1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/cache.h> 22 23 #include <asm/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/dmaengine.h> 31 #include <linux/hrtimer.h> 32 33 /* Don't change this without changing skb_csum_unnecessary! */ 34 #define CHECKSUM_NONE 0 35 #define CHECKSUM_UNNECESSARY 1 36 #define CHECKSUM_COMPLETE 2 37 #define CHECKSUM_PARTIAL 3 38 39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41 #define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43 #define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48 /* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94 struct net_device; 95 struct scatterlist; 96 struct pipe_inode_info; 97 98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99 struct nf_conntrack { 100 atomic_t use; 101 }; 102 #endif 103 104 #ifdef CONFIG_BRIDGE_NETFILTER 105 struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111 }; 112 #endif 113 114 struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121 }; 122 123 struct sk_buff; 124 125 /* To allow 64K frame to be packed as single skb without frag_list */ 126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128 typedef struct skb_frag_struct skb_frag_t; 129 130 struct skb_frag_struct { 131 struct page *page; 132 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 133 __u32 page_offset; 134 __u32 size; 135 #else 136 __u16 page_offset; 137 __u16 size; 138 #endif 139 }; 140 141 #define HAVE_HW_TIME_STAMP 142 143 /** 144 * struct skb_shared_hwtstamps - hardware time stamps 145 * @hwtstamp: hardware time stamp transformed into duration 146 * since arbitrary point in time 147 * @syststamp: hwtstamp transformed to system time base 148 * 149 * Software time stamps generated by ktime_get_real() are stored in 150 * skb->tstamp. The relation between the different kinds of time 151 * stamps is as follows: 152 * 153 * syststamp and tstamp can be compared against each other in 154 * arbitrary combinations. The accuracy of a 155 * syststamp/tstamp/"syststamp from other device" comparison is 156 * limited by the accuracy of the transformation into system time 157 * base. This depends on the device driver and its underlying 158 * hardware. 159 * 160 * hwtstamps can only be compared against other hwtstamps from 161 * the same device. 162 * 163 * This structure is attached to packets as part of the 164 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 165 */ 166 struct skb_shared_hwtstamps { 167 ktime_t hwtstamp; 168 ktime_t syststamp; 169 }; 170 171 /* Definitions for tx_flags in struct skb_shared_info */ 172 enum { 173 /* generate hardware time stamp */ 174 SKBTX_HW_TSTAMP = 1 << 0, 175 176 /* generate software time stamp */ 177 SKBTX_SW_TSTAMP = 1 << 1, 178 179 /* device driver is going to provide hardware time stamp */ 180 SKBTX_IN_PROGRESS = 1 << 2, 181 182 /* ensure the originating sk reference is available on driver level */ 183 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 184 }; 185 186 /* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189 struct skb_shared_info { 190 unsigned short nr_frags; 191 unsigned short gso_size; 192 /* Warning: this field is not always filled in (UFO)! */ 193 unsigned short gso_segs; 194 unsigned short gso_type; 195 __be32 ip6_frag_id; 196 __u8 tx_flags; 197 struct sk_buff *frag_list; 198 struct skb_shared_hwtstamps hwtstamps; 199 200 /* 201 * Warning : all fields before dataref are cleared in __alloc_skb() 202 */ 203 atomic_t dataref; 204 205 /* Intermediate layers must ensure that destructor_arg 206 * remains valid until skb destructor */ 207 void * destructor_arg; 208 /* must be last field, see pskb_expand_head() */ 209 skb_frag_t frags[MAX_SKB_FRAGS]; 210 }; 211 212 /* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223 #define SKB_DATAREF_SHIFT 16 224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227 enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231 }; 232 233 enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246 }; 247 248 #if BITS_PER_LONG > 32 249 #define NET_SKBUFF_DATA_USES_OFFSET 1 250 #endif 251 252 #ifdef NET_SKBUFF_DATA_USES_OFFSET 253 typedef unsigned int sk_buff_data_t; 254 #else 255 typedef unsigned char *sk_buff_data_t; 256 #endif 257 258 /** 259 * struct sk_buff - socket buffer 260 * @next: Next buffer in list 261 * @prev: Previous buffer in list 262 * @sk: Socket we are owned by 263 * @tstamp: Time we arrived 264 * @dev: Device we arrived on/are leaving by 265 * @transport_header: Transport layer header 266 * @network_header: Network layer header 267 * @mac_header: Link layer header 268 * @_skb_refdst: destination entry (with norefcount bit) 269 * @sp: the security path, used for xfrm 270 * @cb: Control buffer. Free for use by every layer. Put private vars here 271 * @len: Length of actual data 272 * @data_len: Data length 273 * @mac_len: Length of link layer header 274 * @hdr_len: writable header length of cloned skb 275 * @csum: Checksum (must include start/offset pair) 276 * @csum_start: Offset from skb->head where checksumming should start 277 * @csum_offset: Offset from csum_start where checksum should be stored 278 * @local_df: allow local fragmentation 279 * @cloned: Head may be cloned (check refcnt to be sure) 280 * @nohdr: Payload reference only, must not modify header 281 * @pkt_type: Packet class 282 * @fclone: skbuff clone status 283 * @ip_summed: Driver fed us an IP checksum 284 * @priority: Packet queueing priority 285 * @users: User count - see {datagram,tcp}.c 286 * @protocol: Packet protocol from driver 287 * @truesize: Buffer size 288 * @head: Head of buffer 289 * @data: Data head pointer 290 * @tail: Tail pointer 291 * @end: End pointer 292 * @destructor: Destruct function 293 * @mark: Generic packet mark 294 * @nfct: Associated connection, if any 295 * @ipvs_property: skbuff is owned by ipvs 296 * @peeked: this packet has been seen already, so stats have been 297 * done for it, don't do them again 298 * @nf_trace: netfilter packet trace flag 299 * @nfctinfo: Relationship of this skb to the connection 300 * @nfct_reasm: netfilter conntrack re-assembly pointer 301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 302 * @skb_iif: ifindex of device we arrived on 303 * @rxhash: the packet hash computed on receive 304 * @queue_mapping: Queue mapping for multiqueue devices 305 * @tc_index: Traffic control index 306 * @tc_verd: traffic control verdict 307 * @ndisc_nodetype: router type (from link layer) 308 * @dma_cookie: a cookie to one of several possible DMA operations 309 * done by skb DMA functions 310 * @secmark: security marking 311 * @vlan_tci: vlan tag control information 312 */ 313 314 struct sk_buff { 315 /* These two members must be first. */ 316 struct sk_buff *next; 317 struct sk_buff *prev; 318 319 ktime_t tstamp; 320 321 struct sock *sk; 322 struct net_device *dev; 323 324 /* 325 * This is the control buffer. It