xref: /linux-6.15/include/linux/skbuff.h (revision fbc1ac9d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281  * ovs recirc_id. It will be set to the current chain by tc
282  * and read by ovs to recirc_id.
283  */
284 struct tc_skb_ext {
285 	__u32 chain;
286 	__u16 mru;
287 };
288 #endif
289 
290 struct sk_buff_head {
291 	/* These two members must be first. */
292 	struct sk_buff	*next;
293 	struct sk_buff	*prev;
294 
295 	__u32		qlen;
296 	spinlock_t	lock;
297 };
298 
299 struct sk_buff;
300 
301 /* To allow 64K frame to be packed as single skb without frag_list we
302  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
303  * buffers which do not start on a page boundary.
304  *
305  * Since GRO uses frags we allocate at least 16 regardless of page
306  * size.
307  */
308 #if (65536/PAGE_SIZE + 1) < 16
309 #define MAX_SKB_FRAGS 16UL
310 #else
311 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
312 #endif
313 extern int sysctl_max_skb_frags;
314 
315 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
316  * segment using its current segmentation instead.
317  */
318 #define GSO_BY_FRAGS	0xFFFF
319 
320 typedef struct bio_vec skb_frag_t;
321 
322 /**
323  * skb_frag_size() - Returns the size of a skb fragment
324  * @frag: skb fragment
325  */
326 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
327 {
328 	return frag->bv_len;
329 }
330 
331 /**
332  * skb_frag_size_set() - Sets the size of a skb fragment
333  * @frag: skb fragment
334  * @size: size of fragment
335  */
336 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
337 {
338 	frag->bv_len = size;
339 }
340 
341 /**
342  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
343  * @frag: skb fragment
344  * @delta: value to add
345  */
346 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
347 {
348 	frag->bv_len += delta;
349 }
350 
351 /**
352  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
353  * @frag: skb fragment
354  * @delta: value to subtract
355  */
356 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
357 {
358 	frag->bv_len -= delta;
359 }
360 
361 /**
362  * skb_frag_must_loop - Test if %p is a high memory page
363  * @p: fragment's page
364  */
365 static inline bool skb_frag_must_loop(struct page *p)
366 {
367 #if defined(CONFIG_HIGHMEM)
368 	if (PageHighMem(p))
369 		return true;
370 #endif
371 	return false;
372 }
373 
374 /**
375  *	skb_frag_foreach_page - loop over pages in a fragment
376  *
377  *	@f:		skb frag to operate on
378  *	@f_off:		offset from start of f->bv_page
379  *	@f_len:		length from f_off to loop over
380  *	@p:		(temp var) current page
381  *	@p_off:		(temp var) offset from start of current page,
382  *	                           non-zero only on first page.
383  *	@p_len:		(temp var) length in current page,
384  *				   < PAGE_SIZE only on first and last page.
385  *	@copied:	(temp var) length so far, excluding current p_len.
386  *
387  *	A fragment can hold a compound page, in which case per-page
388  *	operations, notably kmap_atomic, must be called for each
389  *	regular page.
390  */
391 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
392 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
393 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
394 	     p_len = skb_frag_must_loop(p) ?				\
395 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
396 	     copied = 0;						\
397 	     copied < f_len;						\
398 	     copied += p_len, p++, p_off = 0,				\
399 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
400 
401 #define HAVE_HW_TIME_STAMP
402 
403 /**
404  * struct skb_shared_hwtstamps - hardware time stamps
405  * @hwtstamp:	hardware time stamp transformed into duration
406  *		since arbitrary point in time
407  *
408  * Software time stamps generated by ktime_get_real() are stored in
409  * skb->tstamp.
410  *
411  * hwtstamps can only be compared against other hwtstamps from
412  * the same device.
413  *
414  * This structure is attached to packets as part of the
415  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
416  */
417 struct skb_shared_hwtstamps {
418 	ktime_t	hwtstamp;
419 };
420 
421 /* Definitions for tx_flags in struct skb_shared_info */
422 enum {
423 	/* generate hardware time stamp */
424 	SKBTX_HW_TSTAMP = 1 << 0,
425 
426 	/* generate software time stamp when queueing packet to NIC */
427 	SKBTX_SW_TSTAMP = 1 << 1,
428 
429 	/* device driver is going to provide hardware time stamp */
430 	SKBTX_IN_PROGRESS = 1 << 2,
431 
432 	/* device driver supports TX zero-copy buffers */
433 	SKBTX_DEV_ZEROCOPY = 1 << 3,
434 
435 	/* generate wifi status information (where possible) */
436 	SKBTX_WIFI_STATUS = 1 << 4,
437 
438 	/* This indicates at least one fragment might be overwritten
439 	 * (as in vmsplice(), sendfile() ...)
440 	 * If we need to compute a TX checksum, we'll need to copy
441 	 * all frags to avoid possible bad checksum
442 	 */
443 	SKBTX_SHARED_FRAG = 1 << 5,
444 
445 	/* generate software time stamp when entering packet scheduling */
446 	SKBTX_SCHED_TSTAMP = 1 << 6,
447 };
448 
449 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
450 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
451 				 SKBTX_SCHED_TSTAMP)
452 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
453 
454 /*
455  * The callback notifies userspace to release buffers when skb DMA is done in
456  * lower device, the skb last reference should be 0 when calling this.
457  * The zerocopy_success argument is true if zero copy transmit occurred,
458  * false on data copy or out of memory error caused by data copy attempt.
459  * The ctx field is used to track device context.
460  * The desc field is used to track userspace buffer index.
461  */
462 struct ubuf_info {
463 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
464 	union {
465 		struct {
466 			unsigned long desc;
467 			void *ctx;
468 		};
469 		struct {
470 			u32 id;
471 			u16 len;
472 			u16 zerocopy:1;
473 			u32 bytelen;
474 		};
475 	};
476 	refcount_t refcnt;
477 
478 	struct mmpin {
479 		struct user_struct *user;
480 		unsigned int num_pg;
481 	} mmp;
482 };
483 
484 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
485 
486 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
487 void mm_unaccount_pinned_pages(struct mmpin *mmp);
488 
489 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
490 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
491 					struct ubuf_info *uarg);
492 
493 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
494 {
495 	refcount_inc(&uarg->refcnt);
496 }
497 
498 void sock_zerocopy_put(struct ubuf_info *uarg);
499 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
500 
501 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
502 
503 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
504 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
505 			     struct msghdr *msg, int len,
506 			     struct ubuf_info *uarg);
507 
508 /* This data is invariant across clones and lives at
509  * the end of the header data, ie. at skb->end.
510  */
511 struct skb_shared_info {
512 	__u8		__unused;
513 	__u8		meta_len;
514 	__u8		nr_frags;
515 	__u8		tx_flags;
516 	unsigned short	gso_size;
517 	/* Warning: this field is not always filled in (UFO)! */
518 	unsigned short	gso_segs;
519 	struct sk_buff	*frag_list;
520 	struct skb_shared_hwtstamps hwtstamps;
521 	unsigned int	gso_type;
522 	u32		tskey;
523 
524 	/*
525 	 * Warning : all fields before dataref are cleared in __alloc_skb()
526 	 */
527 	atomic_t	dataref;
528 
529 	/* Intermediate layers must ensure that destructor_arg
530 	 * remains valid until skb destructor */
531 	void *		destructor_arg;
532 
533 	/* must be last field, see pskb_expand_head() */
534 	skb_frag_t	frags[MAX_SKB_FRAGS];
535 };
536 
537 /* We divide dataref into two halves.  The higher 16 bits hold references
538  * to the payload part of skb->data.  The lower 16 bits hold references to
539  * the entire skb->data.  A clone of a headerless skb holds the length of
540  * the header in skb->hdr_len.
541  *
542  * All users must obey the rule that the skb->data reference count must be
543  * greater than or equal to the payload reference count.
544  *
545  * Holding a reference to the payload part means that the user does not
546  * care about modifications to the header part of skb->data.
547  */
548 #define SKB_DATAREF_SHIFT 16
549 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
550 
551 
552 enum {
553 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
554 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
555 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
556 };
557 
558 enum {
559 	SKB_GSO_TCPV4 = 1 << 0,
560 
561 	/* This indicates the skb is from an untrusted source. */
562 	SKB_GSO_DODGY = 1 << 1,
563 
564 	/* This indicates the tcp segment has CWR set. */
565 	SKB_GSO_TCP_ECN = 1 << 2,
566 
567 	SKB_GSO_TCP_FIXEDID = 1 << 3,
568 
569 	SKB_GSO_TCPV6 = 1 << 4,
570 
571 	SKB_GSO_FCOE = 1 << 5,
572 
573 	SKB_GSO_GRE = 1 << 6,
574 
575 	SKB_GSO_GRE_CSUM = 1 << 7,
576 
577 	SKB_GSO_IPXIP4 = 1 << 8,
578 
579 	SKB_GSO_IPXIP6 = 1 << 9,
580 
581 	SKB_GSO_UDP_TUNNEL = 1 << 10,
582 
583 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
584 
585 	SKB_GSO_PARTIAL = 1 << 12,
586 
587 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
588 
589 	SKB_GSO_SCTP = 1 << 14,
590 
591 	SKB_GSO_ESP = 1 << 15,
592 
593 	SKB_GSO_UDP = 1 << 16,
594 
595 	SKB_GSO_UDP_L4 = 1 << 17,
596 
597 	SKB_GSO_FRAGLIST = 1 << 18,
598 };
599 
600 #if BITS_PER_LONG > 32
601 #define NET_SKBUFF_DATA_USES_OFFSET 1
602 #endif
603 
604 #ifdef NET_SKBUFF_DATA_USES_OFFSET
605 typedef unsigned int sk_buff_data_t;
606 #else
607 typedef unsigned char *sk_buff_data_t;
608 #endif
609 
610 /**
611  *	struct sk_buff - socket buffer
612  *	@next: Next buffer in list
613  *	@prev: Previous buffer in list
614  *	@tstamp: Time we arrived/left
615  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
616  *		for retransmit timer
617  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
618  *	@list: queue head
619  *	@sk: Socket we are owned by
620  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
621  *		fragmentation management
622  *	@dev: Device we arrived on/are leaving by
623  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
624  *	@cb: Control buffer. Free for use by every layer. Put private vars here
625  *	@_skb_refdst: destination entry (with norefcount bit)
626  *	@sp: the security path, used for xfrm
627  *	@len: Length of actual data
628  *	@data_len: Data length
629  *	@mac_len: Length of link layer header
630  *	@hdr_len: writable header length of cloned skb
631  *	@csum: Checksum (must include start/offset pair)
632  *	@csum_start: Offset from skb->head where checksumming should start
633  *	@csum_offset: Offset from csum_start where checksum should be stored
634  *	@priority: Packet queueing priority
635  *	@ignore_df: allow local fragmentation
636  *	@cloned: Head may be cloned (check refcnt to be sure)
637  *	@ip_summed: Driver fed us an IP checksum
638  *	@nohdr: Payload reference only, must not modify header
639  *	@pkt_type: Packet class
640  *	@fclone: skbuff clone status
641  *	@ipvs_property: skbuff is owned by ipvs
642  *	@inner_protocol_type: whether the inner protocol is
643  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
644  *	@remcsum_offload: remote checksum offload is enabled
645  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
646  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
647  *	@tc_skip_classify: do not classify packet. set by IFB device
648  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
649  *	@redirected: packet was redirected by packet classifier
650  *	@from_ingress: packet was redirected from the ingress path
651  *	@peeked: this packet has been seen already, so stats have been
652  *		done for it, don't do them again
653  *	@nf_trace: netfilter packet trace flag
654  *	@protocol: Packet protocol from driver
655  *	@destructor: Destruct function
656  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
657  *	@_nfct: Associated connection, if any (with nfctinfo bits)
658  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
659  *	@skb_iif: ifindex of device we arrived on
660  *	@tc_index: Traffic control index
661  *	@hash: the packet hash
662  *	@queue_mapping: Queue mapping for multiqueue devices
663  *	@head_frag: skb was allocated from page fragments,
664  *		not allocated by kmalloc() or vmalloc().
665  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
666  *	@active_extensions: active extensions (skb_ext_id types)
667  *	@ndisc_nodetype: router type (from link layer)
668  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
669  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
670  *		ports.
671  *	@sw_hash: indicates hash was computed in software stack
672  *	@wifi_acked_valid: wifi_acked was set
673  *	@wifi_acked: whether frame was acked on wifi or not
674  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
675  *	@encapsulation: indicates the inner headers in the skbuff are valid
676  *	@encap_hdr_csum: software checksum is needed
677  *	@csum_valid: checksum is already valid
678  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
679  *	@csum_complete_sw: checksum was completed by software
680  *	@csum_level: indicates the number of consecutive checksums found in
681  *		the packet minus one that have been verified as
682  *		CHECKSUM_UNNECESSARY (max 3)
683  *	@dst_pending_confirm: need to confirm neighbour
684  *	@decrypted: Decrypted SKB
685  *	@napi_id: id of the NAPI struct this skb came from
686  *	@sender_cpu: (aka @napi_id) source CPU in XPS
687  *	@secmark: security marking
688  *	@mark: Generic packet mark
689  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
690  *		at the tail of an sk_buff
691  *	@vlan_present: VLAN tag is present
692  *	@vlan_proto: vlan encapsulation protocol
693  *	@vlan_tci: vlan tag control information
694  *	@inner_protocol: Protocol (encapsulation)
695  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
696  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
697  *	@inner_transport_header: Inner transport layer header (encapsulation)
698  *	@inner_network_header: Network layer header (encapsulation)
699  *	@inner_mac_header: Link layer header (encapsulation)
700  *	@transport_header: Transport layer header
701  *	@network_header: Network layer header
702  *	@mac_header: Link layer header
703  *	@tail: Tail pointer
704  *	@end: End pointer
705  *	@head: Head of buffer
706  *	@data: Data head pointer
707  *	@truesize: Buffer size
708  *	@users: User count - see {datagram,tcp}.c
709  *	@extensions: allocated extensions, valid if active_extensions is nonzero
710  */
711 
712 struct sk_buff {
713 	union {
714 		struct {
715 			/* These two members must be first. */
716 			struct sk_buff		*next;
717 			struct sk_buff		*prev;
718 
719 			union {
720 				struct net_device	*dev;
721 				/* Some protocols might use this space to store information,
722 				 * while device pointer would be NULL.
723 				 * UDP receive path is one user.
724 				 */
725 				unsigned long		dev_scratch;
726 			};
727 		};
728 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
729 		struct list_head	list;
730 	};
731 
732 	union {
733 		struct sock		*sk;
734 		int			ip_defrag_offset;
735 	};
736 
737 	union {
738 		ktime_t		tstamp;
739 		u64		skb_mstamp_ns; /* earliest departure time */
740 	};
741 	/*
742 	 * This is the control buffer. It is free to use for every
743 	 * layer. Please put your private variables there. If you
744 	 * want to keep them across layers you have to do a skb_clone()
745 	 * first. This is owned by whoever has the skb queued ATM.
