xref: /linux-6.15/include/linux/skbuff.h (revision facb4edc)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
133 	__u32 page_offset;
134 	__u32 size;
135 #else
136 	__u16 page_offset;
137 	__u16 size;
138 #endif
139 };
140 
141 #define HAVE_HW_TIME_STAMP
142 
143 /**
144  * struct skb_shared_hwtstamps - hardware time stamps
145  * @hwtstamp:	hardware time stamp transformed into duration
146  *		since arbitrary point in time
147  * @syststamp:	hwtstamp transformed to system time base
148  *
149  * Software time stamps generated by ktime_get_real() are stored in
150  * skb->tstamp. The relation between the different kinds of time
151  * stamps is as follows:
152  *
153  * syststamp and tstamp can be compared against each other in
154  * arbitrary combinations.  The accuracy of a
155  * syststamp/tstamp/"syststamp from other device" comparison is
156  * limited by the accuracy of the transformation into system time
157  * base. This depends on the device driver and its underlying
158  * hardware.
159  *
160  * hwtstamps can only be compared against other hwtstamps from
161  * the same device.
162  *
163  * This structure is attached to packets as part of the
164  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
165  */
166 struct skb_shared_hwtstamps {
167 	ktime_t	hwtstamp;
168 	ktime_t	syststamp;
169 };
170 
171 /* Definitions for tx_flags in struct skb_shared_info */
172 enum {
173 	/* generate hardware time stamp */
174 	SKBTX_HW_TSTAMP = 1 << 0,
175 
176 	/* generate software time stamp */
177 	SKBTX_SW_TSTAMP = 1 << 1,
178 
179 	/* device driver is going to provide hardware time stamp */
180 	SKBTX_IN_PROGRESS = 1 << 2,
181 
182 	/* ensure the originating sk reference is available on driver level */
183 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	unsigned short	nr_frags;
191 	unsigned short	gso_size;
192 	/* Warning: this field is not always filled in (UFO)! */
193 	unsigned short	gso_segs;
194 	unsigned short  gso_type;
195 	__be32          ip6_frag_id;
196 	__u8		tx_flags;
197 	struct sk_buff	*frag_list;
198 	struct skb_shared_hwtstamps hwtstamps;
199 
200 	/*
201 	 * Warning : all fields before dataref are cleared in __alloc_skb()
202 	 */
203 	atomic_t	dataref;
204 
205 	/* Intermediate layers must ensure that destructor_arg
206 	 * remains valid until skb destructor */
207 	void *		destructor_arg;
208 	/* must be last field, see pskb_expand_head() */
209 	skb_frag_t	frags[MAX_SKB_FRAGS];
210 };
211 
212 /* We divide dataref into two halves.  The higher 16 bits hold references
213  * to the payload part of skb->data.  The lower 16 bits hold references to
214  * the entire skb->data.  A clone of a headerless skb holds the length of
215  * the header in skb->hdr_len.
216  *
217  * All users must obey the rule that the skb->data reference count must be
218  * greater than or equal to the payload reference count.
219  *
220  * Holding a reference to the payload part means that the user does not
221  * care about modifications to the header part of skb->data.
222  */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225 
226 
227 enum {
228 	SKB_FCLONE_UNAVAILABLE,
229 	SKB_FCLONE_ORIG,
230 	SKB_FCLONE_CLONE,
231 };
232 
233 enum {
234 	SKB_GSO_TCPV4 = 1 << 0,
235 	SKB_GSO_UDP = 1 << 1,
236 
237 	/* This indicates the skb is from an untrusted source. */
238 	SKB_GSO_DODGY = 1 << 2,
239 
240 	/* This indicates the tcp segment has CWR set. */
241 	SKB_GSO_TCP_ECN = 1 << 3,
242 
243 	SKB_GSO_TCPV6 = 1 << 4,
244 
245 	SKB_GSO_FCOE = 1 << 5,
246 };
247 
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251 
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257 
258 /**
259  *	struct sk_buff - socket buffer
260  *	@next: Next buffer in list
261  *	@prev: Previous buffer in list
262  *	@sk: Socket we are owned by
263  *	@tstamp: Time we arrived
264  *	@dev: Device we arrived on/are leaving by
265  *	@transport_header: Transport layer header
266  *	@network_header: Network layer header
267  *	@mac_header: Link layer header
268  *	@_skb_refdst: destination entry (with norefcount bit)
269  *	@sp: the security path, used for xfrm
270  *	@cb: Control buffer. Free for use by every layer. Put private vars here
271  *	@len: Length of actual data
272  *	@data_len: Data length
273  *	@mac_len: Length of link layer header
274  *	@hdr_len: writable header length of cloned skb
275  *	@csum: Checksum (must include start/offset pair)
276  *	@csum_start: Offset from skb->head where checksumming should start
277  *	@csum_offset: Offset from csum_start where checksum should be stored
278  *	@local_df: allow local fragmentation
279  *	@cloned: Head may be cloned (check refcnt to be sure)
280  *	@nohdr: Payload reference only, must not modify header
281  *	@pkt_type: Packet class
282  *	@fclone: skbuff clone status
283  *	@ip_summed: Driver fed us an IP checksum
284  *	@priority: Packet queueing priority
285  *	@users: User count - see {datagram,tcp}.c
286  *	@protocol: Packet protocol from driver
287  *	@truesize: Buffer size
288  *	@head: Head of buffer
289  *	@data: Data head pointer
290  *	@tail: Tail pointer
291  *	@end: End pointer
292  *	@destructor: Destruct function
293  *	@mark: Generic packet mark
294  *	@nfct: Associated connection, if any
295  *	@ipvs_property: skbuff is owned by ipvs
296  *	@peeked: this packet has been seen already, so stats have been
297  *		done for it, don't do them again
298  *	@nf_trace: netfilter packet trace flag
299  *	@nfctinfo: Relationship of this skb to the connection
300  *	@nfct_reasm: netfilter conntrack re-assembly pointer
301  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302  *	@skb_iif: ifindex of device we arrived on
303  *	@rxhash: the packet hash computed on receive
304  *	@queue_mapping: Queue mapping for multiqueue devices
305  *	@tc_index: Traffic control index
306  *	@tc_verd: traffic control verdict
307  *	@ndisc_nodetype: router type (from link layer)
308  *	@dma_cookie: a cookie to one of several possible DMA operations
309  *		done by skb DMA functions
310  *	@secmark: security marking
311  *	@vlan_tci: vlan tag control information
312  */
313 
314 struct sk_buff {
315 	/* These two members must be first. */
316 	struct sk_buff		*next;
317 	struct sk_buff		*prev;
318 
319 	ktime_t			tstamp;
320 
321 	struct sock		*sk;
322 	struct net_device	*dev;
323 
324 	/*
325 	 * This is the control buffer. It is free to use for every
326 	 * layer. Please put your private variables there. If you
327 	 * want to keep them across layers you have to do a skb_clone()
328 	 * first. This is owned by whoever has the skb queued ATM.