is free to use for every 326 * layer. Please put your private variables there. If you 327 * want to keep them across layers you have to do a skb_clone() 328 * first. This is owned by whoever has the skb queued ATM. 329 */ 330 char cb[48] __aligned(8); 331 332 unsigned long _skb_refdst; 333 #ifdef CONFIG_XFRM 334 struct sec_path *sp; 335 #endif 336 unsigned int len, 337 data_len; 338 __u16 mac_len, 339 hdr_len; 340 union { 341 __wsum csum; 342 struct { 343 __u16 csum_start; 344 __u16 csum_offset; 345 }; 346 }; 347 __u32 priority; 348 kmemcheck_bitfield_begin(flags1); 349 __u8 local_df:1, 350 cloned:1, 351 ip_summed:2, 352 nohdr:1, 353 nfctinfo:3; 354 __u8 pkt_type:3, 355 fclone:2, 356 ipvs_property:1, 357 peeked:1, 358 nf_trace:1; 359 kmemcheck_bitfield_end(flags1); 360 __be16 protocol; 361 362 void (*destructor)(struct sk_buff *skb); 363 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 364 struct nf_conntrack *nfct; 365 struct sk_buff *nfct_reasm; 366 #endif 367 #ifdef CONFIG_BRIDGE_NETFILTER 368 struct nf_bridge_info *nf_bridge; 369 #endif 370 371 int skb_iif; 372 #ifdef CONFIG_NET_SCHED 373 __u16 tc_index; /* traffic control index */ 374 #ifdef CONFIG_NET_CLS_ACT 375 __u16 tc_verd; /* traffic control verdict */ 376 #endif 377 #endif 378 379 __u32 rxhash; 380 381 kmemcheck_bitfield_begin(flags2); 382 __u16 queue_mapping:16; 383 #ifdef CONFIG_IPV6_NDISC_NODETYPE 384 __u8 ndisc_nodetype:2, 385 deliver_no_wcard:1; 386 #else 387 __u8 deliver_no_wcard:1; 388 #endif 389 __u8 ooo_okay:1; 390 kmemcheck_bitfield_end(flags2); 391 392 /* 0/13 bit hole */ 393 394 #ifdef CONFIG_NET_DMA 395 dma_cookie_t dma_cookie; 396 #endif 397 #ifdef CONFIG_NETWORK_SECMARK 398 __u32 secmark; 399 #endif 400 union { 401 __u32 mark; 402 __u32 dropcount; 403 }; 404 405 __u16 vlan_tci; 406 407 sk_buff_data_t transport_header; 408 sk_buff_data_t network_header; 409 sk_buff_data_t mac_header; 410 /* These elements must be at the end, see alloc_skb() for details. */ 411 sk_buff_data_t tail; 412 sk_buff_data_t end; 413 unsigned char *head, 414 *data; 415 unsigned int truesize; 416 atomic_t users; 417 }; 418 419 #ifdef __KERNEL__ 420 /* 421 * Handling routines are only of interest to the kernel 422 */ 423 #include <linux/slab.h> 424 425 #include <asm/system.h> 426 427 /* 428 * skb might have a dst pointer attached, refcounted or not. 429 * _skb_refdst low order bit is set if refcount was _not_ taken 430 */ 431 #define SKB_DST_NOREF 1UL 432 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 433 434 /** 435 * skb_dst - returns skb dst_entry 436 * @skb: buffer 437 * 438 * Returns skb dst_entry, regardless of reference taken or not. 439 */ 440 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 441 { 442 /* If refdst was not refcounted, check we still are in a 443 * rcu_read_lock section 444 */ 445 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 446 !rcu_read_lock_held() && 447 !rcu_read_lock_bh_held()); 448 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 449 } 450 451 /** 452 * skb_dst_set - sets skb dst 453 * @skb: buffer 454 * @dst: dst entry 455 * 456 * Sets skb dst, assuming a reference was taken on dst and should 457 * be released by skb_dst_drop() 458 */ 459 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 460 { 461 skb->_skb_refdst = (unsigned long)dst; 462 } 463 464 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 465 466 /** 467 * skb_dst_is_noref - Test if skb dst isnt refcounted 468 * @skb: buffer 469 */ 470 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 471 { 472 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 473 } 474 475 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 476 { 477 return (struct rtable *)skb_dst(skb); 478 } 479 480 extern void kfree_skb(struct sk_buff *skb); 481 extern void consume_skb(struct sk_buff *skb); 482 extern void __kfree_skb(struct sk_buff *skb); 483 extern struct sk_buff *__alloc_skb(unsigned int size, 484 gfp_t priority, int fclone, int node); 485 static inline struct sk_buff *alloc_skb(unsigned int size, 486 gfp_t priority) 487 { 488 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 489 } 490 491 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 492 gfp_t priority) 493 { 494 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 495 } 496 497 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 498 499 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 500 extern struct sk_buff *skb_clone(struct sk_buff *skb, 501 gfp_t priority); 502 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 503 gfp_t priority); 504 extern struct sk_buff *pskb_copy(struct sk_buff *skb, 505 gfp_t gfp_mask); 506 extern int pskb_expand_head(struct sk_buff *skb, 507 int nhead, int ntail, 508 gfp_t gfp_mask); 509 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 510 unsigned int headroom); 511 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 512 int newheadroom, int newtailroom, 513 gfp_t priority); 514 extern int skb_to_sgvec(struct sk_buff *skb, 515 struct scatterlist *sg, int offset, 516 int len); 517 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 518 struct sk_buff **trailer); 519 extern int skb_pad(struct sk_buff *skb, int pad); 520 #define dev_kfree_skb(a) consume_skb(a) 521 522 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 523 int getfrag(void *from, char *to, int offset, 524 int len,int odd, struct sk_buff *skb), 525 void *from, int length); 526 527 struct skb_seq_state { 528 __u32 lower_offset; 529 __u32 upper_offset; 530 __u32 frag_idx; 531 __u32 stepped_offset; 532 struct sk_buff *root_skb; 533 struct sk_buff *cur_skb; 534 __u8 *frag_data; 535 }; 536 537 extern void skb_prepare_seq_read(struct sk_buff *skb, 538 unsigned int from, unsigned int to, 539 struct skb_seq_state *st); 540 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 541 struct skb_seq_state *st); 542 extern void skb_abort_seq_read(struct skb_seq_state *st); 543 544 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 545 unsigned int to, struct ts_config *config, 546 struct ts_state *state); 547 548 extern __u32 __skb_get_rxhash(struct sk_buff *skb); 549 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 550 { 551 if (!skb->rxhash) 552 skb->rxhash = __skb_get_rxhash(skb); 553 554 return skb->rxhash; 555 } 556 557 #ifdef NET_SKBUFF_DATA_USES_OFFSET 558 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 559 { 560 return skb->head + skb->end; 561 } 562 #else 563 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 564 { 565 return skb->end; 566 } 567 #endif 568 569 /* Internal */ 570 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 571 572 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 573 { 574 return &skb_shinfo(skb)->hwtstamps; 575 } 576 577 /** 578 * skb_queue_empty - check if a queue is empty 579 * @list: queue head 580 * 581 * Returns true if the queue is empty, false otherwise. 