1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <linux/llist.h> 40 #include <net/flow.h> 41 #include <net/page_pool.h> 42 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 43 #include <linux/netfilter/nf_conntrack_common.h> 44 #endif 45 #include <net/net_debug.h> 46 #include <net/dropreason.h> 47 48 /** 49 * DOC: skb checksums 50 * 51 * The interface for checksum offload between the stack and networking drivers 52 * is as follows... 53 * 54 * IP checksum related features 55 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 56 * 57 * Drivers advertise checksum offload capabilities in the features of a device. 58 * From the stack's point of view these are capabilities offered by the driver. 59 * A driver typically only advertises features that it is capable of offloading 60 * to its device. 61 * 62 * .. flat-table:: Checksum related device features 63 * :widths: 1 10 64 * 65 * * - %NETIF_F_HW_CSUM 66 * - The driver (or its device) is able to compute one 67 * IP (one's complement) checksum for any combination 68 * of protocols or protocol layering. The checksum is 69 * computed and set in a packet per the CHECKSUM_PARTIAL 70 * interface (see below). 71 * 72 * * - %NETIF_F_IP_CSUM 73 * - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv4. These are specifically 75 * unencapsulated packets of the form IPv4|TCP or 76 * IPv4|UDP where the Protocol field in the IPv4 header 77 * is TCP or UDP. The IPv4 header may contain IP options. 78 * This feature cannot be set in features for a device 79 * with NETIF_F_HW_CSUM also set. This feature is being 80 * DEPRECATED (see below). 81 * 82 * * - %NETIF_F_IPV6_CSUM 83 * - Driver (device) is only able to checksum plain 84 * TCP or UDP packets over IPv6. These are specifically 85 * unencapsulated packets of the form IPv6|TCP or 86 * IPv6|UDP where the Next Header field in the IPv6 87 * header is either TCP or UDP. IPv6 extension headers 88 * are not supported with this feature. This feature 89 * cannot be set in features for a device with 90 * NETIF_F_HW_CSUM also set. This feature is being 91 * DEPRECATED (see below). 92 * 93 * * - %NETIF_F_RXCSUM 94 * - Driver (device) performs receive checksum offload. 95 * This flag is only used to disable the RX checksum 96 * feature for a device. The stack will accept receive 97 * checksum indication in packets received on a device 98 * regardless of whether NETIF_F_RXCSUM is set. 99 * 100 * Checksumming of received packets by device 101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 * 103 * Indication of checksum verification is set in &sk_buff.ip_summed. 104 * Possible values are: 105 * 106 * - %CHECKSUM_NONE 107 * 108 * Device did not checksum this packet e.g. due to lack of capabilities. 109 * The packet contains full (though not verified) checksum in packet but 110 * not in skb->csum. Thus, skb->csum is undefined in this case. 111 * 112 * - %CHECKSUM_UNNECESSARY 113 * 114 * The hardware you're dealing with doesn't calculate the full checksum 115 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 116 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 117 * if their checksums are okay. &sk_buff.csum is still undefined in this case 118 * though. A driver or device must never modify the checksum field in the 119 * packet even if checksum is verified. 120 * 121 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 122 * 123 * - TCP: IPv6 and IPv4. 124 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 125 * zero UDP checksum for either IPv4 or IPv6, the networking stack 126 * may perform further validation in this case. 127 * - GRE: only if the checksum is present in the header. 128 * - SCTP: indicates the CRC in SCTP header has been validated. 129 * - FCOE: indicates the CRC in FC frame has been validated. 130 * 131 * &sk_buff.csum_level indicates the number of consecutive checksums found in 132 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 133 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 134 * and a device is able to verify the checksums for UDP (possibly zero), 135 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 136 * two. If the device were only able to verify the UDP checksum and not 137 * GRE, either because it doesn't support GRE checksum or because GRE 138 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 139 * not considered in this case). 140 * 141 * - %CHECKSUM_COMPLETE 142 * 143 * This is the most generic way. The device supplied checksum of the _whole_ 144 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 145 * hardware doesn't need to parse L3/L4 headers to implement this. 146 * 147 * Notes: 148 * 149 * - Even if device supports only some protocols, but is able to produce 150 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 151 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 152 * 153 * - %CHECKSUM_PARTIAL 154 * 155 * A checksum is set up to be offloaded to a device as described in the 156 * output description for CHECKSUM_PARTIAL. This may occur on a packet 157 * received directly from another Linux OS, e.g., a virtualized Linux kernel 158 * on the same host, or it may be set in the input path in GRO or remote 159 * checksum offload. For the purposes of checksum verification, the checksum 160 * referred to by skb->csum_start + skb->csum_offset and any preceding 161 * checksums in the packet are considered verified. Any checksums in the 162 * packet that are after the checksum being offloaded are not considered to 163 * be verified. 164 * 165 * Checksumming on transmit for non-GSO 166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 167 * 168 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 169 * Values are: 170 * 171 * - %CHECKSUM_PARTIAL 172 * 173 * The driver is required to checksum the packet as seen by hard_start_xmit() 174 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 175 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 176 * A driver may verify that the 177 * csum_start and csum_offset values are valid values given the length and 178 * offset of the packet, but it should not attempt to validate that the 179 * checksum refers to a legitimate transport layer checksum -- it is the 180 * purview of the stack to validate that csum_start and csum_offset are set 181 * correctly. 182 * 183 * When the stack requests checksum offload for a packet, the driver MUST 184 * ensure that the checksum is set correctly. A driver can either offload the 185 * checksum calculation to the device, or call skb_checksum_help (in the case 186 * that the device does not support offload for a particular checksum). 187 * 188 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 189 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 190 * checksum offload capability. 191 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 192 * on network device checksumming capabilities: if a packet does not match 193 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 194 * &sk_buff.csum_not_inet, see :ref:`crc`) 195 * is called to resolve the checksum. 196 * 197 * - %CHECKSUM_NONE 198 * 199 * The skb was already checksummed by the protocol, or a checksum is not 200 * required. 201 * 202 * - %CHECKSUM_UNNECESSARY 203 * 204 * This has the same meaning as CHECKSUM_NONE for checksum offload on 205 * output. 206 * 207 * - %CHECKSUM_COMPLETE 208 * 209 * Not used in checksum output. If a driver observes a packet with this value 210 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 211 * 212 * .. _crc: 213 * 214 * Non-IP checksum (CRC) offloads 215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 216 * 217 * .. flat-table:: 218 * :widths: 1 10 219 * 220 * * - %NETIF_F_SCTP_CRC 221 * - This feature indicates that a device is capable of 222 * offloading the SCTP CRC in a packet. To perform this offload the stack 223 * will set csum_start and csum_offset accordingly, set ip_summed to 224 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 225 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 226 * A driver that supports both IP checksum offload and SCTP CRC32c offload 227 * must verify which offload is configured for a packet by testing the 228 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 229 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 230 * 231 * * - %NETIF_F_FCOE_CRC 232 * - This feature indicates that a device is capable of offloading the FCOE 233 * CRC in a packet. To perform this offload the stack will set ip_summed 234 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 235 * accordingly. Note that there is no indication in the skbuff that the 236 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 237 * both IP checksum offload and FCOE CRC offload must verify which offload 238 * is configured for a packet, presumably by inspecting packet headers. 239 * 240 * Checksumming on output with GSO 241 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 242 * 243 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 244 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 245 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 246 * part of the GSO operation is implied. If a checksum is being offloaded 247 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 248 * csum_offset are set to refer to the outermost checksum being offloaded 249 * (two offloaded checksums are possible with UDP encapsulation). 250 */ 251 252 /* Don't change this without changing skb_csum_unnecessary! */ 253 #define CHECKSUM_NONE 0 254 #define CHECKSUM_UNNECESSARY 1 255 #define CHECKSUM_COMPLETE 2 256 #define CHECKSUM_PARTIAL 3 257 258 /* Maximum value in skb->csum_level */ 259 #define SKB_MAX_CSUM_LEVEL 3 260 261 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 262 #define SKB_WITH_OVERHEAD(X) \ 263 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 264 #define SKB_MAX_ORDER(X, ORDER) \ 265 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 266 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 267 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 268 269 /* return minimum truesize of one skb containing X bytes of data */ 270 #define SKB_TRUESIZE(X) ((X) + \ 271 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 273 274 struct ahash_request; 275 struct net_device; 276 struct scatterlist; 277 struct pipe_inode_info; 278 struct iov_iter; 279 struct napi_struct; 280 struct bpf_prog; 281 union bpf_attr; 282 struct skb_ext; 283 284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 285 struct nf_bridge_info { 286 enum { 287 BRNF_PROTO_UNCHANGED, 288 BRNF_PROTO_8021Q, 289 BRNF_PROTO_PPPOE 290 } orig_proto:8; 291 u8 pkt_otherhost:1; 292 u8 in_prerouting:1; 293 u8 bridged_dnat:1; 294 __u16 frag_max_size; 295 struct net_device *physindev; 296 297 /* always valid & non-NULL from FORWARD on, for physdev match */ 298 struct net_device *physoutdev; 299 union { 300 /* prerouting: detect dnat in orig/reply direction */ 301 __be32 ipv4_daddr; 302 struct in6_addr ipv6_daddr; 303 304 /* after prerouting + nat detected: store original source 305 * mac since neigh resolution overwrites it, only used while 306 * skb is out in neigh layer. 307 */ 308 char neigh_header[8]; 309 }; 310 }; 311 #endif 312 313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 314 /* Chain in tc_skb_ext will be used to share the tc chain with 315 * ovs recirc_id. It will be set to the current chain by tc 316 * and read by ovs to recirc_id. 317 */ 318 struct tc_skb_ext { 319 __u32 chain; 320 __u16 mru; 321 __u16 zone; 322 u8 post_ct:1; 323 u8 post_ct_snat:1; 324 u8 post_ct_dnat:1; 325 }; 326 #endif 327 328 struct sk_buff_head { 329 /* These two members must be first to match sk_buff. */ 330 struct_group_tagged(sk_buff_list, list, 331 struct sk_buff *next; 332 struct sk_buff *prev; 333 ); 334 335 __u32 qlen; 336 spinlock_t lock; 337 }; 338 339 struct sk_buff; 340 341 /* To allow 64K frame to be packed as single skb without frag_list we 342 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 343 * buffers which do not start on a page boundary. 344 * 345 * Since GRO uses frags we allocate at least 16 regardless of page 346 * size. 347 */ 348 #if (65536/PAGE_SIZE + 1) < 16 349 #define MAX_SKB_FRAGS 16UL 350 #else 351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 352 #endif 353 extern int sysctl_max_skb_frags; 354 355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 356 * segment using its current segmentation instead. 357 */ 358 #define GSO_BY_FRAGS 0xFFFF 359 360 typedef struct bio_vec skb_frag_t; 361 362 /** 363 * skb_frag_size() - Returns the size of a skb fragment 364 * @frag: skb fragment 365 */ 366 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 367 { 368 return frag->bv_len; 369 } 370 371 /** 372 * skb_frag_size_set() - Sets the size of a skb fragment 373 * @frag: skb fragment 374 * @size: size of fragment 375 */ 376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 377 { 378 frag->bv_len = size; 379 } 380 381 /** 382 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 383 * @frag: skb fragment 384 * @delta: value to add 385 */ 386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 387 { 388 frag->bv_len += delta; 389 } 390 391 /** 392 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 393 * @frag: skb fragment 394 * @delta: value to subtract 395 */ 396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 397 { 398 frag->bv_len -= delta; 399 } 400 401 /** 402 * skb_frag_must_loop - Test if %p is a high memory page 403 * @p: fragment's page 404 */ 405 static inline bool skb_frag_must_loop(struct page *p) 406 { 407 #if defined(CONFIG_HIGHMEM) 408 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 409 return true; 410 #endif 411 return false; 412 } 413 414 /** 415 * skb_frag_foreach_page - loop over pages in a fragment 416 * 417 * @f: skb frag to operate on 418 * @f_off: offset from start of f->bv_page 419 * @f_len: length from f_off to loop over 420 * @p: (temp var) current page 421 * @p_off: (temp var) offset from start of current page, 422 * non-zero only on first page. 423 * @p_len: (temp var) length in current page, 424 * < PAGE_SIZE only on first and last page. 425 * @copied: (temp var) length so far, excluding current p_len. 426 * 427 * A fragment can hold a compound page, in which case per-page 428 * operations, notably kmap_atomic, must be called for each 429 * regular page. 430 */ 431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 432 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 433 p_off = (f_off) & (PAGE_SIZE - 1), \ 434 p_len = skb_frag_must_loop(p) ? \ 435 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 436 copied = 0; \ 437 copied < f_len; \ 438 copied += p_len, p++, p_off = 0, \ 439 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 440 441 #define HAVE_HW_TIME_STAMP 442 443 /** 444 * struct skb_shared_hwtstamps - hardware time stamps 445 * @hwtstamp: hardware time stamp transformed into duration 446 * since arbitrary point in time 447 * @netdev_data: address/cookie of network device driver used as 448 * reference to actual hardware time stamp 449 * 450 * Software time stamps generated by ktime_get_real() are stored in 451 * skb->tstamp. 452 * 453 * hwtstamps can only be compared against other hwtstamps from 454 * the same device. 455 * 456 * This structure is attached to packets as part of the 457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 458 */ 459 struct skb_shared_hwtstamps { 460 union { 461 ktime_t hwtstamp; 462 void *netdev_data; 463 }; 464 }; 465 466 /* Definitions for tx_flags in struct skb_shared_info */ 467 enum { 468 /* generate hardware time stamp */ 469 SKBTX_HW_TSTAMP = 1 << 0, 470 471 /* generate software time stamp when queueing packet to NIC */ 472 SKBTX_SW_TSTAMP = 1 << 1, 473 474 /* device driver is going to provide hardware time stamp */ 475 SKBTX_IN_PROGRESS = 1 << 2, 476 477 /* generate hardware time stamp based on cycles if supported */ 478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 479 480 /* generate wifi status information (where possible) */ 481 SKBTX_WIFI_STATUS = 1 << 4, 482 483 /* determine hardware time stamp based on time or cycles */ 484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 485 486 /* generate software time stamp when entering packet scheduling */ 487 SKBTX_SCHED_TSTAMP = 1 << 6, 488 }; 489 490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 491 SKBTX_SCHED_TSTAMP) 492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 493 SKBTX_HW_TSTAMP_USE_CYCLES | \ 494 SKBTX_ANY_SW_TSTAMP) 495 496 /* Definitions for flags in struct skb_shared_info */ 497 enum { 498 /* use zcopy routines */ 499 SKBFL_ZEROCOPY_ENABLE = BIT(0), 500 501 /* This indicates at least one fragment might be overwritten 502 * (as in vmsplice(), sendfile() ...) 503 * If we need to compute a TX checksum, we'll need to copy 504 * all frags to avoid possible bad checksum 505 */ 506 SKBFL_SHARED_FRAG = BIT(1), 507 508 /* segment contains only zerocopy data and should not be 509 * charged to the kernel memory. 510 */ 511 SKBFL_PURE_ZEROCOPY = BIT(2), 512 }; 513 514 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 515 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY) 516 517 /* 518 * The callback notifies userspace to release buffers when skb DMA is done in 519 * lower device, the skb last reference should be 0 when calling this. 520 * The zerocopy_success argument is true if zero copy transmit occurred, 521 * false on data copy or out of memory error caused by data copy attempt. 522 * The ctx field is used to track device context. 523 * The desc field is used to track userspace buffer index. 524 */ 525 struct ubuf_info { 526 void (*callback)(struct sk_buff *, struct ubuf_info *, 527 bool zerocopy_success); 528 union { 529 struct { 530 unsigned long desc; 531 void *ctx; 532 }; 533 struct { 534 u32 id; 535 u16 len; 536 u16 zerocopy:1; 537 u32 bytelen; 538 }; 539 }; 540 refcount_t refcnt; 541 u8 flags; 542 543 struct mmpin { 544 struct user_struct *user; 545 unsigned int num_pg; 546 } mmp; 547 }; 548 549 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 550 551 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 552 void mm_unaccount_pinned_pages(struct mmpin *mmp); 553 554 /* This data is invariant across clones and lives at 555 * the end of the header data, ie. at skb->end. 556 */ 557 struct skb_shared_info { 558 __u8 flags; 559 __u8 meta_len; 560 __u8 nr_frags; 561 __u8 tx_flags; 562 unsigned short gso_size; 563 /* Warning: this field is not always filled in (UFO)! */ 564 unsigned short gso_segs; 565 struct sk_buff *frag_list; 566 struct skb_shared_hwtstamps hwtstamps; 567 unsigned int gso_type; 568 u32 tskey; 569 570 /* 571 * Warning : all fields before dataref are cleared in __alloc_skb() 572 */ 573 atomic_t dataref; 574 unsigned int xdp_frags_size; 575 576 /* Intermediate layers must ensure that destructor_arg 577 * remains valid until skb destructor */ 578 void * destructor_arg; 579 580 /* must be last field, see pskb_expand_head() */ 581 skb_frag_t frags[MAX_SKB_FRAGS]; 582 }; 583 584 /** 585 * DOC: dataref and headerless skbs 586 * 587 * Transport layers send out clones of payload skbs they hold for 588 * retransmissions. To allow lower layers of the stack to prepend their headers 589 * we split &skb_shared_info.dataref into two halves. 