xref: /linux-6.15/include/linux/skbuff.h (revision fb3ceec1)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
47 
48 /**
49  * DOC: skb checksums
50  *
51  * The interface for checksum offload between the stack and networking drivers
52  * is as follows...
53  *
54  * IP checksum related features
55  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56  *
57  * Drivers advertise checksum offload capabilities in the features of a device.
58  * From the stack's point of view these are capabilities offered by the driver.
59  * A driver typically only advertises features that it is capable of offloading
60  * to its device.
61  *
62  * .. flat-table:: Checksum related device features
63  *   :widths: 1 10
64  *
65  *   * - %NETIF_F_HW_CSUM
66  *     - The driver (or its device) is able to compute one
67  *	 IP (one's complement) checksum for any combination
68  *	 of protocols or protocol layering. The checksum is
69  *	 computed and set in a packet per the CHECKSUM_PARTIAL
70  *	 interface (see below).
71  *
72  *   * - %NETIF_F_IP_CSUM
73  *     - Driver (device) is only able to checksum plain
74  *	 TCP or UDP packets over IPv4. These are specifically
75  *	 unencapsulated packets of the form IPv4|TCP or
76  *	 IPv4|UDP where the Protocol field in the IPv4 header
77  *	 is TCP or UDP. The IPv4 header may contain IP options.
78  *	 This feature cannot be set in features for a device
79  *	 with NETIF_F_HW_CSUM also set. This feature is being
80  *	 DEPRECATED (see below).
81  *
82  *   * - %NETIF_F_IPV6_CSUM
83  *     - Driver (device) is only able to checksum plain
84  *	 TCP or UDP packets over IPv6. These are specifically
85  *	 unencapsulated packets of the form IPv6|TCP or
86  *	 IPv6|UDP where the Next Header field in the IPv6
87  *	 header is either TCP or UDP. IPv6 extension headers
88  *	 are not supported with this feature. This feature
89  *	 cannot be set in features for a device with
90  *	 NETIF_F_HW_CSUM also set. This feature is being
91  *	 DEPRECATED (see below).
92  *
93  *   * - %NETIF_F_RXCSUM
94  *     - Driver (device) performs receive checksum offload.
95  *	 This flag is only used to disable the RX checksum
96  *	 feature for a device. The stack will accept receive
97  *	 checksum indication in packets received on a device
98  *	 regardless of whether NETIF_F_RXCSUM is set.
99  *
100  * Checksumming of received packets by device
101  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102  *
103  * Indication of checksum verification is set in &sk_buff.ip_summed.
104  * Possible values are:
105  *
106  * - %CHECKSUM_NONE
107  *
108  *   Device did not checksum this packet e.g. due to lack of capabilities.
109  *   The packet contains full (though not verified) checksum in packet but
110  *   not in skb->csum. Thus, skb->csum is undefined in this case.
111  *
112  * - %CHECKSUM_UNNECESSARY
113  *
114  *   The hardware you're dealing with doesn't calculate the full checksum
115  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
116  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
117  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
118  *   though. A driver or device must never modify the checksum field in the
119  *   packet even if checksum is verified.
120  *
121  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
122  *
123  *     - TCP: IPv6 and IPv4.
124  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
125  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
126  *       may perform further validation in this case.
127  *     - GRE: only if the checksum is present in the header.
128  *     - SCTP: indicates the CRC in SCTP header has been validated.
129  *     - FCOE: indicates the CRC in FC frame has been validated.
130  *
131  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
132  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
133  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
134  *   and a device is able to verify the checksums for UDP (possibly zero),
135  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
136  *   two. If the device were only able to verify the UDP checksum and not
137  *   GRE, either because it doesn't support GRE checksum or because GRE
138  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
139  *   not considered in this case).
140  *
141  * - %CHECKSUM_COMPLETE
142  *
143  *   This is the most generic way. The device supplied checksum of the _whole_
144  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
145  *   hardware doesn't need to parse L3/L4 headers to implement this.
146  *
147  *   Notes:
148  *
149  *   - Even if device supports only some protocols, but is able to produce
150  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
151  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
152  *
153  * - %CHECKSUM_PARTIAL
154  *
155  *   A checksum is set up to be offloaded to a device as described in the
156  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
157  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
158  *   on the same host, or it may be set in the input path in GRO or remote
159  *   checksum offload. For the purposes of checksum verification, the checksum
160  *   referred to by skb->csum_start + skb->csum_offset and any preceding
161  *   checksums in the packet are considered verified. Any checksums in the
162  *   packet that are after the checksum being offloaded are not considered to
163  *   be verified.
164  *
165  * Checksumming on transmit for non-GSO
166  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
167  *
168  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
169  * Values are:
170  *
171  * - %CHECKSUM_PARTIAL
172  *
173  *   The driver is required to checksum the packet as seen by hard_start_xmit()
174  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
175  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
176  *   A driver may verify that the
177  *   csum_start and csum_offset values are valid values given the length and
178  *   offset of the packet, but it should not attempt to validate that the
179  *   checksum refers to a legitimate transport layer checksum -- it is the
180  *   purview of the stack to validate that csum_start and csum_offset are set
181  *   correctly.
182  *
183  *   When the stack requests checksum offload for a packet, the driver MUST
184  *   ensure that the checksum is set correctly. A driver can either offload the
185  *   checksum calculation to the device, or call skb_checksum_help (in the case
186  *   that the device does not support offload for a particular checksum).
187  *
188  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
189  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
190  *   checksum offload capability.
191  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
192  *   on network device checksumming capabilities: if a packet does not match
193  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
194  *   &sk_buff.csum_not_inet, see :ref:`crc`)
195  *   is called to resolve the checksum.
196  *
197  * - %CHECKSUM_NONE
198  *
199  *   The skb was already checksummed by the protocol, or a checksum is not
200  *   required.
201  *
202  * - %CHECKSUM_UNNECESSARY
203  *
204  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
205  *   output.
206  *
207  * - %CHECKSUM_COMPLETE
208  *
209  *   Not used in checksum output. If a driver observes a packet with this value
210  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
211  *
212  * .. _crc:
213  *
214  * Non-IP checksum (CRC) offloads
215  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
216  *
217  * .. flat-table::
218  *   :widths: 1 10
219  *
220  *   * - %NETIF_F_SCTP_CRC
221  *     - This feature indicates that a device is capable of
222  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
223  *	 will set csum_start and csum_offset accordingly, set ip_summed to
224  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
225  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
226  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
227  *	 must verify which offload is configured for a packet by testing the
228  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
229  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
230  *
231  *   * - %NETIF_F_FCOE_CRC
232  *     - This feature indicates that a device is capable of offloading the FCOE
233  *	 CRC in a packet. To perform this offload the stack will set ip_summed
234  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
235  *	 accordingly. Note that there is no indication in the skbuff that the
236  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
237  *	 both IP checksum offload and FCOE CRC offload must verify which offload
238  *	 is configured for a packet, presumably by inspecting packet headers.
239  *
240  * Checksumming on output with GSO
241  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
242  *
243  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
244  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
245  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
246  * part of the GSO operation is implied. If a checksum is being offloaded
247  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
248  * csum_offset are set to refer to the outermost checksum being offloaded
249  * (two offloaded checksums are possible with UDP encapsulation).
250  */
251 
252 /* Don't change this without changing skb_csum_unnecessary! */
253 #define CHECKSUM_NONE		0
254 #define CHECKSUM_UNNECESSARY	1
255 #define CHECKSUM_COMPLETE	2
256 #define CHECKSUM_PARTIAL	3
257 
258 /* Maximum value in skb->csum_level */
259 #define SKB_MAX_CSUM_LEVEL	3
260 
261 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
262 #define SKB_WITH_OVERHEAD(X)	\
263 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 #define SKB_MAX_ORDER(X, ORDER) \
265 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
266 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
267 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
268 
269 /* return minimum truesize of one skb containing X bytes of data */
270 #define SKB_TRUESIZE(X) ((X) +						\
271 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
272 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273 
274 struct ahash_request;
275 struct net_device;
276 struct scatterlist;
277 struct pipe_inode_info;
278 struct iov_iter;
279 struct napi_struct;
280 struct bpf_prog;
281 union bpf_attr;
282 struct skb_ext;
283 
284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
285 struct nf_bridge_info {
286 	enum {
287 		BRNF_PROTO_UNCHANGED,
288 		BRNF_PROTO_8021Q,
289 		BRNF_PROTO_PPPOE
290 	} orig_proto:8;
291 	u8			pkt_otherhost:1;
292 	u8			in_prerouting:1;
293 	u8			bridged_dnat:1;
294 	__u16			frag_max_size;
295 	struct net_device	*physindev;
296 
297 	/* always valid & non-NULL from FORWARD on, for physdev match */
298 	struct net_device	*physoutdev;
299 	union {
300 		/* prerouting: detect dnat in orig/reply direction */
301 		__be32          ipv4_daddr;
302 		struct in6_addr ipv6_daddr;
303 
304 		/* after prerouting + nat detected: store original source
305 		 * mac since neigh resolution overwrites it, only used while
306 		 * skb is out in neigh layer.
307 		 */
308 		char neigh_header[8];
309 	};
310 };
311 #endif
312 
313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
314 /* Chain in tc_skb_ext will be used to share the tc chain with
315  * ovs recirc_id. It will be set to the current chain by tc
316  * and read by ovs to recirc_id.
317  */
318 struct tc_skb_ext {
319 	__u32 chain;
320 	__u16 mru;
321 	__u16 zone;
322 	u8 post_ct:1;
323 	u8 post_ct_snat:1;
324 	u8 post_ct_dnat:1;
325 };
326 #endif
327 
328 struct sk_buff_head {
329 	/* These two members must be first to match sk_buff. */
330 	struct_group_tagged(sk_buff_list, list,
331 		struct sk_buff	*next;
332 		struct sk_buff	*prev;
333 	);
334 
335 	__u32		qlen;
336 	spinlock_t	lock;
337 };
338 
339 struct sk_buff;
340 
341 /* To allow 64K frame to be packed as single skb without frag_list we
342  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
343  * buffers which do not start on a page boundary.
344  *
345  * Since GRO uses frags we allocate at least 16 regardless of page
346  * size.
347  */
348 #if (65536/PAGE_SIZE + 1) < 16
349 #define MAX_SKB_FRAGS 16UL
350 #else
351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
352 #endif
353 extern int sysctl_max_skb_frags;
354 
355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
356  * segment using its current segmentation instead.
357  */
358 #define GSO_BY_FRAGS	0xFFFF
359 
360 typedef struct bio_vec skb_frag_t;
361 
362 /**
363  * skb_frag_size() - Returns the size of a skb fragment
364  * @frag: skb fragment
365  */
366 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
367 {
368 	return frag->bv_len;
369 }
370 
371 /**
372  * skb_frag_size_set() - Sets the size of a skb fragment
373  * @frag: skb fragment
374  * @size: size of fragment
375  */
376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
377 {
378 	frag->bv_len = size;
379 }
380 
381 /**
382  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
383  * @frag: skb fragment
384  * @delta: value to add
385  */
386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
387 {
388 	frag->bv_len += delta;
389 }
390 
391 /**
392  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
393  * @frag: skb fragment
394  * @delta: value to subtract
395  */
396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
397 {
398 	frag->bv_len -= delta;
399 }
400 
401 /**
402  * skb_frag_must_loop - Test if %p is a high memory page
403  * @p: fragment's page
404  */
405 static inline bool skb_frag_must_loop(struct page *p)
406 {
407 #if defined(CONFIG_HIGHMEM)
408 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
409 		return true;
410 #endif
411 	return false;
412 }
413 
414 /**
415  *	skb_frag_foreach_page - loop over pages in a fragment
416  *
417  *	@f:		skb frag to operate on
418  *	@f_off:		offset from start of f->bv_page
419  *	@f_len:		length from f_off to loop over
420  *	@p:		(temp var) current page
421  *	@p_off:		(temp var) offset from start of current page,
422  *	                           non-zero only on first page.
423  *	@p_len:		(temp var) length in current page,
424  *				   < PAGE_SIZE only on first and last page.
425  *	@copied:	(temp var) length so far, excluding current p_len.
426  *
427  *	A fragment can hold a compound page, in which case per-page
428  *	operations, notably kmap_atomic, must be called for each
429  *	regular page.
430  */
431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
432 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
433 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
434 	     p_len = skb_frag_must_loop(p) ?				\
435 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
436 	     copied = 0;						\
437 	     copied < f_len;						\
438 	     copied += p_len, p++, p_off = 0,				\
439 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
440 
441 #define HAVE_HW_TIME_STAMP
442 
443 /**
444  * struct skb_shared_hwtstamps - hardware time stamps
445  * @hwtstamp:		hardware time stamp transformed into duration
446  *			since arbitrary point in time
447  * @netdev_data:	address/cookie of network device driver used as
448  *			reference to actual hardware time stamp
449  *
450  * Software time stamps generated by ktime_get_real() are stored in
451  * skb->tstamp.
452  *
453  * hwtstamps can only be compared against other hwtstamps from
454  * the same device.
455  *
456  * This structure is attached to packets as part of the
457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458  */
459 struct skb_shared_hwtstamps {
460 	union {
461 		ktime_t	hwtstamp;
462 		void *netdev_data;
463 	};
464 };
465 
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 	/* generate hardware time stamp */
469 	SKBTX_HW_TSTAMP = 1 << 0,
470 
471 	/* generate software time stamp when queueing packet to NIC */
472 	SKBTX_SW_TSTAMP = 1 << 1,
473 
474 	/* device driver is going to provide hardware time stamp */
475 	SKBTX_IN_PROGRESS = 1 << 2,
476 
477 	/* generate hardware time stamp based on cycles if supported */
478 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479 
480 	/* generate wifi status information (where possible) */
481 	SKBTX_WIFI_STATUS = 1 << 4,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489 
490 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
491 				 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
493 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 				 SKBTX_ANY_SW_TSTAMP)
495 
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 	/* use zcopy routines */
499 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
500 
501 	/* This indicates at least one fragment might be overwritten
502 	 * (as in vmsplice(), sendfile() ...)
503 	 * If we need to compute a TX checksum, we'll need to copy
504 	 * all frags to avoid possible bad checksum
505 	 */
506 	SKBFL_SHARED_FRAG = BIT(1),
507 
508 	/* segment contains only zerocopy data and should not be
509 	 * charged to the kernel memory.
510 	 */
511 	SKBFL_PURE_ZEROCOPY = BIT(2),
512 
513 	SKBFL_DONT_ORPHAN = BIT(3),
514 
515 	/* page references are managed by the ubuf_info, so it's safe to
516 	 * use frags only up until ubuf_info is released
517 	 */
518 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520 
521 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524 
525 /*
526  * The callback notifies userspace to release buffers when skb DMA is done in
527  * lower device, the skb last reference should be 0 when calling this.
528  * The zerocopy_success argument is true if zero copy transmit occurred,
529  * false on data copy or out of memory error caused by data copy attempt.
530  * The ctx field is used to track device context.
531  * The desc field is used to track userspace buffer index.
532  */
533 struct ubuf_info {
534 	void (*callback)(struct sk_buff *, struct ubuf_info *,
535 			 bool zerocopy_success);
536 	union {
537 		struct {
538 			unsigned long desc;
539 			void *ctx;
540 		};
541 		struct {
542 			u32 id;
543 			u16 len;
544 			u16 zerocopy:1;
545 			u32 bytelen;
546 		};
547 	};
548 	refcount_t refcnt;
549 	u8 flags;
550 
551 	struct mmpin {
552 		struct user_struct *user;
553 		unsigned int num_pg;
554 	} mmp;
555 };
556 
557 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
558 
559 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
560 void mm_unaccount_pinned_pages(struct mmpin *mmp);
561 
562 /* This data is invariant across clones and lives at
563  * the end of the header data, ie. at skb->end.
564  */
565 struct skb_shared_info {
566 	__u8		flags;
567 	__u8		meta_len;
568 	__u8		nr_frags;
569 	__u8		tx_flags;
570 	unsigned short	gso_size;
571 	/* Warning: this field is not always filled in (UFO)! */
572 	unsigned short	gso_segs;
573 	struct sk_buff	*frag_list;
574 	struct skb_shared_hwtstamps hwtstamps;
575 	unsigned int	gso_type;
576 	u32		tskey;
577 
578 	/*
579 	 * Warning : all fields before dataref are cleared in __alloc_skb()
580 	 */
581 	atomic_t	dataref;
582 	unsigned int	xdp_frags_size;
583 
584 	/* Intermediate layers must ensure that destructor_arg
585 	 * remains valid until skb destructor */
586 	void *		destructor_arg;
587 
588 	/* must be last field, see pskb_expand_head() */
589 	skb_frag_t	frags[MAX_SKB_FRAGS];
590 };
591 
592 /**
593  * DOC: dataref and headerless skbs
594  *
595  * Transport layers send out clones of payload skbs they hold for
596  * retransmissions. To allow lower layers of the stack to prepend their headers
597  * we split &skb_shared_info.dataref into two halves.
598  * The lower 16 bits count the overall number of references.
599  * The higher 16 bits indicate how many of the references are payload-only.
600  * skb_header_cloned() checks if skb is allowed to add / write the headers.
601  *
602  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
603  * (via __skb_header_release()). Any clone created from marked skb will get
604  * &sk_buff.hdr_len populated with the available headroom.
605  * If there's the only clone in existence it's able to modify the headroom
606  * at will. The sequence of calls inside the transport layer is::
607  *
608  *  <alloc skb>
609  *  skb_reserve()
610  *  __skb_header_release()
611  *  skb_clone()
612  *  // send the clone down the stack
613  *
614  * This is not a very generic construct and it depends on the transport layers
615  * doing the right thing. In practice there's usually only one payload-only skb.