582 */ 583 static inline int skb_queue_empty(const struct sk_buff_head *list) 584 { 585 return list->next == (struct sk_buff *)list; 586 } 587 588 /** 589 * skb_queue_is_last - check if skb is the last entry in the queue 590 * @list: queue head 591 * @skb: buffer 592 * 593 * Returns true if @skb is the last buffer on the list. 594 */ 595 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 596 const struct sk_buff *skb) 597 { 598 return skb->next == (struct sk_buff *)list; 599 } 600 601 /** 602 * skb_queue_is_first - check if skb is the first entry in the queue 603 * @list: queue head 604 * @skb: buffer 605 * 606 * Returns true if @skb is the first buffer on the list. 607 */ 608 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 609 const struct sk_buff *skb) 610 { 611 return skb->prev == (struct sk_buff *)list; 612 } 613 614 /** 615 * skb_queue_next - return the next packet in the queue 616 * @list: queue head 617 * @skb: current buffer 618 * 619 * Return the next packet in @list after @skb. It is only valid to 620 * call this if skb_queue_is_last() evaluates to false. 621 */ 622 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 623 const struct sk_buff *skb) 624 { 625 /* This BUG_ON may seem severe, but if we just return then we 626 * are going to dereference garbage. 627 */ 628 BUG_ON(skb_queue_is_last(list, skb)); 629 return skb->next; 630 } 631 632 /** 633 * skb_queue_prev - return the prev packet in the queue 634 * @list: queue head 635 * @skb: current buffer 636 * 637 * Return the prev packet in @list before @skb. It is only valid to 638 * call this if skb_queue_is_first() evaluates to false. 639 */ 640 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 641 const struct sk_buff *skb) 642 { 643 /* This BUG_ON may seem severe, but if we just return then we 644 * are going to dereference garbage. 645 */ 646 BUG_ON(skb_queue_is_first(list, skb)); 647 return skb->prev; 648 } 649 650 /** 651 * skb_get - reference buffer 652 * @skb: buffer to reference 653 * 654 * Makes another reference to a socket buffer and returns a pointer 655 * to the buffer. 656 */ 657 static inline struct sk_buff *skb_get(struct sk_buff *skb) 658 { 659 atomic_inc(&skb->users); 660 return skb; 661 } 662 663 /* 664 * If users == 1, we are the only owner and are can avoid redundant 665 * atomic change. 666 */ 667 668 /** 669 * skb_cloned - is the buffer a clone 670 * @skb: buffer to check 671 * 672 * Returns true if the buffer was generated with skb_clone() and is 673 * one of multiple shared copies of the buffer. Cloned buffers are 674 * shared data so must not be written to under normal circumstances. 675 */ 676 static inline int skb_cloned(const struct sk_buff *skb) 677 { 678 return skb->cloned && 679 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 680 } 681 682 /** 683 * skb_header_cloned - is the header a clone 684 * @skb: buffer to check 685 * 686 * Returns true if modifying the header part of the buffer requires 687 * the data to be copied. 688 */ 689 static inline int skb_header_cloned(const struct sk_buff *skb) 690 { 691 int dataref; 692 693 if (!skb->cloned) 694 return 0; 695 696 dataref = atomic_read(&skb_shinfo(skb)->dataref); 697 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 698 return dataref != 1; 699 } 700 701 /** 702 * skb_header_release - release reference to header 703 * @skb: buffer to operate on 704 * 705 * Drop a reference to the header part of the buffer. This is done 706 * by acquiring a payload reference. You must not read from the header 707 * part of skb->data after this. 708 */ 709 static inline void skb_header_release(struct sk_buff *skb) 710 { 711 BUG_ON(skb->nohdr); 712 skb->nohdr = 1; 713 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 714 } 715 716 /** 717 * skb_shared - is the buffer shared 718 * @skb: buffer to check 719 * 720 * Returns true if more than one person has a reference to this 721 * buffer. 722 */ 723 static inline int skb_shared(const struct sk_buff *skb) 724 { 725 return atomic_read(&skb->users) != 1; 726 } 727 728 /** 729 * skb_share_check - check if buffer is shared and if so clone it 730 * @skb: buffer to check 731 * @pri: priority for memory allocation 732 * 733 * If the buffer is shared the buffer is cloned and the old copy 734 * drops a reference. A new clone with a single reference is returned. 735 * If the buffer is not shared the original buffer is returned. When 736 * being called from interrupt status or with spinlocks held pri must 737 * be GFP_ATOMIC. 738 * 739 * NULL is returned on a memory allocation failure. 740 */ 741 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 742 gfp_t pri) 743 { 744 might_sleep_if(pri & __GFP_WAIT); 745 if (skb_shared(skb)) { 746 struct sk_buff *nskb = skb_clone(skb, pri); 747 kfree_skb(skb); 748 skb = nskb; 749 } 750 return skb; 751 } 752 753 /* 754 * Copy shared buffers into a new sk_buff. We effectively do COW on 755 * packets to handle cases where we have a local reader and forward 756 * and a couple of other messy ones. The normal one is tcpdumping 757 * a packet thats being forwarded. 758 */ 759 760 /** 761 * skb_unshare - make a copy of a shared buffer 762 * @skb: buffer to check 763 * @pri: priority for memory allocation 764 * 765 * If the socket buffer is a clone then this function creates a new 766 * copy of the data, drops a reference count on the old copy and returns 767 * the new copy with the reference count at 1. If the buffer is not a clone 768 * the original buffer is returned. When called with a spinlock held or 769 * from interrupt state @pri must be %GFP_ATOMIC 770 * 771 * %NULL is returned on a memory allocation failure. 772 */ 773 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 774 gfp_t pri) 775 { 776 might_sleep_if(pri & __GFP_WAIT); 777 if (skb_cloned(skb)) { 778 struct sk_buff *nskb = skb_copy(skb, pri); 779 kfree_skb(skb); /* Free our shared copy */ 780 skb = nskb; 781 } 782 return skb; 783 } 784 785 /** 786 * skb_peek - peek at the head of an &sk_buff_head 787 * @list_: list to peek at 788 * 789 * Peek an &sk_buff. Unlike most other operations you _MUST_ 790 * be careful with this one. A peek leaves the buffer on the 791 * list and someone else may run off with it. You must hold 792 * the appropriate locks or have a private queue to do this. 793 * 794 * Returns %NULL for an empty list or a pointer to the head element. 795 * The reference count is not incremented and the reference is therefore 796 * volatile. Use with caution. 797 */ 798 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 799 { 800 struct sk_buff *list = ((struct sk_buff *)list_)->next; 801 if (list == (struct sk_buff *)list_) 802 list = NULL; 803 return list; 804 } 805 806 /** 807 * skb_peek_tail - peek at the tail of an &sk_buff_head 808 * @list_: list to peek at 809 * 810 * Peek an &sk_buff. Unlike most other operations you _MUST_ 811 * be careful with this one. A peek leaves the buffer on the 812 * list and someone else may run off with it. You must hold 813 * the appropriate locks or have a private queue to do this. 814 * 815 * Returns %NULL for an empty list or a pointer to the tail element. 