1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <linux/llist.h> 40 #include <net/flow.h> 41 #include <net/page_pool.h> 42 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 43 #include <linux/netfilter/nf_conntrack_common.h> 44 #endif 45 #include <net/net_debug.h> 46 #include <net/dropreason.h> 47 48 /** 49 * DOC: skb checksums 50 * 51 * The interface for checksum offload between the stack and networking drivers 52 * is as follows... 53 * 54 * IP checksum related features 55 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 56 * 57 * Drivers advertise checksum offload capabilities in the features of a device. 58 * From the stack's point of view these are capabilities offered by the driver. 59 * A driver typically only advertises features that it is capable of offloading 60 * to its device. 61 * 62 * .. flat-table:: Checksum related device features 63 * :widths: 1 10 64 * 65 * * - %NETIF_F_HW_CSUM 66 * - The driver (or its device) is able to compute one 67 * IP (one's complement) checksum for any combination 68 * of protocols or protocol layering. The checksum is 69 * computed and set in a packet per the CHECKSUM_PARTIAL 70 * interface (see below). 71 * 72 * * - %NETIF_F_IP_CSUM 73 * - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv4. These are specifically 75 * unencapsulated packets of the form IPv4|TCP or 76 * IPv4|UDP where the Protocol field in the IPv4 header 77 * is TCP or UDP. The IPv4 header may contain IP options. 78 * This feature cannot be set in features for a device 79 * with NETIF_F_HW_CSUM also set. This feature is being 80 * DEPRECATED (see below). 81 * 82 * * - %NETIF_F_IPV6_CSUM 83 * - Driver (device) is only able to checksum plain 84 * TCP or UDP packets over IPv6. These are specifically 85 * unencapsulated packets of the form IPv6|TCP or 86 * IPv6|UDP where the Next Header field in the IPv6 87 * header is either TCP or UDP. IPv6 extension headers 88 * are not supported with this feature. This feature 89 * cannot be set in features for a device with 90 * NETIF_F_HW_CSUM also set. This feature is being 91 * DEPRECATED (see below). 92 * 93 * * - %NETIF_F_RXCSUM 94 * - Driver (device) performs receive checksum offload. 95 * This flag is only used to disable the RX checksum 96 * feature for a device. The stack will accept receive 97 * checksum indication in packets received on a device 98 * regardless of whether NETIF_F_RXCSUM is set. 99 * 100 * Checksumming of received packets by device 101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 * 103 * Indication of checksum verification is set in &sk_buff.ip_summed. 104 * Possible values are: 105 * 106 * - %CHECKSUM_NONE 107 * 108 * Device did not checksum this packet e.g. due to lack of capabilities. 109 * The packet contains full (though not verified) checksum in packet but 110 * not in skb->csum. Thus, skb->csum is undefined in this case. 111 * 112 * - %CHECKSUM_UNNECESSARY 113 * 114 * The hardware you're dealing with doesn't calculate the full checksum 115 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 116 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 117 * if their checksums are okay. &sk_buff.csum is still undefined in this case 118 * though. A driver or device must never modify the checksum field in the 119 * packet even if checksum is verified. 120 * 121 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 122 * 123 * - TCP: IPv6 and IPv4. 124 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 125 * zero UDP checksum for either IPv4 or IPv6, the networking stack 126 * may perform further validation in this case. 127 * - GRE: only if the checksum is present in the header. 128 * - SCTP: indicates the CRC in SCTP header has been validated. 129 * - FCOE: indicates the CRC in FC frame has been validated. 130 * 131 * &sk_buff.csum_level indicates the number of consecutive checksums found in 132 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 133 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 134 * and a device is able to verify the checksums for UDP (possibly zero), 135 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 136 * two. If the device were only able to verify the UDP checksum and not 137 * GRE, either because it doesn't support GRE checksum or because GRE 138 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 139 * not considered in this case). 140 * 141 * - %CHECKSUM_COMPLETE 142 * 143 * This is the most generic way. The device supplied checksum of the _whole_ 144 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 145 * hardware doesn't need to parse L3/L4 headers to implement this. 146 * 147 * Notes: 148 * 149 * - Even if device supports only some protocols, but is able to produce 150 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 151 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 152 * 153 * - %CHECKSUM_PARTIAL 154 * 155 * A checksum is set up to be offloaded to a device as described in the 156 * output description for CHECKSUM_PARTIAL. This may occur on a packet 157 * received directly from another Linux OS, e.g., a virtualized Linux kernel 158 * on the same host, or it may be set in the input path in GRO or remote 159 * checksum offload. For the purposes of checksum verification, the checksum 160 * referred to by skb->csum_start + skb->csum_offset and any preceding 161 * checksums in the packet are considered verified. Any checksums in the 162 * packet that are after the checksum being offloaded are not considered to 163 * be verified. 164 * 165 * Checksumming on transmit for non-GSO 166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 167 * 168 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 169 * Values are: 170 * 171 * - %CHECKSUM_PARTIAL 172 * 173 * The driver is required to checksum the packet as seen by hard_start_xmit() 174 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 175 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 176 * A driver may verify that the 177 * csum_start and csum_offset values are valid values given the length and 178 * offset of the packet, but it should not attempt to validate that the 179 * checksum refers to a legitimate transport layer checksum -- it is the 180 * purview of the stack to validate that csum_start and csum_offset are set 181 * correctly. 182 * 183 * When the stack requests checksum offload for a packet, the driver MUST 184 * ensure that the checksum is set correctly. A driver can either offload the 185 * checksum calculation to the device, or call skb_checksum_help (in the case 186 * that the device does not support offload for a particular checksum). 187 * 188 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 189 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 190 * checksum offload capability. 191 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 192 * on network device checksumming capabilities: if a packet does not match 193 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 194 * &sk_buff.csum_not_inet, see :ref:`crc`) 195 * is called to resolve the checksum. 196 * 197 * - %CHECKSUM_NONE 198 * 199 * The skb was already checksummed by the protocol, or a checksum is not 200 * required. 201 * 202 * - %CHECKSUM_UNNECESSARY 203 * 204 * This has the same meaning as CHECKSUM_NONE for checksum offload on 205 * output. 206 * 207 * - %CHECKSUM_COMPLETE 208 * 209 * Not used in checksum output. If a driver observes a packet with this value 210 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 211 * 212 * .. _crc: 213 * 214 * Non-IP checksum (CRC) offloads 215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 216 * 217 * .. flat-table:: 218 * :widths: 1 10 219 * 220 * * - %NETIF_F_SCTP_CRC 221 * - This feature indicates that a device is capable of 222 * offloading the SCTP CRC in a packet. To perform this offload the stack 223 * will set csum_start and csum_offset accordingly, set ip_summed to 224 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 225 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 226 * A driver that supports both IP checksum offload and SCTP CRC32c offload 227 * must verify which offload is configured for a packet by testing the 228 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 229 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 230 * 231 * * - %NETIF_F_FCOE_CRC 232 * - This feature indicates that a device is capable of offloading the FCOE 233 * CRC in a packet. To perform this offload the stack will set ip_summed 234 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 235 * accordingly. Note that there is no indication in the skbuff that the 236 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 237 * both IP checksum offload and FCOE CRC offload must verify which offload 238 * is configured for a packet, presumably by inspecting packet headers. 239 * 240 * Checksumming on output with GSO 241 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 242 * 243 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 244 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 245 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 246 * part of the GSO operation is implied. If a checksum is being offloaded 247 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 248 * csum_offset are set to refer to the outermost checksum being offloaded 249 * (two offloaded checksums are possible with UDP encapsulation). 250 */ 251 252 /* Don't change this without changing skb_csum_unnecessary! */ 253 #define CHECKSUM_NONE 0 254 #define CHECKSUM_UNNECESSARY 1 255 #define CHECKSUM_COMPLETE 2 256 #define CHECKSUM_PARTIAL 3 257 258 /* Maximum value in skb->csum_level */ 259 #define SKB_MAX_CSUM_LEVEL 3 260 261 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 262 #define SKB_WITH_OVERHEAD(X) \ 263 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 264 #define SKB_MAX_ORDER(X, ORDER) \ 265 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 266 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 267 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 268 269 /* return minimum truesize of one skb containing X bytes of data */ 270 #define SKB_TRUESIZE(X) ((X) + \ 271 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 273 274 struct ahash_request; 275 struct net_device; 276 struct scatterlist; 277 struct pipe_inode_info; 278 struct iov_iter; 279 struct napi_struct; 280 struct bpf_prog; 281 union bpf_attr; 282 struct skb_ext; 283 284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 285 struct nf_bridge_info { 286 enum { 287 BRNF_PROTO_UNCHANGED, 288 BRNF_PROTO_8021Q, 289 BRNF_PROTO_PPPOE 290 } orig_proto:8; 291 u8 pkt_otherhost:1; 292 u8 in_prerouting:1; 293 u8 bridged_dnat:1; 294 __u16 frag_max_size; 295 struct net_device *physindev; 296 297 /* always valid & non-NULL from FORWARD on, for physdev match */ 298 struct net_device *physoutdev; 299 union { 300 /* prerouting: detect dnat in orig/reply direction */ 301 __be32 ipv4_daddr; 302 struct in6_addr ipv6_daddr; 303 304 /* after prerouting + nat detected: store original source 305 * mac since neigh resolution overwrites it, only used while 306 * skb is out in neigh layer. 307 */ 308 char neigh_header[8]; 309 }; 310 }; 311 #endif 312 313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 314 /* Chain in tc_skb_ext will be used to share the tc chain with 315 * ovs recirc_id. It will be set to the current chain by tc 316 * and read by ovs to recirc_id. 317 */ 318 struct tc_skb_ext { 319 __u32 chain; 320 __u16 mru; 321 __u16 zone; 322 u8 post_ct:1; 323 u8 post_ct_snat:1; 324 u8 post_ct_dnat:1; 325 }; 326 #endif 327 328 struct sk_buff_head { 329 /* These two members must be first to match sk_buff. */ 330 struct_group_tagged(sk_buff_list, list, 331 struct sk_buff *next; 332 struct sk_buff *prev; 333 ); 334 335 __u32 qlen; 336 spinlock_t lock; 337 }; 338 339 struct sk_buff; 340 341 /* To allow 64K frame to be packed as single skb without frag_list we 342 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 343 * buffers which do not start on a page boundary. 344 * 345 * Since GRO uses frags we allocate at least 16 regardless of page 346 * size. 347 */ 348 #if (65536/PAGE_SIZE + 1) < 16 349 #define MAX_SKB_FRAGS 16UL 350 #else 351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 352 #endif 353 extern int sysctl_max_skb_frags; 354 355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 356 * segment using its current segmentation instead. 357 */ 358 #define GSO_BY_FRAGS 0xFFFF 359 360 typedef struct bio_vec skb_frag_t; 361 362 /** 363 * skb_frag_size() - Returns the size of a skb fragment 364 * @frag: skb fragment 365 */ 366 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 367 { 368 return frag->bv_len; 369 } 370 371 /** 372 * skb_frag_size_set() - Sets the size of a skb fragment 373 * @frag: skb fragment 374 * @size: size of fragment 375 */ 376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 377 { 378 frag->bv_len = size; 379 } 380 381 /** 382 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 383 * @frag: skb fragment 384 * @delta: value to add 385 */ 386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 387 { 388 frag->bv_len += delta; 389 } 390 391 /** 392 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 393 * @frag: skb fragment 394 * @delta: value to subtract 395 */ 396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 397 { 398 frag->bv_len -= delta; 399 } 400 401 /** 402 * skb_frag_must_loop - Test if %p is a high memory page 403 * @p: fragment's page 404 */ 405 static inline bool skb_frag_must_loop(struct page *p) 406 { 407 #if defined(CONFIG_HIGHMEM) 408 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 409 return true; 410 #endif 411 return false; 412 } 413 414 /** 415 * skb_frag_foreach_page - loop over pages in a fragment 416 * 417 * @f: skb frag to operate on 418 * @f_off: offset from start of f->bv_page 419 * @f_len: length from f_off to loop over 420 * @p: (temp var) current page 421 * @p_off: (temp var) offset from start of current page, 422 * non-zero only on first page. 423 * @p_len: (temp var) length in current page, 424 * < PAGE_SIZE only on first and last page. 425 * @copied: (temp var) length so far, excluding current p_len. 426 * 427 * A fragment can hold a compound page, in which case per-page 428 * operations, notably kmap_atomic, must be called for each 429 * regular page. 430 */ 431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 432 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 433 p_off = (f_off) & (PAGE_SIZE - 1), \ 434 p_len = skb_frag_must_loop(p) ? \ 435 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 436 copied = 0; \ 437 copied < f_len; \ 438 copied += p_len, p++, p_off = 0, \ 439 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 440 441 #define HAVE_HW_TIME_STAMP 442 443 /** 444 * struct skb_shared_hwtstamps - hardware time stamps 445 * @hwtstamp: hardware time stamp transformed into duration 446 * since arbitrary point in time 447 * @netdev_data: address/cookie of network device driver used as 448 * reference to actual hardware time stamp 449 * 450 * Software time stamps generated by ktime_get_real() are stored in 451 * skb->tstamp. 452 * 453 * hwtstamps can only be compared against other hwtstamps from 454 * the same device. 455 * 456 * This structure is attached to packets as part of the 457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 458 */ 459 struct skb_shared_hwtstamps { 460 union { 461 ktime_t hwtstamp; 462 void *netdev_data; 463 }; 464 }; 465 466 /* Definitions for tx_flags in struct skb_shared_info */ 467 enum { 468 /* generate hardware time stamp */ 469 SKBTX_HW_TSTAMP = 1 << 0, 470 471 /* generate software time stamp when queueing packet to NIC */ 472 SKBTX_SW_TSTAMP = 1 << 1, 473 474 /* device driver is going to provide hardware time stamp */ 475 SKBTX_IN_PROGRESS = 1 << 2, 476 477 /* generate hardware time stamp based on cycles if supported */ 478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 479 480 /* generate wifi status information (where possible) */ 481 SKBTX_WIFI_STATUS = 1 << 4, 482 483 /* determine hardware time stamp based on time or cycles */ 484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 485 486 /* generate software time stamp when entering packet scheduling */ 487 SKBTX_SCHED_TSTAMP = 1 << 6, 488 }; 489 490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 491 SKBTX_SCHED_TSTAMP) 492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 493 SKBTX_HW_TSTAMP_USE_CYCLES | \ 494 SKBTX_ANY_SW_TSTAMP) 495 496 /* Definitions for flags in struct skb_shared_info */ 497 enum { 498 /* use zcopy routines */ 499 SKBFL_ZEROCOPY_ENABLE = BIT(0), 500 501 /* This indicates at least one fragment might be overwritten 502 * (as in vmsplice(), sendfile() ...) 503 * If we need to compute a TX checksum, we'll need to copy 504 * all frags to avoid possible bad checksum 505 */ 506 SKBFL_SHARED_FRAG = BIT(1), 507 508 /* segment contains only zerocopy data and should not be 509 * charged to the kernel memory. 510 */ 511 SKBFL_PURE_ZEROCOPY = BIT(2), 512 513 SKBFL_DONT_ORPHAN = BIT(3), 514 515 /* page references are managed by the ubuf_info, so it's safe to 516 * use frags only up until ubuf_info is released 517 */ 518 SKBFL_MANAGED_FRAG_REFS = BIT(4), 519 }; 520 521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 522 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 524 525 /* 526 * The callback notifies userspace to release buffers when skb DMA is done in 527 * lower device, the skb last reference should be 0 when calling this. 528 * The zerocopy_success argument is true if zero copy transmit occurred, 529 * false on data copy or out of memory error caused by data copy attempt. 530 * The ctx field is used to track device context. 531 * The desc field is used to track userspace buffer index. 532 */ 533 struct ubuf_info { 534 void (*callback)(struct sk_buff *, struct ubuf_info *, 535 bool zerocopy_success); 536 union { 537 struct { 538 unsigned long desc; 539 void *ctx; 540 }; 541 struct { 542 u32 id; 543 u16 len; 544 u16 zerocopy:1; 545 u32 bytelen; 546 }; 547 }; 548 refcount_t refcnt; 549 u8 flags; 550 551 struct mmpin { 552 struct user_struct *user; 553 unsigned int num_pg; 554 } mmp; 555 }; 556 557 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 558 559 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 560 void mm_unaccount_pinned_pages(struct mmpin *mmp); 561 562 /* This data is invariant across clones and lives at 563 * the end of the header data, ie. at skb->end. 564 */ 565 struct skb_shared_info { 566 __u8 flags; 567 __u8 meta_len; 568 __u8 nr_frags; 569 __u8 tx_flags; 570 unsigned short gso_size; 571 /* Warning: this field is not always filled in (UFO)! */ 572 unsigned short gso_segs; 573 struct sk_buff *frag_list; 574 struct skb_shared_hwtstamps hwtstamps; 575 unsigned int gso_type; 576 u32 tskey; 577 578 /* 579 * Warning : all fields before dataref are cleared in __alloc_skb() 580 */ 581 atomic_t dataref; 582 unsigned int xdp_frags_size; 583 584 /* Intermediate layers must ensure that destructor_arg 585 * remains valid until skb destructor */ 586 void * destructor_arg; 587 588 /* must be last field, see pskb_expand_head() */ 589 skb_frag_t frags[MAX_SKB_FRAGS]; 590 }; 591 592 /** 593 * DOC: dataref and headerless skbs 594 * 595 * Transport layers send out clones of payload skbs they hold for 596 * retransmissions. To allow lower layers of the stack to prepend their headers 597 * we split &skb_shared_info.dataref into two halves. 