329 	 */
330 	char			cb[48] __aligned(8);
331 
332 	unsigned long		_skb_refdst;
333 #ifdef CONFIG_XFRM
334 	struct	sec_path	*sp;
335 #endif
336 	unsigned int		len,
337 				data_len;
338 	__u16			mac_len,
339 				hdr_len;
340 	union {
341 		__wsum		csum;
342 		struct {
343 			__u16	csum_start;
344 			__u16	csum_offset;
345 		};
346 	};
347 	__u32			priority;
348 	kmemcheck_bitfield_begin(flags1);
349 	__u8			local_df:1,
350 				cloned:1,
351 				ip_summed:2,
352 				nohdr:1,
353 				nfctinfo:3;
354 	__u8			pkt_type:3,
355 				fclone:2,
356 				ipvs_property:1,
357 				peeked:1,
358 				nf_trace:1;
359 	kmemcheck_bitfield_end(flags1);
360 	__be16			protocol;
361 
362 	void			(*destructor)(struct sk_buff *skb);
363 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
364 	struct nf_conntrack	*nfct;
365 	struct sk_buff		*nfct_reasm;
366 #endif
367 #ifdef CONFIG_BRIDGE_NETFILTER
368 	struct nf_bridge_info	*nf_bridge;
369 #endif
370 
371 	int			skb_iif;
372 #ifdef CONFIG_NET_SCHED
373 	__u16			tc_index;	/* traffic control index */
374 #ifdef CONFIG_NET_CLS_ACT
375 	__u16			tc_verd;	/* traffic control verdict */
376 #endif
377 #endif
378 
379 	__u32			rxhash;
380 
381 	kmemcheck_bitfield_begin(flags2);
382 	__u16			queue_mapping:16;
383 #ifdef CONFIG_IPV6_NDISC_NODETYPE
384 	__u8			ndisc_nodetype:2,
385 				deliver_no_wcard:1;
386 #else
387 	__u8			deliver_no_wcard:1;
388 #endif
389 	__u8			ooo_okay:1;
390 	kmemcheck_bitfield_end(flags2);
391 
392 	/* 0/13 bit hole */
393 
394 #ifdef CONFIG_NET_DMA
395 	dma_cookie_t		dma_cookie;
396 #endif
397 #ifdef CONFIG_NETWORK_SECMARK
398 	__u32			secmark;
399 #endif
400 	union {
401 		__u32		mark;
402 		__u32		dropcount;
403 	};
404 
405 	__u16			vlan_tci;
406 
407 	sk_buff_data_t		transport_header;
408 	sk_buff_data_t		network_header;
409 	sk_buff_data_t		mac_header;
410 	/* These elements must be at the end, see alloc_skb() for details.  */
411 	sk_buff_data_t		tail;
412 	sk_buff_data_t		end;
413 	unsigned char		*head,
414 				*data;
415 	unsigned int		truesize;
416 	atomic_t		users;
417 };
418 
419 #ifdef __KERNEL__
420 /*
421  *	Handling routines are only of interest to the kernel
422  */
423 #include <linux/slab.h>
424 
425 #include <asm/system.h>
426 
427 /*
428  * skb might have a dst pointer attached, refcounted or not.
429  * _skb_refdst low order bit is set if refcount was _not_ taken
430  */
431 #define SKB_DST_NOREF	1UL
432 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
433 
434 /**
435  * skb_dst - returns skb dst_entry
436  * @skb: buffer
437  *
438  * Returns skb dst_entry, regardless of reference taken or not.
439  */
440 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
441 {
442 	/* If refdst was not refcounted, check we still are in a
443 	 * rcu_read_lock section
444 	 */
445 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
446 		!rcu_read_lock_held() &&
447 		!rcu_read_lock_bh_held());
448 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
449 }
450 
451 /**
452  * skb_dst_set - sets skb dst
453  * @skb: buffer
454  * @dst: dst entry
455  *
456  * Sets skb dst, assuming a reference was taken on dst and should
457  * be released by skb_dst_drop()
458  */
459 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
460 {
461 	skb->_skb_refdst = (unsigned long)dst;
462 }
463 
464 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
465 
466 /**
467  * skb_dst_is_noref - Test if skb dst isnt refcounted
468  * @skb: buffer
469  */
470 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
471 {
472 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
473 }
474 
475 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
476 {
477 	return (struct rtable *)skb_dst(skb);
478 }
479 
480 extern void kfree_skb(struct sk_buff *skb);
481 extern void consume_skb(struct sk_buff *skb);
482 extern void	       __kfree_skb(struct sk_buff *skb);
483 extern struct sk_buff *__alloc_skb(unsigned int size,
484 				   gfp_t priority, int fclone, int node);
485 static inline struct sk_buff *alloc_skb(unsigned int size,
486 					gfp_t priority)
487 {
488 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
489 }
490 
491 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
492 					       gfp_t priority)
493 {
494 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
495 }
496 
497 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
498 
499 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
500 extern struct sk_buff *skb_clone(struct sk_buff *skb,
501 				 gfp_t priority);
502 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
503 				gfp_t priority);
504 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
505 				 gfp_t gfp_mask);
506 extern int	       pskb_expand_head(struct sk_buff *skb,
507 					int nhead, int ntail,
508 					gfp_t gfp_mask);
509 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
510 					    unsigned int headroom);
511 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
512 				       int newheadroom, int newtailroom,
513 				       gfp_t priority);
514 extern int	       skb_to_sgvec(struct sk_buff *skb,
515 				    struct scatterlist *sg, int offset,
516 				    int len);
517 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
518 				    struct sk_buff **trailer);
519 extern int	       skb_pad(struct sk_buff *skb, int pad);
520 #define dev_kfree_skb(a)	consume_skb(a)
521 
522 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
523 			int getfrag(void *from, char *to, int offset,
524 			int len,int odd, struct sk_buff *skb),
525 			void *from, int length);
526 
527 struct skb_seq_state {
528 	__u32		lower_offset;
529 	__u32		upper_offset;
530 	__u32		frag_idx;
531 	__u32		stepped_offset;
532 	struct sk_buff	*root_skb;
533 	struct sk_buff	*cur_skb;
534 	__u8		*frag_data;
535 };
536 
537 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
538 					   unsigned int from, unsigned int to,
539 					   struct skb_seq_state *st);
540 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
541 				   struct skb_seq_state *st);
542 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
543 
544 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
545 				    unsigned int to, struct ts_config *config,
546 				    struct ts_state *state);
547 
548 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
549 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
550 {
551 	if (!skb->rxhash)
552 		skb->rxhash = __skb_get_rxhash(skb);
553 
554 	return skb->rxhash;
555 }
556 
557 #ifdef NET_SKBUFF_DATA_USES_OFFSET
558 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
559 {
560 	return skb->head + skb->end;
561 }
562 #else
563 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
564 {
565 	return skb->end;
566 }
567 #endif
568 
569 /* Internal */
570 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
571 
572 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
573 {
574 	return &skb_shinfo(skb)->hwtstamps;
575 }
576 
577 /**
578  *	skb_queue_empty - check if a queue is empty
579  *	@list: queue head
580  *
581  *	Returns true if the queue is empty, false otherwise.
582  */
583 static inline int skb_queue_empty(const struct sk_buff_head *list)
584 {
585 	return list->next == (struct sk_buff *)list;
586 }
587 
588 /**
589  *	skb_queue_is_last - check if skb is the last entry in the queue
590  *	@list: queue head
591  *	@skb: buffer
592  *
593  *	Returns true if @skb is the last buffer on the list.
594  */
595 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
596 				     const struct sk_buff *skb)
597 {
598 	return skb->next == (struct sk_buff *)list;
599 }
600 
601 /**
602  *	skb_queue_is_first - check if skb is the first entry in the queue
603  *	@list: queue head
604  *	@skb: buffer
605  *
606  *	Returns true if @skb is the first buffer on the list.
607  */
608 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
609 				      const struct sk_buff *skb)
610 {
611 	return skb->prev == (struct sk_buff *)list;
612 }
613 
614 /**
615  *	skb_queue_next - return the next packet in the queue
616  *	@list: queue head
617  *	@skb: current buffer
618  *
619  *	Return the next packet in @list after @skb.  It is only valid to
620  *	call this if skb_queue_is_last() evaluates to false.