590 * The lower 16 bits count the overall number of references. 591 * The higher 16 bits indicate how many of the references are payload-only. 592 * skb_header_cloned() checks if skb is allowed to add / write the headers. 593 * 594 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 595 * (via __skb_header_release()). Any clone created from marked skb will get 596 * &sk_buff.hdr_len populated with the available headroom. 597 * If there's the only clone in existence it's able to modify the headroom 598 * at will. The sequence of calls inside the transport layer is:: 599 * 600 * <alloc skb> 601 * skb_reserve() 602 * __skb_header_release() 603 * skb_clone() 604 * // send the clone down the stack 605 * 606 * This is not a very generic construct and it depends on the transport layers 607 * doing the right thing. In practice there's usually only one payload-only skb. 608 * Having multiple payload-only skbs with different lengths of hdr_len is not 609 * possible. The payload-only skbs should never leave their owner. 610 */ 611 #define SKB_DATAREF_SHIFT 16 612 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 613 614 615 enum { 616 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 617 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 618 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 619 }; 620 621 enum { 622 SKB_GSO_TCPV4 = 1 << 0, 623 624 /* This indicates the skb is from an untrusted source. */ 625 SKB_GSO_DODGY = 1 << 1, 626 627 /* This indicates the tcp segment has CWR set. */ 628 SKB_GSO_TCP_ECN = 1 << 2, 629 630 SKB_GSO_TCP_FIXEDID = 1 << 3, 631 632 SKB_GSO_TCPV6 = 1 << 4, 633 634 SKB_GSO_FCOE = 1 << 5, 635 636 SKB_GSO_GRE = 1 << 6, 637 638 SKB_GSO_GRE_CSUM = 1 << 7, 639 640 SKB_GSO_IPXIP4 = 1 << 8, 641 642 SKB_GSO_IPXIP6 = 1 << 9, 643 644 SKB_GSO_UDP_TUNNEL = 1 << 10, 645 646 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 647 648 SKB_GSO_PARTIAL = 1 << 12, 649 650 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 651 652 SKB_GSO_SCTP = 1 << 14, 653 654 SKB_GSO_ESP = 1 << 15, 655 656 SKB_GSO_UDP = 1 << 16, 657 658 SKB_GSO_UDP_L4 = 1 << 17, 659 660 SKB_GSO_FRAGLIST = 1 << 18, 661 }; 662 663 #if BITS_PER_LONG > 32 664 #define NET_SKBUFF_DATA_USES_OFFSET 1 665 #endif 666 667 #ifdef NET_SKBUFF_DATA_USES_OFFSET 668 typedef unsigned int sk_buff_data_t; 669 #else 670 typedef unsigned char *sk_buff_data_t; 671 #endif 672 673 /** 674 * DOC: Basic sk_buff geometry 675 * 676 * struct sk_buff itself is a metadata structure and does not hold any packet 677 * data. All the data is held in associated buffers. 678 * 679 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 680 * into two parts: 681 * 682 * - data buffer, containing headers and sometimes payload; 683 * this is the part of the skb operated on by the common helpers 684 * such as skb_put() or skb_pull(); 685 * - shared info (struct skb_shared_info) which holds an array of pointers 686 * to read-only data in the (page, offset, length) format. 687 * 688 * Optionally &skb_shared_info.frag_list may point to another skb. 689 * 690 * Basic diagram may look like this:: 691 * 692 * --------------- 693 * | sk_buff | 694 * --------------- 695 * ,--------------------------- + head 696 * / ,----------------- + data 697 * / / ,----------- + tail 698 * | | | , + end 699 * | | | | 700 * v v v v 701 * ----------------------------------------------- 702 * | headroom | data | tailroom | skb_shared_info | 703 * ----------------------------------------------- 704 * + [page frag] 705 * + [page frag] 706 * + [page frag] 707 * + [page frag] --------- 708 * + frag_list --> | sk_buff | 709 * --------- 710 * 711 */ 712 713 /** 714 * struct sk_buff - socket buffer 715 * @next: Next buffer in list 716 * @prev: Previous buffer in list 717 * @tstamp: Time we arrived/left 718 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 719 * for retransmit timer 720 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 721 * @list: queue head 722 * @ll_node: anchor in an llist (eg socket defer_list) 723 * @sk: Socket we are owned by 724 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 725 * fragmentation management 726 * @dev: Device we arrived on/are leaving by 727 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 728 * @cb: Control buffer. Free for use by every layer. Put private vars here 729 * @_skb_refdst: destination entry (with norefcount bit) 730 * @sp: the security path, used for xfrm 731 * @len: Length of actual data 732 * @data_len: Data length 733 * @mac_len: Length of link layer header 734 * @hdr_len: writable header length of cloned skb 735 * @csum: Checksum (must include start/offset pair) 736 * @csum_start: Offset from skb->head where checksumming should start 737 * @csum_offset: Offset from csum_start where checksum should be stored 738 * @priority: Packet queueing priority 739 * @ignore_df: allow local fragmentation 740 * @cloned: Head may be cloned (check refcnt to be sure) 741 * @ip_summed: Driver fed us an IP checksum 742 * @nohdr: Payload reference only, must not modify header 743 * @pkt_type: Packet class 744 * @fclone: skbuff clone status 745 * @ipvs_property: skbuff is owned by ipvs 746 * @inner_protocol_type: whether the inner protocol is 747 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 748 * @remcsum_offload: remote checksum offload is enabled 749 * @offload_fwd_mark: Packet was L2-forwarded in hardware 750 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 751 * @tc_skip_classify: do not classify packet. set by IFB device 752 * @tc_at_ingress: used within tc_classify to distinguish in/egress 753 * @redirected: packet was redirected by packet classifier 754 * @from_ingress: packet was redirected from the ingress path 755 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 756 * @peeked: this packet has been seen already, so stats have been 757 * done for it, don't do them again 758 * @nf_trace: netfilter packet trace flag 759 * @protocol: Packet protocol from driver 760 * @destructor: Destruct function 761 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 762 * @_sk_redir: socket redirection information for skmsg 763 * @_nfct: Associated connection, if any (with nfctinfo bits) 764 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 765 * @skb_iif: ifindex of device we arrived on 766 * @tc_index: Traffic control index 767 * @hash: the packet hash 768 * @queue_mapping: Queue mapping for multiqueue devices 769 * @head_frag: skb was allocated from page fragments, 770 * not allocated by kmalloc() or vmalloc(). 771 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 772 * @pp_recycle: mark the packet for recycling instead of freeing (implies 773 * page_pool support on driver) 774 * @active_extensions: active extensions (skb_ext_id types) 775 * @ndisc_nodetype: router type (from link layer) 776 * @ooo_okay: allow the mapping of a socket to a queue to be changed 777 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 778 * ports. 779 * @sw_hash: indicates hash was computed in software stack 780 * @wifi_acked_valid: wifi_acked was set 781 * @wifi_acked: whether frame was acked on wifi or not 782 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 783 * @encapsulation: indicates the inner headers in the skbuff are valid 784 * @encap_hdr_csum: software checksum is needed 785 * @csum_valid: checksum is already valid 786 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 787 * @csum_complete_sw: checksum was completed by software 788 * @csum_level: indicates the number of consecutive checksums found in 789 * the packet minus one that have been verified as 790 * CHECKSUM_UNNECESSARY (max 3) 791 * @dst_pending_confirm: need to confirm neighbour 792 * @decrypted: Decrypted SKB 793 * @slow_gro: state present at GRO time, slower prepare step required 794 * @mono_delivery_time: When set, skb->tstamp has the 795 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 796 * skb->tstamp has the (rcv) timestamp at ingress and 797 * delivery_time at egress. 798 * @napi_id: id of the NAPI struct this skb came from 799 * @sender_cpu: (aka @napi_id) source CPU in XPS 800 * @alloc_cpu: CPU which did the skb allocation. 801 * @secmark: security marking 802 * @mark: Generic packet mark 803 * @reserved_tailroom: (aka @mark) number of bytes of free space available 804 * at the tail of an sk_buff 805 * @vlan_present: VLAN tag is present 806 * @vlan_proto: vlan encapsulation protocol 807 * @vlan_tci: vlan tag control information 808 * @inner_protocol: Protocol (encapsulation) 809 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 810 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 811 * @inner_transport_header: Inner transport layer header (encapsulation) 812 * @inner_network_header: Network layer header (encapsulation) 813 * @inner_mac_header: Link layer header (encapsulation) 814 * @transport_header: Transport layer header 815 * @network_header: Network layer header 816 * @mac_header: Link layer header 817 * @kcov_handle: KCOV remote handle for remote coverage collection 818 * @tail: Tail pointer 819 * @end: End pointer 820 * @head: Head of buffer 821 * @data: Data head pointer 822 * @truesize: Buffer size 823 * @users: User count - see {datagram,tcp}.c 824 * @extensions: allocated extensions, valid if active_extensions is nonzero 825 */ 826 827 struct sk_buff { 828 union { 829 struct { 830 /* These two members must be first to match sk_buff_head. */ 831 struct sk_buff *next; 832 struct sk_buff *prev; 833 834 union { 835 struct net_device *dev; 836 /* Some protocols might use this space to store information, 837 * while device pointer would be NULL. 838 * UDP receive path is one user. 839 */ 840 unsigned long dev_scratch; 841 }; 842 }; 843 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 844 struct list_head list; 845 struct llist_node ll_node; 846 }; 847 848 union { 849 struct sock *sk; 850 int ip_defrag_offset; 851 }; 852 853 union { 854 ktime_t tstamp; 855 u64 skb_mstamp_ns; /* earliest departure time */ 856 }; 857 /* 858 * This is the control buffer. It is free to use for every 859 * layer. Please put your private variables there. If you 860 * want to keep them across layers you have to do a skb_clone() 861 * first. This is owned by whoever has the skb queued ATM. 862 */ 863 char cb[48] __aligned(8); 864 865 union { 866 struct { 867 unsigned long _skb_refdst; 868 void (*destructor)(struct sk_buff *skb); 869 }; 870 struct list_head tcp_tsorted_anchor; 871 #ifdef CONFIG_NET_SOCK_MSG 872 unsigned long _sk_redir; 873 #endif 874 }; 875 876 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 877 unsigned long _nfct; 878 #endif 879 unsigned int len, 880 data_len; 881 __u16 mac_len, 882 hdr_len; 883 884 /* Following fields are _not_ copied in __copy_skb_header() 885 * Note that queue_mapping is here mostly to fill a hole. 886 */ 887 __u16 queue_mapping; 888 889 /* if you move cloned around you also must adapt those constants */ 890 #ifdef __BIG_ENDIAN_BITFIELD 891 #define CLONED_MASK (1 << 7) 892 #else 893 #define CLONED_MASK 1 894 #endif 895 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 896 897 /* private: */ 898 __u8 __cloned_offset[0]; 899 /* public: */ 900 __u8 cloned:1, 901 nohdr:1, 902 fclone:2, 903 peeked:1, 904 head_frag:1, 905 pfmemalloc:1, 906 pp_recycle:1; /* page_pool recycle indicator */ 907 #ifdef CONFIG_SKB_EXTENSIONS 908 __u8 active_extensions; 909 #endif 910 911 /* Fields enclosed in headers group are copied 912 * using a single memcpy() in __copy_skb_header() 913 */ 914 struct_group(headers, 915 916 /* private: */ 917 __u8 __pkt_type_offset[0]; 918 /* public: */ 919 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 920 __u8 ignore_df:1; 921 __u8 nf_trace:1; 922 __u8 ip_summed:2; 923 __u8 ooo_okay:1; 924 925 __u8 l4_hash:1; 926 __u8 sw_hash:1; 927 __u8 wifi_acked_valid:1; 928 __u8 wifi_acked:1; 929 __u8 no_fcs:1; 930 /* Indicates the inner headers are valid in the skbuff. */ 931 __u8 encapsulation:1; 932 __u8 encap_hdr_csum:1; 933 __u8 csum_valid:1; 934 935 /* private: */ 936 __u8 __pkt_vlan_present_offset[0]; 937 /* public: */ 938 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 939 __u8 csum_complete_sw:1; 940 __u8 csum_level:2; 941 __u8 dst_pending_confirm:1; 942 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 943 #ifdef CONFIG_NET_CLS_ACT 944 __u8 tc_skip_classify:1; 945 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 946 #endif 947 #ifdef CONFIG_IPV6_NDISC_NODETYPE 948 __u8 ndisc_nodetype:2; 949 #endif 950 951 __u8 ipvs_property:1; 952 __u8 inner_protocol_type:1; 953 __u8 remcsum_offload:1; 954 #ifdef CONFIG_NET_SWITCHDEV 955 __u8 offload_fwd_mark:1; 956 __u8 offload_l3_fwd_mark:1; 957 #endif 958 __u8 redirected:1; 959 #ifdef CONFIG_NET_REDIRECT 960 __u8 from_ingress:1; 961 #endif 962 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 963 __u8 nf_skip_egress:1; 964 #endif 965 #ifdef CONFIG_TLS_DEVICE 966 __u8 decrypted:1; 967 #endif 968 __u8 slow_gro:1; 969 __u8 csum_not_inet:1; 970 971 #ifdef CONFIG_NET_SCHED 972 __u16 tc_index; /* traffic control index */ 973 #endif 974 975 union { 976 __wsum csum; 977 struct { 978 __u16 csum_start; 979 __u16 csum_offset; 980 }; 981 }; 982 __u32 priority; 983 int skb_iif; 984 __u32 hash; 985 __be16 vlan_proto; 986 __u16 vlan_tci; 987 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 988 union { 989 unsigned int napi_id; 990 unsigned int sender_cpu; 991 }; 992 #endif 993 u16 alloc_cpu; 994 #ifdef CONFIG_NETWORK_SECMARK 995 __u32 secmark; 996 #endif 997 998 union { 999 __u32 mark; 1000 __u32 reserved_tailroom; 1001 }; 1002 1003 union { 1004 __be16 inner_protocol; 1005 __u8 inner_ipproto; 1006 }; 1007 1008 __u16 inner_transport_header; 1009 __u16 inner_network_header; 1010 __u16 inner_mac_header; 1011 1012 __be16 protocol; 1013 __u16 transport_header; 1014 __u16 network_header; 1015 __u16 mac_header; 1016 1017 #ifdef CONFIG_KCOV 1018 u64 kcov_handle; 1019 #endif 1020 1021 ); /* end headers group */ 1022 1023 /* These elements must be at the end, see alloc_skb() for details. */ 1024 sk_buff_data_t tail; 1025 sk_buff_data_t end; 1026 unsigned char *head, 1027 *data; 1028 unsigned int truesize; 1029 refcount_t users; 1030 1031 #ifdef CONFIG_SKB_EXTENSIONS 1032 /* only useable after checking ->active_extensions != 0 */ 1033 struct skb_ext *extensions; 1034 #endif 1035 }; 1036 1037 /* if you move pkt_type around you also must adapt those constants */ 1038 #ifdef __BIG_ENDIAN_BITFIELD 1039 #define PKT_TYPE_MAX (7 << 5) 1040 #else 1041 #define PKT_TYPE_MAX 7 1042 #endif 1043 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1044 1045 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time 1046 * around, you also must adapt these constants. 1047 */ 1048 #ifdef __BIG_ENDIAN_BITFIELD 1049 #define PKT_VLAN_PRESENT_BIT 7 1050 #define TC_AT_INGRESS_MASK (1 << 0) 1051 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1052 #else 1053 #define PKT_VLAN_PRESENT_BIT 0 1054 #define TC_AT_INGRESS_MASK (1 << 7) 1055 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1056 #endif 1057 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1058 1059 #ifdef __KERNEL__ 1060 /* 1061 * Handling routines are only of interest to the kernel 1062 */ 1063 1064 #define SKB_ALLOC_FCLONE 0x01 1065 #define SKB_ALLOC_RX 0x02 1066 #define SKB_ALLOC_NAPI 0x04 1067 1068 /** 1069 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1070 * @skb: buffer 1071 */ 1072 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1073 { 1074 return unlikely(skb->pfmemalloc); 1075 } 1076 1077 /* 1078 * skb might have a dst pointer attached, refcounted or not. 1079 * _skb_refdst low order bit is set if refcount was _not_ taken 1080 */ 1081 #define SKB_DST_NOREF 1UL 1082 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1083 1084 /** 1085 * skb_dst - returns skb dst_entry 1086 * @skb: buffer 1087 * 1088 * Returns skb dst_entry, regardless of reference taken or not. 1089 */ 1090 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1091 { 1092 /* If refdst was not refcounted, check we still are in a 1093 * rcu_read_lock section 1094 */ 1095 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1096 !rcu_read_lock_held() && 1097 !rcu_read_lock_bh_held()); 1098 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1099 } 1100 1101 /** 1102 * skb_dst_set - sets skb dst 1103 * @skb: buffer 1104 * @dst: dst entry 1105 * 1106 * Sets skb dst, assuming a reference was taken on dst and should 1107 * be released by skb_dst_drop() 1108 */ 1109 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1110 { 1111 skb->slow_gro |= !!dst; 1112 skb->_skb_refdst = (unsigned long)dst; 1113 } 1114 1115 /** 1116 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1117 * @skb: buffer 1118 * @dst: dst entry 1119 * 1120 * Sets skb dst, assuming a reference was not taken on dst. 1121 * If dst entry is cached, we do not take reference and dst_release 1122 * will be avoided by refdst_drop. If dst entry is not cached, we take 1123 * reference, so that last dst_release can destroy the dst immediately. 1124 */ 1125 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1126 { 1127 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1128 skb->slow_gro |= !!dst; 1129 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1130 } 1131 1132 /** 1133 * skb_dst_is_noref - Test if skb dst isn't refcounted 1134 * @skb: buffer 1135 */ 1136 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1137 { 1138 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1139 } 1140 1141 /** 1142 * skb_rtable - Returns the skb &rtable 1143 * @skb: buffer 1144 */ 1145 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1146 { 1147 return (struct rtable *)skb_dst(skb); 1148 } 1149 1150 /* For mangling skb->pkt_type from user space side from applications 1151 * such as nft, tc, etc, we only allow a conservative subset of 1152 * possible pkt_types to be set. 1153 */ 1154 static inline bool skb_pkt_type_ok(u32 ptype) 1155 { 1156 return ptype <= PACKET_OTHERHOST; 1157 } 1158 1159 /** 1160 * skb_napi_id - Returns the skb's NAPI id 1161 * @skb: buffer 1162 */ 1163 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1164 { 1165 #ifdef CONFIG_NET_RX_BUSY_POLL 1166 return skb->napi_id; 1167 #else 1168 return 0; 1169 #endif 1170 } 1171 1172 /** 1173 * skb_unref - decrement the skb's reference count 1174 * @skb: buffer 1175 * 1176 * Returns true if we can free the skb. 1177 */ 1178 static inline bool skb_unref(struct sk_buff *skb) 1179 { 1180 if (unlikely(!skb)) 1181 return false; 1182 if (likely(refcount_read(&skb->users) == 1)) 1183 smp_rmb(); 1184 else if (likely(!refcount_dec_and_test(&skb->users))) 1185 return false; 1186 1187 return true; 1188 } 1189 1190 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1191 1192 /** 1193 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1194 * @skb: buffer to free 1195 */ 1196 static inline void kfree_skb(struct sk_buff *skb) 1197 { 1198 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1199 } 1200 1201 void skb_release_head_state(struct sk_buff *skb); 1202 void kfree_skb_list_reason(struct sk_buff *segs, 1203 enum skb_drop_reason reason); 1204 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1205 void skb_tx_error(struct sk_buff *skb); 1206 1207 static inline void kfree_skb_list(struct sk_buff *segs) 1208 { 1209 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1210 } 1211 1212 #ifdef CONFIG_TRACEPOINTS 1213 void consume_skb(struct sk_buff *skb); 1214 #else 1215 static inline void consume_skb(struct sk_buff *skb) 1216 { 1217 return kfree_skb(skb); 1218 } 1219 #endif 1220 1221 void __consume_stateless_skb(struct sk_buff *skb); 1222 void __kfree_skb(struct sk_buff *skb); 1223 extern struct kmem_cache *skbuff_head_cache; 1224 1225 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1226 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1227 bool *fragstolen, int *delta_truesize); 1228 1229 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1230 int node); 1231 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1232 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1233 struct sk_buff *build_skb_around(struct sk_buff *skb, 1234 void *data, unsigned int frag_size); 1235 void skb_attempt_defer_free(struct sk_buff *skb); 1236 1237 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1238 1239 /** 1240 * alloc_skb - allocate a network buffer 1241 * @size: size to allocate 1242 * @priority: allocation mask 1243 * 1244 * This function is a convenient wrapper around __alloc_skb(). 