598 * The lower 16 bits count the overall number of references. 599 * The higher 16 bits indicate how many of the references are payload-only. 600 * skb_header_cloned() checks if skb is allowed to add / write the headers. 601 * 602 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 603 * (via __skb_header_release()). Any clone created from marked skb will get 604 * &sk_buff.hdr_len populated with the available headroom. 605 * If there's the only clone in existence it's able to modify the headroom 606 * at will. The sequence of calls inside the transport layer is:: 607 * 608 * <alloc skb> 609 * skb_reserve() 610 * __skb_header_release() 611 * skb_clone() 612 * // send the clone down the stack 613 * 614 * This is not a very generic construct and it depends on the transport layers 615 * doing the right thing. In practice there's usually only one payload-only skb. 616 * Having multiple payload-only skbs with different lengths of hdr_len is not 617 * possible. The payload-only skbs should never leave their owner. 618 */ 619 #define SKB_DATAREF_SHIFT 16 620 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 621 622 623 enum { 624 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 625 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 626 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 627 }; 628 629 enum { 630 SKB_GSO_TCPV4 = 1 << 0, 631 632 /* This indicates the skb is from an untrusted source. */ 633 SKB_GSO_DODGY = 1 << 1, 634 635 /* This indicates the tcp segment has CWR set. */ 636 SKB_GSO_TCP_ECN = 1 << 2, 637 638 SKB_GSO_TCP_FIXEDID = 1 << 3, 639 640 SKB_GSO_TCPV6 = 1 << 4, 641 642 SKB_GSO_FCOE = 1 << 5, 643 644 SKB_GSO_GRE = 1 << 6, 645 646 SKB_GSO_GRE_CSUM = 1 << 7, 647 648 SKB_GSO_IPXIP4 = 1 << 8, 649 650 SKB_GSO_IPXIP6 = 1 << 9, 651 652 SKB_GSO_UDP_TUNNEL = 1 << 10, 653 654 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 655 656 SKB_GSO_PARTIAL = 1 << 12, 657 658 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 659 660 SKB_GSO_SCTP = 1 << 14, 661 662 SKB_GSO_ESP = 1 << 15, 663 664 SKB_GSO_UDP = 1 << 16, 665 666 SKB_GSO_UDP_L4 = 1 << 17, 667 668 SKB_GSO_FRAGLIST = 1 << 18, 669 }; 670 671 #if BITS_PER_LONG > 32 672 #define NET_SKBUFF_DATA_USES_OFFSET 1 673 #endif 674 675 #ifdef NET_SKBUFF_DATA_USES_OFFSET 676 typedef unsigned int sk_buff_data_t; 677 #else 678 typedef unsigned char *sk_buff_data_t; 679 #endif 680 681 /** 682 * DOC: Basic sk_buff geometry 683 * 684 * struct sk_buff itself is a metadata structure and does not hold any packet 685 * data. All the data is held in associated buffers. 686 * 687 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 688 * into two parts: 689 * 690 * - data buffer, containing headers and sometimes payload; 691 * this is the part of the skb operated on by the common helpers 692 * such as skb_put() or skb_pull(); 693 * - shared info (struct skb_shared_info) which holds an array of pointers 694 * to read-only data in the (page, offset, length) format. 695 * 696 * Optionally &skb_shared_info.frag_list may point to another skb. 697 * 698 * Basic diagram may look like this:: 699 * 700 * --------------- 701 * | sk_buff | 702 * --------------- 703 * ,--------------------------- + head 704 * / ,----------------- + data 705 * / / ,----------- + tail 706 * | | | , + end 707 * | | | | 708 * v v v v 709 * ----------------------------------------------- 710 * | headroom | data | tailroom | skb_shared_info | 711 * ----------------------------------------------- 712 * + [page frag] 713 * + [page frag] 714 * + [page frag] 715 * + [page frag] --------- 716 * + frag_list --> | sk_buff | 717 * --------- 718 * 719 */ 720 721 /** 722 * struct sk_buff - socket buffer 723 * @next: Next buffer in list 724 * @prev: Previous buffer in list 725 * @tstamp: Time we arrived/left 726 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 727 * for retransmit timer 728 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 729 * @list: queue head 730 * @ll_node: anchor in an llist (eg socket defer_list) 731 * @sk: Socket we are owned by 732 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 733 * fragmentation management 734 * @dev: Device we arrived on/are leaving by 735 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 736 * @cb: Control buffer. Free for use by every layer. Put private vars here 737 * @_skb_refdst: destination entry (with norefcount bit) 738 * @sp: the security path, used for xfrm 739 * @len: Length of actual data 740 * @data_len: Data length 741 * @mac_len: Length of link layer header 742 * @hdr_len: writable header length of cloned skb 743 * @csum: Checksum (must include start/offset pair) 744 * @csum_start: Offset from skb->head where checksumming should start 745 * @csum_offset: Offset from csum_start where checksum should be stored 746 * @priority: Packet queueing priority 747 * @ignore_df: allow local fragmentation 748 * @cloned: Head may be cloned (check refcnt to be sure) 749 * @ip_summed: Driver fed us an IP checksum 750 * @nohdr: Payload reference only, must not modify header 751 * @pkt_type: Packet class 752 * @fclone: skbuff clone status 753 * @ipvs_property: skbuff is owned by ipvs 754 * @inner_protocol_type: whether the inner protocol is 755 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 756 * @remcsum_offload: remote checksum offload is enabled 757 * @offload_fwd_mark: Packet was L2-forwarded in hardware 758 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 759 * @tc_skip_classify: do not classify packet. set by IFB device 760 * @tc_at_ingress: used within tc_classify to distinguish in/egress 761 * @redirected: packet was redirected by packet classifier 762 * @from_ingress: packet was redirected from the ingress path 763 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 764 * @peeked: this packet has been seen already, so stats have been 765 * done for it, don't do them again 766 * @nf_trace: netfilter packet trace flag 767 * @protocol: Packet protocol from driver 768 * @destructor: Destruct function 769 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 770 * @_sk_redir: socket redirection information for skmsg 771 * @_nfct: Associated connection, if any (with nfctinfo bits) 772 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 773 * @skb_iif: ifindex of device we arrived on 774 * @tc_index: Traffic control index 775 * @hash: the packet hash 776 * @queue_mapping: Queue mapping for multiqueue devices 777 * @head_frag: skb was allocated from page fragments, 778 * not allocated by kmalloc() or vmalloc(). 779 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 780 * @pp_recycle: mark the packet for recycling instead of freeing (implies 781 * page_pool support on driver) 782 * @active_extensions: active extensions (skb_ext_id types) 783 * @ndisc_nodetype: router type (from link layer) 784 * @ooo_okay: allow the mapping of a socket to a queue to be changed 785 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 786 * ports. 787 * @sw_hash: indicates hash was computed in software stack 788 * @wifi_acked_valid: wifi_acked was set 789 * @wifi_acked: whether frame was acked on wifi or not 790 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 791 * @encapsulation: indicates the inner headers in the skbuff are valid 792 * @encap_hdr_csum: software checksum is needed 793 * @csum_valid: checksum is already valid 794 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 795 * @csum_complete_sw: checksum was completed by software 796 * @csum_level: indicates the number of consecutive checksums found in 797 * the packet minus one that have been verified as 798 * CHECKSUM_UNNECESSARY (max 3) 799 * @dst_pending_confirm: need to confirm neighbour 800 * @decrypted: Decrypted SKB 801 * @slow_gro: state present at GRO time, slower prepare step required 802 * @mono_delivery_time: When set, skb->tstamp has the 803 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 804 * skb->tstamp has the (rcv) timestamp at ingress and 805 * delivery_time at egress. 806 * @napi_id: id of the NAPI struct this skb came from 807 * @sender_cpu: (aka @napi_id) source CPU in XPS 808 * @alloc_cpu: CPU which did the skb allocation. 809 * @secmark: security marking 810 * @mark: Generic packet mark 811 * @reserved_tailroom: (aka @mark) number of bytes of free space available 812 * at the tail of an sk_buff 813 * @vlan_present: VLAN tag is present 814 * @vlan_proto: vlan encapsulation protocol 815 * @vlan_tci: vlan tag control information 816 * @inner_protocol: Protocol (encapsulation) 817 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 818 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 819 * @inner_transport_header: Inner transport layer header (encapsulation) 820 * @inner_network_header: Network layer header (encapsulation) 821 * @inner_mac_header: Link layer header (encapsulation) 822 * @transport_header: Transport layer header 823 * @network_header: Network layer header 824 * @mac_header: Link layer header 825 * @kcov_handle: KCOV remote handle for remote coverage collection 826 * @tail: Tail pointer 827 * @end: End pointer 828 * @head: Head of buffer 829 * @data: Data head pointer 830 * @truesize: Buffer size 831 * @users: User count - see {datagram,tcp}.c 832 * @extensions: allocated extensions, valid if active_extensions is nonzero 833 */ 834 835 struct sk_buff { 836 union { 837 struct { 838 /* These two members must be first to match sk_buff_head. */ 839 struct sk_buff *next; 840 struct sk_buff *prev; 841 842 union { 843 struct net_device *dev; 844 /* Some protocols might use this space to store information, 845 * while device pointer would be NULL. 846 * UDP receive path is one user. 847 */ 848 unsigned long dev_scratch; 849 }; 850 }; 851 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 852 struct list_head list; 853 struct llist_node ll_node; 854 }; 855 856 union { 857 struct sock *sk; 858 int ip_defrag_offset; 859 }; 860 861 union { 862 ktime_t tstamp; 863 u64 skb_mstamp_ns; /* earliest departure time */ 864 }; 865 /* 866 * This is the control buffer. It is free to use for every 867 * layer. Please put your private variables there. If you 868 * want to keep them across layers you have to do a skb_clone() 869 * first. This is owned by whoever has the skb queued ATM. 870 */ 871 char cb[48] __aligned(8); 872 873 union { 874 struct { 875 unsigned long _skb_refdst; 876 void (*destructor)(struct sk_buff *skb); 877 }; 878 struct list_head tcp_tsorted_anchor; 879 #ifdef CONFIG_NET_SOCK_MSG 880 unsigned long _sk_redir; 881 #endif 882 }; 883 884 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 885 unsigned long _nfct; 886 #endif 887 unsigned int len, 888 data_len; 889 __u16 mac_len, 890 hdr_len; 891 892 /* Following fields are _not_ copied in __copy_skb_header() 893 * Note that queue_mapping is here mostly to fill a hole. 894 */ 895 __u16 queue_mapping; 896 897 /* if you move cloned around you also must adapt those constants */ 898 #ifdef __BIG_ENDIAN_BITFIELD 899 #define CLONED_MASK (1 << 7) 900 #else 901 #define CLONED_MASK 1 902 #endif 903 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 904 905 /* private: */ 906 __u8 __cloned_offset[0]; 907 /* public: */ 908 __u8 cloned:1, 909 nohdr:1, 910 fclone:2, 911 peeked:1, 912 head_frag:1, 913 pfmemalloc:1, 914 pp_recycle:1; /* page_pool recycle indicator */ 915 #ifdef CONFIG_SKB_EXTENSIONS 916 __u8 active_extensions; 917 #endif 918 919 /* Fields enclosed in headers group are copied 920 * using a single memcpy() in __copy_skb_header() 921 */ 922 struct_group(headers, 923 924 /* private: */ 925 __u8 __pkt_type_offset[0]; 926 /* public: */ 927 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 928 __u8 ignore_df:1; 929 __u8 nf_trace:1; 930 __u8 ip_summed:2; 931 __u8 ooo_okay:1; 932 933 __u8 l4_hash:1; 934 __u8 sw_hash:1; 935 __u8 wifi_acked_valid:1; 936 __u8 wifi_acked:1; 937 __u8 no_fcs:1; 938 /* Indicates the inner headers are valid in the skbuff. */ 939 __u8 encapsulation:1; 940 __u8 encap_hdr_csum:1; 941 __u8 csum_valid:1; 942 943 /* private: */ 944 __u8 __pkt_vlan_present_offset[0]; 945 /* public: */ 946 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 947 __u8 csum_complete_sw:1; 948 __u8 csum_level:2; 949 __u8 dst_pending_confirm:1; 950 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 951 #ifdef CONFIG_NET_CLS_ACT 952 __u8 tc_skip_classify:1; 953 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 954 #endif 955 #ifdef CONFIG_IPV6_NDISC_NODETYPE 956 __u8 ndisc_nodetype:2; 957 #endif 958 959 __u8 ipvs_property:1; 960 __u8 inner_protocol_type:1; 961 __u8 remcsum_offload:1; 962 #ifdef CONFIG_NET_SWITCHDEV 963 __u8 offload_fwd_mark:1; 964 __u8 offload_l3_fwd_mark:1; 965 #endif 966 __u8 redirected:1; 967 #ifdef CONFIG_NET_REDIRECT 968 __u8 from_ingress:1; 969 #endif 970 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 971 __u8 nf_skip_egress:1; 972 #endif 973 #ifdef CONFIG_TLS_DEVICE 974 __u8 decrypted:1; 975 #endif 976 __u8 slow_gro:1; 977 __u8 csum_not_inet:1; 978 979 #ifdef CONFIG_NET_SCHED 980 __u16 tc_index; /* traffic control index */ 981 #endif 982 983 union { 984 __wsum csum; 985 struct { 986 __u16 csum_start; 987 __u16 csum_offset; 988 }; 989 }; 990 __u32 priority; 991 int skb_iif; 992 __u32 hash; 993 __be16 vlan_proto; 994 __u16 vlan_tci; 995 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 996 union { 997 unsigned int napi_id; 998 unsigned int sender_cpu; 999 }; 1000 #endif 1001 u16 alloc_cpu; 1002 #ifdef CONFIG_NETWORK_SECMARK 1003 __u32 secmark; 1004 #endif 1005 1006 union { 1007 __u32 mark; 1008 __u32 reserved_tailroom; 1009 }; 1010 1011 union { 1012 __be16 inner_protocol; 1013 __u8 inner_ipproto; 1014 }; 1015 1016 __u16 inner_transport_header; 1017 __u16 inner_network_header; 1018 __u16 inner_mac_header; 1019 1020 __be16 protocol; 1021 __u16 transport_header; 1022 __u16 network_header; 1023 __u16 mac_header; 1024 1025 #ifdef CONFIG_KCOV 1026 u64 kcov_handle; 1027 #endif 1028 1029 ); /* end headers group */ 1030 1031 /* These elements must be at the end, see alloc_skb() for details. */ 1032 sk_buff_data_t tail; 1033 sk_buff_data_t end; 1034 unsigned char *head, 1035 *data; 1036 unsigned int truesize; 1037 refcount_t users; 1038 1039 #ifdef CONFIG_SKB_EXTENSIONS 1040 /* only useable after checking ->active_extensions != 0 */ 1041 struct skb_ext *extensions; 1042 #endif 1043 }; 1044 1045 /* if you move pkt_type around you also must adapt those constants */ 1046 #ifdef __BIG_ENDIAN_BITFIELD 1047 #define PKT_TYPE_MAX (7 << 5) 1048 #else 1049 #define PKT_TYPE_MAX 7 1050 #endif 1051 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1052 1053 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time 1054 * around, you also must adapt these constants. 1055 */ 1056 #ifdef __BIG_ENDIAN_BITFIELD 1057 #define PKT_VLAN_PRESENT_BIT 7 1058 #define TC_AT_INGRESS_MASK (1 << 0) 1059 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1060 #else 1061 #define PKT_VLAN_PRESENT_BIT 0 1062 #define TC_AT_INGRESS_MASK (1 << 7) 1063 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1064 #endif 1065 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1066 1067 #ifdef __KERNEL__ 1068 /* 1069 * Handling routines are only of interest to the kernel 1070 */ 1071 1072 #define SKB_ALLOC_FCLONE 0x01 1073 #define SKB_ALLOC_RX 0x02 1074 #define SKB_ALLOC_NAPI 0x04 1075 1076 /** 1077 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1078 * @skb: buffer 1079 */ 1080 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1081 { 1082 return unlikely(skb->pfmemalloc); 1083 } 1084 1085 /* 1086 * skb might have a dst pointer attached, refcounted or not. 1087 * _skb_refdst low order bit is set if refcount was _not_ taken 1088 */ 1089 #define SKB_DST_NOREF 1UL 1090 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1091 1092 /** 1093 * skb_dst - returns skb dst_entry 1094 * @skb: buffer 1095 * 1096 * Returns skb dst_entry, regardless of reference taken or not. 1097 */ 1098 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1099 { 1100 /* If refdst was not refcounted, check we still are in a 1101 * rcu_read_lock section 1102 */ 1103 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1104 !rcu_read_lock_held() && 1105 !rcu_read_lock_bh_held()); 1106 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1107 } 1108 1109 /** 1110 * skb_dst_set - sets skb dst 1111 * @skb: buffer 1112 * @dst: dst entry 1113 * 1114 * Sets skb dst, assuming a reference was taken on dst and should 1115 * be released by skb_dst_drop() 1116 */ 1117 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1118 { 1119 skb->slow_gro |= !!dst; 1120 skb->_skb_refdst = (unsigned long)dst; 1121 } 1122 1123 /** 1124 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1125 * @skb: buffer 1126 * @dst: dst entry 1127 * 1128 * Sets skb dst, assuming a reference was not taken on dst. 1129 * If dst entry is cached, we do not take reference and dst_release 1130 * will be avoided by refdst_drop. If dst entry is not cached, we take 1131 * reference, so that last dst_release can destroy the dst immediately. 1132 */ 1133 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1134 { 1135 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1136 skb->slow_gro |= !!dst; 1137 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1138 } 1139 1140 /** 1141 * skb_dst_is_noref - Test if skb dst isn't refcounted 1142 * @skb: buffer 1143 */ 1144 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1145 { 1146 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1147 } 1148 1149 /** 1150 * skb_rtable - Returns the skb &rtable 1151 * @skb: buffer 1152 */ 1153 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1154 { 1155 return (struct rtable *)skb_dst(skb); 1156 } 1157 1158 /* For mangling skb->pkt_type from user space side from applications 1159 * such as nft, tc, etc, we only allow a conservative subset of 1160 * possible pkt_types to be set. 1161 */ 1162 static inline bool skb_pkt_type_ok(u32 ptype) 1163 { 1164 return ptype <= PACKET_OTHERHOST; 1165 } 1166 1167 /** 1168 * skb_napi_id - Returns the skb's NAPI id 1169 * @skb: buffer 1170 */ 1171 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1172 { 1173 #ifdef CONFIG_NET_RX_BUSY_POLL 1174 return skb->napi_id; 1175 #else 1176 return 0; 1177 #endif 1178 } 1179 1180 /** 1181 * skb_unref - decrement the skb's reference count 1182 * @skb: buffer 1183 * 1184 * Returns true if we can free the skb. 1185 */ 1186 static inline bool skb_unref(struct sk_buff *skb) 1187 { 1188 if (unlikely(!skb)) 1189 return false; 1190 if (likely(refcount_read(&skb->users) == 1)) 1191 smp_rmb(); 1192 else if (likely(!refcount_dec_and_test(&skb->users))) 1193 return false; 1194 1195 return true; 1196 } 1197 1198 void __fix_address 1199 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1200 1201 /** 1202 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1203 * @skb: buffer to free 1204 */ 1205 static inline void kfree_skb(struct sk_buff *skb) 1206 { 1207 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1208 } 1209 1210 void skb_release_head_state(struct sk_buff *skb); 1211 void kfree_skb_list_reason(struct sk_buff *segs, 1212 enum skb_drop_reason reason); 1213 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1214 void skb_tx_error(struct sk_buff *skb); 1215 1216 static inline void kfree_skb_list(struct sk_buff *segs) 1217 { 1218 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1219 } 1220 1221 #ifdef CONFIG_TRACEPOINTS 1222 void consume_skb(struct sk_buff *skb); 1223 #else 1224 static inline void consume_skb(struct sk_buff *skb) 1225 { 1226 return kfree_skb(skb); 1227 } 1228 #endif 1229 1230 void __consume_stateless_skb(struct sk_buff *skb); 1231 void __kfree_skb(struct sk_buff *skb); 1232 extern struct kmem_cache *skbuff_head_cache; 1233 1234 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1235 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1236 bool *fragstolen, int *delta_truesize); 1237 1238 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1239 int node); 1240 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1241 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1242 struct sk_buff *build_skb_around(struct sk_buff *skb, 1243 void *data, unsigned int frag_size); 1244 void skb_attempt_defer_free(struct sk_buff *skb); 1245 1246 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1247 1248 /** 1249 * alloc_skb - allocate a network buffer 1250 * @size: size to allocate 1251 * @priority: allocation mask 1252 * 1253 * This function is a convenient wrapper around __alloc_skb(). 