746 	 */
747 	char			cb[48] __aligned(8);
748 
749 	union {
750 		struct {
751 			unsigned long	_skb_refdst;
752 			void		(*destructor)(struct sk_buff *skb);
753 		};
754 		struct list_head	tcp_tsorted_anchor;
755 	};
756 
757 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
758 	unsigned long		 _nfct;
759 #endif
760 	unsigned int		len,
761 				data_len;
762 	__u16			mac_len,
763 				hdr_len;
764 
765 	/* Following fields are _not_ copied in __copy_skb_header()
766 	 * Note that queue_mapping is here mostly to fill a hole.
767 	 */
768 	__u16			queue_mapping;
769 
770 /* if you move cloned around you also must adapt those constants */
771 #ifdef __BIG_ENDIAN_BITFIELD
772 #define CLONED_MASK	(1 << 7)
773 #else
774 #define CLONED_MASK	1
775 #endif
776 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
777 
778 	/* private: */
779 	__u8			__cloned_offset[0];
780 	/* public: */
781 	__u8			cloned:1,
782 				nohdr:1,
783 				fclone:2,
784 				peeked:1,
785 				head_frag:1,
786 				pfmemalloc:1;
787 #ifdef CONFIG_SKB_EXTENSIONS
788 	__u8			active_extensions;
789 #endif
790 	/* fields enclosed in headers_start/headers_end are copied
791 	 * using a single memcpy() in __copy_skb_header()
792 	 */
793 	/* private: */
794 	__u32			headers_start[0];
795 	/* public: */
796 
797 /* if you move pkt_type around you also must adapt those constants */
798 #ifdef __BIG_ENDIAN_BITFIELD
799 #define PKT_TYPE_MAX	(7 << 5)
800 #else
801 #define PKT_TYPE_MAX	7
802 #endif
803 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
804 
805 	/* private: */
806 	__u8			__pkt_type_offset[0];
807 	/* public: */
808 	__u8			pkt_type:3;
809 	__u8			ignore_df:1;
810 	__u8			nf_trace:1;
811 	__u8			ip_summed:2;
812 	__u8			ooo_okay:1;
813 
814 	__u8			l4_hash:1;
815 	__u8			sw_hash:1;
816 	__u8			wifi_acked_valid:1;
817 	__u8			wifi_acked:1;
818 	__u8			no_fcs:1;
819 	/* Indicates the inner headers are valid in the skbuff. */
820 	__u8			encapsulation:1;
821 	__u8			encap_hdr_csum:1;
822 	__u8			csum_valid:1;
823 
824 #ifdef __BIG_ENDIAN_BITFIELD
825 #define PKT_VLAN_PRESENT_BIT	7
826 #else
827 #define PKT_VLAN_PRESENT_BIT	0
828 #endif
829 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
830 	/* private: */
831 	__u8			__pkt_vlan_present_offset[0];
832 	/* public: */
833 	__u8			vlan_present:1;
834 	__u8			csum_complete_sw:1;
835 	__u8			csum_level:2;
836 	__u8			csum_not_inet:1;
837 	__u8			dst_pending_confirm:1;
838 #ifdef CONFIG_IPV6_NDISC_NODETYPE
839 	__u8			ndisc_nodetype:2;
840 #endif
841 
842 	__u8			ipvs_property:1;
843 	__u8			inner_protocol_type:1;
844 	__u8			remcsum_offload:1;
845 #ifdef CONFIG_NET_SWITCHDEV
846 	__u8			offload_fwd_mark:1;
847 	__u8			offload_l3_fwd_mark:1;
848 #endif
849 #ifdef CONFIG_NET_CLS_ACT
850 	__u8			tc_skip_classify:1;
851 	__u8			tc_at_ingress:1;
852 #endif
853 #ifdef CONFIG_NET_REDIRECT
854 	__u8			redirected:1;
855 	__u8			from_ingress:1;
856 #endif
857 #ifdef CONFIG_TLS_DEVICE
858 	__u8			decrypted:1;
859 #endif
860 
861 #ifdef CONFIG_NET_SCHED
862 	__u16			tc_index;	/* traffic control index */
863 #endif
864 
865 	union {
866 		__wsum		csum;
867 		struct {
868 			__u16	csum_start;
869 			__u16	csum_offset;
870 		};
871 	};
872 	__u32			priority;
873 	int			skb_iif;
874 	__u32			hash;
875 	__be16			vlan_proto;
876 	__u16			vlan_tci;
877 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
878 	union {
879 		unsigned int	napi_id;
880 		unsigned int	sender_cpu;
881 	};
882 #endif
883 #ifdef CONFIG_NETWORK_SECMARK
884 	__u32		secmark;
885 #endif
886 
887 	union {
888 		__u32		mark;
889 		__u32		reserved_tailroom;
890 	};
891 
892 	union {
893 		__be16		inner_protocol;
894 		__u8		inner_ipproto;
895 	};
896 
897 	__u16			inner_transport_header;
898 	__u16			inner_network_header;
899 	__u16			inner_mac_header;
900 
901 	__be16			protocol;
902 	__u16			transport_header;
903 	__u16			network_header;
904 	__u16			mac_header;
905 
906 	/* private: */
907 	__u32			headers_end[0];
908 	/* public: */
909 
910 	/* These elements must be at the end, see alloc_skb() for details.  */
911 	sk_buff_data_t		tail;
912 	sk_buff_data_t		end;
913 	unsigned char		*head,
914 				*data;
915 	unsigned int		truesize;
916 	refcount_t		users;
917 
918 #ifdef CONFIG_SKB_EXTENSIONS
919 	/* only useable after checking ->active_extensions != 0 */
920 	struct skb_ext		*extensions;
921 #endif
922 };
923 
924 #ifdef __KERNEL__
925 /*
926  *	Handling routines are only of interest to the kernel
927  */
928 
929 #define SKB_ALLOC_FCLONE	0x01
930 #define SKB_ALLOC_RX		0x02
931 #define SKB_ALLOC_NAPI		0x04
932 
933 /**
934  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
935  * @skb: buffer
936  */
937 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
938 {
939 	return unlikely(skb->pfmemalloc);
940 }
941 
942 /*
943  * skb might have a dst pointer attached, refcounted or not.
944  * _skb_refdst low order bit is set if refcount was _not_ taken
945  */
946 #define SKB_DST_NOREF	1UL
947 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
948 
949 /**
950  * skb_dst - returns skb dst_entry
951  * @skb: buffer
952  *
953  * Returns skb dst_entry, regardless of reference taken or not.
954  */
955 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
956 {
957 	/* If refdst was not refcounted, check we still are in a
958 	 * rcu_read_lock section
959 	 */
960 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
961 		!rcu_read_lock_held() &&
962 		!rcu_read_lock_bh_held());
963 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
964 }
965 
966 /**
967  * skb_dst_set - sets skb dst
968  * @skb: buffer
969  * @dst: dst entry
970  *
971  * Sets skb dst, assuming a reference was taken on dst and should
972  * be released by skb_dst_drop()
973  */
974 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
975 {
976 	skb->_skb_refdst = (unsigned long)dst;
977 }
978 
979 /**
980  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
981  * @skb: buffer
982  * @dst: dst entry
983  *
984  * Sets skb dst, assuming a reference was not taken on dst.
985  * If dst entry is cached, we do not take reference and dst_release
986  * will be avoided by refdst_drop. If dst entry is not cached, we take
987  * reference, so that last dst_release can destroy the dst immediately.
988  */
989 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
990 {
991 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
992 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
993 }
994 
995 /**
996  * skb_dst_is_noref - Test if skb dst isn't refcounted
997  * @skb: buffer
998  */
999 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1000 {
1001 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1002 }
1003 
1004 /**
1005  * skb_rtable - Returns the skb &rtable
1006  * @skb: buffer
1007  */
1008 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1009 {
1010 	return (struct rtable *)skb_dst(skb);
1011 }
1012 
1013 /* For mangling skb->pkt_type from user space side from applications
1014  * such as nft, tc, etc, we only allow a conservative subset of
1015  * possible pkt_types to be set.
1016 */
1017 static inline bool skb_pkt_type_ok(u32 ptype)
1018 {
1019 	return ptype <= PACKET_OTHERHOST;
1020 }
1021 
1022 /**
1023  * skb_napi_id - Returns the skb's NAPI id
1024  * @skb: buffer
1025  */
1026 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1027 {
1028 #ifdef CONFIG_NET_RX_BUSY_POLL
1029 	return skb->napi_id;
1030 #else
1031 	return 0;
1032 #endif
1033 }
1034 
1035 /**
1036  * skb_unref - decrement the skb's reference count
1037  * @skb: buffer
1038  *
1039  * Returns true if we can free the skb.
1040  */
1041 static inline bool skb_unref(struct sk_buff *skb)
1042 {
1043 	if (unlikely(!skb))
1044 		return false;
1045 	if (likely(refcount_read(&skb->users) == 1))
1046 		smp_rmb();
1047 	else if (likely(!refcount_dec_and_test(&skb->users)))
1048 		return false;
1049 
1050 	return true;
1051 }
1052 
1053 void skb_release_head_state(struct sk_buff *skb);
1054 void kfree_skb(struct sk_buff *skb);
1055 void kfree_skb_list(struct sk_buff *segs);
1056 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1057 void skb_tx_error(struct sk_buff *skb);
1058 void consume_skb(struct sk_buff *skb);
1059 void __consume_stateless_skb(struct sk_buff *skb);
1060 void  __kfree_skb(struct sk_buff *skb);
1061 extern struct kmem_cache *skbuff_head_cache;
1062 
1063 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1064 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1065 		      bool *fragstolen, int *delta_truesize);
1066 
1067 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1068 			    int node);
1069 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1070 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1071 struct sk_buff *build_skb_around(struct sk_buff *skb,
1072 				 void *data, unsigned int frag_size);
1073 
1074 /**
1075  * alloc_skb - allocate a network buffer
1076  * @size: size to allocate
1077  * @priority: allocation mask
1078  *
1079  * This function is a convenient wrapper around __alloc_skb().
1080  */
1081 static inline struct sk_buff *alloc_skb(unsigned int size,
1082 					gfp_t priority)
1083 {
1084 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1085 }
1086 
1087 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1088 				     unsigned long data_len,
1089 				     int max_page_order,
1090 				     int *errcode,
1091 				     gfp_t gfp_mask);
1092 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1093 
1094 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1095 struct sk_buff_fclones {
1096 	struct sk_buff	skb1;
1097 
1098 	struct sk_buff	skb2;
1099 
1100 	refcount_t	fclone_ref;
1101 };
1102 
1103 /**
1104  *	skb_fclone_busy - check if fclone is busy
1105  *	@sk: socket
1106  *	@skb: buffer
1107  *
1108  * Returns true if skb is a fast clone, and its clone is not freed.
1109  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1110  * so we also check that this didnt happen.
1111  */
1112 static inline bool skb_fclone_busy(const struct sock *sk,
1113 				   const struct sk_buff *skb)
1114 {
1115 	const struct sk_buff_fclones *fclones;
1116 
1117 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1118 
1119 	return skb->fclone == SKB_FCLONE_ORIG &&
1120 	       refcount_read(&fclones->fclone_ref) > 1 &&
1121 	       fclones->skb2.sk == sk;
1122 }
1123 
1124 /**
1125  * alloc_skb_fclone - allocate a network buffer from fclone cache
1126  * @size: size to allocate
1127  * @priority: allocation mask
1128  *
1129  * This function is a convenient wrapper around __alloc_skb().
1130  */
1131 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1132 					       gfp_t priority)
1133 {
1134 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1135 }
1136 
1137 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1138 void skb_headers_offset_update(struct sk_buff *skb, int off);
1139 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1140 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1141 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1142 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1143 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1144 				   gfp_t gfp_mask, bool fclone);
1145 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1146 					  gfp_t gfp_mask)
1147 {
1148 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1149 }
1150 
1151 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1152 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1153 				     unsigned int headroom);
1154 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1155 				int newtailroom, gfp_t priority);
1156 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1157 				     int offset, int len);
1158 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1159 			      int offset, int len);
1160 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1161 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1162 
1163 /**
1164  *	skb_pad			-	zero pad the tail of an skb
1165  *	@skb: buffer to pad
1166  *	@pad: space to pad
1167  *
1168  *	Ensure that a buffer is followed by a padding area that is zero
1169  *	filled. Used by network drivers which may DMA or transfer data
1170  *	beyond the buffer end onto the wire.
1171  *
1172  *	May return error in out of memory cases. The skb is freed on error.
1173  */
1174 static inline int skb_pad(struct sk_buff *skb, int pad)
1175 {
1176 	return __skb_pad(skb, pad, true);
1177 }
1178 #define dev_kfree_skb(a)	consume_skb(a)
1179 
1180 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1181 			 int offset, size_t size);
1182 
1183 struct skb_seq_state {
1184 	__u32		lower_offset;
1185 	__u32		upper_offset;
1186 	__u32		frag_idx;
1187 	__u32		stepped_offset;
1188 	struct sk_buff	*root_skb;
1189 	struct sk_buff	*cur_skb;
1190 	__u8		*frag_data;
1191 };
1192 
1193 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1194 			  unsigned int to, struct skb_seq_state *st);
1195 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1196 			  struct skb_seq_state *st);
1197 void skb_abort_seq_read(struct skb_seq_state *st);
1198 
1199 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1200 			   unsigned int to, struct ts_config *config);
1201 
1202 /*
1203  * Packet hash types specify the type of hash in skb_set_hash.
1204  *
1205  * Hash types refer to the protocol layer addresses which are used to
1206  * construct a packet's hash. The hashes are used to differentiate or identify
1207  * flows of the protocol layer for the hash type. Hash types are either
1208  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1209  *
1210  * Properties of hashes:
1211  *
1212  * 1) Two packets in different flows have different hash values
1213  * 2) Two packets in the same flow should have the same hash value
1214  *
1215  * A hash at a higher layer is considered to be more specific. A driver should
1216  * set the most specific hash possible.
1217  *
1218  * A driver cannot indicate a more specific hash than the layer at which a hash
1219  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1220  *
1221  * A driver may indicate a hash level which is less specific than the
1222  * actual layer the hash was computed on. For instance, a hash computed
1223  * at L4 may be considered an L3 hash. This should only be done if the
1224  * driver can't unambiguously determine that the HW computed the hash at
1225  * the higher layer. Note that the "should" in the second property above
1226  * permits this.