616  * Having multiple payload-only skbs with different lengths of hdr_len is not
617  * possible. The payload-only skbs should never leave their owner.
618  */
619 #define SKB_DATAREF_SHIFT 16
620 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
621 
622 
623 enum {
624 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
625 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
626 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
627 };
628 
629 enum {
630 	SKB_GSO_TCPV4 = 1 << 0,
631 
632 	/* This indicates the skb is from an untrusted source. */
633 	SKB_GSO_DODGY = 1 << 1,
634 
635 	/* This indicates the tcp segment has CWR set. */
636 	SKB_GSO_TCP_ECN = 1 << 2,
637 
638 	SKB_GSO_TCP_FIXEDID = 1 << 3,
639 
640 	SKB_GSO_TCPV6 = 1 << 4,
641 
642 	SKB_GSO_FCOE = 1 << 5,
643 
644 	SKB_GSO_GRE = 1 << 6,
645 
646 	SKB_GSO_GRE_CSUM = 1 << 7,
647 
648 	SKB_GSO_IPXIP4 = 1 << 8,
649 
650 	SKB_GSO_IPXIP6 = 1 << 9,
651 
652 	SKB_GSO_UDP_TUNNEL = 1 << 10,
653 
654 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
655 
656 	SKB_GSO_PARTIAL = 1 << 12,
657 
658 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
659 
660 	SKB_GSO_SCTP = 1 << 14,
661 
662 	SKB_GSO_ESP = 1 << 15,
663 
664 	SKB_GSO_UDP = 1 << 16,
665 
666 	SKB_GSO_UDP_L4 = 1 << 17,
667 
668 	SKB_GSO_FRAGLIST = 1 << 18,
669 };
670 
671 #if BITS_PER_LONG > 32
672 #define NET_SKBUFF_DATA_USES_OFFSET 1
673 #endif
674 
675 #ifdef NET_SKBUFF_DATA_USES_OFFSET
676 typedef unsigned int sk_buff_data_t;
677 #else
678 typedef unsigned char *sk_buff_data_t;
679 #endif
680 
681 /**
682  * DOC: Basic sk_buff geometry
683  *
684  * struct sk_buff itself is a metadata structure and does not hold any packet
685  * data. All the data is held in associated buffers.
686  *
687  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
688  * into two parts:
689  *
690  *  - data buffer, containing headers and sometimes payload;
691  *    this is the part of the skb operated on by the common helpers
692  *    such as skb_put() or skb_pull();
693  *  - shared info (struct skb_shared_info) which holds an array of pointers
694  *    to read-only data in the (page, offset, length) format.
695  *
696  * Optionally &skb_shared_info.frag_list may point to another skb.
697  *
698  * Basic diagram may look like this::
699  *
700  *                                  ---------------
701  *                                 | sk_buff       |
702  *                                  ---------------
703  *     ,---------------------------  + head
704  *    /          ,-----------------  + data
705  *   /          /      ,-----------  + tail
706  *  |          |      |            , + end
707  *  |          |      |           |
708  *  v          v      v           v
709  *   -----------------------------------------------
710  *  | headroom | data |  tailroom | skb_shared_info |
711  *   -----------------------------------------------
712  *                                 + [page frag]
713  *                                 + [page frag]
714  *                                 + [page frag]
715  *                                 + [page frag]       ---------
716  *                                 + frag_list    --> | sk_buff |
717  *                                                     ---------
718  *
719  */
720 
721 /**
722  *	struct sk_buff - socket buffer
723  *	@next: Next buffer in list
724  *	@prev: Previous buffer in list
725  *	@tstamp: Time we arrived/left
726  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
727  *		for retransmit timer
728  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
729  *	@list: queue head
730  *	@ll_node: anchor in an llist (eg socket defer_list)
731  *	@sk: Socket we are owned by
732  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
733  *		fragmentation management
734  *	@dev: Device we arrived on/are leaving by
735  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
736  *	@cb: Control buffer. Free for use by every layer. Put private vars here
737  *	@_skb_refdst: destination entry (with norefcount bit)
738  *	@sp: the security path, used for xfrm
739  *	@len: Length of actual data
740  *	@data_len: Data length
741  *	@mac_len: Length of link layer header
742  *	@hdr_len: writable header length of cloned skb
743  *	@csum: Checksum (must include start/offset pair)
744  *	@csum_start: Offset from skb->head where checksumming should start
745  *	@csum_offset: Offset from csum_start where checksum should be stored
746  *	@priority: Packet queueing priority
747  *	@ignore_df: allow local fragmentation
748  *	@cloned: Head may be cloned (check refcnt to be sure)
749  *	@ip_summed: Driver fed us an IP checksum
750  *	@nohdr: Payload reference only, must not modify header
751  *	@pkt_type: Packet class
752  *	@fclone: skbuff clone status
753  *	@ipvs_property: skbuff is owned by ipvs
754  *	@inner_protocol_type: whether the inner protocol is
755  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
756  *	@remcsum_offload: remote checksum offload is enabled
757  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
758  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
759  *	@tc_skip_classify: do not classify packet. set by IFB device
760  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
761  *	@redirected: packet was redirected by packet classifier
762  *	@from_ingress: packet was redirected from the ingress path
763  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
764  *	@peeked: this packet has been seen already, so stats have been
765  *		done for it, don't do them again
766  *	@nf_trace: netfilter packet trace flag
767  *	@protocol: Packet protocol from driver
768  *	@destructor: Destruct function
769  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
770  *	@_sk_redir: socket redirection information for skmsg
771  *	@_nfct: Associated connection, if any (with nfctinfo bits)
772  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
773  *	@skb_iif: ifindex of device we arrived on
774  *	@tc_index: Traffic control index
775  *	@hash: the packet hash
776  *	@queue_mapping: Queue mapping for multiqueue devices
777  *	@head_frag: skb was allocated from page fragments,
778  *		not allocated by kmalloc() or vmalloc().
779  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
780  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
781  *		page_pool support on driver)
782  *	@active_extensions: active extensions (skb_ext_id types)
783  *	@ndisc_nodetype: router type (from link layer)
784  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
785  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
786  *		ports.
787  *	@sw_hash: indicates hash was computed in software stack
788  *	@wifi_acked_valid: wifi_acked was set
789  *	@wifi_acked: whether frame was acked on wifi or not
790  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
791  *	@encapsulation: indicates the inner headers in the skbuff are valid
792  *	@encap_hdr_csum: software checksum is needed
793  *	@csum_valid: checksum is already valid
794  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
795  *	@csum_complete_sw: checksum was completed by software
796  *	@csum_level: indicates the number of consecutive checksums found in
797  *		the packet minus one that have been verified as
798  *		CHECKSUM_UNNECESSARY (max 3)
799  *	@dst_pending_confirm: need to confirm neighbour
800  *	@decrypted: Decrypted SKB
801  *	@slow_gro: state present at GRO time, slower prepare step required
802  *	@mono_delivery_time: When set, skb->tstamp has the
803  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
804  *		skb->tstamp has the (rcv) timestamp at ingress and
805  *		delivery_time at egress.
806  *	@napi_id: id of the NAPI struct this skb came from
807  *	@sender_cpu: (aka @napi_id) source CPU in XPS
808  *	@alloc_cpu: CPU which did the skb allocation.
809  *	@secmark: security marking
810  *	@mark: Generic packet mark
811  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
812  *		at the tail of an sk_buff
813  *	@vlan_present: VLAN tag is present
814  *	@vlan_proto: vlan encapsulation protocol
815  *	@vlan_tci: vlan tag control information
816  *	@inner_protocol: Protocol (encapsulation)
817  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
818  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
819  *	@inner_transport_header: Inner transport layer header (encapsulation)
820  *	@inner_network_header: Network layer header (encapsulation)
821  *	@inner_mac_header: Link layer header (encapsulation)
822  *	@transport_header: Transport layer header
823  *	@network_header: Network layer header
824  *	@mac_header: Link layer header
825  *	@kcov_handle: KCOV remote handle for remote coverage collection
826  *	@tail: Tail pointer
827  *	@end: End pointer
828  *	@head: Head of buffer
829  *	@data: Data head pointer
830  *	@truesize: Buffer size
831  *	@users: User count - see {datagram,tcp}.c
832  *	@extensions: allocated extensions, valid if active_extensions is nonzero
833  */
834 
835 struct sk_buff {
836 	union {
837 		struct {
838 			/* These two members must be first to match sk_buff_head. */
839 			struct sk_buff		*next;
840 			struct sk_buff		*prev;
841 
842 			union {
843 				struct net_device	*dev;
844 				/* Some protocols might use this space to store information,
845 				 * while device pointer would be NULL.
846 				 * UDP receive path is one user.
847 				 */
848 				unsigned long		dev_scratch;
849 			};
850 		};
851 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
852 		struct list_head	list;
853 		struct llist_node	ll_node;
854 	};
855 
856 	union {
857 		struct sock		*sk;
858 		int			ip_defrag_offset;
859 	};
860 
861 	union {
862 		ktime_t		tstamp;
863 		u64		skb_mstamp_ns; /* earliest departure time */
864 	};
865 	/*
866 	 * This is the control buffer. It is free to use for every
867 	 * layer. Please put your private variables there. If you
868 	 * want to keep them across layers you have to do a skb_clone()
869 	 * first. This is owned by whoever has the skb queued ATM.
870 	 */
871 	char			cb[48] __aligned(8);
872 
873 	union {
874 		struct {
875 			unsigned long	_skb_refdst;
876 			void		(*destructor)(struct sk_buff *skb);
877 		};
878 		struct list_head	tcp_tsorted_anchor;
879 #ifdef CONFIG_NET_SOCK_MSG
880 		unsigned long		_sk_redir;
881 #endif
882 	};
883 
884 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
885 	unsigned long		 _nfct;
886 #endif
887 	unsigned int		len,
888 				data_len;
889 	__u16			mac_len,
890 				hdr_len;
891 
892 	/* Following fields are _not_ copied in __copy_skb_header()
893 	 * Note that queue_mapping is here mostly to fill a hole.
894 	 */
895 	__u16			queue_mapping;
896 
897 /* if you move cloned around you also must adapt those constants */
898 #ifdef __BIG_ENDIAN_BITFIELD
899 #define CLONED_MASK	(1 << 7)
900 #else
901 #define CLONED_MASK	1
902 #endif
903 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
904 
905 	/* private: */
906 	__u8			__cloned_offset[0];
907 	/* public: */
908 	__u8			cloned:1,
909 				nohdr:1,
910 				fclone:2,
911 				peeked:1,
912 				head_frag:1,
913 				pfmemalloc:1,
914 				pp_recycle:1; /* page_pool recycle indicator */
915 #ifdef CONFIG_SKB_EXTENSIONS
916 	__u8			active_extensions;
917 #endif
918 
919 	/* Fields enclosed in headers group are copied
920 	 * using a single memcpy() in __copy_skb_header()
921 	 */
922 	struct_group(headers,
923 
924 	/* private: */
925 	__u8			__pkt_type_offset[0];
926 	/* public: */
927 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
928 	__u8			ignore_df:1;
929 	__u8			nf_trace:1;
930 	__u8			ip_summed:2;
931 	__u8			ooo_okay:1;
932 
933 	__u8			l4_hash:1;
934 	__u8			sw_hash:1;
935 	__u8			wifi_acked_valid:1;
936 	__u8			wifi_acked:1;
937 	__u8			no_fcs:1;
938 	/* Indicates the inner headers are valid in the skbuff. */
939 	__u8			encapsulation:1;
940 	__u8			encap_hdr_csum:1;
941 	__u8			csum_valid:1;
942 
943 	/* private: */
944 	__u8			__pkt_vlan_present_offset[0];
945 	/* public: */
946 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
947 	__u8			csum_complete_sw:1;
948 	__u8			csum_level:2;
949 	__u8			dst_pending_confirm:1;
950 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
951 #ifdef CONFIG_NET_CLS_ACT
952 	__u8			tc_skip_classify:1;
953 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
954 #endif
955 #ifdef CONFIG_IPV6_NDISC_NODETYPE
956 	__u8			ndisc_nodetype:2;
957 #endif
958 
959 	__u8			ipvs_property:1;
960 	__u8			inner_protocol_type:1;
961 	__u8			remcsum_offload:1;
962 #ifdef CONFIG_NET_SWITCHDEV
963 	__u8			offload_fwd_mark:1;
964 	__u8			offload_l3_fwd_mark:1;
965 #endif
966 	__u8			redirected:1;
967 #ifdef CONFIG_NET_REDIRECT
968 	__u8			from_ingress:1;
969 #endif
970 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
971 	__u8			nf_skip_egress:1;
972 #endif
973 #ifdef CONFIG_TLS_DEVICE
974 	__u8			decrypted:1;
975 #endif
976 	__u8			slow_gro:1;
977 	__u8			csum_not_inet:1;
978 
979 #ifdef CONFIG_NET_SCHED
980 	__u16			tc_index;	/* traffic control index */
981 #endif
982 
983 	union {
984 		__wsum		csum;
985 		struct {
986 			__u16	csum_start;
987 			__u16	csum_offset;
988 		};
989 	};
990 	__u32			priority;
991 	int			skb_iif;
992 	__u32			hash;
993 	__be16			vlan_proto;
994 	__u16			vlan_tci;
995 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
996 	union {
997 		unsigned int	napi_id;
998 		unsigned int	sender_cpu;
999 	};
1000 #endif
1001 	u16			alloc_cpu;
1002 #ifdef CONFIG_NETWORK_SECMARK
1003 	__u32		secmark;
1004 #endif
1005 
1006 	union {
1007 		__u32		mark;
1008 		__u32		reserved_tailroom;
1009 	};
1010 
1011 	union {
1012 		__be16		inner_protocol;
1013 		__u8		inner_ipproto;
1014 	};
1015 
1016 	__u16			inner_transport_header;
1017 	__u16			inner_network_header;
1018 	__u16			inner_mac_header;
1019 
1020 	__be16			protocol;
1021 	__u16			transport_header;
1022 	__u16			network_header;
1023 	__u16			mac_header;
1024 
1025 #ifdef CONFIG_KCOV
1026 	u64			kcov_handle;
1027 #endif
1028 
1029 	); /* end headers group */
1030 
1031 	/* These elements must be at the end, see alloc_skb() for details.  */
1032 	sk_buff_data_t		tail;
1033 	sk_buff_data_t		end;
1034 	unsigned char		*head,
1035 				*data;
1036 	unsigned int		truesize;
1037 	refcount_t		users;
1038 
1039 #ifdef CONFIG_SKB_EXTENSIONS
1040 	/* only useable after checking ->active_extensions != 0 */
1041 	struct skb_ext		*extensions;
1042 #endif
1043 };
1044 
1045 /* if you move pkt_type around you also must adapt those constants */
1046 #ifdef __BIG_ENDIAN_BITFIELD
1047 #define PKT_TYPE_MAX	(7 << 5)
1048 #else
1049 #define PKT_TYPE_MAX	7
1050 #endif
1051 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1052 
1053 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1054  * around, you also must adapt these constants.
1055  */
1056 #ifdef __BIG_ENDIAN_BITFIELD
1057 #define PKT_VLAN_PRESENT_BIT	7
1058 #define TC_AT_INGRESS_MASK		(1 << 0)
1059 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1060 #else
1061 #define PKT_VLAN_PRESENT_BIT	0
1062 #define TC_AT_INGRESS_MASK		(1 << 7)
1063 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1064 #endif
1065 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1066 
1067 #ifdef __KERNEL__
1068 /*
1069  *	Handling routines are only of interest to the kernel
1070  */
1071 
1072 #define SKB_ALLOC_FCLONE	0x01
1073 #define SKB_ALLOC_RX		0x02
1074 #define SKB_ALLOC_NAPI		0x04
1075 
1076 /**
1077  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1078  * @skb: buffer
1079  */
1080 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1081 {
1082 	return unlikely(skb->pfmemalloc);
1083 }
1084 
1085 /*
1086  * skb might have a dst pointer attached, refcounted or not.
1087  * _skb_refdst low order bit is set if refcount was _not_ taken
1088  */
1089 #define SKB_DST_NOREF	1UL
1090 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1091 
1092 /**
1093  * skb_dst - returns skb dst_entry
1094  * @skb: buffer
1095  *
1096  * Returns skb dst_entry, regardless of reference taken or not.
1097  */
1098 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1099 {
1100 	/* If refdst was not refcounted, check we still are in a
1101 	 * rcu_read_lock section
1102 	 */
1103 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1104 		!rcu_read_lock_held() &&
1105 		!rcu_read_lock_bh_held());
1106 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1107 }
1108 
1109 /**
1110  * skb_dst_set - sets skb dst
1111  * @skb: buffer
1112  * @dst: dst entry
1113  *
1114  * Sets skb dst, assuming a reference was taken on dst and should
1115  * be released by skb_dst_drop()
1116  */
1117 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1118 {
1119 	skb->slow_gro |= !!dst;
1120 	skb->_skb_refdst = (unsigned long)dst;
1121 }
1122 
1123 /**
1124  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1125  * @skb: buffer
1126  * @dst: dst entry
1127  *
1128  * Sets skb dst, assuming a reference was not taken on dst.
1129  * If dst entry is cached, we do not take reference and dst_release
1130  * will be avoided by refdst_drop. If dst entry is not cached, we take
1131  * reference, so that last dst_release can destroy the dst immediately.