1254 */ 1255 static inline struct sk_buff *alloc_skb(unsigned int size, 1256 gfp_t priority) 1257 { 1258 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1259 } 1260 1261 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1262 unsigned long data_len, 1263 int max_page_order, 1264 int *errcode, 1265 gfp_t gfp_mask); 1266 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1267 1268 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1269 struct sk_buff_fclones { 1270 struct sk_buff skb1; 1271 1272 struct sk_buff skb2; 1273 1274 refcount_t fclone_ref; 1275 }; 1276 1277 /** 1278 * skb_fclone_busy - check if fclone is busy 1279 * @sk: socket 1280 * @skb: buffer 1281 * 1282 * Returns true if skb is a fast clone, and its clone is not freed. 1283 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1284 * so we also check that this didnt happen. 1285 */ 1286 static inline bool skb_fclone_busy(const struct sock *sk, 1287 const struct sk_buff *skb) 1288 { 1289 const struct sk_buff_fclones *fclones; 1290 1291 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1292 1293 return skb->fclone == SKB_FCLONE_ORIG && 1294 refcount_read(&fclones->fclone_ref) > 1 && 1295 READ_ONCE(fclones->skb2.sk) == sk; 1296 } 1297 1298 /** 1299 * alloc_skb_fclone - allocate a network buffer from fclone cache 1300 * @size: size to allocate 1301 * @priority: allocation mask 1302 * 1303 * This function is a convenient wrapper around __alloc_skb(). 1304 */ 1305 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1306 gfp_t priority) 1307 { 1308 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1309 } 1310 1311 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1312 void skb_headers_offset_update(struct sk_buff *skb, int off); 1313 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1314 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1315 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1316 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1317 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1318 gfp_t gfp_mask, bool fclone); 1319 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1320 gfp_t gfp_mask) 1321 { 1322 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1323 } 1324 1325 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1326 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1327 unsigned int headroom); 1328 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1329 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1330 int newtailroom, gfp_t priority); 1331 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1332 int offset, int len); 1333 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1334 int offset, int len); 1335 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1336 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1337 1338 /** 1339 * skb_pad - zero pad the tail of an skb 1340 * @skb: buffer to pad 1341 * @pad: space to pad 1342 * 1343 * Ensure that a buffer is followed by a padding area that is zero 1344 * filled. Used by network drivers which may DMA or transfer data 1345 * beyond the buffer end onto the wire. 1346 * 1347 * May return error in out of memory cases. The skb is freed on error. 1348 */ 1349 static inline int skb_pad(struct sk_buff *skb, int pad) 1350 { 1351 return __skb_pad(skb, pad, true); 1352 } 1353 #define dev_kfree_skb(a) consume_skb(a) 1354 1355 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1356 int offset, size_t size); 1357 1358 struct skb_seq_state { 1359 __u32 lower_offset; 1360 __u32 upper_offset; 1361 __u32 frag_idx; 1362 __u32 stepped_offset; 1363 struct sk_buff *root_skb; 1364 struct sk_buff *cur_skb; 1365 __u8 *frag_data; 1366 __u32 frag_off; 1367 }; 1368 1369 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1370 unsigned int to, struct skb_seq_state *st); 1371 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1372 struct skb_seq_state *st); 1373 void skb_abort_seq_read(struct skb_seq_state *st); 1374 1375 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1376 unsigned int to, struct ts_config *config); 1377 1378 /* 1379 * Packet hash types specify the type of hash in skb_set_hash. 1380 * 1381 * Hash types refer to the protocol layer addresses which are used to 1382 * construct a packet's hash. The hashes are used to differentiate or identify 1383 * flows of the protocol layer for the hash type. Hash types are either 1384 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1385 * 1386 * Properties of hashes: 1387 * 1388 * 1) Two packets in different flows have different hash values 1389 * 2) Two packets in the same flow should have the same hash value 1390 * 1391 * A hash at a higher layer is considered to be more specific. A driver should 1392 * set the most specific hash possible. 1393 * 1394 * A driver cannot indicate a more specific hash than the layer at which a hash 1395 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1396 * 1397 * A driver may indicate a hash level which is less specific than the 1398 * actual layer the hash was computed on. For instance, a hash computed 1399 * at L4 may be considered an L3 hash. This should only be done if the 1400 * driver can't unambiguously determine that the HW computed the hash at 1401 * the higher layer. Note that the "should" in the second property above 1402 * permits this. 1403 */ 1404 enum pkt_hash_types { 1405 PKT_HASH_TYPE_NONE, /* Undefined type */ 1406 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1407 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1408 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1409 }; 1410 1411 static inline void skb_clear_hash(struct sk_buff *skb) 1412 { 1413 skb->hash = 0; 1414 skb->sw_hash = 0; 1415 skb->l4_hash = 0; 1416 } 1417 1418 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1419 { 1420 if (!skb->l4_hash) 1421 skb_clear_hash(skb); 1422 } 1423 1424 static inline void 1425 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1426 { 1427 skb->l4_hash = is_l4; 1428 skb->sw_hash = is_sw; 1429 skb->hash = hash; 1430 } 1431 1432 static inline void 1433 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1434 { 1435 /* Used by drivers to set hash from HW */ 1436 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1437 } 1438 1439 static inline void 1440 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1441 { 1442 __skb_set_hash(skb, hash, true, is_l4); 1443 } 1444 1445 void __skb_get_hash(struct sk_buff *skb); 1446 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1447 u32 skb_get_poff(const struct sk_buff *skb); 1448 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1449 const struct flow_keys_basic *keys, int hlen); 1450 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1451 const void *data, int hlen_proto); 1452 1453 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1454 int thoff, u8 ip_proto) 1455 { 1456 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1457 } 1458 1459 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1460 const struct flow_dissector_key *key, 1461 unsigned int key_count); 1462 1463 struct bpf_flow_dissector; 1464 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1465 __be16 proto, int nhoff, int hlen, unsigned int flags); 1466 1467 bool __skb_flow_dissect(const struct net *net, 1468 const struct sk_buff *skb, 1469 struct flow_dissector *flow_dissector, 1470 void *target_container, const void *data, 1471 __be16 proto, int nhoff, int hlen, unsigned int flags); 1472 1473 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1474 struct flow_dissector *flow_dissector, 1475 void *target_container, unsigned int flags) 1476 { 1477 return __skb_flow_dissect(NULL, skb, flow_dissector, 1478 target_container, NULL, 0, 0, 0, flags); 1479 } 1480 1481 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1482 struct flow_keys *flow, 1483 unsigned int flags) 1484 { 1485 memset(flow, 0, sizeof(*flow)); 1486 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1487 flow, NULL, 0, 0, 0, flags); 1488 } 1489 1490 static inline bool 1491 skb_flow_dissect_flow_keys_basic(const struct net *net, 1492 const struct sk_buff *skb, 1493 struct flow_keys_basic *flow, 1494 const void *data, __be16 proto, 1495 int nhoff, int hlen, unsigned int flags) 1496 { 1497 memset(flow, 0, sizeof(*flow)); 1498 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1499 data, proto, nhoff, hlen, flags); 1500 } 1501 1502 void skb_flow_dissect_meta(const struct sk_buff *skb, 1503 struct flow_dissector *flow_dissector, 1504 void *target_container); 1505 1506 /* Gets a skb connection tracking info, ctinfo map should be a 1507 * map of mapsize to translate enum ip_conntrack_info states 1508 * to user states. 1509 */ 1510 void 1511 skb_flow_dissect_ct(const struct sk_buff *skb, 1512 struct flow_dissector *flow_dissector, 1513 void *target_container, 1514 u16 *ctinfo_map, size_t mapsize, 1515 bool post_ct, u16 zone); 1516 void 1517 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1518 struct flow_dissector *flow_dissector, 1519 void *target_container); 1520 1521 void skb_flow_dissect_hash(const struct sk_buff *skb, 1522 struct flow_dissector *flow_dissector, 1523 void *target_container); 1524 1525 static inline __u32 skb_get_hash(struct sk_buff *skb) 1526 { 1527 if (!skb->l4_hash && !skb->sw_hash) 1528 __skb_get_hash(skb); 1529 1530 return skb->hash; 1531 } 1532 1533 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1534 { 1535 if (!skb->l4_hash && !skb->sw_hash) { 1536 struct flow_keys keys; 1537 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1538 1539 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1540 } 1541 1542 return skb->hash; 1543 } 1544 1545 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1546 const siphash_key_t *perturb); 1547 1548 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1549 { 1550 return skb->hash; 1551 } 1552 1553 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1554 { 1555 to->hash = from->hash; 1556 to->sw_hash = from->sw_hash; 1557 to->l4_hash = from->l4_hash; 1558 }; 1559 1560 static inline void skb_copy_decrypted(struct sk_buff *to, 1561 const struct sk_buff *from) 1562 { 1563 #ifdef CONFIG_TLS_DEVICE 1564 to->decrypted = from->decrypted; 1565 #endif 1566 } 1567 1568 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1569 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1570 { 1571 return skb->head + skb->end; 1572 } 1573 1574 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1575 { 1576 return skb->end; 1577 } 1578 1579 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1580 { 1581 skb->end = offset; 1582 } 1583 #else 1584 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1585 { 1586 return skb->end; 1587 } 1588 1589 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1590 { 1591 return skb->end - skb->head; 1592 } 1593 1594 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1595 { 1596 skb->end = skb->head + offset; 1597 } 1598 #endif 1599 1600 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1601 struct ubuf_info *uarg); 1602 1603 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1604 1605 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1606 bool success); 1607 1608 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1609 struct sk_buff *skb, struct iov_iter *from, 1610 size_t length); 1611 1612 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1613 struct msghdr *msg, int len) 1614 { 1615 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1616 } 1617 1618 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1619 struct msghdr *msg, int len, 1620 struct ubuf_info *uarg); 1621 1622 /* Internal */ 1623 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1624 1625 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1626 { 1627 return &skb_shinfo(skb)->hwtstamps; 1628 } 1629 1630 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1631 { 1632 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1633 1634 return is_zcopy ? skb_uarg(skb) : NULL; 1635 } 1636 1637 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1638 { 1639 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1640 } 1641 1642 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1643 { 1644 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1645 } 1646 1647 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1648 const struct sk_buff *skb2) 1649 { 1650 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1651 } 1652 1653 static inline void net_zcopy_get(struct ubuf_info *uarg) 1654 { 1655 refcount_inc(&uarg->refcnt); 1656 } 1657 1658 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1659 { 1660 skb_shinfo(skb)->destructor_arg = uarg; 1661 skb_shinfo(skb)->flags |= uarg->flags; 1662 } 1663 1664 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1665 bool *have_ref) 1666 { 1667 if (skb && uarg && !skb_zcopy(skb)) { 1668 if (unlikely(have_ref && *have_ref)) 1669 *have_ref = false; 1670 else 1671 net_zcopy_get(uarg); 1672 skb_zcopy_init(skb, uarg); 1673 } 1674 } 1675 1676 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1677 { 1678 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1679 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1680 } 1681 1682 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1683 { 1684 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1685 } 1686 1687 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1688 { 1689 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1690 } 1691 1692 static inline void net_zcopy_put(struct ubuf_info *uarg) 1693 { 1694 if (uarg) 1695 uarg->callback(NULL, uarg, true); 1696 } 1697 1698 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1699 { 1700 if (uarg) { 1701 if (uarg->callback == msg_zerocopy_callback) 1702 msg_zerocopy_put_abort(uarg, have_uref); 1703 else if (have_uref) 1704 net_zcopy_put(uarg); 1705 } 1706 } 1707 1708 /* Release a reference on a zerocopy structure */ 1709 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1710 { 1711 struct ubuf_info *uarg = skb_zcopy(skb); 1712 1713 if (uarg) { 1714 if (!skb_zcopy_is_nouarg(skb)) 1715 uarg->callback(skb, uarg, zerocopy_success); 1716 1717 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1718 } 1719 } 1720 1721 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1722 1723 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1724 { 1725 if (unlikely(skb_zcopy_managed(skb))) 1726 __skb_zcopy_downgrade_managed(skb); 1727 } 1728 1729 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1730 { 1731 skb->next = NULL; 1732 } 1733 1734 /* Iterate through singly-linked GSO fragments of an skb. */ 1735 #define skb_list_walk_safe(first, skb, next_skb) \ 1736 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1737 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1738 1739 static inline void skb_list_del_init(struct sk_buff *skb) 1740 { 1741 __list_del_entry(&skb->list); 1742 skb_mark_not_on_list(skb); 1743 } 1744 1745 /** 1746 * skb_queue_empty - check if a queue is empty 1747 * @list: queue head 1748 * 1749 * Returns true if the queue is empty, false otherwise. 1750 */ 1751 static inline int skb_queue_empty(const struct sk_buff_head *list) 1752 { 1753 return list->next == (const struct sk_buff *) list; 1754 } 1755 1756 /** 1757 * skb_queue_empty_lockless - check if a queue is empty 1758 * @list: queue head 1759 * 1760 * Returns true if the queue is empty, false otherwise. 1761 * This variant can be used in lockless contexts. 1762 */ 1763 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1764 { 1765 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1766 } 1767 1768 1769 /** 1770 * skb_queue_is_last - check if skb is the last entry in the queue 1771 * @list: queue head 1772 * @skb: buffer 1773 * 1774 * Returns true if @skb is the last buffer on the list. 1775 */ 1776 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1777 const struct sk_buff *skb) 1778 { 1779 return skb->next == (const struct sk_buff *) list; 1780 } 1781 1782 /** 1783 * skb_queue_is_first - check if skb is the first entry in the queue 1784 * @list: queue head 1785 * @skb: buffer 1786 * 1787 * Returns true if @skb is the first buffer on the list. 1788 */ 1789 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1790 const struct sk_buff *skb) 1791 { 1792 return skb->prev == (const struct sk_buff *) list; 1793 } 1794 1795 /** 1796 * skb_queue_next - return the next packet in the queue 1797 * @list: queue head 1798 * @skb: current buffer 1799 * 1800 * Return the next packet in @list after @skb. It is only valid to 1801 * call this if skb_queue_is_last() evaluates to false. 1802 */ 1803 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1804 const struct sk_buff *skb) 1805 { 1806 /* This BUG_ON may seem severe, but if we just return then we 1807 * are going to dereference garbage. 1808 */ 1809 BUG_ON(skb_queue_is_last(list, skb)); 1810 return skb->next; 1811 } 1812 1813 /** 1814 * skb_queue_prev - return the prev packet in the queue 1815 * @list: queue head 1816 * @skb: current buffer 1817 * 1818 * Return the prev packet in @list before @skb. It is only valid to 1819 * call this if skb_queue_is_first() evaluates to false. 1820 */ 1821 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1822 const struct sk_buff *skb) 1823 { 1824 /* This BUG_ON may seem severe, but if we just return then we 1825 * are going to dereference garbage. 1826 */ 1827 BUG_ON(skb_queue_is_first(list, skb)); 1828 return skb->prev; 1829 } 1830 1831 /** 1832 * skb_get - reference buffer 1833 * @skb: buffer to reference 1834 * 1835 * Makes another reference to a socket buffer and returns a pointer 1836 * to the buffer. 