk_buff by reducing the tail
2381  *	room. This is only allowed for an empty buffer.
2382  */
2383 static inline void skb_reserve(struct sk_buff *skb, int len)
2384 {
2385 	skb->data += len;
2386 	skb->tail += len;
2387 }
2388 
2389 /**
2390  *	skb_tailroom_reserve - adjust reserved_tailroom
2391  *	@skb: buffer to alter
2392  *	@mtu: maximum amount of headlen permitted
2393  *	@needed_tailroom: minimum amount of reserved_tailroom
2394  *
2395  *	Set reserved_tailroom so that headlen can be as large as possible but
2396  *	not larger than mtu and tailroom cannot be smaller than
2397  *	needed_tailroom.
2398  *	The required headroom should already have been reserved before using
2399  *	this function.
2400  */
2401 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2402 					unsigned int needed_tailroom)
2403 {
2404 	SKB_LINEAR_ASSERT(skb);
2405 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2406 		/* use at most mtu */
2407 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2408 	else
2409 		/* use up to all available space */
2410 		skb->reserved_tailroom = needed_tailroom;
2411 }
2412 
2413 #define ENCAP_TYPE_ETHER	0
2414 #define ENCAP_TYPE_IPPROTO	1
2415 
2416 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2417 					  __be16 protocol)
2418 {
2419 	skb->inner_protocol = protocol;
2420 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2421 }
2422 
2423 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2424 					 __u8 ipproto)
2425 {
2426 	skb->inner_ipproto = ipproto;
2427 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2428 }
2429 
2430 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2431 {
2432 	skb->inner_mac_header = skb->mac_header;
2433 	skb->inner_network_header = skb->network_header;
2434 	skb->inner_transport_header = skb->transport_header;
2435 }
2436 
2437 static inline void skb_reset_mac_len(struct sk_buff *skb)
2438 {
2439 	skb->mac_len = skb->network_header - skb->mac_header;
2440 }
2441 
2442 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2443 							*skb)
2444 {
2445 	return skb->head + skb->inner_transport_header;
2446 }
2447 
2448 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2449 {
2450 	return skb_inner_transport_header(skb) - skb->data;
2451 }
2452 
2453 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2454 {
2455 	skb->inner_transport_header = skb->data - skb->head;
2456 }
2457 
2458 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2459 						   const int offset)
2460 {
2461 	skb_reset_inner_transport_header(skb);
2462 	skb->inner_transport_header += offset;
2463 }
2464 
2465 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2466 {
2467 	return skb->head + skb->inner_network_header;
2468 }
2469 
2470 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2471 {
2472 	skb->inner_network_header = skb->data - skb->head;
2473 }
2474 
2475 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2476 						const int offset)
2477 {
2478 	skb_reset_inner_network_header(skb);
2479 	skb->inner_network_header += offset;
2480 }
2481 
2482 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2483 {
2484 	return skb->head + skb->inner_mac_header;
2485 }
2486 
2487 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2488 {
2489 	skb->inner_mac_header = skb->data - skb->head;
2490 }
2491 
2492 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2493 					    const int offset)
2494 {
2495 	skb_reset_inner_mac_header(skb);
2496 	skb->inner_mac_header += offset;
2497 }
2498 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2499 {
2500 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2501 }
2502 
2503 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2504 {
2505 	return skb->head + skb->transport_header;
2506 }
2507 
2508 static inline void skb_reset_transport_header(struct sk_buff *skb)
2509 {
2510 	skb->transport_header = skb->data - skb->head;
2511 }
2512 
2513 static inline void skb_set_transport_header(struct sk_buff *skb,
2514 					    const int offset)
2515 {
2516 	skb_reset_transport_header(skb);
2517 	skb->transport_header += offset;
2518 }
2519 
2520 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2521 {
2522 	return skb->head + skb->network_header;
2523 }
2524 
2525 static inline void skb_reset_network_header(struct sk_buff *skb)
2526 {
2527 	skb->network_header = skb->data - skb->head;
2528 }
2529 
2530 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2531 {
2532 	skb_reset_network_header(skb);
2533 	skb->network_header += offset;
2534 }
2535 
2536 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2537 {
2538 	return skb->head + skb->mac_header;
2539 }
2540 
2541 static inline int skb_mac_offset(const struct sk_buff *skb)
2542 {
2543 	return skb_mac_header(skb) - skb->data;
2544 }
2545 
2546 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2547 {
2548 	return skb->network_header - skb->mac_header;
2549 }
2550 
2551 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2552 {
2553 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2554 }
2555 
2556 static inline void skb_unset_mac_header(struct sk_buff *skb)
2557 {
2558 	skb->mac_header = (typeof(skb->mac_header))~0U;
2559 }
2560 
2561 static inline void skb_reset_mac_header(struct sk_buff *skb)
2562 {
2563 	skb->mac_header = skb->data - skb->head;
2564 }
2565 
2566 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2567 {
2568 	skb_reset_mac_header(skb);
2569 	skb->mac_header += offset;
2570 }
2571 
2572 static inline void skb_pop_mac_header(struct sk_buff *skb)
2573 {
2574 	skb->mac_header = skb->network_header;
2575 }
2576 
2577 static inline void skb_probe_transport_header(struct sk_buff *skb)
2578 {
2579 	struct flow_keys_basic keys;
2580 
2581 	if (skb_transport_header_was_set(skb))
2582 		return;
2583 
2584 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2585 					     NULL, 0, 0, 0, 0))
2586 		skb_set_transport_header(skb, keys.control.thoff);
2587 }
2588 
2589 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2590 {
2591 	if (skb_mac_header_was_set(skb)) {
2592 		const unsigned char *old_mac = skb_mac_header(skb);
2593 
2594 		skb_set_mac_header(skb, -skb->mac_len);
2595 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2596 	}
2597 }
2598 
2599 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2600 {
2601 	return skb->csum_start - skb_headroom(skb);
2602 }
2603 
2604 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2605 {
2606 	return skb->head + skb->csum_start;
2607 }
2608 
2609 static inline int skb_transport_offset(const struct sk_buff *skb)
2610 {
2611 	return skb_transport_header(skb) - skb->data;
2612 }
2613 
2614 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2615 {
2616 	return skb->transport_header - skb->network_header;
2617 }
2618 
2619 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2620 {
2621 	return skb->inner_transport_header - skb->inner_network_header;
2622 }
2623 
2624 static inline int skb_network_offset(const struct sk_buff *skb)
2625 {
2626 	return skb_network_header(skb) - skb->data;
2627 }
2628 
2629 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2630 {
2631 	return skb_inner_network_header(skb) - skb->data;
2632 }
2633 
2634 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2635 {
2636 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2637 }
2638 
2639 /*
2640  * CPUs often take a performance hit when accessing unaligned memory
2641  * locations. The actual performance hit varies, it can be small if the
2642  * hardware handles it or large if we have to take an exception and fix it
2643  * in software.
2644  *
2645  * Since an ethernet header is 14 bytes network drivers often end up with
2646  * the IP header at an unaligned offset. The IP header can be aligned by
2647  * shifting the start of the packet by 2 bytes. Drivers should do this
2648  * with:
2649  *
2650  * skb_reserve(skb, NET_IP_ALIGN);
2651  *
2652  * The downside to this alignment of the IP header is that the DMA is now
2653  * unaligned. On some architectures the cost of an unaligned DMA is high
2654  * and this cost outweighs the gains made by aligning the IP header.
2655  *
2656  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2657  * to be overridden.
2658  */
2659 #ifndef NET_IP_ALIGN
2660 #define NET_IP_ALIGN	2
2661 #endif
2662 
2663 /*
2664  * The networking layer reserves some headroom in skb data (via
2665  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2666  * the header has to grow. In the default case, if the header has to grow
2667  * 32 bytes or less we avoid the reallocation.