1245 */ 1246 static inline struct sk_buff *alloc_skb(unsigned int size, 1247 gfp_t priority) 1248 { 1249 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1250 } 1251 1252 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1253 unsigned long data_len, 1254 int max_page_order, 1255 int *errcode, 1256 gfp_t gfp_mask); 1257 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1258 1259 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1260 struct sk_buff_fclones { 1261 struct sk_buff skb1; 1262 1263 struct sk_buff skb2; 1264 1265 refcount_t fclone_ref; 1266 }; 1267 1268 /** 1269 * skb_fclone_busy - check if fclone is busy 1270 * @sk: socket 1271 * @skb: buffer 1272 * 1273 * Returns true if skb is a fast clone, and its clone is not freed. 1274 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1275 * so we also check that this didnt happen. 1276 */ 1277 static inline bool skb_fclone_busy(const struct sock *sk, 1278 const struct sk_buff *skb) 1279 { 1280 const struct sk_buff_fclones *fclones; 1281 1282 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1283 1284 return skb->fclone == SKB_FCLONE_ORIG && 1285 refcount_read(&fclones->fclone_ref) > 1 && 1286 READ_ONCE(fclones->skb2.sk) == sk; 1287 } 1288 1289 /** 1290 * alloc_skb_fclone - allocate a network buffer from fclone cache 1291 * @size: size to allocate 1292 * @priority: allocation mask 1293 * 1294 * This function is a convenient wrapper around __alloc_skb(). 1295 */ 1296 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1297 gfp_t priority) 1298 { 1299 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1300 } 1301 1302 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1303 void skb_headers_offset_update(struct sk_buff *skb, int off); 1304 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1305 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1306 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1307 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1308 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1309 gfp_t gfp_mask, bool fclone); 1310 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1311 gfp_t gfp_mask) 1312 { 1313 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1314 } 1315 1316 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1317 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1318 unsigned int headroom); 1319 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1320 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1321 int newtailroom, gfp_t priority); 1322 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1323 int offset, int len); 1324 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1325 int offset, int len); 1326 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1327 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1328 1329 /** 1330 * skb_pad - zero pad the tail of an skb 1331 * @skb: buffer to pad 1332 * @pad: space to pad 1333 * 1334 * Ensure that a buffer is followed by a padding area that is zero 1335 * filled. Used by network drivers which may DMA or transfer data 1336 * beyond the buffer end onto the wire. 1337 * 1338 * May return error in out of memory cases. The skb is freed on error. 1339 */ 1340 static inline int skb_pad(struct sk_buff *skb, int pad) 1341 { 1342 return __skb_pad(skb, pad, true); 1343 } 1344 #define dev_kfree_skb(a) consume_skb(a) 1345 1346 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1347 int offset, size_t size); 1348 1349 struct skb_seq_state { 1350 __u32 lower_offset; 1351 __u32 upper_offset; 1352 __u32 frag_idx; 1353 __u32 stepped_offset; 1354 struct sk_buff *root_skb; 1355 struct sk_buff *cur_skb; 1356 __u8 *frag_data; 1357 __u32 frag_off; 1358 }; 1359 1360 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1361 unsigned int to, struct skb_seq_state *st); 1362 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1363 struct skb_seq_state *st); 1364 void skb_abort_seq_read(struct skb_seq_state *st); 1365 1366 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1367 unsigned int to, struct ts_config *config); 1368 1369 /* 1370 * Packet hash types specify the type of hash in skb_set_hash. 1371 * 1372 * Hash types refer to the protocol layer addresses which are used to 1373 * construct a packet's hash. The hashes are used to differentiate or identify 1374 * flows of the protocol layer for the hash type. Hash types are either 1375 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1376 * 1377 * Properties of hashes: 1378 * 1379 * 1) Two packets in different flows have different hash values 1380 * 2) Two packets in the same flow should have the same hash value 1381 * 1382 * A hash at a higher layer is considered to be more specific. A driver should 1383 * set the most specific hash possible. 1384 * 1385 * A driver cannot indicate a more specific hash than the layer at which a hash 1386 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1387 * 1388 * A driver may indicate a hash level which is less specific than the 1389 * actual layer the hash was computed on. For instance, a hash computed 1390 * at L4 may be considered an L3 hash. This should only be done if the 1391 * driver can't unambiguously determine that the HW computed the hash at 1392 * the higher layer. Note that the "should" in the second property above 1393 * permits this. 1394 */ 1395 enum pkt_hash_types { 1396 PKT_HASH_TYPE_NONE, /* Undefined type */ 1397 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1398 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1399 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1400 }; 1401 1402 static inline void skb_clear_hash(struct sk_buff *skb) 1403 { 1404 skb->hash = 0; 1405 skb->sw_hash = 0; 1406 skb->l4_hash = 0; 1407 } 1408 1409 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1410 { 1411 if (!skb->l4_hash) 1412 skb_clear_hash(skb); 1413 } 1414 1415 static inline void 1416 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1417 { 1418 skb->l4_hash = is_l4; 1419 skb->sw_hash = is_sw; 1420 skb->hash = hash; 1421 } 1422 1423 static inline void 1424 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1425 { 1426 /* Used by drivers to set hash from HW */ 1427 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1428 } 1429 1430 static inline void 1431 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1432 { 1433 __skb_set_hash(skb, hash, true, is_l4); 1434 } 1435 1436 void __skb_get_hash(struct sk_buff *skb); 1437 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1438 u32 skb_get_poff(const struct sk_buff *skb); 1439 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1440 const struct flow_keys_basic *keys, int hlen); 1441 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1442 const void *data, int hlen_proto); 1443 1444 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1445 int thoff, u8 ip_proto) 1446 { 1447 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1448 } 1449 1450 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1451 const struct flow_dissector_key *key, 1452 unsigned int key_count); 1453 1454 struct bpf_flow_dissector; 1455 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1456 __be16 proto, int nhoff, int hlen, unsigned int flags); 1457 1458 bool __skb_flow_dissect(const struct net *net, 1459 const struct sk_buff *skb, 1460 struct flow_dissector *flow_dissector, 1461 void *target_container, const void *data, 1462 __be16 proto, int nhoff, int hlen, unsigned int flags); 1463 1464 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1465 struct flow_dissector *flow_dissector, 1466 void *target_container, unsigned int flags) 1467 { 1468 return __skb_flow_dissect(NULL, skb, flow_dissector, 1469 target_container, NULL, 0, 0, 0, flags); 1470 } 1471 1472 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1473 struct flow_keys *flow, 1474 unsigned int flags) 1475 { 1476 memset(flow, 0, sizeof(*flow)); 1477 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1478 flow, NULL, 0, 0, 0, flags); 1479 } 1480 1481 static inline bool 1482 skb_flow_dissect_flow_keys_basic(const struct net *net, 1483 const struct sk_buff *skb, 1484 struct flow_keys_basic *flow, 1485 const void *data, __be16 proto, 1486 int nhoff, int hlen, unsigned int flags) 1487 { 1488 memset(flow, 0, sizeof(*flow)); 1489 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1490 data, proto, nhoff, hlen, flags); 1491 } 1492 1493 void skb_flow_dissect_meta(const struct sk_buff *skb, 1494 struct flow_dissector *flow_dissector, 1495 void *target_container); 1496 1497 /* Gets a skb connection tracking info, ctinfo map should be a 1498 * map of mapsize to translate enum ip_conntrack_info states 1499 * to user states. 1500 */ 1501 void 1502 skb_flow_dissect_ct(const struct sk_buff *skb, 1503 struct flow_dissector *flow_dissector, 1504 void *target_container, 1505 u16 *ctinfo_map, size_t mapsize, 1506 bool post_ct, u16 zone); 1507 void 1508 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1509 struct flow_dissector *flow_dissector, 1510 void *target_container); 1511 1512 void skb_flow_dissect_hash(const struct sk_buff *skb, 1513 struct flow_dissector *flow_dissector, 1514 void *target_container); 1515 1516 static inline __u32 skb_get_hash(struct sk_buff *skb) 1517 { 1518 if (!skb->l4_hash && !skb->sw_hash) 1519 __skb_get_hash(skb); 1520 1521 return skb->hash; 1522 } 1523 1524 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1525 { 1526 if (!skb->l4_hash && !skb->sw_hash) { 1527 struct flow_keys keys; 1528 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1529 1530 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1531 } 1532 1533 return skb->hash; 1534 } 1535 1536 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1537 const siphash_key_t *perturb); 1538 1539 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1540 { 1541 return skb->hash; 1542 } 1543 1544 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1545 { 1546 to->hash = from->hash; 1547 to->sw_hash = from->sw_hash; 1548 to->l4_hash = from->l4_hash; 1549 }; 1550 1551 static inline void skb_copy_decrypted(struct sk_buff *to, 1552 const struct sk_buff *from) 1553 { 1554 #ifdef CONFIG_TLS_DEVICE 1555 to->decrypted = from->decrypted; 1556 #endif 1557 } 1558 1559 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1560 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1561 { 1562 return skb->head + skb->end; 1563 } 1564 1565 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1566 { 1567 return skb->end; 1568 } 1569 1570 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1571 { 1572 skb->end = offset; 1573 } 1574 #else 1575 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1576 { 1577 return skb->end; 1578 } 1579 1580 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1581 { 1582 return skb->end - skb->head; 1583 } 1584 1585 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1586 { 1587 skb->end = skb->head + offset; 1588 } 1589 #endif 1590 1591 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1592 struct ubuf_info *uarg); 1593 1594 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1595 1596 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1597 bool success); 1598 1599 int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb, 1600 struct iov_iter *from, size_t length); 1601 1602 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1603 struct msghdr *msg, int len) 1604 { 1605 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); 1606 } 1607 1608 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1609 struct msghdr *msg, int len, 1610 struct ubuf_info *uarg); 1611 1612 /* Internal */ 1613 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1614 1615 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1616 { 1617 return &skb_shinfo(skb)->hwtstamps; 1618 } 1619 1620 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1621 { 1622 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1623 1624 return is_zcopy ? skb_uarg(skb) : NULL; 1625 } 1626 1627 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1628 { 1629 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1630 } 1631 1632 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1633 const struct sk_buff *skb2) 1634 { 1635 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1636 } 1637 1638 static inline void net_zcopy_get(struct ubuf_info *uarg) 1639 { 1640 refcount_inc(&uarg->refcnt); 1641 } 1642 1643 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1644 { 1645 skb_shinfo(skb)->destructor_arg = uarg; 1646 skb_shinfo(skb)->flags |= uarg->flags; 1647 } 1648 1649 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1650 bool *have_ref) 1651 { 1652 if (skb && uarg && !skb_zcopy(skb)) { 1653 if (unlikely(have_ref && *have_ref)) 1654 *have_ref = false; 1655 else 1656 net_zcopy_get(uarg); 1657 skb_zcopy_init(skb, uarg); 1658 } 1659 } 1660 1661 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1662 { 1663 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1664 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1665 } 1666 1667 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1668 { 1669 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1670 } 1671 1672 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1673 { 1674 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1675 } 1676 1677 static inline void net_zcopy_put(struct ubuf_info *uarg) 1678 { 1679 if (uarg) 1680 uarg->callback(NULL, uarg, true); 1681 } 1682 1683 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1684 { 1685 if (uarg) { 1686 if (uarg->callback == msg_zerocopy_callback) 1687 msg_zerocopy_put_abort(uarg, have_uref); 1688 else if (have_uref) 1689 net_zcopy_put(uarg); 1690 } 1691 } 1692 1693 /* Release a reference on a zerocopy structure */ 1694 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1695 { 1696 struct ubuf_info *uarg = skb_zcopy(skb); 1697 1698 if (uarg) { 1699 if (!skb_zcopy_is_nouarg(skb)) 1700 uarg->callback(skb, uarg, zerocopy_success); 1701 1702 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1703 } 1704 } 1705 1706 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1707 { 1708 skb->next = NULL; 1709 } 1710 1711 /* Iterate through singly-linked GSO fragments of an skb. */ 1712 #define skb_list_walk_safe(first, skb, next_skb) \ 1713 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1714 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1715 1716 static inline void skb_list_del_init(struct sk_buff *skb) 1717 { 1718 __list_del_entry(&skb->list); 1719 skb_mark_not_on_list(skb); 1720 } 1721 1722 /** 1723 * skb_queue_empty - check if a queue is empty 1724 * @list: queue head 1725 * 1726 * Returns true if the queue is empty, false otherwise. 1727 */ 1728 static inline int skb_queue_empty(const struct sk_buff_head *list) 1729 { 1730 return list->next == (const struct sk_buff *) list; 1731 } 1732 1733 /** 1734 * skb_queue_empty_lockless - check if a queue is empty 1735 * @list: queue head 1736 * 1737 * Returns true if the queue is empty, false otherwise. 1738 * This variant can be used in lockless contexts. 1739 */ 1740 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1741 { 1742 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1743 } 1744 1745 1746 /** 1747 * skb_queue_is_last - check if skb is the last entry in the queue 1748 * @list: queue head 1749 * @skb: buffer 1750 * 1751 * Returns true if @skb is the last buffer on the list. 1752 */ 1753 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1754 const struct sk_buff *skb) 1755 { 1756 return skb->next == (const struct sk_buff *) list; 1757 } 1758 1759 /** 1760 * skb_queue_is_first - check if skb is the first entry in the queue 1761 * @list: queue head 1762 * @skb: buffer 1763 * 1764 * Returns true if @skb is the first buffer on the list. 1765 */ 1766 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1767 const struct sk_buff *skb) 1768 { 1769 return skb->prev == (const struct sk_buff *) list; 1770 } 1771 1772 /** 1773 * skb_queue_next - return the next packet in the queue 1774 * @list: queue head 1775 * @skb: current buffer 1776 * 1777 * Return the next packet in @list after @skb. It is only valid to 1778 * call this if skb_queue_is_last() evaluates to false. 1779 */ 1780 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1781 const struct sk_buff *skb) 1782 { 1783 /* This BUG_ON may seem severe, but if we just return then we 1784 * are going to dereference garbage. 1785 */ 1786 BUG_ON(skb_queue_is_last(list, skb)); 1787 return skb->next; 1788 } 1789 1790 /** 1791 * skb_queue_prev - return the prev packet in the queue 1792 * @list: queue head 1793 * @skb: current buffer 1794 * 1795 * Return the prev packet in @list before @skb. It is only valid to 1796 * call this if skb_queue_is_first() evaluates to false. 1797 */ 1798 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1799 const struct sk_buff *skb) 1800 { 1801 /* This BUG_ON may seem severe, but if we just return then we 1802 * are going to dereference garbage. 1803 */ 1804 BUG_ON(skb_queue_is_first(list, skb)); 1805 return skb->prev; 1806 } 1807 1808 /** 1809 * skb_get - reference buffer 1810 * @skb: buffer to reference 1811 * 1812 * Makes another reference to a socket buffer and returns a pointer 1813 * to the buffer. 