621  */
622 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
623 					     const struct sk_buff *skb)
624 {
625 	/* This BUG_ON may seem severe, but if we just return then we
626 	 * are going to dereference garbage.
627 	 */
628 	BUG_ON(skb_queue_is_last(list, skb));
629 	return skb->next;
630 }
631 
632 /**
633  *	skb_queue_prev - return the prev packet in the queue
634  *	@list: queue head
635  *	@skb: current buffer
636  *
637  *	Return the prev packet in @list before @skb.  It is only valid to
638  *	call this if skb_queue_is_first() evaluates to false.
639  */
640 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
641 					     const struct sk_buff *skb)
642 {
643 	/* This BUG_ON may seem severe, but if we just return then we
644 	 * are going to dereference garbage.
645 	 */
646 	BUG_ON(skb_queue_is_first(list, skb));
647 	return skb->prev;
648 }
649 
650 /**
651  *	skb_get - reference buffer
652  *	@skb: buffer to reference
653  *
654  *	Makes another reference to a socket buffer and returns a pointer
655  *	to the buffer.
656  */
657 static inline struct sk_buff *skb_get(struct sk_buff *skb)
658 {
659 	atomic_inc(&skb->users);
660 	return skb;
661 }
662 
663 /*
664  * If users == 1, we are the only owner and are can avoid redundant
665  * atomic change.
666  */
667 
668 /**
669  *	skb_cloned - is the buffer a clone
670  *	@skb: buffer to check
671  *
672  *	Returns true if the buffer was generated with skb_clone() and is
673  *	one of multiple shared copies of the buffer. Cloned buffers are
674  *	shared data so must not be written to under normal circumstances.
675  */
676 static inline int skb_cloned(const struct sk_buff *skb)
677 {
678 	return skb->cloned &&
679 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
680 }
681 
682 /**
683  *	skb_header_cloned - is the header a clone
684  *	@skb: buffer to check
685  *
686  *	Returns true if modifying the header part of the buffer requires
687  *	the data to be copied.
688  */
689 static inline int skb_header_cloned(const struct sk_buff *skb)
690 {
691 	int dataref;
692 
693 	if (!skb->cloned)
694 		return 0;
695 
696 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
697 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
698 	return dataref != 1;
699 }
700 
701 /**
702  *	skb_header_release - release reference to header
703  *	@skb: buffer to operate on
704  *
705  *	Drop a reference to the header part of the buffer.  This is done
706  *	by acquiring a payload reference.  You must not read from the header
707  *	part of skb->data after this.
708  */
709 static inline void skb_header_release(struct sk_buff *skb)
710 {
711 	BUG_ON(skb->nohdr);
712 	skb->nohdr = 1;
713 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
714 }
715 
716 /**
717  *	skb_shared - is the buffer shared
718  *	@skb: buffer to check
719  *
720  *	Returns true if more than one person has a reference to this
721  *	buffer.
722  */
723 static inline int skb_shared(const struct sk_buff *skb)
724 {
725 	return atomic_read(&skb->users) != 1;
726 }
727 
728 /**
729  *	skb_share_check - check if buffer is shared and if so clone it
730  *	@skb: buffer to check
731  *	@pri: priority for memory allocation
732  *
733  *	If the buffer is shared the buffer is cloned and the old copy
734  *	drops a reference. A new clone with a single reference is returned.
735  *	If the buffer is not shared the original buffer is returned. When
736  *	being called from interrupt status or with spinlocks held pri must
737  *	be GFP_ATOMIC.
738  *
739  *	NULL is returned on a memory allocation failure.
740  */
741 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
742 					      gfp_t pri)
743 {
744 	might_sleep_if(pri & __GFP_WAIT);
745 	if (skb_shared(skb)) {
746 		struct sk_buff *nskb = skb_clone(skb, pri);
747 		kfree_skb(skb);
748 		skb = nskb;
749 	}
750 	return skb;
751 }
752 
753 /*
754  *	Copy shared buffers into a new sk_buff. We effectively do COW on
755  *	packets to handle cases where we have a local reader and forward
756  *	and a couple of other messy ones. The normal one is tcpdumping
757  *	a packet thats being forwarded.
758  */
759 
760 /**
761  *	skb_unshare - make a copy of a shared buffer
762  *	@skb: buffer to check
763  *	@pri: priority for memory allocation
764  *
765  *	If the socket buffer is a clone then this function creates a new
766  *	copy of the data, drops a reference count on the old copy and returns
767  *	the new copy with the reference count at 1. If the buffer is not a clone
768  *	the original buffer is returned. When called with a spinlock held or
769  *	from interrupt state @pri must be %GFP_ATOMIC
770  *
771  *	%NULL is returned on a memory allocation failure.
772  */
773 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
774 					  gfp_t pri)
775 {
776 	might_sleep_if(pri & __GFP_WAIT);
777 	if (skb_cloned(skb)) {
778 		struct sk_buff *nskb = skb_copy(skb, pri);
779 		kfree_skb(skb);	/* Free our shared copy */
780 		skb = nskb;
781 	}
782 	return skb;
783 }
784 
785 /**
786  *	skb_peek - peek at the head of an &sk_buff_head
787  *	@list_: list to peek at
788  *
789  *	Peek an &sk_buff. Unlike most other operations you _MUST_
790  *	be careful with this one. A peek leaves the buffer on the
791  *	list and someone else may run off with it. You must hold
792  *	the appropriate locks or have a private queue to do this.
793  *
794  *	Returns %NULL for an empty list or a pointer to the head element.
795  *	The reference count is not incremented and the reference is therefore
796  *	volatile. Use with caution.
797  */
798 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
799 {
800 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
801 	if (list == (struct sk_buff *)list_)
802 		list = NULL;
803 	return list;
804 }
805 
806 /**
807  *	skb_peek_tail - peek at the tail of an &sk_buff_head
808  *	@list_: list to peek at
809  *
810  *	Peek an &sk_buff. Unlike most other operations you _MUST_
811  *	be careful with this one. A peek leaves the buffer on the
812  *	list and someone else may run off with it. You must hold
813  *	the appropriate locks or have a private queue to do this.
814  *
815  *	Returns %NULL for an empty list or a pointer to the tail element.
816  *	The reference count is not incremented and the reference is therefore
817  *	volatile. Use with caution.
818  */
819 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
820 {
821 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
822 	if (list == (struct sk_buff *)list_)
823 		list = NULL;
824 	return list;
825 }
826 
827 /**
828  *	skb_queue_len	- get queue length
829  *	@list_: list to measure
830  *
831  *	Return the length of an &sk_buff queue.
832  */
833 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
834 {
835 	return list_->qlen;
836 }
837 
838 /**
839  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
840  *	@list: queue to initialize
841  *
842  *	This initializes only the list and queue length aspects of
843  *	an sk_buff_head object.  This allows to initialize the list
844  *	aspects of an sk_buff_head without reinitializing things like
845  *	the spinlock.  It can also be used for on-stack sk_buff_head
846  *	objects where the spinlock is known to not be used.
847  */
848 static inline void __skb_queue_head_init(struct sk_buff_head *list)
849 {
850 	list->prev = list->next = (struct sk_buff *)list;
851 	list->qlen = 0;
852 }
853 
854 /*
855  * This function creates a split out lock class for each invocation;
856  * this is needed for now since a whole lot of users of the skb-queue
857  * infrastructure in drivers have different locking usage (in hardirq)
858  * than the networking core (in softirq only). In the long run either the
859  * network layer or drivers should need annotation to consolidate the
860  * main types of usage into 3 classes.