816 * The reference count is not incremented and the reference is therefore 817 * volatile. Use with caution. 818 */ 819 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 820 { 821 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 822 if (list == (struct sk_buff *)list_) 823 list = NULL; 824 return list; 825 } 826 827 /** 828 * skb_queue_len - get queue length 829 * @list_: list to measure 830 * 831 * Return the length of an &sk_buff queue. 832 */ 833 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 834 { 835 return list_->qlen; 836 } 837 838 /** 839 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 840 * @list: queue to initialize 841 * 842 * This initializes only the list and queue length aspects of 843 * an sk_buff_head object. This allows to initialize the list 844 * aspects of an sk_buff_head without reinitializing things like 845 * the spinlock. It can also be used for on-stack sk_buff_head 846 * objects where the spinlock is known to not be used. 847 */ 848 static inline void __skb_queue_head_init(struct sk_buff_head *list) 849 { 850 list->prev = list->next = (struct sk_buff *)list; 851 list->qlen = 0; 852 } 853 854 /* 855 * This function creates a split out lock class for each invocation; 856 * this is needed for now since a whole lot of users of the skb-queue 857 * infrastructure in drivers have different locking usage (in hardirq) 858 * than the networking core (in softirq only). In the long run either the 859 * network layer or drivers should need annotation to consolidate the 860 * main types of usage into 3 classes. 861 */ 862 static inline void skb_queue_head_init(struct sk_buff_head *list) 863 { 864 spin_lock_init(&list->lock); 865 __skb_queue_head_init(list); 866 } 867 868 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 869 struct lock_class_key *class) 870 { 871 skb_queue_head_init(list); 872 lockdep_set_class(&list->lock, class); 873 } 874 875 /* 876 * Insert an sk_buff on a list. 877 * 878 * The "__skb_xxxx()" functions are the non-atomic ones that 879 * can only be called with interrupts disabled. 880 */ 881 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 882 static inline void __skb_insert(struct sk_buff *newsk, 883 struct sk_buff *prev, struct sk_buff *next, 884 struct sk_buff_head *list) 885 { 886 newsk->next = next; 887 newsk->prev = prev; 888 next->prev = prev->next = newsk; 889 list->qlen++; 890 } 891 892 static inline void __skb_queue_splice(const struct sk_buff_head *list, 893 struct sk_buff *prev, 894 struct sk_buff *next) 895 { 896 struct sk_buff *first = list->next; 897 struct sk_buff *last = list->prev; 898 899 first->prev = prev; 900 prev->next = first; 901 902 last->next = next; 903 next->prev = last; 904 } 905 906 /** 907 * skb_queue_splice - join two skb lists, this is designed for stacks 908 * @list: the new list to add 909 * @head: the place to add it in the first list 910 */ 911 static inline void skb_queue_splice(const struct sk_buff_head *list, 912 struct sk_buff_head *head) 913 { 914 if (!skb_queue_empty(list)) { 915 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 916 head->qlen += list->qlen; 917 } 918 } 919 920 /** 921 * skb_queue_splice - join two skb lists and reinitialise the emptied list 922 * @list: the new list to add 923 * @head: the place to add it in the first list 924 * 925 * The list at @list is reinitialised 926 */ 927 static inline void skb_queue_splice_init(struct sk_buff_head *list, 928 struct sk_buff_head *head) 929 { 930 if (!skb_queue_empty(list)) { 931 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 932 head->qlen += list->qlen; 933 __skb_queue_head_init(list); 934 } 935 } 936 937 /** 938 * skb_queue_splice_tail - join two skb lists, each list being a queue 939 * @list: the new list to add 940 * @head: the place to add it in the first list 941 */ 942 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 943 struct sk_buff_head *head) 944 { 945 if (!skb_queue_empty(list)) { 946 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 947 head->qlen += list->qlen; 948 } 949 } 950 951 /** 952 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 953 * @list: the new list to add 954 * @head: the place to add it in the first list 955 * 956 * Each of the lists is a queue. 957 * The list at @list is reinitialised 958 */ 959 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 960 struct sk_buff_head *head) 961 { 962 if (!skb_queue_empty(list)) { 963 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 964 head->qlen += list->qlen; 965 __skb_queue_head_init(list); 966 } 967 } 968 969 /** 970 * __skb_queue_after - queue a buffer at the list head 971 * @list: list to use 972 * @prev: place after this buffer 973 * @newsk: buffer to queue 974 * 975 * Queue a buffer int the middle of a list. This function takes no locks 976 * and you must therefore hold required locks before calling it. 977 * 978 * A buffer cannot be placed on two lists at the same time. 979 */ 980 static inline void __skb_queue_after(struct sk_buff_head *list, 981 struct sk_buff *prev, 982 struct sk_buff *newsk) 983 { 984 __skb_insert(newsk, prev, prev->next, list); 985 } 986 987 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 988 struct sk_buff_head *list); 989 990 static inline void __skb_queue_before(struct sk_buff_head *list, 991 struct sk_buff *next, 992 struct sk_buff *newsk) 993 { 994 __skb_insert(newsk, next->prev, next, list); 995 } 996 997 /** 998 * __skb_queue_head - queue a buffer at the list head 999 * @list: list to use 1000 * @newsk: buffer to queue 1001 * 1002 * Queue a buffer at the start of a list. This function takes no locks 1003 * and you must therefore hold required locks before calling it. 1004 * 1005 * A buffer cannot be placed on two lists at the same time. 1006 */ 1007 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1008 static inline void __skb_queue_head(struct sk_buff_head *list, 1009 struct sk_buff *newsk) 1010 { 1011 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1012 } 1013 1014 /** 1015 * __skb_queue_tail - queue a buffer at the list tail 1016 * @list: list to use 1017 * @newsk: buffer to queue 1018 * 1019 * Queue a buffer at the end of a list. This function takes no locks 1020 * and you must therefore hold required locks before calling it. 1021 * 1022 * A buffer cannot be placed on two lists at the same time. 1023 */ 1024 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1025 static inline void __skb_queue_tail(struct sk_buff_head *list, 1026 struct sk_buff *newsk) 1027 { 1028 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1029 } 1030 1031 /* 1032 * remove sk_buff from list. _Must_ be called atomically, and with 1033 * the list known.. 