1814 */ 1815 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1816 { 1817 refcount_inc(&skb->users); 1818 return skb; 1819 } 1820 1821 /* 1822 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1823 */ 1824 1825 /** 1826 * skb_cloned - is the buffer a clone 1827 * @skb: buffer to check 1828 * 1829 * Returns true if the buffer was generated with skb_clone() and is 1830 * one of multiple shared copies of the buffer. Cloned buffers are 1831 * shared data so must not be written to under normal circumstances. 1832 */ 1833 static inline int skb_cloned(const struct sk_buff *skb) 1834 { 1835 return skb->cloned && 1836 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1837 } 1838 1839 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1840 { 1841 might_sleep_if(gfpflags_allow_blocking(pri)); 1842 1843 if (skb_cloned(skb)) 1844 return pskb_expand_head(skb, 0, 0, pri); 1845 1846 return 0; 1847 } 1848 1849 /* This variant of skb_unclone() makes sure skb->truesize 1850 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1851 * 1852 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1853 * when various debugging features are in place. 1854 */ 1855 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1856 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1857 { 1858 might_sleep_if(gfpflags_allow_blocking(pri)); 1859 1860 if (skb_cloned(skb)) 1861 return __skb_unclone_keeptruesize(skb, pri); 1862 return 0; 1863 } 1864 1865 /** 1866 * skb_header_cloned - is the header a clone 1867 * @skb: buffer to check 1868 * 1869 * Returns true if modifying the header part of the buffer requires 1870 * the data to be copied. 1871 */ 1872 static inline int skb_header_cloned(const struct sk_buff *skb) 1873 { 1874 int dataref; 1875 1876 if (!skb->cloned) 1877 return 0; 1878 1879 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1880 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1881 return dataref != 1; 1882 } 1883 1884 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1885 { 1886 might_sleep_if(gfpflags_allow_blocking(pri)); 1887 1888 if (skb_header_cloned(skb)) 1889 return pskb_expand_head(skb, 0, 0, pri); 1890 1891 return 0; 1892 } 1893 1894 /** 1895 * __skb_header_release() - allow clones to use the headroom 1896 * @skb: buffer to operate on 1897 * 1898 * See "DOC: dataref and headerless skbs". 1899 */ 1900 static inline void __skb_header_release(struct sk_buff *skb) 1901 { 1902 skb->nohdr = 1; 1903 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1904 } 1905 1906 1907 /** 1908 * skb_shared - is the buffer shared 1909 * @skb: buffer to check 1910 * 1911 * Returns true if more than one person has a reference to this 1912 * buffer. 1913 */ 1914 static inline int skb_shared(const struct sk_buff *skb) 1915 { 1916 return refcount_read(&skb->users) != 1; 1917 } 1918 1919 /** 1920 * skb_share_check - check if buffer is shared and if so clone it 1921 * @skb: buffer to check 1922 * @pri: priority for memory allocation 1923 * 1924 * If the buffer is shared the buffer is cloned and the old copy 1925 * drops a reference. A new clone with a single reference is returned. 1926 * If the buffer is not shared the original buffer is returned. When 1927 * being called from interrupt status or with spinlocks held pri must 1928 * be GFP_ATOMIC. 1929 * 1930 * NULL is returned on a memory allocation failure. 1931 */ 1932 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1933 { 1934 might_sleep_if(gfpflags_allow_blocking(pri)); 1935 if (skb_shared(skb)) { 1936 struct sk_buff *nskb = skb_clone(skb, pri); 1937 1938 if (likely(nskb)) 1939 consume_skb(skb); 1940 else 1941 kfree_skb(skb); 1942 skb = nskb; 1943 } 1944 return skb; 1945 } 1946 1947 /* 1948 * Copy shared buffers into a new sk_buff. We effectively do COW on 1949 * packets to handle cases where we have a local reader and forward 1950 * and a couple of other messy ones. The normal one is tcpdumping 1951 * a packet thats being forwarded. 1952 */ 1953 1954 /** 1955 * skb_unshare - make a copy of a shared buffer 1956 * @skb: buffer to check 1957 * @pri: priority for memory allocation 1958 * 1959 * If the socket buffer is a clone then this function creates a new 1960 * copy of the data, drops a reference count on the old copy and returns 1961 * the new copy with the reference count at 1. If the buffer is not a clone 1962 * the original buffer is returned. When called with a spinlock held or 1963 * from interrupt state @pri must be %GFP_ATOMIC 1964 * 1965 * %NULL is returned on a memory allocation failure. 1966 */ 1967 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1968 gfp_t pri) 1969 { 1970 might_sleep_if(gfpflags_allow_blocking(pri)); 1971 if (skb_cloned(skb)) { 1972 struct sk_buff *nskb = skb_copy(skb, pri); 1973 1974 /* Free our shared copy */ 1975 if (likely(nskb)) 1976 consume_skb(skb); 1977 else 1978 kfree_skb(skb); 1979 skb = nskb; 1980 } 1981 return skb; 1982 } 1983 1984 /** 1985 * skb_peek - peek at the head of an &sk_buff_head 1986 * @list_: list to peek at 1987 * 1988 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1989 * be careful with this one. A peek leaves the buffer on the 1990 * list and someone else may run off with it. You must hold 1991 * the appropriate locks or have a private queue to do this. 1992 * 1993 * Returns %NULL for an empty list or a pointer to the head element. 1994 * The reference count is not incremented and the reference is therefore 1995 * volatile. Use with caution. 1996 */ 1997 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1998 { 1999 struct sk_buff *skb = list_->next; 2000 2001 if (skb == (struct sk_buff *)list_) 2002 skb = NULL; 2003 return skb; 2004 } 2005 2006 /** 2007 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2008 * @list_: list to peek at 2009 * 2010 * Like skb_peek(), but the caller knows that the list is not empty. 2011 */ 2012 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2013 { 2014 return list_->next; 2015 } 2016 2017 /** 2018 * skb_peek_next - peek skb following the given one from a queue 2019 * @skb: skb to start from 2020 * @list_: list to peek at 2021 * 2022 * Returns %NULL when the end of the list is met or a pointer to the 2023 * next element. The reference count is not incremented and the 2024 * reference is therefore volatile. Use with caution. 2025 */ 2026 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2027 const struct sk_buff_head *list_) 2028 { 2029 struct sk_buff *next = skb->next; 2030 2031 if (next == (struct sk_buff *)list_) 2032 next = NULL; 2033 return next; 2034 } 2035 2036 /** 2037 * skb_peek_tail - peek at the tail of an &sk_buff_head 2038 * @list_: list to peek at 2039 * 2040 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2041 * be careful with this one. A peek leaves the buffer on the 2042 * list and someone else may run off with it. You must hold 2043 * the appropriate locks or have a private queue to do this. 2044 * 2045 * Returns %NULL for an empty list or a pointer to the tail element. 2046 * The reference count is not incremented and the reference is therefore 2047 * volatile. Use with caution. 2048 */ 2049 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2050 { 2051 struct sk_buff *skb = READ_ONCE(list_->prev); 2052 2053 if (skb == (struct sk_buff *)list_) 2054 skb = NULL; 2055 return skb; 2056 2057 } 2058 2059 /** 2060 * skb_queue_len - get queue length 2061 * @list_: list to measure 2062 * 2063 * Return the length of an &sk_buff queue. 2064 */ 2065 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2066 { 2067 return list_->qlen; 2068 } 2069 2070 /** 2071 * skb_queue_len_lockless - get queue length 2072 * @list_: list to measure 2073 * 2074 * Return the length of an &sk_buff queue. 2075 * This variant can be used in lockless contexts. 2076 */ 2077 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2078 { 2079 return READ_ONCE(list_->qlen); 2080 } 2081 2082 /** 2083 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2084 * @list: queue to initialize 2085 * 2086 * This initializes only the list and queue length aspects of 2087 * an sk_buff_head object. This allows to initialize the list 2088 * aspects of an sk_buff_head without reinitializing things like 2089 * the spinlock. It can also be used for on-stack sk_buff_head 2090 * objects where the spinlock is known to not be used. 2091 */ 2092 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2093 { 2094 list->prev = list->next = (struct sk_buff *)list; 2095 list->qlen = 0; 2096 } 2097 2098 /* 2099 * This function creates a split out lock class for each invocation; 2100 * this is needed for now since a whole lot of users of the skb-queue 2101 * infrastructure in drivers have different locking usage (in hardirq) 2102 * than the networking core (in softirq only). In the long run either the 2103 * network layer or drivers should need annotation to consolidate the 2104 * main types of usage into 3 classes. 2105 */ 2106 static inline void skb_queue_head_init(struct sk_buff_head *list) 2107 { 2108 spin_lock_init(&list->lock); 2109 __skb_queue_head_init(list); 2110 } 2111 2112 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2113 struct lock_class_key *class) 2114 { 2115 skb_queue_head_init(list); 2116 lockdep_set_class(&list->lock, class); 2117 } 2118 2119 /* 2120 * Insert an sk_buff on a list. 2121 * 2122 * The "__skb_xxxx()" functions are the non-atomic ones that 2123 * can only be called with interrupts disabled. 2124 */ 2125 static inline void __skb_insert(struct sk_buff *newsk, 2126 struct sk_buff *prev, struct sk_buff *next, 2127 struct sk_buff_head *list) 2128 { 2129 /* See skb_queue_empty_lockless() and skb_peek_tail() 2130 * for the opposite READ_ONCE() 2131 */ 2132 WRITE_ONCE(newsk->next, next); 2133 WRITE_ONCE(newsk->prev, prev); 2134 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2135 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2136 WRITE_ONCE(list->qlen, list->qlen + 1); 2137 } 2138 2139 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2140 struct sk_buff *prev, 2141 struct sk_buff *next) 2142 { 2143 struct sk_buff *first = list->next; 2144 struct sk_buff *last = list->prev; 2145 2146 WRITE_ONCE(first->prev, prev); 2147 WRITE_ONCE(prev->next, first); 2148 2149 WRITE_ONCE(last->next, next); 2150 WRITE_ONCE(next->prev, last); 2151 } 2152 2153 /** 2154 * skb_queue_splice - join two skb lists, this is designed for stacks 2155 * @list: the new list to add 2156 * @head: the place to add it in the first list 2157 */ 2158 static inline void skb_queue_splice(const struct sk_buff_head *list, 2159 struct sk_buff_head *head) 2160 { 2161 if (!skb_queue_empty(list)) { 2162 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2163 head->qlen += list->qlen; 2164 } 2165 } 2166 2167 /** 2168 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2169 * @list: the new list to add 2170 * @head: the place to add it in the first list 2171 * 2172 * The list at @list is reinitialised 2173 */ 2174 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2175 struct sk_buff_head *head) 2176 { 2177 if (!skb_queue_empty(list)) { 2178 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2179 head->qlen += list->qlen; 2180 __skb_queue_head_init(list); 2181 } 2182 } 2183 2184 /** 2185 * skb_queue_splice_tail - join two skb lists, each list being a queue 2186 * @list: the new list to add 2187 * @head: the place to add it in the first list 2188 */ 2189 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2190 struct sk_buff_head *head) 2191 { 2192 if (!skb_queue_empty(list)) { 2193 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2194 head->qlen += list->qlen; 2195 } 2196 } 2197 2198 /** 2199 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2200 * @list: the new list to add 2201 * @head: the place to add it in the first list 2202 * 2203 * Each of the lists is a queue. 2204 * The list at @list is reinitialised 2205 */ 2206 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2207 struct sk_buff_head *head) 2208 { 2209 if (!skb_queue_empty(list)) { 2210 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2211 head->qlen += list->qlen; 2212 __skb_queue_head_init(list); 2213 } 2214 } 2215 2216 /** 2217 * __skb_queue_after - queue a buffer at the list head 2218 * @list: list to use 2219 * @prev: place after this buffer 2220 * @newsk: buffer to queue 2221 * 2222 * Queue a buffer int the middle of a list. This function takes no locks 2223 * and you must therefore hold required locks before calling it. 2224 * 2225 * A buffer cannot be placed on two lists at the same time. 2226 */ 2227 static inline void __skb_queue_after(struct sk_buff_head *list, 2228 struct sk_buff *prev, 2229 struct sk_buff *newsk) 2230 { 2231 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2232 } 2233 2234 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2235 struct sk_buff_head *list); 2236 2237 static inline void __skb_queue_before(struct sk_buff_head *list, 2238 struct sk_buff *next, 2239 struct sk_buff *newsk) 2240 { 2241 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2242 } 2243 2244 /** 2245 * __skb_queue_head - queue a buffer at the list head 2246 * @list: list to use 2247 * @newsk: buffer to queue 2248 * 2249 * Queue a buffer at the start of a list. This function takes no locks 2250 * and you must therefore hold required locks before calling it. 2251 * 2252 * A buffer cannot be placed on two lists at the same time. 2253 */ 2254 static inline void __skb_queue_head(struct sk_buff_head *list, 2255 struct sk_buff *newsk) 2256 { 2257 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2258 } 2259 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2260 2261 /** 2262 * __skb_queue_tail - queue a buffer at the list tail 2263 * @list: list to use 2264 * @newsk: buffer to queue 2265 * 2266 * Queue a buffer at the end of a list. This function takes no locks 2267 * and you must therefore hold required locks before calling it. 2268 * 2269 * A buffer cannot be placed on two lists at the same time. 2270 */ 2271 static inline void __skb_queue_tail(struct sk_buff_head *list, 2272 struct sk_buff *newsk) 2273 { 2274 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2275 } 2276 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2277 2278 /* 2279 * remove sk_buff from list. _Must_ be called atomically, and with 2280 * the list known.. 2281 */ 2282 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2283 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2284 { 2285 struct sk_buff *next, *prev; 2286 2287 WRITE_ONCE(list->qlen, list->qlen - 1); 2288 next = skb->next; 2289 prev = skb->prev; 2290 skb->next = skb->prev = NULL; 2291 WRITE_ONCE(next->prev, prev); 2292 WRITE_ONCE(prev->next, next); 2293 } 2294 2295 /** 2296 * __skb_dequeue - remove from the head of the queue 2297 * @list: list to dequeue from 2298 * 2299 * Remove the head of the list. This function does not take any locks 2300 * so must be used with appropriate locks held only. The head item is 2301 * returned or %NULL if the list is empty. 2302 */ 2303 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2304 { 2305 struct sk_buff *skb = skb_peek(list); 2306 if (skb) 2307 __skb_unlink(skb, list); 2308 return skb; 2309 } 2310 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2311 2312 /** 2313 * __skb_dequeue_tail - remove from the tail of the queue 2314 * @list: list to dequeue from 2315 * 2316 * Remove the tail of the list. This function does not take any locks 2317 * so must be used with appropriate locks held only. The tail item is 2318 * returned or %NULL if the list is empty. 2319 */ 2320 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2321 { 2322 struct sk_buff *skb = skb_peek_tail(list); 2323 if (skb) 2324 __skb_unlink(skb, list); 2325 return skb; 2326 } 2327 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2328 2329 2330 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2331 { 2332 return skb->data_len; 2333 } 2334 2335 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2336 { 2337 return skb->len - skb->data_len; 2338 } 2339 2340 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2341 { 2342 unsigned int i, len = 0; 2343 2344 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2345 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2346 return len; 2347 } 2348 2349 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2350 { 2351 return skb_headlen(skb) + __skb_pagelen(skb); 2352 } 2353 2354 /** 2355 * __skb_fill_page_desc - initialise a paged fragment in an skb 2356 * @skb: buffer containing fragment to be initialised 2357 * @i: paged fragment index to initialise 2358 * @page: the page to use for this fragment 2359 * @off: the offset to the data with @page 2360 * @size: the length of the data 2361 * 2362 * Initialises the @i'th fragment of @skb to point to &size bytes at 2363 * offset @off within @page. 2364 * 2365 * Does not take any additional reference on the fragment. 2366 */ 2367 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2368 struct page *page, int off, int size) 2369 { 2370 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2371 2372 /* 2373 * Propagate page pfmemalloc to the skb if we can. The problem is 2374 * that not all callers have unique ownership of the page but rely 2375 * on page_is_pfmemalloc doing the right thing(tm). 2376 */ 2377 frag->bv_page = page; 2378 frag->bv_offset = off; 2379 skb_frag_size_set(frag, size); 2380 2381 page = compound_head(page); 2382 if (page_is_pfmemalloc(page)) 2383 skb->pfmemalloc = true; 2384 } 2385 2386 /** 2387 * skb_fill_page_desc - initialise a paged fragment in an skb 2388 * @skb: buffer containing fragment to be initialised 2389 * @i: paged fragment index to initialise 2390 * @page: the page to use for this fragment 2391 * @off: the offset to the data with @page 2392 * @size: the length of the data 2393 * 2394 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2395 * @skb to point to @size bytes at offset @off within @page. In 2396 * addition updates @skb such that @i is the last fragment. 2397 * 2398 * Does not take any additional reference on the fragment. 