861  */
862 static inline void skb_queue_head_init(struct sk_buff_head *list)
863 {
864 	spin_lock_init(&list->lock);
865 	__skb_queue_head_init(list);
866 }
867 
868 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
869 		struct lock_class_key *class)
870 {
871 	skb_queue_head_init(list);
872 	lockdep_set_class(&list->lock, class);
873 }
874 
875 /*
876  *	Insert an sk_buff on a list.
877  *
878  *	The "__skb_xxxx()" functions are the non-atomic ones that
879  *	can only be called with interrupts disabled.
880  */
881 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
882 static inline void __skb_insert(struct sk_buff *newsk,
883 				struct sk_buff *prev, struct sk_buff *next,
884 				struct sk_buff_head *list)
885 {
886 	newsk->next = next;
887 	newsk->prev = prev;
888 	next->prev  = prev->next = newsk;
889 	list->qlen++;
890 }
891 
892 static inline void __skb_queue_splice(const struct sk_buff_head *list,
893 				      struct sk_buff *prev,
894 				      struct sk_buff *next)
895 {
896 	struct sk_buff *first = list->next;
897 	struct sk_buff *last = list->prev;
898 
899 	first->prev = prev;
900 	prev->next = first;
901 
902 	last->next = next;
903 	next->prev = last;
904 }
905 
906 /**
907  *	skb_queue_splice - join two skb lists, this is designed for stacks
908  *	@list: the new list to add
909  *	@head: the place to add it in the first list
910  */
911 static inline void skb_queue_splice(const struct sk_buff_head *list,
912 				    struct sk_buff_head *head)
913 {
914 	if (!skb_queue_empty(list)) {
915 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
916 		head->qlen += list->qlen;
917 	}
918 }
919 
920 /**
921  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
922  *	@list: the new list to add
923  *	@head: the place to add it in the first list
924  *
925  *	The list at @list is reinitialised
926  */
927 static inline void skb_queue_splice_init(struct sk_buff_head *list,
928 					 struct sk_buff_head *head)
929 {
930 	if (!skb_queue_empty(list)) {
931 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
932 		head->qlen += list->qlen;
933 		__skb_queue_head_init(list);
934 	}
935 }
936 
937 /**
938  *	skb_queue_splice_tail - join two skb lists, each list being a queue
939  *	@list: the new list to add
940  *	@head: the place to add it in the first list
941  */
942 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
943 					 struct sk_buff_head *head)
944 {
945 	if (!skb_queue_empty(list)) {
946 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
947 		head->qlen += list->qlen;
948 	}
949 }
950 
951 /**
952  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
953  *	@list: the new list to add
954  *	@head: the place to add it in the first list
955  *
956  *	Each of the lists is a queue.
957  *	The list at @list is reinitialised
958  */
959 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
960 					      struct sk_buff_head *head)
961 {
962 	if (!skb_queue_empty(list)) {
963 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
964 		head->qlen += list->qlen;
965 		__skb_queue_head_init(list);
966 	}
967 }
968 
969 /**
970  *	__skb_queue_after - queue a buffer at the list head
971  *	@list: list to use
972  *	@prev: place after this buffer
973  *	@newsk: buffer to queue
974  *
975  *	Queue a buffer int the middle of a list. This function takes no locks
976  *	and you must therefore hold required locks before calling it.
977  *
978  *	A buffer cannot be placed on two lists at the same time.
979  */
980 static inline void __skb_queue_after(struct sk_buff_head *list,
981 				     struct sk_buff *prev,
982 				     struct sk_buff *newsk)
983 {
984 	__skb_insert(newsk, prev, prev->next, list);
985 }
986 
987 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
988 		       struct sk_buff_head *list);
989 
990 static inline void __skb_queue_before(struct sk_buff_head *list,
991 				      struct sk_buff *next,
992 				      struct sk_buff *newsk)
993 {
994 	__skb_insert(newsk, next->prev, next, list);
995 }
996 
997 /**
998  *	__skb_queue_head - queue a buffer at the list head
999  *	@list: list to use
1000  *	@newsk: buffer to queue
1001  *
1002  *	Queue a buffer at the start of a list. This function takes no locks
1003  *	and you must therefore hold required locks before calling it.
1004  *
1005  *	A buffer cannot be placed on two lists at the same time.
1006  */
1007 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1008 static inline void __skb_queue_head(struct sk_buff_head *list,
1009 				    struct sk_buff *newsk)
1010 {
1011 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1012 }
1013 
1014 /**
1015  *	__skb_queue_tail - queue a buffer at the list tail
1016  *	@list: list to use
1017  *	@newsk: buffer to queue
1018  *
1019  *	Queue a buffer at the end of a list. This function takes no locks
1020  *	and you must therefore hold required locks before calling it.
1021  *
1022  *	A buffer cannot be placed on two lists at the same time.
1023  */
1024 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1025 static inline void __skb_queue_tail(struct sk_buff_head *list,
1026 				   struct sk_buff *newsk)
1027 {
1028 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1029 }
1030 
1031 /*
1032  * remove sk_buff from list. _Must_ be called atomically, and with
1033  * the list known..
1034  */
1035 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1036 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1037 {
1038 	struct sk_buff *next, *prev;
1039 
1040 	list->qlen--;
1041 	next	   = skb->next;
1042 	prev	   = skb->prev;
1043 	skb->next  = skb->prev = NULL;
1044 	next->prev = prev;
1045 	prev->next = next;
1046 }
1047 
1048 /**
1049  *	__skb_dequeue - remove from the head of the queue
1050  *	@list: list to dequeue from
1051  *
1052  *	Remove the head of the list. This function does not take any locks
1053  *	so must be used with appropriate locks held only. The head item is
1054  *	returned or %NULL if the list is empty.
1055  */
1056 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1057 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1058 {
1059 	struct sk_buff *skb = skb_peek(list);
1060 	if (skb)
1061 		__skb_unlink(skb, list);
1062 	return skb;
1063 }
1064 
1065 /**
1066  *	__skb_dequeue_tail - remove from the tail of the queue
1067  *	@list: list to dequeue from
1068  *
1069  *	Remove the tail of the list. This function does not take any locks
1070  *	so must be used with appropriate locks held only. The tail item is
1071  *	returned or %NULL if the list is empty.