1227  */
1228 enum pkt_hash_types {
1229 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1230 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1231 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1232 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1233 };
1234 
1235 static inline void skb_clear_hash(struct sk_buff *skb)
1236 {
1237 	skb->hash = 0;
1238 	skb->sw_hash = 0;
1239 	skb->l4_hash = 0;
1240 }
1241 
1242 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1243 {
1244 	if (!skb->l4_hash)
1245 		skb_clear_hash(skb);
1246 }
1247 
1248 static inline void
1249 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1250 {
1251 	skb->l4_hash = is_l4;
1252 	skb->sw_hash = is_sw;
1253 	skb->hash = hash;
1254 }
1255 
1256 static inline void
1257 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1258 {
1259 	/* Used by drivers to set hash from HW */
1260 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1261 }
1262 
1263 static inline void
1264 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1265 {
1266 	__skb_set_hash(skb, hash, true, is_l4);
1267 }
1268 
1269 void __skb_get_hash(struct sk_buff *skb);
1270 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1271 u32 skb_get_poff(const struct sk_buff *skb);
1272 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1273 		   const struct flow_keys_basic *keys, int hlen);
1274 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1275 			    void *data, int hlen_proto);
1276 
1277 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1278 					int thoff, u8 ip_proto)
1279 {
1280 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1281 }
1282 
1283 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1284 			     const struct flow_dissector_key *key,
1285 			     unsigned int key_count);
1286 
1287 struct bpf_flow_dissector;
1288 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1289 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1290 
1291 bool __skb_flow_dissect(const struct net *net,
1292 			const struct sk_buff *skb,
1293 			struct flow_dissector *flow_dissector,
1294 			void *target_container,
1295 			void *data, __be16 proto, int nhoff, int hlen,
1296 			unsigned int flags);
1297 
1298 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1299 				    struct flow_dissector *flow_dissector,
1300 				    void *target_container, unsigned int flags)
1301 {
1302 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1303 				  target_container, NULL, 0, 0, 0, flags);
1304 }
1305 
1306 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1307 					      struct flow_keys *flow,
1308 					      unsigned int flags)
1309 {
1310 	memset(flow, 0, sizeof(*flow));
1311 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1312 				  flow, NULL, 0, 0, 0, flags);
1313 }
1314 
1315 static inline bool
1316 skb_flow_dissect_flow_keys_basic(const struct net *net,
1317 				 const struct sk_buff *skb,
1318 				 struct flow_keys_basic *flow, void *data,
1319 				 __be16 proto, int nhoff, int hlen,
1320 				 unsigned int flags)
1321 {
1322 	memset(flow, 0, sizeof(*flow));
1323 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1324 				  data, proto, nhoff, hlen, flags);
1325 }
1326 
1327 void skb_flow_dissect_meta(const struct sk_buff *skb,
1328 			   struct flow_dissector *flow_dissector,
1329 			   void *target_container);
1330 
1331 /* Gets a skb connection tracking info, ctinfo map should be a
1332  * map of mapsize to translate enum ip_conntrack_info states
1333  * to user states.
1334  */
1335 void
1336 skb_flow_dissect_ct(const struct sk_buff *skb,
1337 		    struct flow_dissector *flow_dissector,
1338 		    void *target_container,
1339 		    u16 *ctinfo_map,
1340 		    size_t mapsize);
1341 void
1342 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1343 			     struct flow_dissector *flow_dissector,
1344 			     void *target_container);
1345 
1346 void skb_flow_dissect_hash(const struct sk_buff *skb,
1347 			   struct flow_dissector *flow_dissector,
1348 			   void *target_container);
1349 
1350 static inline __u32 skb_get_hash(struct sk_buff *skb)
1351 {
1352 	if (!skb->l4_hash && !skb->sw_hash)
1353 		__skb_get_hash(skb);
1354 
1355 	return skb->hash;
1356 }
1357 
1358 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1359 {
1360 	if (!skb->l4_hash && !skb->sw_hash) {
1361 		struct flow_keys keys;
1362 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1363 
1364 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1365 	}
1366 
1367 	return skb->hash;
1368 }
1369 
1370 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1371 			   const siphash_key_t *perturb);
1372 
1373 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1374 {
1375 	return skb->hash;
1376 }
1377 
1378 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1379 {
1380 	to->hash = from->hash;
1381 	to->sw_hash = from->sw_hash;
1382 	to->l4_hash = from->l4_hash;
1383 };
1384 
1385 static inline void skb_copy_decrypted(struct sk_buff *to,
1386 				      const struct sk_buff *from)
1387 {
1388 #ifdef CONFIG_TLS_DEVICE
1389 	to->decrypted = from->decrypted;
1390 #endif
1391 }
1392 
1393 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1394 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1395 {
1396 	return skb->head + skb->end;
1397 }
1398 
1399 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1400 {
1401 	return skb->end;
1402 }
1403 #else
1404 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1405 {
1406 	return skb->end;
1407 }
1408 
1409 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1410 {
1411 	return skb->end - skb->head;
1412 }
1413 #endif
1414 
1415 /* Internal */
1416 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1417 
1418 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1419 {
1420 	return &skb_shinfo(skb)->hwtstamps;
1421 }
1422 
1423 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1424 {
1425 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1426 
1427 	return is_zcopy ? skb_uarg(skb) : NULL;
1428 }
1429 
1430 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1431 				 bool *have_ref)
1432 {
1433 	if (skb && uarg && !skb_zcopy(skb)) {
1434 		if (unlikely(have_ref && *have_ref))
1435 			*have_ref = false;
1436 		else
1437 			sock_zerocopy_get(uarg);
1438 		skb_shinfo(skb)->destructor_arg = uarg;
1439 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1440 	}
1441 }
1442 
1443 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1444 {
1445 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1446 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1447 }
1448 
1449 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1450 {
1451 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1452 }
1453 
1454 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1455 {
1456 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1457 }
1458 
1459 /* Release a reference on a zerocopy structure */
1460 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1461 {
1462 	struct ubuf_info *uarg = skb_zcopy(skb);
1463 
1464 	if (uarg) {
1465 		if (skb_zcopy_is_nouarg(skb)) {
1466 			/* no notification callback */
1467 		} else if (uarg->callback == sock_zerocopy_callback) {
1468 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1469 			sock_zerocopy_put(uarg);
1470 		} else {
1471 			uarg->callback(uarg, zerocopy);
1472 		}
1473 
1474 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1475 	}
1476 }
1477 
1478 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1479 static inline void skb_zcopy_abort(struct sk_buff *skb)
1480 {
1481 	struct ubuf_info *uarg = skb_zcopy(skb);
1482 
1483 	if (uarg) {
1484 		sock_zerocopy_put_abort(uarg, false);
1485 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1486 	}
1487 }
1488 
1489 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1490 {
1491 	skb->next = NULL;
1492 }
1493 
1494 /* Iterate through singly-linked GSO fragments of an skb. */
1495 #define skb_list_walk_safe(first, skb, next_skb)                               \
1496 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1497 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1498 
1499 static inline void skb_list_del_init(struct sk_buff *skb)
1500 {
1501 	__list_del_entry(&skb->list);
1502 	skb_mark_not_on_list(skb);
1503 }
1504 
1505 /**
1506  *	skb_queue_empty - check if a queue is empty
1507  *	@list: queue head
1508  *
1509  *	Returns true if the queue is empty, false otherwise.
1510  */
1511 static inline int skb_queue_empty(const struct sk_buff_head *list)
1512 {
1513 	return list->next == (const struct sk_buff *) list;
1514 }
1515 
1516 /**
1517  *	skb_queue_empty_lockless - check if a queue is empty
1518  *	@list: queue head
1519  *
1520  *	Returns true if the queue is empty, false otherwise.
1521  *	This variant can be used in lockless contexts.
1522  */
1523 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1524 {
1525 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1526 }
1527 
1528 
1529 /**
1530  *	skb_queue_is_last - check if skb is the last entry in the queue
1531  *	@list: queue head
1532  *	@skb: buffer
1533  *
1534  *	Returns true if @skb is the last buffer on the list.
1535  */
1536 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1537 				     const struct sk_buff *skb)
1538 {
1539 	return skb->next == (const struct sk_buff *) list;
1540 }
1541 
1542 /**
1543  *	skb_queue_is_first - check if skb is the first entry in the queue
1544  *	@list: queue head
1545  *	@skb: buffer
1546  *
1547  *	Returns true if @skb is the first buffer on the list.
1548  */
1549 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1550 				      const struct sk_buff *skb)
1551 {
1552 	return skb->prev == (const struct sk_buff *) list;
1553 }
1554 
1555 /**
1556  *	skb_queue_next - return the next packet in the queue
1557  *	@list: queue head
1558  *	@skb: current buffer
1559  *
1560  *	Return the next packet in @list after @skb.  It is only valid to
1561  *	call this if skb_queue_is_last() evaluates to false.
1562  */
1563 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1564 					     const struct sk_buff *skb)
1565 {
1566 	/* This BUG_ON may seem severe, but if we just return then we
1567 	 * are going to dereference garbage.
1568 	 */
1569 	BUG_ON(skb_queue_is_last(list, skb));
1570 	return skb->next;
1571 }
1572 
1573 /**
1574  *	skb_queue_prev - return the prev packet in the queue
1575  *	@list: queue head
1576  *	@skb: current buffer
1577  *
1578  *	Return the prev packet in @list before @skb.  It is only valid to
1579  *	call this if skb_queue_is_first() evaluates to false.
1580  */
1581 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1582 					     const struct sk_buff *skb)
1583 {
1584 	/* This BUG_ON may seem severe, but if we just return then we
1585 	 * are going to dereference garbage.
1586 	 */
1587 	BUG_ON(skb_queue_is_first(list, skb));
1588 	return skb->prev;
1589 }
1590 
1591 /**
1592  *	skb_get - reference buffer
1593  *	@skb: buffer to reference
1594  *
1595  *	Makes another reference to a socket buffer and returns a pointer
1596  *	to the buffer.
1597  */
1598 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1599 {
1600 	refcount_inc(&skb->users);
1601 	return skb;
1602 }
1603 
1604 /*
1605  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1606  */
1607 
1608 /**
1609  *	skb_cloned - is the buffer a clone
1610  *	@skb: buffer to check
1611  *
1612  *	Returns true if the buffer was generated with skb_clone() and is
1613  *	one of multiple shared copies of the buffer. Cloned buffers are
1614  *	shared data so must not be written to under normal circumstances.
1615  */
1616 static inline int skb_cloned(const struct sk_buff *skb)
1617 {
1618 	return skb->cloned &&
1619 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1620 }
1621 
1622 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1623 {
1624 	might_sleep_if(gfpflags_allow_blocking(pri));
1625 
1626 	if (skb_cloned(skb))
1627 		return pskb_expand_head(skb, 0, 0, pri);
1628 
1629 	return 0;
1630 }
1631 
1632 /**
1633  *	skb_header_cloned - is the header a clone
1634  *	@skb: buffer to check
1635  *
1636  *	Returns true if modifying the header part of the buffer requires
1637  *	the data to be copied.
1638  */
1639 static inline int skb_header_cloned(const struct sk_buff *skb)
1640 {
1641 	int dataref;
1642 
1643 	if (!skb->cloned)
1644 		return 0;
1645 
1646 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1647 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1648 	return dataref != 1;
1649 }
1650 
1651 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1652 {
1653 	might_sleep_if(gfpflags_allow_blocking(pri));
1654 
1655 	if (skb_header_cloned(skb))
1656 		return pskb_expand_head(skb, 0, 0, pri);
1657 
1658 	return 0;
1659 }
1660 
1661 /**
1662  *	__skb_header_release - release reference to header
1663  *	@skb: buffer to operate on
1664  */
1665 static inline void __skb_header_release(struct sk_buff *skb)
1666 {
1667 	skb->nohdr = 1;
1668 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1669 }
1670 
1671 
1672 /**
1673  *	skb_shared - is the buffer shared
1674  *	@skb: buffer to check
1675  *
1676  *	Returns true if more than one person has a reference to this
1677  *	buffer.
1678  */
1679 static inline int skb_shared(const struct sk_buff *skb)
1680 {
1681 	return refcount_read(&skb->users) != 1;
1682 }
1683 
1684 /**
1685  *	skb_share_check - check if buffer is shared and if so clone it
1686  *	@skb: buffer to check
1687  *	@pri: priority for memory allocation
1688  *
1689  *	If the buffer is shared the buffer is cloned and the old copy
1690  *	drops a reference. A new clone with a single reference is returned.
1691  *	If the buffer is not shared the original buffer is returned. When
1692  *	being called from interrupt status or with spinlocks held pri must
1693  *	be GFP_ATOMIC.
1694  *
1695  *	NULL is returned on a memory allocation failure.
1696  */
1697 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1698 {
1699 	might_sleep_if(gfpflags_allow_blocking(pri));
1700 	if (skb_shared(skb)) {
1701 		struct sk_buff *nskb = skb_clone(skb, pri);
1702 
1703 		if (likely(nskb))
1704 			consume_skb(skb);
1705 		else
1706 			kfree_skb(skb);
1707 		skb = nskb;
1708 	}
1709 	return skb;
1710 }
1711 
1712 /*
1713  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1714  *	packets to handle cases where we have a local reader and forward
1715  *	and a couple of other messy ones. The normal one is tcpdumping
1716  *	a packet thats being forwarded.
1717  */
1718 
1719 /**
1720  *	skb_unshare - make a copy of a shared buffer
1721  *	@skb: buffer to check
1722  *	@pri: priority for memory allocation
1723  *
1724  *	If the socket buffer is a clone then this function creates a new
1725  *	copy of the data, drops a reference count on the old copy and returns
1726  *	the new copy with the reference count at 1. If the buffer is not a clone
1727  *	the original buffer is returned. When called with a spinlock held or
1728  *	from interrupt state @pri must be %GFP_ATOMIC
1729  *
1730  *	%NULL is returned on a memory allocation failure.
1731  */
1732 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1733 					  gfp_t pri)
1734 {
1735 	might_sleep_if(gfpflags_allow_blocking(pri));
1736 	if (skb_cloned(skb)) {
1737 		struct sk_buff *nskb = skb_copy(skb, pri);
1738 
1739 		/* Free our shared copy */
1740 		if (likely(nskb))
1741 			consume_skb(skb);
1742 		else
1743 			kfree_skb(skb);
1744 		skb = nskb;
1745 	}
1746 	return skb;
1747 }
1748 
1749 /**
1750  *	skb_peek - peek at the head of an &sk_buff_head
1751  *	@list_: list to peek at
1752  *
1753  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1754  *	be careful with this one. A peek leaves the buffer on the
1755  *	list and someone else may run off with it. You must hold
1756  *	the appropriate locks or have a private queue to do this.
1757  *
1758  *	Returns %NULL for an empty list or a pointer to the head element.
1759  *	The reference count is not incremented and the reference is therefore
1760  *	volatile. Use with caution.
1761  */
1762 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1763 {
1764 	struct sk_buff *skb = list_->next;
1765 
1766 	if (skb == (struct sk_buff *)list_)
1767 		skb = NULL;
1768 	return skb;
1769 }
1770 
1771 /**
1772  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1773  *	@list_: list to peek at
1774  *
1775  *	Like skb_peek(), but the caller knows that the list is not empty.
1776  */
1777 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1778 {
1779 	return list_->next;
1780 }
1781 
1782 /**
1783  *	skb_peek_next - peek skb following the given one from a queue
1784  *	@skb: skb to start from
1785  *	@list_: list to peek at
1786  *
1787  *	Returns %NULL when the end of the list is met or a pointer to the
1788  *	next element. The reference count is not incremented and the
1789  *	reference is therefore volatile. Use with caution.
1790  */
1791 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1792 		const struct sk_buff_head *list_)
1793 {
1794 	struct sk_buff *next = skb->next;
1795 
1796 	if (next == (struct sk_buff *)list_)
1797 		next = NULL;
1798 	return next;
1799 }
1800 
1801 /**
1802  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1803  *	@list_: list to peek at
1804  *
1805  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1806  *	be careful with this one. A peek leaves the buffer on the
1807  *	list and someone else may run off with it. You must hold
1808  *	the appropriate locks or have a private queue to do this.