2399 */ 2400 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2401 struct page *page, int off, int size) 2402 { 2403 __skb_fill_page_desc(skb, i, page, off, size); 2404 skb_shinfo(skb)->nr_frags = i + 1; 2405 } 2406 2407 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2408 int size, unsigned int truesize); 2409 2410 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2411 unsigned int truesize); 2412 2413 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2414 2415 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2416 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2417 { 2418 return skb->head + skb->tail; 2419 } 2420 2421 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2422 { 2423 skb->tail = skb->data - skb->head; 2424 } 2425 2426 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2427 { 2428 skb_reset_tail_pointer(skb); 2429 skb->tail += offset; 2430 } 2431 2432 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2433 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2434 { 2435 return skb->tail; 2436 } 2437 2438 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2439 { 2440 skb->tail = skb->data; 2441 } 2442 2443 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2444 { 2445 skb->tail = skb->data + offset; 2446 } 2447 2448 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2449 2450 /* 2451 * Add data to an sk_buff 2452 */ 2453 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2454 void *skb_put(struct sk_buff *skb, unsigned int len); 2455 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2456 { 2457 void *tmp = skb_tail_pointer(skb); 2458 SKB_LINEAR_ASSERT(skb); 2459 skb->tail += len; 2460 skb->len += len; 2461 return tmp; 2462 } 2463 2464 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2465 { 2466 void *tmp = __skb_put(skb, len); 2467 2468 memset(tmp, 0, len); 2469 return tmp; 2470 } 2471 2472 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2473 unsigned int len) 2474 { 2475 void *tmp = __skb_put(skb, len); 2476 2477 memcpy(tmp, data, len); 2478 return tmp; 2479 } 2480 2481 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2482 { 2483 *(u8 *)__skb_put(skb, 1) = val; 2484 } 2485 2486 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2487 { 2488 void *tmp = skb_put(skb, len); 2489 2490 memset(tmp, 0, len); 2491 2492 return tmp; 2493 } 2494 2495 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2496 unsigned int len) 2497 { 2498 void *tmp = skb_put(skb, len); 2499 2500 memcpy(tmp, data, len); 2501 2502 return tmp; 2503 } 2504 2505 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2506 { 2507 *(u8 *)skb_put(skb, 1) = val; 2508 } 2509 2510 void *skb_push(struct sk_buff *skb, unsigned int len); 2511 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2512 { 2513 skb->data -= len; 2514 skb->len += len; 2515 return skb->data; 2516 } 2517 2518 void *skb_pull(struct sk_buff *skb, unsigned int len); 2519 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2520 { 2521 skb->len -= len; 2522 if (unlikely(skb->len < skb->data_len)) { 2523 #if defined(CONFIG_DEBUG_NET) 2524 skb->len += len; 2525 pr_err("__skb_pull(len=%u)\n", len); 2526 skb_dump(KERN_ERR, skb, false); 2527 #endif 2528 BUG(); 2529 } 2530 return skb->data += len; 2531 } 2532 2533 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2534 { 2535 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2536 } 2537 2538 void *skb_pull_data(struct sk_buff *skb, size_t len); 2539 2540 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2541 2542 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2543 { 2544 if (len > skb_headlen(skb) && 2545 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2546 return NULL; 2547 skb->len -= len; 2548 return skb->data += len; 2549 } 2550 2551 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2552 { 2553 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2554 } 2555 2556 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2557 { 2558 if (likely(len <= skb_headlen(skb))) 2559 return true; 2560 if (unlikely(len > skb->len)) 2561 return false; 2562 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2563 } 2564 2565 void skb_condense(struct sk_buff *skb); 2566 2567 /** 2568 * skb_headroom - bytes at buffer head 2569 * @skb: buffer to check 2570 * 2571 * Return the number of bytes of free space at the head of an &sk_buff. 2572 */ 2573 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2574 { 2575 return skb->data - skb->head; 2576 } 2577 2578 /** 2579 * skb_tailroom - bytes at buffer end 2580 * @skb: buffer to check 2581 * 2582 * Return the number of bytes of free space at the tail of an sk_buff 2583 */ 2584 static inline int skb_tailroom(const struct sk_buff *skb) 2585 { 2586 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2587 } 2588 2589 /** 2590 * skb_availroom - bytes at buffer end 2591 * @skb: buffer to check 2592 * 2593 * Return the number of bytes of free space at the tail of an sk_buff 2594 * allocated by sk_stream_alloc() 2595 */ 2596 static inline int skb_availroom(const struct sk_buff *skb) 2597 { 2598 if (skb_is_nonlinear(skb)) 2599 return 0; 2600 2601 return skb->end - skb->tail - skb->reserved_tailroom; 2602 } 2603 2604 /** 2605 * skb_reserve - adjust headroom 2606 * @skb: buffer to alter 2607 * @len: bytes to move 2608 * 2609 * Increase the headroom of an empty &sk_buff by reducing the tail 2610 * room. This is only allowed for an empty buffer. 2611 */ 2612 static inline void skb_reserve(struct sk_buff *skb, int len) 2613 { 2614 skb->data += len; 2615 skb->tail += len; 2616 } 2617 2618 /** 2619 * skb_tailroom_reserve - adjust reserved_tailroom 2620 * @skb: buffer to alter 2621 * @mtu: maximum amount of headlen permitted 2622 * @needed_tailroom: minimum amount of reserved_tailroom 2623 * 2624 * Set reserved_tailroom so that headlen can be as large as possible but 2625 * not larger than mtu and tailroom cannot be smaller than 2626 * needed_tailroom. 2627 * The required headroom should already have been reserved before using 2628 * this function. 2629 */ 2630 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2631 unsigned int needed_tailroom) 2632 { 2633 SKB_LINEAR_ASSERT(skb); 2634 if (mtu < skb_tailroom(skb) - needed_tailroom) 2635 /* use at most mtu */ 2636 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2637 else 2638 /* use up to all available space */ 2639 skb->reserved_tailroom = needed_tailroom; 2640 } 2641 2642 #define ENCAP_TYPE_ETHER 0 2643 #define ENCAP_TYPE_IPPROTO 1 2644 2645 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2646 __be16 protocol) 2647 { 2648 skb->inner_protocol = protocol; 2649 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2650 } 2651 2652 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2653 __u8 ipproto) 2654 { 2655 skb->inner_ipproto = ipproto; 2656 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2657 } 2658 2659 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2660 { 2661 skb->inner_mac_header = skb->mac_header; 2662 skb->inner_network_header = skb->network_header; 2663 skb->inner_transport_header = skb->transport_header; 2664 } 2665 2666 static inline void skb_reset_mac_len(struct sk_buff *skb) 2667 { 2668 skb->mac_len = skb->network_header - skb->mac_header; 2669 } 2670 2671 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2672 *skb) 2673 { 2674 return skb->head + skb->inner_transport_header; 2675 } 2676 2677 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2678 { 2679 return skb_inner_transport_header(skb) - skb->data; 2680 } 2681 2682 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2683 { 2684 skb->inner_transport_header = skb->data - skb->head; 2685 } 2686 2687 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2688 const int offset) 2689 { 2690 skb_reset_inner_transport_header(skb); 2691 skb->inner_transport_header += offset; 2692 } 2693 2694 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2695 { 2696 return skb->head + skb->inner_network_header; 2697 } 2698 2699 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2700 { 2701 skb->inner_network_header = skb->data - skb->head; 2702 } 2703 2704 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2705 const int offset) 2706 { 2707 skb_reset_inner_network_header(skb); 2708 skb->inner_network_header += offset; 2709 } 2710 2711 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2712 { 2713 return skb->head + skb->inner_mac_header; 2714 } 2715 2716 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2717 { 2718 skb->inner_mac_header = skb->data - skb->head; 2719 } 2720 2721 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2722 const int offset) 2723 { 2724 skb_reset_inner_mac_header(skb); 2725 skb->inner_mac_header += offset; 2726 } 2727 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2728 { 2729 return skb->transport_header != (typeof(skb->transport_header))~0U; 2730 } 2731 2732 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2733 { 2734 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2735 return skb->head + skb->transport_header; 2736 } 2737 2738 static inline void skb_reset_transport_header(struct sk_buff *skb) 2739 { 2740 skb->transport_header = skb->data - skb->head; 2741 } 2742 2743 static inline void skb_set_transport_header(struct sk_buff *skb, 2744 const int offset) 2745 { 2746 skb_reset_transport_header(skb); 2747 skb->transport_header += offset; 2748 } 2749 2750 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2751 { 2752 return skb->head + skb->network_header; 2753 } 2754 2755 static inline void skb_reset_network_header(struct sk_buff *skb) 2756 { 2757 skb->network_header = skb->data - skb->head; 2758 } 2759 2760 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2761 { 2762 skb_reset_network_header(skb); 2763 skb->network_header += offset; 2764 } 2765 2766 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2767 { 2768 return skb->head + skb->mac_header; 2769 } 2770 2771 static inline int skb_mac_offset(const struct sk_buff *skb) 2772 { 2773 return skb_mac_header(skb) - skb->data; 2774 } 2775 2776 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2777 { 2778 return skb->network_header - skb->mac_header; 2779 } 2780 2781 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2782 { 2783 return skb->mac_header != (typeof(skb->mac_header))~0U; 2784 } 2785 2786 static inline void skb_unset_mac_header(struct sk_buff *skb) 2787 { 2788 skb->mac_header = (typeof(skb->mac_header))~0U; 2789 } 2790 2791 static inline void skb_reset_mac_header(struct sk_buff *skb) 2792 { 2793 skb->mac_header = skb->data - skb->head; 2794 } 2795 2796 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2797 { 2798 skb_reset_mac_header(skb); 2799 skb->mac_header += offset; 2800 } 2801 2802 static inline void skb_pop_mac_header(struct sk_buff *skb) 2803 { 2804 skb->mac_header = skb->network_header; 2805 } 2806 2807 static inline void skb_probe_transport_header(struct sk_buff *skb) 2808 { 2809 struct flow_keys_basic keys; 2810 2811 if (skb_transport_header_was_set(skb)) 2812 return; 2813 2814 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2815 NULL, 0, 0, 0, 0)) 2816 skb_set_transport_header(skb, keys.control.thoff); 2817 } 2818 2819 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2820 { 2821 if (skb_mac_header_was_set(skb)) { 2822 const unsigned char *old_mac = skb_mac_header(skb); 2823 2824 skb_set_mac_header(skb, -skb->mac_len); 2825 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2826 } 2827 } 2828 2829 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2830 { 2831 return skb->csum_start - skb_headroom(skb); 2832 } 2833 2834 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2835 { 2836 return skb->head + skb->csum_start; 2837 } 2838 2839 static inline int skb_transport_offset(const struct sk_buff *skb) 2840 { 2841 return skb_transport_header(skb) - skb->data; 2842 } 2843 2844 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2845 { 2846 return skb->transport_header - skb->network_header; 2847 } 2848 2849 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2850 { 2851 return skb->inner_transport_header - skb->inner_network_header; 2852 } 2853 2854 static inline int skb_network_offset(const struct sk_buff *skb) 2855 { 2856 return skb_network_header(skb) - skb->data; 2857 } 2858 2859 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2860 { 2861 return skb_inner_network_header(skb) - skb->data; 2862 } 2863 2864 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2865 { 2866 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2867 } 2868 2869 /* 2870 * CPUs often take a performance hit when accessing unaligned memory 2871 * locations. The actual performance hit varies, it can be small if the 2872 * hardware handles it or large if we have to take an exception and fix it 2873 * in software. 2874 * 2875 * Since an ethernet header is 14 bytes network drivers often end up with 2876 * the IP header at an unaligned offset. The IP header can be aligned by 2877 * shifting the start of the packet by 2 bytes. Drivers should do this 2878 * with: 2879 * 2880 * skb_reserve(skb, NET_IP_ALIGN); 2881 * 2882 * The downside to this alignment of the IP header is that the DMA is now 2883 * unaligned. On some architectures the cost of an unaligned DMA is high 2884 * and this cost outweighs the gains made by aligning the IP header. 2885 * 2886 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2887 * to be overridden. 2888 */ 2889 #ifndef NET_IP_ALIGN 2890 #define NET_IP_ALIGN 2 2891 #endif 2892 2893 /* 2894 * The networking layer reserves some headroom in skb data (via 2895 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2896 * the header has to grow. In the default case, if the header has to grow 2897 * 32 bytes or less we avoid the reallocation. 2898 * 2899 * Unfortunately this headroom changes the DMA alignment of the resulting 2900 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2901 * on some architectures. An architecture can override this value, 2902 * perhaps setting it to a cacheline in size (since that will maintain 2903 * cacheline alignment of the DMA). It must be a power of 2. 2904 * 2905 * Various parts of the networking layer expect at least 32 bytes of 2906 * headroom, you should not reduce this. 2907 * 2908 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2909 * to reduce average number of cache lines per packet. 2910 * get_rps_cpu() for example only access one 64 bytes aligned block : 2911 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2912 */ 2913 #ifndef NET_SKB_PAD 2914 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2915 #endif 2916 2917 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2918 2919 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2920 { 2921 if (WARN_ON(skb_is_nonlinear(skb))) 2922 return; 2923 skb->len = len; 2924 skb_set_tail_pointer(skb, len); 2925 } 2926 2927 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2928 { 2929 __skb_set_length(skb, len); 2930 } 2931 2932 void skb_trim(struct sk_buff *skb, unsigned int len); 2933 2934 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2935 { 2936 if (skb->data_len) 2937 return ___pskb_trim(skb, len); 2938 __skb_trim(skb, len); 2939 return 0; 2940 } 2941 2942 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2943 { 2944 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2945 } 2946 2947 /** 2948 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2949 * @skb: buffer to alter 2950 * @len: new length 2951 * 2952 * This is identical to pskb_trim except that the caller knows that 2953 * the skb is not cloned so we should never get an error due to out- 2954 * of-memory. 2955 */ 2956 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2957 { 2958 int err = pskb_trim(skb, len); 2959 BUG_ON(err); 2960 } 2961 2962 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2963 { 2964 unsigned int diff = len - skb->len; 2965 2966 if (skb_tailroom(skb) < diff) { 2967 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2968 GFP_ATOMIC); 2969 if (ret) 2970 return ret; 2971 } 2972 __skb_set_length(skb, len); 2973 return 0; 2974 } 2975 2976 /** 2977 * skb_orphan - orphan a buffer 2978 * @skb: buffer to orphan 2979 * 2980 * If a buffer currently has an owner then we call the owner's 2981 * destructor function and make the @skb unowned. The buffer continues 2982 * to exist but is no longer charged to its former owner. 2983 */ 2984 static inline void skb_orphan(struct sk_buff *skb) 2985 { 2986 if (skb->destructor) { 2987 skb->destructor(skb); 2988 skb->destructor = NULL; 2989 skb->sk = NULL; 2990 } else { 2991 BUG_ON(skb->sk); 2992 } 2993 } 2994 2995 /** 2996 * skb_orphan_frags - orphan the frags contained in a buffer 2997 * @skb: buffer to orphan frags from 2998 * @gfp_mask: allocation mask for replacement pages 2999 * 3000 * For each frag in the SKB which needs a destructor (i.e. has an 3001 * owner) create a copy of that frag and release the original 3002 * page by calling the destructor. 3003 */ 3004 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3005 { 3006 if (likely(!skb_zcopy(skb))) 3007 return 0; 3008 if (!skb_zcopy_is_nouarg(skb) && 3009 skb_uarg(skb)->callback == msg_zerocopy_callback) 3010 return 0; 3011 return skb_copy_ubufs(skb, gfp_mask); 3012 } 3013 3014 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3015 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3016 { 3017 if (likely(!skb_zcopy(skb))) 3018 return 0; 3019 return skb_copy_ubufs(skb, gfp_mask); 3020 } 3021 3022 /** 3023 * __skb_queue_purge - empty a list 3024 * @list: list to empty 3025 * 3026 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3027 * the list and one reference dropped. This function does not take the 3028 * list lock and the caller must hold the relevant locks to use it. 3029 */ 3030 static inline void __skb_queue_purge(struct sk_buff_head *list) 3031 { 3032 struct sk_buff *skb; 3033 while ((skb = __skb_dequeue(list)) != NULL) 3034 kfree_skb(skb); 3035 } 3036 void skb_queue_purge(struct sk_buff_head *list); 3037 3038 unsigned int skb_rbtree_purge(struct rb_root *root); 3039 3040 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3041 3042 /** 3043 * netdev_alloc_frag - allocate a page fragment 3044 * @fragsz: fragment size 3045 * 3046 * Allocates a frag from a page for receive buffer. 3047 * Uses GFP_ATOMIC allocations. 3048 */ 3049 static inline void *netdev_alloc_frag(unsigned int fragsz) 3050 { 3051 return __netdev_alloc_frag_align(fragsz, ~0u); 3052 } 3053 3054 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3055 unsigned int align) 3056 { 3057 WARN_ON_ONCE(!is_power_of_2(align)); 3058 return __netdev_alloc_frag_align(fragsz, -align); 3059 } 3060 3061 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3062 gfp_t gfp_mask); 3063 3064 /** 3065 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3066 * @dev: network device to receive on 3067 * @length: length to allocate 3068 * 3069 * Allocate a new &sk_buff and assign it a usage count of one. The 3070 * buffer has unspecified headroom built in. Users should allocate 3071 * the headroom they think they need without accounting for the 3072 * built in space. The built in space is used for optimisations. 3073 * 3074 * %NULL is returned if there is no free memory. Although this function 3075 * allocates memory it can be called from an interrupt. 