2668  *
2669  * Unfortunately this headroom changes the DMA alignment of the resulting
2670  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2671  * on some architectures. An architecture can override this value,
2672  * perhaps setting it to a cacheline in size (since that will maintain
2673  * cacheline alignment of the DMA). It must be a power of 2.
2674  *
2675  * Various parts of the networking layer expect at least 32 bytes of
2676  * headroom, you should not reduce this.
2677  *
2678  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2679  * to reduce average number of cache lines per packet.
2680  * get_rps_cpu() for example only access one 64 bytes aligned block :
2681  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2682  */
2683 #ifndef NET_SKB_PAD
2684 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2685 #endif
2686 
2687 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2688 
2689 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2690 {
2691 	if (WARN_ON(skb_is_nonlinear(skb)))
2692 		return;
2693 	skb->len = len;
2694 	skb_set_tail_pointer(skb, len);
2695 }
2696 
2697 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2698 {
2699 	__skb_set_length(skb, len);
2700 }
2701 
2702 void skb_trim(struct sk_buff *skb, unsigned int len);
2703 
2704 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2705 {
2706 	if (skb->data_len)
2707 		return ___pskb_trim(skb, len);
2708 	__skb_trim(skb, len);
2709 	return 0;
2710 }
2711 
2712 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2713 {
2714 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2715 }
2716 
2717 /**
2718  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2719  *	@skb: buffer to alter
2720  *	@len: new length
2721  *
2722  *	This is identical to pskb_trim except that the caller knows that
2723  *	the skb is not cloned so we should never get an error due to out-
2724  *	of-memory.
2725  */
2726 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2727 {
2728 	int err = pskb_trim(skb, len);
2729 	BUG_ON(err);
2730 }
2731 
2732 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2733 {
2734 	unsigned int diff = len - skb->len;
2735 
2736 	if (skb_tailroom(skb) < diff) {
2737 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2738 					   GFP_ATOMIC);
2739 		if (ret)
2740 			return ret;
2741 	}
2742 	__skb_set_length(skb, len);
2743 	return 0;
2744 }
2745 
2746 /**
2747  *	skb_orphan - orphan a buffer
2748  *	@skb: buffer to orphan
2749  *
2750  *	If a buffer currently has an owner then we call the owner's
2751  *	destructor function and make the @skb unowned. The buffer continues
2752  *	to exist but is no longer charged to its former owner.
2753  */
2754 static inline void skb_orphan(struct sk_buff *skb)
2755 {
2756 	if (skb->destructor) {
2757 		skb->destructor(skb);
2758 		skb->destructor = NULL;
2759 		skb->sk		= NULL;
2760 	} else {
2761 		BUG_ON(skb->sk);
2762 	}
2763 }
2764 
2765 /**
2766  *	skb_orphan_frags - orphan the frags contained in a buffer
2767  *	@skb: buffer to orphan frags from
2768  *	@gfp_mask: allocation mask for replacement pages
2769  *
2770  *	For each frag in the SKB which needs a destructor (i.e. has an
2771  *	owner) create a copy of that frag and release the original
2772  *	page by calling the destructor.
2773  */
2774 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2775 {
2776 	if (likely(!skb_zcopy(skb)))
2777 		return 0;
2778 	if (!skb_zcopy_is_nouarg(skb) &&
2779 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2780 		return 0;
2781 	return skb_copy_ubufs(skb, gfp_mask);
2782 }
2783 
2784 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2785 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2786 {
2787 	if (likely(!skb_zcopy(skb)))
2788 		return 0;
2789 	return skb_copy_ubufs(skb, gfp_mask);
2790 }
2791 
2792 /**
2793  *	__skb_queue_purge - empty a list
2794  *	@list: list to empty
2795  *
2796  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2797  *	the list and one reference dropped. This function does not take the
2798  *	list lock and the caller must hold the relevant locks to use it.
2799  */
2800 static inline void __skb_queue_purge(struct sk_buff_head *list)
2801 {
2802 	struct sk_buff *skb;
2803 	while ((skb = __skb_dequeue(list)) != NULL)
2804 		kfree_skb(skb);
2805 }
2806 void skb_queue_purge(struct sk_buff_head *list);
2807 
2808 unsigned int skb_rbtree_purge(struct rb_root *root);
2809 
2810 void *netdev_alloc_frag(unsigned int fragsz);
2811 
2812 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2813 				   gfp_t gfp_mask);
2814 
2815 /**
2816  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2817  *	@dev: network device to receive on
2818  *	@length: length to allocate
2819  *
2820  *	Allocate a new &sk_buff and assign it a usage count of one. The
2821  *	buffer has unspecified headroom built in. Users should allocate
2822  *	the headroom they think they need without accounting for the
2823  *	built in space. The built in space is used for optimisations.
2824  *
2825  *	%NULL is returned if there is no free memory. Although this function
2826  *	allocates memory it can be called from an interrupt.
2827  */
2828 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2829 					       unsigned int length)
2830 {
2831 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2832 }
2833 
2834 /* legacy helper around __netdev_alloc_skb() */
2835 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2836 					      gfp_t gfp_mask)
2837 {
2838 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2839 }
2840 
2841 /* legacy helper around netdev_alloc_skb() */
2842 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2843 {
2844 	return netdev_alloc_skb(NULL, length);
2845 }
2846 
2847 
2848 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2849 		unsigned int length, gfp_t gfp)
2850 {
2851 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2852 
2853 	if (NET_IP_ALIGN && skb)
2854 		skb_reserve(skb, NET_IP_ALIGN);
2855 	return skb;
2856 }
2857 
2858 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2859 		unsigned int length)
2860 {
2861 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2862 }
2863 
2864 static inline void skb_free_frag(void *addr)
2865 {
2866 	page_frag_free(addr);
2867 }
2868 
2869 void *napi_alloc_frag(unsigned int fragsz);
2870 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2871 				 unsigned int length, gfp_t gfp_mask);
2872 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2873 					     unsigned int length)
2874 {
2875 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2876 }
2877 void napi_consume_skb(struct sk_buff *skb, int budget);
2878 
2879 void __kfree_skb_flush(void);
2880 void __kfree_skb_defer(struct sk_buff *skb);
2881 
2882 /**
2883  * __dev_alloc_pages - allocate page for network Rx
2884  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2885  * @order: size of the allocation
2886  *
2887  * Allocate a new page.
2888  *
2889  * %NULL is returned if there is no free memory.
2890 */
2891 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2892 					     unsigned int order)
2893 {
2894 	/* This piece of code contains several assumptions.
2895 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2896 	 * 2.  The expectation is the user wants a compound page.
2897 	 * 3.  If requesting a order 0 page it will not be compound
2898 	 *     due to the check to see if order has a value in prep_new_page
2899 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2900 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2901 	 */
2902 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2903 
2904 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2905 }
2906 
2907 static inline struct page *dev_alloc_pages(unsigned int order)
2908 {
2909 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2910 }
2911 
2912 /**
2913  * __dev_alloc_page - allocate a page for network Rx
2914  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2915  *
2916  * Allocate a new page.
2917  *
2918  * %NULL is returned if there is no free memory.