1034 */ 1035 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1036 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1037 { 1038 struct sk_buff *next, *prev; 1039 1040 list->qlen--; 1041 next = skb->next; 1042 prev = skb->prev; 1043 skb->next = skb->prev = NULL; 1044 next->prev = prev; 1045 prev->next = next; 1046 } 1047 1048 /** 1049 * __skb_dequeue - remove from the head of the queue 1050 * @list: list to dequeue from 1051 * 1052 * Remove the head of the list. This function does not take any locks 1053 * so must be used with appropriate locks held only. The head item is 1054 * returned or %NULL if the list is empty. 1055 */ 1056 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1057 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1058 { 1059 struct sk_buff *skb = skb_peek(list); 1060 if (skb) 1061 __skb_unlink(skb, list); 1062 return skb; 1063 } 1064 1065 /** 1066 * __skb_dequeue_tail - remove from the tail of the queue 1067 * @list: list to dequeue from 1068 * 1069 * Remove the tail of the list. This function does not take any locks 1070 * so must be used with appropriate locks held only. The tail item is 1071 * returned or %NULL if the list is empty. 1072 */ 1073 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1074 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1075 { 1076 struct sk_buff *skb = skb_peek_tail(list); 1077 if (skb) 1078 __skb_unlink(skb, list); 1079 return skb; 1080 } 1081 1082 1083 static inline int skb_is_nonlinear(const struct sk_buff *skb) 1084 { 1085 return skb->data_len; 1086 } 1087 1088 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1089 { 1090 return skb->len - skb->data_len; 1091 } 1092 1093 static inline int skb_pagelen(const struct sk_buff *skb) 1094 { 1095 int i, len = 0; 1096 1097 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1098 len += skb_shinfo(skb)->frags[i].size; 1099 return len + skb_headlen(skb); 1100 } 1101 1102 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1103 struct page *page, int off, int size) 1104 { 1105 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1106 1107 frag->page = page; 1108 frag->page_offset = off; 1109 frag->size = size; 1110 skb_shinfo(skb)->nr_frags = i + 1; 1111 } 1112 1113 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1114 int off, int size); 1115 1116 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1117 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1118 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1119 1120 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1121 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1122 { 1123 return skb->head + skb->tail; 1124 } 1125 1126 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1127 { 1128 skb->tail = skb->data - skb->head; 1129 } 1130 1131 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1132 { 1133 skb_reset_tail_pointer(skb); 1134 skb->tail += offset; 1135 } 1136 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1137 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1138 { 1139 return skb->tail; 1140 } 1141 1142 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1143 { 1144 skb->tail = skb->data; 1145 } 1146 1147 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1148 { 1149 skb->tail = skb->data + offset; 1150 } 1151 1152 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1153 1154 /* 1155 * Add data to an sk_buff 1156 */ 1157 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1158 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1159 { 1160 unsigned char *tmp = skb_tail_pointer(skb); 1161 SKB_LINEAR_ASSERT(skb); 1162 skb->tail += len; 1163 skb->len += len; 1164 return tmp; 1165 } 1166 1167 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1168 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1169 { 1170 skb->data -= len; 1171 skb->len += len; 1172 return skb->data; 1173 } 1174 1175 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1176 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1177 { 1178 skb->len -= len; 1179 BUG_ON(skb->len < skb->data_len); 1180 return skb->data += len; 1181 } 1182 1183 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1184 { 1185 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1186 } 1187 1188 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1189 1190 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1191 { 1192 if (len > skb_headlen(skb) && 1193 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1194 return NULL; 1195 skb->len -= len; 1196 return skb->data += len; 1197 } 1198 1199 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1200 { 1201 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1202 } 1203 1204 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1205 { 1206 if (likely(len <= skb_headlen(skb))) 1207 return 1; 1208 if (unlikely(len > skb->len)) 1209 return 0; 1210 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1211 } 1212 1213 /** 1214 * skb_headroom - bytes at buffer head 1215 * @skb: buffer to check 1216 * 1217 * Return the number of bytes of free space at the head of an &sk_buff. 1218 */ 1219 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1220 { 1221 return skb->data - skb->head; 1222 } 1223 1224 /** 1225 * skb_tailroom - bytes at buffer end 1226 * @skb: buffer to check 1227 * 1228 * Return the number of bytes of free space at the tail of an sk_buff 1229 */ 1230 static inline int skb_tailroom(const struct sk_buff *skb) 1231 { 1232 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1233 } 1234 1235 /** 1236 * skb_reserve - adjust headroom 1237 * @skb: buffer to alter 1238 * @len: bytes to move 1239 * 1240 * Increase the headroom of an empty &sk_buff by reducing the tail 1241 * room. This is only allowed for an empty buffer. 1242 */ 1243 static inline void skb_reserve(struct sk_buff *skb, int len) 1244 { 1245 skb->data += len; 1246 skb->tail += len; 1247 } 1248 1249 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1250 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1251 { 1252 return skb->head + skb->transport_header; 1253 } 1254 1255 static inline void skb_reset_transport_header(struct sk_buff *skb) 1256 { 1257 skb->transport_header = skb->data - skb->head; 1258 } 1259 1260 static inline void skb_set_transport_header(struct sk_buff *skb, 1261 const int offset) 1262 { 1263 skb_reset_transport_header(skb); 1264 skb->transport_header += offset; 1265 } 1266 1267 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1268 { 1269 return skb->head + skb->network_header; 1270 } 1271 1272 static inline void skb_reset_network_header(struct sk_buff *skb) 1273 { 1274 skb->network_header = skb->data - skb->head; 1275 } 1276 1277 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1278 { 1279 skb_reset_network_header(skb); 1280 skb->network_header += offset; 1281 } 1282 1283 