1837 */ 1838 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1839 { 1840 refcount_inc(&skb->users); 1841 return skb; 1842 } 1843 1844 /* 1845 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1846 */ 1847 1848 /** 1849 * skb_cloned - is the buffer a clone 1850 * @skb: buffer to check 1851 * 1852 * Returns true if the buffer was generated with skb_clone() and is 1853 * one of multiple shared copies of the buffer. Cloned buffers are 1854 * shared data so must not be written to under normal circumstances. 1855 */ 1856 static inline int skb_cloned(const struct sk_buff *skb) 1857 { 1858 return skb->cloned && 1859 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1860 } 1861 1862 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1863 { 1864 might_sleep_if(gfpflags_allow_blocking(pri)); 1865 1866 if (skb_cloned(skb)) 1867 return pskb_expand_head(skb, 0, 0, pri); 1868 1869 return 0; 1870 } 1871 1872 /* This variant of skb_unclone() makes sure skb->truesize 1873 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1874 * 1875 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1876 * when various debugging features are in place. 1877 */ 1878 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1879 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1880 { 1881 might_sleep_if(gfpflags_allow_blocking(pri)); 1882 1883 if (skb_cloned(skb)) 1884 return __skb_unclone_keeptruesize(skb, pri); 1885 return 0; 1886 } 1887 1888 /** 1889 * skb_header_cloned - is the header a clone 1890 * @skb: buffer to check 1891 * 1892 * Returns true if modifying the header part of the buffer requires 1893 * the data to be copied. 1894 */ 1895 static inline int skb_header_cloned(const struct sk_buff *skb) 1896 { 1897 int dataref; 1898 1899 if (!skb->cloned) 1900 return 0; 1901 1902 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1903 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1904 return dataref != 1; 1905 } 1906 1907 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1908 { 1909 might_sleep_if(gfpflags_allow_blocking(pri)); 1910 1911 if (skb_header_cloned(skb)) 1912 return pskb_expand_head(skb, 0, 0, pri); 1913 1914 return 0; 1915 } 1916 1917 /** 1918 * __skb_header_release() - allow clones to use the headroom 1919 * @skb: buffer to operate on 1920 * 1921 * See "DOC: dataref and headerless skbs". 1922 */ 1923 static inline void __skb_header_release(struct sk_buff *skb) 1924 { 1925 skb->nohdr = 1; 1926 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1927 } 1928 1929 1930 /** 1931 * skb_shared - is the buffer shared 1932 * @skb: buffer to check 1933 * 1934 * Returns true if more than one person has a reference to this 1935 * buffer. 1936 */ 1937 static inline int skb_shared(const struct sk_buff *skb) 1938 { 1939 return refcount_read(&skb->users) != 1; 1940 } 1941 1942 /** 1943 * skb_share_check - check if buffer is shared and if so clone it 1944 * @skb: buffer to check 1945 * @pri: priority for memory allocation 1946 * 1947 * If the buffer is shared the buffer is cloned and the old copy 1948 * drops a reference. A new clone with a single reference is returned. 1949 * If the buffer is not shared the original buffer is returned. When 1950 * being called from interrupt status or with spinlocks held pri must 1951 * be GFP_ATOMIC. 1952 * 1953 * NULL is returned on a memory allocation failure. 1954 */ 1955 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1956 { 1957 might_sleep_if(gfpflags_allow_blocking(pri)); 1958 if (skb_shared(skb)) { 1959 struct sk_buff *nskb = skb_clone(skb, pri); 1960 1961 if (likely(nskb)) 1962 consume_skb(skb); 1963 else 1964 kfree_skb(skb); 1965 skb = nskb; 1966 } 1967 return skb; 1968 } 1969 1970 /* 1971 * Copy shared buffers into a new sk_buff. We effectively do COW on 1972 * packets to handle cases where we have a local reader and forward 1973 * and a couple of other messy ones. The normal one is tcpdumping 1974 * a packet thats being forwarded. 1975 */ 1976 1977 /** 1978 * skb_unshare - make a copy of a shared buffer 1979 * @skb: buffer to check 1980 * @pri: priority for memory allocation 1981 * 1982 * If the socket buffer is a clone then this function creates a new 1983 * copy of the data, drops a reference count on the old copy and returns 1984 * the new copy with the reference count at 1. If the buffer is not a clone 1985 * the original buffer is returned. When called with a spinlock held or 1986 * from interrupt state @pri must be %GFP_ATOMIC 1987 * 1988 * %NULL is returned on a memory allocation failure. 1989 */ 1990 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1991 gfp_t pri) 1992 { 1993 might_sleep_if(gfpflags_allow_blocking(pri)); 1994 if (skb_cloned(skb)) { 1995 struct sk_buff *nskb = skb_copy(skb, pri); 1996 1997 /* Free our shared copy */ 1998 if (likely(nskb)) 1999 consume_skb(skb); 2000 else 2001 kfree_skb(skb); 2002 skb = nskb; 2003 } 2004 return skb; 2005 } 2006 2007 /** 2008 * skb_peek - peek at the head of an &sk_buff_head 2009 * @list_: list to peek at 2010 * 2011 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2012 * be careful with this one. A peek leaves the buffer on the 2013 * list and someone else may run off with it. You must hold 2014 * the appropriate locks or have a private queue to do this. 2015 * 2016 * Returns %NULL for an empty list or a pointer to the head element. 2017 * The reference count is not incremented and the reference is therefore 2018 * volatile. Use with caution. 2019 */ 2020 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2021 { 2022 struct sk_buff *skb = list_->next; 2023 2024 if (skb == (struct sk_buff *)list_) 2025 skb = NULL; 2026 return skb; 2027 } 2028 2029 /** 2030 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2031 * @list_: list to peek at 2032 * 2033 * Like skb_peek(), but the caller knows that the list is not empty. 2034 */ 2035 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2036 { 2037 return list_->next; 2038 } 2039 2040 /** 2041 * skb_peek_next - peek skb following the given one from a queue 2042 * @skb: skb to start from 2043 * @list_: list to peek at 2044 * 2045 * Returns %NULL when the end of the list is met or a pointer to the 2046 * next element. The reference count is not incremented and the 2047 * reference is therefore volatile. Use with caution. 2048 */ 2049 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2050 const struct sk_buff_head *list_) 2051 { 2052 struct sk_buff *next = skb->next; 2053 2054 if (next == (struct sk_buff *)list_) 2055 next = NULL; 2056 return next; 2057 } 2058 2059 /** 2060 * skb_peek_tail - peek at the tail of an &sk_buff_head 2061 * @list_: list to peek at 2062 * 2063 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2064 * be careful with this one. A peek leaves the buffer on the 2065 * list and someone else may run off with it. You must hold 2066 * the appropriate locks or have a private queue to do this. 2067 * 2068 * Returns %NULL for an empty list or a pointer to the tail element. 2069 * The reference count is not incremented and the reference is therefore 2070 * volatile. Use with caution. 2071 */ 2072 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2073 { 2074 struct sk_buff *skb = READ_ONCE(list_->prev); 2075 2076 if (skb == (struct sk_buff *)list_) 2077 skb = NULL; 2078 return skb; 2079 2080 } 2081 2082 /** 2083 * skb_queue_len - get queue length 2084 * @list_: list to measure 2085 * 2086 * Return the length of an &sk_buff queue. 2087 */ 2088 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2089 { 2090 return list_->qlen; 2091 } 2092 2093 /** 2094 * skb_queue_len_lockless - get queue length 2095 * @list_: list to measure 2096 * 2097 * Return the length of an &sk_buff queue. 2098 * This variant can be used in lockless contexts. 2099 */ 2100 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2101 { 2102 return READ_ONCE(list_->qlen); 2103 } 2104 2105 /** 2106 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2107 * @list: queue to initialize 2108 * 2109 * This initializes only the list and queue length aspects of 2110 * an sk_buff_head object. This allows to initialize the list 2111 * aspects of an sk_buff_head without reinitializing things like 2112 * the spinlock. It can also be used for on-stack sk_buff_head 2113 * objects where the spinlock is known to not be used. 2114 */ 2115 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2116 { 2117 list->prev = list->next = (struct sk_buff *)list; 2118 list->qlen = 0; 2119 } 2120 2121 /* 2122 * This function creates a split out lock class for each invocation; 2123 * this is needed for now since a whole lot of users of the skb-queue 2124 * infrastructure in drivers have different locking usage (in hardirq) 2125 * than the networking core (in softirq only). In the long run either the 2126 * network layer or drivers should need annotation to consolidate the 2127 * main types of usage into 3 classes. 2128 */ 2129 static inline void skb_queue_head_init(struct sk_buff_head *list) 2130 { 2131 spin_lock_init(&list->lock); 2132 __skb_queue_head_init(list); 2133 } 2134 2135 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2136 struct lock_class_key *class) 2137 { 2138 skb_queue_head_init(list); 2139 lockdep_set_class(&list->lock, class); 2140 } 2141 2142 /* 2143 * Insert an sk_buff on a list. 2144 * 2145 * The "__skb_xxxx()" functions are the non-atomic ones that 2146 * can only be called with interrupts disabled. 2147 */ 2148 static inline void __skb_insert(struct sk_buff *newsk, 2149 struct sk_buff *prev, struct sk_buff *next, 2150 struct sk_buff_head *list) 2151 { 2152 /* See skb_queue_empty_lockless() and skb_peek_tail() 2153 * for the opposite READ_ONCE() 2154 */ 2155 WRITE_ONCE(newsk->next, next); 2156 WRITE_ONCE(newsk->prev, prev); 2157 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2158 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2159 WRITE_ONCE(list->qlen, list->qlen + 1); 2160 } 2161 2162 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2163 struct sk_buff *prev, 2164 struct sk_buff *next) 2165 { 2166 struct sk_buff *first = list->next; 2167 struct sk_buff *last = list->prev; 2168 2169 WRITE_ONCE(first->prev, prev); 2170 WRITE_ONCE(prev->next, first); 2171 2172 WRITE_ONCE(last->next, next); 2173 WRITE_ONCE(next->prev, last); 2174 } 2175 2176 /** 2177 * skb_queue_splice - join two skb lists, this is designed for stacks 2178 * @list: the new list to add 2179 * @head: the place to add it in the first list 2180 */ 2181 static inline void skb_queue_splice(const struct sk_buff_head *list, 2182 struct sk_buff_head *head) 2183 { 2184 if (!skb_queue_empty(list)) { 2185 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2186 head->qlen += list->qlen; 2187 } 2188 } 2189 2190 /** 2191 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2192 * @list: the new list to add 2193 * @head: the place to add it in the first list 2194 * 2195 * The list at @list is reinitialised 2196 */ 2197 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2198 struct sk_buff_head *head) 2199 { 2200 if (!skb_queue_empty(list)) { 2201 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2202 head->qlen += list->qlen; 2203 __skb_queue_head_init(list); 2204 } 2205 } 2206 2207 /** 2208 * skb_queue_splice_tail - join two skb lists, each list being a queue 2209 * @list: the new list to add 2210 * @head: the place to add it in the first list 2211 */ 2212 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2213 struct sk_buff_head *head) 2214 { 2215 if (!skb_queue_empty(list)) { 2216 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2217 head->qlen += list->qlen; 2218 } 2219 } 2220 2221 /** 2222 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2223 * @list: the new list to add 2224 * @head: the place to add it in the first list 2225 * 2226 * Each of the lists is a queue. 2227 * The list at @list is reinitialised 2228 */ 2229 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2230 struct sk_buff_head *head) 2231 { 2232 if (!skb_queue_empty(list)) { 2233 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2234 head->qlen += list->qlen; 2235 __skb_queue_head_init(list); 2236 } 2237 } 2238 2239 /** 2240 * __skb_queue_after - queue a buffer at the list head 2241 * @list: list to use 2242 * @prev: place after this buffer 2243 * @newsk: buffer to queue 2244 * 2245 * Queue a buffer int the middle of a list. This function takes no locks 2246 * and you must therefore hold required locks before calling it. 2247 * 2248 * A buffer cannot be placed on two lists at the same time. 2249 */ 2250 static inline void __skb_queue_after(struct sk_buff_head *list, 2251 struct sk_buff *prev, 2252 struct sk_buff *newsk) 2253 { 2254 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2255 } 2256 2257 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2258 struct sk_buff_head *list); 2259 2260 static inline void __skb_queue_before(struct sk_buff_head *list, 2261 struct sk_buff *next, 2262 struct sk_buff *newsk) 2263 { 2264 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2265 } 2266 2267 /** 2268 * __skb_queue_head - queue a buffer at the list head 2269 * @list: list to use 2270 * @newsk: buffer to queue 2271 * 2272 * Queue a buffer at the start of a list. This function takes no locks 2273 * and you must therefore hold required locks before calling it. 2274 * 2275 * A buffer cannot be placed on two lists at the same time. 2276 */ 2277 static inline void __skb_queue_head(struct sk_buff_head *list, 2278 struct sk_buff *newsk) 2279 { 2280 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2281 } 2282 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2283 2284 /** 2285 * __skb_queue_tail - queue a buffer at the list tail 2286 * @list: list to use 2287 * @newsk: buffer to queue 2288 * 2289 * Queue a buffer at the end of a list. This function takes no locks 2290 * and you must therefore hold required locks before calling it. 2291 * 2292 * A buffer cannot be placed on two lists at the same time. 2293 */ 2294 static inline void __skb_queue_tail(struct sk_buff_head *list, 2295 struct sk_buff *newsk) 2296 { 2297 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2298 } 2299 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2300 2301 /* 2302 * remove sk_buff from list. _Must_ be called atomically, and with 2303 * the list known.. 2304 */ 2305 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2306 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2307 { 2308 struct sk_buff *next, *prev; 2309 2310 WRITE_ONCE(list->qlen, list->qlen - 1); 2311 next = skb->next; 2312 prev = skb->prev; 2313 skb->next = skb->prev = NULL; 2314 WRITE_ONCE(next->prev, prev); 2315 WRITE_ONCE(prev->next, next); 2316 } 2317 2318 /** 2319 * __skb_dequeue - remove from the head of the queue 2320 * @list: list to dequeue from 2321 * 2322 * Remove the head of the list. This function does not take any locks 2323 * so must be used with appropriate locks held only. The head item is 2324 * returned or %NULL if the list is empty. 2325 */ 2326 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2327 { 2328 struct sk_buff *skb = skb_peek(list); 2329 if (skb) 2330 __skb_unlink(skb, list); 2331 return skb; 2332 } 2333 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2334 2335 /** 2336 * __skb_dequeue_tail - remove from the tail of the queue 2337 * @list: list to dequeue from 2338 * 2339 * Remove the tail of the list. This function does not take any locks 2340 * so must be used with appropriate locks held only. The tail item is 2341 * returned or %NULL if the list is empty. 2342 */ 2343 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2344 { 2345 struct sk_buff *skb = skb_peek_tail(list); 2346 if (skb) 2347 __skb_unlink(skb, list); 2348 return skb; 2349 } 2350 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2351 2352 2353 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2354 { 2355 return skb->data_len; 2356 } 2357 2358 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2359 { 2360 return skb->len - skb->data_len; 2361 } 2362 2363 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2364 { 2365 unsigned int i, len = 0; 2366 2367 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2368 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2369 return len; 2370 } 2371 2372 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2373 { 2374 return skb_headlen(skb) + __skb_pagelen(skb); 2375 } 2376 2377 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2378 int i, struct page *page, 2379 int off, int size) 2380 { 2381 skb_frag_t *frag = &shinfo->frags[i]; 2382 2383 /* 2384 * Propagate page pfmemalloc to the skb if we can. The problem is 2385 * that not all callers have unique ownership of the page but rely 2386 * on page_is_pfmemalloc doing the right thing(tm). 2387 */ 2388 frag->bv_page = page; 2389 frag->bv_offset = off; 2390 skb_frag_size_set(frag, size); 2391 } 2392 2393 /** 2394 * skb_len_add - adds a number to len fields of skb 2395 * @skb: buffer to add len to 2396 * @delta: number of bytes to add 2397 */ 2398 static inline void skb_len_add(struct sk_buff *skb, int delta) 2399 { 2400 skb->len += delta; 2401 skb->data_len += delta; 2402 skb->truesize += delta; 2403 } 2404 2405 /** 2406 * __skb_fill_page_desc - initialise a paged fragment in an skb 2407 * @skb: buffer containing fragment to be initialised 2408 * @i: paged fragment index to initialise 2409 * @page: the page to use for this fragment 2410 * @off: the offset to the data with @page 2411 * @size: the length of the data 2412 * 2413 * Initialises the @i'th fragment of @skb to point to &size bytes at 2414 * offset @off within @page. 2415 * 2416 * Does not take any additional reference on the fragment. 2417 */ 2418 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2419 struct page *page, int off, int size) 2420 { 2421 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2422 page = compound_head(page); 2423 if (page_is_pfmemalloc(page)) 2424 skb->pfmemalloc = true; 2425 } 2426 2427 /** 2428 * skb_fill_page_desc - initialise a paged fragment in an skb 2429 * @skb: buffer containing fragment to be initialised 2430 * @i: paged fragment index to initialise 2431 * @page: the page to use for this fragment 2432 * @off: the offset to the data with @page 2433 * @size: the length of the data 2434 * 2435 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2436 * @skb to point to @size bytes at offset @off within @page. In 2437 * addition updates @skb such that @i is the last fragment. 2438 * 2439 * Does not take any additional reference on the fragment. 