1809  *
1810  *	Returns %NULL for an empty list or a pointer to the tail element.
1811  *	The reference count is not incremented and the reference is therefore
1812  *	volatile. Use with caution.
1813  */
1814 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1815 {
1816 	struct sk_buff *skb = READ_ONCE(list_->prev);
1817 
1818 	if (skb == (struct sk_buff *)list_)
1819 		skb = NULL;
1820 	return skb;
1821 
1822 }
1823 
1824 /**
1825  *	skb_queue_len	- get queue length
1826  *	@list_: list to measure
1827  *
1828  *	Return the length of an &sk_buff queue.
1829  */
1830 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1831 {
1832 	return list_->qlen;
1833 }
1834 
1835 /**
1836  *	skb_queue_len_lockless	- get queue length
1837  *	@list_: list to measure
1838  *
1839  *	Return the length of an &sk_buff queue.
1840  *	This variant can be used in lockless contexts.
1841  */
1842 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1843 {
1844 	return READ_ONCE(list_->qlen);
1845 }
1846 
1847 /**
1848  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1849  *	@list: queue to initialize
1850  *
1851  *	This initializes only the list and queue length aspects of
1852  *	an sk_buff_head object.  This allows to initialize the list
1853  *	aspects of an sk_buff_head without reinitializing things like
1854  *	the spinlock.  It can also be used for on-stack sk_buff_head
1855  *	objects where the spinlock is known to not be used.
1856  */
1857 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1858 {
1859 	list->prev = list->next = (struct sk_buff *)list;
1860 	list->qlen = 0;
1861 }
1862 
1863 /*
1864  * This function creates a split out lock class for each invocation;
1865  * this is needed for now since a whole lot of users of the skb-queue
1866  * infrastructure in drivers have different locking usage (in hardirq)
1867  * than the networking core (in softirq only). In the long run either the
1868  * network layer or drivers should need annotation to consolidate the
1869  * main types of usage into 3 classes.
1870  */
1871 static inline void skb_queue_head_init(struct sk_buff_head *list)
1872 {
1873 	spin_lock_init(&list->lock);
1874 	__skb_queue_head_init(list);
1875 }
1876 
1877 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1878 		struct lock_class_key *class)
1879 {
1880 	skb_queue_head_init(list);
1881 	lockdep_set_class(&list->lock, class);
1882 }
1883 
1884 /*
1885  *	Insert an sk_buff on a list.
1886  *
1887  *	The "__skb_xxxx()" functions are the non-atomic ones that
1888  *	can only be called with interrupts disabled.
1889  */
1890 static inline void __skb_insert(struct sk_buff *newsk,
1891 				struct sk_buff *prev, struct sk_buff *next,
1892 				struct sk_buff_head *list)
1893 {
1894 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1895 	 * for the opposite READ_ONCE()
1896 	 */
1897 	WRITE_ONCE(newsk->next, next);
1898 	WRITE_ONCE(newsk->prev, prev);
1899 	WRITE_ONCE(next->prev, newsk);
1900 	WRITE_ONCE(prev->next, newsk);
1901 	list->qlen++;
1902 }
1903 
1904 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1905 				      struct sk_buff *prev,
1906 				      struct sk_buff *next)
1907 {
1908 	struct sk_buff *first = list->next;
1909 	struct sk_buff *last = list->prev;
1910 
1911 	WRITE_ONCE(first->prev, prev);
1912 	WRITE_ONCE(prev->next, first);
1913 
1914 	WRITE_ONCE(last->next, next);
1915 	WRITE_ONCE(next->prev, last);
1916 }
1917 
1918 /**
1919  *	skb_queue_splice - join two skb lists, this is designed for stacks
1920  *	@list: the new list to add
1921  *	@head: the place to add it in the first list
1922  */
1923 static inline void skb_queue_splice(const struct sk_buff_head *list,
1924 				    struct sk_buff_head *head)
1925 {
1926 	if (!skb_queue_empty(list)) {
1927 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1928 		head->qlen += list->qlen;
1929 	}
1930 }
1931 
1932 /**
1933  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1934  *	@list: the new list to add
1935  *	@head: the place to add it in the first list
1936  *
1937  *	The list at @list is reinitialised
1938  */
1939 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1940 					 struct sk_buff_head *head)
1941 {
1942 	if (!skb_queue_empty(list)) {
1943 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1944 		head->qlen += list->qlen;
1945 		__skb_queue_head_init(list);
1946 	}
1947 }
1948 
1949 /**
1950  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1951  *	@list: the new list to add
1952  *	@head: the place to add it in the first list
1953  */
1954 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1955 					 struct sk_buff_head *head)
1956 {
1957 	if (!skb_queue_empty(list)) {
1958 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1959 		head->qlen += list->qlen;
1960 	}
1961 }
1962 
1963 /**
1964  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1965  *	@list: the new list to add
1966  *	@head: the place to add it in the first list
1967  *
1968  *	Each of the lists is a queue.
1969  *	The list at @list is reinitialised
1970  */
1971 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1972 					      struct sk_buff_head *head)
1973 {
1974 	if (!skb_queue_empty(list)) {
1975 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1976 		head->qlen += list->qlen;
1977 		__skb_queue_head_init(list);
1978 	}
1979 }
1980 
1981 /**
1982  *	__skb_queue_after - queue a buffer at the list head
1983  *	@list: list to use
1984  *	@prev: place after this buffer
1985  *	@newsk: buffer to queue
1986  *
1987  *	Queue a buffer int the middle of a list. This function takes no locks
1988  *	and you must therefore hold required locks before calling it.
1989  *
1990  *	A buffer cannot be placed on two lists at the same time.
1991  */
1992 static inline void __skb_queue_after(struct sk_buff_head *list,
1993 				     struct sk_buff *prev,
1994 				     struct sk_buff *newsk)
1995 {
1996 	__skb_insert(newsk, prev, prev->next, list);
1997 }
1998 
1999 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2000 		struct sk_buff_head *list);
2001 
2002 static inline void __skb_queue_before(struct sk_buff_head *list,
2003 				      struct sk_buff *next,
2004 				      struct sk_buff *newsk)
2005 {
2006 	__skb_insert(newsk, next->prev, next, list);
2007 }
2008 
2009 /**
2010  *	__skb_queue_head - queue a buffer at the list head
2011  *	@list: list to use
2012  *	@newsk: buffer to queue
2013  *
2014  *	Queue a buffer at the start of a list. This function takes no locks
2015  *	and you must therefore hold required locks before calling it.
2016  *
2017  *	A buffer cannot be placed on two lists at the same time.
2018  */
2019 static inline void __skb_queue_head(struct sk_buff_head *list,
2020 				    struct sk_buff *newsk)
2021 {
2022 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2023 }
2024 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2025 
2026 /**
2027  *	__skb_queue_tail - queue a buffer at the list tail
2028  *	@list: list to use
2029  *	@newsk: buffer to queue
2030  *
2031  *	Queue a buffer at the end of a list. This function takes no locks
2032  *	and you must therefore hold required locks before calling it.
2033  *
2034  *	A buffer cannot be placed on two lists at the same time.
2035  */
2036 static inline void __skb_queue_tail(struct sk_buff_head *list,
2037 				   struct sk_buff *newsk)
2038 {
2039 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2040 }
2041 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2042 
2043 /*
2044  * remove sk_buff from list. _Must_ be called atomically, and with
2045  * the list known..
2046  */
2047 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2048 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2049 {
2050 	struct sk_buff *next, *prev;
2051 
2052 	WRITE_ONCE(list->qlen, list->qlen - 1);
2053 	next	   = skb->next;
2054 	prev	   = skb->prev;
2055 	skb->next  = skb->prev = NULL;
2056 	WRITE_ONCE(next->prev, prev);
2057 	WRITE_ONCE(prev->next, next);
2058 }
2059 
2060 /**
2061  *	__skb_dequeue - remove from the head of the queue
2062  *	@list: list to dequeue from
2063  *
2064  *	Remove the head of the list. This function does not take any locks
2065  *	so must be used with appropriate locks held only. The head item is
2066  *	returned or %NULL if the list is empty.
2067  */
2068 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2069 {
2070 	struct sk_buff *skb = skb_peek(list);
2071 	if (skb)
2072 		__skb_unlink(skb, list);
2073 	return skb;
2074 }
2075 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2076 
2077 /**
2078  *	__skb_dequeue_tail - remove from the tail of the queue
2079  *	@list: list to dequeue from
2080  *
2081  *	Remove the tail of the list. This function does not take any locks
2082  *	so must be used with appropriate locks held only. The tail item is
2083  *	returned or %NULL if the list is empty.
2084  */
2085 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2086 {
2087 	struct sk_buff *skb = skb_peek_tail(list);
2088 	if (skb)
2089 		__skb_unlink(skb, list);
2090 	return skb;
2091 }
2092 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2093 
2094 
2095 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2096 {
2097 	return skb->data_len;
2098 }
2099 
2100 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2101 {
2102 	return skb->len - skb->data_len;
2103 }
2104 
2105 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2106 {
2107 	unsigned int i, len = 0;
2108 
2109 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2110 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2111 	return len;
2112 }
2113 
2114 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2115 {
2116 	return skb_headlen(skb) + __skb_pagelen(skb);
2117 }
2118 
2119 /**
2120  * __skb_fill_page_desc - initialise a paged fragment in an skb
2121  * @skb: buffer containing fragment to be initialised
2122  * @i: paged fragment index to initialise
2123  * @page: the page to use for this fragment
2124  * @off: the offset to the data with @page
2125  * @size: the length of the data
2126  *
2127  * Initialises the @i'th fragment of @skb to point to &size bytes at
2128  * offset @off within @page.
2129  *
2130  * Does not take any additional reference on the fragment.
2131  */
2132 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2133 					struct page *page, int off, int size)
2134 {
2135 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2136 
2137 	/*
2138 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2139 	 * that not all callers have unique ownership of the page but rely
2140 	 * on page_is_pfmemalloc doing the right thing(tm).
2141 	 */
2142 	frag->bv_page		  = page;
2143 	frag->bv_offset		  = off;
2144 	skb_frag_size_set(frag, size);
2145 
2146 	page = compound_head(page);
2147 	if (page_is_pfmemalloc(page))
2148 		skb->pfmemalloc	= true;
2149 }
2150 
2151 /**
2152  * skb_fill_page_desc - initialise a paged fragment in an skb
2153  * @skb: buffer containing fragment to be initialised
2154  * @i: paged fragment index to initialise
2155  * @page: the page to use for this fragment
2156  * @off: the offset to the data with @page
2157  * @size: the length of the data
2158  *
2159  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2160  * @skb to point to @size bytes at offset @off within @page. In
2161  * addition updates @skb such that @i is the last fragment.
2162  *
2163  * Does not take any additional reference on the fragment.
2164  */
2165 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2166 				      struct page *page, int off, int size)
2167 {
2168 	__skb_fill_page_desc(skb, i, page, off, size);
2169 	skb_shinfo(skb)->nr_frags = i + 1;
2170 }
2171 
2172 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2173 		     int size, unsigned int truesize);
2174 
2175 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2176 			  unsigned int truesize);
2177 
2178 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2179 
2180 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2181 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2182 {
2183 	return skb->head + skb->tail;
2184 }
2185 
2186 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2187 {
2188 	skb->tail = skb->data - skb->head;
2189 }
2190 
2191 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2192 {
2193 	skb_reset_tail_pointer(skb);
2194 	skb->tail += offset;
2195 }
2196 
2197 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2198 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2199 {
2200 	return skb->tail;
2201 }
2202 
2203 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2204 {
2205 	skb->tail = skb->data;
2206 }
2207 
2208 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2209 {
2210 	skb->tail = skb->data + offset;
2211 }
2212 
2213 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2214 
2215 /*
2216  *	Add data to an sk_buff
2217  */
2218 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2219 void *skb_put(struct sk_buff *skb, unsigned int len);
2220 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2221 {
2222 	void *tmp = skb_tail_pointer(skb);
2223 	SKB_LINEAR_ASSERT(skb);
2224 	skb->tail += len;
2225 	skb->len  += len;
2226 	return tmp;
2227 }
2228 
2229 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2230 {
2231 	void *tmp = __skb_put(skb, len);
2232 
2233 	memset(tmp, 0, len);
2234 	return tmp;
2235 }
2236 
2237 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2238 				   unsigned int len)
2239 {
2240 	void *tmp = __skb_put(skb, len);
2241 
2242 	memcpy(tmp, data, len);
2243 	return tmp;
2244 }
2245 
2246 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2247 {
2248 	*(u8 *)__skb_put(skb, 1) = val;
2249 }
2250 
2251 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2252 {
2253 	void *tmp = skb_put(skb, len);
2254 
2255 	memset(tmp, 0, len);
2256 
2257 	return tmp;
2258 }
2259 
2260 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2261 				 unsigned int len)
2262 {
2263 	void *tmp = skb_put(skb, len);
2264 
2265 	memcpy(tmp, data, len);
2266 
2267 	return tmp;
2268 }
2269 
2270 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2271 {
2272 	*(u8 *)skb_put(skb, 1) = val;
2273 }
2274 
2275 void *skb_push(struct sk_buff *skb, unsigned int len);
2276 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2277 {
2278 	skb->data -= len;
2279 	skb->len  += len;
2280 	return skb->data;
2281 }
2282 
2283 void *skb_pull(struct sk_buff *skb, unsigned int len);
2284 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2285 {
2286 	skb->len -= len;
2287 	BUG_ON(skb->len < skb->data_len);
2288 	return skb->data += len;
2289 }
2290 
2291 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2292 {
2293 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2294 }
2295 
2296 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2297 
2298 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2299 {
2300 	if (len > skb_headlen(skb) &&
2301 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2302 		return NULL;
2303 	skb->len -= len;
2304 	return skb->data += len;
2305 }
2306 
2307 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2308 {
2309 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2310 }
2311 
2312 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2313 {
2314 	if (likely(len <= skb_headlen(skb)))
2315 		return true;
2316 	if (unlikely(len > skb->len))
2317 		return false;
2318 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2319 }
2320 
2321 void skb_condense(struct sk_buff *skb);
2322 
2323 /**
2324  *	skb_headroom - bytes at buffer head
2325  *	@skb: buffer to check
2326  *
2327  *	Return the number of bytes of free space at the head of an &sk_buff.
2328  */
2329 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2330 {
2331 	return skb->data - skb->head;
2332 }
2333 
2334 /**
2335  *	skb_tailroom - bytes at buffer end
2336  *	@skb: buffer to check
2337  *
2338  *	Return the number of bytes of free space at the tail of an sk_buff
2339  */
2340 static inline int skb_tailroom(const struct sk_buff *skb)
2341 {
2342 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2343 }
2344 
2345 /**
2346  *	skb_availroom - bytes at buffer end
2347  *	@skb: buffer to check
2348  *
2349  *	Return the number of bytes of free space at the tail of an sk_buff
2350  *	allocated by sk_stream_alloc()
2351  */
2352 static inline int skb_availroom(const struct sk_buff *skb)
2353 {
2354 	if (skb_is_nonlinear(skb))
2355 		return 0;
2356 
2357 	return skb->end - skb->tail - skb->reserved_tailroom;
2358 }
2359 
2360 /**
2361  *	skb_reserve - adjust headroom
2362  *	@skb: buffer to alter
2363  *	@len: bytes to move
2364  *
2365  *	Increase the headroom of an empty &sk_buff by reducing the tail
2366  *	room. This is only allowed for an empty buffer.