1132  */
1133 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1134 {
1135 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1136 	skb->slow_gro |= !!dst;
1137 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1138 }
1139 
1140 /**
1141  * skb_dst_is_noref - Test if skb dst isn't refcounted
1142  * @skb: buffer
1143  */
1144 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1145 {
1146 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1147 }
1148 
1149 /**
1150  * skb_rtable - Returns the skb &rtable
1151  * @skb: buffer
1152  */
1153 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1154 {
1155 	return (struct rtable *)skb_dst(skb);
1156 }
1157 
1158 /* For mangling skb->pkt_type from user space side from applications
1159  * such as nft, tc, etc, we only allow a conservative subset of
1160  * possible pkt_types to be set.
1161 */
1162 static inline bool skb_pkt_type_ok(u32 ptype)
1163 {
1164 	return ptype <= PACKET_OTHERHOST;
1165 }
1166 
1167 /**
1168  * skb_napi_id - Returns the skb's NAPI id
1169  * @skb: buffer
1170  */
1171 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1172 {
1173 #ifdef CONFIG_NET_RX_BUSY_POLL
1174 	return skb->napi_id;
1175 #else
1176 	return 0;
1177 #endif
1178 }
1179 
1180 /**
1181  * skb_unref - decrement the skb's reference count
1182  * @skb: buffer
1183  *
1184  * Returns true if we can free the skb.
1185  */
1186 static inline bool skb_unref(struct sk_buff *skb)
1187 {
1188 	if (unlikely(!skb))
1189 		return false;
1190 	if (likely(refcount_read(&skb->users) == 1))
1191 		smp_rmb();
1192 	else if (likely(!refcount_dec_and_test(&skb->users)))
1193 		return false;
1194 
1195 	return true;
1196 }
1197 
1198 void __fix_address
1199 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1200 
1201 /**
1202  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1203  *	@skb: buffer to free
1204  */
1205 static inline void kfree_skb(struct sk_buff *skb)
1206 {
1207 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1208 }
1209 
1210 void skb_release_head_state(struct sk_buff *skb);
1211 void kfree_skb_list_reason(struct sk_buff *segs,
1212 			   enum skb_drop_reason reason);
1213 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1214 void skb_tx_error(struct sk_buff *skb);
1215 
1216 static inline void kfree_skb_list(struct sk_buff *segs)
1217 {
1218 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1219 }
1220 
1221 #ifdef CONFIG_TRACEPOINTS
1222 void consume_skb(struct sk_buff *skb);
1223 #else
1224 static inline void consume_skb(struct sk_buff *skb)
1225 {
1226 	return kfree_skb(skb);
1227 }
1228 #endif
1229 
1230 void __consume_stateless_skb(struct sk_buff *skb);
1231 void  __kfree_skb(struct sk_buff *skb);
1232 extern struct kmem_cache *skbuff_head_cache;
1233 
1234 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1235 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1236 		      bool *fragstolen, int *delta_truesize);
1237 
1238 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1239 			    int node);
1240 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1241 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1242 struct sk_buff *build_skb_around(struct sk_buff *skb,
1243 				 void *data, unsigned int frag_size);
1244 void skb_attempt_defer_free(struct sk_buff *skb);
1245 
1246 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1247 
1248 /**
1249  * alloc_skb - allocate a network buffer
1250  * @size: size to allocate
1251  * @priority: allocation mask
1252  *
1253  * This function is a convenient wrapper around __alloc_skb().
1254  */
1255 static inline struct sk_buff *alloc_skb(unsigned int size,
1256 					gfp_t priority)
1257 {
1258 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1259 }
1260 
1261 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1262 				     unsigned long data_len,
1263 				     int max_page_order,
1264 				     int *errcode,
1265 				     gfp_t gfp_mask);
1266 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1267 
1268 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1269 struct sk_buff_fclones {
1270 	struct sk_buff	skb1;
1271 
1272 	struct sk_buff	skb2;
1273 
1274 	refcount_t	fclone_ref;
1275 };
1276 
1277 /**
1278  *	skb_fclone_busy - check if fclone is busy
1279  *	@sk: socket
1280  *	@skb: buffer
1281  *
1282  * Returns true if skb is a fast clone, and its clone is not freed.
1283  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1284  * so we also check that this didnt happen.
1285  */
1286 static inline bool skb_fclone_busy(const struct sock *sk,
1287 				   const struct sk_buff *skb)
1288 {
1289 	const struct sk_buff_fclones *fclones;
1290 
1291 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1292 
1293 	return skb->fclone == SKB_FCLONE_ORIG &&
1294 	       refcount_read(&fclones->fclone_ref) > 1 &&
1295 	       READ_ONCE(fclones->skb2.sk) == sk;
1296 }
1297 
1298 /**
1299  * alloc_skb_fclone - allocate a network buffer from fclone cache
1300  * @size: size to allocate
1301  * @priority: allocation mask
1302  *
1303  * This function is a convenient wrapper around __alloc_skb().
1304  */
1305 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1306 					       gfp_t priority)
1307 {
1308 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1309 }
1310 
1311 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1312 void skb_headers_offset_update(struct sk_buff *skb, int off);
1313 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1314 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1315 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1316 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1317 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1318 				   gfp_t gfp_mask, bool fclone);
1319 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1320 					  gfp_t gfp_mask)
1321 {
1322 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1323 }
1324 
1325 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1326 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1327 				     unsigned int headroom);
1328 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1329 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1330 				int newtailroom, gfp_t priority);
1331 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1332 				     int offset, int len);
1333 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1334 			      int offset, int len);
1335 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1336 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1337 
1338 /**
1339  *	skb_pad			-	zero pad the tail of an skb
1340  *	@skb: buffer to pad
1341  *	@pad: space to pad
1342  *
1343  *	Ensure that a buffer is followed by a padding area that is zero
1344  *	filled. Used by network drivers which may DMA or transfer data
1345  *	beyond the buffer end onto the wire.
1346  *
1347  *	May return error in out of memory cases. The skb is freed on error.
1348  */
1349 static inline int skb_pad(struct sk_buff *skb, int pad)
1350 {
1351 	return __skb_pad(skb, pad, true);
1352 }
1353 #define dev_kfree_skb(a)	consume_skb(a)
1354 
1355 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1356 			 int offset, size_t size);
1357 
1358 struct skb_seq_state {
1359 	__u32		lower_offset;
1360 	__u32		upper_offset;
1361 	__u32		frag_idx;
1362 	__u32		stepped_offset;
1363 	struct sk_buff	*root_skb;
1364 	struct sk_buff	*cur_skb;
1365 	__u8		*frag_data;
1366 	__u32		frag_off;
1367 };
1368 
1369 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1370 			  unsigned int to, struct skb_seq_state *st);
1371 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1372 			  struct skb_seq_state *st);
1373 void skb_abort_seq_read(struct skb_seq_state *st);
1374 
1375 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1376 			   unsigned int to, struct ts_config *config);
1377 
1378 /*
1379  * Packet hash types specify the type of hash in skb_set_hash.
1380  *
1381  * Hash types refer to the protocol layer addresses which are used to
1382  * construct a packet's hash. The hashes are used to differentiate or identify
1383  * flows of the protocol layer for the hash type. Hash types are either
1384  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1385  *
1386  * Properties of hashes:
1387  *
1388  * 1) Two packets in different flows have different hash values
1389  * 2) Two packets in the same flow should have the same hash value
1390  *
1391  * A hash at a higher layer is considered to be more specific. A driver should
1392  * set the most specific hash possible.
1393  *
1394  * A driver cannot indicate a more specific hash than the layer at which a hash
1395  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1396  *
1397  * A driver may indicate a hash level which is less specific than the
1398  * actual layer the hash was computed on. For instance, a hash computed
1399  * at L4 may be considered an L3 hash. This should only be done if the
1400  * driver can't unambiguously determine that the HW computed the hash at
1401  * the higher layer. Note that the "should" in the second property above
1402  * permits this.
1403  */
1404 enum pkt_hash_types {
1405 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1406 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1407 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1408 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1409 };
1410 
1411 static inline void skb_clear_hash(struct sk_buff *skb)
1412 {
1413 	skb->hash = 0;
1414 	skb->sw_hash = 0;
1415 	skb->l4_hash = 0;
1416 }
1417 
1418 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1419 {
1420 	if (!skb->l4_hash)
1421 		skb_clear_hash(skb);
1422 }
1423 
1424 static inline void
1425 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1426 {
1427 	skb->l4_hash = is_l4;
1428 	skb->sw_hash = is_sw;
1429 	skb->hash = hash;
1430 }
1431 
1432 static inline void
1433 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1434 {
1435 	/* Used by drivers to set hash from HW */
1436 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1437 }
1438 
1439 static inline void
1440 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1441 {
1442 	__skb_set_hash(skb, hash, true, is_l4);
1443 }
1444 
1445 void __skb_get_hash(struct sk_buff *skb);
1446 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1447 u32 skb_get_poff(const struct sk_buff *skb);
1448 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1449 		   const struct flow_keys_basic *keys, int hlen);
1450 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1451 			    const void *data, int hlen_proto);
1452 
1453 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1454 					int thoff, u8 ip_proto)
1455 {
1456 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1457 }
1458 
1459 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1460 			     const struct flow_dissector_key *key,
1461 			     unsigned int key_count);
1462 
1463 struct bpf_flow_dissector;
1464 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1465 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1466 
1467 bool __skb_flow_dissect(const struct net *net,
1468 			const struct sk_buff *skb,
1469 			struct flow_dissector *flow_dissector,
1470 			void *target_container, const void *data,
1471 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1472 
1473 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1474 				    struct flow_dissector *flow_dissector,
1475 				    void *target_container, unsigned int flags)
1476 {
1477 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1478 				  target_container, NULL, 0, 0, 0, flags);
1479 }
1480 
1481 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1482 					      struct flow_keys *flow,
1483 					      unsigned int flags)
1484 {
1485 	memset(flow, 0, sizeof(*flow));
1486 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1487 				  flow, NULL, 0, 0, 0, flags);
1488 }
1489 
1490 static inline bool
1491 skb_flow_dissect_flow_keys_basic(const struct net *net,
1492 				 const struct sk_buff *skb,
1493 				 struct flow_keys_basic *flow,
1494 				 const void *data, __be16 proto,
1495 				 int nhoff, int hlen, unsigned int flags)
1496 {
1497 	memset(flow, 0, sizeof(*flow));
1498 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1499 				  data, proto, nhoff, hlen, flags);
1500 }
1501 
1502 void skb_flow_dissect_meta(const struct sk_buff *skb,
1503 			   struct flow_dissector *flow_dissector,
1504 			   void *target_container);
1505 
1506 /* Gets a skb connection tracking info, ctinfo map should be a
1507  * map of mapsize to translate enum ip_conntrack_info states
1508  * to user states.
1509  */
1510 void
1511 skb_flow_dissect_ct(const struct sk_buff *skb,
1512 		    struct flow_dissector *flow_dissector,
1513 		    void *target_container,
1514 		    u16 *ctinfo_map, size_t mapsize,
1515 		    bool post_ct, u16 zone);
1516 void
1517 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1518 			     struct flow_dissector *flow_dissector,
1519 			     void *target_container);
1520 
1521 void skb_flow_dissect_hash(const struct sk_buff *skb,
1522 			   struct flow_dissector *flow_dissector,
1523 			   void *target_container);
1524 
1525 static inline __u32 skb_get_hash(struct sk_buff *skb)
1526 {
1527 	if (!skb->l4_hash && !skb->sw_hash)
1528 		__skb_get_hash(skb);
1529 
1530 	return skb->hash;
1531 }
1532 
1533 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1534 {
1535 	if (!skb->l4_hash && !skb->sw_hash) {
1536 		struct flow_keys keys;
1537 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1538 
1539 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1540 	}
1541 
1542 	return skb->hash;
1543 }
1544 
1545 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1546 			   const siphash_key_t *perturb);
1547 
1548 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1549 {
1550 	return skb->hash;
1551 }
1552 
1553 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1554 {
1555 	to->hash = from->hash;
1556 	to->sw_hash = from->sw_hash;
1557 	to->l4_hash = from->l4_hash;
1558 };
1559 
1560 static inline void skb_copy_decrypted(struct sk_buff *to,
1561 				      const struct sk_buff *from)
1562 {
1563 #ifdef CONFIG_TLS_DEVICE
1564 	to->decrypted = from->decrypted;
1565 #endif
1566 }
1567 
1568 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1569 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1570 {
1571 	return skb->head + skb->end;
1572 }
1573 
1574 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1575 {
1576 	return skb->end;
1577 }
1578 
1579 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1580 {
1581 	skb->end = offset;
1582 }
1583 #else
1584 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1585 {
1586 	return skb->end;
1587 }
1588 
1589 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1590 {
1591 	return skb->end - skb->head;
1592 }
1593 
1594 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1595 {
1596 	skb->end = skb->head + offset;
1597 }
1598 #endif
1599 
1600 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1601 				       struct ubuf_info *uarg);
1602 
1603 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1604 
1605 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1606 			   bool success);
1607 
1608 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1609 			    struct sk_buff *skb, struct iov_iter *from,
1610 			    size_t length);
1611 
1612 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1613 					  struct msghdr *msg, int len)
1614 {
1615 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1616 }
1617 
1618 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1619 			     struct msghdr *msg, int len,
1620 			     struct ubuf_info *uarg);
1621 
1622 /* Internal */
1623 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1624 
1625 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1626 {
1627 	return &skb_shinfo(skb)->hwtstamps;
1628 }
1629 
1630 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1631 {
1632 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1633 
1634 	return is_zcopy ? skb_uarg(skb) : NULL;
1635 }
1636 
1637 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1638 {
1639 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1640 }
1641 
1642 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1643 {
1644 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1645 }
1646 
1647 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1648 				       const struct sk_buff *skb2)
1649 {
1650 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1651 }
1652 
1653 static inline void net_zcopy_get(struct ubuf_info *uarg)
1654 {
1655 	refcount_inc(&uarg->refcnt);
1656 }
1657 
1658 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1659 {
1660 	skb_shinfo(skb)->destructor_arg = uarg;
1661 	skb_shinfo(skb)->flags |= uarg->flags;
1662 }
1663 
1664 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1665 				 bool *have_ref)
1666 {
1667 	if (skb && uarg && !skb_zcopy(skb)) {
1668 		if (unlikely(have_ref && *have_ref))
1669 			*have_ref = false;
1670 		else
1671 			net_zcopy_get(uarg);
1672 		skb_zcopy_init(skb, uarg);
1673 	}
1674 }
1675 
1676 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1677 {
1678 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1679 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1680 }
1681 
1682 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1683 {
1684 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1685 }
1686 
1687 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1688 {
1689 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1690 }
1691 
1692 static inline void net_zcopy_put(struct ubuf_info *uarg)
1693 {
1694 	if (uarg)
1695 		uarg->callback(NULL, uarg, true);
1696 }
1697 
1698 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1699 {
1700 	if (uarg) {
1701 		if (uarg->callback == msg_zerocopy_callback)
1702 			msg_zerocopy_put_abort(uarg, have_uref);
1703 		else if (have_uref)
1704 			net_zcopy_put(uarg);
1705 	}
1706 }
1707 
1708 /* Release a reference on a zerocopy structure */
1709 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1710 {
1711 	struct ubuf_info *uarg = skb_zcopy(skb);
1712 
1713 	if (uarg) {
1714 		if (!skb_zcopy_is_nouarg(skb))
1715 			uarg->callback(skb, uarg, zerocopy_success);
1716 
1717 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1718 	}
1719 }
1720 
1721 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1722 
1723 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1724 {
1725 	if (unlikely(skb_zcopy_managed(skb)))
1726 		__skb_zcopy_downgrade_managed(skb);
1727 }
1728 
1729 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1730 {
1731 	skb->next = NULL;
1732 }
1733 
1734 /* Iterate through singly-linked GSO fragments of an skb. */
1735 #define skb_list_walk_safe(first, skb, next_skb)                               \
1736 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1737 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1738 
1739 static inline void skb_list_del_init(struct sk_buff *skb)
1740 {
1741 	__list_del_entry(&skb->list);
1742 	skb_mark_not_on_list(skb);
1743 }
1744 
1745 /**
1746  *	skb_queue_empty - check if a queue is empty
1747  *	@list: queue head
1748  *
1749  *	Returns true if the queue is empty, false otherwise.
1750  */
1751 static inline int skb_queue_empty(const struct sk_buff_head *list)
1752 {
1753 	return list->next == (const struct sk_buff *) list;
1754 }
1755 
1756 /**
1757  *	skb_queue_empty_lockless - check if a queue is empty
1758  *	@list: queue head
1759  *
1760  *	Returns true if the queue is empty, false otherwise.
1761  *	This variant can be used in lockless contexts.
1762  */
1763 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1764 {
1765 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1766 }
1767 
1768 
1769 /**
1770  *	skb_queue_is_last - check if skb is the last entry in the queue
1771  *	@list: queue head
1772  *	@skb: buffer
1773  *
1774  *	Returns true if @skb is the last buffer on the list.
1775  */
1776 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1777 				     const struct sk_buff *skb)
1778 {
1779 	return skb->next == (const struct sk_buff *) list;
1780 }
1781 
1782 /**
1783  *	skb_queue_is_first - check if skb is the first entry in the queue
1784  *	@list: queue head
1785  *	@skb: buffer
1786  *
1787  *	Returns true if @skb is the first buffer on the list.
1788  */
1789 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1790 				      const struct sk_buff *skb)
1791 {
1792 	return skb->prev == (const struct sk_buff *) list;
1793 }
1794 
1795 /**
1796  *	skb_queue_next - return the next packet in the queue
1797  *	@list: queue head
1798  *	@skb: current buffer
1799  *
1800  *	Return the next packet in @list after @skb.  It is only valid to
1801  *	call this if skb_queue_is_last() evaluates to false.
1802  */
1803 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1804 					     const struct sk_buff *skb)
1805 {
1806 	/* This BUG_ON may seem severe, but if we just return then we
1807 	 * are going to dereference garbage.