2919  */
2920 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2921 {
2922 	return __dev_alloc_pages(gfp_mask, 0);
2923 }
2924 
2925 static inline struct page *dev_alloc_page(void)
2926 {
2927 	return dev_alloc_pages(0);
2928 }
2929 
2930 /**
2931  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2932  *	@page: The page that was allocated from skb_alloc_page
2933  *	@skb: The skb that may need pfmemalloc set
2934  */
2935 static inline void skb_propagate_pfmemalloc(struct page *page,
2936 					     struct sk_buff *skb)
2937 {
2938 	if (page_is_pfmemalloc(page))
2939 		skb->pfmemalloc = true;
2940 }
2941 
2942 /**
2943  * skb_frag_off() - Returns the offset of a skb fragment
2944  * @frag: the paged fragment
2945  */
2946 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2947 {
2948 	return frag->bv_offset;
2949 }
2950 
2951 /**
2952  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2953  * @frag: skb fragment
2954  * @delta: value to add
2955  */
2956 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2957 {
2958 	frag->bv_offset += delta;
2959 }
2960 
2961 /**
2962  * skb_frag_off_set() - Sets the offset of a skb fragment
2963  * @frag: skb fragment
2964  * @offset: offset of fragment
2965  */
2966 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2967 {
2968 	frag->bv_offset = offset;
2969 }
2970 
2971 /**
2972  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2973  * @fragto: skb fragment where offset is set
2974  * @fragfrom: skb fragment offset is copied from
2975  */
2976 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2977 				     const skb_frag_t *fragfrom)
2978 {
2979 	fragto->bv_offset = fragfrom->bv_offset;
2980 }
2981 
2982 /**
2983  * skb_frag_page - retrieve the page referred to by a paged fragment
2984  * @frag: the paged fragment
2985  *
2986  * Returns the &struct page associated with @frag.
2987  */
2988 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2989 {
2990 	return frag->bv_page;
2991 }
2992 
2993 /**
2994  * __skb_frag_ref - take an addition reference on a paged fragment.
2995  * @frag: the paged fragment
2996  *
2997  * Takes an additional reference on the paged fragment @frag.
2998  */
2999 static inline void __skb_frag_ref(skb_frag_t *frag)
3000 {
3001 	get_page(skb_frag_page(frag));
3002 }
3003 
3004 /**
3005  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3006  * @skb: the buffer
3007  * @f: the fragment offset.
3008  *
3009  * Takes an additional reference on the @f'th paged fragment of @skb.
3010  */
3011 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3012 {
3013 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3014 }
3015 
3016 /**
3017  * __skb_frag_unref - release a reference on a paged fragment.
3018  * @frag: the paged fragment
3019  *
3020  * Releases a reference on the paged fragment @frag.
3021  */
3022 static inline void __skb_frag_unref(skb_frag_t *frag)
3023 {
3024 	put_page(skb_frag_page(frag));
3025 }
3026 
3027 /**
3028  * skb_frag_unref - release a reference on a paged fragment of an skb.
3029  * @skb: the buffer
3030  * @f: the fragment offset
3031  *
3032  * Releases a reference on the @f'th paged fragment of @skb.
3033  */
3034 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3035 {
3036 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3037 }
3038 
3039 /**
3040  * skb_frag_address - gets the address of the data contained in a paged fragment
3041  * @frag: the paged fragment buffer
3042  *
3043  * Returns the address of the data within @frag. The page must already
3044  * be mapped.
3045  */
3046 static inline void *skb_frag_address(const skb_frag_t *frag)
3047 {
3048 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3049 }
3050 
3051 /**
3052  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3053  * @frag: the paged fragment buffer
3054  *
3055  * Returns the address of the data within @frag. Checks that the page
3056  * is mapped and returns %NULL otherwise.
3057  */
3058 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3059 {
3060 	void *ptr = page_address(skb_frag_page(frag));
3061 	if (unlikely(!ptr))
3062 		return NULL;
3063 
3064 	return ptr + skb_frag_off(frag);
3065 }
3066 
3067 /**
3068  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3069  * @fragto: skb fragment where page is set
3070  * @fragfrom: skb fragment page is copied from
3071  */
3072 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3073 				      const skb_frag_t *fragfrom)
3074 {
3075 	fragto->bv_page = fragfrom->bv_page;
3076 }
3077 
3078 /**
3079  * __skb_frag_set_page - sets the page contained in a paged fragment
3080  * @frag: the paged fragment
3081  * @page: the page to set
3082  *
3083  * Sets the fragment @frag to contain @page.
3084  */
3085 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3086 {
3087 	frag->bv_page = page;
3088 }
3089 
3090 /**
3091  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3092  * @skb: the buffer
3093  * @f: the fragment offset
3094  * @page: the page to set
3095  *
3096  * Sets the @f'th fragment of @skb to contain @page.
3097  */
3098 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3099 				     struct page *page)
3100 {
3101 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3102 }
3103 
3104 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3105 
3106 /**
3107  * skb_frag_dma_map - maps a paged fragment via the DMA API
3108  * @dev: the device to map the fragment to
3109  * @frag: the paged fragment to map
3110  * @offset: the offset within the fragment (starting at the
3111  *          fragment's own offset)
3112  * @size: the number of bytes to map
3113  * @dir: the direction of the mapping (``PCI_DMA_*``)
3114  *
3115  * Maps the page associated with @frag to @device.
3116  */
3117 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3118 					  const skb_frag_t *frag,
3119 					  size_t offset, size_t size,
3120 					  enum dma_data_direction dir)
3121 {
3122 	return dma_map_page(dev, skb_frag_page(frag),
3123 			    skb_frag_off(frag) + offset, size, dir);
3124 }
3125 
3126 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3127 					gfp_t gfp_mask)
3128 {
3129 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3130 }
3131 
3132 
3133 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3134 						  gfp_t gfp_mask)
3135 {
3136 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3137 }
3138 
3139 
3140 /**
3141  *	skb_clone_writable - is the header of a clone writable
3142  *	@skb: buffer to check
3143  *	@len: length up to which to write
3144  *
3145  *	Returns true if modifying the header part of the cloned buffer
3146  *	does not requires the data to be copied.
3147  */
3148 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3149 {
3150 	return !skb_header_cloned(skb) &&
3151 	       skb_headroom(skb) + len <= skb->hdr_len;
3152 }
3153 
3154 static inline int skb_try_make_writable(struct sk_buff *skb,
3155 					unsigned int write_len)
3156 {
3157 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3158 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3159 }
3160 
3161 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3162 			    int cloned)
3163 {
3164 	int delta = 0;
3165 
3166 	if (headroom > skb_headroom(skb))
3167 		delta = headroom - skb_headroom(skb);
3168 
3169 	if (delta || cloned)
3170 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3171 					GFP_ATOMIC);
3172 	return 0;
3173 }
3174 
3175 /**
3176  *	skb_cow - copy header of skb when it is required
3177  *	@skb: buffer to cow
3178  *	@headroom: needed headroom
3179  *
3180  *	If the skb passed lacks sufficient headroom or its data part
3181  *	is shared, data is reallocated. If reallocation fails, an error
3182  *	is returned and original skb is not changed.
3183  *
3184  *	The result is skb with writable area skb->head...skb->tail
3185  *	and at least @headroom of space at head.
3186  */
3187 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3188 {
3189 	return __skb_cow(skb, headroom, skb_cloned(skb));
3190 }
3191 
3192 /**
3193  *	skb_cow_head - skb_cow but only making the head writable
3194  *	@skb: buffer to cow
3195  *	@headroom: needed headroom
3196  *
3197  *	This function is identical to skb_cow except that we replace the
3198  *	skb_cloned check by skb_header_cloned.  It should be used when
3199  *	you only need to push on some header and do not need to modify
3200  *	the data.
3201  */
3202 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3203 {
3204 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3205 }
3206 
3207 /**
3208  *	skb_padto	- pad an skbuff up to a minimal size
3209  *	@skb: buffer to pad
3210  *	@len: minimal length
3211  *
3212  *	Pads up a buffer to ensure the trailing bytes exist and are
3213  *	blanked. If the buffer already contains sufficient data it
3214  *	is untouched. Otherwise it is extended. Returns zero on
3215  *	success. The skb is freed on error.