2440 */ 2441 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2442 struct page *page, int off, int size) 2443 { 2444 __skb_fill_page_desc(skb, i, page, off, size); 2445 skb_shinfo(skb)->nr_frags = i + 1; 2446 } 2447 2448 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2449 int size, unsigned int truesize); 2450 2451 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2452 unsigned int truesize); 2453 2454 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2455 2456 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2457 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2458 { 2459 return skb->head + skb->tail; 2460 } 2461 2462 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2463 { 2464 skb->tail = skb->data - skb->head; 2465 } 2466 2467 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2468 { 2469 skb_reset_tail_pointer(skb); 2470 skb->tail += offset; 2471 } 2472 2473 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2474 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2475 { 2476 return skb->tail; 2477 } 2478 2479 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2480 { 2481 skb->tail = skb->data; 2482 } 2483 2484 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2485 { 2486 skb->tail = skb->data + offset; 2487 } 2488 2489 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2490 2491 static inline void skb_assert_len(struct sk_buff *skb) 2492 { 2493 #ifdef CONFIG_DEBUG_NET 2494 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2495 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2496 #endif /* CONFIG_DEBUG_NET */ 2497 } 2498 2499 /* 2500 * Add data to an sk_buff 2501 */ 2502 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2503 void *skb_put(struct sk_buff *skb, unsigned int len); 2504 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2505 { 2506 void *tmp = skb_tail_pointer(skb); 2507 SKB_LINEAR_ASSERT(skb); 2508 skb->tail += len; 2509 skb->len += len; 2510 return tmp; 2511 } 2512 2513 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2514 { 2515 void *tmp = __skb_put(skb, len); 2516 2517 memset(tmp, 0, len); 2518 return tmp; 2519 } 2520 2521 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2522 unsigned int len) 2523 { 2524 void *tmp = __skb_put(skb, len); 2525 2526 memcpy(tmp, data, len); 2527 return tmp; 2528 } 2529 2530 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2531 { 2532 *(u8 *)__skb_put(skb, 1) = val; 2533 } 2534 2535 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2536 { 2537 void *tmp = skb_put(skb, len); 2538 2539 memset(tmp, 0, len); 2540 2541 return tmp; 2542 } 2543 2544 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2545 unsigned int len) 2546 { 2547 void *tmp = skb_put(skb, len); 2548 2549 memcpy(tmp, data, len); 2550 2551 return tmp; 2552 } 2553 2554 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2555 { 2556 *(u8 *)skb_put(skb, 1) = val; 2557 } 2558 2559 void *skb_push(struct sk_buff *skb, unsigned int len); 2560 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2561 { 2562 skb->data -= len; 2563 skb->len += len; 2564 return skb->data; 2565 } 2566 2567 void *skb_pull(struct sk_buff *skb, unsigned int len); 2568 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2569 { 2570 skb->len -= len; 2571 if (unlikely(skb->len < skb->data_len)) { 2572 #if defined(CONFIG_DEBUG_NET) 2573 skb->len += len; 2574 pr_err("__skb_pull(len=%u)\n", len); 2575 skb_dump(KERN_ERR, skb, false); 2576 #endif 2577 BUG(); 2578 } 2579 return skb->data += len; 2580 } 2581 2582 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2583 { 2584 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2585 } 2586 2587 void *skb_pull_data(struct sk_buff *skb, size_t len); 2588 2589 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2590 2591 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2592 { 2593 if (len > skb_headlen(skb) && 2594 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2595 return NULL; 2596 skb->len -= len; 2597 return skb->data += len; 2598 } 2599 2600 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2601 { 2602 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2603 } 2604 2605 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2606 { 2607 if (likely(len <= skb_headlen(skb))) 2608 return true; 2609 if (unlikely(len > skb->len)) 2610 return false; 2611 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2612 } 2613 2614 void skb_condense(struct sk_buff *skb); 2615 2616 /** 2617 * skb_headroom - bytes at buffer head 2618 * @skb: buffer to check 2619 * 2620 * Return the number of bytes of free space at the head of an &sk_buff. 2621 */ 2622 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2623 { 2624 return skb->data - skb->head; 2625 } 2626 2627 /** 2628 * skb_tailroom - bytes at buffer end 2629 * @skb: buffer to check 2630 * 2631 * Return the number of bytes of free space at the tail of an sk_buff 2632 */ 2633 static inline int skb_tailroom(const struct sk_buff *skb) 2634 { 2635 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2636 } 2637 2638 /** 2639 * skb_availroom - bytes at buffer end 2640 * @skb: buffer to check 2641 * 2642 * Return the number of bytes of free space at the tail of an sk_buff 2643 * allocated by sk_stream_alloc() 2644 */ 2645 static inline int skb_availroom(const struct sk_buff *skb) 2646 { 2647 if (skb_is_nonlinear(skb)) 2648 return 0; 2649 2650 return skb->end - skb->tail - skb->reserved_tailroom; 2651 } 2652 2653 /** 2654 * skb_reserve - adjust headroom 2655 * @skb: buffer to alter 2656 * @len: bytes to move 2657 * 2658 * Increase the headroom of an empty &sk_buff by reducing the tail 2659 * room. This is only allowed for an empty buffer. 2660 */ 2661 static inline void skb_reserve(struct sk_buff *skb, int len) 2662 { 2663 skb->data += len; 2664 skb->tail += len; 2665 } 2666 2667 /** 2668 * skb_tailroom_reserve - adjust reserved_tailroom 2669 * @skb: buffer to alter 2670 * @mtu: maximum amount of headlen permitted 2671 * @needed_tailroom: minimum amount of reserved_tailroom 2672 * 2673 * Set reserved_tailroom so that headlen can be as large as possible but 2674 * not larger than mtu and tailroom cannot be smaller than 2675 * needed_tailroom. 2676 * The required headroom should already have been reserved before using 2677 * this function. 2678 */ 2679 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2680 unsigned int needed_tailroom) 2681 { 2682 SKB_LINEAR_ASSERT(skb); 2683 if (mtu < skb_tailroom(skb) - needed_tailroom) 2684 /* use at most mtu */ 2685 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2686 else 2687 /* use up to all available space */ 2688 skb->reserved_tailroom = needed_tailroom; 2689 } 2690 2691 #define ENCAP_TYPE_ETHER 0 2692 #define ENCAP_TYPE_IPPROTO 1 2693 2694 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2695 __be16 protocol) 2696 { 2697 skb->inner_protocol = protocol; 2698 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2699 } 2700 2701 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2702 __u8 ipproto) 2703 { 2704 skb->inner_ipproto = ipproto; 2705 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2706 } 2707 2708 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2709 { 2710 skb->inner_mac_header = skb->mac_header; 2711 skb->inner_network_header = skb->network_header; 2712 skb->inner_transport_header = skb->transport_header; 2713 } 2714 2715 static inline void skb_reset_mac_len(struct sk_buff *skb) 2716 { 2717 skb->mac_len = skb->network_header - skb->mac_header; 2718 } 2719 2720 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2721 *skb) 2722 { 2723 return skb->head + skb->inner_transport_header; 2724 } 2725 2726 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2727 { 2728 return skb_inner_transport_header(skb) - skb->data; 2729 } 2730 2731 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2732 { 2733 skb->inner_transport_header = skb->data - skb->head; 2734 } 2735 2736 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2737 const int offset) 2738 { 2739 skb_reset_inner_transport_header(skb); 2740 skb->inner_transport_header += offset; 2741 } 2742 2743 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2744 { 2745 return skb->head + skb->inner_network_header; 2746 } 2747 2748 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2749 { 2750 skb->inner_network_header = skb->data - skb->head; 2751 } 2752 2753 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2754 const int offset) 2755 { 2756 skb_reset_inner_network_header(skb); 2757 skb->inner_network_header += offset; 2758 } 2759 2760 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2761 { 2762 return skb->head + skb->inner_mac_header; 2763 } 2764 2765 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2766 { 2767 skb->inner_mac_header = skb->data - skb->head; 2768 } 2769 2770 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2771 const int offset) 2772 { 2773 skb_reset_inner_mac_header(skb); 2774 skb->inner_mac_header += offset; 2775 } 2776 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2777 { 2778 return skb->transport_header != (typeof(skb->transport_header))~0U; 2779 } 2780 2781 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2782 { 2783 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2784 return skb->head + skb->transport_header; 2785 } 2786 2787 static inline void skb_reset_transport_header(struct sk_buff *skb) 2788 { 2789 skb->transport_header = skb->data - skb->head; 2790 } 2791 2792 static inline void skb_set_transport_header(struct sk_buff *skb, 2793 const int offset) 2794 { 2795 skb_reset_transport_header(skb); 2796 skb->transport_header += offset; 2797 } 2798 2799 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2800 { 2801 return skb->head + skb->network_header; 2802 } 2803 2804 static inline void skb_reset_network_header(struct sk_buff *skb) 2805 { 2806 skb->network_header = skb->data - skb->head; 2807 } 2808 2809 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2810 { 2811 skb_reset_network_header(skb); 2812 skb->network_header += offset; 2813 } 2814 2815 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2816 { 2817 return skb->mac_header != (typeof(skb->mac_header))~0U; 2818 } 2819 2820 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2821 { 2822 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2823 return skb->head + skb->mac_header; 2824 } 2825 2826 static inline int skb_mac_offset(const struct sk_buff *skb) 2827 { 2828 return skb_mac_header(skb) - skb->data; 2829 } 2830 2831 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2832 { 2833 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2834 return skb->network_header - skb->mac_header; 2835 } 2836 2837 static inline void skb_unset_mac_header(struct sk_buff *skb) 2838 { 2839 skb->mac_header = (typeof(skb->mac_header))~0U; 2840 } 2841 2842 static inline void skb_reset_mac_header(struct sk_buff *skb) 2843 { 2844 skb->mac_header = skb->data - skb->head; 2845 } 2846 2847 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2848 { 2849 skb_reset_mac_header(skb); 2850 skb->mac_header += offset; 2851 } 2852 2853 static inline void skb_pop_mac_header(struct sk_buff *skb) 2854 { 2855 skb->mac_header = skb->network_header; 2856 } 2857 2858 static inline void skb_probe_transport_header(struct sk_buff *skb) 2859 { 2860 struct flow_keys_basic keys; 2861 2862 if (skb_transport_header_was_set(skb)) 2863 return; 2864 2865 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2866 NULL, 0, 0, 0, 0)) 2867 skb_set_transport_header(skb, keys.control.thoff); 2868 } 2869 2870 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2871 { 2872 if (skb_mac_header_was_set(skb)) { 2873 const unsigned char *old_mac = skb_mac_header(skb); 2874 2875 skb_set_mac_header(skb, -skb->mac_len); 2876 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2877 } 2878 } 2879 2880 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2881 { 2882 return skb->csum_start - skb_headroom(skb); 2883 } 2884 2885 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2886 { 2887 return skb->head + skb->csum_start; 2888 } 2889 2890 static inline int skb_transport_offset(const struct sk_buff *skb) 2891 { 2892 return skb_transport_header(skb) - skb->data; 2893 } 2894 2895 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2896 { 2897 return skb->transport_header - skb->network_header; 2898 } 2899 2900 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2901 { 2902 return skb->inner_transport_header - skb->inner_network_header; 2903 } 2904 2905 static inline int skb_network_offset(const struct sk_buff *skb) 2906 { 2907 return skb_network_header(skb) - skb->data; 2908 } 2909 2910 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2911 { 2912 return skb_inner_network_header(skb) - skb->data; 2913 } 2914 2915 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2916 { 2917 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2918 } 2919 2920 /* 2921 * CPUs often take a performance hit when accessing unaligned memory 2922 * locations. The actual performance hit varies, it can be small if the 2923 * hardware handles it or large if we have to take an exception and fix it 2924 * in software. 2925 * 2926 * Since an ethernet header is 14 bytes network drivers often end up with 2927 * the IP header at an unaligned offset. The IP header can be aligned by 2928 * shifting the start of the packet by 2 bytes. Drivers should do this 2929 * with: 2930 * 2931 * skb_reserve(skb, NET_IP_ALIGN); 2932 * 2933 * The downside to this alignment of the IP header is that the DMA is now 2934 * unaligned. On some architectures the cost of an unaligned DMA is high 2935 * and this cost outweighs the gains made by aligning the IP header. 2936 * 2937 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2938 * to be overridden. 2939 */ 2940 #ifndef NET_IP_ALIGN 2941 #define NET_IP_ALIGN 2 2942 #endif 2943 2944 /* 2945 * The networking layer reserves some headroom in skb data (via 2946 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2947 * the header has to grow. In the default case, if the header has to grow 2948 * 32 bytes or less we avoid the reallocation. 2949 * 2950 * Unfortunately this headroom changes the DMA alignment of the resulting 2951 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2952 * on some architectures. An architecture can override this value, 2953 * perhaps setting it to a cacheline in size (since that will maintain 2954 * cacheline alignment of the DMA). It must be a power of 2. 2955 * 2956 * Various parts of the networking layer expect at least 32 bytes of 2957 * headroom, you should not reduce this. 2958 * 2959 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2960 * to reduce average number of cache lines per packet. 2961 * get_rps_cpu() for example only access one 64 bytes aligned block : 2962 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2963 */ 2964 #ifndef NET_SKB_PAD 2965 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2966 #endif 2967 2968 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2969 2970 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2971 { 2972 if (WARN_ON(skb_is_nonlinear(skb))) 2973 return; 2974 skb->len = len; 2975 skb_set_tail_pointer(skb, len); 2976 } 2977 2978 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2979 { 2980 __skb_set_length(skb, len); 2981 } 2982 2983 void skb_trim(struct sk_buff *skb, unsigned int len); 2984 2985 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2986 { 2987 if (skb->data_len) 2988 return ___pskb_trim(skb, len); 2989 __skb_trim(skb, len); 2990 return 0; 2991 } 2992 2993 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2994 { 2995 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2996 } 2997 2998 /** 2999 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3000 * @skb: buffer to alter 3001 * @len: new length 3002 * 3003 * This is identical to pskb_trim except that the caller knows that 3004 * the skb is not cloned so we should never get an error due to out- 3005 * of-memory. 3006 */ 3007 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3008 { 3009 int err = pskb_trim(skb, len); 3010 BUG_ON(err); 3011 } 3012 3013 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3014 { 3015 unsigned int diff = len - skb->len; 3016 3017 if (skb_tailroom(skb) < diff) { 3018 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3019 GFP_ATOMIC); 3020 if (ret) 3021 return ret; 3022 } 3023 __skb_set_length(skb, len); 3024 return 0; 3025 } 3026 3027 /** 3028 * skb_orphan - orphan a buffer 3029 * @skb: buffer to orphan 3030 * 3031 * If a buffer currently has an owner then we call the owner's 3032 * destructor function and make the @skb unowned. The buffer continues 3033 * to exist but is no longer charged to its former owner. 3034 */ 3035 static inline void skb_orphan(struct sk_buff *skb) 3036 { 3037 if (skb->destructor) { 3038 skb->destructor(skb); 3039 skb->destructor = NULL; 3040 skb->sk = NULL; 3041 } else { 3042 BUG_ON(skb->sk); 3043 } 3044 } 3045 3046 /** 3047 * skb_orphan_frags - orphan the frags contained in a buffer 3048 * @skb: buffer to orphan frags from 3049 * @gfp_mask: allocation mask for replacement pages 3050 * 3051 * For each frag in the SKB which needs a destructor (i.e. has an 3052 * owner) create a copy of that frag and release the original 3053 * page by calling the destructor. 3054 */ 3055 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3056 { 3057 if (likely(!skb_zcopy(skb))) 3058 return 0; 3059 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3060 return 0; 3061 return skb_copy_ubufs(skb, gfp_mask); 3062 } 3063 3064 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3065 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3066 { 3067 if (likely(!skb_zcopy(skb))) 3068 return 0; 3069 return skb_copy_ubufs(skb, gfp_mask); 3070 } 3071 3072 /** 3073 * __skb_queue_purge - empty a list 3074 * @list: list to empty 3075 * 3076 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3077 * the list and one reference dropped. This function does not take the 3078 * list lock and the caller must hold the relevant locks to use it. 3079 */ 3080 static inline void __skb_queue_purge(struct sk_buff_head *list) 3081 { 3082 struct sk_buff *skb; 3083 while ((skb = __skb_dequeue(list)) != NULL) 3084 kfree_skb(skb); 3085 } 3086 void skb_queue_purge(struct sk_buff_head *list); 3087 3088 unsigned int skb_rbtree_purge(struct rb_root *root); 3089 3090 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3091 3092 /** 3093 * netdev_alloc_frag - allocate a page fragment 3094 * @fragsz: fragment size 3095 * 3096 * Allocates a frag from a page for receive buffer. 3097 * Uses GFP_ATOMIC allocations. 3098 */ 3099 static inline void *netdev_alloc_frag(unsigned int fragsz) 3100 { 3101 return __netdev_alloc_frag_align(fragsz, ~0u); 3102 } 3103 3104 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3105 unsigned int align) 3106 { 3107 WARN_ON_ONCE(!is_power_of_2(align)); 3108 return __netdev_alloc_frag_align(fragsz, -align); 3109 } 3110 3111 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3112 gfp_t gfp_mask); 3113 3114 /** 3115 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3116 * @dev: network device to receive on 3117 * @length: length to allocate 3118 * 3119 * Allocate a new &sk_buff and assign it a usage count of one. The 3120 * buffer has unspecified headroom built in. Users should allocate 3121 * the headroom they think they need without accounting for the 3122 * built in space. The built in space is used for optimisations. 3123 * 3124 * %NULL is returned if there is no free memory. Although this function 3125 * allocates memory it can be called from an interrupt. 