1808 	 */
1809 	BUG_ON(skb_queue_is_last(list, skb));
1810 	return skb->next;
1811 }
1812 
1813 /**
1814  *	skb_queue_prev - return the prev packet in the queue
1815  *	@list: queue head
1816  *	@skb: current buffer
1817  *
1818  *	Return the prev packet in @list before @skb.  It is only valid to
1819  *	call this if skb_queue_is_first() evaluates to false.
1820  */
1821 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1822 					     const struct sk_buff *skb)
1823 {
1824 	/* This BUG_ON may seem severe, but if we just return then we
1825 	 * are going to dereference garbage.
1826 	 */
1827 	BUG_ON(skb_queue_is_first(list, skb));
1828 	return skb->prev;
1829 }
1830 
1831 /**
1832  *	skb_get - reference buffer
1833  *	@skb: buffer to reference
1834  *
1835  *	Makes another reference to a socket buffer and returns a pointer
1836  *	to the buffer.
1837  */
1838 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1839 {
1840 	refcount_inc(&skb->users);
1841 	return skb;
1842 }
1843 
1844 /*
1845  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1846  */
1847 
1848 /**
1849  *	skb_cloned - is the buffer a clone
1850  *	@skb: buffer to check
1851  *
1852  *	Returns true if the buffer was generated with skb_clone() and is
1853  *	one of multiple shared copies of the buffer. Cloned buffers are
1854  *	shared data so must not be written to under normal circumstances.
1855  */
1856 static inline int skb_cloned(const struct sk_buff *skb)
1857 {
1858 	return skb->cloned &&
1859 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1860 }
1861 
1862 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1863 {
1864 	might_sleep_if(gfpflags_allow_blocking(pri));
1865 
1866 	if (skb_cloned(skb))
1867 		return pskb_expand_head(skb, 0, 0, pri);
1868 
1869 	return 0;
1870 }
1871 
1872 /* This variant of skb_unclone() makes sure skb->truesize
1873  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1874  *
1875  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1876  * when various debugging features are in place.
1877  */
1878 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1879 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1880 {
1881 	might_sleep_if(gfpflags_allow_blocking(pri));
1882 
1883 	if (skb_cloned(skb))
1884 		return __skb_unclone_keeptruesize(skb, pri);
1885 	return 0;
1886 }
1887 
1888 /**
1889  *	skb_header_cloned - is the header a clone
1890  *	@skb: buffer to check
1891  *
1892  *	Returns true if modifying the header part of the buffer requires
1893  *	the data to be copied.
1894  */
1895 static inline int skb_header_cloned(const struct sk_buff *skb)
1896 {
1897 	int dataref;
1898 
1899 	if (!skb->cloned)
1900 		return 0;
1901 
1902 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1903 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1904 	return dataref != 1;
1905 }
1906 
1907 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1908 {
1909 	might_sleep_if(gfpflags_allow_blocking(pri));
1910 
1911 	if (skb_header_cloned(skb))
1912 		return pskb_expand_head(skb, 0, 0, pri);
1913 
1914 	return 0;
1915 }
1916 
1917 /**
1918  * __skb_header_release() - allow clones to use the headroom
1919  * @skb: buffer to operate on
1920  *
1921  * See "DOC: dataref and headerless skbs".
1922  */
1923 static inline void __skb_header_release(struct sk_buff *skb)
1924 {
1925 	skb->nohdr = 1;
1926 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1927 }
1928 
1929 
1930 /**
1931  *	skb_shared - is the buffer shared
1932  *	@skb: buffer to check
1933  *
1934  *	Returns true if more than one person has a reference to this
1935  *	buffer.
1936  */
1937 static inline int skb_shared(const struct sk_buff *skb)
1938 {
1939 	return refcount_read(&skb->users) != 1;
1940 }
1941 
1942 /**
1943  *	skb_share_check - check if buffer is shared and if so clone it
1944  *	@skb: buffer to check
1945  *	@pri: priority for memory allocation
1946  *
1947  *	If the buffer is shared the buffer is cloned and the old copy
1948  *	drops a reference. A new clone with a single reference is returned.
1949  *	If the buffer is not shared the original buffer is returned. When
1950  *	being called from interrupt status or with spinlocks held pri must
1951  *	be GFP_ATOMIC.
1952  *
1953  *	NULL is returned on a memory allocation failure.
1954  */
1955 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1956 {
1957 	might_sleep_if(gfpflags_allow_blocking(pri));
1958 	if (skb_shared(skb)) {
1959 		struct sk_buff *nskb = skb_clone(skb, pri);
1960 
1961 		if (likely(nskb))
1962 			consume_skb(skb);
1963 		else
1964 			kfree_skb(skb);
1965 		skb = nskb;
1966 	}
1967 	return skb;
1968 }
1969 
1970 /*
1971  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1972  *	packets to handle cases where we have a local reader and forward
1973  *	and a couple of other messy ones. The normal one is tcpdumping
1974  *	a packet thats being forwarded.
1975  */
1976 
1977 /**
1978  *	skb_unshare - make a copy of a shared buffer
1979  *	@skb: buffer to check
1980  *	@pri: priority for memory allocation
1981  *
1982  *	If the socket buffer is a clone then this function creates a new
1983  *	copy of the data, drops a reference count on the old copy and returns
1984  *	the new copy with the reference count at 1. If the buffer is not a clone
1985  *	the original buffer is returned. When called with a spinlock held or
1986  *	from interrupt state @pri must be %GFP_ATOMIC
1987  *
1988  *	%NULL is returned on a memory allocation failure.
1989  */
1990 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1991 					  gfp_t pri)
1992 {
1993 	might_sleep_if(gfpflags_allow_blocking(pri));
1994 	if (skb_cloned(skb)) {
1995 		struct sk_buff *nskb = skb_copy(skb, pri);
1996 
1997 		/* Free our shared copy */
1998 		if (likely(nskb))
1999 			consume_skb(skb);
2000 		else
2001 			kfree_skb(skb);
2002 		skb = nskb;
2003 	}
2004 	return skb;
2005 }
2006 
2007 /**
2008  *	skb_peek - peek at the head of an &sk_buff_head
2009  *	@list_: list to peek at
2010  *
2011  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2012  *	be careful with this one. A peek leaves the buffer on the
2013  *	list and someone else may run off with it. You must hold
2014  *	the appropriate locks or have a private queue to do this.
2015  *
2016  *	Returns %NULL for an empty list or a pointer to the head element.
2017  *	The reference count is not incremented and the reference is therefore
2018  *	volatile. Use with caution.
2019  */
2020 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2021 {
2022 	struct sk_buff *skb = list_->next;
2023 
2024 	if (skb == (struct sk_buff *)list_)
2025 		skb = NULL;
2026 	return skb;
2027 }
2028 
2029 /**
2030  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2031  *	@list_: list to peek at
2032  *
2033  *	Like skb_peek(), but the caller knows that the list is not empty.
2034  */
2035 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2036 {
2037 	return list_->next;
2038 }
2039 
2040 /**
2041  *	skb_peek_next - peek skb following the given one from a queue
2042  *	@skb: skb to start from
2043  *	@list_: list to peek at
2044  *
2045  *	Returns %NULL when the end of the list is met or a pointer to the
2046  *	next element. The reference count is not incremented and the
2047  *	reference is therefore volatile. Use with caution.
2048  */
2049 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2050 		const struct sk_buff_head *list_)
2051 {
2052 	struct sk_buff *next = skb->next;
2053 
2054 	if (next == (struct sk_buff *)list_)
2055 		next = NULL;
2056 	return next;
2057 }
2058 
2059 /**
2060  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2061  *	@list_: list to peek at
2062  *
2063  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2064  *	be careful with this one. A peek leaves the buffer on the
2065  *	list and someone else may run off with it. You must hold
2066  *	the appropriate locks or have a private queue to do this.
2067  *
2068  *	Returns %NULL for an empty list or a pointer to the tail element.
2069  *	The reference count is not incremented and the reference is therefore
2070  *	volatile. Use with caution.
2071  */
2072 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2073 {
2074 	struct sk_buff *skb = READ_ONCE(list_->prev);
2075 
2076 	if (skb == (struct sk_buff *)list_)
2077 		skb = NULL;
2078 	return skb;
2079 
2080 }
2081 
2082 /**
2083  *	skb_queue_len	- get queue length
2084  *	@list_: list to measure
2085  *
2086  *	Return the length of an &sk_buff queue.
2087  */
2088 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2089 {
2090 	return list_->qlen;
2091 }
2092 
2093 /**
2094  *	skb_queue_len_lockless	- get queue length
2095  *	@list_: list to measure
2096  *
2097  *	Return the length of an &sk_buff queue.
2098  *	This variant can be used in lockless contexts.
2099  */
2100 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2101 {
2102 	return READ_ONCE(list_->qlen);
2103 }
2104 
2105 /**
2106  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2107  *	@list: queue to initialize
2108  *
2109  *	This initializes only the list and queue length aspects of
2110  *	an sk_buff_head object.  This allows to initialize the list
2111  *	aspects of an sk_buff_head without reinitializing things like
2112  *	the spinlock.  It can also be used for on-stack sk_buff_head
2113  *	objects where the spinlock is known to not be used.
2114  */
2115 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2116 {
2117 	list->prev = list->next = (struct sk_buff *)list;
2118 	list->qlen = 0;
2119 }
2120 
2121 /*
2122  * This function creates a split out lock class for each invocation;
2123  * this is needed for now since a whole lot of users of the skb-queue
2124  * infrastructure in drivers have different locking usage (in hardirq)
2125  * than the networking core (in softirq only). In the long run either the
2126  * network layer or drivers should need annotation to consolidate the
2127  * main types of usage into 3 classes.
2128  */
2129 static inline void skb_queue_head_init(struct sk_buff_head *list)
2130 {
2131 	spin_lock_init(&list->lock);
2132 	__skb_queue_head_init(list);
2133 }
2134 
2135 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2136 		struct lock_class_key *class)
2137 {
2138 	skb_queue_head_init(list);
2139 	lockdep_set_class(&list->lock, class);
2140 }
2141 
2142 /*
2143  *	Insert an sk_buff on a list.
2144  *
2145  *	The "__skb_xxxx()" functions are the non-atomic ones that
2146  *	can only be called with interrupts disabled.
2147  */
2148 static inline void __skb_insert(struct sk_buff *newsk,
2149 				struct sk_buff *prev, struct sk_buff *next,
2150 				struct sk_buff_head *list)
2151 {
2152 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2153 	 * for the opposite READ_ONCE()
2154 	 */
2155 	WRITE_ONCE(newsk->next, next);
2156 	WRITE_ONCE(newsk->prev, prev);
2157 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2158 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2159 	WRITE_ONCE(list->qlen, list->qlen + 1);
2160 }
2161 
2162 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2163 				      struct sk_buff *prev,
2164 				      struct sk_buff *next)
2165 {
2166 	struct sk_buff *first = list->next;
2167 	struct sk_buff *last = list->prev;
2168 
2169 	WRITE_ONCE(first->prev, prev);
2170 	WRITE_ONCE(prev->next, first);
2171 
2172 	WRITE_ONCE(last->next, next);
2173 	WRITE_ONCE(next->prev, last);
2174 }
2175 
2176 /**
2177  *	skb_queue_splice - join two skb lists, this is designed for stacks
2178  *	@list: the new list to add
2179  *	@head: the place to add it in the first list
2180  */
2181 static inline void skb_queue_splice(const struct sk_buff_head *list,
2182 				    struct sk_buff_head *head)
2183 {
2184 	if (!skb_queue_empty(list)) {
2185 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2186 		head->qlen += list->qlen;
2187 	}
2188 }
2189 
2190 /**
2191  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2192  *	@list: the new list to add
2193  *	@head: the place to add it in the first list
2194  *
2195  *	The list at @list is reinitialised
2196  */
2197 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2198 					 struct sk_buff_head *head)
2199 {
2200 	if (!skb_queue_empty(list)) {
2201 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2202 		head->qlen += list->qlen;
2203 		__skb_queue_head_init(list);
2204 	}
2205 }
2206 
2207 /**
2208  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2209  *	@list: the new list to add
2210  *	@head: the place to add it in the first list
2211  */
2212 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2213 					 struct sk_buff_head *head)
2214 {
2215 	if (!skb_queue_empty(list)) {
2216 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2217 		head->qlen += list->qlen;
2218 	}
2219 }
2220 
2221 /**
2222  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2223  *	@list: the new list to add
2224  *	@head: the place to add it in the first list
2225  *
2226  *	Each of the lists is a queue.
2227  *	The list at @list is reinitialised
2228  */
2229 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2230 					      struct sk_buff_head *head)
2231 {
2232 	if (!skb_queue_empty(list)) {
2233 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2234 		head->qlen += list->qlen;
2235 		__skb_queue_head_init(list);
2236 	}
2237 }
2238 
2239 /**
2240  *	__skb_queue_after - queue a buffer at the list head
2241  *	@list: list to use
2242  *	@prev: place after this buffer
2243  *	@newsk: buffer to queue
2244  *
2245  *	Queue a buffer int the middle of a list. This function takes no locks
2246  *	and you must therefore hold required locks before calling it.
2247  *
2248  *	A buffer cannot be placed on two lists at the same time.
2249  */
2250 static inline void __skb_queue_after(struct sk_buff_head *list,
2251 				     struct sk_buff *prev,
2252 				     struct sk_buff *newsk)
2253 {
2254 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2255 }
2256 
2257 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2258 		struct sk_buff_head *list);
2259 
2260 static inline void __skb_queue_before(struct sk_buff_head *list,
2261 				      struct sk_buff *next,
2262 				      struct sk_buff *newsk)
2263 {
2264 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2265 }
2266 
2267 /**
2268  *	__skb_queue_head - queue a buffer at the list head
2269  *	@list: list to use
2270  *	@newsk: buffer to queue
2271  *
2272  *	Queue a buffer at the start of a list. This function takes no locks
2273  *	and you must therefore hold required locks before calling it.
2274  *
2275  *	A buffer cannot be placed on two lists at the same time.
2276  */
2277 static inline void __skb_queue_head(struct sk_buff_head *list,
2278 				    struct sk_buff *newsk)
2279 {
2280 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2281 }
2282 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2283 
2284 /**
2285  *	__skb_queue_tail - queue a buffer at the list tail
2286  *	@list: list to use
2287  *	@newsk: buffer to queue
2288  *
2289  *	Queue a buffer at the end of a list. This function takes no locks
2290  *	and you must therefore hold required locks before calling it.
2291  *
2292  *	A buffer cannot be placed on two lists at the same time.
2293  */
2294 static inline void __skb_queue_tail(struct sk_buff_head *list,
2295 				   struct sk_buff *newsk)
2296 {
2297 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2298 }
2299 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2300 
2301 /*
2302  * remove sk_buff from list. _Must_ be called atomically, and with
2303  * the list known..
2304  */
2305 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2306 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2307 {
2308 	struct sk_buff *next, *prev;
2309 
2310 	WRITE_ONCE(list->qlen, list->qlen - 1);
2311 	next	   = skb->next;
2312 	prev	   = skb->prev;
2313 	skb->next  = skb->prev = NULL;
2314 	WRITE_ONCE(next->prev, prev);
2315 	WRITE_ONCE(prev->next, next);
2316 }
2317 
2318 /**
2319  *	__skb_dequeue - remove from the head of the queue
2320  *	@list: list to dequeue from
2321  *
2322  *	Remove the head of the list. This function does not take any locks
2323  *	so must be used with appropriate locks held only. The head item is
2324  *	returned or %NULL if the list is empty.
2325  */
2326 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2327 {
2328 	struct sk_buff *skb = skb_peek(list);
2329 	if (skb)
2330 		__skb_unlink(skb, list);
2331 	return skb;
2332 }
2333 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2334 
2335 /**
2336  *	__skb_dequeue_tail - remove from the tail of the queue
2337  *	@list: list to dequeue from
2338  *
2339  *	Remove the tail of the list. This function does not take any locks
2340  *	so must be used with appropriate locks held only. The tail item is
2341  *	returned or %NULL if the list is empty.
2342  */
2343 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2344 {
2345 	struct sk_buff *skb = skb_peek_tail(list);
2346 	if (skb)
2347 		__skb_unlink(skb, list);
2348 	return skb;
2349 }
2350 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2351 
2352 
2353 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2354 {
2355 	return skb->data_len;
2356 }
2357 
2358 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2359 {
2360 	return skb->len - skb->data_len;
2361 }
2362 
2363 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2364 {
2365 	unsigned int i, len = 0;
2366 
2367 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2368 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2369 	return len;
2370 }
2371 
2372 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2373 {
2374 	return skb_headlen(skb) + __skb_pagelen(skb);
2375 }
2376 
2377 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2378 					      int i, struct page *page,
2379 					      int off, int size)
2380 {
2381 	skb_frag_t *frag = &shinfo->frags[i];
2382 
2383 	/*
2384 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2385 	 * that not all callers have unique ownership of the page but rely
2386 	 * on page_is_pfmemalloc doing the right thing(tm).
2387 	 */
2388 	frag->bv_page		  = page;
2389 	frag->bv_offset		  = off;
2390 	skb_frag_size_set(frag, size);
2391 }
2392 
2393 /**
2394  * skb_len_add - adds a number to len fields of skb
2395  * @skb: buffer to add len to
2396  * @delta: number of bytes to add
2397  */
2398 static inline void skb_len_add(struct sk_buff *skb, int delta)
2399 {
2400 	skb->len += delta;
2401 	skb->data_len += delta;
2402 	skb->truesize += delta;
2403 }
2404 
2405 /**
2406  * __skb_fill_page_desc - initialise a paged fragment in an skb
2407  * @skb: buffer containing fragment to be initialised
2408  * @i: paged fragment index to initialise
2409  * @page: the page to use for this fragment
2410  * @off: the offset to the data with @page
2411  * @size: the length of the data
2412  *
2413  * Initialises the @i'th fragment of @skb to point to &size bytes at
2414  * offset @off within @page.