3216  */
3217 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3218 {
3219 	unsigned int size = skb->len;
3220 	if (likely(size >= len))
3221 		return 0;
3222 	return skb_pad(skb, len - size);
3223 }
3224 
3225 /**
3226  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3227  *	@skb: buffer to pad
3228  *	@len: minimal length
3229  *	@free_on_error: free buffer on error
3230  *
3231  *	Pads up a buffer to ensure the trailing bytes exist and are
3232  *	blanked. If the buffer already contains sufficient data it
3233  *	is untouched. Otherwise it is extended. Returns zero on
3234  *	success. The skb is freed on error if @free_on_error is true.
3235  */
3236 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3237 					       unsigned int len,
3238 					       bool free_on_error)
3239 {
3240 	unsigned int size = skb->len;
3241 
3242 	if (unlikely(size < len)) {
3243 		len -= size;
3244 		if (__skb_pad(skb, len, free_on_error))
3245 			return -ENOMEM;
3246 		__skb_put(skb, len);
3247 	}
3248 	return 0;
3249 }
3250 
3251 /**
3252  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3253  *	@skb: buffer to pad
3254  *	@len: minimal length
3255  *
3256  *	Pads up a buffer to ensure the trailing bytes exist and are
3257  *	blanked. If the buffer already contains sufficient data it
3258  *	is untouched. Otherwise it is extended. Returns zero on
3259  *	success. The skb is freed on error.
3260  */
3261 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3262 {
3263 	return __skb_put_padto(skb, len, true);
3264 }
3265 
3266 static inline int skb_add_data(struct sk_buff *skb,
3267 			       struct iov_iter *from, int copy)
3268 {
3269 	const int off = skb->len;
3270 
3271 	if (skb->ip_summed == CHECKSUM_NONE) {
3272 		__wsum csum = 0;
3273 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3274 					         &csum, from)) {
3275 			skb->csum = csum_block_add(skb->csum, csum, off);
3276 			return 0;
3277 		}
3278 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3279 		return 0;
3280 
3281 	__skb_trim(skb, off);
3282 	return -EFAULT;
3283 }
3284 
3285 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3286 				    const struct page *page, int off)
3287 {
3288 	if (skb_zcopy(skb))
3289 		return false;
3290 	if (i) {
3291 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3292 
3293 		return page == skb_frag_page(frag) &&
3294 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3295 	}
3296 	return false;
3297 }
3298 
3299 static inline int __skb_linearize(struct sk_buff *skb)
3300 {
3301 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3302 }
3303 
3304 /**
3305  *	skb_linearize - convert paged skb to linear one
3306  *	@skb: buffer to linarize
3307  *
3308  *	If there is no free memory -ENOMEM is returned, otherwise zero
3309  *	is returned and the old skb data released.
3310  */
3311 static inline int skb_linearize(struct sk_buff *skb)
3312 {
3313 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3314 }
3315 
3316 /**
3317  * skb_has_shared_frag - can any frag be overwritten
3318  * @skb: buffer to test
3319  *
3320  * Return true if the skb has at least one frag that might be modified
3321  * by an external entity (as in vmsplice()/sendfile())
3322  */
3323 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3324 {
3325 	return skb_is_nonlinear(skb) &&
3326 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3327 }
3328 
3329 /**
3330  *	skb_linearize_cow - make sure skb is linear and writable
3331  *	@skb: buffer to process
3332  *
3333  *	If there is no free memory -ENOMEM is returned, otherwise zero
3334  *	is returned and the old skb data released.
3335  */
3336 static inline int skb_linearize_cow(struct sk_buff *skb)
3337 {
3338 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3339 	       __skb_linearize(skb) : 0;
3340 }
3341 
3342 static __always_inline void
3343 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3344 		     unsigned int off)
3345 {
3346 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3347 		skb->csum = csum_block_sub(skb->csum,
3348 					   csum_partial(start, len, 0), off);
3349 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3350 		 skb_checksum_start_offset(skb) < 0)
3351 		skb->ip_summed = CHECKSUM_NONE;
3352 }
3353 
3354 /**
3355  *	skb_postpull_rcsum - update checksum for received skb after pull
3356  *	@skb: buffer to update
3357  *	@start: start of data before pull
3358  *	@len: length of data pulled
3359  *
3360  *	After doing a pull on a received packet, you need to call this to
3361  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3362  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3363  */
3364 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3365 				      const void *start, unsigned int len)
3366 {
3367 	__skb_postpull_rcsum(skb, start, len, 0);
3368 }
3369 
3370 static __always_inline void
3371 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3372 		     unsigned int off)
3373 {
3374 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3375 		skb->csum = csum_block_add(skb->csum,
3376 					   csum_partial(start, len, 0), off);
3377 }
3378 
3379 /**
3380  *	skb_postpush_rcsum - update checksum for received skb after push
3381  *	@skb: buffer to update
3382  *	@start: start of data after push
3383  *	@len: length of data pushed
3384  *
3385  *	After doing a push on a received packet, you need to call this to
3386  *	update the CHECKSUM_COMPLETE checksum.
3387  */
3388 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3389 				      const void *start, unsigned int len)
3390 {
3391 	__skb_postpush_rcsum(skb, start, len, 0);
3392 }
3393 
3394 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3395 
3396 /**
3397  *	skb_push_rcsum - push skb and update receive checksum
3398  *	@skb: buffer to update
3399  *	@len: length of data pulled
3400  *
3401  *	This function performs an skb_push on the packet and updates
3402  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3403  *	receive path processing instead of skb_push unless you know
3404  *	that the checksum difference is zero (e.g., a valid IP header)
3405  *	or you are setting ip_summed to CHECKSUM_NONE.
3406  */
3407 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3408 {
3409 	skb_push(skb, len);
3410 	skb_postpush_rcsum(skb, skb->data, len);
3411 	return skb->data;
3412 }
3413 
3414 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3415 /**
3416  *	pskb_trim_rcsum - trim received skb and update checksum
3417  *	@skb: buffer to trim
3418  *	@len: new length
3419  *
3420  *	This is exactly the same as pskb_trim except that it ensures the
3421  *	checksum of received packets are still valid after the operation.
3422  *	It can change skb pointers.