3076 */ 3077 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3078 unsigned int length) 3079 { 3080 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3081 } 3082 3083 /* legacy helper around __netdev_alloc_skb() */ 3084 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3085 gfp_t gfp_mask) 3086 { 3087 return __netdev_alloc_skb(NULL, length, gfp_mask); 3088 } 3089 3090 /* legacy helper around netdev_alloc_skb() */ 3091 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3092 { 3093 return netdev_alloc_skb(NULL, length); 3094 } 3095 3096 3097 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3098 unsigned int length, gfp_t gfp) 3099 { 3100 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3101 3102 if (NET_IP_ALIGN && skb) 3103 skb_reserve(skb, NET_IP_ALIGN); 3104 return skb; 3105 } 3106 3107 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3108 unsigned int length) 3109 { 3110 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3111 } 3112 3113 static inline void skb_free_frag(void *addr) 3114 { 3115 page_frag_free(addr); 3116 } 3117 3118 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3119 3120 static inline void *napi_alloc_frag(unsigned int fragsz) 3121 { 3122 return __napi_alloc_frag_align(fragsz, ~0u); 3123 } 3124 3125 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3126 unsigned int align) 3127 { 3128 WARN_ON_ONCE(!is_power_of_2(align)); 3129 return __napi_alloc_frag_align(fragsz, -align); 3130 } 3131 3132 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3133 unsigned int length, gfp_t gfp_mask); 3134 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3135 unsigned int length) 3136 { 3137 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3138 } 3139 void napi_consume_skb(struct sk_buff *skb, int budget); 3140 3141 void napi_skb_free_stolen_head(struct sk_buff *skb); 3142 void __kfree_skb_defer(struct sk_buff *skb); 3143 3144 /** 3145 * __dev_alloc_pages - allocate page for network Rx 3146 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3147 * @order: size of the allocation 3148 * 3149 * Allocate a new page. 3150 * 3151 * %NULL is returned if there is no free memory. 3152 */ 3153 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3154 unsigned int order) 3155 { 3156 /* This piece of code contains several assumptions. 3157 * 1. This is for device Rx, therefor a cold page is preferred. 3158 * 2. The expectation is the user wants a compound page. 3159 * 3. If requesting a order 0 page it will not be compound 3160 * due to the check to see if order has a value in prep_new_page 3161 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3162 * code in gfp_to_alloc_flags that should be enforcing this. 3163 */ 3164 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3165 3166 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3167 } 3168 3169 static inline struct page *dev_alloc_pages(unsigned int order) 3170 { 3171 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3172 } 3173 3174 /** 3175 * __dev_alloc_page - allocate a page for network Rx 3176 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3177 * 3178 * Allocate a new page. 3179 * 3180 * %NULL is returned if there is no free memory. 3181 */ 3182 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3183 { 3184 return __dev_alloc_pages(gfp_mask, 0); 3185 } 3186 3187 static inline struct page *dev_alloc_page(void) 3188 { 3189 return dev_alloc_pages(0); 3190 } 3191 3192 /** 3193 * dev_page_is_reusable - check whether a page can be reused for network Rx 3194 * @page: the page to test 3195 * 3196 * A page shouldn't be considered for reusing/recycling if it was allocated 3197 * under memory pressure or at a distant memory node. 3198 * 3199 * Returns false if this page should be returned to page allocator, true 3200 * otherwise. 3201 */ 3202 static inline bool dev_page_is_reusable(const struct page *page) 3203 { 3204 return likely(page_to_nid(page) == numa_mem_id() && 3205 !page_is_pfmemalloc(page)); 3206 } 3207 3208 /** 3209 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3210 * @page: The page that was allocated from skb_alloc_page 3211 * @skb: The skb that may need pfmemalloc set 3212 */ 3213 static inline void skb_propagate_pfmemalloc(const struct page *page, 3214 struct sk_buff *skb) 3215 { 3216 if (page_is_pfmemalloc(page)) 3217 skb->pfmemalloc = true; 3218 } 3219 3220 /** 3221 * skb_frag_off() - Returns the offset of a skb fragment 3222 * @frag: the paged fragment 3223 */ 3224 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3225 { 3226 return frag->bv_offset; 3227 } 3228 3229 /** 3230 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3231 * @frag: skb fragment 3232 * @delta: value to add 3233 */ 3234 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3235 { 3236 frag->bv_offset += delta; 3237 } 3238 3239 /** 3240 * skb_frag_off_set() - Sets the offset of a skb fragment 3241 * @frag: skb fragment 3242 * @offset: offset of fragment 3243 */ 3244 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3245 { 3246 frag->bv_offset = offset; 3247 } 3248 3249 /** 3250 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3251 * @fragto: skb fragment where offset is set 3252 * @fragfrom: skb fragment offset is copied from 3253 */ 3254 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3255 const skb_frag_t *fragfrom) 3256 { 3257 fragto->bv_offset = fragfrom->bv_offset; 3258 } 3259 3260 /** 3261 * skb_frag_page - retrieve the page referred to by a paged fragment 3262 * @frag: the paged fragment 3263 * 3264 * Returns the &struct page associated with @frag. 3265 */ 3266 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3267 { 3268 return frag->bv_page; 3269 } 3270 3271 /** 3272 * __skb_frag_ref - take an addition reference on a paged fragment. 3273 * @frag: the paged fragment 3274 * 3275 * Takes an additional reference on the paged fragment @frag. 3276 */ 3277 static inline void __skb_frag_ref(skb_frag_t *frag) 3278 { 3279 get_page(skb_frag_page(frag)); 3280 } 3281 3282 /** 3283 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3284 * @skb: the buffer 3285 * @f: the fragment offset. 3286 * 3287 * Takes an additional reference on the @f'th paged fragment of @skb. 3288 */ 3289 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3290 { 3291 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3292 } 3293 3294 /** 3295 * __skb_frag_unref - release a reference on a paged fragment. 3296 * @frag: the paged fragment 3297 * @recycle: recycle the page if allocated via page_pool 3298 * 3299 * Releases a reference on the paged fragment @frag 3300 * or recycles the page via the page_pool API. 3301 */ 3302 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3303 { 3304 struct page *page = skb_frag_page(frag); 3305 3306 #ifdef CONFIG_PAGE_POOL 3307 if (recycle && page_pool_return_skb_page(page)) 3308 return; 3309 #endif 3310 put_page(page); 3311 } 3312 3313 /** 3314 * skb_frag_unref - release a reference on a paged fragment of an skb. 3315 * @skb: the buffer 3316 * @f: the fragment offset 3317 * 3318 * Releases a reference on the @f'th paged fragment of @skb. 3319 */ 3320 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3321 { 3322 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle); 3323 } 3324 3325 /** 3326 * skb_frag_address - gets the address of the data contained in a paged fragment 3327 * @frag: the paged fragment buffer 3328 * 3329 * Returns the address of the data within @frag. The page must already 3330 * be mapped. 3331 */ 3332 static inline void *skb_frag_address(const skb_frag_t *frag) 3333 { 3334 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3335 } 3336 3337 /** 3338 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3339 * @frag: the paged fragment buffer 3340 * 3341 * Returns the address of the data within @frag. Checks that the page 3342 * is mapped and returns %NULL otherwise. 3343 */ 3344 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3345 { 3346 void *ptr = page_address(skb_frag_page(frag)); 3347 if (unlikely(!ptr)) 3348 return NULL; 3349 3350 return ptr + skb_frag_off(frag); 3351 } 3352 3353 /** 3354 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3355 * @fragto: skb fragment where page is set 3356 * @fragfrom: skb fragment page is copied from 3357 */ 3358 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3359 const skb_frag_t *fragfrom) 3360 { 3361 fragto->bv_page = fragfrom->bv_page; 3362 } 3363 3364 /** 3365 * __skb_frag_set_page - sets the page contained in a paged fragment 3366 * @frag: the paged fragment 3367 * @page: the page to set 3368 * 3369 * Sets the fragment @frag to contain @page. 3370 */ 3371 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3372 { 3373 frag->bv_page = page; 3374 } 3375 3376 /** 3377 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3378 * @skb: the buffer 3379 * @f: the fragment offset 3380 * @page: the page to set 3381 * 3382 * Sets the @f'th fragment of @skb to contain @page. 3383 */ 3384 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3385 struct page *page) 3386 { 3387 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3388 } 3389 3390 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3391 3392 /** 3393 * skb_frag_dma_map - maps a paged fragment via the DMA API 3394 * @dev: the device to map the fragment to 3395 * @frag: the paged fragment to map 3396 * @offset: the offset within the fragment (starting at the 3397 * fragment's own offset) 3398 * @size: the number of bytes to map 3399 * @dir: the direction of the mapping (``PCI_DMA_*``) 3400 * 3401 * Maps the page associated with @frag to @device. 3402 */ 3403 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3404 const skb_frag_t *frag, 3405 size_t offset, size_t size, 3406 enum dma_data_direction dir) 3407 { 3408 return dma_map_page(dev, skb_frag_page(frag), 3409 skb_frag_off(frag) + offset, size, dir); 3410 } 3411 3412 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3413 gfp_t gfp_mask) 3414 { 3415 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3416 } 3417 3418 3419 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3420 gfp_t gfp_mask) 3421 { 3422 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3423 } 3424 3425 3426 /** 3427 * skb_clone_writable - is the header of a clone writable 3428 * @skb: buffer to check 3429 * @len: length up to which to write 3430 * 3431 * Returns true if modifying the header part of the cloned buffer 3432 * does not requires the data to be copied. 3433 */ 3434 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3435 { 3436 return !skb_header_cloned(skb) && 3437 skb_headroom(skb) + len <= skb->hdr_len; 3438 } 3439 3440 static inline int skb_try_make_writable(struct sk_buff *skb, 3441 unsigned int write_len) 3442 { 3443 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3444 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3445 } 3446 3447 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3448 int cloned) 3449 { 3450 int delta = 0; 3451 3452 if (headroom > skb_headroom(skb)) 3453 delta = headroom - skb_headroom(skb); 3454 3455 if (delta || cloned) 3456 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3457 GFP_ATOMIC); 3458 return 0; 3459 } 3460 3461 /** 3462 * skb_cow - copy header of skb when it is required 3463 * @skb: buffer to cow 3464 * @headroom: needed headroom 3465 * 3466 * If the skb passed lacks sufficient headroom or its data part 3467 * is shared, data is reallocated. If reallocation fails, an error 3468 * is returned and original skb is not changed. 3469 * 3470 * The result is skb with writable area skb->head...skb->tail 3471 * and at least @headroom of space at head. 3472 */ 3473 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3474 { 3475 return __skb_cow(skb, headroom, skb_cloned(skb)); 3476 } 3477 3478 /** 3479 * skb_cow_head - skb_cow but only making the head writable 3480 * @skb: buffer to cow 3481 * @headroom: needed headroom 3482 * 3483 * This function is identical to skb_cow except that we replace the 3484 * skb_cloned check by skb_header_cloned. It should be used when 3485 * you only need to push on some header and do not need to modify 3486 * the data. 3487 */ 3488 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3489 { 3490 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3491 } 3492 3493 /** 3494 * skb_padto - pad an skbuff up to a minimal size 3495 * @skb: buffer to pad 3496 * @len: minimal length 3497 * 3498 * Pads up a buffer to ensure the trailing bytes exist and are 3499 * blanked. If the buffer already contains sufficient data it 3500 * is untouched. Otherwise it is extended. Returns zero on 3501 * success. The skb is freed on error. 3502 */ 3503 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3504 { 3505 unsigned int size = skb->len; 3506 if (likely(size >= len)) 3507 return 0; 3508 return skb_pad(skb, len - size); 3509 } 3510 3511 /** 3512 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3513 * @skb: buffer to pad 3514 * @len: minimal length 3515 * @free_on_error: free buffer on error 3516 * 3517 * Pads up a buffer to ensure the trailing bytes exist and are 3518 * blanked. If the buffer already contains sufficient data it 3519 * is untouched. Otherwise it is extended. Returns zero on 3520 * success. The skb is freed on error if @free_on_error is true. 3521 */ 3522 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3523 unsigned int len, 3524 bool free_on_error) 3525 { 3526 unsigned int size = skb->len; 3527 3528 if (unlikely(size < len)) { 3529 len -= size; 3530 if (__skb_pad(skb, len, free_on_error)) 3531 return -ENOMEM; 3532 __skb_put(skb, len); 3533 } 3534 return 0; 3535 } 3536 3537 /** 3538 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3539 * @skb: buffer to pad 3540 * @len: minimal length 3541 * 3542 * Pads up a buffer to ensure the trailing bytes exist and are 3543 * blanked. If the buffer already contains sufficient data it 3544 * is untouched. Otherwise it is extended. Returns zero on 3545 * success. The skb is freed on error. 3546 */ 3547 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3548 { 3549 return __skb_put_padto(skb, len, true); 3550 } 3551 3552 static inline int skb_add_data(struct sk_buff *skb, 3553 struct iov_iter *from, int copy) 3554 { 3555 const int off = skb->len; 3556 3557 if (skb->ip_summed == CHECKSUM_NONE) { 3558 __wsum csum = 0; 3559 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3560 &csum, from)) { 3561 skb->csum = csum_block_add(skb->csum, csum, off); 3562 return 0; 3563 } 3564 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3565 return 0; 3566 3567 __skb_trim(skb, off); 3568 return -EFAULT; 3569 } 3570 3571 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3572 const struct page *page, int off) 3573 { 3574 if (skb_zcopy(skb)) 3575 return false; 3576 if (i) { 3577 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3578 3579 return page == skb_frag_page(frag) && 3580 off == skb_frag_off(frag) + skb_frag_size(frag); 3581 } 3582 return false; 3583 } 3584 3585 static inline int __skb_linearize(struct sk_buff *skb) 3586 { 3587 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3588 } 3589 3590 /** 3591 * skb_linearize - convert paged skb to linear one 3592 * @skb: buffer to linarize 3593 * 3594 * If there is no free memory -ENOMEM is returned, otherwise zero 3595 * is returned and the old skb data released. 3596 */ 3597 static inline int skb_linearize(struct sk_buff *skb) 3598 { 3599 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3600 } 3601 3602 /** 3603 * skb_has_shared_frag - can any frag be overwritten 3604 * @skb: buffer to test 3605 * 3606 * Return true if the skb has at least one frag that might be modified 3607 * by an external entity (as in vmsplice()/sendfile()) 3608 */ 3609 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3610 { 3611 return skb_is_nonlinear(skb) && 3612 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3613 } 3614 3615 /** 3616 * skb_linearize_cow - make sure skb is linear and writable 3617 * @skb: buffer to process 3618 * 3619 * If there is no free memory -ENOMEM is returned, otherwise zero 3620 * is returned and the old skb data released. 3621 */ 3622 static inline int skb_linearize_cow(struct sk_buff *skb) 3623 { 3624 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3625 __skb_linearize(skb) : 0; 3626 } 3627 3628 static __always_inline void 3629 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3630 unsigned int off) 3631 { 3632 if (skb->ip_summed == CHECKSUM_COMPLETE) 3633 skb->csum = csum_block_sub(skb->csum, 3634 csum_partial(start, len, 0), off); 3635 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3636 skb_checksum_start_offset(skb) < 0) 3637 skb->ip_summed = CHECKSUM_NONE; 3638 } 3639 3640 /** 3641 * skb_postpull_rcsum - update checksum for received skb after pull 3642 * @skb: buffer to update 3643 * @start: start of data before pull 3644 * @len: length of data pulled 3645 * 3646 * After doing a pull on a received packet, you need to call this to 3647 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3648 * CHECKSUM_NONE so that it can be recomputed from scratch. 3649 */ 3650 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3651 const void *start, unsigned int len) 3652 { 3653 if (skb->ip_summed == CHECKSUM_COMPLETE) 3654 skb->csum = wsum_negate(csum_partial(start, len, 3655 wsum_negate(skb->csum))); 3656 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3657 skb_checksum_start_offset(skb) < 0) 3658 skb->ip_summed = CHECKSUM_NONE; 3659 } 3660 3661 static __always_inline void 3662 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3663 unsigned int off) 3664 { 3665 if (skb->ip_summed == CHECKSUM_COMPLETE) 3666 skb->csum = csum_block_add(skb->csum, 3667 csum_partial(start, len, 0), off); 3668 } 3669 3670 /** 3671 * skb_postpush_rcsum - update checksum for received skb after push 3672 * @skb: buffer to update 3673 * @start: start of data after push 3674 * @len: length of data pushed 3675 * 3676 * After doing a push on a received packet, you need to call this to 3677 * update the CHECKSUM_COMPLETE checksum. 3678 */ 3679 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3680 const void *start, unsigned int len) 3681 { 3682 __skb_postpush_rcsum(skb, start, len, 0); 3683 } 3684 3685 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3686 3687 /** 3688 * skb_push_rcsum - push skb and update receive checksum 3689 * @skb: buffer to update 3690 * @len: length of data pulled 3691 * 3692 * This function performs an skb_push on the packet and updates 3693 * the CHECKSUM_COMPLETE checksum. It should be used on 3694 * receive path processing instead of skb_push unless you know 3695 * that the checksum difference is zero (e.g., a valid IP header) 3696 * or you are setting ip_summed to CHECKSUM_NONE. 3697 */ 3698 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3699 { 3700 skb_push(skb, len); 3701 skb_postpush_rcsum(skb, skb->data, len); 3702 return skb->data; 3703 } 3704 3705 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3706 /** 3707 * pskb_trim_rcsum - trim received skb and update checksum 3708 * @skb: buffer to trim 3709 * @len: new length 3710 * 3711 * This is exactly the same as pskb_trim except that it ensures the 3712 * checksum of received packets are still valid after the operation. 3713 * It can change skb pointers. 