2367  */
2368 static inline void skb_reserve(struct sk_buff *skb, int len)
2369 {
2370 	skb->data += len;
2371 	skb->tail += len;
2372 }
2373 
2374 /**
2375  *	skb_tailroom_reserve - adjust reserved_tailroom
2376  *	@skb: buffer to alter
2377  *	@mtu: maximum amount of headlen permitted
2378  *	@needed_tailroom: minimum amount of reserved_tailroom
2379  *
2380  *	Set reserved_tailroom so that headlen can be as large as possible but
2381  *	not larger than mtu and tailroom cannot be smaller than
2382  *	needed_tailroom.
2383  *	The required headroom should already have been reserved before using
2384  *	this function.
2385  */
2386 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2387 					unsigned int needed_tailroom)
2388 {
2389 	SKB_LINEAR_ASSERT(skb);
2390 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2391 		/* use at most mtu */
2392 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2393 	else
2394 		/* use up to all available space */
2395 		skb->reserved_tailroom = needed_tailroom;
2396 }
2397 
2398 #define ENCAP_TYPE_ETHER	0
2399 #define ENCAP_TYPE_IPPROTO	1
2400 
2401 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2402 					  __be16 protocol)
2403 {
2404 	skb->inner_protocol = protocol;
2405 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2406 }
2407 
2408 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2409 					 __u8 ipproto)
2410 {
2411 	skb->inner_ipproto = ipproto;
2412 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2413 }
2414 
2415 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2416 {
2417 	skb->inner_mac_header = skb->mac_header;
2418 	skb->inner_network_header = skb->network_header;
2419 	skb->inner_transport_header = skb->transport_header;
2420 }
2421 
2422 static inline void skb_reset_mac_len(struct sk_buff *skb)
2423 {
2424 	skb->mac_len = skb->network_header - skb->mac_header;
2425 }
2426 
2427 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2428 							*skb)
2429 {
2430 	return skb->head + skb->inner_transport_header;
2431 }
2432 
2433 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2434 {
2435 	return skb_inner_transport_header(skb) - skb->data;
2436 }
2437 
2438 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2439 {
2440 	skb->inner_transport_header = skb->data - skb->head;
2441 }
2442 
2443 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2444 						   const int offset)
2445 {
2446 	skb_reset_inner_transport_header(skb);
2447 	skb->inner_transport_header += offset;
2448 }
2449 
2450 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2451 {
2452 	return skb->head + skb->inner_network_header;
2453 }
2454 
2455 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2456 {
2457 	skb->inner_network_header = skb->data - skb->head;
2458 }
2459 
2460 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2461 						const int offset)
2462 {
2463 	skb_reset_inner_network_header(skb);
2464 	skb->inner_network_header += offset;
2465 }
2466 
2467 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2468 {
2469 	return skb->head + skb->inner_mac_header;
2470 }
2471 
2472 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2473 {
2474 	skb->inner_mac_header = skb->data - skb->head;
2475 }
2476 
2477 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2478 					    const int offset)
2479 {
2480 	skb_reset_inner_mac_header(skb);
2481 	skb->inner_mac_header += offset;
2482 }
2483 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2484 {
2485 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2486 }
2487 
2488 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2489 {
2490 	return skb->head + skb->transport_header;
2491 }
2492 
2493 static inline void skb_reset_transport_header(struct sk_buff *skb)
2494 {
2495 	skb->transport_header = skb->data - skb->head;
2496 }
2497 
2498 static inline void skb_set_transport_header(struct sk_buff *skb,
2499 					    const int offset)
2500 {
2501 	skb_reset_transport_header(skb);
2502 	skb->transport_header += offset;
2503 }
2504 
2505 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2506 {
2507 	return skb->head + skb->network_header;
2508 }
2509 
2510 static inline void skb_reset_network_header(struct sk_buff *skb)
2511 {
2512 	skb->network_header = skb->data - skb->head;
2513 }
2514 
2515 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2516 {
2517 	skb_reset_network_header(skb);
2518 	skb->network_header += offset;
2519 }
2520 
2521 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2522 {
2523 	return skb->head + skb->mac_header;
2524 }
2525 
2526 static inline int skb_mac_offset(const struct sk_buff *skb)
2527 {
2528 	return skb_mac_header(skb) - skb->data;
2529 }
2530 
2531 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2532 {
2533 	return skb->network_header - skb->mac_header;
2534 }
2535 
2536 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2537 {
2538 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2539 }
2540 
2541 static inline void skb_reset_mac_header(struct sk_buff *skb)
2542 {
2543 	skb->mac_header = skb->data - skb->head;
2544 }
2545 
2546 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2547 {
2548 	skb_reset_mac_header(skb);
2549 	skb->mac_header += offset;
2550 }
2551 
2552 static inline void skb_pop_mac_header(struct sk_buff *skb)
2553 {
2554 	skb->mac_header = skb->network_header;
2555 }
2556 
2557 static inline void skb_probe_transport_header(struct sk_buff *skb)
2558 {
2559 	struct flow_keys_basic keys;
2560 
2561 	if (skb_transport_header_was_set(skb))
2562 		return;
2563 
2564 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2565 					     NULL, 0, 0, 0, 0))
2566 		skb_set_transport_header(skb, keys.control.thoff);
2567 }
2568 
2569 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2570 {
2571 	if (skb_mac_header_was_set(skb)) {
2572 		const unsigned char *old_mac = skb_mac_header(skb);
2573 
2574 		skb_set_mac_header(skb, -skb->mac_len);
2575 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2576 	}
2577 }
2578 
2579 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2580 {
2581 	return skb->csum_start - skb_headroom(skb);
2582 }
2583 
2584 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2585 {
2586 	return skb->head + skb->csum_start;
2587 }
2588 
2589 static inline int skb_transport_offset(const struct sk_buff *skb)
2590 {
2591 	return skb_transport_header(skb) - skb->data;
2592 }
2593 
2594 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2595 {
2596 	return skb->transport_header - skb->network_header;
2597 }
2598 
2599 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2600 {
2601 	return skb->inner_transport_header - skb->inner_network_header;
2602 }
2603 
2604 static inline int skb_network_offset(const struct sk_buff *skb)
2605 {
2606 	return skb_network_header(skb) - skb->data;
2607 }
2608 
2609 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2610 {
2611 	return skb_inner_network_header(skb) - skb->data;
2612 }
2613 
2614 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2615 {
2616 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2617 }
2618 
2619 /*
2620  * CPUs often take a performance hit when accessing unaligned memory
2621  * locations. The actual performance hit varies, it can be small if the
2622  * hardware handles it or large if we have to take an exception and fix it
2623  * in software.
2624  *
2625  * Since an ethernet header is 14 bytes network drivers often end up with
2626  * the IP header at an unaligned offset. The IP header can be aligned by
2627  * shifting the start of the packet by 2 bytes. Drivers should do this
2628  * with:
2629  *
2630  * skb_reserve(skb, NET_IP_ALIGN);
2631  *
2632  * The downside to this alignment of the IP header is that the DMA is now
2633  * unaligned. On some architectures the cost of an unaligned DMA is high
2634  * and this cost outweighs the gains made by aligning the IP header.
2635  *
2636  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2637  * to be overridden.
2638  */
2639 #ifndef NET_IP_ALIGN
2640 #define NET_IP_ALIGN	2
2641 #endif
2642 
2643 /*
2644  * The networking layer reserves some headroom in skb data (via
2645  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2646  * the header has to grow. In the default case, if the header has to grow
2647  * 32 bytes or less we avoid the reallocation.
2648  *
2649  * Unfortunately this headroom changes the DMA alignment of the resulting
2650  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2651  * on some architectures. An architecture can override this value,
2652  * perhaps setting it to a cacheline in size (since that will maintain
2653  * cacheline alignment of the DMA). It must be a power of 2.
2654  *
2655  * Various parts of the networking layer expect at least 32 bytes of
2656  * headroom, you should not reduce this.
2657  *
2658  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2659  * to reduce average number of cache lines per packet.
2660  * get_rps_cpus() for example only access one 64 bytes aligned block :
2661  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2662  */
2663 #ifndef NET_SKB_PAD
2664 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2665 #endif
2666 
2667 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2668 
2669 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2670 {
2671 	if (WARN_ON(skb_is_nonlinear(skb)))
2672 		return;
2673 	skb->len = len;
2674 	skb_set_tail_pointer(skb, len);
2675 }
2676 
2677 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2678 {
2679 	__skb_set_length(skb, len);
2680 }
2681 
2682 void skb_trim(struct sk_buff *skb, unsigned int len);
2683 
2684 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2685 {
2686 	if (skb->data_len)
2687 		return ___pskb_trim(skb, len);
2688 	__skb_trim(skb, len);
2689 	return 0;
2690 }
2691 
2692 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2693 {
2694 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2695 }
2696 
2697 /**
2698  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2699  *	@skb: buffer to alter
2700  *	@len: new length
2701  *
2702  *	This is identical to pskb_trim except that the caller knows that
2703  *	the skb is not cloned so we should never get an error due to out-
2704  *	of-memory.
2705  */
2706 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2707 {
2708 	int err = pskb_trim(skb, len);
2709 	BUG_ON(err);
2710 }
2711 
2712 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2713 {
2714 	unsigned int diff = len - skb->len;
2715 
2716 	if (skb_tailroom(skb) < diff) {
2717 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2718 					   GFP_ATOMIC);
2719 		if (ret)
2720 			return ret;
2721 	}
2722 	__skb_set_length(skb, len);
2723 	return 0;
2724 }
2725 
2726 /**
2727  *	skb_orphan - orphan a buffer
2728  *	@skb: buffer to orphan
2729  *
2730  *	If a buffer currently has an owner then we call the owner's
2731  *	destructor function and make the @skb unowned. The buffer continues
2732  *	to exist but is no longer charged to its former owner.
2733  */
2734 static inline void skb_orphan(struct sk_buff *skb)
2735 {
2736 	if (skb->destructor) {
2737 		skb->destructor(skb);
2738 		skb->destructor = NULL;
2739 		skb->sk		= NULL;
2740 	} else {
2741 		BUG_ON(skb->sk);
2742 	}
2743 }
2744 
2745 /**
2746  *	skb_orphan_frags - orphan the frags contained in a buffer
2747  *	@skb: buffer to orphan frags from
2748  *	@gfp_mask: allocation mask for replacement pages
2749  *
2750  *	For each frag in the SKB which needs a destructor (i.e. has an
2751  *	owner) create a copy of that frag and release the original
2752  *	page by calling the destructor.
2753  */
2754 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2755 {
2756 	if (likely(!skb_zcopy(skb)))
2757 		return 0;
2758 	if (!skb_zcopy_is_nouarg(skb) &&
2759 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2760 		return 0;
2761 	return skb_copy_ubufs(skb, gfp_mask);
2762 }
2763 
2764 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2765 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2766 {
2767 	if (likely(!skb_zcopy(skb)))
2768 		return 0;
2769 	return skb_copy_ubufs(skb, gfp_mask);
2770 }
2771 
2772 /**
2773  *	__skb_queue_purge - empty a list
2774  *	@list: list to empty
2775  *
2776  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2777  *	the list and one reference dropped. This function does not take the
2778  *	list lock and the caller must hold the relevant locks to use it.
2779  */
2780 static inline void __skb_queue_purge(struct sk_buff_head *list)
2781 {
2782 	struct sk_buff *skb;
2783 	while ((skb = __skb_dequeue(list)) != NULL)
2784 		kfree_skb(skb);
2785 }
2786 void skb_queue_purge(struct sk_buff_head *list);
2787 
2788 unsigned int skb_rbtree_purge(struct rb_root *root);
2789 
2790 void *netdev_alloc_frag(unsigned int fragsz);
2791 
2792 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2793 				   gfp_t gfp_mask);
2794 
2795 /**
2796  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2797  *	@dev: network device to receive on
2798  *	@length: length to allocate
2799  *
2800  *	Allocate a new &sk_buff and assign it a usage count of one. The
2801  *	buffer has unspecified headroom built in. Users should allocate
2802  *	the headroom they think they need without accounting for the
2803  *	built in space. The built in space is used for optimisations.
2804  *
2805  *	%NULL is returned if there is no free memory. Although this function
2806  *	allocates memory it can be called from an interrupt.
2807  */
2808 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2809 					       unsigned int length)
2810 {
2811 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2812 }
2813 
2814 /* legacy helper around __netdev_alloc_skb() */
2815 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2816 					      gfp_t gfp_mask)
2817 {
2818 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2819 }
2820 
2821 /* legacy helper around netdev_alloc_skb() */
2822 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2823 {
2824 	return netdev_alloc_skb(NULL, length);
2825 }
2826 
2827 
2828 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2829 		unsigned int length, gfp_t gfp)
2830 {
2831 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2832 
2833 	if (NET_IP_ALIGN && skb)
2834 		skb_reserve(skb, NET_IP_ALIGN);
2835 	return skb;
2836 }
2837 
2838 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2839 		unsigned int length)
2840 {
2841 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2842 }
2843 
2844 static inline void skb_free_frag(void *addr)
2845 {
2846 	page_frag_free(addr);
2847 }
2848 
2849 void *napi_alloc_frag(unsigned int fragsz);
2850 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2851 				 unsigned int length, gfp_t gfp_mask);
2852 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2853 					     unsigned int length)
2854 {
2855 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2856 }
2857 void napi_consume_skb(struct sk_buff *skb, int budget);
2858 
2859 void __kfree_skb_flush(void);
2860 void __kfree_skb_defer(struct sk_buff *skb);
2861 
2862 /**
2863  * __dev_alloc_pages - allocate page for network Rx
2864  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2865  * @order: size of the allocation
2866  *
2867  * Allocate a new page.
2868  *
2869  * %NULL is returned if there is no free memory.
2870 */
2871 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2872 					     unsigned int order)
2873 {
2874 	/* This piece of code contains several assumptions.
2875 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2876 	 * 2.  The expectation is the user wants a compound page.
2877 	 * 3.  If requesting a order 0 page it will not be compound
2878 	 *     due to the check to see if order has a value in prep_new_page
2879 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2880 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2881 	 */
2882 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2883 
2884 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2885 }
2886 
2887 static inline struct page *dev_alloc_pages(unsigned int order)
2888 {
2889 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2890 }
2891 
2892 /**
2893  * __dev_alloc_page - allocate a page for network Rx
2894  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2895  *
2896  * Allocate a new page.
2897  *
2898  * %NULL is returned if there is no free memory.