3423  */
3424 
3425 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3426 {
3427 	if (likely(len >= skb->len))
3428 		return 0;
3429 	return pskb_trim_rcsum_slow(skb, len);
3430 }
3431 
3432 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3433 {
3434 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3435 		skb->ip_summed = CHECKSUM_NONE;
3436 	__skb_trim(skb, len);
3437 	return 0;
3438 }
3439 
3440 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3441 {
3442 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3443 		skb->ip_summed = CHECKSUM_NONE;
3444 	return __skb_grow(skb, len);
3445 }
3446 
3447 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3448 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3449 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3450 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3451 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3452 
3453 #define skb_queue_walk(queue, skb) \
3454 		for (skb = (queue)->next;					\
3455 		     skb != (struct sk_buff *)(queue);				\
3456 		     skb = skb->next)
3457 
3458 #define skb_queue_walk_safe(queue, skb, tmp)					\
3459 		for (skb = (queue)->next, tmp = skb->next;			\
3460 		     skb != (struct sk_buff *)(queue);				\
3461 		     skb = tmp, tmp = skb->next)
3462 
3463 #define skb_queue_walk_from(queue, skb)						\
3464 		for (; skb != (struct sk_buff *)(queue);			\
3465 		     skb = skb->next)
3466 
3467 #define skb_rbtree_walk(skb, root)						\
3468 		for (skb = skb_rb_first(root); skb != NULL;			\
3469 		     skb = skb_rb_next(skb))
3470 
3471 #define skb_rbtree_walk_from(skb)						\
3472 		for (; skb != NULL;						\
3473 		     skb = skb_rb_next(skb))
3474 
3475 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3476 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3477 		     skb = tmp)
3478 
3479 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3480 		for (tmp = skb->next;						\
3481 		     skb != (struct sk_buff *)(queue);				\
3482 		     skb = tmp, tmp = skb->next)
3483 
3484 #define skb_queue_reverse_walk(queue, skb) \
3485 		for (skb = (queue)->prev;					\
3486 		     skb != (struct sk_buff *)(queue);				\
3487 		     skb = skb->prev)
3488 
3489 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3490 		for (skb = (queue)->prev, tmp = skb->prev;			\
3491 		     skb != (struct sk_buff *)(queue);				\
3492 		     skb = tmp, tmp = skb->prev)
3493 
3494 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3495 		for (tmp = skb->prev;						\
3496 		     skb != (struct sk_buff *)(queue);				\
3497 		     skb = tmp, tmp = skb->prev)
3498 
3499 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3500 {
3501 	return skb_shinfo(skb)->frag_list != NULL;
3502 }
3503 
3504 static inline void skb_frag_list_init(struct sk_buff *skb)
3505 {
3506 	skb_shinfo(skb)->frag_list = NULL;
3507 }
3508 
3509 #define skb_walk_frags(skb, iter)	\
3510 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3511 
3512 
3513 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3514 				int *err, long *timeo_p,
3515 				const struct sk_buff *skb);
3516 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3517 					  struct sk_buff_head *queue,
3518 					  unsigned int flags,
3519 					  int *off, int *err,
3520 					  struct sk_buff **last);
3521 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3522 					struct sk_buff_head *queue,
3523 					unsigned int flags, int *off, int *err,
3524 					struct sk_buff **last);
3525 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3526 				    struct sk_buff_head *sk_queue,
3527 				    unsigned int flags, int *off, int *err);
3528 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3529 				  int *err);
3530 __poll_t datagram_poll(struct file *file, struct socket *sock,
3531 			   struct poll_table_struct *wait);
3532 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3533 			   struct iov_iter *to, int size);
3534 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3535 					struct msghdr *msg, int size)
3536 {
3537 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3538 }
3539 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3540 				   struct msghdr *msg);
3541 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3542 			   struct iov_iter *to, int len,
3543 			   struct ahash_request *hash);
3544 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3545 				 struct iov_iter *from, int len);
3546 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3547 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3548 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3549 static inline void skb_free_datagram_locked(struct sock *sk,
3550 					    struct sk_buff *skb)
3551 {
3552 	__skb_free_datagram_locked(sk, skb, 0);
3553 }
3554 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3555 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3556 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3557 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3558 			      int len);
3559 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3560 		    struct pipe_inode_info *pipe, unsigned int len,
3561 		    unsigned int flags);
3562 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3563 			 int len);
3564 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3565 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3566 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3567 		 int len, int hlen);
3568 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3569 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3570 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3571 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3572 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3573 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3574 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3575 				 unsigned int offset);
3576 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3577 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3578 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3579 int skb_vlan_pop(struct sk_buff *skb);
3580 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3581 int skb_eth_pop(struct sk_buff *skb);
3582 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3583 		 const unsigned char *src);
3584 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3585 		  int mac_len, bool ethernet);
3586 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3587 		 bool ethernet);
3588 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3589 int skb_mpls_dec_ttl(struct sk_buff *skb);
3590 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3591 			     gfp_t gfp);
3592 
3593 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3594 {
3595 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3596 }
3597 
3598 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3599 {
3600 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3601 }
3602 
3603 struct skb_checksum_ops {
3604 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3605 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3606 };
3607 
3608 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3609 
3610 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3611 		      __wsum csum, const struct skb_checksum_ops *ops);
3612 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3613 		    __wsum csum);
3614 
3615 static inline void * __must_check
3616 __skb_header_pointer(const struct sk_buff *skb, int offset,
3617 		     int len, void *data, int hlen, void *buffer)
3618 {
3619 	if (hlen - offset >= len)
3620 		return data + offset;
3621 
3622 	if (!skb ||
3623 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3624 		return NULL;
3625 
3626 	return buffer;
3627 }
3628 
3629 static inline void * __must_check
3630 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3631 {
3632 	return __skb_header_pointer(skb, offset, len, skb->data,
3633 				    skb_headlen(skb), buffer);
3634 }
3635 
3636 /**
3637  *	skb_needs_linearize - check if we need to linearize a given skb
3638  *			      depending on the given device features.
3639  *	@skb: socket buffer to check
3640  *	@features: net device features
3641  *
3642  *	Returns true if either:
3643  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3644  *	2. skb is fragmented and the device does not support SG.
3645  */
3646 static inline bool skb_needs_linearize(struct sk_buff *skb,
3647 				       netdev_features_t features)
3648 {
3649 	return skb_is_nonlinear(skb) &&
3650 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3651 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3652 }
3653 
3654 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3655 					     void *to,
3656 					     const unsigned int len)
3657 {
3658 	memcpy(to, skb->data, len);
3659 }
3660 
3661 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3662 						    const int offset, void *to,
3663 						    const unsigned int len)
3664 {
3665 	memcpy(to, skb->data + offset, len);
3666 }
3667 
3668 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3669 					   const void *from,
3670 					   const unsigned int len)
3671 {
3672 	memcpy(skb->data, from, len);
3673 }
3674 
3675 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3676 						  const int offset,
3677 						  const void *from,
3678 						  const unsigned int len)
3679 {
3680 	memcpy(skb->data + offset, from, len);
3681 }
3682 
3683 void skb_init(void);
3684 
3685 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3686 {
3687 	return skb->tstamp;
3688 }
3689 
3690 /**
3691  *	skb_get_timestamp - get timestamp from a skb
3692  *	@skb: skb to get stamp from
3693  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3694  *
3695  *	Timestamps are stored in the skb as offsets to a base timestamp.
3696  *	This function converts the offset back to a struct timeval and stores
3697  *	it in stamp.
3698  */
3699 static inline void skb_get_timestamp(const struct sk_buff *skb,
3700 				     struct __kernel_old_timeval *stamp)
3701 {
3702 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3703 }
3704 
3705 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3706 					 struct __kernel_sock_timeval *stamp)
3707 {
3708 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3709 
3710 	stamp->tv_sec = ts.tv_sec;
3711 	stamp->tv_usec = ts.tv_nsec / 1000;
3712 }
3713 
3714 static inline void skb_get_timestampns(const struct sk_buff *skb,
3715 				       struct __kernel_old_timespec *stamp)
3716 {
3717 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3718 
3719 	stamp->tv_sec = ts.tv_sec;
3720 	stamp->tv_nsec = ts.tv_nsec;
3721 }
3722 
3723 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3724 					   struct __kernel_timespec *stamp)
3725 {
3726 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3727 
3728 	stamp->tv_sec = ts.tv_sec;
3729 	stamp->tv_nsec = ts.tv_nsec;
3730 }
3731 
3732 static inline void __net_timestamp(struct sk_buff *skb)
3733 {
3734 	skb->tstamp = ktime_get_real();
3735 }
3736 
3737 static inline ktime_t net_timedelta(ktime_t t)
3738 {
3739 	return ktime_sub(ktime_get_real(), t);
3740 }
3741 
3742 static inline ktime_t net_invalid_timestamp(void)
3743 {
3744 	return 0;
3745 }
3746 
3747 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3748 {
3749 	return skb_shinfo(skb)->meta_len;
3750 }
3751 
3752 static inline void *skb_metadata_end(const struct sk_buff *skb)
3753 {
3754 	return skb_mac_header(skb);
3755 }
3756 
3757 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3758 					  const struct sk_buff *skb_b,
3759 					  u8 meta_len)
3760 {
3761 	const void *a = skb_metadata_end(skb_a);
3762 	const void *b = skb_metadata_end(skb_b);
3763 	/* Using more efficient varaiant than plain call to memcmp(). */
3764 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3765 	u64 diffs = 0;
3766 
3767 	switch (meta_len) {
3768 #define __it(x, op) (x -= sizeof(u##op))
3769 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3770 	case 32: diffs |= __it_diff(a, b, 64);
3771 		fallthrough;
3772 	case 24: diffs |= __it_diff(a, b, 64);
3773 		fallthrough;
3774 	case 16: diffs |= __it_diff(a, b, 64);
3775 		fallthrough;
3776 	case  8: diffs |= __it_diff(a, b, 64);
3777 		break;
3778 	case 28: diffs |= __it_diff(a, b, 64);
3779 		fallthrough;
3780 	case 20: diffs |= __it_diff(a, b, 64);
3781 		fallthrough;
3782 	case 12: diffs |= __it_diff(a, b, 64);
3783 		fallthrough;
3784 	case  4: diffs |= __it_diff(a, b, 32);
3785 		break;
3786 	}
3787 	return diffs;
3788 #else
3789 	return memcmp(a - meta_len, b - meta_len, meta_len);
3790 #endif
3791 }
3792 
3793 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3794 					const struct sk_buff *skb_b)
3795 {
3796 	u8 len_a = skb_metadata_len(skb_a);
3797 	u8 len_b = skb_metadata_len(skb_b);
3798 
3799 	if (!(len_a | len_b))
3800 		return false;
3801 
3802 	return len_a != len_b ?