1072  */
1073 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1074 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1075 {
1076 	struct sk_buff *skb = skb_peek_tail(list);
1077 	if (skb)
1078 		__skb_unlink(skb, list);
1079 	return skb;
1080 }
1081 
1082 
1083 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1084 {
1085 	return skb->data_len;
1086 }
1087 
1088 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1089 {
1090 	return skb->len - skb->data_len;
1091 }
1092 
1093 static inline int skb_pagelen(const struct sk_buff *skb)
1094 {
1095 	int i, len = 0;
1096 
1097 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1098 		len += skb_shinfo(skb)->frags[i].size;
1099 	return len + skb_headlen(skb);
1100 }
1101 
1102 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1103 				      struct page *page, int off, int size)
1104 {
1105 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1106 
1107 	frag->page		  = page;
1108 	frag->page_offset	  = off;
1109 	frag->size		  = size;
1110 	skb_shinfo(skb)->nr_frags = i + 1;
1111 }
1112 
1113 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1114 			    int off, int size);
1115 
1116 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1117 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1118 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1119 
1120 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1121 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1122 {
1123 	return skb->head + skb->tail;
1124 }
1125 
1126 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1127 {
1128 	skb->tail = skb->data - skb->head;
1129 }
1130 
1131 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1132 {
1133 	skb_reset_tail_pointer(skb);
1134 	skb->tail += offset;
1135 }
1136 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1137 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1138 {
1139 	return skb->tail;
1140 }
1141 
1142 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1143 {
1144 	skb->tail = skb->data;
1145 }
1146 
1147 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1148 {
1149 	skb->tail = skb->data + offset;
1150 }
1151 
1152 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1153 
1154 /*
1155  *	Add data to an sk_buff
1156  */
1157 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1158 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1159 {
1160 	unsigned char *tmp = skb_tail_pointer(skb);
1161 	SKB_LINEAR_ASSERT(skb);
1162 	skb->tail += len;
1163 	skb->len  += len;
1164 	return tmp;
1165 }
1166 
1167 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1168 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1169 {
1170 	skb->data -= len;
1171 	skb->len  += len;
1172 	return skb->data;
1173 }
1174 
1175 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1176 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1177 {
1178 	skb->len -= len;
1179 	BUG_ON(skb->len < skb->data_len);
1180 	return skb->data += len;
1181 }
1182 
1183 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1184 {
1185 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1186 }
1187 
1188 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1189 
1190 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1191 {
1192 	if (len > skb_headlen(skb) &&
1193 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1194 		return NULL;
1195 	skb->len -= len;
1196 	return skb->data += len;
1197 }
1198 
1199 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1200 {
1201 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1202 }
1203 
1204 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1205 {
1206 	if (likely(len <= skb_headlen(skb)))
1207 		return 1;
1208 	if (unlikely(len > skb->len))
1209 		return 0;
1210 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1211 }
1212 
1213 /**
1214  *	skb_headroom - bytes at buffer head
1215  *	@skb: buffer to check
1216  *
1217  *	Return the number of bytes of free space at the head of an &sk_buff.
1218  */
1219 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1220 {
1221 	return skb->data - skb->head;
1222 }
1223 
1224 /**
1225  *	skb_tailroom - bytes at buffer end
1226  *	@skb: buffer to check
1227  *
1228  *	Return the number of bytes of free space at the tail of an sk_buff
1229  */
1230 static inline int skb_tailroom(const struct sk_buff *skb)
1231 {
1232 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1233 }
1234 
1235 /**
1236  *	skb_reserve - adjust headroom
1237  *	@skb: buffer to alter
1238  *	@len: bytes to move
1239  *
1240  *	Increase the headroom of an empty &sk_buff by reducing the tail
1241  *	room. This is only allowed for an empty buffer.
1242  */
1243 static inline void skb_reserve(struct sk_buff *skb, int len)
1244 {
1245 	skb->data += len;
1246 	skb->tail += len;
1247 }
1248 
1249 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1250 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1251 {
1252 	return skb->head + skb->transport_header;
1253 }
1254 
1255 static inline void skb_reset_transport_header(struct sk_buff *skb)
1256 {
1257 	skb->transport_header = skb->data - skb->head;
1258 }
1259 
1260 static inline void skb_set_transport_header(struct sk_buff *skb,
1261 					    const int offset)
1262 {
1263 	skb_reset_transport_header(skb);
1264 	skb->transport_header += offset;
1265 }
1266 
1267 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1268 {
1269 	return skb->head + skb->network_header;
1270 }
1271 
1272 static inline void skb_reset_network_header(struct sk_buff *skb)
1273 {
1274 	skb->network_header = skb->data - skb->head;
1275 }
1276 
1277 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1278 {
1279 	skb_reset_network_header(skb);
1280 	skb->network_header += offset;
1281 }
1282 
1283 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1284 {
1285 	return skb->head + skb->mac_header;
1286 }
1287 
1288 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1289 {
1290 	return skb->mac_header != ~0U;
1291 }
1292 
1293 static inline void skb_reset_mac_header(struct sk_buff *skb)
1294 {
1295 	skb->mac_header = skb->data - skb->head;
1296 }
1297 
1298 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1299 {
1300 	skb_reset_mac_header(skb);
1301 	skb->mac_header += offset;
1302 }
1303 
1304 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1305 
1306 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1307 {
1308 	return skb->transport_header;
1309 }
1310 
1311 static inline void skb_reset_transport_header(struct sk_buff *skb)
1312 {
1313 	skb->transport_header = skb->data;
1314 }
1315 
1316 static inline void skb_set_transport_header(struct sk_buff *skb,
1317 					    const int offset)
1318 {
1319 	skb->transport_header = skb->data + offset;
1320 }
1321 
1322 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1323 {
1324 	return skb->network_header;
1325 }
1326 
1327 static inline void skb_reset_network_header(struct sk_buff *skb)
1328 {
1329 	skb->network_header = skb->data;
1330 }
1331 
1332 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1333 {
1334 	skb->network_header = skb->data + offset;
1335 }
1336 
1337 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1338 {
1339 	return skb->mac_header;
1340 }
1341 
1342 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1343 {
1344 	return skb->mac_header != NULL;
1345 }
1346 
1347 static inline void skb_reset_mac_header(struct sk_buff *skb)
1348 {
1349 	skb->mac_header = skb->data;
1350 }
1351 
1352 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1353 {
1354 	skb->mac_header = skb->data + offset;
1355 }
1356 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1357 
1358 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1359 {
1360 	return skb->csum_start - skb_headroom(skb);
1361 }
1362 
1363 static inline int skb_transport_offset(const struct sk_buff *skb)
1364 {
1365 	return skb_transport_header(skb) - skb->data;
1366 }
1367 
1368 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1369 {
1370 	return skb->transport_header - skb->network_header;
1371 }
1372 
1373 static inline int skb_network_offset(const struct sk_buff *skb)
1374 {
1375 	return skb_network_header(skb) - skb->data;
1376 }
1377 
1378 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1379 {
1380 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1381 }
1382 
1383 /*
1384  * CPUs often take a performance hit when accessing unaligned memory
1385  * locations. The actual performance hit varies, it can be small if the
1386  * hardware handles it or large if we have to take an exception and fix it
1387  * in software.
1388  *
1389  * Since an ethernet header is 14 bytes network drivers often end up with
1390  * the IP header at an unaligned offset. The IP header can be aligned by
1391  * shifting the start of the packet by 2 bytes. Drivers should do this
1392  * with:
1393  *
1394  * skb_reserve(skb, NET_IP_ALIGN);
1395  *
1396  * The downside to this alignment of the IP header is that the DMA is now
1397  * unaligned. On some architectures the cost of an unaligned DMA is high
1398  * and this cost outweighs the gains made by aligning the IP header.
1399  *
1400  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1401  * to be overridden.
1402  */
1403 #ifndef NET_IP_ALIGN
1404 #define NET_IP_ALIGN	2
1405 #endif
1406 
1407 /*
1408  * The networking layer reserves some headroom in skb data (via
1409  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1410  * the header has to grow. In the default case, if the header has to grow
1411  * 32 bytes or less we avoid the reallocation.
1412  *
1413  * Unfortunately this headroom changes the DMA alignment of the resulting
1414  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1415  * on some architectures. An architecture can override this value,
1416  * perhaps setting it to a cacheline in size (since that will maintain
1417  * cacheline alignment of the DMA). It must be a power of 2.
1418  *
1419  * Various parts of the networking layer expect at least 32 bytes of
1420  * headroom, you should not reduce this.
1421  *
1422  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1423  * to reduce average number of cache lines per packet.