2415  *
2416  * Does not take any additional reference on the fragment.
2417  */
2418 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2419 					struct page *page, int off, int size)
2420 {
2421 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2422 	page = compound_head(page);
2423 	if (page_is_pfmemalloc(page))
2424 		skb->pfmemalloc	= true;
2425 }
2426 
2427 /**
2428  * skb_fill_page_desc - initialise a paged fragment in an skb
2429  * @skb: buffer containing fragment to be initialised
2430  * @i: paged fragment index to initialise
2431  * @page: the page to use for this fragment
2432  * @off: the offset to the data with @page
2433  * @size: the length of the data
2434  *
2435  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2436  * @skb to point to @size bytes at offset @off within @page. In
2437  * addition updates @skb such that @i is the last fragment.
2438  *
2439  * Does not take any additional reference on the fragment.
2440  */
2441 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2442 				      struct page *page, int off, int size)
2443 {
2444 	__skb_fill_page_desc(skb, i, page, off, size);
2445 	skb_shinfo(skb)->nr_frags = i + 1;
2446 }
2447 
2448 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2449 		     int size, unsigned int truesize);
2450 
2451 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2452 			  unsigned int truesize);
2453 
2454 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2455 
2456 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2457 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2458 {
2459 	return skb->head + skb->tail;
2460 }
2461 
2462 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2463 {
2464 	skb->tail = skb->data - skb->head;
2465 }
2466 
2467 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2468 {
2469 	skb_reset_tail_pointer(skb);
2470 	skb->tail += offset;
2471 }
2472 
2473 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2474 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2475 {
2476 	return skb->tail;
2477 }
2478 
2479 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2480 {
2481 	skb->tail = skb->data;
2482 }
2483 
2484 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2485 {
2486 	skb->tail = skb->data + offset;
2487 }
2488 
2489 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2490 
2491 static inline void skb_assert_len(struct sk_buff *skb)
2492 {
2493 #ifdef CONFIG_DEBUG_NET
2494 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2495 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2496 #endif /* CONFIG_DEBUG_NET */
2497 }
2498 
2499 /*
2500  *	Add data to an sk_buff
2501  */
2502 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2503 void *skb_put(struct sk_buff *skb, unsigned int len);
2504 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2505 {
2506 	void *tmp = skb_tail_pointer(skb);
2507 	SKB_LINEAR_ASSERT(skb);
2508 	skb->tail += len;
2509 	skb->len  += len;
2510 	return tmp;
2511 }
2512 
2513 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2514 {
2515 	void *tmp = __skb_put(skb, len);
2516 
2517 	memset(tmp, 0, len);
2518 	return tmp;
2519 }
2520 
2521 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2522 				   unsigned int len)
2523 {
2524 	void *tmp = __skb_put(skb, len);
2525 
2526 	memcpy(tmp, data, len);
2527 	return tmp;
2528 }
2529 
2530 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2531 {
2532 	*(u8 *)__skb_put(skb, 1) = val;
2533 }
2534 
2535 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2536 {
2537 	void *tmp = skb_put(skb, len);
2538 
2539 	memset(tmp, 0, len);
2540 
2541 	return tmp;
2542 }
2543 
2544 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2545 				 unsigned int len)
2546 {
2547 	void *tmp = skb_put(skb, len);
2548 
2549 	memcpy(tmp, data, len);
2550 
2551 	return tmp;
2552 }
2553 
2554 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2555 {
2556 	*(u8 *)skb_put(skb, 1) = val;
2557 }
2558 
2559 void *skb_push(struct sk_buff *skb, unsigned int len);
2560 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2561 {
2562 	skb->data -= len;
2563 	skb->len  += len;
2564 	return skb->data;
2565 }
2566 
2567 void *skb_pull(struct sk_buff *skb, unsigned int len);
2568 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2569 {
2570 	skb->len -= len;
2571 	if (unlikely(skb->len < skb->data_len)) {
2572 #if defined(CONFIG_DEBUG_NET)
2573 		skb->len += len;
2574 		pr_err("__skb_pull(len=%u)\n", len);
2575 		skb_dump(KERN_ERR, skb, false);
2576 #endif
2577 		BUG();
2578 	}
2579 	return skb->data += len;
2580 }
2581 
2582 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2583 {
2584 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2585 }
2586 
2587 void *skb_pull_data(struct sk_buff *skb, size_t len);
2588 
2589 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2590 
2591 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2592 {
2593 	if (len > skb_headlen(skb) &&
2594 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2595 		return NULL;
2596 	skb->len -= len;
2597 	return skb->data += len;
2598 }
2599 
2600 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2601 {
2602 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2603 }
2604 
2605 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2606 {
2607 	if (likely(len <= skb_headlen(skb)))
2608 		return true;
2609 	if (unlikely(len > skb->len))
2610 		return false;
2611 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2612 }
2613 
2614 void skb_condense(struct sk_buff *skb);
2615 
2616 /**
2617  *	skb_headroom - bytes at buffer head
2618  *	@skb: buffer to check
2619  *
2620  *	Return the number of bytes of free space at the head of an &sk_buff.
2621  */
2622 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2623 {
2624 	return skb->data - skb->head;
2625 }
2626 
2627 /**
2628  *	skb_tailroom - bytes at buffer end
2629  *	@skb: buffer to check
2630  *
2631  *	Return the number of bytes of free space at the tail of an sk_buff
2632  */
2633 static inline int skb_tailroom(const struct sk_buff *skb)
2634 {
2635 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2636 }
2637 
2638 /**
2639  *	skb_availroom - bytes at buffer end
2640  *	@skb: buffer to check
2641  *
2642  *	Return the number of bytes of free space at the tail of an sk_buff
2643  *	allocated by sk_stream_alloc()
2644  */
2645 static inline int skb_availroom(const struct sk_buff *skb)
2646 {
2647 	if (skb_is_nonlinear(skb))
2648 		return 0;
2649 
2650 	return skb->end - skb->tail - skb->reserved_tailroom;
2651 }
2652 
2653 /**
2654  *	skb_reserve - adjust headroom
2655  *	@skb: buffer to alter
2656  *	@len: bytes to move
2657  *
2658  *	Increase the headroom of an empty &sk_buff by reducing the tail
2659  *	room. This is only allowed for an empty buffer.
2660  */
2661 static inline void skb_reserve(struct sk_buff *skb, int len)
2662 {
2663 	skb->data += len;
2664 	skb->tail += len;
2665 }
2666 
2667 /**
2668  *	skb_tailroom_reserve - adjust reserved_tailroom
2669  *	@skb: buffer to alter
2670  *	@mtu: maximum amount of headlen permitted
2671  *	@needed_tailroom: minimum amount of reserved_tailroom
2672  *
2673  *	Set reserved_tailroom so that headlen can be as large as possible but
2674  *	not larger than mtu and tailroom cannot be smaller than
2675  *	needed_tailroom.
2676  *	The required headroom should already have been reserved before using
2677  *	this function.
2678  */
2679 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2680 					unsigned int needed_tailroom)
2681 {
2682 	SKB_LINEAR_ASSERT(skb);
2683 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2684 		/* use at most mtu */
2685 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2686 	else
2687 		/* use up to all available space */
2688 		skb->reserved_tailroom = needed_tailroom;
2689 }
2690 
2691 #define ENCAP_TYPE_ETHER	0
2692 #define ENCAP_TYPE_IPPROTO	1
2693 
2694 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2695 					  __be16 protocol)
2696 {
2697 	skb->inner_protocol = protocol;
2698 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2699 }
2700 
2701 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2702 					 __u8 ipproto)
2703 {
2704 	skb->inner_ipproto = ipproto;
2705 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2706 }
2707 
2708 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2709 {
2710 	skb->inner_mac_header = skb->mac_header;
2711 	skb->inner_network_header = skb->network_header;
2712 	skb->inner_transport_header = skb->transport_header;
2713 }
2714 
2715 static inline void skb_reset_mac_len(struct sk_buff *skb)
2716 {
2717 	skb->mac_len = skb->network_header - skb->mac_header;
2718 }
2719 
2720 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2721 							*skb)
2722 {
2723 	return skb->head + skb->inner_transport_header;
2724 }
2725 
2726 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2727 {
2728 	return skb_inner_transport_header(skb) - skb->data;
2729 }
2730 
2731 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2732 {
2733 	skb->inner_transport_header = skb->data - skb->head;
2734 }
2735 
2736 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2737 						   const int offset)
2738 {
2739 	skb_reset_inner_transport_header(skb);
2740 	skb->inner_transport_header += offset;
2741 }
2742 
2743 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2744 {
2745 	return skb->head + skb->inner_network_header;
2746 }
2747 
2748 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2749 {
2750 	skb->inner_network_header = skb->data - skb->head;
2751 }
2752 
2753 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2754 						const int offset)
2755 {
2756 	skb_reset_inner_network_header(skb);
2757 	skb->inner_network_header += offset;
2758 }
2759 
2760 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2761 {
2762 	return skb->head + skb->inner_mac_header;
2763 }
2764 
2765 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2766 {
2767 	skb->inner_mac_header = skb->data - skb->head;
2768 }
2769 
2770 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2771 					    const int offset)
2772 {
2773 	skb_reset_inner_mac_header(skb);
2774 	skb->inner_mac_header += offset;
2775 }
2776 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2777 {
2778 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2779 }
2780 
2781 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2782 {
2783 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2784 	return skb->head + skb->transport_header;
2785 }
2786 
2787 static inline void skb_reset_transport_header(struct sk_buff *skb)
2788 {
2789 	skb->transport_header = skb->data - skb->head;
2790 }
2791 
2792 static inline void skb_set_transport_header(struct sk_buff *skb,
2793 					    const int offset)
2794 {
2795 	skb_reset_transport_header(skb);
2796 	skb->transport_header += offset;
2797 }
2798 
2799 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2800 {
2801 	return skb->head + skb->network_header;
2802 }
2803 
2804 static inline void skb_reset_network_header(struct sk_buff *skb)
2805 {
2806 	skb->network_header = skb->data - skb->head;
2807 }
2808 
2809 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2810 {
2811 	skb_reset_network_header(skb);
2812 	skb->network_header += offset;
2813 }
2814 
2815 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2816 {
2817 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2818 }
2819 
2820 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2821 {
2822 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2823 	return skb->head + skb->mac_header;
2824 }
2825 
2826 static inline int skb_mac_offset(const struct sk_buff *skb)
2827 {
2828 	return skb_mac_header(skb) - skb->data;
2829 }
2830 
2831 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2832 {
2833 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2834 	return skb->network_header - skb->mac_header;
2835 }
2836 
2837 static inline void skb_unset_mac_header(struct sk_buff *skb)
2838 {
2839 	skb->mac_header = (typeof(skb->mac_header))~0U;
2840 }
2841 
2842 static inline void skb_reset_mac_header(struct sk_buff *skb)
2843 {
2844 	skb->mac_header = skb->data - skb->head;
2845 }
2846 
2847 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2848 {
2849 	skb_reset_mac_header(skb);
2850 	skb->mac_header += offset;
2851 }
2852 
2853 static inline void skb_pop_mac_header(struct sk_buff *skb)
2854 {
2855 	skb->mac_header = skb->network_header;
2856 }
2857 
2858 static inline void skb_probe_transport_header(struct sk_buff *skb)
2859 {
2860 	struct flow_keys_basic keys;
2861 
2862 	if (skb_transport_header_was_set(skb))
2863 		return;
2864 
2865 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2866 					     NULL, 0, 0, 0, 0))
2867 		skb_set_transport_header(skb, keys.control.thoff);
2868 }
2869 
2870 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2871 {
2872 	if (skb_mac_header_was_set(skb)) {
2873 		const unsigned char *old_mac = skb_mac_header(skb);
2874 
2875 		skb_set_mac_header(skb, -skb->mac_len);
2876 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2877 	}
2878 }
2879 
2880 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2881 {
2882 	return skb->csum_start - skb_headroom(skb);
2883 }
2884 
2885 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2886 {
2887 	return skb->head + skb->csum_start;
2888 }
2889 
2890 static inline int skb_transport_offset(const struct sk_buff *skb)
2891 {
2892 	return skb_transport_header(skb) - skb->data;
2893 }
2894 
2895 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2896 {
2897 	return skb->transport_header - skb->network_header;
2898 }
2899 
2900 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2901 {
2902 	return skb->inner_transport_header - skb->inner_network_header;
2903 }
2904 
2905 static inline int skb_network_offset(const struct sk_buff *skb)
2906 {
2907 	return skb_network_header(skb) - skb->data;
2908 }
2909 
2910 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2911 {
2912 	return skb_inner_network_header(skb) - skb->data;
2913 }
2914 
2915 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2916 {
2917 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2918 }
2919 
2920 /*
2921  * CPUs often take a performance hit when accessing unaligned memory
2922  * locations. The actual performance hit varies, it can be small if the
2923  * hardware handles it or large if we have to take an exception and fix it
2924  * in software.
2925  *
2926  * Since an ethernet header is 14 bytes network drivers often end up with
2927  * the IP header at an unaligned offset. The IP header can be aligned by
2928  * shifting the start of the packet by 2 bytes. Drivers should do this
2929  * with:
2930  *
2931  * skb_reserve(skb, NET_IP_ALIGN);
2932  *
2933  * The downside to this alignment of the IP header is that the DMA is now
2934  * unaligned. On some architectures the cost of an unaligned DMA is high
2935  * and this cost outweighs the gains made by aligning the IP header.
2936  *
2937  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2938  * to be overridden.
2939  */
2940 #ifndef NET_IP_ALIGN
2941 #define NET_IP_ALIGN	2
2942 #endif
2943 
2944 /*
2945  * The networking layer reserves some headroom in skb data (via
2946  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2947  * the header has to grow. In the default case, if the header has to grow
2948  * 32 bytes or less we avoid the reallocation.
2949  *
2950  * Unfortunately this headroom changes the DMA alignment of the resulting
2951  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2952  * on some architectures. An architecture can override this value,
2953  * perhaps setting it to a cacheline in size (since that will maintain
2954  * cacheline alignment of the DMA). It must be a power of 2.
2955  *
2956  * Various parts of the networking layer expect at least 32 bytes of
2957  * headroom, you should not reduce this.
2958  *
2959  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2960  * to reduce average number of cache lines per packet.
2961  * get_rps_cpu() for example only access one 64 bytes aligned block :
2962  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2963  */
2964 #ifndef NET_SKB_PAD
2965 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2966 #endif
2967 
2968 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2969 
2970 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2971 {
2972 	if (WARN_ON(skb_is_nonlinear(skb)))
2973 		return;
2974 	skb->len = len;
2975 	skb_set_tail_pointer(skb, len);
2976 }
2977 
2978 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2979 {
2980 	__skb_set_length(skb, len);
2981 }
2982 
2983 void skb_trim(struct sk_buff *skb, unsigned int len);
2984 
2985 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2986 {
2987 	if (skb->data_len)
2988 		return ___pskb_trim(skb, len);
2989 	__skb_trim(skb, len);
2990 	return 0;
2991 }
2992 
2993 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2994 {
2995 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2996 }
2997 
2998 /**
2999  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3000  *	@skb: buffer to alter
3001  *	@len: new length
3002  *
3003  *	This is identical to pskb_trim except that the caller knows that
3004  *	the skb is not cloned so we should never get an error due to out-
3005  *	of-memory.
3006  */
3007 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3008 {
3009 	int err = pskb_trim(skb, len);
3010 	BUG_ON(err);
3011 }
3012 
3013 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3014 {
3015 	unsigned int diff = len - skb->len;
3016 
3017 	if (skb_tailroom(skb) < diff) {
3018 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3019 					   GFP_ATOMIC);
3020 		if (ret)
3021 			return ret;
3022 	}
3023 	__skb_set_length(skb, len);
3024 	return 0;
3025 }
3026 
3027 /**
3028  *	skb_orphan - orphan a buffer
3029  *	@skb: buffer to orphan
3030  *
3031  *	If a buffer currently has an owner then we call the owner's
3032  *	destructor function and make the @skb unowned. The buffer continues
3033  *	to exist but is no longer charged to its former owner.
3034  */
3035 static inline void skb_orphan(struct sk_buff *skb)
3036 {
3037 	if (skb->destructor) {
3038 		skb->destructor(skb);
3039 		skb->destructor = NULL;
3040 		skb->sk		= NULL;
3041 	} else {
3042 		BUG_ON(skb->sk);
3043 	}
3044 }
3045 
3046 /**
3047  *	skb_orphan_frags - orphan the frags contained in a buffer
3048  *	@skb: buffer to orphan frags from
3049  *	@gfp_mask: allocation mask for replacement pages
3050  *
3051  *	For each frag in the SKB which needs a destructor (i.e. has an
3052  *	owner) create a copy of that frag and release the original
3053  *	page by calling the destructor.
3054  */
3055 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3056 {
3057 	if (likely(!skb_zcopy(skb)))
3058 		return 0;
3059 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3060 		return 0;
3061 	return skb_copy_ubufs(skb, gfp_mask);
3062 }
3063 
3064 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3065 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3066 {
3067 	if (likely(!skb_zcopy(skb)))
3068 		return 0;
3069 	return skb_copy_ubufs(skb, gfp_mask);
3070 }
3071 
3072 /**
3073  *	__skb_queue_purge - empty a list
3074  *	@list: list to empty
3075  *
3076  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3077  *	the list and one reference dropped. This function does not take the
3078  *	list lock and the caller must hold the relevant locks to use it.