3126 */ 3127 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3128 unsigned int length) 3129 { 3130 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3131 } 3132 3133 /* legacy helper around __netdev_alloc_skb() */ 3134 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3135 gfp_t gfp_mask) 3136 { 3137 return __netdev_alloc_skb(NULL, length, gfp_mask); 3138 } 3139 3140 /* legacy helper around netdev_alloc_skb() */ 3141 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3142 { 3143 return netdev_alloc_skb(NULL, length); 3144 } 3145 3146 3147 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3148 unsigned int length, gfp_t gfp) 3149 { 3150 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3151 3152 if (NET_IP_ALIGN && skb) 3153 skb_reserve(skb, NET_IP_ALIGN); 3154 return skb; 3155 } 3156 3157 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3158 unsigned int length) 3159 { 3160 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3161 } 3162 3163 static inline void skb_free_frag(void *addr) 3164 { 3165 page_frag_free(addr); 3166 } 3167 3168 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3169 3170 static inline void *napi_alloc_frag(unsigned int fragsz) 3171 { 3172 return __napi_alloc_frag_align(fragsz, ~0u); 3173 } 3174 3175 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3176 unsigned int align) 3177 { 3178 WARN_ON_ONCE(!is_power_of_2(align)); 3179 return __napi_alloc_frag_align(fragsz, -align); 3180 } 3181 3182 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3183 unsigned int length, gfp_t gfp_mask); 3184 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3185 unsigned int length) 3186 { 3187 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3188 } 3189 void napi_consume_skb(struct sk_buff *skb, int budget); 3190 3191 void napi_skb_free_stolen_head(struct sk_buff *skb); 3192 void __kfree_skb_defer(struct sk_buff *skb); 3193 3194 /** 3195 * __dev_alloc_pages - allocate page for network Rx 3196 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3197 * @order: size of the allocation 3198 * 3199 * Allocate a new page. 3200 * 3201 * %NULL is returned if there is no free memory. 3202 */ 3203 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3204 unsigned int order) 3205 { 3206 /* This piece of code contains several assumptions. 3207 * 1. This is for device Rx, therefor a cold page is preferred. 3208 * 2. The expectation is the user wants a compound page. 3209 * 3. If requesting a order 0 page it will not be compound 3210 * due to the check to see if order has a value in prep_new_page 3211 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3212 * code in gfp_to_alloc_flags that should be enforcing this. 3213 */ 3214 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3215 3216 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3217 } 3218 3219 static inline struct page *dev_alloc_pages(unsigned int order) 3220 { 3221 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3222 } 3223 3224 /** 3225 * __dev_alloc_page - allocate a page for network Rx 3226 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3227 * 3228 * Allocate a new page. 3229 * 3230 * %NULL is returned if there is no free memory. 3231 */ 3232 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3233 { 3234 return __dev_alloc_pages(gfp_mask, 0); 3235 } 3236 3237 static inline struct page *dev_alloc_page(void) 3238 { 3239 return dev_alloc_pages(0); 3240 } 3241 3242 /** 3243 * dev_page_is_reusable - check whether a page can be reused for network Rx 3244 * @page: the page to test 3245 * 3246 * A page shouldn't be considered for reusing/recycling if it was allocated 3247 * under memory pressure or at a distant memory node. 3248 * 3249 * Returns false if this page should be returned to page allocator, true 3250 * otherwise. 3251 */ 3252 static inline bool dev_page_is_reusable(const struct page *page) 3253 { 3254 return likely(page_to_nid(page) == numa_mem_id() && 3255 !page_is_pfmemalloc(page)); 3256 } 3257 3258 /** 3259 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3260 * @page: The page that was allocated from skb_alloc_page 3261 * @skb: The skb that may need pfmemalloc set 3262 */ 3263 static inline void skb_propagate_pfmemalloc(const struct page *page, 3264 struct sk_buff *skb) 3265 { 3266 if (page_is_pfmemalloc(page)) 3267 skb->pfmemalloc = true; 3268 } 3269 3270 /** 3271 * skb_frag_off() - Returns the offset of a skb fragment 3272 * @frag: the paged fragment 3273 */ 3274 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3275 { 3276 return frag->bv_offset; 3277 } 3278 3279 /** 3280 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3281 * @frag: skb fragment 3282 * @delta: value to add 3283 */ 3284 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3285 { 3286 frag->bv_offset += delta; 3287 } 3288 3289 /** 3290 * skb_frag_off_set() - Sets the offset of a skb fragment 3291 * @frag: skb fragment 3292 * @offset: offset of fragment 3293 */ 3294 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3295 { 3296 frag->bv_offset = offset; 3297 } 3298 3299 /** 3300 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3301 * @fragto: skb fragment where offset is set 3302 * @fragfrom: skb fragment offset is copied from 3303 */ 3304 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3305 const skb_frag_t *fragfrom) 3306 { 3307 fragto->bv_offset = fragfrom->bv_offset; 3308 } 3309 3310 /** 3311 * skb_frag_page - retrieve the page referred to by a paged fragment 3312 * @frag: the paged fragment 3313 * 3314 * Returns the &struct page associated with @frag. 3315 */ 3316 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3317 { 3318 return frag->bv_page; 3319 } 3320 3321 /** 3322 * __skb_frag_ref - take an addition reference on a paged fragment. 3323 * @frag: the paged fragment 3324 * 3325 * Takes an additional reference on the paged fragment @frag. 3326 */ 3327 static inline void __skb_frag_ref(skb_frag_t *frag) 3328 { 3329 get_page(skb_frag_page(frag)); 3330 } 3331 3332 /** 3333 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3334 * @skb: the buffer 3335 * @f: the fragment offset. 3336 * 3337 * Takes an additional reference on the @f'th paged fragment of @skb. 3338 */ 3339 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3340 { 3341 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3342 } 3343 3344 /** 3345 * __skb_frag_unref - release a reference on a paged fragment. 3346 * @frag: the paged fragment 3347 * @recycle: recycle the page if allocated via page_pool 3348 * 3349 * Releases a reference on the paged fragment @frag 3350 * or recycles the page via the page_pool API. 3351 */ 3352 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3353 { 3354 struct page *page = skb_frag_page(frag); 3355 3356 #ifdef CONFIG_PAGE_POOL 3357 if (recycle && page_pool_return_skb_page(page)) 3358 return; 3359 #endif 3360 put_page(page); 3361 } 3362 3363 /** 3364 * skb_frag_unref - release a reference on a paged fragment of an skb. 3365 * @skb: the buffer 3366 * @f: the fragment offset 3367 * 3368 * Releases a reference on the @f'th paged fragment of @skb. 3369 */ 3370 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3371 { 3372 struct skb_shared_info *shinfo = skb_shinfo(skb); 3373 3374 if (!skb_zcopy_managed(skb)) 3375 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3376 } 3377 3378 /** 3379 * skb_frag_address - gets the address of the data contained in a paged fragment 3380 * @frag: the paged fragment buffer 3381 * 3382 * Returns the address of the data within @frag. The page must already 3383 * be mapped. 3384 */ 3385 static inline void *skb_frag_address(const skb_frag_t *frag) 3386 { 3387 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3388 } 3389 3390 /** 3391 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3392 * @frag: the paged fragment buffer 3393 * 3394 * Returns the address of the data within @frag. Checks that the page 3395 * is mapped and returns %NULL otherwise. 3396 */ 3397 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3398 { 3399 void *ptr = page_address(skb_frag_page(frag)); 3400 if (unlikely(!ptr)) 3401 return NULL; 3402 3403 return ptr + skb_frag_off(frag); 3404 } 3405 3406 /** 3407 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3408 * @fragto: skb fragment where page is set 3409 * @fragfrom: skb fragment page is copied from 3410 */ 3411 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3412 const skb_frag_t *fragfrom) 3413 { 3414 fragto->bv_page = fragfrom->bv_page; 3415 } 3416 3417 /** 3418 * __skb_frag_set_page - sets the page contained in a paged fragment 3419 * @frag: the paged fragment 3420 * @page: the page to set 3421 * 3422 * Sets the fragment @frag to contain @page. 3423 */ 3424 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3425 { 3426 frag->bv_page = page; 3427 } 3428 3429 /** 3430 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3431 * @skb: the buffer 3432 * @f: the fragment offset 3433 * @page: the page to set 3434 * 3435 * Sets the @f'th fragment of @skb to contain @page. 3436 */ 3437 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3438 struct page *page) 3439 { 3440 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3441 } 3442 3443 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3444 3445 /** 3446 * skb_frag_dma_map - maps a paged fragment via the DMA API 3447 * @dev: the device to map the fragment to 3448 * @frag: the paged fragment to map 3449 * @offset: the offset within the fragment (starting at the 3450 * fragment's own offset) 3451 * @size: the number of bytes to map 3452 * @dir: the direction of the mapping (``PCI_DMA_*``) 3453 * 3454 * Maps the page associated with @frag to @device. 3455 */ 3456 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3457 const skb_frag_t *frag, 3458 size_t offset, size_t size, 3459 enum dma_data_direction dir) 3460 { 3461 return dma_map_page(dev, skb_frag_page(frag), 3462 skb_frag_off(frag) + offset, size, dir); 3463 } 3464 3465 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3466 gfp_t gfp_mask) 3467 { 3468 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3469 } 3470 3471 3472 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3473 gfp_t gfp_mask) 3474 { 3475 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3476 } 3477 3478 3479 /** 3480 * skb_clone_writable - is the header of a clone writable 3481 * @skb: buffer to check 3482 * @len: length up to which to write 3483 * 3484 * Returns true if modifying the header part of the cloned buffer 3485 * does not requires the data to be copied. 3486 */ 3487 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3488 { 3489 return !skb_header_cloned(skb) && 3490 skb_headroom(skb) + len <= skb->hdr_len; 3491 } 3492 3493 static inline int skb_try_make_writable(struct sk_buff *skb, 3494 unsigned int write_len) 3495 { 3496 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3497 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3498 } 3499 3500 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3501 int cloned) 3502 { 3503 int delta = 0; 3504 3505 if (headroom > skb_headroom(skb)) 3506 delta = headroom - skb_headroom(skb); 3507 3508 if (delta || cloned) 3509 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3510 GFP_ATOMIC); 3511 return 0; 3512 } 3513 3514 /** 3515 * skb_cow - copy header of skb when it is required 3516 * @skb: buffer to cow 3517 * @headroom: needed headroom 3518 * 3519 * If the skb passed lacks sufficient headroom or its data part 3520 * is shared, data is reallocated. If reallocation fails, an error 3521 * is returned and original skb is not changed. 3522 * 3523 * The result is skb with writable area skb->head...skb->tail 3524 * and at least @headroom of space at head. 3525 */ 3526 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3527 { 3528 return __skb_cow(skb, headroom, skb_cloned(skb)); 3529 } 3530 3531 /** 3532 * skb_cow_head - skb_cow but only making the head writable 3533 * @skb: buffer to cow 3534 * @headroom: needed headroom 3535 * 3536 * This function is identical to skb_cow except that we replace the 3537 * skb_cloned check by skb_header_cloned. It should be used when 3538 * you only need to push on some header and do not need to modify 3539 * the data. 3540 */ 3541 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3542 { 3543 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3544 } 3545 3546 /** 3547 * skb_padto - pad an skbuff up to a minimal size 3548 * @skb: buffer to pad 3549 * @len: minimal length 3550 * 3551 * Pads up a buffer to ensure the trailing bytes exist and are 3552 * blanked. If the buffer already contains sufficient data it 3553 * is untouched. Otherwise it is extended. Returns zero on 3554 * success. The skb is freed on error. 3555 */ 3556 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3557 { 3558 unsigned int size = skb->len; 3559 if (likely(size >= len)) 3560 return 0; 3561 return skb_pad(skb, len - size); 3562 } 3563 3564 /** 3565 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3566 * @skb: buffer to pad 3567 * @len: minimal length 3568 * @free_on_error: free buffer on error 3569 * 3570 * Pads up a buffer to ensure the trailing bytes exist and are 3571 * blanked. If the buffer already contains sufficient data it 3572 * is untouched. Otherwise it is extended. Returns zero on 3573 * success. The skb is freed on error if @free_on_error is true. 3574 */ 3575 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3576 unsigned int len, 3577 bool free_on_error) 3578 { 3579 unsigned int size = skb->len; 3580 3581 if (unlikely(size < len)) { 3582 len -= size; 3583 if (__skb_pad(skb, len, free_on_error)) 3584 return -ENOMEM; 3585 __skb_put(skb, len); 3586 } 3587 return 0; 3588 } 3589 3590 /** 3591 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3592 * @skb: buffer to pad 3593 * @len: minimal length 3594 * 3595 * Pads up a buffer to ensure the trailing bytes exist and are 3596 * blanked. If the buffer already contains sufficient data it 3597 * is untouched. Otherwise it is extended. Returns zero on 3598 * success. The skb is freed on error. 3599 */ 3600 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3601 { 3602 return __skb_put_padto(skb, len, true); 3603 } 3604 3605 static inline int skb_add_data(struct sk_buff *skb, 3606 struct iov_iter *from, int copy) 3607 { 3608 const int off = skb->len; 3609 3610 if (skb->ip_summed == CHECKSUM_NONE) { 3611 __wsum csum = 0; 3612 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3613 &csum, from)) { 3614 skb->csum = csum_block_add(skb->csum, csum, off); 3615 return 0; 3616 } 3617 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3618 return 0; 3619 3620 __skb_trim(skb, off); 3621 return -EFAULT; 3622 } 3623 3624 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3625 const struct page *page, int off) 3626 { 3627 if (skb_zcopy(skb)) 3628 return false; 3629 if (i) { 3630 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3631 3632 return page == skb_frag_page(frag) && 3633 off == skb_frag_off(frag) + skb_frag_size(frag); 3634 } 3635 return false; 3636 } 3637 3638 static inline int __skb_linearize(struct sk_buff *skb) 3639 { 3640 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3641 } 3642 3643 /** 3644 * skb_linearize - convert paged skb to linear one 3645 * @skb: buffer to linarize 3646 * 3647 * If there is no free memory -ENOMEM is returned, otherwise zero 3648 * is returned and the old skb data released. 3649 */ 3650 static inline int skb_linearize(struct sk_buff *skb) 3651 { 3652 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3653 } 3654 3655 /** 3656 * skb_has_shared_frag - can any frag be overwritten 3657 * @skb: buffer to test 3658 * 3659 * Return true if the skb has at least one frag that might be modified 3660 * by an external entity (as in vmsplice()/sendfile()) 3661 */ 3662 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3663 { 3664 return skb_is_nonlinear(skb) && 3665 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3666 } 3667 3668 /** 3669 * skb_linearize_cow - make sure skb is linear and writable 3670 * @skb: buffer to process 3671 * 3672 * If there is no free memory -ENOMEM is returned, otherwise zero 3673 * is returned and the old skb data released. 3674 */ 3675 static inline int skb_linearize_cow(struct sk_buff *skb) 3676 { 3677 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3678 __skb_linearize(skb) : 0; 3679 } 3680 3681 static __always_inline void 3682 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3683 unsigned int off) 3684 { 3685 if (skb->ip_summed == CHECKSUM_COMPLETE) 3686 skb->csum = csum_block_sub(skb->csum, 3687 csum_partial(start, len, 0), off); 3688 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3689 skb_checksum_start_offset(skb) < 0) 3690 skb->ip_summed = CHECKSUM_NONE; 3691 } 3692 3693 /** 3694 * skb_postpull_rcsum - update checksum for received skb after pull 3695 * @skb: buffer to update 3696 * @start: start of data before pull 3697 * @len: length of data pulled 3698 * 3699 * After doing a pull on a received packet, you need to call this to 3700 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3701 * CHECKSUM_NONE so that it can be recomputed from scratch. 3702 */ 3703 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3704 const void *start, unsigned int len) 3705 { 3706 if (skb->ip_summed == CHECKSUM_COMPLETE) 3707 skb->csum = wsum_negate(csum_partial(start, len, 3708 wsum_negate(skb->csum))); 3709 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3710 skb_checksum_start_offset(skb) < 0) 3711 skb->ip_summed = CHECKSUM_NONE; 3712 } 3713 3714 static __always_inline void 3715 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3716 unsigned int off) 3717 { 3718 if (skb->ip_summed == CHECKSUM_COMPLETE) 3719 skb->csum = csum_block_add(skb->csum, 3720 csum_partial(start, len, 0), off); 3721 } 3722 3723 /** 3724 * skb_postpush_rcsum - update checksum for received skb after push 3725 * @skb: buffer to update 3726 * @start: start of data after push 3727 * @len: length of data pushed 3728 * 3729 * After doing a push on a received packet, you need to call this to 3730 * update the CHECKSUM_COMPLETE checksum. 3731 */ 3732 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3733 const void *start, unsigned int len) 3734 { 3735 __skb_postpush_rcsum(skb, start, len, 0); 3736 } 3737 3738 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3739 3740 /** 3741 * skb_push_rcsum - push skb and update receive checksum 3742 * @skb: buffer to update 3743 * @len: length of data pulled 3744 * 3745 * This function performs an skb_push on the packet and updates 3746 * the CHECKSUM_COMPLETE checksum. It should be used on 3747 * receive path processing instead of skb_push unless you know 3748 * that the checksum difference is zero (e.g., a valid IP header) 3749 * or you are setting ip_summed to CHECKSUM_NONE. 3750 */ 3751 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3752 { 3753 skb_push(skb, len); 3754 skb_postpush_rcsum(skb, skb->data, len); 3755 return skb->data; 3756 } 3757 3758 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3759 /** 3760 * pskb_trim_rcsum - trim received skb and update checksum 3761 * @skb: buffer to trim 3762 * @len: new length 3763 * 3764 * This is exactly the same as pskb_trim except that it ensures the 3765 * checksum of received packets are still valid after the operation. 3766 * It can change skb pointers. 