1424  * get_rps_cpus() for example only access one 64 bytes aligned block :
1425  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1426  */
1427 #ifndef NET_SKB_PAD
1428 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1429 #endif
1430 
1431 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1432 
1433 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1434 {
1435 	if (unlikely(skb->data_len)) {
1436 		WARN_ON(1);
1437 		return;
1438 	}
1439 	skb->len = len;
1440 	skb_set_tail_pointer(skb, len);
1441 }
1442 
1443 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1444 
1445 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1446 {
1447 	if (skb->data_len)
1448 		return ___pskb_trim(skb, len);
1449 	__skb_trim(skb, len);
1450 	return 0;
1451 }
1452 
1453 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1454 {
1455 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1456 }
1457 
1458 /**
1459  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1460  *	@skb: buffer to alter
1461  *	@len: new length
1462  *
1463  *	This is identical to pskb_trim except that the caller knows that
1464  *	the skb is not cloned so we should never get an error due to out-
1465  *	of-memory.
1466  */
1467 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1468 {
1469 	int err = pskb_trim(skb, len);
1470 	BUG_ON(err);
1471 }
1472 
1473 /**
1474  *	skb_orphan - orphan a buffer
1475  *	@skb: buffer to orphan
1476  *
1477  *	If a buffer currently has an owner then we call the owner's
1478  *	destructor function and make the @skb unowned. The buffer continues
1479  *	to exist but is no longer charged to its former owner.
1480  */
1481 static inline void skb_orphan(struct sk_buff *skb)
1482 {
1483 	if (skb->destructor)
1484 		skb->destructor(skb);
1485 	skb->destructor = NULL;
1486 	skb->sk		= NULL;
1487 }
1488 
1489 /**
1490  *	__skb_queue_purge - empty a list
1491  *	@list: list to empty
1492  *
1493  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1494  *	the list and one reference dropped. This function does not take the
1495  *	list lock and the caller must hold the relevant locks to use it.
1496  */
1497 extern void skb_queue_purge(struct sk_buff_head *list);
1498 static inline void __skb_queue_purge(struct sk_buff_head *list)
1499 {
1500 	struct sk_buff *skb;
1501 	while ((skb = __skb_dequeue(list)) != NULL)
1502 		kfree_skb(skb);
1503 }
1504 
1505 /**
1506  *	__dev_alloc_skb - allocate an skbuff for receiving
1507  *	@length: length to allocate
1508  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1509  *
1510  *	Allocate a new &sk_buff and assign it a usage count of one. The
1511  *	buffer has unspecified headroom built in. Users should allocate
1512  *	the headroom they think they need without accounting for the
1513  *	built in space. The built in space is used for optimisations.
1514  *
1515  *	%NULL is returned if there is no free memory.
1516  */
1517 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1518 					      gfp_t gfp_mask)
1519 {
1520 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1521 	if (likely(skb))
1522 		skb_reserve(skb, NET_SKB_PAD);
1523 	return skb;
1524 }
1525 
1526 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1527 
1528 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1529 		unsigned int length, gfp_t gfp_mask);
1530 
1531 /**
1532  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1533  *	@dev: network device to receive on
1534  *	@length: length to allocate
1535  *
1536  *	Allocate a new &sk_buff and assign it a usage count of one. The
1537  *	buffer has unspecified headroom built in. Users should allocate
1538  *	the headroom they think they need without accounting for the
1539  *	built in space. The built in space is used for optimisations.
1540  *
1541  *	%NULL is returned if there is no free memory. Although this function
1542  *	allocates memory it can be called from an interrupt.
1543  */
1544 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1545 		unsigned int length)
1546 {
1547 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1548 }
1549 
1550 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1551 		unsigned int length)
1552 {
1553 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1554 
1555 	if (NET_IP_ALIGN && skb)
1556 		skb_reserve(skb, NET_IP_ALIGN);
1557 	return skb;
1558 }
1559 
1560 /**
1561  *	__netdev_alloc_page - allocate a page for ps-rx on a specific device
1562  *	@dev: network device to receive on
1563  *	@gfp_mask: alloc_pages_node mask
1564  *
1565  * 	Allocate a new page. dev currently unused.
1566  *
1567  * 	%NULL is returned if there is no free memory.
1568  */
1569 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1570 {
1571 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1572 }
1573 
1574 /**
1575  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1576  *	@dev: network device to receive on
1577  *
1578  * 	Allocate a new page. dev currently unused.
1579  *
1580  * 	%NULL is returned if there is no free memory.
1581  */
1582 static inline struct page *netdev_alloc_page(struct net_device *dev)
1583 {
1584 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1585 }
1586 
1587 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1588 {
1589 	__free_page(page);
1590 }
1591 
1592 /**
1593  *	skb_clone_writable - is the header of a clone writable
1594  *	@skb: buffer to check
1595  *	@len: length up to which to write
1596  *
1597  *	Returns true if modifying the header part of the cloned buffer
1598  *	does not requires the data to be copied.
1599  */
1600 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1601 {
1602 	return !skb_header_cloned(skb) &&
1603 	       skb_headroom(skb) + len <= skb->hdr_len;
1604 }
1605 
1606 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1607 			    int cloned)
1608 {
1609 	int delta = 0;
1610 
1611 	if (headroom < NET_SKB_PAD)
1612 		headroom = NET_SKB_PAD;
1613 	if (headroom > skb_headroom(skb))
1614 		delta = headroom - skb_headroom(skb);
1615 
1616 	if (delta || cloned)
1617 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1618 					GFP_ATOMIC);
1619 	return 0;
1620 }
1621 
1622 /**
1623  *	skb_cow - copy header of skb when it is required
1624  *	@skb: buffer to cow
1625  *	@headroom: needed headroom
1626  *
1627  *	If the skb passed lacks sufficient headroom or its data part
1628  *	is shared, data is reallocated. If reallocation fails, an error
1629  *	is returned and original skb is not changed.
1630  *
1631  *	The result is skb with writable area skb->head...skb->tail
1632  *	and at least @headroom of space at head.
1633  */
1634 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1635 {
1636 	return __skb_cow(skb, headroom, skb_cloned(skb));
1637 }
1638 
1639 /**
1640  *	skb_cow_head - skb_cow but only making the head writable
1641  *	@skb: buffer to cow
1642  *	@headroom: needed headroom
1643  *
1644  *	This function is identical to skb_cow except that we replace the
1645  *	skb_cloned check by skb_header_cloned.  It should be used when
1646  *	you only need to push on some header and do not need to modify
1647  *	the data.
1648  */
1649 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1650 {
1651 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1652 }
1653 
1654 /**
1655  *	skb_padto	- pad an skbuff up to a minimal size
1656  *	@skb: buffer to pad
1657  *	@len: minimal length
1658  *
1659  *	Pads up a buffer to ensure the trailing bytes exist and are
1660  *	blanked. If the buffer already contains sufficient data it
1661  *	is untouched. Otherwise it is extended. Returns zero on
1662  *	success. The skb is freed on error.
1663  */
1664 
1665 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1666 {
1667 	unsigned int size = skb->len;
1668 	if (likely(size >= len))
1669 		return 0;
1670 	return skb_pad(skb, len - size);
1671 }
1672 
1673 static inline int skb_add_data(struct sk_buff *skb,
1674 			       char __user *from, int copy)
1675 {
1676 	const int off = skb->len;
1677 
1678 	if (skb->ip_summed == CHECKSUM_NONE) {
1679 		int err = 0;
1680 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1681 							    copy, 0, &err);
1682 		if (!err) {
1683 			skb->csum = csum_block_add(skb->csum, csum, off);
1684 			return 0;
1685 		}
1686 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1687 		return 0;
1688 
1689 	__skb_trim(skb, off);
1690 	return -EFAULT;
1691 }
1692 
1693 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1694 				   struct page *page, int off)
1695 {
1696 	if (i) {
1697 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1698 
1699 		return page == frag->page &&
1700 		       off == frag->page_offset + frag->size;
1701 	}
1702 	return 0;
1703 }
1704 
1705 static inline int __skb_linearize(struct sk_buff *skb)
1706 {
1707 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1708 }
1709 
1710 /**
1711  *	skb_linearize - convert paged skb to linear one
1712  *	@skb: buffer to linarize
1713  *
1714  *	If there is no free memory -ENOMEM is returned, otherwise zero
1715  *	is returned and the old skb data released.