3079  */
3080 static inline void __skb_queue_purge(struct sk_buff_head *list)
3081 {
3082 	struct sk_buff *skb;
3083 	while ((skb = __skb_dequeue(list)) != NULL)
3084 		kfree_skb(skb);
3085 }
3086 void skb_queue_purge(struct sk_buff_head *list);
3087 
3088 unsigned int skb_rbtree_purge(struct rb_root *root);
3089 
3090 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3091 
3092 /**
3093  * netdev_alloc_frag - allocate a page fragment
3094  * @fragsz: fragment size
3095  *
3096  * Allocates a frag from a page for receive buffer.
3097  * Uses GFP_ATOMIC allocations.
3098  */
3099 static inline void *netdev_alloc_frag(unsigned int fragsz)
3100 {
3101 	return __netdev_alloc_frag_align(fragsz, ~0u);
3102 }
3103 
3104 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3105 					    unsigned int align)
3106 {
3107 	WARN_ON_ONCE(!is_power_of_2(align));
3108 	return __netdev_alloc_frag_align(fragsz, -align);
3109 }
3110 
3111 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3112 				   gfp_t gfp_mask);
3113 
3114 /**
3115  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3116  *	@dev: network device to receive on
3117  *	@length: length to allocate
3118  *
3119  *	Allocate a new &sk_buff and assign it a usage count of one. The
3120  *	buffer has unspecified headroom built in. Users should allocate
3121  *	the headroom they think they need without accounting for the
3122  *	built in space. The built in space is used for optimisations.
3123  *
3124  *	%NULL is returned if there is no free memory. Although this function
3125  *	allocates memory it can be called from an interrupt.
3126  */
3127 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3128 					       unsigned int length)
3129 {
3130 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3131 }
3132 
3133 /* legacy helper around __netdev_alloc_skb() */
3134 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3135 					      gfp_t gfp_mask)
3136 {
3137 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3138 }
3139 
3140 /* legacy helper around netdev_alloc_skb() */
3141 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3142 {
3143 	return netdev_alloc_skb(NULL, length);
3144 }
3145 
3146 
3147 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3148 		unsigned int length, gfp_t gfp)
3149 {
3150 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3151 
3152 	if (NET_IP_ALIGN && skb)
3153 		skb_reserve(skb, NET_IP_ALIGN);
3154 	return skb;
3155 }
3156 
3157 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3158 		unsigned int length)
3159 {
3160 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3161 }
3162 
3163 static inline void skb_free_frag(void *addr)
3164 {
3165 	page_frag_free(addr);
3166 }
3167 
3168 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3169 
3170 static inline void *napi_alloc_frag(unsigned int fragsz)
3171 {
3172 	return __napi_alloc_frag_align(fragsz, ~0u);
3173 }
3174 
3175 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3176 					  unsigned int align)
3177 {
3178 	WARN_ON_ONCE(!is_power_of_2(align));
3179 	return __napi_alloc_frag_align(fragsz, -align);
3180 }
3181 
3182 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3183 				 unsigned int length, gfp_t gfp_mask);
3184 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3185 					     unsigned int length)
3186 {
3187 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3188 }
3189 void napi_consume_skb(struct sk_buff *skb, int budget);
3190 
3191 void napi_skb_free_stolen_head(struct sk_buff *skb);
3192 void __kfree_skb_defer(struct sk_buff *skb);
3193 
3194 /**
3195  * __dev_alloc_pages - allocate page for network Rx
3196  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3197  * @order: size of the allocation
3198  *
3199  * Allocate a new page.
3200  *
3201  * %NULL is returned if there is no free memory.
3202 */
3203 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3204 					     unsigned int order)
3205 {
3206 	/* This piece of code contains several assumptions.
3207 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3208 	 * 2.  The expectation is the user wants a compound page.
3209 	 * 3.  If requesting a order 0 page it will not be compound
3210 	 *     due to the check to see if order has a value in prep_new_page
3211 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3212 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3213 	 */
3214 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3215 
3216 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3217 }
3218 
3219 static inline struct page *dev_alloc_pages(unsigned int order)
3220 {
3221 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3222 }
3223 
3224 /**
3225  * __dev_alloc_page - allocate a page for network Rx
3226  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3227  *
3228  * Allocate a new page.
3229  *
3230  * %NULL is returned if there is no free memory.
3231  */
3232 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3233 {
3234 	return __dev_alloc_pages(gfp_mask, 0);
3235 }
3236 
3237 static inline struct page *dev_alloc_page(void)
3238 {
3239 	return dev_alloc_pages(0);
3240 }
3241 
3242 /**
3243  * dev_page_is_reusable - check whether a page can be reused for network Rx
3244  * @page: the page to test
3245  *
3246  * A page shouldn't be considered for reusing/recycling if it was allocated
3247  * under memory pressure or at a distant memory node.
3248  *
3249  * Returns false if this page should be returned to page allocator, true
3250  * otherwise.
3251  */
3252 static inline bool dev_page_is_reusable(const struct page *page)
3253 {
3254 	return likely(page_to_nid(page) == numa_mem_id() &&
3255 		      !page_is_pfmemalloc(page));
3256 }
3257 
3258 /**
3259  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3260  *	@page: The page that was allocated from skb_alloc_page
3261  *	@skb: The skb that may need pfmemalloc set
3262  */
3263 static inline void skb_propagate_pfmemalloc(const struct page *page,
3264 					    struct sk_buff *skb)
3265 {
3266 	if (page_is_pfmemalloc(page))
3267 		skb->pfmemalloc = true;
3268 }
3269 
3270 /**
3271  * skb_frag_off() - Returns the offset of a skb fragment
3272  * @frag: the paged fragment
3273  */
3274 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3275 {
3276 	return frag->bv_offset;
3277 }
3278 
3279 /**
3280  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3281  * @frag: skb fragment
3282  * @delta: value to add
3283  */
3284 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3285 {
3286 	frag->bv_offset += delta;
3287 }
3288 
3289 /**
3290  * skb_frag_off_set() - Sets the offset of a skb fragment
3291  * @frag: skb fragment
3292  * @offset: offset of fragment
3293  */
3294 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3295 {
3296 	frag->bv_offset = offset;
3297 }
3298 
3299 /**
3300  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3301  * @fragto: skb fragment where offset is set
3302  * @fragfrom: skb fragment offset is copied from
3303  */
3304 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3305 				     const skb_frag_t *fragfrom)
3306 {
3307 	fragto->bv_offset = fragfrom->bv_offset;
3308 }
3309 
3310 /**
3311  * skb_frag_page - retrieve the page referred to by a paged fragment
3312  * @frag: the paged fragment
3313  *
3314  * Returns the &struct page associated with @frag.
3315  */
3316 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3317 {
3318 	return frag->bv_page;
3319 }
3320 
3321 /**
3322  * __skb_frag_ref - take an addition reference on a paged fragment.
3323  * @frag: the paged fragment
3324  *
3325  * Takes an additional reference on the paged fragment @frag.
3326  */
3327 static inline void __skb_frag_ref(skb_frag_t *frag)
3328 {
3329 	get_page(skb_frag_page(frag));
3330 }
3331 
3332 /**
3333  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3334  * @skb: the buffer
3335  * @f: the fragment offset.
3336  *
3337  * Takes an additional reference on the @f'th paged fragment of @skb.
3338  */
3339 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3340 {
3341 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3342 }
3343 
3344 /**
3345  * __skb_frag_unref - release a reference on a paged fragment.
3346  * @frag: the paged fragment
3347  * @recycle: recycle the page if allocated via page_pool
3348  *
3349  * Releases a reference on the paged fragment @frag
3350  * or recycles the page via the page_pool API.
3351  */
3352 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3353 {
3354 	struct page *page = skb_frag_page(frag);
3355 
3356 #ifdef CONFIG_PAGE_POOL
3357 	if (recycle && page_pool_return_skb_page(page))
3358 		return;
3359 #endif
3360 	put_page(page);
3361 }
3362 
3363 /**
3364  * skb_frag_unref - release a reference on a paged fragment of an skb.
3365  * @skb: the buffer
3366  * @f: the fragment offset
3367  *
3368  * Releases a reference on the @f'th paged fragment of @skb.
3369  */
3370 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3371 {
3372 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3373 
3374 	if (!skb_zcopy_managed(skb))
3375 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3376 }
3377 
3378 /**
3379  * skb_frag_address - gets the address of the data contained in a paged fragment
3380  * @frag: the paged fragment buffer
3381  *
3382  * Returns the address of the data within @frag. The page must already
3383  * be mapped.
3384  */
3385 static inline void *skb_frag_address(const skb_frag_t *frag)
3386 {
3387 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3388 }
3389 
3390 /**
3391  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3392  * @frag: the paged fragment buffer
3393  *
3394  * Returns the address of the data within @frag. Checks that the page
3395  * is mapped and returns %NULL otherwise.
3396  */
3397 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3398 {
3399 	void *ptr = page_address(skb_frag_page(frag));
3400 	if (unlikely(!ptr))
3401 		return NULL;
3402 
3403 	return ptr + skb_frag_off(frag);
3404 }
3405 
3406 /**
3407  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3408  * @fragto: skb fragment where page is set
3409  * @fragfrom: skb fragment page is copied from
3410  */
3411 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3412 				      const skb_frag_t *fragfrom)
3413 {
3414 	fragto->bv_page = fragfrom->bv_page;
3415 }
3416 
3417 /**
3418  * __skb_frag_set_page - sets the page contained in a paged fragment
3419  * @frag: the paged fragment
3420  * @page: the page to set
3421  *
3422  * Sets the fragment @frag to contain @page.
3423  */
3424 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3425 {
3426 	frag->bv_page = page;
3427 }
3428 
3429 /**
3430  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3431  * @skb: the buffer
3432  * @f: the fragment offset
3433  * @page: the page to set
3434  *
3435  * Sets the @f'th fragment of @skb to contain @page.
3436  */
3437 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3438 				     struct page *page)
3439 {
3440 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3441 }
3442 
3443 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3444 
3445 /**
3446  * skb_frag_dma_map - maps a paged fragment via the DMA API
3447  * @dev: the device to map the fragment to
3448  * @frag: the paged fragment to map
3449  * @offset: the offset within the fragment (starting at the
3450  *          fragment's own offset)
3451  * @size: the number of bytes to map
3452  * @dir: the direction of the mapping (``PCI_DMA_*``)
3453  *
3454  * Maps the page associated with @frag to @device.
3455  */
3456 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3457 					  const skb_frag_t *frag,
3458 					  size_t offset, size_t size,
3459 					  enum dma_data_direction dir)
3460 {
3461 	return dma_map_page(dev, skb_frag_page(frag),
3462 			    skb_frag_off(frag) + offset, size, dir);
3463 }
3464 
3465 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3466 					gfp_t gfp_mask)
3467 {
3468 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3469 }
3470 
3471 
3472 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3473 						  gfp_t gfp_mask)
3474 {
3475 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3476 }
3477 
3478 
3479 /**
3480  *	skb_clone_writable - is the header of a clone writable
3481  *	@skb: buffer to check
3482  *	@len: length up to which to write
3483  *
3484  *	Returns true if modifying the header part of the cloned buffer
3485  *	does not requires the data to be copied.
3486  */
3487 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3488 {
3489 	return !skb_header_cloned(skb) &&
3490 	       skb_headroom(skb) + len <= skb->hdr_len;
3491 }
3492 
3493 static inline int skb_try_make_writable(struct sk_buff *skb,
3494 					unsigned int write_len)
3495 {
3496 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3497 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3498 }
3499 
3500 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3501 			    int cloned)
3502 {
3503 	int delta = 0;
3504 
3505 	if (headroom > skb_headroom(skb))
3506 		delta = headroom - skb_headroom(skb);
3507 
3508 	if (delta || cloned)
3509 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3510 					GFP_ATOMIC);
3511 	return 0;
3512 }
3513 
3514 /**
3515  *	skb_cow - copy header of skb when it is required
3516  *	@skb: buffer to cow
3517  *	@headroom: needed headroom
3518  *
3519  *	If the skb passed lacks sufficient headroom or its data part
3520  *	is shared, data is reallocated. If reallocation fails, an error
3521  *	is returned and original skb is not changed.
3522  *
3523  *	The result is skb with writable area skb->head...skb->tail
3524  *	and at least @headroom of space at head.
3525  */
3526 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3527 {
3528 	return __skb_cow(skb, headroom, skb_cloned(skb));
3529 }
3530 
3531 /**
3532  *	skb_cow_head - skb_cow but only making the head writable
3533  *	@skb: buffer to cow
3534  *	@headroom: needed headroom
3535  *
3536  *	This function is identical to skb_cow except that we replace the
3537  *	skb_cloned check by skb_header_cloned.  It should be used when
3538  *	you only need to push on some header and do not need to modify
3539  *	the data.
3540  */
3541 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3542 {
3543 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3544 }
3545 
3546 /**
3547  *	skb_padto	- pad an skbuff up to a minimal size
3548  *	@skb: buffer to pad
3549  *	@len: minimal length
3550  *
3551  *	Pads up a buffer to ensure the trailing bytes exist and are
3552  *	blanked. If the buffer already contains sufficient data it
3553  *	is untouched. Otherwise it is extended. Returns zero on
3554  *	success. The skb is freed on error.
3555  */
3556 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3557 {
3558 	unsigned int size = skb->len;
3559 	if (likely(size >= len))
3560 		return 0;
3561 	return skb_pad(skb, len - size);
3562 }
3563 
3564 /**
3565  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3566  *	@skb: buffer to pad
3567  *	@len: minimal length
3568  *	@free_on_error: free buffer on error
3569  *
3570  *	Pads up a buffer to ensure the trailing bytes exist and are
3571  *	blanked. If the buffer already contains sufficient data it
3572  *	is untouched. Otherwise it is extended. Returns zero on
3573  *	success. The skb is freed on error if @free_on_error is true.
3574  */
3575 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3576 					       unsigned int len,
3577 					       bool free_on_error)
3578 {
3579 	unsigned int size = skb->len;
3580 
3581 	if (unlikely(size < len)) {
3582 		len -= size;
3583 		if (__skb_pad(skb, len, free_on_error))
3584 			return -ENOMEM;
3585 		__skb_put(skb, len);
3586 	}
3587 	return 0;
3588 }
3589 
3590 /**
3591  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3592  *	@skb: buffer to pad
3593  *	@len: minimal length
3594  *
3595  *	Pads up a buffer to ensure the trailing bytes exist and are
3596  *	blanked. If the buffer already contains sufficient data it
3597  *	is untouched. Otherwise it is extended. Returns zero on
3598  *	success. The skb is freed on error.
3599  */
3600 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3601 {
3602 	return __skb_put_padto(skb, len, true);
3603 }
3604 
3605 static inline int skb_add_data(struct sk_buff *skb,
3606 			       struct iov_iter *from, int copy)
3607 {
3608 	const int off = skb->len;
3609 
3610 	if (skb->ip_summed == CHECKSUM_NONE) {
3611 		__wsum csum = 0;
3612 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3613 					         &csum, from)) {
3614 			skb->csum = csum_block_add(skb->csum, csum, off);
3615 			return 0;
3616 		}
3617 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3618 		return 0;
3619 
3620 	__skb_trim(skb, off);
3621 	return -EFAULT;
3622 }
3623 
3624 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3625 				    const struct page *page, int off)
3626 {
3627 	if (skb_zcopy(skb))
3628 		return false;
3629 	if (i) {
3630 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3631 
3632 		return page == skb_frag_page(frag) &&
3633 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3634 	}
3635 	return false;
3636 }
3637 
3638 static inline int __skb_linearize(struct sk_buff *skb)
3639 {
3640 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3641 }
3642 
3643 /**
3644  *	skb_linearize - convert paged skb to linear one
3645  *	@skb: buffer to linarize
3646  *
3647  *	If there is no free memory -ENOMEM is returned, otherwise zero
3648  *	is returned and the old skb data released.
3649  */
3650 static inline int skb_linearize(struct sk_buff *skb)
3651 {
3652 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3653 }
3654 
3655 /**
3656  * skb_has_shared_frag - can any frag be overwritten
3657  * @skb: buffer to test
3658  *
3659  * Return true if the skb has at least one frag that might be modified
3660  * by an external entity (as in vmsplice()/sendfile())
3661  */
3662 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3663 {
3664 	return skb_is_nonlinear(skb) &&
3665 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3666 }
3667 
3668 /**
3669  *	skb_linearize_cow - make sure skb is linear and writable
3670  *	@skb: buffer to process
3671  *
3672  *	If there is no free memory -ENOMEM is returned, otherwise zero
3673  *	is returned and the old skb data released.
3674  */
3675 static inline int skb_linearize_cow(struct sk_buff *skb)
3676 {
3677 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3678 	       __skb_linearize(skb) : 0;
3679 }
3680 
3681 static __always_inline void
3682 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3683 		     unsigned int off)
3684 {
3685 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3686 		skb->csum = csum_block_sub(skb->csum,
3687 					   csum_partial(start, len, 0), off);
3688 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3689 		 skb_checksum_start_offset(skb) < 0)
3690 		skb->ip_summed = CHECKSUM_NONE;
3691 }
3692 
3693 /**
3694  *	skb_postpull_rcsum - update checksum for received skb after pull
3695  *	@skb: buffer to update
3696  *	@start: start of data before pull
3697  *	@len: length of data pulled
3698  *
3699  *	After doing a pull on a received packet, you need to call this to
3700  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3701  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3702  */
3703 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3704 				      const void *start, unsigned int len)
3705 {
3706 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3707 		skb->csum = wsum_negate(csum_partial(start, len,
3708 						     wsum_negate(skb->csum)));
3709 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3710 		 skb_checksum_start_offset(skb) < 0)
3711 		skb->ip_summed = CHECKSUM_NONE;
3712 }
3713 
3714 static __always_inline void
3715 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3716 		     unsigned int off)
3717 {
3718 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3719 		skb->csum = csum_block_add(skb->csum,
3720 					   csum_partial(start, len, 0), off);
3721 }
3722 
3723 /**
3724  *	skb_postpush_rcsum - update checksum for received skb after push
3725  *	@skb: buffer to update
3726  *	@start: start of data after push
3727  *	@len: length of data pushed
3728  *
3729  *	After doing a push on a received packet, you need to call this to
3730  *	update the CHECKSUM_COMPLETE checksum.