3767 */ 3768 3769 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3770 { 3771 if (likely(len >= skb->len)) 3772 return 0; 3773 return pskb_trim_rcsum_slow(skb, len); 3774 } 3775 3776 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3777 { 3778 if (skb->ip_summed == CHECKSUM_COMPLETE) 3779 skb->ip_summed = CHECKSUM_NONE; 3780 __skb_trim(skb, len); 3781 return 0; 3782 } 3783 3784 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3785 { 3786 if (skb->ip_summed == CHECKSUM_COMPLETE) 3787 skb->ip_summed = CHECKSUM_NONE; 3788 return __skb_grow(skb, len); 3789 } 3790 3791 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3792 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3793 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3794 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3795 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3796 3797 #define skb_queue_walk(queue, skb) \ 3798 for (skb = (queue)->next; \ 3799 skb != (struct sk_buff *)(queue); \ 3800 skb = skb->next) 3801 3802 #define skb_queue_walk_safe(queue, skb, tmp) \ 3803 for (skb = (queue)->next, tmp = skb->next; \ 3804 skb != (struct sk_buff *)(queue); \ 3805 skb = tmp, tmp = skb->next) 3806 3807 #define skb_queue_walk_from(queue, skb) \ 3808 for (; skb != (struct sk_buff *)(queue); \ 3809 skb = skb->next) 3810 3811 #define skb_rbtree_walk(skb, root) \ 3812 for (skb = skb_rb_first(root); skb != NULL; \ 3813 skb = skb_rb_next(skb)) 3814 3815 #define skb_rbtree_walk_from(skb) \ 3816 for (; skb != NULL; \ 3817 skb = skb_rb_next(skb)) 3818 3819 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3820 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3821 skb = tmp) 3822 3823 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3824 for (tmp = skb->next; \ 3825 skb != (struct sk_buff *)(queue); \ 3826 skb = tmp, tmp = skb->next) 3827 3828 #define skb_queue_reverse_walk(queue, skb) \ 3829 for (skb = (queue)->prev; \ 3830 skb != (struct sk_buff *)(queue); \ 3831 skb = skb->prev) 3832 3833 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3834 for (skb = (queue)->prev, tmp = skb->prev; \ 3835 skb != (struct sk_buff *)(queue); \ 3836 skb = tmp, tmp = skb->prev) 3837 3838 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3839 for (tmp = skb->prev; \ 3840 skb != (struct sk_buff *)(queue); \ 3841 skb = tmp, tmp = skb->prev) 3842 3843 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3844 { 3845 return skb_shinfo(skb)->frag_list != NULL; 3846 } 3847 3848 static inline void skb_frag_list_init(struct sk_buff *skb) 3849 { 3850 skb_shinfo(skb)->frag_list = NULL; 3851 } 3852 3853 #define skb_walk_frags(skb, iter) \ 3854 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3855 3856 3857 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3858 int *err, long *timeo_p, 3859 const struct sk_buff *skb); 3860 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3861 struct sk_buff_head *queue, 3862 unsigned int flags, 3863 int *off, int *err, 3864 struct sk_buff **last); 3865 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3866 struct sk_buff_head *queue, 3867 unsigned int flags, int *off, int *err, 3868 struct sk_buff **last); 3869 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3870 struct sk_buff_head *sk_queue, 3871 unsigned int flags, int *off, int *err); 3872 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3873 __poll_t datagram_poll(struct file *file, struct socket *sock, 3874 struct poll_table_struct *wait); 3875 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3876 struct iov_iter *to, int size); 3877 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3878 struct msghdr *msg, int size) 3879 { 3880 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3881 } 3882 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3883 struct msghdr *msg); 3884 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3885 struct iov_iter *to, int len, 3886 struct ahash_request *hash); 3887 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3888 struct iov_iter *from, int len); 3889 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3890 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3891 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3892 static inline void skb_free_datagram_locked(struct sock *sk, 3893 struct sk_buff *skb) 3894 { 3895 __skb_free_datagram_locked(sk, skb, 0); 3896 } 3897 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3898 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3899 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3900 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3901 int len); 3902 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3903 struct pipe_inode_info *pipe, unsigned int len, 3904 unsigned int flags); 3905 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3906 int len); 3907 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3908 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3909 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3910 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3911 int len, int hlen); 3912 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3913 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3914 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3915 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3916 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3917 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3918 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3919 unsigned int offset); 3920 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3921 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3922 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3923 int skb_vlan_pop(struct sk_buff *skb); 3924 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3925 int skb_eth_pop(struct sk_buff *skb); 3926 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3927 const unsigned char *src); 3928 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3929 int mac_len, bool ethernet); 3930 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3931 bool ethernet); 3932 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3933 int skb_mpls_dec_ttl(struct sk_buff *skb); 3934 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3935 gfp_t gfp); 3936 3937 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3938 { 3939 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3940 } 3941 3942 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3943 { 3944 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3945 } 3946 3947 struct skb_checksum_ops { 3948 __wsum (*update)(const void *mem, int len, __wsum wsum); 3949 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3950 }; 3951 3952 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3953 3954 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3955 __wsum csum, const struct skb_checksum_ops *ops); 3956 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3957 __wsum csum); 3958 3959 static inline void * __must_check 3960 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3961 const void *data, int hlen, void *buffer) 3962 { 3963 if (likely(hlen - offset >= len)) 3964 return (void *)data + offset; 3965 3966 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3967 return NULL; 3968 3969 return buffer; 3970 } 3971 3972 static inline void * __must_check 3973 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3974 { 3975 return __skb_header_pointer(skb, offset, len, skb->data, 3976 skb_headlen(skb), buffer); 3977 } 3978 3979 /** 3980 * skb_needs_linearize - check if we need to linearize a given skb 3981 * depending on the given device features. 3982 * @skb: socket buffer to check 3983 * @features: net device features 3984 * 3985 * Returns true if either: 3986 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3987 * 2. skb is fragmented and the device does not support SG. 3988 */ 3989 static inline bool skb_needs_linearize(struct sk_buff *skb, 3990 netdev_features_t features) 3991 { 3992 return skb_is_nonlinear(skb) && 3993 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3994 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3995 } 3996 3997 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3998 void *to, 3999 const unsigned int len) 4000 { 4001 memcpy(to, skb->data, len); 4002 } 4003 4004 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4005 const int offset, void *to, 4006 const unsigned int len) 4007 { 4008 memcpy(to, skb->data + offset, len); 4009 } 4010 4011 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4012 const void *from, 4013 const unsigned int len) 4014 { 4015 memcpy(skb->data, from, len); 4016 } 4017 4018 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4019 const int offset, 4020 const void *from, 4021 const unsigned int len) 4022 { 4023 memcpy(skb->data + offset, from, len); 4024 } 4025 4026 void skb_init(void); 4027 4028 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4029 { 4030 return skb->tstamp; 4031 } 4032 4033 /** 4034 * skb_get_timestamp - get timestamp from a skb 4035 * @skb: skb to get stamp from 4036 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4037 * 4038 * Timestamps are stored in the skb as offsets to a base timestamp. 4039 * This function converts the offset back to a struct timeval and stores 4040 * it in stamp. 4041 */ 4042 static inline void skb_get_timestamp(const struct sk_buff *skb, 4043 struct __kernel_old_timeval *stamp) 4044 { 4045 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4046 } 4047 4048 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4049 struct __kernel_sock_timeval *stamp) 4050 { 4051 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4052 4053 stamp->tv_sec = ts.tv_sec; 4054 stamp->tv_usec = ts.tv_nsec / 1000; 4055 } 4056 4057 static inline void skb_get_timestampns(const struct sk_buff *skb, 4058 struct __kernel_old_timespec *stamp) 4059 { 4060 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4061 4062 stamp->tv_sec = ts.tv_sec; 4063 stamp->tv_nsec = ts.tv_nsec; 4064 } 4065 4066 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4067 struct __kernel_timespec *stamp) 4068 { 4069 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4070 4071 stamp->tv_sec = ts.tv_sec; 4072 stamp->tv_nsec = ts.tv_nsec; 4073 } 4074 4075 static inline void __net_timestamp(struct sk_buff *skb) 4076 { 4077 skb->tstamp = ktime_get_real(); 4078 skb->mono_delivery_time = 0; 4079 } 4080 4081 static inline ktime_t net_timedelta(ktime_t t) 4082 { 4083 return ktime_sub(ktime_get_real(), t); 4084 } 4085 4086 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4087 bool mono) 4088 { 4089 skb->tstamp = kt; 4090 skb->mono_delivery_time = kt && mono; 4091 } 4092 4093 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4094 4095 /* It is used in the ingress path to clear the delivery_time. 4096 * If needed, set the skb->tstamp to the (rcv) timestamp. 4097 */ 4098 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4099 { 4100 if (skb->mono_delivery_time) { 4101 skb->mono_delivery_time = 0; 4102 if (static_branch_unlikely(&netstamp_needed_key)) 4103 skb->tstamp = ktime_get_real(); 4104 else 4105 skb->tstamp = 0; 4106 } 4107 } 4108 4109 static inline void skb_clear_tstamp(struct sk_buff *skb) 4110 { 4111 if (skb->mono_delivery_time) 4112 return; 4113 4114 skb->tstamp = 0; 4115 } 4116 4117 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4118 { 4119 if (skb->mono_delivery_time) 4120 return 0; 4121 4122 return skb->tstamp; 4123 } 4124 4125 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4126 { 4127 if (!skb->mono_delivery_time && skb->tstamp) 4128 return skb->tstamp; 4129 4130 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4131 return ktime_get_real(); 4132 4133 return 0; 4134 } 4135 4136 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4137 { 4138 return skb_shinfo(skb)->meta_len; 4139 } 4140 4141 static inline void *skb_metadata_end(const struct sk_buff *skb) 4142 { 4143 return skb_mac_header(skb); 4144 } 4145 4146 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4147 const struct sk_buff *skb_b, 4148 u8 meta_len) 4149 { 4150 const void *a = skb_metadata_end(skb_a); 4151 const void *b = skb_metadata_end(skb_b); 4152 /* Using more efficient varaiant than plain call to memcmp(). */ 4153 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4154 u64 diffs = 0; 4155 4156 switch (meta_len) { 4157 #define __it(x, op) (x -= sizeof(u##op)) 4158 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4159 case 32: diffs |= __it_diff(a, b, 64); 4160 fallthrough; 4161 case 24: diffs |= __it_diff(a, b, 64); 4162 fallthrough; 4163 case 16: diffs |= __it_diff(a, b, 64); 4164 fallthrough; 4165 case 8: diffs |= __it_diff(a, b, 64); 4166 break; 4167 case 28: diffs |= __it_diff(a, b, 64); 4168 fallthrough; 4169 case 20: diffs |= __it_diff(a, b, 64); 4170 fallthrough; 4171 case 12: diffs |= __it_diff(a, b, 64); 4172 fallthrough; 4173 case 4: diffs |= __it_diff(a, b, 32); 4174 break; 4175 } 4176 return diffs; 4177 #else 4178 return memcmp(a - meta_len, b - meta_len, meta_len); 4179 #endif 4180 } 4181 4182 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4183 const struct sk_buff *skb_b) 4184 { 4185 u8 len_a = skb_metadata_len(skb_a); 4186 u8 len_b = skb_metadata_len(skb_b); 4187 4188 if (!(len_a | len_b)) 4189 return false; 4190 4191 return len_a != len_b ? 4192 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4193 } 4194 4195 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4196 { 4197 skb_shinfo(skb)->meta_len = meta_len; 4198 } 4199 4200 static inline void skb_metadata_clear(struct sk_buff *skb) 4201 { 4202 skb_metadata_set(skb, 0); 4203 } 4204 4205 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4206 4207 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4208 4209 void skb_clone_tx_timestamp(struct sk_buff *skb); 4210 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4211 4212 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4213 4214 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4215 { 4216 } 4217 4218 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4219 { 4220 return false; 4221 } 4222 4223 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4224 4225 /** 4226 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4227 * 4228 * PHY drivers may accept clones of transmitted packets for 4229 * timestamping via their phy_driver.txtstamp method. These drivers 4230 * must call this function to return the skb back to the stack with a 4231 * timestamp. 4232 * 4233 * @skb: clone of the original outgoing packet 4234 * @hwtstamps: hardware time stamps 4235 * 4236 */ 4237 void skb_complete_tx_timestamp(struct sk_buff *skb, 4238 struct skb_shared_hwtstamps *hwtstamps); 4239 4240 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4241 struct skb_shared_hwtstamps *hwtstamps, 4242 struct sock *sk, int tstype); 4243 4244 /** 4245 * skb_tstamp_tx - queue clone of skb with send time stamps 4246 * @orig_skb: the original outgoing packet 4247 * @hwtstamps: hardware time stamps, may be NULL if not available 4248 * 4249 * If the skb has a socket associated, then this function clones the 4250 * skb (thus sharing the actual data and optional structures), stores 4251 * the optional hardware time stamping information (if non NULL) or 4252 * generates a software time stamp (otherwise), then queues the clone 4253 * to the error queue of the socket. Errors are silently ignored. 4254 */ 4255 void skb_tstamp_tx(struct sk_buff *orig_skb, 4256 struct skb_shared_hwtstamps *hwtstamps); 4257 4258 /** 4259 * skb_tx_timestamp() - Driver hook for transmit timestamping 4260 * 4261 * Ethernet MAC Drivers should call this function in their hard_xmit() 4262 * function immediately before giving the sk_buff to the MAC hardware. 4263 * 4264 * Specifically, one should make absolutely sure that this function is 4265 * called before TX completion of this packet can trigger. Otherwise 4266 * the packet could potentially already be freed. 4267 * 4268 * @skb: A socket buffer. 4269 */ 4270 static inline void skb_tx_timestamp(struct sk_buff *skb) 4271 { 4272 skb_clone_tx_timestamp(skb); 4273 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4274 skb_tstamp_tx(skb, NULL); 4275 } 4276 4277 /** 4278 * skb_complete_wifi_ack - deliver skb with wifi status 4279 * 4280 * @skb: the original outgoing packet 4281 * @acked: ack status 4282 * 4283 */ 4284 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4285 4286 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4287 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4288 4289 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4290 { 4291 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4292 skb->csum_valid || 4293 (skb->ip_summed == CHECKSUM_PARTIAL && 4294 skb_checksum_start_offset(skb) >= 0)); 4295 } 4296 4297 /** 4298 * skb_checksum_complete - Calculate checksum of an entire packet 4299 * @skb: packet to process 4300 * 4301 * This function calculates the checksum over the entire packet plus 4302 * the value of skb->csum. The latter can be used to supply the 4303 * checksum of a pseudo header as used by TCP/UDP. It returns the 4304 * checksum. 4305 * 4306 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4307 * this function can be used to verify that checksum on received 4308 * packets. In that case the function should return zero if the 4309 * checksum is correct. In particular, this function will return zero 4310 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4311 * hardware has already verified the correctness of the checksum. 4312 */ 4313 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4314 { 4315 return skb_csum_unnecessary(skb) ? 4316 0 : __skb_checksum_complete(skb); 4317 } 4318 4319 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4320 { 4321 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4322 if (skb->csum_level == 0) 4323 skb->ip_summed = CHECKSUM_NONE; 4324 else 4325 skb->csum_level--; 4326 } 4327 } 4328 4329 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4330 { 4331 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4332 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4333 skb->csum_level++; 4334 } else if (skb->ip_summed == CHECKSUM_NONE) { 4335 skb->ip_summed = CHECKSUM_UNNECESSARY; 4336 skb->csum_level = 0; 4337 } 4338 } 4339 4340 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4341 { 4342 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4343 skb->ip_summed = CHECKSUM_NONE; 4344 skb->csum_level = 0; 4345 } 4346 } 4347 4348 /* Check if we need to perform checksum complete validation. 4349 * 4350 * Returns true if checksum complete is needed, false otherwise 4351 * (either checksum is unnecessary or zero checksum is allowed). 4352 */ 4353 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4354 bool zero_okay, 4355 __sum16 check) 4356 { 4357 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4358 skb->csum_valid = 1; 4359 __skb_decr_checksum_unnecessary(skb); 4360 return false; 4361 } 4362 4363 return true; 4364 } 4365 4366 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4367 * in checksum_init. 4368 */ 4369 #define CHECKSUM_BREAK 76 4370 4371 /* Unset checksum-complete 4372 * 4373 * Unset checksum complete can be done when packet is being modified 4374 * (uncompressed for instance) and checksum-complete value is 4375 * invalidated. 