3803 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3804 }
3805 
3806 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3807 {
3808 	skb_shinfo(skb)->meta_len = meta_len;
3809 }
3810 
3811 static inline void skb_metadata_clear(struct sk_buff *skb)
3812 {
3813 	skb_metadata_set(skb, 0);
3814 }
3815 
3816 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3817 
3818 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3819 
3820 void skb_clone_tx_timestamp(struct sk_buff *skb);
3821 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3822 
3823 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3824 
3825 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3826 {
3827 }
3828 
3829 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3830 {
3831 	return false;
3832 }
3833 
3834 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3835 
3836 /**
3837  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3838  *
3839  * PHY drivers may accept clones of transmitted packets for
3840  * timestamping via their phy_driver.txtstamp method. These drivers
3841  * must call this function to return the skb back to the stack with a
3842  * timestamp.
3843  *
3844  * @skb: clone of the original outgoing packet
3845  * @hwtstamps: hardware time stamps
3846  *
3847  */
3848 void skb_complete_tx_timestamp(struct sk_buff *skb,
3849 			       struct skb_shared_hwtstamps *hwtstamps);
3850 
3851 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3852 		     struct skb_shared_hwtstamps *hwtstamps,
3853 		     struct sock *sk, int tstype);
3854 
3855 /**
3856  * skb_tstamp_tx - queue clone of skb with send time stamps
3857  * @orig_skb:	the original outgoing packet
3858  * @hwtstamps:	hardware time stamps, may be NULL if not available
3859  *
3860  * If the skb has a socket associated, then this function clones the
3861  * skb (thus sharing the actual data and optional structures), stores
3862  * the optional hardware time stamping information (if non NULL) or
3863  * generates a software time stamp (otherwise), then queues the clone
3864  * to the error queue of the socket.  Errors are silently ignored.
3865  */
3866 void skb_tstamp_tx(struct sk_buff *orig_skb,
3867 		   struct skb_shared_hwtstamps *hwtstamps);
3868 
3869 /**
3870  * skb_tx_timestamp() - Driver hook for transmit timestamping
3871  *
3872  * Ethernet MAC Drivers should call this function in their hard_xmit()
3873  * function immediately before giving the sk_buff to the MAC hardware.
3874  *
3875  * Specifically, one should make absolutely sure that this function is
3876  * called before TX completion of this packet can trigger.  Otherwise
3877  * the packet could potentially already be freed.
3878  *
3879  * @skb: A socket buffer.
3880  */
3881 static inline void skb_tx_timestamp(struct sk_buff *skb)
3882 {
3883 	skb_clone_tx_timestamp(skb);
3884 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3885 		skb_tstamp_tx(skb, NULL);
3886 }
3887 
3888 /**
3889  * skb_complete_wifi_ack - deliver skb with wifi status
3890  *
3891  * @skb: the original outgoing packet
3892  * @acked: ack status
3893  *
3894  */
3895 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3896 
3897 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3898 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3899 
3900 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3901 {
3902 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3903 		skb->csum_valid ||
3904 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3905 		 skb_checksum_start_offset(skb) >= 0));
3906 }
3907 
3908 /**
3909  *	skb_checksum_complete - Calculate checksum of an entire packet
3910  *	@skb: packet to process
3911  *
3912  *	This function calculates the checksum over the entire packet plus
3913  *	the value of skb->csum.  The latter can be used to supply the
3914  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3915  *	checksum.
3916  *
3917  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3918  *	this function can be used to verify that checksum on received
3919  *	packets.  In that case the function should return zero if the
3920  *	checksum is correct.  In particular, this function will return zero
3921  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3922  *	hardware has already verified the correctness of the checksum.
3923  */
3924 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3925 {
3926 	return skb_csum_unnecessary(skb) ?
3927 	       0 : __skb_checksum_complete(skb);
3928 }
3929 
3930 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3931 {
3932 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3933 		if (skb->csum_level == 0)
3934 			skb->ip_summed = CHECKSUM_NONE;
3935 		else
3936 			skb->csum_level--;
3937 	}
3938 }
3939 
3940 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3941 {
3942 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3943 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3944 			skb->csum_level++;
3945 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3946 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3947 		skb->csum_level = 0;
3948 	}
3949 }
3950 
3951 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3952 {
3953 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3954 		skb->ip_summed = CHECKSUM_NONE;
3955 		skb->csum_level = 0;
3956 	}
3957 }
3958 
3959 /* Check if we need to perform checksum complete validation.
3960  *
3961  * Returns true if checksum complete is needed, false otherwise
3962  * (either checksum is unnecessary or zero checksum is allowed).
3963  */
3964 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3965 						  bool zero_okay,
3966 						  __sum16 check)
3967 {
3968 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3969 		skb->csum_valid = 1;
3970 		__skb_decr_checksum_unnecessary(skb);
3971 		return false;
3972 	}
3973 
3974 	return true;
3975 }
3976 
3977 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3978  * in checksum_init.
3979  */
3980 #define CHECKSUM_BREAK 76
3981 
3982 /* Unset checksum-complete
3983  *
3984  * Unset checksum complete can be done when packet is being modified
3985  * (uncompressed for instance) and checksum-complete value is
3986  * invalidated.
3987  */
3988 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3989 {
3990 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3991 		skb->ip_summed = CHECKSUM_NONE;
3992 }
3993 
3994 /* Validate (init) checksum based on checksum complete.
3995  *
3996  * Return values:
3997  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3998  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3999  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4000  *   non-zero: value of invalid checksum
4001  *
4002  */
4003 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4004 						       bool complete,
4005 						       __wsum psum)
4006 {
4007 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4008 		if (!csum_fold(csum_add(psum, skb->csum))) {
4009 			skb->csum_valid = 1;
4010 			return 0;
4011 		}
4012 	}
4013 
4014 	skb->csum = psum;
4015 
4016 	if (complete || skb->len <= CHECKSUM_BREAK) {
4017 		__sum16 csum;
4018 
4019 		csum = __skb_checksum_complete(skb);
4020 		skb->csum_valid = !csum;
4021 		return csum;
4022 	}
4023 
4024 	return 0;
4025 }
4026 
4027 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4028 {
4029 	return 0;
4030 }
4031 
4032 /* Perform checksum validate (init). Note that this is a macro since we only
4033  * want to calculate the pseudo header which is an input function if necessary.