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1284 { 1285 return skb->head + skb->mac_header; 1286 } 1287 1288 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1289 { 1290 return skb->mac_header != ~0U; 1291 } 1292 1293 static inline void skb_reset_mac_header(struct sk_buff *skb) 1294 { 1295 skb->mac_header = skb->data - skb->head; 1296 } 1297 1298 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1299 { 1300 skb_reset_mac_header(skb); 1301 skb->mac_header += offset; 1302 } 1303 1304 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1305 1306 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1307 { 1308 return skb->transport_header; 1309 } 1310 1311 static inline void skb_reset_transport_header(struct sk_buff *skb) 1312 { 1313 skb->transport_header = skb->data; 1314 } 1315 1316 static inline void skb_set_transport_header(struct sk_buff *skb, 1317 const int offset) 1318 { 1319 skb->transport_header = skb->data + offset; 1320 } 1321 1322 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1323 { 1324 return skb->network_header; 1325 } 1326 1327 static inline void skb_reset_network_header(struct sk_buff *skb) 1328 { 1329 skb->network_header = skb->data; 1330 } 1331 1332 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1333 { 1334 skb->network_header = skb->data + offset; 1335 } 1336 1337 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1338 { 1339 return skb->mac_header; 1340 } 1341 1342 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1343 { 1344 return skb->mac_header != NULL; 1345 } 1346 1347 static inline void skb_reset_mac_header(struct sk_buff *skb) 1348 { 1349 skb->mac_header = skb->data; 1350 } 1351 1352 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1353 { 1354 skb->mac_header = skb->data + offset; 1355 } 1356 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1357 1358 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1359 { 1360 return skb->csum_start - skb_headroom(skb); 1361 } 1362 1363 static inline int skb_transport_offset(const struct sk_buff *skb) 1364 { 1365 return skb_transport_header(skb) - skb->data; 1366 } 1367 1368 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1369 { 1370 return skb->transport_header - skb->network_header; 1371 } 1372 1373 static inline int skb_network_offset(const struct sk_buff *skb) 1374 { 1375 return skb_network_header(skb) - skb->data; 1376 } 1377 1378 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1379 { 1380 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1381 } 1382 1383 /* 1384 * CPUs often take a performance hit when accessing unaligned memory 1385 * locations. The actual performance hit varies, it can be small if the 1386 * hardware handles it or large if we have to take an exception and fix it 1387 * in software. 1388 * 1389 * Since an ethernet header is 14 bytes network drivers often end up with 1390 * the IP header at an unaligned offset. The IP header can be aligned by 1391 * shifting the start of the packet by 2 bytes. Drivers should do this 1392 * with: 1393 * 1394 * skb_reserve(skb, NET_IP_ALIGN); 1395 * 1396 * The downside to this alignment of the IP header is that the DMA is now 1397 * unaligned. On some architectures the cost of an unaligned DMA is high 1398 * and this cost outweighs the gains made by aligning the IP header. 1399 * 1400 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1401 * to be overridden. 1402 */ 1403 #ifndef NET_IP_ALIGN 1404 #define NET_IP_ALIGN 2 1405 #endif 1406 1407 /* 1408 * The networking layer reserves some headroom in skb data (via 1409 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1410 * the header has to grow. In the default case, if the header has to grow 1411 * 32 bytes or less we avoid the reallocation. 1412 * 1413 * Unfortunately this headroom changes the DMA alignment of the resulting 1414 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1415 * on some architectures. An architecture can override this value, 1416 * perhaps setting it to a cacheline in size (since that will maintain 1417 * cacheline alignment of the DMA). It must be a power of 2. 1418 * 1419 * Various parts of the networking layer expect at least 32 bytes of 1420 * headroom, you should not reduce this. 1421 * 1422 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1423 * to reduce average number of cache lines per packet. 1424 * get_rps_cpus() for example only access one 64 bytes aligned block : 1425 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1426 */ 1427 #ifndef NET_SKB_PAD 1428 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1429 #endif 1430 1431 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1432 1433 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1434 { 1435 if (unlikely(skb->data_len)) { 1436 WARN_ON(1); 1437 return; 1438 } 1439 skb->len = len; 1440 skb_set_tail_pointer(skb, len); 1441 } 1442 1443 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1444 1445 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1446 { 1447 if (skb->data_len) 1448 return ___pskb_trim(skb, len); 1449 __skb_trim(skb, len); 1450 return 0; 1451 } 1452 1453 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1454 { 1455 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1456 } 1457 1458 /** 1459 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1460 * @skb: buffer to alter 1461 * @len: new length 1462 * 1463 * This is identical to pskb_trim except that the caller knows that 1464 * the skb is not cloned so we should never get an error due to out- 1465 * of-memory. 1466 */ 1467 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1468 { 1469 int err = pskb_trim(skb, len); 1470 BUG_ON(err); 1471 } 1472 1473 /** 1474 * skb_orphan - orphan a buffer 1475 * @skb: buffer to orphan 1476 * 1477 * If a buffer currently has an owner then we call the owner's 1478 * destructor function and make the @skb unowned. The buffer continues 1479 * to exist but is no longer charged to its former owner. 1480 */ 1481 static inline void skb_orphan(struct sk_buff *skb) 1482 { 1483 if (skb->destructor) 1484 skb->destructor(skb); 1485 skb->destructor = NULL; 1486 skb->sk = NULL; 1487 } 1488 1489 /** 1490 * __skb_queue_purge - empty a list 1491 * @list: list to empty 1492 * 1493 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1494 * the list and one reference dropped. This function does not take the 1495 * list lock and the caller must hold the relevant locks to use it. 1496 */ 1497 extern void skb_queue_purge(struct sk_buff_head *list); 1498 static inline void __skb_queue_purge(struct sk_buff_head *list) 1499 { 1500 struct sk_buff *skb; 1501 while ((skb = __skb_dequeue(list)) != NULL) 1502 kfree_skb(skb); 1503 } 1504 1505 /** 1506 * __dev_alloc_skb - allocate an skbuff for receiving 1507 * @length: length to allocate 1508 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1509 * 1510 * Allocate a new &sk_buff and assign it a usage count of one. The 1511 * buffer has unspecified headroom built in. Users should allocate 1512 * the headroom they think they need without accounting for the 1513 * built in space. The built in space is used for optimisations. 