3714 */ 3715 3716 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3717 { 3718 if (likely(len >= skb->len)) 3719 return 0; 3720 return pskb_trim_rcsum_slow(skb, len); 3721 } 3722 3723 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3724 { 3725 if (skb->ip_summed == CHECKSUM_COMPLETE) 3726 skb->ip_summed = CHECKSUM_NONE; 3727 __skb_trim(skb, len); 3728 return 0; 3729 } 3730 3731 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3732 { 3733 if (skb->ip_summed == CHECKSUM_COMPLETE) 3734 skb->ip_summed = CHECKSUM_NONE; 3735 return __skb_grow(skb, len); 3736 } 3737 3738 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3739 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3740 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3741 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3742 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3743 3744 #define skb_queue_walk(queue, skb) \ 3745 for (skb = (queue)->next; \ 3746 skb != (struct sk_buff *)(queue); \ 3747 skb = skb->next) 3748 3749 #define skb_queue_walk_safe(queue, skb, tmp) \ 3750 for (skb = (queue)->next, tmp = skb->next; \ 3751 skb != (struct sk_buff *)(queue); \ 3752 skb = tmp, tmp = skb->next) 3753 3754 #define skb_queue_walk_from(queue, skb) \ 3755 for (; skb != (struct sk_buff *)(queue); \ 3756 skb = skb->next) 3757 3758 #define skb_rbtree_walk(skb, root) \ 3759 for (skb = skb_rb_first(root); skb != NULL; \ 3760 skb = skb_rb_next(skb)) 3761 3762 #define skb_rbtree_walk_from(skb) \ 3763 for (; skb != NULL; \ 3764 skb = skb_rb_next(skb)) 3765 3766 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3767 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3768 skb = tmp) 3769 3770 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3771 for (tmp = skb->next; \ 3772 skb != (struct sk_buff *)(queue); \ 3773 skb = tmp, tmp = skb->next) 3774 3775 #define skb_queue_reverse_walk(queue, skb) \ 3776 for (skb = (queue)->prev; \ 3777 skb != (struct sk_buff *)(queue); \ 3778 skb = skb->prev) 3779 3780 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3781 for (skb = (queue)->prev, tmp = skb->prev; \ 3782 skb != (struct sk_buff *)(queue); \ 3783 skb = tmp, tmp = skb->prev) 3784 3785 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3786 for (tmp = skb->prev; \ 3787 skb != (struct sk_buff *)(queue); \ 3788 skb = tmp, tmp = skb->prev) 3789 3790 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3791 { 3792 return skb_shinfo(skb)->frag_list != NULL; 3793 } 3794 3795 static inline void skb_frag_list_init(struct sk_buff *skb) 3796 { 3797 skb_shinfo(skb)->frag_list = NULL; 3798 } 3799 3800 #define skb_walk_frags(skb, iter) \ 3801 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3802 3803 3804 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3805 int *err, long *timeo_p, 3806 const struct sk_buff *skb); 3807 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3808 struct sk_buff_head *queue, 3809 unsigned int flags, 3810 int *off, int *err, 3811 struct sk_buff **last); 3812 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3813 struct sk_buff_head *queue, 3814 unsigned int flags, int *off, int *err, 3815 struct sk_buff **last); 3816 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3817 struct sk_buff_head *sk_queue, 3818 unsigned int flags, int *off, int *err); 3819 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3820 __poll_t datagram_poll(struct file *file, struct socket *sock, 3821 struct poll_table_struct *wait); 3822 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3823 struct iov_iter *to, int size); 3824 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3825 struct msghdr *msg, int size) 3826 { 3827 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3828 } 3829 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3830 struct msghdr *msg); 3831 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3832 struct iov_iter *to, int len, 3833 struct ahash_request *hash); 3834 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3835 struct iov_iter *from, int len); 3836 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3837 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3838 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3839 static inline void skb_free_datagram_locked(struct sock *sk, 3840 struct sk_buff *skb) 3841 { 3842 __skb_free_datagram_locked(sk, skb, 0); 3843 } 3844 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3845 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3846 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3847 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3848 int len); 3849 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3850 struct pipe_inode_info *pipe, unsigned int len, 3851 unsigned int flags); 3852 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3853 int len); 3854 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3855 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3856 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3857 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3858 int len, int hlen); 3859 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3860 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3861 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3862 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3863 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3864 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3865 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3866 unsigned int offset); 3867 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3868 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3869 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3870 int skb_vlan_pop(struct sk_buff *skb); 3871 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3872 int skb_eth_pop(struct sk_buff *skb); 3873 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3874 const unsigned char *src); 3875 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3876 int mac_len, bool ethernet); 3877 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3878 bool ethernet); 3879 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3880 int skb_mpls_dec_ttl(struct sk_buff *skb); 3881 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3882 gfp_t gfp); 3883 3884 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3885 { 3886 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3887 } 3888 3889 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3890 { 3891 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3892 } 3893 3894 struct skb_checksum_ops { 3895 __wsum (*update)(const void *mem, int len, __wsum wsum); 3896 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3897 }; 3898 3899 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3900 3901 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3902 __wsum csum, const struct skb_checksum_ops *ops); 3903 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3904 __wsum csum); 3905 3906 static inline void * __must_check 3907 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3908 const void *data, int hlen, void *buffer) 3909 { 3910 if (likely(hlen - offset >= len)) 3911 return (void *)data + offset; 3912 3913 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3914 return NULL; 3915 3916 return buffer; 3917 } 3918 3919 static inline void * __must_check 3920 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3921 { 3922 return __skb_header_pointer(skb, offset, len, skb->data, 3923 skb_headlen(skb), buffer); 3924 } 3925 3926 /** 3927 * skb_needs_linearize - check if we need to linearize a given skb 3928 * depending on the given device features. 3929 * @skb: socket buffer to check 3930 * @features: net device features 3931 * 3932 * Returns true if either: 3933 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3934 * 2. skb is fragmented and the device does not support SG. 3935 */ 3936 static inline bool skb_needs_linearize(struct sk_buff *skb, 3937 netdev_features_t features) 3938 { 3939 return skb_is_nonlinear(skb) && 3940 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3941 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3942 } 3943 3944 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3945 void *to, 3946 const unsigned int len) 3947 { 3948 memcpy(to, skb->data, len); 3949 } 3950 3951 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3952 const int offset, void *to, 3953 const unsigned int len) 3954 { 3955 memcpy(to, skb->data + offset, len); 3956 } 3957 3958 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3959 const void *from, 3960 const unsigned int len) 3961 { 3962 memcpy(skb->data, from, len); 3963 } 3964 3965 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3966 const int offset, 3967 const void *from, 3968 const unsigned int len) 3969 { 3970 memcpy(skb->data + offset, from, len); 3971 } 3972 3973 void skb_init(void); 3974 3975 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3976 { 3977 return skb->tstamp; 3978 } 3979 3980 /** 3981 * skb_get_timestamp - get timestamp from a skb 3982 * @skb: skb to get stamp from 3983 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3984 * 3985 * Timestamps are stored in the skb as offsets to a base timestamp. 3986 * This function converts the offset back to a struct timeval and stores 3987 * it in stamp. 3988 */ 3989 static inline void skb_get_timestamp(const struct sk_buff *skb, 3990 struct __kernel_old_timeval *stamp) 3991 { 3992 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3993 } 3994 3995 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3996 struct __kernel_sock_timeval *stamp) 3997 { 3998 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3999 4000 stamp->tv_sec = ts.tv_sec; 4001 stamp->tv_usec = ts.tv_nsec / 1000; 4002 } 4003 4004 static inline void skb_get_timestampns(const struct sk_buff *skb, 4005 struct __kernel_old_timespec *stamp) 4006 { 4007 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4008 4009 stamp->tv_sec = ts.tv_sec; 4010 stamp->tv_nsec = ts.tv_nsec; 4011 } 4012 4013 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4014 struct __kernel_timespec *stamp) 4015 { 4016 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4017 4018 stamp->tv_sec = ts.tv_sec; 4019 stamp->tv_nsec = ts.tv_nsec; 4020 } 4021 4022 static inline void __net_timestamp(struct sk_buff *skb) 4023 { 4024 skb->tstamp = ktime_get_real(); 4025 skb->mono_delivery_time = 0; 4026 } 4027 4028 static inline ktime_t net_timedelta(ktime_t t) 4029 { 4030 return ktime_sub(ktime_get_real(), t); 4031 } 4032 4033 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4034 bool mono) 4035 { 4036 skb->tstamp = kt; 4037 skb->mono_delivery_time = kt && mono; 4038 } 4039 4040 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4041 4042 /* It is used in the ingress path to clear the delivery_time. 4043 * If needed, set the skb->tstamp to the (rcv) timestamp. 4044 */ 4045 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4046 { 4047 if (skb->mono_delivery_time) { 4048 skb->mono_delivery_time = 0; 4049 if (static_branch_unlikely(&netstamp_needed_key)) 4050 skb->tstamp = ktime_get_real(); 4051 else 4052 skb->tstamp = 0; 4053 } 4054 } 4055 4056 static inline void skb_clear_tstamp(struct sk_buff *skb) 4057 { 4058 if (skb->mono_delivery_time) 4059 return; 4060 4061 skb->tstamp = 0; 4062 } 4063 4064 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4065 { 4066 if (skb->mono_delivery_time) 4067 return 0; 4068 4069 return skb->tstamp; 4070 } 4071 4072 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4073 { 4074 if (!skb->mono_delivery_time && skb->tstamp) 4075 return skb->tstamp; 4076 4077 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4078 return ktime_get_real(); 4079 4080 return 0; 4081 } 4082 4083 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4084 { 4085 return skb_shinfo(skb)->meta_len; 4086 } 4087 4088 static inline void *skb_metadata_end(const struct sk_buff *skb) 4089 { 4090 return skb_mac_header(skb); 4091 } 4092 4093 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4094 const struct sk_buff *skb_b, 4095 u8 meta_len) 4096 { 4097 const void *a = skb_metadata_end(skb_a); 4098 const void *b = skb_metadata_end(skb_b); 4099 /* Using more efficient varaiant than plain call to memcmp(). */ 4100 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4101 u64 diffs = 0; 4102 4103 switch (meta_len) { 4104 #define __it(x, op) (x -= sizeof(u##op)) 4105 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4106 case 32: diffs |= __it_diff(a, b, 64); 4107 fallthrough; 4108 case 24: diffs |= __it_diff(a, b, 64); 4109 fallthrough; 4110 case 16: diffs |= __it_diff(a, b, 64); 4111 fallthrough; 4112 case 8: diffs |= __it_diff(a, b, 64); 4113 break; 4114 case 28: diffs |= __it_diff(a, b, 64); 4115 fallthrough; 4116 case 20: diffs |= __it_diff(a, b, 64); 4117 fallthrough; 4118 case 12: diffs |= __it_diff(a, b, 64); 4119 fallthrough; 4120 case 4: diffs |= __it_diff(a, b, 32); 4121 break; 4122 } 4123 return diffs; 4124 #else 4125 return memcmp(a - meta_len, b - meta_len, meta_len); 4126 #endif 4127 } 4128 4129 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4130 const struct sk_buff *skb_b) 4131 { 4132 u8 len_a = skb_metadata_len(skb_a); 4133 u8 len_b = skb_metadata_len(skb_b); 4134 4135 if (!(len_a | len_b)) 4136 return false; 4137 4138 return len_a != len_b ? 4139 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4140 } 4141 4142 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4143 { 4144 skb_shinfo(skb)->meta_len = meta_len; 4145 } 4146 4147 static inline void skb_metadata_clear(struct sk_buff *skb) 4148 { 4149 skb_metadata_set(skb, 0); 4150 } 4151 4152 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4153 4154 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4155 4156 void skb_clone_tx_timestamp(struct sk_buff *skb); 4157 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4158 4159 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4160 4161 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4162 { 4163 } 4164 4165 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4166 { 4167 return false; 4168 } 4169 4170 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4171 4172 /** 4173 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4174 * 4175 * PHY drivers may accept clones of transmitted packets for 4176 * timestamping via their phy_driver.txtstamp method. These drivers 4177 * must call this function to return the skb back to the stack with a 4178 * timestamp. 4179 * 4180 * @skb: clone of the original outgoing packet 4181 * @hwtstamps: hardware time stamps 4182 * 4183 */ 4184 void skb_complete_tx_timestamp(struct sk_buff *skb, 4185 struct skb_shared_hwtstamps *hwtstamps); 4186 4187 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4188 struct skb_shared_hwtstamps *hwtstamps, 4189 struct sock *sk, int tstype); 4190 4191 /** 4192 * skb_tstamp_tx - queue clone of skb with send time stamps 4193 * @orig_skb: the original outgoing packet 4194 * @hwtstamps: hardware time stamps, may be NULL if not available 4195 * 4196 * If the skb has a socket associated, then this function clones the 4197 * skb (thus sharing the actual data and optional structures), stores 4198 * the optional hardware time stamping information (if non NULL) or 4199 * generates a software time stamp (otherwise), then queues the clone 4200 * to the error queue of the socket. Errors are silently ignored. 4201 */ 4202 void skb_tstamp_tx(struct sk_buff *orig_skb, 4203 struct skb_shared_hwtstamps *hwtstamps); 4204 4205 /** 4206 * skb_tx_timestamp() - Driver hook for transmit timestamping 4207 * 4208 * Ethernet MAC Drivers should call this function in their hard_xmit() 4209 * function immediately before giving the sk_buff to the MAC hardware. 4210 * 4211 * Specifically, one should make absolutely sure that this function is 4212 * called before TX completion of this packet can trigger. Otherwise 4213 * the packet could potentially already be freed. 4214 * 4215 * @skb: A socket buffer. 4216 */ 4217 static inline void skb_tx_timestamp(struct sk_buff *skb) 4218 { 4219 skb_clone_tx_timestamp(skb); 4220 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4221 skb_tstamp_tx(skb, NULL); 4222 } 4223 4224 /** 4225 * skb_complete_wifi_ack - deliver skb with wifi status 4226 * 4227 * @skb: the original outgoing packet 4228 * @acked: ack status 4229 * 4230 */ 4231 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4232 4233 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4234 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4235 4236 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4237 { 4238 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4239 skb->csum_valid || 4240 (skb->ip_summed == CHECKSUM_PARTIAL && 4241 skb_checksum_start_offset(skb) >= 0)); 4242 } 4243 4244 /** 4245 * skb_checksum_complete - Calculate checksum of an entire packet 4246 * @skb: packet to process 4247 * 4248 * This function calculates the checksum over the entire packet plus 4249 * the value of skb->csum. The latter can be used to supply the 4250 * checksum of a pseudo header as used by TCP/UDP. It returns the 4251 * checksum. 4252 * 4253 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4254 * this function can be used to verify that checksum on received 4255 * packets. In that case the function should return zero if the 4256 * checksum is correct. In particular, this function will return zero 4257 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4258 * hardware has already verified the correctness of the checksum. 4259 */ 4260 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4261 { 4262 return skb_csum_unnecessary(skb) ? 4263 0 : __skb_checksum_complete(skb); 4264 } 4265 4266 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4267 { 4268 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4269 if (skb->csum_level == 0) 4270 skb->ip_summed = CHECKSUM_NONE; 4271 else 4272 skb->csum_level--; 4273 } 4274 } 4275 4276 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4277 { 4278 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4279 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4280 skb->csum_level++; 4281 } else if (skb->ip_summed == CHECKSUM_NONE) { 4282 skb->ip_summed = CHECKSUM_UNNECESSARY; 4283 skb->csum_level = 0; 4284 } 4285 } 4286 4287 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4288 { 4289 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4290 skb->ip_summed = CHECKSUM_NONE; 4291 skb->csum_level = 0; 4292 } 4293 } 4294 4295 /* Check if we need to perform checksum complete validation. 4296 * 4297 * Returns true if checksum complete is needed, false otherwise 4298 * (either checksum is unnecessary or zero checksum is allowed). 4299 */ 4300 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4301 bool zero_okay, 4302 __sum16 check) 4303 { 4304 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4305 skb->csum_valid = 1; 4306 __skb_decr_checksum_unnecessary(skb); 4307 return false; 4308 } 4309 4310 return true; 4311 } 4312 4313 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4314 * in checksum_init. 4315 */ 4316 #define CHECKSUM_BREAK 76 4317 4318 /* Unset checksum-complete 4319 * 4320 * Unset checksum complete can be done when packet is being modified 4321 * (uncompressed for instance) and checksum-complete value is 4322 * invalidated. 4323 */ 4324 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4325 { 4326 if (skb->ip_summed == CHECKSUM_COMPLETE) 4327 skb->ip_summed = CHECKSUM_NONE; 4328 } 4329 4330 /* Validate (init) checksum based on checksum complete. 