4376 */ 4377 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4378 { 4379 if (skb->ip_summed == CHECKSUM_COMPLETE) 4380 skb->ip_summed = CHECKSUM_NONE; 4381 } 4382 4383 /* Validate (init) checksum based on checksum complete. 4384 * 4385 * Return values: 4386 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4387 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4388 * checksum is stored in skb->csum for use in __skb_checksum_complete 4389 * non-zero: value of invalid checksum 4390 * 4391 */ 4392 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4393 bool complete, 4394 __wsum psum) 4395 { 4396 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4397 if (!csum_fold(csum_add(psum, skb->csum))) { 4398 skb->csum_valid = 1; 4399 return 0; 4400 } 4401 } 4402 4403 skb->csum = psum; 4404 4405 if (complete || skb->len <= CHECKSUM_BREAK) { 4406 __sum16 csum; 4407 4408 csum = __skb_checksum_complete(skb); 4409 skb->csum_valid = !csum; 4410 return csum; 4411 } 4412 4413 return 0; 4414 } 4415 4416 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4417 { 4418 return 0; 4419 } 4420 4421 /* Perform checksum validate (init). Note that this is a macro since we only 4422 * want to calculate the pseudo header which is an input function if necessary. 4423 * First we try to validate without any computation (checksum unnecessary) and 4424 * then calculate based on checksum complete calling the function to compute 4425 * pseudo header. 4426 * 4427 * Return values: 4428 * 0: checksum is validated or try to in skb_checksum_complete 4429 * non-zero: value of invalid checksum 4430 */ 4431 #define __skb_checksum_validate(skb, proto, complete, \ 4432 zero_okay, check, compute_pseudo) \ 4433 ({ \ 4434 __sum16 __ret = 0; \ 4435 skb->csum_valid = 0; \ 4436 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4437 __ret = __skb_checksum_validate_complete(skb, \ 4438 complete, compute_pseudo(skb, proto)); \ 4439 __ret; \ 4440 }) 4441 4442 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4443 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4444 4445 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4446 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4447 4448 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4449 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4450 4451 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4452 compute_pseudo) \ 4453 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4454 4455 #define skb_checksum_simple_validate(skb) \ 4456 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4457 4458 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4459 { 4460 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4461 } 4462 4463 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4464 { 4465 skb->csum = ~pseudo; 4466 skb->ip_summed = CHECKSUM_COMPLETE; 4467 } 4468 4469 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4470 do { \ 4471 if (__skb_checksum_convert_check(skb)) \ 4472 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4473 } while (0) 4474 4475 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4476 u16 start, u16 offset) 4477 { 4478 skb->ip_summed = CHECKSUM_PARTIAL; 4479 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4480 skb->csum_offset = offset - start; 4481 } 4482 4483 /* Update skbuf and packet to reflect the remote checksum offload operation. 4484 * When called, ptr indicates the starting point for skb->csum when 4485 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4486 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4487 */ 4488 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4489 int start, int offset, bool nopartial) 4490 { 4491 __wsum delta; 4492 4493 if (!nopartial) { 4494 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4495 return; 4496 } 4497 4498 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4499 __skb_checksum_complete(skb); 4500 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4501 } 4502 4503 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4504 4505 /* Adjust skb->csum since we changed the packet */ 4506 skb->csum = csum_add(skb->csum, delta); 4507 } 4508 4509 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4510 { 4511 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4512 return (void *)(skb->_nfct & NFCT_PTRMASK); 4513 #else 4514 return NULL; 4515 #endif 4516 } 4517 4518 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4519 { 4520 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4521 return skb->_nfct; 4522 #else 4523 return 0UL; 4524 #endif 4525 } 4526 4527 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4528 { 4529 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4530 skb->slow_gro |= !!nfct; 4531 skb->_nfct = nfct; 4532 #endif 4533 } 4534 4535 #ifdef CONFIG_SKB_EXTENSIONS 4536 enum skb_ext_id { 4537 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4538 SKB_EXT_BRIDGE_NF, 4539 #endif 4540 #ifdef CONFIG_XFRM 4541 SKB_EXT_SEC_PATH, 4542 #endif 4543 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4544 TC_SKB_EXT, 4545 #endif 4546 #if IS_ENABLED(CONFIG_MPTCP) 4547 SKB_EXT_MPTCP, 4548 #endif 4549 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4550 SKB_EXT_MCTP, 4551 #endif 4552 SKB_EXT_NUM, /* must be last */ 4553 }; 4554 4555 /** 4556 * struct skb_ext - sk_buff extensions 4557 * @refcnt: 1 on allocation, deallocated on 0 4558 * @offset: offset to add to @data to obtain extension address 4559 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4560 * @data: start of extension data, variable sized 4561 * 4562 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4563 * to use 'u8' types while allowing up to 2kb worth of extension data. 4564 */ 4565 struct skb_ext { 4566 refcount_t refcnt; 4567 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4568 u8 chunks; /* same */ 4569 char data[] __aligned(8); 4570 }; 4571 4572 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4573 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4574 struct skb_ext *ext); 4575 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4576 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4577 void __skb_ext_put(struct skb_ext *ext); 4578 4579 static inline void skb_ext_put(struct sk_buff *skb) 4580 { 4581 if (skb->active_extensions) 4582 __skb_ext_put(skb->extensions); 4583 } 4584 4585 static inline void __skb_ext_copy(struct sk_buff *dst, 4586 const struct sk_buff *src) 4587 { 4588 dst->active_extensions = src->active_extensions; 4589 4590 if (src->active_extensions) { 4591 struct skb_ext *ext = src->extensions; 4592 4593 refcount_inc(&ext->refcnt); 4594 dst->extensions = ext; 4595 } 4596 } 4597 4598 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4599 { 4600 skb_ext_put(dst); 4601 __skb_ext_copy(dst, src); 4602 } 4603 4604 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4605 { 4606 return !!ext->offset[i]; 4607 } 4608 4609 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4610 { 4611 return skb->active_extensions & (1 << id); 4612 } 4613 4614 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4615 { 4616 if (skb_ext_exist(skb, id)) 4617 __skb_ext_del(skb, id); 4618 } 4619 4620 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4621 { 4622 if (skb_ext_exist(skb, id)) { 4623 struct skb_ext *ext = skb->extensions; 4624 4625 return (void *)ext + (ext->offset[id] << 3); 4626 } 4627 4628 return NULL; 4629 } 4630 4631 static inline void skb_ext_reset(struct sk_buff *skb) 4632 { 4633 if (unlikely(skb->active_extensions)) { 4634 __skb_ext_put(skb->extensions); 4635 skb->active_extensions = 0; 4636 } 4637 } 4638 4639 static inline bool skb_has_extensions(struct sk_buff *skb) 4640 { 4641 return unlikely(skb->active_extensions); 4642 } 4643 #else 4644 static inline void skb_ext_put(struct sk_buff *skb) {} 4645 static inline void skb_ext_reset(struct sk_buff *skb) {} 4646 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4647 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4648 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4649 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4650 #endif /* CONFIG_SKB_EXTENSIONS */ 4651 4652 static inline void nf_reset_ct(struct sk_buff *skb) 4653 { 4654 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4655 nf_conntrack_put(skb_nfct(skb)); 4656 skb->_nfct = 0; 4657 #endif 4658 } 4659 4660 static inline void nf_reset_trace(struct sk_buff *skb) 4661 { 4662 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4663 skb->nf_trace = 0; 4664 #endif 4665 } 4666 4667 static inline void ipvs_reset(struct sk_buff *skb) 4668 { 4669 #if IS_ENABLED(CONFIG_IP_VS) 4670 skb->ipvs_property = 0; 4671 #endif 4672 } 4673 4674 /* Note: This doesn't put any conntrack info in dst. */ 4675 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4676 bool copy) 4677 { 4678 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4679 dst->_nfct = src->_nfct; 4680 nf_conntrack_get(skb_nfct(src)); 4681 #endif 4682 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4683 if (copy) 4684 dst->nf_trace = src->nf_trace; 4685 #endif 4686 } 4687 4688 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4689 { 4690 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4691 nf_conntrack_put(skb_nfct(dst)); 4692 #endif 4693 dst->slow_gro = src->slow_gro; 4694 __nf_copy(dst, src, true); 4695 } 4696 4697 #ifdef CONFIG_NETWORK_SECMARK 4698 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4699 { 4700 to->secmark = from->secmark; 4701 } 4702 4703 static inline void skb_init_secmark(struct sk_buff *skb) 4704 { 4705 skb->secmark = 0; 4706 } 4707 #else 4708 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4709 { } 4710 4711 static inline void skb_init_secmark(struct sk_buff *skb) 4712 { } 4713 #endif 4714 4715 static inline int secpath_exists(const struct sk_buff *skb) 4716 { 4717 #ifdef CONFIG_XFRM 4718 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4719 #else 4720 return 0; 4721 #endif 4722 } 4723 4724 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4725 { 4726 return !skb->destructor && 4727 !secpath_exists(skb) && 4728 !skb_nfct(skb) && 4729 !skb->_skb_refdst && 4730 !skb_has_frag_list(skb); 4731 } 4732 4733 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4734 { 4735 skb->queue_mapping = queue_mapping; 4736 } 4737 4738 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4739 { 4740 return skb->queue_mapping; 4741 } 4742 4743 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4744 { 4745 to->queue_mapping = from->queue_mapping; 4746 } 4747 4748 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4749 { 4750 skb->queue_mapping = rx_queue + 1; 4751 } 4752 4753 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4754 { 4755 return skb->queue_mapping - 1; 4756 } 4757 4758 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4759 { 4760 return skb->queue_mapping != 0; 4761 } 4762 4763 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4764 { 4765 skb->dst_pending_confirm = val; 4766 } 4767 4768 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4769 { 4770 return skb->dst_pending_confirm != 0; 4771 } 4772 4773 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4774 { 4775 #ifdef CONFIG_XFRM 4776 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4777 #else 4778 return NULL; 4779 #endif 4780 } 4781 4782 /* Keeps track of mac header offset relative to skb->head. 4783 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4784 * For non-tunnel skb it points to skb_mac_header() and for 4785 * tunnel skb it points to outer mac header. 4786 * Keeps track of level of encapsulation of network headers. 4787 */ 4788 struct skb_gso_cb { 4789 union { 4790 int mac_offset; 4791 int data_offset; 4792 }; 4793 int encap_level; 4794 __wsum csum; 4795 __u16 csum_start; 4796 }; 4797 #define SKB_GSO_CB_OFFSET 32 4798 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4799 4800 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4801 { 4802 return (skb_mac_header(inner_skb) - inner_skb->head) - 4803 SKB_GSO_CB(inner_skb)->mac_offset; 4804 } 4805 4806 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4807 { 4808 int new_headroom, headroom; 4809 int ret; 4810 4811 headroom = skb_headroom(skb); 4812 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4813 if (ret) 4814 return ret; 4815 4816 new_headroom = skb_headroom(skb); 4817 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4818 return 0; 4819 } 4820 4821 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4822 { 4823 /* Do not update partial checksums if remote checksum is enabled. */ 4824 if (skb->remcsum_offload) 4825 return; 4826 4827 SKB_GSO_CB(skb)->csum = res; 4828 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4829 } 4830 4831 /* Compute the checksum for a gso segment. First compute the checksum value 4832 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4833 * then add in skb->csum (checksum from csum_start to end of packet). 4834 * skb->csum and csum_start are then updated to reflect the checksum of the 4835 * resultant packet starting from the transport header-- the resultant checksum 4836 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4837 * header. 4838 */ 4839 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4840 { 4841 unsigned char *csum_start = skb_transport_header(skb); 4842 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4843 __wsum partial = SKB_GSO_CB(skb)->csum; 4844 4845 SKB_GSO_CB(skb)->csum = res; 4846 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4847 4848 return csum_fold(csum_partial(csum_start, plen, partial)); 4849 } 4850 4851 static inline bool skb_is_gso(const struct sk_buff *skb) 4852 { 4853 return skb_shinfo(skb)->gso_size; 4854 } 4855 4856 /* Note: Should be called only if skb_is_gso(skb) is true */ 4857 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4858 { 4859 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4860 } 4861 4862 /* Note: Should be called only if skb_is_gso(skb) is true */ 4863 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4864 { 4865 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4866 } 4867 4868 /* Note: Should be called only if skb_is_gso(skb) is true */ 4869 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4870 { 4871 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4872 } 4873 4874 static inline void skb_gso_reset(struct sk_buff *skb) 4875 { 4876 skb_shinfo(skb)->gso_size = 0; 4877 skb_shinfo(skb)->gso_segs = 0; 4878 skb_shinfo(skb)->gso_type = 0; 4879 } 4880 4881 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4882 u16 increment) 4883 { 4884 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4885 return; 4886 shinfo->gso_size += increment; 4887 } 4888 4889 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4890 u16 decrement) 4891 { 4892 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4893 return; 4894 shinfo->gso_size -= decrement; 4895 } 4896 4897 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4898 4899 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4900 { 4901 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4902 * wanted then gso_type will be set. */ 4903 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4904 4905 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4906 unlikely(shinfo->gso_type == 0)) { 4907 __skb_warn_lro_forwarding(skb); 4908 return true; 4909 } 4910 return false; 4911 } 4912 4913 static inline void skb_forward_csum(struct sk_buff *skb) 4914 { 4915 /* Unfortunately we don't support this one. Any brave souls? */ 4916 if (skb->ip_summed == CHECKSUM_COMPLETE) 4917 skb->ip_summed = CHECKSUM_NONE; 4918 } 4919 4920 /** 4921 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4922 * @skb: skb to check 4923 * 4924 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4925 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4926 * use this helper, to document places where we make this assertion. 4927 */ 4928 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4929 { 4930 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4931 } 4932 4933 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4934 4935 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4936 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4937 unsigned int transport_len, 4938 __sum16(*skb_chkf)(struct sk_buff *skb)); 4939 4940 /** 4941 * skb_head_is_locked - Determine if the skb->head is locked down 4942 * @skb: skb to check 4943 * 4944 * The head on skbs build around a head frag can be removed if they are 4945 * not cloned. This function returns true if the skb head is locked down 4946 * due to either being allocated via kmalloc, or by being a clone with 4947 * multiple references to the head. 4948 */ 4949 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4950 { 4951 return !skb->head_frag || skb_cloned(skb); 4952 } 4953 4954 /* Local Checksum Offload. 4955 * Compute outer checksum based on the assumption that the 4956 * inner checksum will be offloaded later. 4957 * See Documentation/networking/checksum-offloads.rst for 4958 * explanation of how this works. 4959 * Fill in outer checksum adjustment (e.g. with sum of outer 4960 * pseudo-header) before calling. 4961 * Also ensure that inner checksum is in linear data area. 4962 */ 4963 static inline __wsum lco_csum(struct sk_buff *skb) 4964 { 4965 unsigned char *csum_start = skb_checksum_start(skb); 4966 unsigned char *l4_hdr = skb_transport_header(skb); 4967 __wsum partial; 4968 4969 /* Start with complement of inner checksum adjustment */ 4970 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4971 skb->csum_offset)); 4972 4973 /* Add in checksum of our headers (incl. outer checksum 4974 * adjustment filled in by caller) and return result. 4975 */ 4976 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4977 } 4978 4979 static inline bool skb_is_redirected(const struct sk_buff *skb) 4980 { 4981 return skb->redirected; 4982 } 4983 4984 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4985 { 4986 skb->redirected = 1; 4987 #ifdef CONFIG_NET_REDIRECT 4988 skb->from_ingress = from_ingress; 4989 if (skb->from_ingress) 4990 skb_clear_tstamp(skb); 4991 #endif 4992 } 4993 4994 static inline void skb_reset_redirect(struct sk_buff *skb) 4995 { 4996 skb->redirected = 0; 4997 } 4998 4999 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5000 { 5001 return skb->csum_not_inet; 5002 } 5003 5004 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5005 const u64 kcov_handle) 5006 { 5007 #ifdef CONFIG_KCOV 5008 skb->kcov_handle = kcov_handle; 5009 #endif 5010 } 5011 5012 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5013 { 5014 #ifdef CONFIG_KCOV 5015 return skb->kcov_handle; 5016 #else 5017 return 0; 5018 #endif 5019 } 5020 5021 #ifdef CONFIG_PAGE_POOL 5022 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5023 { 5024 skb->pp_recycle = 1; 5025 } 5026 #endif 5027 5028 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 5029 { 5030 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 5031 return false; 5032 return page_pool_return_skb_page(virt_to_page(data)); 5033 } 5034 5035 #endif /* __KERNEL__ */ 5036 #endif /* _LINUX_SKBUFF_H */ 5037