2899  */
2900 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2901 {
2902 	return __dev_alloc_pages(gfp_mask, 0);
2903 }
2904 
2905 static inline struct page *dev_alloc_page(void)
2906 {
2907 	return dev_alloc_pages(0);
2908 }
2909 
2910 /**
2911  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2912  *	@page: The page that was allocated from skb_alloc_page
2913  *	@skb: The skb that may need pfmemalloc set
2914  */
2915 static inline void skb_propagate_pfmemalloc(struct page *page,
2916 					     struct sk_buff *skb)
2917 {
2918 	if (page_is_pfmemalloc(page))
2919 		skb->pfmemalloc = true;
2920 }
2921 
2922 /**
2923  * skb_frag_off() - Returns the offset of a skb fragment
2924  * @frag: the paged fragment
2925  */
2926 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2927 {
2928 	return frag->bv_offset;
2929 }
2930 
2931 /**
2932  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2933  * @frag: skb fragment
2934  * @delta: value to add
2935  */
2936 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2937 {
2938 	frag->bv_offset += delta;
2939 }
2940 
2941 /**
2942  * skb_frag_off_set() - Sets the offset of a skb fragment
2943  * @frag: skb fragment
2944  * @offset: offset of fragment
2945  */
2946 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2947 {
2948 	frag->bv_offset = offset;
2949 }
2950 
2951 /**
2952  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2953  * @fragto: skb fragment where offset is set
2954  * @fragfrom: skb fragment offset is copied from
2955  */
2956 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2957 				     const skb_frag_t *fragfrom)
2958 {
2959 	fragto->bv_offset = fragfrom->bv_offset;
2960 }
2961 
2962 /**
2963  * skb_frag_page - retrieve the page referred to by a paged fragment
2964  * @frag: the paged fragment
2965  *
2966  * Returns the &struct page associated with @frag.
2967  */
2968 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2969 {
2970 	return frag->bv_page;
2971 }
2972 
2973 /**
2974  * __skb_frag_ref - take an addition reference on a paged fragment.
2975  * @frag: the paged fragment
2976  *
2977  * Takes an additional reference on the paged fragment @frag.
2978  */
2979 static inline void __skb_frag_ref(skb_frag_t *frag)
2980 {
2981 	get_page(skb_frag_page(frag));
2982 }
2983 
2984 /**
2985  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2986  * @skb: the buffer
2987  * @f: the fragment offset.
2988  *
2989  * Takes an additional reference on the @f'th paged fragment of @skb.
2990  */
2991 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2992 {
2993 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2994 }
2995 
2996 /**
2997  * __skb_frag_unref - release a reference on a paged fragment.
2998  * @frag: the paged fragment
2999  *
3000  * Releases a reference on the paged fragment @frag.
3001  */
3002 static inline void __skb_frag_unref(skb_frag_t *frag)
3003 {
3004 	put_page(skb_frag_page(frag));
3005 }
3006 
3007 /**
3008  * skb_frag_unref - release a reference on a paged fragment of an skb.
3009  * @skb: the buffer
3010  * @f: the fragment offset
3011  *
3012  * Releases a reference on the @f'th paged fragment of @skb.
3013  */
3014 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3015 {
3016 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3017 }
3018 
3019 /**
3020  * skb_frag_address - gets the address of the data contained in a paged fragment
3021  * @frag: the paged fragment buffer
3022  *
3023  * Returns the address of the data within @frag. The page must already
3024  * be mapped.
3025  */
3026 static inline void *skb_frag_address(const skb_frag_t *frag)
3027 {
3028 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3029 }
3030 
3031 /**
3032  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3033  * @frag: the paged fragment buffer
3034  *
3035  * Returns the address of the data within @frag. Checks that the page
3036  * is mapped and returns %NULL otherwise.
3037  */
3038 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3039 {
3040 	void *ptr = page_address(skb_frag_page(frag));
3041 	if (unlikely(!ptr))
3042 		return NULL;
3043 
3044 	return ptr + skb_frag_off(frag);
3045 }
3046 
3047 /**
3048  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3049  * @fragto: skb fragment where page is set
3050  * @fragfrom: skb fragment page is copied from
3051  */
3052 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3053 				      const skb_frag_t *fragfrom)
3054 {
3055 	fragto->bv_page = fragfrom->bv_page;
3056 }
3057 
3058 /**
3059  * __skb_frag_set_page - sets the page contained in a paged fragment
3060  * @frag: the paged fragment
3061  * @page: the page to set
3062  *
3063  * Sets the fragment @frag to contain @page.
3064  */
3065 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3066 {
3067 	frag->bv_page = page;
3068 }
3069 
3070 /**
3071  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3072  * @skb: the buffer
3073  * @f: the fragment offset
3074  * @page: the page to set
3075  *
3076  * Sets the @f'th fragment of @skb to contain @page.
3077  */
3078 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3079 				     struct page *page)
3080 {
3081 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3082 }
3083 
3084 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3085 
3086 /**
3087  * skb_frag_dma_map - maps a paged fragment via the DMA API
3088  * @dev: the device to map the fragment to
3089  * @frag: the paged fragment to map
3090  * @offset: the offset within the fragment (starting at the
3091  *          fragment's own offset)
3092  * @size: the number of bytes to map
3093  * @dir: the direction of the mapping (``PCI_DMA_*``)
3094  *
3095  * Maps the page associated with @frag to @device.
3096  */
3097 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3098 					  const skb_frag_t *frag,
3099 					  size_t offset, size_t size,
3100 					  enum dma_data_direction dir)
3101 {
3102 	return dma_map_page(dev, skb_frag_page(frag),
3103 			    skb_frag_off(frag) + offset, size, dir);
3104 }
3105 
3106 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3107 					gfp_t gfp_mask)
3108 {
3109 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3110 }
3111 
3112 
3113 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3114 						  gfp_t gfp_mask)
3115 {
3116 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3117 }
3118 
3119 
3120 /**
3121  *	skb_clone_writable - is the header of a clone writable
3122  *	@skb: buffer to check
3123  *	@len: length up to which to write
3124  *
3125  *	Returns true if modifying the header part of the cloned buffer
3126  *	does not requires the data to be copied.
3127  */
3128 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3129 {
3130 	return !skb_header_cloned(skb) &&
3131 	       skb_headroom(skb) + len <= skb->hdr_len;
3132 }
3133 
3134 static inline int skb_try_make_writable(struct sk_buff *skb,
3135 					unsigned int write_len)
3136 {
3137 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3138 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3139 }
3140 
3141 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3142 			    int cloned)
3143 {
3144 	int delta = 0;
3145 
3146 	if (headroom > skb_headroom(skb))
3147 		delta = headroom - skb_headroom(skb);
3148 
3149 	if (delta || cloned)
3150 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3151 					GFP_ATOMIC);
3152 	return 0;
3153 }
3154 
3155 /**
3156  *	skb_cow - copy header of skb when it is required
3157  *	@skb: buffer to cow
3158  *	@headroom: needed headroom
3159  *
3160  *	If the skb passed lacks sufficient headroom or its data part
3161  *	is shared, data is reallocated. If reallocation fails, an error
3162  *	is returned and original skb is not changed.
3163  *
3164  *	The result is skb with writable area skb->head...skb->tail
3165  *	and at least @headroom of space at head.
3166  */
3167 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3168 {
3169 	return __skb_cow(skb, headroom, skb_cloned(skb));
3170 }
3171 
3172 /**
3173  *	skb_cow_head - skb_cow but only making the head writable
3174  *	@skb: buffer to cow
3175  *	@headroom: needed headroom
3176  *
3177  *	This function is identical to skb_cow except that we replace the
3178  *	skb_cloned check by skb_header_cloned.  It should be used when
3179  *	you only need to push on some header and do not need to modify
3180  *	the data.
3181  */
3182 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3183 {
3184 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3185 }
3186 
3187 /**
3188  *	skb_padto	- pad an skbuff up to a minimal size
3189  *	@skb: buffer to pad
3190  *	@len: minimal length
3191  *
3192  *	Pads up a buffer to ensure the trailing bytes exist and are
3193  *	blanked. If the buffer already contains sufficient data it
3194  *	is untouched. Otherwise it is extended. Returns zero on
3195  *	success. The skb is freed on error.
3196  */
3197 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3198 {
3199 	unsigned int size = skb->len;
3200 	if (likely(size >= len))
3201 		return 0;
3202 	return skb_pad(skb, len - size);
3203 }
3204 
3205 /**
3206  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3207  *	@skb: buffer to pad
3208  *	@len: minimal length
3209  *	@free_on_error: free buffer on error
3210  *
3211  *	Pads up a buffer to ensure the trailing bytes exist and are
3212  *	blanked. If the buffer already contains sufficient data it
3213  *	is untouched. Otherwise it is extended. Returns zero on
3214  *	success. The skb is freed on error if @free_on_error is true.
3215  */
3216 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3217 				  bool free_on_error)
3218 {
3219 	unsigned int size = skb->len;
3220 
3221 	if (unlikely(size < len)) {
3222 		len -= size;
3223 		if (__skb_pad(skb, len, free_on_error))
3224 			return -ENOMEM;
3225 		__skb_put(skb, len);
3226 	}
3227 	return 0;
3228 }
3229 
3230 /**
3231  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3232  *	@skb: buffer to pad
3233  *	@len: minimal length
3234  *
3235  *	Pads up a buffer to ensure the trailing bytes exist and are
3236  *	blanked. If the buffer already contains sufficient data it
3237  *	is untouched. Otherwise it is extended. Returns zero on
3238  *	success. The skb is freed on error.
3239  */
3240 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3241 {
3242 	return __skb_put_padto(skb, len, true);
3243 }
3244 
3245 static inline int skb_add_data(struct sk_buff *skb,
3246 			       struct iov_iter *from, int copy)
3247 {
3248 	const int off = skb->len;
3249 
3250 	if (skb->ip_summed == CHECKSUM_NONE) {
3251 		__wsum csum = 0;
3252 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3253 					         &csum, from)) {
3254 			skb->csum = csum_block_add(skb->csum, csum, off);
3255 			return 0;
3256 		}
3257 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3258 		return 0;
3259 
3260 	__skb_trim(skb, off);
3261 	return -EFAULT;
3262 }
3263 
3264 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3265 				    const struct page *page, int off)
3266 {
3267 	if (skb_zcopy(skb))
3268 		return false;
3269 	if (i) {
3270 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3271 
3272 		return page == skb_frag_page(frag) &&
3273 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3274 	}
3275 	return false;
3276 }
3277 
3278 static inline int __skb_linearize(struct sk_buff *skb)
3279 {
3280 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3281 }
3282 
3283 /**
3284  *	skb_linearize - convert paged skb to linear one
3285  *	@skb: buffer to linarize
3286  *
3287  *	If there is no free memory -ENOMEM is returned, otherwise zero
3288  *	is returned and the old skb data released.
3289  */
3290 static inline int skb_linearize(struct sk_buff *skb)
3291 {
3292 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3293 }
3294 
3295 /**
3296  * skb_has_shared_frag - can any frag be overwritten
3297  * @skb: buffer to test
3298  *
3299  * Return true if the skb has at least one frag that might be modified
3300  * by an external entity (as in vmsplice()/sendfile())
3301  */
3302 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3303 {
3304 	return skb_is_nonlinear(skb) &&
3305 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3306 }
3307 
3308 /**
3309  *	skb_linearize_cow - make sure skb is linear and writable
3310  *	@skb: buffer to process
3311  *
3312  *	If there is no free memory -ENOMEM is returned, otherwise zero
3313  *	is returned and the old skb data released.
3314  */
3315 static inline int skb_linearize_cow(struct sk_buff *skb)
3316 {
3317 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3318 	       __skb_linearize(skb) : 0;
3319 }
3320 
3321 static __always_inline void
3322 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3323 		     unsigned int off)
3324 {
3325 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3326 		skb->csum = csum_block_sub(skb->csum,
3327 					   csum_partial(start, len, 0), off);
3328 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3329 		 skb_checksum_start_offset(skb) < 0)
3330 		skb->ip_summed = CHECKSUM_NONE;
3331 }
3332 
3333 /**
3334  *	skb_postpull_rcsum - update checksum for received skb after pull
3335  *	@skb: buffer to update
3336  *	@start: start of data before pull
3337  *	@len: length of data pulled
3338  *
3339  *	After doing a pull on a received packet, you need to call this to
3340  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3341  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3342  */
3343 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3344 				      const void *start, unsigned int len)
3345 {
3346 	__skb_postpull_rcsum(skb, start, len, 0);
3347 }
3348 
3349 static __always_inline void
3350 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3351 		     unsigned int off)
3352 {
3353 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3354 		skb->csum = csum_block_add(skb->csum,
3355 					   csum_partial(start, len, 0), off);
3356 }
3357 
3358 /**
3359  *	skb_postpush_rcsum - update checksum for received skb after push
3360  *	@skb: buffer to update
3361  *	@start: start of data after push
3362  *	@len: length of data pushed
3363  *
3364  *	After doing a push on a received packet, you need to call this to
3365  *	update the CHECKSUM_COMPLETE checksum.
3366  */
3367 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3368 				      const void *start, unsigned int len)
3369 {
3370 	__skb_postpush_rcsum(skb, start, len, 0);
3371 }
3372 
3373 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3374 
3375 /**
3376  *	skb_push_rcsum - push skb and update receive checksum
3377  *	@skb: buffer to update
3378  *	@len: length of data pulled
3379  *
3380  *	This function performs an skb_push on the packet and updates
3381  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3382  *	receive path processing instead of skb_push unless you know
3383  *	that the checksum difference is zero (e.g., a valid IP header)
3384  *	or you are setting ip_summed to CHECKSUM_NONE.
3385  */
3386 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3387 {
3388 	skb_push(skb, len);
3389 	skb_postpush_rcsum(skb, skb->data, len);
3390 	return skb->data;
3391 }
3392 
3393 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3394 /**
3395  *	pskb_trim_rcsum - trim received skb and update checksum
3396  *	@skb: buffer to trim
3397  *	@len: new length
3398  *
3399  *	This is exactly the same as pskb_trim except that it ensures the
3400  *	checksum of received packets are still valid after the operation.
3401  *	It can change skb pointers.