3731  */
3732 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3733 				      const void *start, unsigned int len)
3734 {
3735 	__skb_postpush_rcsum(skb, start, len, 0);
3736 }
3737 
3738 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3739 
3740 /**
3741  *	skb_push_rcsum - push skb and update receive checksum
3742  *	@skb: buffer to update
3743  *	@len: length of data pulled
3744  *
3745  *	This function performs an skb_push on the packet and updates
3746  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3747  *	receive path processing instead of skb_push unless you know
3748  *	that the checksum difference is zero (e.g., a valid IP header)
3749  *	or you are setting ip_summed to CHECKSUM_NONE.
3750  */
3751 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3752 {
3753 	skb_push(skb, len);
3754 	skb_postpush_rcsum(skb, skb->data, len);
3755 	return skb->data;
3756 }
3757 
3758 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3759 /**
3760  *	pskb_trim_rcsum - trim received skb and update checksum
3761  *	@skb: buffer to trim
3762  *	@len: new length
3763  *
3764  *	This is exactly the same as pskb_trim except that it ensures the
3765  *	checksum of received packets are still valid after the operation.
3766  *	It can change skb pointers.
3767  */
3768 
3769 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3770 {
3771 	if (likely(len >= skb->len))
3772 		return 0;
3773 	return pskb_trim_rcsum_slow(skb, len);
3774 }
3775 
3776 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3777 {
3778 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3779 		skb->ip_summed = CHECKSUM_NONE;
3780 	__skb_trim(skb, len);
3781 	return 0;
3782 }
3783 
3784 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3785 {
3786 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3787 		skb->ip_summed = CHECKSUM_NONE;
3788 	return __skb_grow(skb, len);
3789 }
3790 
3791 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3792 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3793 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3794 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3795 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3796 
3797 #define skb_queue_walk(queue, skb) \
3798 		for (skb = (queue)->next;					\
3799 		     skb != (struct sk_buff *)(queue);				\
3800 		     skb = skb->next)
3801 
3802 #define skb_queue_walk_safe(queue, skb, tmp)					\
3803 		for (skb = (queue)->next, tmp = skb->next;			\
3804 		     skb != (struct sk_buff *)(queue);				\
3805 		     skb = tmp, tmp = skb->next)
3806 
3807 #define skb_queue_walk_from(queue, skb)						\
3808 		for (; skb != (struct sk_buff *)(queue);			\
3809 		     skb = skb->next)
3810 
3811 #define skb_rbtree_walk(skb, root)						\
3812 		for (skb = skb_rb_first(root); skb != NULL;			\
3813 		     skb = skb_rb_next(skb))
3814 
3815 #define skb_rbtree_walk_from(skb)						\
3816 		for (; skb != NULL;						\
3817 		     skb = skb_rb_next(skb))
3818 
3819 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3820 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3821 		     skb = tmp)
3822 
3823 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3824 		for (tmp = skb->next;						\
3825 		     skb != (struct sk_buff *)(queue);				\
3826 		     skb = tmp, tmp = skb->next)
3827 
3828 #define skb_queue_reverse_walk(queue, skb) \
3829 		for (skb = (queue)->prev;					\
3830 		     skb != (struct sk_buff *)(queue);				\
3831 		     skb = skb->prev)
3832 
3833 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3834 		for (skb = (queue)->prev, tmp = skb->prev;			\
3835 		     skb != (struct sk_buff *)(queue);				\
3836 		     skb = tmp, tmp = skb->prev)
3837 
3838 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3839 		for (tmp = skb->prev;						\
3840 		     skb != (struct sk_buff *)(queue);				\
3841 		     skb = tmp, tmp = skb->prev)
3842 
3843 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3844 {
3845 	return skb_shinfo(skb)->frag_list != NULL;
3846 }
3847 
3848 static inline void skb_frag_list_init(struct sk_buff *skb)
3849 {
3850 	skb_shinfo(skb)->frag_list = NULL;
3851 }
3852 
3853 #define skb_walk_frags(skb, iter)	\
3854 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3855 
3856 
3857 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3858 				int *err, long *timeo_p,
3859 				const struct sk_buff *skb);
3860 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3861 					  struct sk_buff_head *queue,
3862 					  unsigned int flags,
3863 					  int *off, int *err,
3864 					  struct sk_buff **last);
3865 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3866 					struct sk_buff_head *queue,
3867 					unsigned int flags, int *off, int *err,
3868 					struct sk_buff **last);
3869 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3870 				    struct sk_buff_head *sk_queue,
3871 				    unsigned int flags, int *off, int *err);
3872 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3873 __poll_t datagram_poll(struct file *file, struct socket *sock,
3874 			   struct poll_table_struct *wait);
3875 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3876 			   struct iov_iter *to, int size);
3877 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3878 					struct msghdr *msg, int size)
3879 {
3880 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3881 }
3882 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3883 				   struct msghdr *msg);
3884 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3885 			   struct iov_iter *to, int len,
3886 			   struct ahash_request *hash);
3887 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3888 				 struct iov_iter *from, int len);
3889 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3890 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3891 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3892 static inline void skb_free_datagram_locked(struct sock *sk,
3893 					    struct sk_buff *skb)
3894 {
3895 	__skb_free_datagram_locked(sk, skb, 0);
3896 }
3897 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3898 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3899 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3900 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3901 			      int len);
3902 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3903 		    struct pipe_inode_info *pipe, unsigned int len,
3904 		    unsigned int flags);
3905 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3906 			 int len);
3907 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3908 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3909 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3910 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3911 		 int len, int hlen);
3912 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3913 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3914 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3915 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3916 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3917 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3918 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3919 				 unsigned int offset);
3920 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3921 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3922 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3923 int skb_vlan_pop(struct sk_buff *skb);
3924 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3925 int skb_eth_pop(struct sk_buff *skb);
3926 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3927 		 const unsigned char *src);
3928 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3929 		  int mac_len, bool ethernet);
3930 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3931 		 bool ethernet);
3932 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3933 int skb_mpls_dec_ttl(struct sk_buff *skb);
3934 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3935 			     gfp_t gfp);
3936 
3937 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3938 {
3939 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3940 }
3941 
3942 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3943 {
3944 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3945 }
3946 
3947 struct skb_checksum_ops {
3948 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3949 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3950 };
3951 
3952 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3953 
3954 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3955 		      __wsum csum, const struct skb_checksum_ops *ops);
3956 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3957 		    __wsum csum);
3958 
3959 static inline void * __must_check
3960 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3961 		     const void *data, int hlen, void *buffer)
3962 {
3963 	if (likely(hlen - offset >= len))
3964 		return (void *)data + offset;
3965 
3966 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3967 		return NULL;
3968 
3969 	return buffer;
3970 }
3971 
3972 static inline void * __must_check
3973 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3974 {
3975 	return __skb_header_pointer(skb, offset, len, skb->data,
3976 				    skb_headlen(skb), buffer);
3977 }
3978 
3979 /**
3980  *	skb_needs_linearize - check if we need to linearize a given skb
3981  *			      depending on the given device features.
3982  *	@skb: socket buffer to check
3983  *	@features: net device features
3984  *
3985  *	Returns true if either:
3986  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3987  *	2. skb is fragmented and the device does not support SG.
3988  */
3989 static inline bool skb_needs_linearize(struct sk_buff *skb,
3990 				       netdev_features_t features)
3991 {
3992 	return skb_is_nonlinear(skb) &&
3993 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3994 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3995 }
3996 
3997 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3998 					     void *to,
3999 					     const unsigned int len)
4000 {
4001 	memcpy(to, skb->data, len);
4002 }
4003 
4004 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4005 						    const int offset, void *to,
4006 						    const unsigned int len)
4007 {
4008 	memcpy(to, skb->data + offset, len);
4009 }
4010 
4011 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4012 					   const void *from,
4013 					   const unsigned int len)
4014 {
4015 	memcpy(skb->data, from, len);
4016 }
4017 
4018 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4019 						  const int offset,
4020 						  const void *from,
4021 						  const unsigned int len)
4022 {
4023 	memcpy(skb->data + offset, from, len);
4024 }
4025 
4026 void skb_init(void);
4027 
4028 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4029 {
4030 	return skb->tstamp;
4031 }
4032 
4033 /**
4034  *	skb_get_timestamp - get timestamp from a skb
4035  *	@skb: skb to get stamp from
4036  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4037  *
4038  *	Timestamps are stored in the skb as offsets to a base timestamp.
4039  *	This function converts the offset back to a struct timeval and stores
4040  *	it in stamp.
4041  */
4042 static inline void skb_get_timestamp(const struct sk_buff *skb,
4043 				     struct __kernel_old_timeval *stamp)
4044 {
4045 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4046 }
4047 
4048 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4049 					 struct __kernel_sock_timeval *stamp)
4050 {
4051 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4052 
4053 	stamp->tv_sec = ts.tv_sec;
4054 	stamp->tv_usec = ts.tv_nsec / 1000;
4055 }
4056 
4057 static inline void skb_get_timestampns(const struct sk_buff *skb,
4058 				       struct __kernel_old_timespec *stamp)
4059 {
4060 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4061 
4062 	stamp->tv_sec = ts.tv_sec;
4063 	stamp->tv_nsec = ts.tv_nsec;
4064 }
4065 
4066 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4067 					   struct __kernel_timespec *stamp)
4068 {
4069 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4070 
4071 	stamp->tv_sec = ts.tv_sec;
4072 	stamp->tv_nsec = ts.tv_nsec;
4073 }
4074 
4075 static inline void __net_timestamp(struct sk_buff *skb)
4076 {
4077 	skb->tstamp = ktime_get_real();
4078 	skb->mono_delivery_time = 0;
4079 }
4080 
4081 static inline ktime_t net_timedelta(ktime_t t)
4082 {
4083 	return ktime_sub(ktime_get_real(), t);
4084 }
4085 
4086 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4087 					 bool mono)
4088 {
4089 	skb->tstamp = kt;
4090 	skb->mono_delivery_time = kt && mono;
4091 }
4092 
4093 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4094 
4095 /* It is used in the ingress path to clear the delivery_time.
4096  * If needed, set the skb->tstamp to the (rcv) timestamp.
4097  */
4098 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4099 {
4100 	if (skb->mono_delivery_time) {
4101 		skb->mono_delivery_time = 0;
4102 		if (static_branch_unlikely(&netstamp_needed_key))
4103 			skb->tstamp = ktime_get_real();
4104 		else
4105 			skb->tstamp = 0;
4106 	}
4107 }
4108 
4109 static inline void skb_clear_tstamp(struct sk_buff *skb)
4110 {
4111 	if (skb->mono_delivery_time)
4112 		return;
4113 
4114 	skb->tstamp = 0;
4115 }
4116 
4117 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4118 {
4119 	if (skb->mono_delivery_time)
4120 		return 0;
4121 
4122 	return skb->tstamp;
4123 }
4124 
4125 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4126 {
4127 	if (!skb->mono_delivery_time && skb->tstamp)
4128 		return skb->tstamp;
4129 
4130 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4131 		return ktime_get_real();
4132 
4133 	return 0;
4134 }
4135 
4136 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4137 {
4138 	return skb_shinfo(skb)->meta_len;
4139 }
4140 
4141 static inline void *skb_metadata_end(const struct sk_buff *skb)
4142 {
4143 	return skb_mac_header(skb);
4144 }
4145 
4146 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4147 					  const struct sk_buff *skb_b,
4148 					  u8 meta_len)
4149 {
4150 	const void *a = skb_metadata_end(skb_a);
4151 	const void *b = skb_metadata_end(skb_b);
4152 	/* Using more efficient varaiant than plain call to memcmp(). */
4153 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4154 	u64 diffs = 0;
4155 
4156 	switch (meta_len) {
4157 #define __it(x, op) (x -= sizeof(u##op))
4158 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4159 	case 32: diffs |= __it_diff(a, b, 64);
4160 		fallthrough;
4161 	case 24: diffs |= __it_diff(a, b, 64);
4162 		fallthrough;
4163 	case 16: diffs |= __it_diff(a, b, 64);
4164 		fallthrough;
4165 	case  8: diffs |= __it_diff(a, b, 64);
4166 		break;
4167 	case 28: diffs |= __it_diff(a, b, 64);
4168 		fallthrough;
4169 	case 20: diffs |= __it_diff(a, b, 64);
4170 		fallthrough;
4171 	case 12: diffs |= __it_diff(a, b, 64);
4172 		fallthrough;
4173 	case  4: diffs |= __it_diff(a, b, 32);
4174 		break;
4175 	}
4176 	return diffs;
4177 #else
4178 	return memcmp(a - meta_len, b - meta_len, meta_len);
4179 #endif
4180 }
4181 
4182 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4183 					const struct sk_buff *skb_b)
4184 {
4185 	u8 len_a = skb_metadata_len(skb_a);
4186 	u8 len_b = skb_metadata_len(skb_b);
4187 
4188 	if (!(len_a | len_b))
4189 		return false;
4190 
4191 	return len_a != len_b ?
4192 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4193 }
4194 
4195 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4196 {
4197 	skb_shinfo(skb)->meta_len = meta_len;
4198 }
4199 
4200 static inline void skb_metadata_clear(struct sk_buff *skb)
4201 {
4202 	skb_metadata_set(skb, 0);
4203 }
4204 
4205 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4206 
4207 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4208 
4209 void skb_clone_tx_timestamp(struct sk_buff *skb);
4210 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4211 
4212 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4213 
4214 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4215 {
4216 }
4217 
4218 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4219 {
4220 	return false;
4221 }
4222 
4223 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4224 
4225 /**
4226  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4227  *
4228  * PHY drivers may accept clones of transmitted packets for
4229  * timestamping via their phy_driver.txtstamp method. These drivers
4230  * must call this function to return the skb back to the stack with a
4231  * timestamp.
4232  *
4233  * @skb: clone of the original outgoing packet
4234  * @hwtstamps: hardware time stamps
4235  *
4236  */
4237 void skb_complete_tx_timestamp(struct sk_buff *skb,
4238 			       struct skb_shared_hwtstamps *hwtstamps);
4239 
4240 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4241 		     struct skb_shared_hwtstamps *hwtstamps,
4242 		     struct sock *sk, int tstype);
4243 
4244 /**
4245  * skb_tstamp_tx - queue clone of skb with send time stamps
4246  * @orig_skb:	the original outgoing packet
4247  * @hwtstamps:	hardware time stamps, may be NULL if not available
4248  *
4249  * If the skb has a socket associated, then this function clones the
4250  * skb (thus sharing the actual data and optional structures), stores
4251  * the optional hardware time stamping information (if non NULL) or
4252  * generates a software time stamp (otherwise), then queues the clone
4253  * to the error queue of the socket.  Errors are silently ignored.
4254  */
4255 void skb_tstamp_tx(struct sk_buff *orig_skb,
4256 		   struct skb_shared_hwtstamps *hwtstamps);
4257 
4258 /**
4259  * skb_tx_timestamp() - Driver hook for transmit timestamping
4260  *
4261  * Ethernet MAC Drivers should call this function in their hard_xmit()
4262  * function immediately before giving the sk_buff to the MAC hardware.
4263  *
4264  * Specifically, one should make absolutely sure that this function is
4265  * called before TX completion of this packet can trigger.  Otherwise
4266  * the packet could potentially already be freed.
4267  *
4268  * @skb: A socket buffer.
4269  */
4270 static inline void skb_tx_timestamp(struct sk_buff *skb)
4271 {
4272 	skb_clone_tx_timestamp(skb);
4273 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4274 		skb_tstamp_tx(skb, NULL);
4275 }
4276 
4277 /**
4278  * skb_complete_wifi_ack - deliver skb with wifi status
4279  *
4280  * @skb: the original outgoing packet
4281  * @acked: ack status
4282  *
4283  */
4284 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4285 
4286 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4287 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4288 
4289 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4290 {
4291 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4292 		skb->csum_valid ||
4293 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4294 		 skb_checksum_start_offset(skb) >= 0));
4295 }
4296 
4297 /**
4298  *	skb_checksum_complete - Calculate checksum of an entire packet
4299  *	@skb: packet to process
4300  *
4301  *	This function calculates the checksum over the entire packet plus
4302  *	the value of skb->csum.  The latter can be used to supply the
4303  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4304  *	checksum.
4305  *
4306  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4307  *	this function can be used to verify that checksum on received
4308  *	packets.  In that case the function should return zero if the
4309  *	checksum is correct.  In particular, this function will return zero
4310  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4311  *	hardware has already verified the correctness of the checksum.
4312  */
4313 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4314 {
4315 	return skb_csum_unnecessary(skb) ?
4316 	       0 : __skb_checksum_complete(skb);
4317 }
4318 
4319 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4320 {
4321 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4322 		if (skb->csum_level == 0)
4323 			skb->ip_summed = CHECKSUM_NONE;
4324 		else
4325 			skb->csum_level--;
4326 	}
4327 }
4328 
4329 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4330 {
4331 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4332 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4333 			skb->csum_level++;
4334 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4335 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4336 		skb->csum_level = 0;
4337 	}
4338 }
4339 
4340 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4341 {
4342 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4343 		skb->ip_summed = CHECKSUM_NONE;
4344 		skb->csum_level = 0;
4345 	}
4346 }
4347 
4348 /* Check if we need to perform checksum complete validation.