4034  * First we try to validate without any computation (checksum unnecessary) and
4035  * then calculate based on checksum complete calling the function to compute
4036  * pseudo header.
4037  *
4038  * Return values:
4039  *   0: checksum is validated or try to in skb_checksum_complete
4040  *   non-zero: value of invalid checksum
4041  */
4042 #define __skb_checksum_validate(skb, proto, complete,			\
4043 				zero_okay, check, compute_pseudo)	\
4044 ({									\
4045 	__sum16 __ret = 0;						\
4046 	skb->csum_valid = 0;						\
4047 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4048 		__ret = __skb_checksum_validate_complete(skb,		\
4049 				complete, compute_pseudo(skb, proto));	\
4050 	__ret;								\
4051 })
4052 
4053 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4054 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4055 
4056 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4057 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4058 
4059 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4060 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4061 
4062 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4063 					 compute_pseudo)		\
4064 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4065 
4066 #define skb_checksum_simple_validate(skb)				\
4067 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4068 
4069 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4070 {
4071 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4072 }
4073 
4074 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4075 {
4076 	skb->csum = ~pseudo;
4077 	skb->ip_summed = CHECKSUM_COMPLETE;
4078 }
4079 
4080 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4081 do {									\
4082 	if (__skb_checksum_convert_check(skb))				\
4083 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4084 } while (0)
4085 
4086 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4087 					      u16 start, u16 offset)
4088 {
4089 	skb->ip_summed = CHECKSUM_PARTIAL;
4090 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4091 	skb->csum_offset = offset - start;
4092 }
4093 
4094 /* Update skbuf and packet to reflect the remote checksum offload operation.
4095  * When called, ptr indicates the starting point for skb->csum when
4096  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4097  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4098  */
4099 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4100 				       int start, int offset, bool nopartial)
4101 {
4102 	__wsum delta;
4103 
4104 	if (!nopartial) {
4105 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4106 		return;
4107 	}
4108 
4109 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4110 		__skb_checksum_complete(skb);
4111 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4112 	}
4113 
4114 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4115 
4116 	/* Adjust skb->csum since we changed the packet */
4117 	skb->csum = csum_add(skb->csum, delta);
4118 }
4119 
4120 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4121 {
4122 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4123 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4124 #else
4125 	return NULL;
4126 #endif
4127 }
4128 
4129 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4130 {
4131 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4132 	return skb->_nfct;
4133 #else
4134 	return 0UL;
4135 #endif
4136 }
4137 
4138 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4139 {
4140 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4141 	skb->_nfct = nfct;
4142 #endif
4143 }
4144 
4145 #ifdef CONFIG_SKB_EXTENSIONS
4146 enum skb_ext_id {
4147 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4148 	SKB_EXT_BRIDGE_NF,
4149 #endif
4150 #ifdef CONFIG_XFRM
4151 	SKB_EXT_SEC_PATH,
4152 #endif
4153 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4154 	TC_SKB_EXT,
4155 #endif
4156 #if IS_ENABLED(CONFIG_MPTCP)
4157 	SKB_EXT_MPTCP,
4158 #endif
4159 	SKB_EXT_NUM, /* must be last */
4160 };
4161 
4162 /**
4163  *	struct skb_ext - sk_buff extensions
4164  *	@refcnt: 1 on allocation, deallocated on 0
4165  *	@offset: offset to add to @data to obtain extension address
4166  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4167  *	@data: start of extension data, variable sized
4168  *
4169  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4170  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4171  */
4172 struct skb_ext {
4173 	refcount_t refcnt;
4174 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4175 	u8 chunks;		/* same */
4176 	char data[] __aligned(8);
4177 };
4178 
4179 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4180 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4181 		    struct skb_ext *ext);
4182 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4183 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4184 void __skb_ext_put(struct skb_ext *ext);
4185 
4186 static inline void skb_ext_put(struct sk_buff *skb)
4187 {
4188 	if (skb->active_extensions)
4189 		__skb_ext_put(skb->extensions);
4190 }
4191 
4192 static inline void __skb_ext_copy(struct sk_buff *dst,
4193 				  const struct sk_buff *src)
4194 {
4195 	dst->active_extensions = src->active_extensions;
4196 
4197 	if (src->active_extensions) {
4198 		struct skb_ext *ext = src->extensions;
4199 
4200 		refcount_inc(&ext->refcnt);
4201 		dst->extensions = ext;
4202 	}
4203 }
4204 
4205 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4206 {
4207 	skb_ext_put(dst);
4208 	__skb_ext_copy(dst, src);
4209 }
4210 
4211 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4212 {
4213 	return !!ext->offset[i];
4214 }
4215 
4216 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4217 {
4218 	return skb->active_extensions & (1 << id);
4219 }
4220 
4221 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4222 {
4223 	if (skb_ext_exist(skb, id))
4224 		__skb_ext_del(skb, id);
4225 }
4226 
4227 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4228 {
4229 	if (skb_ext_exist(skb, id)) {
4230 		struct skb_ext *ext = skb->extensions;
4231 
4232 		return (void *)ext + (ext->offset[id] << 3);
4233 	}
4234 
4235 	return NULL;
4236 }
4237 
4238 static inline void skb_ext_reset(struct sk_buff *skb)
4239 {
4240 	if (unlikely(skb->active_extensions)) {
4241 		__skb_ext_put(skb->extensions);
4242 		skb->active_extensions = 0;
4243 	}
4244 }
4245 
4246 static inline bool skb_has_extensions(struct sk_buff *skb)
4247 {
4248 	return unlikely(skb->active_extensions);
4249 }
4250 #else
4251 static inline void skb_ext_put(struct sk_buff *skb) {}
4252 static inline void skb_ext_reset(struct sk_buff *skb) {}
4253 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4254 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4255 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4256 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4257 #endif /* CONFIG_SKB_EXTENSIONS */
4258 
4259 static inline void nf_reset_ct(struct sk_buff *skb)
4260 {
4261 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4262 	nf_conntrack_put(skb_nfct(skb));
4263 	skb->_nfct = 0;
4264 #endif
4265 }
4266 
4267 static inline void nf_reset_trace(struct sk_buff *skb)
4268 {
4269 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4270 	skb->nf_trace = 0;
4271 #endif
4272 }
4273 
4274 static inline void ipvs_reset(struct sk_buff *skb)
4275 {
4276 #if IS_ENABLED(CONFIG_IP_VS)
4277 	skb->ipvs_property = 0;
4278 #endif
4279 }
4280 
4281 /* Note: This doesn't put any conntrack info in dst. */
4282 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4283 			     bool copy)
4284 {
4285 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4286 	dst->_nfct = src->_nfct;
4287 	nf_conntrack_get(skb_nfct(src));
4288 #endif
4289 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4290 	if (copy)
4291 		dst->nf_trace = src->nf_trace;
4292 #endif
4293 }
4294 
4295 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4296 {
4297 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4298 	nf_conntrack_put(skb_nfct(dst));
4299 #endif
4300 	__nf_copy(dst, src, true);
4301 }
4302 
4303 #ifdef CONFIG_NETWORK_SECMARK
4304 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4305 {
4306 	to->secmark = from->secmark;
4307 }
4308 
4309 static inline void skb_init_secmark(struct sk_buff *skb)
4310 {
4311 	skb->secmark = 0;
4312 }
4313 #else
4314 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4315 { }
4316 
4317 static inline void skb_init_secmark(struct sk_buff *skb)
4318 { }
4319 #endif
4320 
4321 static inline int secpath_exists(const struct sk_buff *skb)
4322 {
4323 #ifdef CONFIG_XFRM
4324 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4325 #else
4326 	return 0;
4327 #endif
4328 }
4329 
4330 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4331 {
4332 	return !skb->destructor &&
4333 		!secpath_exists(skb) &&
4334 		!skb_nfct(skb) &&
4335 		!skb->_skb_refdst &&
4336 		!skb_has_frag_list(skb);
4337 }
4338 
4339 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4340 {
4341 	skb->queue_mapping = queue_mapping;
4342 }
4343 
4344 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4345 {
4346 	return skb->queue_mapping;
4347 }
4348 
4349 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4350 {
4351 	to->queue_mapping = from->queue_mapping;
4352 }
4353 
4354 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4355 {
4356 	skb->queue_mapping = rx_queue + 1;
4357 }
4358 
4359 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4360 {
4361 	return skb->queue_mapping - 1;
4362 }
4363 
4364 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4365 {
4366 	return skb->queue_mapping != 0;
4367 }
4368 
4369 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4370 {
4371 	skb->dst_pending_confirm = val;
4372 }
4373 
4374 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4375 {
4376 	return skb->dst_pending_confirm != 0;
4377 }
4378 
4379 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4380 {
4381 #ifdef CONFIG_XFRM
4382 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4383 #else
4384 	return NULL;
4385 #endif
4386 }
4387 
4388 /* Keeps track of mac header offset relative to skb->head.