3402  */
3403 
3404 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3405 {
3406 	if (likely(len >= skb->len))
3407 		return 0;
3408 	return pskb_trim_rcsum_slow(skb, len);
3409 }
3410 
3411 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3412 {
3413 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3414 		skb->ip_summed = CHECKSUM_NONE;
3415 	__skb_trim(skb, len);
3416 	return 0;
3417 }
3418 
3419 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3420 {
3421 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3422 		skb->ip_summed = CHECKSUM_NONE;
3423 	return __skb_grow(skb, len);
3424 }
3425 
3426 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3427 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3428 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3429 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3430 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3431 
3432 #define skb_queue_walk(queue, skb) \
3433 		for (skb = (queue)->next;					\
3434 		     skb != (struct sk_buff *)(queue);				\
3435 		     skb = skb->next)
3436 
3437 #define skb_queue_walk_safe(queue, skb, tmp)					\
3438 		for (skb = (queue)->next, tmp = skb->next;			\
3439 		     skb != (struct sk_buff *)(queue);				\
3440 		     skb = tmp, tmp = skb->next)
3441 
3442 #define skb_queue_walk_from(queue, skb)						\
3443 		for (; skb != (struct sk_buff *)(queue);			\
3444 		     skb = skb->next)
3445 
3446 #define skb_rbtree_walk(skb, root)						\
3447 		for (skb = skb_rb_first(root); skb != NULL;			\
3448 		     skb = skb_rb_next(skb))
3449 
3450 #define skb_rbtree_walk_from(skb)						\
3451 		for (; skb != NULL;						\
3452 		     skb = skb_rb_next(skb))
3453 
3454 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3455 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3456 		     skb = tmp)
3457 
3458 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3459 		for (tmp = skb->next;						\
3460 		     skb != (struct sk_buff *)(queue);				\
3461 		     skb = tmp, tmp = skb->next)
3462 
3463 #define skb_queue_reverse_walk(queue, skb) \
3464 		for (skb = (queue)->prev;					\
3465 		     skb != (struct sk_buff *)(queue);				\
3466 		     skb = skb->prev)
3467 
3468 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3469 		for (skb = (queue)->prev, tmp = skb->prev;			\
3470 		     skb != (struct sk_buff *)(queue);				\
3471 		     skb = tmp, tmp = skb->prev)
3472 
3473 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3474 		for (tmp = skb->prev;						\
3475 		     skb != (struct sk_buff *)(queue);				\
3476 		     skb = tmp, tmp = skb->prev)
3477 
3478 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3479 {
3480 	return skb_shinfo(skb)->frag_list != NULL;
3481 }
3482 
3483 static inline void skb_frag_list_init(struct sk_buff *skb)
3484 {
3485 	skb_shinfo(skb)->frag_list = NULL;
3486 }
3487 
3488 #define skb_walk_frags(skb, iter)	\
3489 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3490 
3491 
3492 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3493 				int *err, long *timeo_p,
3494 				const struct sk_buff *skb);
3495 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3496 					  struct sk_buff_head *queue,
3497 					  unsigned int flags,
3498 					  int *off, int *err,
3499 					  struct sk_buff **last);
3500 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3501 					struct sk_buff_head *queue,
3502 					unsigned int flags, int *off, int *err,
3503 					struct sk_buff **last);
3504 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3505 				    struct sk_buff_head *sk_queue,
3506 				    unsigned int flags, int *off, int *err);
3507 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3508 				  int *err);
3509 __poll_t datagram_poll(struct file *file, struct socket *sock,
3510 			   struct poll_table_struct *wait);
3511 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3512 			   struct iov_iter *to, int size);
3513 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3514 					struct msghdr *msg, int size)
3515 {
3516 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3517 }
3518 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3519 				   struct msghdr *msg);
3520 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3521 			   struct iov_iter *to, int len,
3522 			   struct ahash_request *hash);
3523 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3524 				 struct iov_iter *from, int len);
3525 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3526 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3527 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3528 static inline void skb_free_datagram_locked(struct sock *sk,
3529 					    struct sk_buff *skb)
3530 {
3531 	__skb_free_datagram_locked(sk, skb, 0);
3532 }
3533 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3534 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3535 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3536 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3537 			      int len, __wsum csum);
3538 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3539 		    struct pipe_inode_info *pipe, unsigned int len,
3540 		    unsigned int flags);
3541 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3542 			 int len);
3543 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3544 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3545 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3546 		 int len, int hlen);
3547 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3548 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3549 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3550 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3551 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3552 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3553 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3554 				 unsigned int offset);
3555 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3556 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3557 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3558 int skb_vlan_pop(struct sk_buff *skb);
3559 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3560 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3561 		  int mac_len, bool ethernet);
3562 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3563 		 bool ethernet);
3564 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3565 int skb_mpls_dec_ttl(struct sk_buff *skb);
3566 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3567 			     gfp_t gfp);
3568 
3569 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3570 {
3571 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3572 }
3573 
3574 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3575 {
3576 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3577 }
3578 
3579 struct skb_checksum_ops {
3580 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3581 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3582 };
3583 
3584 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3585 
3586 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3587 		      __wsum csum, const struct skb_checksum_ops *ops);
3588 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3589 		    __wsum csum);
3590 
3591 static inline void * __must_check
3592 __skb_header_pointer(const struct sk_buff *skb, int offset,
3593 		     int len, void *data, int hlen, void *buffer)
3594 {
3595 	if (hlen - offset >= len)
3596 		return data + offset;
3597 
3598 	if (!skb ||
3599 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3600 		return NULL;
3601 
3602 	return buffer;
3603 }
3604 
3605 static inline void * __must_check
3606 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3607 {
3608 	return __skb_header_pointer(skb, offset, len, skb->data,
3609 				    skb_headlen(skb), buffer);
3610 }
3611 
3612 /**
3613  *	skb_needs_linearize - check if we need to linearize a given skb
3614  *			      depending on the given device features.
3615  *	@skb: socket buffer to check
3616  *	@features: net device features
3617  *
3618  *	Returns true if either:
3619  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3620  *	2. skb is fragmented and the device does not support SG.
3621  */
3622 static inline bool skb_needs_linearize(struct sk_buff *skb,
3623 				       netdev_features_t features)
3624 {
3625 	return skb_is_nonlinear(skb) &&
3626 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3627 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3628 }
3629 
3630 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3631 					     void *to,
3632 					     const unsigned int len)
3633 {
3634 	memcpy(to, skb->data, len);
3635 }
3636 
3637 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3638 						    const int offset, void *to,
3639 						    const unsigned int len)
3640 {
3641 	memcpy(to, skb->data + offset, len);
3642 }
3643 
3644 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3645 					   const void *from,
3646 					   const unsigned int len)
3647 {
3648 	memcpy(skb->data, from, len);
3649 }
3650 
3651 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3652 						  const int offset,
3653 						  const void *from,
3654 						  const unsigned int len)
3655 {
3656 	memcpy(skb->data + offset, from, len);
3657 }
3658 
3659 void skb_init(void);
3660 
3661 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3662 {
3663 	return skb->tstamp;
3664 }
3665 
3666 /**
3667  *	skb_get_timestamp - get timestamp from a skb
3668  *	@skb: skb to get stamp from
3669  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3670  *
3671  *	Timestamps are stored in the skb as offsets to a base timestamp.
3672  *	This function converts the offset back to a struct timeval and stores
3673  *	it in stamp.
3674  */
3675 static inline void skb_get_timestamp(const struct sk_buff *skb,
3676 				     struct __kernel_old_timeval *stamp)
3677 {
3678 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3679 }
3680 
3681 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3682 					 struct __kernel_sock_timeval *stamp)
3683 {
3684 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3685 
3686 	stamp->tv_sec = ts.tv_sec;
3687 	stamp->tv_usec = ts.tv_nsec / 1000;
3688 }
3689 
3690 static inline void skb_get_timestampns(const struct sk_buff *skb,
3691 				       struct __kernel_old_timespec *stamp)
3692 {
3693 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3694 
3695 	stamp->tv_sec = ts.tv_sec;
3696 	stamp->tv_nsec = ts.tv_nsec;
3697 }
3698 
3699 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3700 					   struct __kernel_timespec *stamp)
3701 {
3702 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3703 
3704 	stamp->tv_sec = ts.tv_sec;
3705 	stamp->tv_nsec = ts.tv_nsec;
3706 }
3707 
3708 static inline void __net_timestamp(struct sk_buff *skb)
3709 {
3710 	skb->tstamp = ktime_get_real();
3711 }
3712 
3713 static inline ktime_t net_timedelta(ktime_t t)
3714 {
3715 	return ktime_sub(ktime_get_real(), t);
3716 }
3717 
3718 static inline ktime_t net_invalid_timestamp(void)
3719 {
3720 	return 0;
3721 }
3722 
3723 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3724 {
3725 	return skb_shinfo(skb)->meta_len;
3726 }
3727 
3728 static inline void *skb_metadata_end(const struct sk_buff *skb)
3729 {
3730 	return skb_mac_header(skb);
3731 }
3732 
3733 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3734 					  const struct sk_buff *skb_b,
3735 					  u8 meta_len)
3736 {
3737 	const void *a = skb_metadata_end(skb_a);
3738 	const void *b = skb_metadata_end(skb_b);
3739 	/* Using more efficient varaiant than plain call to memcmp(). */
3740 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3741 	u64 diffs = 0;
3742 
3743 	switch (meta_len) {
3744 #define __it(x, op) (x -= sizeof(u##op))
3745 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3746 	case 32: diffs |= __it_diff(a, b, 64);
3747 		 /* fall through */
3748 	case 24: diffs |= __it_diff(a, b, 64);
3749 		 /* fall through */
3750 	case 16: diffs |= __it_diff(a, b, 64);
3751 		 /* fall through */
3752 	case  8: diffs |= __it_diff(a, b, 64);
3753 		break;
3754 	case 28: diffs |= __it_diff(a, b, 64);
3755 		 /* fall through */
3756 	case 20: diffs |= __it_diff(a, b, 64);
3757 		 /* fall through */
3758 	case 12: diffs |= __it_diff(a, b, 64);
3759 		 /* fall through */
3760 	case  4: diffs |= __it_diff(a, b, 32);
3761 		break;
3762 	}
3763 	return diffs;
3764 #else
3765 	return memcmp(a - meta_len, b - meta_len, meta_len);
3766 #endif
3767 }
3768 
3769 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3770 					const struct sk_buff *skb_b)
3771 {
3772 	u8 len_a = skb_metadata_len(skb_a);
3773 	u8 len_b = skb_metadata_len(skb_b);
3774 
3775 	if (!(len_a | len_b))
3776 		return false;
3777 
3778 	return len_a != len_b ?
3779 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3780 }
3781 
3782 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3783 {
3784 	skb_shinfo(skb)->meta_len = meta_len;
3785 }
3786 
3787 static inline void skb_metadata_clear(struct sk_buff *skb)
3788 {
3789 	skb_metadata_set(skb, 0);
3790 }
3791 
3792 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3793 
3794 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3795 
3796 void skb_clone_tx_timestamp(struct sk_buff *skb);
3797 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3798 
3799 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3800 
3801 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3802 {
3803 }
3804 
3805 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3806 {
3807 	return false;
3808 }
3809 
3810 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3811 
3812 /**
3813  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3814  *
3815  * PHY drivers may accept clones of transmitted packets for
3816  * timestamping via their phy_driver.txtstamp method. These drivers
3817  * must call this function to return the skb back to the stack with a
3818  * timestamp.
3819  *
3820  * @skb: clone of the original outgoing packet
3821  * @hwtstamps: hardware time stamps
3822  *
3823  */
3824 void skb_complete_tx_timestamp(struct sk_buff *skb,
3825 			       struct skb_shared_hwtstamps *hwtstamps);
3826 
3827 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3828 		     struct skb_shared_hwtstamps *hwtstamps,
3829 		     struct sock *sk, int tstype);
3830 
3831 /**
3832  * skb_tstamp_tx - queue clone of skb with send time stamps
3833  * @orig_skb:	the original outgoing packet
3834  * @hwtstamps:	hardware time stamps, may be NULL if not available
3835  *
3836  * If the skb has a socket associated, then this function clones the
3837  * skb (thus sharing the actual data and optional structures), stores
3838  * the optional hardware time stamping information (if non NULL) or
3839  * generates a software time stamp (otherwise), then queues the clone
3840  * to the error queue of the socket.  Errors are silently ignored.
3841  */
3842 void skb_tstamp_tx(struct sk_buff *orig_skb,
3843 		   struct skb_shared_hwtstamps *hwtstamps);
3844 
3845 /**
3846  * skb_tx_timestamp() - Driver hook for transmit timestamping
3847  *
3848  * Ethernet MAC Drivers should call this function in their hard_xmit()
3849  * function immediately before giving the sk_buff to the MAC hardware.
3850  *
3851  * Specifically, one should make absolutely sure that this function is
3852  * called before TX completion of this packet can trigger.  Otherwise
3853  * the packet could potentially already be freed.
3854  *
3855  * @skb: A socket buffer.
3856  */
3857 static inline void skb_tx_timestamp(struct sk_buff *skb)
3858 {
3859 	skb_clone_tx_timestamp(skb);
3860 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3861 		skb_tstamp_tx(skb, NULL);
3862 }
3863 
3864 /**
3865  * skb_complete_wifi_ack - deliver skb with wifi status
3866  *
3867  * @skb: the original outgoing packet
3868  * @acked: ack status
3869  *
3870  */
3871 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3872 
3873 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3874 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3875 
3876 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3877 {
3878 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3879 		skb->csum_valid ||
3880 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3881 		 skb_checksum_start_offset(skb) >= 0));
3882 }
3883 
3884 /**
3885  *	skb_checksum_complete - Calculate checksum of an entire packet
3886  *	@skb: packet to process
3887  *
3888  *	This function calculates the checksum over the entire packet plus
3889  *	the value of skb->csum.  The latter can be used to supply the
3890  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3891  *	checksum.
3892  *
3893  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3894  *	this function can be used to verify that checksum on received
3895  *	packets.  In that case the function should return zero if the
3896  *	checksum is correct.  In particular, this function will return zero
3897  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3898  *	hardware has already verified the correctness of the checksum.
3899  */
3900 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3901 {
3902 	return skb_csum_unnecessary(skb) ?
3903 	       0 : __skb_checksum_complete(skb);
3904 }
3905 
3906 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3907 {
3908 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3909 		if (skb->csum_level == 0)
3910 			skb->ip_summed = CHECKSUM_NONE;
3911 		else
3912 			skb->csum_level--;
3913 	}
3914 }
3915 
3916 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3917 {
3918 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3919 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3920 			skb->csum_level++;
3921 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3922 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3923 		skb->csum_level = 0;
3924 	}
3925 }
3926 
3927 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3928 {
3929 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3930 		skb->ip_summed = CHECKSUM_NONE;
3931 		skb->csum_level = 0;
3932 	}
3933 }
3934 
3935 /* Check if we need to perform checksum complete validation.
3936  *
3937  * Returns true if checksum complete is needed, false otherwise
3938  * (either checksum is unnecessary or zero checksum is allowed).
3939  */
3940 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3941 						  bool zero_okay,
3942 						  __sum16 check)
3943 {
3944 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3945 		skb->csum_valid = 1;
3946 		__skb_decr_checksum_unnecessary(skb);
3947 		return false;
3948 	}
3949 
3950 	return true;
3951 }
3952 
3953 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3954  * in checksum_init.
3955  */
3956 #define CHECKSUM_BREAK 76
3957 
3958 /* Unset checksum-complete
3959  *
3960  * Unset checksum complete can be done when packet is being modified
3961  * (uncompressed for instance) and checksum-complete value is
3962  * invalidated.
3963  */
3964 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3965 {
3966 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3967 		skb->ip_summed = CHECKSUM_NONE;
3968 }
3969 
3970 /* Validate (init) checksum based on checksum complete.
3971  *
3972  * Return values:
3973  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3974  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3975  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3976  *   non-zero: value of invalid checksum
3977  *
3978  */
3979 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3980 						       bool complete,
3981 						       __wsum psum)
3982 {
3983 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3984 		if (!csum_fold(csum_add(psum, skb->csum))) {
3985 			skb->csum_valid = 1;
3986 			return 0;
3987 		}
3988 	}
3989 
3990 	skb->csum = psum;
3991 
3992 	if (complete || skb->len <= CHECKSUM_BREAK) {
3993 		__sum16 csum;
3994 
3995 		csum = __skb_checksum_complete(skb);
3996 		skb->csum_valid = !csum;
3997 		return csum;
3998 	}
3999 
4000 	return 0;
4001 }
4002 
4003 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4004 {
4005 	return 0;
4006 }
4007 
4008 /* Perform checksum validate (init). Note that this is a macro since we only
4009  * want to calculate the pseudo header which is an input function if necessary.