1514 * 1515 * %NULL is returned if there is no free memory. 1516 */ 1517 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1518 gfp_t gfp_mask) 1519 { 1520 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1521 if (likely(skb)) 1522 skb_reserve(skb, NET_SKB_PAD); 1523 return skb; 1524 } 1525 1526 extern struct sk_buff *dev_alloc_skb(unsigned int length); 1527 1528 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1529 unsigned int length, gfp_t gfp_mask); 1530 1531 /** 1532 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1533 * @dev: network device to receive on 1534 * @length: length to allocate 1535 * 1536 * Allocate a new &sk_buff and assign it a usage count of one. The 1537 * buffer has unspecified headroom built in. Users should allocate 1538 * the headroom they think they need without accounting for the 1539 * built in space. The built in space is used for optimisations. 1540 * 1541 * %NULL is returned if there is no free memory. Although this function 1542 * allocates memory it can be called from an interrupt. 1543 */ 1544 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1545 unsigned int length) 1546 { 1547 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1548 } 1549 1550 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1551 unsigned int length) 1552 { 1553 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1554 1555 if (NET_IP_ALIGN && skb) 1556 skb_reserve(skb, NET_IP_ALIGN); 1557 return skb; 1558 } 1559 1560 /** 1561 * __netdev_alloc_page - allocate a page for ps-rx on a specific device 1562 * @dev: network device to receive on 1563 * @gfp_mask: alloc_pages_node mask 1564 * 1565 * Allocate a new page. dev currently unused. 1566 * 1567 * %NULL is returned if there is no free memory. 1568 */ 1569 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 1570 { 1571 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0); 1572 } 1573 1574 /** 1575 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1576 * @dev: network device to receive on 1577 * 1578 * Allocate a new page. dev currently unused. 1579 * 1580 * %NULL is returned if there is no free memory. 1581 */ 1582 static inline struct page *netdev_alloc_page(struct net_device *dev) 1583 { 1584 return __netdev_alloc_page(dev, GFP_ATOMIC); 1585 } 1586 1587 static inline void netdev_free_page(struct net_device *dev, struct page *page) 1588 { 1589 __free_page(page); 1590 } 1591 1592 /** 1593 * skb_clone_writable - is the header of a clone writable 1594 * @skb: buffer to check 1595 * @len: length up to which to write 1596 * 1597 * Returns true if modifying the header part of the cloned buffer 1598 * does not requires the data to be copied. 1599 */ 1600 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1601 { 1602 return !skb_header_cloned(skb) && 1603 skb_headroom(skb) + len <= skb->hdr_len; 1604 } 1605 1606 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1607 int cloned) 1608 { 1609 int delta = 0; 1610 1611 if (headroom < NET_SKB_PAD) 1612 headroom = NET_SKB_PAD; 1613 if (headroom > skb_headroom(skb)) 1614 delta = headroom - skb_headroom(skb); 1615 1616 if (delta || cloned) 1617 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1618 GFP_ATOMIC); 1619 return 0; 1620 } 1621 1622 /** 1623 * skb_cow - copy header of skb when it is required 1624 * @skb: buffer to cow 1625 * @headroom: needed headroom 1626 * 1627 * If the skb passed lacks sufficient headroom or its data part 1628 * is shared, data is reallocated. If reallocation fails, an error 1629 * is returned and original skb is not changed. 1630 * 1631 * The result is skb with writable area skb->head...skb->tail 1632 * and at least @headroom of space at head. 1633 */ 1634 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1635 { 1636 return __skb_cow(skb, headroom, skb_cloned(skb)); 1637 } 1638 1639 /** 1640 * skb_cow_head - skb_cow but only making the head writable 1641 * @skb: buffer to cow 1642 * @headroom: needed headroom 1643 * 1644 * This function is identical to skb_cow except that we replace the 1645 * skb_cloned check by skb_header_cloned. It should be used when 1646 * you only need to push on some header and do not need to modify 1647 * the data. 1648 */ 1649 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1650 { 1651 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1652 } 1653 1654 /** 1655 * skb_padto - pad an skbuff up to a minimal size 1656 * @skb: buffer to pad 1657 * @len: minimal length 1658 * 1659 * Pads up a buffer to ensure the trailing bytes exist and are 1660 * blanked. If the buffer already contains sufficient data it 1661 * is untouched. Otherwise it is extended. Returns zero on 1662 * success. The skb is freed on error. 1663 */ 1664 1665 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1666 { 1667 unsigned int size = skb->len; 1668 if (likely(size >= len)) 1669 return 0; 1670 return skb_pad(skb, len - size); 1671 } 1672 1673 static inline int skb_add_data(struct sk_buff *skb, 1674 char __user *from, int copy) 1675 { 1676 const int off = skb->len; 1677 1678 if (skb->ip_summed == CHECKSUM_NONE) { 1679 int err = 0; 1680 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1681 copy, 0, &err); 1682 if (!err) { 1683 skb->csum = csum_block_add(skb->csum, csum, off); 1684 return 0; 1685 } 1686 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1687 return 0; 1688 1689 __skb_trim(skb, off); 1690 return -EFAULT; 1691 } 1692 1693 static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1694 struct page *page, int off) 1695 { 1696 if (i) { 1697 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1698 1699 return page == frag->page && 1700 off == frag->page_offset + frag->size; 1701 } 1702 return 0; 1703 } 1704 1705 static inline int __skb_linearize(struct sk_buff *skb) 1706 { 1707 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1708 } 1709 1710 /** 1711 * skb_linearize - convert paged skb to linear one 1712 * @skb: buffer to linarize 1713 * 1714 * If there is no free memory -ENOMEM is returned, otherwise zero 1715 * is returned and the old skb data released. 1716 */ 1717 static inline int skb_linearize(struct sk_buff *skb) 1718 { 1719 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1720 } 1721 1722 /** 1723 * skb_linearize_cow - make sure skb is linear and writable 1724 * @skb: buffer to process 1725 * 1726 * If there is no free memory -ENOMEM is returned, otherwise zero 1727 * is returned and the old skb data released. 