4389  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4390  * For non-tunnel skb it points to skb_mac_header() and for
4391  * tunnel skb it points to outer mac header.
4392  * Keeps track of level of encapsulation of network headers.
4393  */
4394 struct skb_gso_cb {
4395 	union {
4396 		int	mac_offset;
4397 		int	data_offset;
4398 	};
4399 	int	encap_level;
4400 	__wsum	csum;
4401 	__u16	csum_start;
4402 };
4403 #define SKB_GSO_CB_OFFSET	32
4404 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4405 
4406 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4407 {
4408 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4409 		SKB_GSO_CB(inner_skb)->mac_offset;
4410 }
4411 
4412 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4413 {
4414 	int new_headroom, headroom;
4415 	int ret;
4416 
4417 	headroom = skb_headroom(skb);
4418 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4419 	if (ret)
4420 		return ret;
4421 
4422 	new_headroom = skb_headroom(skb);
4423 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4424 	return 0;
4425 }
4426 
4427 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4428 {
4429 	/* Do not update partial checksums if remote checksum is enabled. */
4430 	if (skb->remcsum_offload)
4431 		return;
4432 
4433 	SKB_GSO_CB(skb)->csum = res;
4434 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4435 }
4436 
4437 /* Compute the checksum for a gso segment. First compute the checksum value
4438  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4439  * then add in skb->csum (checksum from csum_start to end of packet).
4440  * skb->csum and csum_start are then updated to reflect the checksum of the
4441  * resultant packet starting from the transport header-- the resultant checksum
4442  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4443  * header.
4444  */
4445 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4446 {
4447 	unsigned char *csum_start = skb_transport_header(skb);
4448 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4449 	__wsum partial = SKB_GSO_CB(skb)->csum;
4450 
4451 	SKB_GSO_CB(skb)->csum = res;
4452 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4453 
4454 	return csum_fold(csum_partial(csum_start, plen, partial));
4455 }
4456 
4457 static inline bool skb_is_gso(const struct sk_buff *skb)
4458 {
4459 	return skb_shinfo(skb)->gso_size;
4460 }
4461 
4462 /* Note: Should be called only if skb_is_gso(skb) is true */
4463 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4464 {
4465 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4466 }
4467 
4468 /* Note: Should be called only if skb_is_gso(skb) is true */
4469 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4470 {
4471 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4472 }
4473 
4474 /* Note: Should be called only if skb_is_gso(skb) is true */
4475 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4476 {
4477 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4478 }
4479 
4480 static inline void skb_gso_reset(struct sk_buff *skb)
4481 {
4482 	skb_shinfo(skb)->gso_size = 0;
4483 	skb_shinfo(skb)->gso_segs = 0;
4484 	skb_shinfo(skb)->gso_type = 0;
4485 }
4486 
4487 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4488 					 u16 increment)
4489 {
4490 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4491 		return;
4492 	shinfo->gso_size += increment;
4493 }
4494 
4495 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4496 					 u16 decrement)
4497 {
4498 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4499 		return;
4500 	shinfo->gso_size -= decrement;
4501 }
4502 
4503 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4504 
4505 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4506 {
4507 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4508 	 * wanted then gso_type will be set. */
4509 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4510 
4511 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4512 	    unlikely(shinfo->gso_type == 0)) {
4513 		__skb_warn_lro_forwarding(skb);
4514 		return true;
4515 	}
4516 	return false;
4517 }
4518 
4519 static inline void skb_forward_csum(struct sk_buff *skb)
4520 {
4521 	/* Unfortunately we don't support this one.  Any brave souls? */
4522 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4523 		skb->ip_summed = CHECKSUM_NONE;
4524 }
4525 
4526 /**
4527  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4528  * @skb: skb to check
4529  *
4530  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4531  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4532  * use this helper, to document places where we make this assertion.
4533  */
4534 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4535 {
4536 #ifdef DEBUG
4537 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4538 #endif
4539 }
4540 
4541 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4542 
4543 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4544 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4545 				     unsigned int transport_len,
4546 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4547 
4548 /**
4549  * skb_head_is_locked - Determine if the skb->head is locked down
4550  * @skb: skb to check
4551  *
4552  * The head on skbs build around a head frag can be removed if they are
4553  * not cloned.  This function returns true if the skb head is locked down
4554  * due to either being allocated via kmalloc, or by being a clone with
4555  * multiple references to the head.
4556  */
4557 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4558 {
4559 	return !skb->head_frag || skb_cloned(skb);
4560 }
4561 
4562 /* Local Checksum Offload.
4563  * Compute outer checksum based on the assumption that the
4564  * inner checksum will be offloaded later.
4565  * See Documentation/networking/checksum-offloads.rst for
4566  * explanation of how this works.
4567  * Fill in outer checksum adjustment (e.g. with sum of outer
4568  * pseudo-header) before calling.
4569  * Also ensure that inner checksum is in linear data area.
4570  */
4571 static inline __wsum lco_csum(struct sk_buff *skb)
4572 {
4573 	unsigned char *csum_start = skb_checksum_start(skb);
4574 	unsigned char *l4_hdr = skb_transport_header(skb);
4575 	__wsum partial;
4576 
4577 	/* Start with complement of inner checksum adjustment */
4578 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4579 						    skb->csum_offset));
4580 
4581 	/* Add in checksum of our headers (incl. outer checksum
4582 	 * adjustment filled in by caller) and return result.
4583 	 */
4584 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4585 }
4586 
4587 static inline bool skb_is_redirected(const struct sk_buff *skb)
4588 {
4589 #ifdef CONFIG_NET_REDIRECT
4590 	return skb->redirected;
4591 #else
4592 	return false;
4593 #endif
4594 }
4595 
4596 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4597 {
4598 #ifdef CONFIG_NET_REDIRECT
4599 	skb->redirected = 1;
4600 	skb->from_ingress = from_ingress;
4601 	if (skb->from_ingress)
4602 		skb->tstamp = 0;
4603 #endif
4604 }
4605 
4606 static inline void skb_reset_redirect(struct sk_buff *skb)
4607 {
4608 #ifdef CONFIG_NET_REDIRECT
4609 	skb->redirected = 0;
4610 #endif
4611 }
4612 
4613 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4614 				       const u64 kcov_handle)
4615 {
4616 #ifdef CONFIG_KCOV
4617 	skb->kcov_handle = kcov_handle;
4618 #endif
4619 }
4620 
4621 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4622 {
4623 #ifdef CONFIG_KCOV
4624 	return skb->kcov_handle;
4625 #else
4626 	return 0;
4627 #endif
4628 }
4629 
4630 #endif	/* __KERNEL__ */
4631 #endif	/* _LINUX_SKBUFF_H */
4632