4010  * First we try to validate without any computation (checksum unnecessary) and
4011  * then calculate based on checksum complete calling the function to compute
4012  * pseudo header.
4013  *
4014  * Return values:
4015  *   0: checksum is validated or try to in skb_checksum_complete
4016  *   non-zero: value of invalid checksum
4017  */
4018 #define __skb_checksum_validate(skb, proto, complete,			\
4019 				zero_okay, check, compute_pseudo)	\
4020 ({									\
4021 	__sum16 __ret = 0;						\
4022 	skb->csum_valid = 0;						\
4023 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4024 		__ret = __skb_checksum_validate_complete(skb,		\
4025 				complete, compute_pseudo(skb, proto));	\
4026 	__ret;								\
4027 })
4028 
4029 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4030 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4031 
4032 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4033 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4034 
4035 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4036 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4037 
4038 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4039 					 compute_pseudo)		\
4040 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4041 
4042 #define skb_checksum_simple_validate(skb)				\
4043 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4044 
4045 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4046 {
4047 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4048 }
4049 
4050 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4051 {
4052 	skb->csum = ~pseudo;
4053 	skb->ip_summed = CHECKSUM_COMPLETE;
4054 }
4055 
4056 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4057 do {									\
4058 	if (__skb_checksum_convert_check(skb))				\
4059 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4060 } while (0)
4061 
4062 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4063 					      u16 start, u16 offset)
4064 {
4065 	skb->ip_summed = CHECKSUM_PARTIAL;
4066 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4067 	skb->csum_offset = offset - start;
4068 }
4069 
4070 /* Update skbuf and packet to reflect the remote checksum offload operation.
4071  * When called, ptr indicates the starting point for skb->csum when
4072  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4073  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4074  */
4075 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4076 				       int start, int offset, bool nopartial)
4077 {
4078 	__wsum delta;
4079 
4080 	if (!nopartial) {
4081 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4082 		return;
4083 	}
4084 
4085 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4086 		__skb_checksum_complete(skb);
4087 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4088 	}
4089 
4090 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4091 
4092 	/* Adjust skb->csum since we changed the packet */
4093 	skb->csum = csum_add(skb->csum, delta);
4094 }
4095 
4096 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4097 {
4098 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4099 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4100 #else
4101 	return NULL;
4102 #endif
4103 }
4104 
4105 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4106 {
4107 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4108 	return skb->_nfct;
4109 #else
4110 	return 0UL;
4111 #endif
4112 }
4113 
4114 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4115 {
4116 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4117 	skb->_nfct = nfct;
4118 #endif
4119 }
4120 
4121 #ifdef CONFIG_SKB_EXTENSIONS
4122 enum skb_ext_id {
4123 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4124 	SKB_EXT_BRIDGE_NF,
4125 #endif
4126 #ifdef CONFIG_XFRM
4127 	SKB_EXT_SEC_PATH,
4128 #endif
4129 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4130 	TC_SKB_EXT,
4131 #endif
4132 #if IS_ENABLED(CONFIG_MPTCP)
4133 	SKB_EXT_MPTCP,
4134 #endif
4135 	SKB_EXT_NUM, /* must be last */
4136 };
4137 
4138 /**
4139  *	struct skb_ext - sk_buff extensions
4140  *	@refcnt: 1 on allocation, deallocated on 0
4141  *	@offset: offset to add to @data to obtain extension address
4142  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4143  *	@data: start of extension data, variable sized
4144  *
4145  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4146  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4147  */
4148 struct skb_ext {
4149 	refcount_t refcnt;
4150 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4151 	u8 chunks;		/* same */
4152 	char data[] __aligned(8);
4153 };
4154 
4155 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4156 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4157 		    struct skb_ext *ext);
4158 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4159 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4160 void __skb_ext_put(struct skb_ext *ext);
4161 
4162 static inline void skb_ext_put(struct sk_buff *skb)
4163 {
4164 	if (skb->active_extensions)
4165 		__skb_ext_put(skb->extensions);
4166 }
4167 
4168 static inline void __skb_ext_copy(struct sk_buff *dst,
4169 				  const struct sk_buff *src)
4170 {
4171 	dst->active_extensions = src->active_extensions;
4172 
4173 	if (src->active_extensions) {
4174 		struct skb_ext *ext = src->extensions;
4175 
4176 		refcount_inc(&ext->refcnt);
4177 		dst->extensions = ext;
4178 	}
4179 }
4180 
4181 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4182 {
4183 	skb_ext_put(dst);
4184 	__skb_ext_copy(dst, src);
4185 }
4186 
4187 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4188 {
4189 	return !!ext->offset[i];
4190 }
4191 
4192 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4193 {
4194 	return skb->active_extensions & (1 << id);
4195 }
4196 
4197 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4198 {
4199 	if (skb_ext_exist(skb, id))
4200 		__skb_ext_del(skb, id);
4201 }
4202 
4203 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4204 {
4205 	if (skb_ext_exist(skb, id)) {
4206 		struct skb_ext *ext = skb->extensions;
4207 
4208 		return (void *)ext + (ext->offset[id] << 3);
4209 	}
4210 
4211 	return NULL;
4212 }
4213 
4214 static inline void skb_ext_reset(struct sk_buff *skb)
4215 {
4216 	if (unlikely(skb->active_extensions)) {
4217 		__skb_ext_put(skb->extensions);
4218 		skb->active_extensions = 0;
4219 	}
4220 }
4221 
4222 static inline bool skb_has_extensions(struct sk_buff *skb)
4223 {
4224 	return unlikely(skb->active_extensions);
4225 }
4226 #else
4227 static inline void skb_ext_put(struct sk_buff *skb) {}
4228 static inline void skb_ext_reset(struct sk_buff *skb) {}
4229 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4230 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4231 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4232 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4233 #endif /* CONFIG_SKB_EXTENSIONS */
4234 
4235 static inline void nf_reset_ct(struct sk_buff *skb)
4236 {
4237 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4238 	nf_conntrack_put(skb_nfct(skb));
4239 	skb->_nfct = 0;
4240 #endif
4241 }
4242 
4243 static inline void nf_reset_trace(struct sk_buff *skb)
4244 {
4245 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4246 	skb->nf_trace = 0;
4247 #endif
4248 }
4249 
4250 static inline void ipvs_reset(struct sk_buff *skb)
4251 {
4252 #if IS_ENABLED(CONFIG_IP_VS)
4253 	skb->ipvs_property = 0;
4254 #endif
4255 }
4256 
4257 /* Note: This doesn't put any conntrack info in dst. */
4258 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4259 			     bool copy)
4260 {
4261 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4262 	dst->_nfct = src->_nfct;
4263 	nf_conntrack_get(skb_nfct(src));
4264 #endif
4265 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4266 	if (copy)
4267 		dst->nf_trace = src->nf_trace;
4268 #endif
4269 }
4270 
4271 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4272 {
4273 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4274 	nf_conntrack_put(skb_nfct(dst));
4275 #endif
4276 	__nf_copy(dst, src, true);
4277 }
4278 
4279 #ifdef CONFIG_NETWORK_SECMARK
4280 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4281 {
4282 	to->secmark = from->secmark;
4283 }
4284 
4285 static inline void skb_init_secmark(struct sk_buff *skb)
4286 {
4287 	skb->secmark = 0;
4288 }
4289 #else
4290 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4291 { }
4292 
4293 static inline void skb_init_secmark(struct sk_buff *skb)
4294 { }
4295 #endif
4296 
4297 static inline int secpath_exists(const struct sk_buff *skb)
4298 {
4299 #ifdef CONFIG_XFRM
4300 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4301 #else
4302 	return 0;
4303 #endif
4304 }
4305 
4306 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4307 {
4308 	return !skb->destructor &&
4309 		!secpath_exists(skb) &&
4310 		!skb_nfct(skb) &&
4311 		!skb->_skb_refdst &&
4312 		!skb_has_frag_list(skb);
4313 }
4314 
4315 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4316 {
4317 	skb->queue_mapping = queue_mapping;
4318 }
4319 
4320 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4321 {
4322 	return skb->queue_mapping;
4323 }
4324 
4325 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4326 {
4327 	to->queue_mapping = from->queue_mapping;
4328 }
4329 
4330 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4331 {
4332 	skb->queue_mapping = rx_queue + 1;
4333 }
4334 
4335 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4336 {
4337 	return skb->queue_mapping - 1;
4338 }
4339 
4340 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4341 {
4342 	return skb->queue_mapping != 0;
4343 }
4344 
4345 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4346 {
4347 	skb->dst_pending_confirm = val;
4348 }
4349 
4350 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4351 {
4352 	return skb->dst_pending_confirm != 0;
4353 }
4354 
4355 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4356 {
4357 #ifdef CONFIG_XFRM
4358 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4359 #else
4360 	return NULL;
4361 #endif
4362 }
4363 
4364 /* Keeps track of mac header offset relative to skb->head.
4365  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4366  * For non-tunnel skb it points to skb_mac_header() and for
4367  * tunnel skb it points to outer mac header.
4368  * Keeps track of level of encapsulation of network headers.
4369  */
4370 struct skb_gso_cb {
4371 	union {
4372 		int	mac_offset;
4373 		int	data_offset;
4374 	};
4375 	int	encap_level;
4376 	__wsum	csum;
4377 	__u16	csum_start;
4378 };
4379 #define SKB_GSO_CB_OFFSET	32
4380 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4381 
4382 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4383 {
4384 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4385 		SKB_GSO_CB(inner_skb)->mac_offset;
4386 }
4387 
4388 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4389 {
4390 	int new_headroom, headroom;
4391 	int ret;
4392 
4393 	headroom = skb_headroom(skb);
4394 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4395 	if (ret)
4396 		return ret;
4397 
4398 	new_headroom = skb_headroom(skb);
4399 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4400 	return 0;
4401 }
4402 
4403 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4404 {
4405 	/* Do not update partial checksums if remote checksum is enabled. */
4406 	if (skb->remcsum_offload)
4407 		return;
4408 
4409 	SKB_GSO_CB(skb)->csum = res;
4410 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4411 }
4412 
4413 /* Compute the checksum for a gso segment. First compute the checksum value
4414  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4415  * then add in skb->csum (checksum from csum_start to end of packet).
4416  * skb->csum and csum_start are then updated to reflect the checksum of the
4417  * resultant packet starting from the transport header-- the resultant checksum
4418  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4419  * header.
4420  */
4421 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4422 {
4423 	unsigned char *csum_start = skb_transport_header(skb);
4424 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4425 	__wsum partial = SKB_GSO_CB(skb)->csum;
4426 
4427 	SKB_GSO_CB(skb)->csum = res;
4428 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4429 
4430 	return csum_fold(csum_partial(csum_start, plen, partial));
4431 }
4432 
4433 static inline bool skb_is_gso(const struct sk_buff *skb)
4434 {
4435 	return skb_shinfo(skb)->gso_size;
4436 }
4437 
4438 /* Note: Should be called only if skb_is_gso(skb) is true */
4439 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4440 {
4441 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4442 }
4443 
4444 /* Note: Should be called only if skb_is_gso(skb) is true */
4445 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4446 {
4447 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4448 }
4449 
4450 /* Note: Should be called only if skb_is_gso(skb) is true */
4451 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4452 {
4453 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4454 }
4455 
4456 static inline void skb_gso_reset(struct sk_buff *skb)
4457 {
4458 	skb_shinfo(skb)->gso_size = 0;
4459 	skb_shinfo(skb)->gso_segs = 0;
4460 	skb_shinfo(skb)->gso_type = 0;
4461 }
4462 
4463 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4464 					 u16 increment)
4465 {
4466 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4467 		return;
4468 	shinfo->gso_size += increment;
4469 }
4470 
4471 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4472 					 u16 decrement)
4473 {
4474 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4475 		return;
4476 	shinfo->gso_size -= decrement;
4477 }
4478 
4479 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4480 
4481 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4482 {
4483 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4484 	 * wanted then gso_type will be set. */
4485 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4486 
4487 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4488 	    unlikely(shinfo->gso_type == 0)) {
4489 		__skb_warn_lro_forwarding(skb);
4490 		return true;
4491 	}
4492 	return false;
4493 }
4494 
4495 static inline void skb_forward_csum(struct sk_buff *skb)
4496 {
4497 	/* Unfortunately we don't support this one.  Any brave souls? */
4498 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4499 		skb->ip_summed = CHECKSUM_NONE;
4500 }
4501 
4502 /**
4503  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4504  * @skb: skb to check
4505  *
4506  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4507  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4508  * use this helper, to document places where we make this assertion.
4509  */
4510 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4511 {
4512 #ifdef DEBUG
4513 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4514 #endif
4515 }
4516 
4517 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4518 
4519 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4520 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4521 				     unsigned int transport_len,
4522 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4523 
4524 /**
4525  * skb_head_is_locked - Determine if the skb->head is locked down
4526  * @skb: skb to check
4527  *
4528  * The head on skbs build around a head frag can be removed if they are
4529  * not cloned.  This function returns true if the skb head is locked down
4530  * due to either being allocated via kmalloc, or by being a clone with
4531  * multiple references to the head.
4532  */
4533 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4534 {
4535 	return !skb->head_frag || skb_cloned(skb);
4536 }
4537 
4538 /* Local Checksum Offload.
4539  * Compute outer checksum based on the assumption that the
4540  * inner checksum will be offloaded later.
4541  * See Documentation/networking/checksum-offloads.rst for
4542  * explanation of how this works.
4543  * Fill in outer checksum adjustment (e.g. with sum of outer
4544  * pseudo-header) before calling.
4545  * Also ensure that inner checksum is in linear data area.
4546  */
4547 static inline __wsum lco_csum(struct sk_buff *skb)
4548 {
4549 	unsigned char *csum_start = skb_checksum_start(skb);
4550 	unsigned char *l4_hdr = skb_transport_header(skb);
4551 	__wsum partial;
4552 
4553 	/* Start with complement of inner checksum adjustment */
4554 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4555 						    skb->csum_offset));
4556 
4557 	/* Add in checksum of our headers (incl. outer checksum
4558 	 * adjustment filled in by caller) and return result.
4559 	 */
4560 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4561 }
4562 
4563 static inline bool skb_is_redirected(const struct sk_buff *skb)
4564 {
4565 #ifdef CONFIG_NET_REDIRECT
4566 	return skb->redirected;
4567 #else
4568 	return false;
4569 #endif
4570 }
4571 
4572 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4573 {
4574 #ifdef CONFIG_NET_REDIRECT
4575 	skb->redirected = 1;
4576 	skb->from_ingress = from_ingress;
4577 	if (skb->from_ingress)
4578 		skb->tstamp = 0;
4579 #endif
4580 }
4581 
4582 static inline void skb_reset_redirect(struct sk_buff *skb)
4583 {
4584 #ifdef CONFIG_NET_REDIRECT
4585 	skb->redirected = 0;
4586 #endif
4587 }
4588 
4589 #endif	/* __KERNEL__ */
4590 #endif	/* _LINUX_SKBUFF_H */
4591