1716  */
1717 static inline int skb_linearize(struct sk_buff *skb)
1718 {
1719 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1720 }
1721 
1722 /**
1723  *	skb_linearize_cow - make sure skb is linear and writable
1724  *	@skb: buffer to process
1725  *
1726  *	If there is no free memory -ENOMEM is returned, otherwise zero
1727  *	is returned and the old skb data released.
1728  */
1729 static inline int skb_linearize_cow(struct sk_buff *skb)
1730 {
1731 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1732 	       __skb_linearize(skb) : 0;
1733 }
1734 
1735 /**
1736  *	skb_postpull_rcsum - update checksum for received skb after pull
1737  *	@skb: buffer to update
1738  *	@start: start of data before pull
1739  *	@len: length of data pulled
1740  *
1741  *	After doing a pull on a received packet, you need to call this to
1742  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1743  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1744  */
1745 
1746 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1747 				      const void *start, unsigned int len)
1748 {
1749 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1750 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1751 }
1752 
1753 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1754 
1755 /**
1756  *	pskb_trim_rcsum - trim received skb and update checksum
1757  *	@skb: buffer to trim
1758  *	@len: new length
1759  *
1760  *	This is exactly the same as pskb_trim except that it ensures the
1761  *	checksum of received packets are still valid after the operation.
1762  */
1763 
1764 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1765 {
1766 	if (likely(len >= skb->len))
1767 		return 0;
1768 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1769 		skb->ip_summed = CHECKSUM_NONE;
1770 	return __pskb_trim(skb, len);
1771 }
1772 
1773 #define skb_queue_walk(queue, skb) \
1774 		for (skb = (queue)->next;					\
1775 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1776 		     skb = skb->next)
1777 
1778 #define skb_queue_walk_safe(queue, skb, tmp)					\
1779 		for (skb = (queue)->next, tmp = skb->next;			\
1780 		     skb != (struct sk_buff *)(queue);				\
1781 		     skb = tmp, tmp = skb->next)
1782 
1783 #define skb_queue_walk_from(queue, skb)						\
1784 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1785 		     skb = skb->next)
1786 
1787 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1788 		for (tmp = skb->next;						\
1789 		     skb != (struct sk_buff *)(queue);				\
1790 		     skb = tmp, tmp = skb->next)
1791 
1792 #define skb_queue_reverse_walk(queue, skb) \
1793 		for (skb = (queue)->prev;					\
1794 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1795 		     skb = skb->prev)
1796 
1797 
1798 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1799 {
1800 	return skb_shinfo(skb)->frag_list != NULL;
1801 }
1802 
1803 static inline void skb_frag_list_init(struct sk_buff *skb)
1804 {
1805 	skb_shinfo(skb)->frag_list = NULL;
1806 }
1807 
1808 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1809 {
1810 	frag->next = skb_shinfo(skb)->frag_list;
1811 	skb_shinfo(skb)->frag_list = frag;
1812 }
1813 
1814 #define skb_walk_frags(skb, iter)	\
1815 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1816 
1817 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1818 					   int *peeked, int *err);
1819 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1820 					 int noblock, int *err);
1821 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1822 				     struct poll_table_struct *wait);
1823 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1824 					       int offset, struct iovec *to,
1825 					       int size);
1826 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1827 							int hlen,
1828 							struct iovec *iov);
1829 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1830 						    int offset,
1831 						    const struct iovec *from,
1832 						    int from_offset,
1833 						    int len);
1834 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1835 						     int offset,
1836 						     const struct iovec *to,
1837 						     int to_offset,
1838 						     int size);
1839 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1840 extern void	       skb_free_datagram_locked(struct sock *sk,
1841 						struct sk_buff *skb);
1842 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1843 					 unsigned int flags);
1844 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1845 				    int len, __wsum csum);
1846 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1847 				     void *to, int len);
1848 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1849 				      const void *from, int len);
1850 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1851 					      int offset, u8 *to, int len,
1852 					      __wsum csum);
1853 extern int             skb_splice_bits(struct sk_buff *skb,
1854 						unsigned int offset,
1855 						struct pipe_inode_info *pipe,
1856 						unsigned int len,
1857 						unsigned int flags);
1858 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1859 extern void	       skb_split(struct sk_buff *skb,
1860 				 struct sk_buff *skb1, const u32 len);
1861 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1862 				 int shiftlen);
1863 
1864 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1865 
1866 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1867 				       int len, void *buffer)
1868 {
1869 	int hlen = skb_headlen(skb);
1870 
1871 	if (hlen - offset >= len)
1872 		return skb->data + offset;
1873 
1874 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1875 		return NULL;
1876 
1877 	return buffer;
1878 }
1879 
1880 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1881 					     void *to,
1882 					     const unsigned int len)
1883 {
1884 	memcpy(to, skb->data, len);
1885 }
1886 
1887 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1888 						    const int offset, void *to,
1889 						    const unsigned int len)
1890 {
1891 	memcpy(to, skb->data + offset, len);
1892 }
1893 
1894 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1895 					   const void *from,
1896 					   const unsigned int len)
1897 {
1898 	memcpy(skb->data, from, len);
1899 }
1900 
1901 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1902 						  const int offset,
1903 						  const void *from,
1904 						  const unsigned int len)
1905 {
1906 	memcpy(skb->data + offset, from, len);
1907 }
1908 
1909 extern void skb_init(void);
1910 
1911 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1912 {
1913 	return skb->tstamp;
1914 }
1915 
1916 /**
1917  *	skb_get_timestamp - get timestamp from a skb
1918  *	@skb: skb to get stamp from
1919  *	@stamp: pointer to struct timeval to store stamp in
1920  *
1921  *	Timestamps are stored in the skb as offsets to a base timestamp.
1922  *	This function converts the offset back to a struct timeval and stores
1923  *	it in stamp.
1924  */
1925 static inline void skb_get_timestamp(const struct sk_buff *skb,
1926 				     struct timeval *stamp)
1927 {
1928 	*stamp = ktime_to_timeval(skb->tstamp);
1929 }
1930 
1931 static inline void skb_get_timestampns(const struct sk_buff *skb,
1932 				       struct timespec *stamp)
1933 {
1934 	*stamp = ktime_to_timespec(skb->tstamp);
1935 }
1936 
1937 static inline void __net_timestamp(struct sk_buff *skb)
1938 {
1939 	skb->tstamp = ktime_get_real();
1940 }
1941 
1942 static inline ktime_t net_timedelta(ktime_t t)
1943 {
1944 	return ktime_sub(ktime_get_real(), t);
1945 }
1946 
1947 static inline ktime_t net_invalid_timestamp(void)
1948 {
1949 	return ktime_set(0, 0);
1950 }
1951 
1952 extern void skb_timestamping_init(void);
1953 
1954 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1955 
1956 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1957 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1958 
1959 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1960 
1961 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1962 {
1963 }
1964 
1965 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1966 {
1967 	return false;
1968 }
1969 
1970 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1971 
1972 /**
1973  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1974  *
1975  * @skb: clone of the the original outgoing packet
1976  * @hwtstamps: hardware time stamps
1977  *
1978  */
1979 void skb_complete_tx_timestamp(struct sk_buff *skb,
1980 			       struct skb_shared_hwtstamps *hwtstamps);
1981 
1982 /**
1983  * skb_tstamp_tx - queue clone of skb with send time stamps
1984  * @orig_skb:	the original outgoing packet
1985  * @hwtstamps:	hardware time stamps, may be NULL if not available
1986  *
1987  * If the skb has a socket associated, then this function clones the
1988  * skb (thus sharing the actual data and optional structures), stores
1989  * the optional hardware time stamping information (if non NULL) or
1990  * generates a software time stamp (otherwise), then queues the clone
1991  * to the error queue of the socket.  Errors are silently ignored.