4349  *
4350  * Returns true if checksum complete is needed, false otherwise
4351  * (either checksum is unnecessary or zero checksum is allowed).
4352  */
4353 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4354 						  bool zero_okay,
4355 						  __sum16 check)
4356 {
4357 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4358 		skb->csum_valid = 1;
4359 		__skb_decr_checksum_unnecessary(skb);
4360 		return false;
4361 	}
4362 
4363 	return true;
4364 }
4365 
4366 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4367  * in checksum_init.
4368  */
4369 #define CHECKSUM_BREAK 76
4370 
4371 /* Unset checksum-complete
4372  *
4373  * Unset checksum complete can be done when packet is being modified
4374  * (uncompressed for instance) and checksum-complete value is
4375  * invalidated.
4376  */
4377 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4378 {
4379 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4380 		skb->ip_summed = CHECKSUM_NONE;
4381 }
4382 
4383 /* Validate (init) checksum based on checksum complete.
4384  *
4385  * Return values:
4386  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4387  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4388  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4389  *   non-zero: value of invalid checksum
4390  *
4391  */
4392 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4393 						       bool complete,
4394 						       __wsum psum)
4395 {
4396 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4397 		if (!csum_fold(csum_add(psum, skb->csum))) {
4398 			skb->csum_valid = 1;
4399 			return 0;
4400 		}
4401 	}
4402 
4403 	skb->csum = psum;
4404 
4405 	if (complete || skb->len <= CHECKSUM_BREAK) {
4406 		__sum16 csum;
4407 
4408 		csum = __skb_checksum_complete(skb);
4409 		skb->csum_valid = !csum;
4410 		return csum;
4411 	}
4412 
4413 	return 0;
4414 }
4415 
4416 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4417 {
4418 	return 0;
4419 }
4420 
4421 /* Perform checksum validate (init). Note that this is a macro since we only
4422  * want to calculate the pseudo header which is an input function if necessary.
4423  * First we try to validate without any computation (checksum unnecessary) and
4424  * then calculate based on checksum complete calling the function to compute
4425  * pseudo header.
4426  *
4427  * Return values:
4428  *   0: checksum is validated or try to in skb_checksum_complete
4429  *   non-zero: value of invalid checksum
4430  */
4431 #define __skb_checksum_validate(skb, proto, complete,			\
4432 				zero_okay, check, compute_pseudo)	\
4433 ({									\
4434 	__sum16 __ret = 0;						\
4435 	skb->csum_valid = 0;						\
4436 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4437 		__ret = __skb_checksum_validate_complete(skb,		\
4438 				complete, compute_pseudo(skb, proto));	\
4439 	__ret;								\
4440 })
4441 
4442 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4443 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4444 
4445 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4446 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4447 
4448 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4449 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4450 
4451 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4452 					 compute_pseudo)		\
4453 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4454 
4455 #define skb_checksum_simple_validate(skb)				\
4456 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4457 
4458 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4459 {
4460 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4461 }
4462 
4463 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4464 {
4465 	skb->csum = ~pseudo;
4466 	skb->ip_summed = CHECKSUM_COMPLETE;
4467 }
4468 
4469 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4470 do {									\
4471 	if (__skb_checksum_convert_check(skb))				\
4472 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4473 } while (0)
4474 
4475 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4476 					      u16 start, u16 offset)
4477 {
4478 	skb->ip_summed = CHECKSUM_PARTIAL;
4479 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4480 	skb->csum_offset = offset - start;
4481 }
4482 
4483 /* Update skbuf and packet to reflect the remote checksum offload operation.
4484  * When called, ptr indicates the starting point for skb->csum when
4485  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4486  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4487  */
4488 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4489 				       int start, int offset, bool nopartial)
4490 {
4491 	__wsum delta;
4492 
4493 	if (!nopartial) {
4494 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4495 		return;
4496 	}
4497 
4498 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4499 		__skb_checksum_complete(skb);
4500 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4501 	}
4502 
4503 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4504 
4505 	/* Adjust skb->csum since we changed the packet */
4506 	skb->csum = csum_add(skb->csum, delta);
4507 }
4508 
4509 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4510 {
4511 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4512 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4513 #else
4514 	return NULL;
4515 #endif
4516 }
4517 
4518 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4519 {
4520 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4521 	return skb->_nfct;
4522 #else
4523 	return 0UL;
4524 #endif
4525 }
4526 
4527 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4528 {
4529 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4530 	skb->slow_gro |= !!nfct;
4531 	skb->_nfct = nfct;
4532 #endif
4533 }
4534 
4535 #ifdef CONFIG_SKB_EXTENSIONS
4536 enum skb_ext_id {
4537 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4538 	SKB_EXT_BRIDGE_NF,
4539 #endif
4540 #ifdef CONFIG_XFRM
4541 	SKB_EXT_SEC_PATH,
4542 #endif
4543 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4544 	TC_SKB_EXT,
4545 #endif
4546 #if IS_ENABLED(CONFIG_MPTCP)
4547 	SKB_EXT_MPTCP,
4548 #endif
4549 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4550 	SKB_EXT_MCTP,
4551 #endif
4552 	SKB_EXT_NUM, /* must be last */
4553 };
4554 
4555 /**
4556  *	struct skb_ext - sk_buff extensions
4557  *	@refcnt: 1 on allocation, deallocated on 0
4558  *	@offset: offset to add to @data to obtain extension address
4559  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4560  *	@data: start of extension data, variable sized
4561  *
4562  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4563  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4564  */
4565 struct skb_ext {
4566 	refcount_t refcnt;
4567 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4568 	u8 chunks;		/* same */
4569 	char data[] __aligned(8);
4570 };
4571 
4572 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4573 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4574 		    struct skb_ext *ext);
4575 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4576 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4577 void __skb_ext_put(struct skb_ext *ext);
4578 
4579 static inline void skb_ext_put(struct sk_buff *skb)
4580 {
4581 	if (skb->active_extensions)
4582 		__skb_ext_put(skb->extensions);
4583 }
4584 
4585 static inline void __skb_ext_copy(struct sk_buff *dst,
4586 				  const struct sk_buff *src)
4587 {
4588 	dst->active_extensions = src->active_extensions;
4589 
4590 	if (src->active_extensions) {
4591 		struct skb_ext *ext = src->extensions;
4592 
4593 		refcount_inc(&ext->refcnt);
4594 		dst->extensions = ext;
4595 	}
4596 }
4597 
4598 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4599 {
4600 	skb_ext_put(dst);
4601 	__skb_ext_copy(dst, src);
4602 }
4603 
4604 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4605 {
4606 	return !!ext->offset[i];
4607 }
4608 
4609 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4610 {
4611 	return skb->active_extensions & (1 << id);
4612 }
4613 
4614 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4615 {
4616 	if (skb_ext_exist(skb, id))
4617 		__skb_ext_del(skb, id);
4618 }
4619 
4620 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4621 {
4622 	if (skb_ext_exist(skb, id)) {
4623 		struct skb_ext *ext = skb->extensions;
4624 
4625 		return (void *)ext + (ext->offset[id] << 3);
4626 	}
4627 
4628 	return NULL;
4629 }
4630 
4631 static inline void skb_ext_reset(struct sk_buff *skb)
4632 {
4633 	if (unlikely(skb->active_extensions)) {
4634 		__skb_ext_put(skb->extensions);
4635 		skb->active_extensions = 0;
4636 	}
4637 }
4638 
4639 static inline bool skb_has_extensions(struct sk_buff *skb)
4640 {
4641 	return unlikely(skb->active_extensions);
4642 }
4643 #else
4644 static inline void skb_ext_put(struct sk_buff *skb) {}
4645 static inline void skb_ext_reset(struct sk_buff *skb) {}
4646 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4647 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4648 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4649 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4650 #endif /* CONFIG_SKB_EXTENSIONS */
4651 
4652 static inline void nf_reset_ct(struct sk_buff *skb)
4653 {
4654 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4655 	nf_conntrack_put(skb_nfct(skb));
4656 	skb->_nfct = 0;
4657 #endif
4658 }
4659 
4660 static inline void nf_reset_trace(struct sk_buff *skb)
4661 {
4662 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4663 	skb->nf_trace = 0;
4664 #endif
4665 }
4666 
4667 static inline void ipvs_reset(struct sk_buff *skb)
4668 {
4669 #if IS_ENABLED(CONFIG_IP_VS)
4670 	skb->ipvs_property = 0;
4671 #endif
4672 }
4673 
4674 /* Note: This doesn't put any conntrack info in dst. */
4675 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4676 			     bool copy)
4677 {
4678 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4679 	dst->_nfct = src->_nfct;
4680 	nf_conntrack_get(skb_nfct(src));
4681 #endif
4682 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4683 	if (copy)
4684 		dst->nf_trace = src->nf_trace;
4685 #endif
4686 }
4687 
4688 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4689 {
4690 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4691 	nf_conntrack_put(skb_nfct(dst));
4692 #endif
4693 	dst->slow_gro = src->slow_gro;
4694 	__nf_copy(dst, src, true);
4695 }
4696 
4697 #ifdef CONFIG_NETWORK_SECMARK
4698 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4699 {
4700 	to->secmark = from->secmark;
4701 }
4702 
4703 static inline void skb_init_secmark(struct sk_buff *skb)
4704 {
4705 	skb->secmark = 0;
4706 }
4707 #else
4708 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4709 { }
4710 
4711 static inline void skb_init_secmark(struct sk_buff *skb)
4712 { }
4713 #endif
4714 
4715 static inline int secpath_exists(const struct sk_buff *skb)
4716 {
4717 #ifdef CONFIG_XFRM
4718 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4719 #else
4720 	return 0;
4721 #endif
4722 }
4723 
4724 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4725 {
4726 	return !skb->destructor &&
4727 		!secpath_exists(skb) &&
4728 		!skb_nfct(skb) &&
4729 		!skb->_skb_refdst &&
4730 		!skb_has_frag_list(skb);
4731 }
4732 
4733 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4734 {
4735 	skb->queue_mapping = queue_mapping;
4736 }
4737 
4738 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4739 {
4740 	return skb->queue_mapping;
4741 }
4742 
4743 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4744 {
4745 	to->queue_mapping = from->queue_mapping;
4746 }
4747 
4748 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4749 {
4750 	skb->queue_mapping = rx_queue + 1;
4751 }
4752 
4753 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4754 {
4755 	return skb->queue_mapping - 1;
4756 }
4757 
4758 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4759 {
4760 	return skb->queue_mapping != 0;
4761 }
4762 
4763 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4764 {
4765 	skb->dst_pending_confirm = val;
4766 }
4767 
4768 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4769 {
4770 	return skb->dst_pending_confirm != 0;
4771 }
4772 
4773 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4774 {
4775 #ifdef CONFIG_XFRM
4776 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4777 #else
4778 	return NULL;
4779 #endif
4780 }
4781 
4782 /* Keeps track of mac header offset relative to skb->head.
4783  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4784  * For non-tunnel skb it points to skb_mac_header() and for
4785  * tunnel skb it points to outer mac header.
4786  * Keeps track of level of encapsulation of network headers.
4787  */
4788 struct skb_gso_cb {
4789 	union {
4790 		int	mac_offset;
4791 		int	data_offset;
4792 	};
4793 	int	encap_level;
4794 	__wsum	csum;
4795 	__u16	csum_start;
4796 };
4797 #define SKB_GSO_CB_OFFSET	32
4798 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4799 
4800 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4801 {
4802 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4803 		SKB_GSO_CB(inner_skb)->mac_offset;
4804 }
4805 
4806 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4807 {
4808 	int new_headroom, headroom;
4809 	int ret;
4810 
4811 	headroom = skb_headroom(skb);
4812 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4813 	if (ret)
4814 		return ret;
4815 
4816 	new_headroom = skb_headroom(skb);
4817 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4818 	return 0;
4819 }
4820 
4821 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4822 {
4823 	/* Do not update partial checksums if remote checksum is enabled. */
4824 	if (skb->remcsum_offload)
4825 		return;
4826 
4827 	SKB_GSO_CB(skb)->csum = res;
4828 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4829 }
4830 
4831 /* Compute the checksum for a gso segment. First compute the checksum value
4832  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4833  * then add in skb->csum (checksum from csum_start to end of packet).
4834  * skb->csum and csum_start are then updated to reflect the checksum of the
4835  * resultant packet starting from the transport header-- the resultant checksum
4836  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4837  * header.
4838  */
4839 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4840 {
4841 	unsigned char *csum_start = skb_transport_header(skb);
4842 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4843 	__wsum partial = SKB_GSO_CB(skb)->csum;
4844 
4845 	SKB_GSO_CB(skb)->csum = res;
4846 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4847 
4848 	return csum_fold(csum_partial(csum_start, plen, partial));
4849 }
4850 
4851 static inline bool skb_is_gso(const struct sk_buff *skb)
4852 {
4853 	return skb_shinfo(skb)->gso_size;
4854 }
4855 
4856 /* Note: Should be called only if skb_is_gso(skb) is true */
4857 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4858 {
4859 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4860 }
4861 
4862 /* Note: Should be called only if skb_is_gso(skb) is true */
4863 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4864 {
4865 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4866 }
4867 
4868 /* Note: Should be called only if skb_is_gso(skb) is true */
4869 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4870 {
4871 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4872 }
4873 
4874 static inline void skb_gso_reset(struct sk_buff *skb)
4875 {
4876 	skb_shinfo(skb)->gso_size = 0;
4877 	skb_shinfo(skb)->gso_segs = 0;
4878 	skb_shinfo(skb)->gso_type = 0;
4879 }
4880 
4881 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4882 					 u16 increment)
4883 {
4884 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4885 		return;
4886 	shinfo->gso_size += increment;
4887 }
4888 
4889 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4890 					 u16 decrement)
4891 {
4892 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4893 		return;
4894 	shinfo->gso_size -= decrement;
4895 }
4896 
4897 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4898 
4899 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4900 {
4901 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4902 	 * wanted then gso_type will be set. */
4903 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4904 
4905 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4906 	    unlikely(shinfo->gso_type == 0)) {
4907 		__skb_warn_lro_forwarding(skb);
4908 		return true;
4909 	}
4910 	return false;
4911 }
4912 
4913 static inline void skb_forward_csum(struct sk_buff *skb)
4914 {
4915 	/* Unfortunately we don't support this one.  Any brave souls? */
4916 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4917 		skb->ip_summed = CHECKSUM_NONE;
4918 }
4919 
4920 /**
4921  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4922  * @skb: skb to check
4923  *
4924  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4925  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4926  * use this helper, to document places where we make this assertion.
4927  */
4928 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4929 {
4930 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4931 }
4932 
4933 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4934 
4935 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4936 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4937 				     unsigned int transport_len,
4938 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4939 
4940 /**
4941  * skb_head_is_locked - Determine if the skb->head is locked down
4942  * @skb: skb to check
4943  *
4944  * The head on skbs build around a head frag can be removed if they are
4945  * not cloned.  This function returns true if the skb head is locked down
4946  * due to either being allocated via kmalloc, or by being a clone with
4947  * multiple references to the head.
4948  */
4949 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4950 {
4951 	return !skb->head_frag || skb_cloned(skb);
4952 }
4953 
4954 /* Local Checksum Offload.
4955  * Compute outer checksum based on the assumption that the
4956  * inner checksum will be offloaded later.
4957  * See Documentation/networking/checksum-offloads.rst for
4958  * explanation of how this works.
4959  * Fill in outer checksum adjustment (e.g. with sum of outer
4960  * pseudo-header) before calling.
4961  * Also ensure that inner checksum is in linear data area.
4962  */
4963 static inline __wsum lco_csum(struct sk_buff *skb)
4964 {
4965 	unsigned char *csum_start = skb_checksum_start(skb);
4966 	unsigned char *l4_hdr = skb_transport_header(skb);
4967 	__wsum partial;
4968 
4969 	/* Start with complement of inner checksum adjustment */
4970 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4971 						    skb->csum_offset));
4972 
4973 	/* Add in checksum of our headers (incl. outer checksum
4974 	 * adjustment filled in by caller) and return result.
4975 	 */
4976 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4977 }
4978 
4979 static inline bool skb_is_redirected(const struct sk_buff *skb)
4980 {
4981 	return skb->redirected;
4982 }
4983 
4984 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4985 {
4986 	skb->redirected = 1;
4987 #ifdef CONFIG_NET_REDIRECT
4988 	skb->from_ingress = from_ingress;
4989 	if (skb->from_ingress)
4990 		skb_clear_tstamp(skb);
4991 #endif
4992 }
4993 
4994 static inline void skb_reset_redirect(struct sk_buff *skb)
4995 {
4996 	skb->redirected = 0;
4997 }
4998 
4999 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5000 {
5001 	return skb->csum_not_inet;
5002 }
5003 
5004 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5005 				       const u64 kcov_handle)
5006 {
5007 #ifdef CONFIG_KCOV
5008 	skb->kcov_handle = kcov_handle;
5009 #endif
5010 }
5011 
5012 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5013 {
5014 #ifdef CONFIG_KCOV
5015 	return skb->kcov_handle;
5016 #else
5017 	return 0;
5018 #endif
5019 }
5020 
5021 #ifdef CONFIG_PAGE_POOL
5022 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5023 {
5024 	skb->pp_recycle = 1;
5025 }
5026 #endif
5027 
5028 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5029 {
5030 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5031 		return false;
5032 	return page_pool_return_skb_page(virt_to_page(data));
5033 }
5034 
5035 #endif	/* __KERNEL__ */
5036 #endif	/* _LINUX_SKBUFF_H */
5037