4331 * 4332 * Return values: 4333 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4334 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4335 * checksum is stored in skb->csum for use in __skb_checksum_complete 4336 * non-zero: value of invalid checksum 4337 * 4338 */ 4339 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4340 bool complete, 4341 __wsum psum) 4342 { 4343 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4344 if (!csum_fold(csum_add(psum, skb->csum))) { 4345 skb->csum_valid = 1; 4346 return 0; 4347 } 4348 } 4349 4350 skb->csum = psum; 4351 4352 if (complete || skb->len <= CHECKSUM_BREAK) { 4353 __sum16 csum; 4354 4355 csum = __skb_checksum_complete(skb); 4356 skb->csum_valid = !csum; 4357 return csum; 4358 } 4359 4360 return 0; 4361 } 4362 4363 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4364 { 4365 return 0; 4366 } 4367 4368 /* Perform checksum validate (init). Note that this is a macro since we only 4369 * want to calculate the pseudo header which is an input function if necessary. 4370 * First we try to validate without any computation (checksum unnecessary) and 4371 * then calculate based on checksum complete calling the function to compute 4372 * pseudo header. 4373 * 4374 * Return values: 4375 * 0: checksum is validated or try to in skb_checksum_complete 4376 * non-zero: value of invalid checksum 4377 */ 4378 #define __skb_checksum_validate(skb, proto, complete, \ 4379 zero_okay, check, compute_pseudo) \ 4380 ({ \ 4381 __sum16 __ret = 0; \ 4382 skb->csum_valid = 0; \ 4383 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4384 __ret = __skb_checksum_validate_complete(skb, \ 4385 complete, compute_pseudo(skb, proto)); \ 4386 __ret; \ 4387 }) 4388 4389 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4390 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4391 4392 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4393 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4394 4395 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4396 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4397 4398 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4399 compute_pseudo) \ 4400 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4401 4402 #define skb_checksum_simple_validate(skb) \ 4403 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4404 4405 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4406 { 4407 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4408 } 4409 4410 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4411 { 4412 skb->csum = ~pseudo; 4413 skb->ip_summed = CHECKSUM_COMPLETE; 4414 } 4415 4416 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4417 do { \ 4418 if (__skb_checksum_convert_check(skb)) \ 4419 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4420 } while (0) 4421 4422 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4423 u16 start, u16 offset) 4424 { 4425 skb->ip_summed = CHECKSUM_PARTIAL; 4426 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4427 skb->csum_offset = offset - start; 4428 } 4429 4430 /* Update skbuf and packet to reflect the remote checksum offload operation. 4431 * When called, ptr indicates the starting point for skb->csum when 4432 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4433 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4434 */ 4435 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4436 int start, int offset, bool nopartial) 4437 { 4438 __wsum delta; 4439 4440 if (!nopartial) { 4441 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4442 return; 4443 } 4444 4445 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4446 __skb_checksum_complete(skb); 4447 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4448 } 4449 4450 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4451 4452 /* Adjust skb->csum since we changed the packet */ 4453 skb->csum = csum_add(skb->csum, delta); 4454 } 4455 4456 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4457 { 4458 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4459 return (void *)(skb->_nfct & NFCT_PTRMASK); 4460 #else 4461 return NULL; 4462 #endif 4463 } 4464 4465 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4466 { 4467 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4468 return skb->_nfct; 4469 #else 4470 return 0UL; 4471 #endif 4472 } 4473 4474 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4475 { 4476 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4477 skb->slow_gro |= !!nfct; 4478 skb->_nfct = nfct; 4479 #endif 4480 } 4481 4482 #ifdef CONFIG_SKB_EXTENSIONS 4483 enum skb_ext_id { 4484 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4485 SKB_EXT_BRIDGE_NF, 4486 #endif 4487 #ifdef CONFIG_XFRM 4488 SKB_EXT_SEC_PATH, 4489 #endif 4490 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4491 TC_SKB_EXT, 4492 #endif 4493 #if IS_ENABLED(CONFIG_MPTCP) 4494 SKB_EXT_MPTCP, 4495 #endif 4496 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4497 SKB_EXT_MCTP, 4498 #endif 4499 SKB_EXT_NUM, /* must be last */ 4500 }; 4501 4502 /** 4503 * struct skb_ext - sk_buff extensions 4504 * @refcnt: 1 on allocation, deallocated on 0 4505 * @offset: offset to add to @data to obtain extension address 4506 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4507 * @data: start of extension data, variable sized 4508 * 4509 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4510 * to use 'u8' types while allowing up to 2kb worth of extension data. 4511 */ 4512 struct skb_ext { 4513 refcount_t refcnt; 4514 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4515 u8 chunks; /* same */ 4516 char data[] __aligned(8); 4517 }; 4518 4519 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4520 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4521 struct skb_ext *ext); 4522 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4523 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4524 void __skb_ext_put(struct skb_ext *ext); 4525 4526 static inline void skb_ext_put(struct sk_buff *skb) 4527 { 4528 if (skb->active_extensions) 4529 __skb_ext_put(skb->extensions); 4530 } 4531 4532 static inline void __skb_ext_copy(struct sk_buff *dst, 4533 const struct sk_buff *src) 4534 { 4535 dst->active_extensions = src->active_extensions; 4536 4537 if (src->active_extensions) { 4538 struct skb_ext *ext = src->extensions; 4539 4540 refcount_inc(&ext->refcnt); 4541 dst->extensions = ext; 4542 } 4543 } 4544 4545 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4546 { 4547 skb_ext_put(dst); 4548 __skb_ext_copy(dst, src); 4549 } 4550 4551 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4552 { 4553 return !!ext->offset[i]; 4554 } 4555 4556 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4557 { 4558 return skb->active_extensions & (1 << id); 4559 } 4560 4561 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4562 { 4563 if (skb_ext_exist(skb, id)) 4564 __skb_ext_del(skb, id); 4565 } 4566 4567 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4568 { 4569 if (skb_ext_exist(skb, id)) { 4570 struct skb_ext *ext = skb->extensions; 4571 4572 return (void *)ext + (ext->offset[id] << 3); 4573 } 4574 4575 return NULL; 4576 } 4577 4578 static inline void skb_ext_reset(struct sk_buff *skb) 4579 { 4580 if (unlikely(skb->active_extensions)) { 4581 __skb_ext_put(skb->extensions); 4582 skb->active_extensions = 0; 4583 } 4584 } 4585 4586 static inline bool skb_has_extensions(struct sk_buff *skb) 4587 { 4588 return unlikely(skb->active_extensions); 4589 } 4590 #else 4591 static inline void skb_ext_put(struct sk_buff *skb) {} 4592 static inline void skb_ext_reset(struct sk_buff *skb) {} 4593 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4594 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4595 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4596 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4597 #endif /* CONFIG_SKB_EXTENSIONS */ 4598 4599 static inline void nf_reset_ct(struct sk_buff *skb) 4600 { 4601 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4602 nf_conntrack_put(skb_nfct(skb)); 4603 skb->_nfct = 0; 4604 #endif 4605 } 4606 4607 static inline void nf_reset_trace(struct sk_buff *skb) 4608 { 4609 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4610 skb->nf_trace = 0; 4611 #endif 4612 } 4613 4614 static inline void ipvs_reset(struct sk_buff *skb) 4615 { 4616 #if IS_ENABLED(CONFIG_IP_VS) 4617 skb->ipvs_property = 0; 4618 #endif 4619 } 4620 4621 /* Note: This doesn't put any conntrack info in dst. */ 4622 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4623 bool copy) 4624 { 4625 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4626 dst->_nfct = src->_nfct; 4627 nf_conntrack_get(skb_nfct(src)); 4628 #endif 4629 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4630 if (copy) 4631 dst->nf_trace = src->nf_trace; 4632 #endif 4633 } 4634 4635 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4636 { 4637 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4638 nf_conntrack_put(skb_nfct(dst)); 4639 #endif 4640 dst->slow_gro = src->slow_gro; 4641 __nf_copy(dst, src, true); 4642 } 4643 4644 #ifdef CONFIG_NETWORK_SECMARK 4645 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4646 { 4647 to->secmark = from->secmark; 4648 } 4649 4650 static inline void skb_init_secmark(struct sk_buff *skb) 4651 { 4652 skb->secmark = 0; 4653 } 4654 #else 4655 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4656 { } 4657 4658 static inline void skb_init_secmark(struct sk_buff *skb) 4659 { } 4660 #endif 4661 4662 static inline int secpath_exists(const struct sk_buff *skb) 4663 { 4664 #ifdef CONFIG_XFRM 4665 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4666 #else 4667 return 0; 4668 #endif 4669 } 4670 4671 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4672 { 4673 return !skb->destructor && 4674 !secpath_exists(skb) && 4675 !skb_nfct(skb) && 4676 !skb->_skb_refdst && 4677 !skb_has_frag_list(skb); 4678 } 4679 4680 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4681 { 4682 skb->queue_mapping = queue_mapping; 4683 } 4684 4685 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4686 { 4687 return skb->queue_mapping; 4688 } 4689 4690 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4691 { 4692 to->queue_mapping = from->queue_mapping; 4693 } 4694 4695 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4696 { 4697 skb->queue_mapping = rx_queue + 1; 4698 } 4699 4700 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4701 { 4702 return skb->queue_mapping - 1; 4703 } 4704 4705 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4706 { 4707 return skb->queue_mapping != 0; 4708 } 4709 4710 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4711 { 4712 skb->dst_pending_confirm = val; 4713 } 4714 4715 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4716 { 4717 return skb->dst_pending_confirm != 0; 4718 } 4719 4720 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4721 { 4722 #ifdef CONFIG_XFRM 4723 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4724 #else 4725 return NULL; 4726 #endif 4727 } 4728 4729 /* Keeps track of mac header offset relative to skb->head. 4730 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4731 * For non-tunnel skb it points to skb_mac_header() and for 4732 * tunnel skb it points to outer mac header. 4733 * Keeps track of level of encapsulation of network headers. 4734 */ 4735 struct skb_gso_cb { 4736 union { 4737 int mac_offset; 4738 int data_offset; 4739 }; 4740 int encap_level; 4741 __wsum csum; 4742 __u16 csum_start; 4743 }; 4744 #define SKB_GSO_CB_OFFSET 32 4745 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4746 4747 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4748 { 4749 return (skb_mac_header(inner_skb) - inner_skb->head) - 4750 SKB_GSO_CB(inner_skb)->mac_offset; 4751 } 4752 4753 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4754 { 4755 int new_headroom, headroom; 4756 int ret; 4757 4758 headroom = skb_headroom(skb); 4759 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4760 if (ret) 4761 return ret; 4762 4763 new_headroom = skb_headroom(skb); 4764 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4765 return 0; 4766 } 4767 4768 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4769 { 4770 /* Do not update partial checksums if remote checksum is enabled. */ 4771 if (skb->remcsum_offload) 4772 return; 4773 4774 SKB_GSO_CB(skb)->csum = res; 4775 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4776 } 4777 4778 /* Compute the checksum for a gso segment. First compute the checksum value 4779 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4780 * then add in skb->csum (checksum from csum_start to end of packet). 4781 * skb->csum and csum_start are then updated to reflect the checksum of the 4782 * resultant packet starting from the transport header-- the resultant checksum 4783 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4784 * header. 4785 */ 4786 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4787 { 4788 unsigned char *csum_start = skb_transport_header(skb); 4789 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4790 __wsum partial = SKB_GSO_CB(skb)->csum; 4791 4792 SKB_GSO_CB(skb)->csum = res; 4793 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4794 4795 return csum_fold(csum_partial(csum_start, plen, partial)); 4796 } 4797 4798 static inline bool skb_is_gso(const struct sk_buff *skb) 4799 { 4800 return skb_shinfo(skb)->gso_size; 4801 } 4802 4803 /* Note: Should be called only if skb_is_gso(skb) is true */ 4804 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4805 { 4806 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4807 } 4808 4809 /* Note: Should be called only if skb_is_gso(skb) is true */ 4810 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4811 { 4812 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4813 } 4814 4815 /* Note: Should be called only if skb_is_gso(skb) is true */ 4816 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4817 { 4818 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4819 } 4820 4821 static inline void skb_gso_reset(struct sk_buff *skb) 4822 { 4823 skb_shinfo(skb)->gso_size = 0; 4824 skb_shinfo(skb)->gso_segs = 0; 4825 skb_shinfo(skb)->gso_type = 0; 4826 } 4827 4828 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4829 u16 increment) 4830 { 4831 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4832 return; 4833 shinfo->gso_size += increment; 4834 } 4835 4836 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4837 u16 decrement) 4838 { 4839 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4840 return; 4841 shinfo->gso_size -= decrement; 4842 } 4843 4844 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4845 4846 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4847 { 4848 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4849 * wanted then gso_type will be set. */ 4850 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4851 4852 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4853 unlikely(shinfo->gso_type == 0)) { 4854 __skb_warn_lro_forwarding(skb); 4855 return true; 4856 } 4857 return false; 4858 } 4859 4860 static inline void skb_forward_csum(struct sk_buff *skb) 4861 { 4862 /* Unfortunately we don't support this one. Any brave souls? */ 4863 if (skb->ip_summed == CHECKSUM_COMPLETE) 4864 skb->ip_summed = CHECKSUM_NONE; 4865 } 4866 4867 /** 4868 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4869 * @skb: skb to check 4870 * 4871 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4872 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4873 * use this helper, to document places where we make this assertion. 4874 */ 4875 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4876 { 4877 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4878 } 4879 4880 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4881 4882 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4883 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4884 unsigned int transport_len, 4885 __sum16(*skb_chkf)(struct sk_buff *skb)); 4886 4887 /** 4888 * skb_head_is_locked - Determine if the skb->head is locked down 4889 * @skb: skb to check 4890 * 4891 * The head on skbs build around a head frag can be removed if they are 4892 * not cloned. This function returns true if the skb head is locked down 4893 * due to either being allocated via kmalloc, or by being a clone with 4894 * multiple references to the head. 4895 */ 4896 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4897 { 4898 return !skb->head_frag || skb_cloned(skb); 4899 } 4900 4901 /* Local Checksum Offload. 4902 * Compute outer checksum based on the assumption that the 4903 * inner checksum will be offloaded later. 4904 * See Documentation/networking/checksum-offloads.rst for 4905 * explanation of how this works. 4906 * Fill in outer checksum adjustment (e.g. with sum of outer 4907 * pseudo-header) before calling. 4908 * Also ensure that inner checksum is in linear data area. 4909 */ 4910 static inline __wsum lco_csum(struct sk_buff *skb) 4911 { 4912 unsigned char *csum_start = skb_checksum_start(skb); 4913 unsigned char *l4_hdr = skb_transport_header(skb); 4914 __wsum partial; 4915 4916 /* Start with complement of inner checksum adjustment */ 4917 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4918 skb->csum_offset)); 4919 4920 /* Add in checksum of our headers (incl. outer checksum 4921 * adjustment filled in by caller) and return result. 4922 */ 4923 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4924 } 4925 4926 static inline bool skb_is_redirected(const struct sk_buff *skb) 4927 { 4928 return skb->redirected; 4929 } 4930 4931 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4932 { 4933 skb->redirected = 1; 4934 #ifdef CONFIG_NET_REDIRECT 4935 skb->from_ingress = from_ingress; 4936 if (skb->from_ingress) 4937 skb_clear_tstamp(skb); 4938 #endif 4939 } 4940 4941 static inline void skb_reset_redirect(struct sk_buff *skb) 4942 { 4943 skb->redirected = 0; 4944 } 4945 4946 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 4947 { 4948 return skb->csum_not_inet; 4949 } 4950 4951 static inline void skb_set_kcov_handle(struct sk_buff *skb, 4952 const u64 kcov_handle) 4953 { 4954 #ifdef CONFIG_KCOV 4955 skb->kcov_handle = kcov_handle; 4956 #endif 4957 } 4958 4959 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 4960 { 4961 #ifdef CONFIG_KCOV 4962 return skb->kcov_handle; 4963 #else 4964 return 0; 4965 #endif 4966 } 4967 4968 #ifdef CONFIG_PAGE_POOL 4969 static inline void skb_mark_for_recycle(struct sk_buff *skb) 4970 { 4971 skb->pp_recycle = 1; 4972 } 4973 #endif 4974 4975 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 4976 { 4977 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 4978 return false; 4979 return page_pool_return_skb_page(virt_to_page(data)); 4980 } 4981 4982 #endif /* __KERNEL__ */ 4983 #endif /* _LINUX_SKBUFF_H */ 4984