1992  */
1993 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1994 			struct skb_shared_hwtstamps *hwtstamps);
1995 
1996 static inline void sw_tx_timestamp(struct sk_buff *skb)
1997 {
1998 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
1999 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2000 		skb_tstamp_tx(skb, NULL);
2001 }
2002 
2003 /**
2004  * skb_tx_timestamp() - Driver hook for transmit timestamping
2005  *
2006  * Ethernet MAC Drivers should call this function in their hard_xmit()
2007  * function as soon as possible after giving the sk_buff to the MAC
2008  * hardware, but before freeing the sk_buff.
2009  *
2010  * @skb: A socket buffer.
2011  */
2012 static inline void skb_tx_timestamp(struct sk_buff *skb)
2013 {
2014 	skb_clone_tx_timestamp(skb);
2015 	sw_tx_timestamp(skb);
2016 }
2017 
2018 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2019 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2020 
2021 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2022 {
2023 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2024 }
2025 
2026 /**
2027  *	skb_checksum_complete - Calculate checksum of an entire packet
2028  *	@skb: packet to process
2029  *
2030  *	This function calculates the checksum over the entire packet plus
2031  *	the value of skb->csum.  The latter can be used to supply the
2032  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2033  *	checksum.
2034  *
2035  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2036  *	this function can be used to verify that checksum on received
2037  *	packets.  In that case the function should return zero if the
2038  *	checksum is correct.  In particular, this function will return zero
2039  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2040  *	hardware has already verified the correctness of the checksum.
2041  */
2042 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2043 {
2044 	return skb_csum_unnecessary(skb) ?
2045 	       0 : __skb_checksum_complete(skb);
2046 }
2047 
2048 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2049 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2050 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2051 {
2052 	if (nfct && atomic_dec_and_test(&nfct->use))
2053 		nf_conntrack_destroy(nfct);
2054 }
2055 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2056 {
2057 	if (nfct)
2058 		atomic_inc(&nfct->use);
2059 }
2060 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2061 {
2062 	if (skb)
2063 		atomic_inc(&skb->users);
2064 }
2065 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2066 {
2067 	if (skb)
2068 		kfree_skb(skb);
2069 }
2070 #endif
2071 #ifdef CONFIG_BRIDGE_NETFILTER
2072 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2073 {
2074 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2075 		kfree(nf_bridge);
2076 }
2077 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2078 {
2079 	if (nf_bridge)
2080 		atomic_inc(&nf_bridge->use);
2081 }
2082 #endif /* CONFIG_BRIDGE_NETFILTER */
2083 static inline void nf_reset(struct sk_buff *skb)
2084 {
2085 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2086 	nf_conntrack_put(skb->nfct);
2087 	skb->nfct = NULL;
2088 	nf_conntrack_put_reasm(skb->nfct_reasm);
2089 	skb->nfct_reasm = NULL;
2090 #endif
2091 #ifdef CONFIG_BRIDGE_NETFILTER
2092 	nf_bridge_put(skb->nf_bridge);
2093 	skb->nf_bridge = NULL;
2094 #endif
2095 }
2096 
2097 /* Note: This doesn't put any conntrack and bridge info in dst. */
2098 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2099 {
2100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2101 	dst->nfct = src->nfct;
2102 	nf_conntrack_get(src->nfct);
2103 	dst->nfctinfo = src->nfctinfo;
2104 	dst->nfct_reasm = src->nfct_reasm;
2105 	nf_conntrack_get_reasm(src->nfct_reasm);
2106 #endif
2107 #ifdef CONFIG_BRIDGE_NETFILTER
2108 	dst->nf_bridge  = src->nf_bridge;
2109 	nf_bridge_get(src->nf_bridge);
2110 #endif
2111 }
2112 
2113 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2114 {
2115 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2116 	nf_conntrack_put(dst->nfct);
2117 	nf_conntrack_put_reasm(dst->nfct_reasm);
2118 #endif
2119 #ifdef CONFIG_BRIDGE_NETFILTER
2120 	nf_bridge_put(dst->nf_bridge);
2121 #endif
2122 	__nf_copy(dst, src);
2123 }
2124 
2125 #ifdef CONFIG_NETWORK_SECMARK
2126 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2127 {
2128 	to->secmark = from->secmark;
2129 }
2130 
2131 static inline void skb_init_secmark(struct sk_buff *skb)
2132 {
2133 	skb->secmark = 0;
2134 }
2135 #else
2136 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2137 { }
2138 
2139 static inline void skb_init_secmark(struct sk_buff *skb)
2140 { }
2141 #endif
2142 
2143 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2144 {
2145 	skb->queue_mapping = queue_mapping;
2146 }
2147 
2148 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2149 {
2150 	return skb->queue_mapping;
2151 }
2152 
2153 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2154 {
2155 	to->queue_mapping = from->queue_mapping;
2156 }
2157 
2158 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2159 {
2160 	skb->queue_mapping = rx_queue + 1;
2161 }
2162 
2163 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2164 {
2165 	return skb->queue_mapping - 1;
2166 }
2167 
2168 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2169 {
2170 	return skb->queue_mapping != 0;
2171 }
2172 
2173 extern u16 __skb_tx_hash(const struct net_device *dev,
2174 			 const struct sk_buff *skb,
2175 			 unsigned int num_tx_queues);
2176 
2177 #ifdef CONFIG_XFRM
2178 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2179 {
2180 	return skb->sp;
2181 }
2182 #else
2183 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2184 {
2185 	return NULL;
2186 }
2187 #endif
2188 
2189 static inline int skb_is_gso(const struct sk_buff *skb)
2190 {
2191 	return skb_shinfo(skb)->gso_size;
2192 }
2193 
2194 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2195 {
2196 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2197 }
2198 
2199 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2200 
2201 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2202 {
2203 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2204 	 * wanted then gso_type will be set. */
2205 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2206 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2207 	    unlikely(shinfo->gso_type == 0)) {
2208 		__skb_warn_lro_forwarding(skb);
2209 		return true;
2210 	}
2211 	return false;
2212 }
2213 
2214 static inline void skb_forward_csum(struct sk_buff *skb)
2215 {
2216 	/* Unfortunately we don't support this one.  Any brave souls? */
2217 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2218 		skb->ip_summed = CHECKSUM_NONE;
2219 }
2220 
2221 /**
2222  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2223  * @skb: skb to check
2224  *
2225  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2226  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2227  * use this helper, to document places where we make this assertion.
2228  */
2229 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2230 {
2231 #ifdef DEBUG
2232 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2233 #endif
2234 }
2235 
2236 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2237 #endif	/* __KERNEL__ */
2238 #endif	/* _LINUX_SKBUFF_H */
2239