1728 */ 1729 static inline int skb_linearize_cow(struct sk_buff *skb) 1730 { 1731 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1732 __skb_linearize(skb) : 0; 1733 } 1734 1735 /** 1736 * skb_postpull_rcsum - update checksum for received skb after pull 1737 * @skb: buffer to update 1738 * @start: start of data before pull 1739 * @len: length of data pulled 1740 * 1741 * After doing a pull on a received packet, you need to call this to 1742 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1743 * CHECKSUM_NONE so that it can be recomputed from scratch. 1744 */ 1745 1746 static inline void skb_postpull_rcsum(struct sk_buff *skb, 1747 const void *start, unsigned int len) 1748 { 1749 if (skb->ip_summed == CHECKSUM_COMPLETE) 1750 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1751 } 1752 1753 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1754 1755 /** 1756 * pskb_trim_rcsum - trim received skb and update checksum 1757 * @skb: buffer to trim 1758 * @len: new length 1759 * 1760 * This is exactly the same as pskb_trim except that it ensures the 1761 * checksum of received packets are still valid after the operation. 1762 */ 1763 1764 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1765 { 1766 if (likely(len >= skb->len)) 1767 return 0; 1768 if (skb->ip_summed == CHECKSUM_COMPLETE) 1769 skb->ip_summed = CHECKSUM_NONE; 1770 return __pskb_trim(skb, len); 1771 } 1772 1773 #define skb_queue_walk(queue, skb) \ 1774 for (skb = (queue)->next; \ 1775 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1776 skb = skb->next) 1777 1778 #define skb_queue_walk_safe(queue, skb, tmp) \ 1779 for (skb = (queue)->next, tmp = skb->next; \ 1780 skb != (struct sk_buff *)(queue); \ 1781 skb = tmp, tmp = skb->next) 1782 1783 #define skb_queue_walk_from(queue, skb) \ 1784 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1785 skb = skb->next) 1786 1787 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 1788 for (tmp = skb->next; \ 1789 skb != (struct sk_buff *)(queue); \ 1790 skb = tmp, tmp = skb->next) 1791 1792 #define skb_queue_reverse_walk(queue, skb) \ 1793 for (skb = (queue)->prev; \ 1794 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1795 skb = skb->prev) 1796 1797 1798 static inline bool skb_has_frag_list(const struct sk_buff *skb) 1799 { 1800 return skb_shinfo(skb)->frag_list != NULL; 1801 } 1802 1803 static inline void skb_frag_list_init(struct sk_buff *skb) 1804 { 1805 skb_shinfo(skb)->frag_list = NULL; 1806 } 1807 1808 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1809 { 1810 frag->next = skb_shinfo(skb)->frag_list; 1811 skb_shinfo(skb)->frag_list = frag; 1812 } 1813 1814 #define skb_walk_frags(skb, iter) \ 1815 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1816 1817 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1818 int *peeked, int *err); 1819 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1820 int noblock, int *err); 1821 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1822 struct poll_table_struct *wait); 1823 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1824 int offset, struct iovec *to, 1825 int size); 1826 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1827 int hlen, 1828 struct iovec *iov); 1829 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1830 int offset, 1831 const struct iovec *from, 1832 int from_offset, 1833 int len); 1834 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1835 int offset, 1836 const struct iovec *to, 1837 int to_offset, 1838 int size); 1839 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1840 extern void skb_free_datagram_locked(struct sock *sk, 1841 struct sk_buff *skb); 1842 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1843 unsigned int flags); 1844 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1845 int len, __wsum csum); 1846 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1847 void *to, int len); 1848 extern int skb_store_bits(struct sk_buff *skb, int offset, 1849 const void *from, int len); 1850 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1851 int offset, u8 *to, int len, 1852 __wsum csum); 1853 extern int skb_splice_bits(struct sk_buff *skb, 1854 unsigned int offset, 1855 struct pipe_inode_info *pipe, 1856 unsigned int len, 1857 unsigned int flags); 1858 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1859 extern void skb_split(struct sk_buff *skb, 1860 struct sk_buff *skb1, const u32 len); 1861 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1862 int shiftlen); 1863 1864 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1865 1866 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1867 int len, void *buffer) 1868 { 1869 int hlen = skb_headlen(skb); 1870 1871 if (hlen - offset >= len) 1872 return skb->data + offset; 1873 1874 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1875 return NULL; 1876 1877 return buffer; 1878 } 1879 1880 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1881 void *to, 1882 const unsigned int len) 1883 { 1884 memcpy(to, skb->data, len); 1885 } 1886 1887 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1888 const int offset, void *to, 1889 const unsigned int len) 1890 { 1891 memcpy(to, skb->data + offset, len); 1892 } 1893 1894 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1895 const void *from, 1896 const unsigned int len) 1897 { 1898 memcpy(skb->data, from, len); 1899 } 1900 1901 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1902 const int offset, 1903 const void *from, 1904 const unsigned int len) 1905 { 1906 memcpy(skb->data + offset, from, len); 1907 } 1908 1909 extern void skb_init(void); 1910 1911 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1912 { 1913 return skb->tstamp; 1914 } 1915 1916 /** 1917 * skb_get_timestamp - get timestamp from a skb 1918 * @skb: skb to get stamp from 1919 * @stamp: pointer to struct timeval to store stamp in 1920 * 1921 * Timestamps are stored in the skb as offsets to a base timestamp. 1922 * This function converts the offset back to a struct timeval and stores 1923 * it in stamp. 1924 */ 1925 static inline void skb_get_timestamp(const struct sk_buff *skb, 1926 struct timeval *stamp) 1927 { 1928 *stamp = ktime_to_timeval(skb->tstamp); 1929 } 1930 1931 static inline void skb_get_timestampns(const struct sk_buff *skb, 1932 struct timespec *stamp) 1933 { 1934 *stamp = ktime_to_timespec(skb->tstamp); 1935 } 1936 1937 static inline void __net_timestamp(struct sk_buff *skb) 1938 { 1939 skb->tstamp = ktime_get_real(); 1940 } 1941 1942 static inline ktime_t net_timedelta(ktime_t t) 1943 { 1944 return ktime_sub(ktime_get_real(), t); 1945 } 1946 1947 static inline ktime_t net_invalid_timestamp(void) 1948 { 1949 return ktime_set(0, 0); 1950 } 1951 1952 extern void skb_timestamping_init(void); 1953 1954 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 1955 1956 extern void skb_clone_tx_timestamp(struct sk_buff *skb); 1957 extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 1958 1959 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 1960 1961 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 1962 { 1963 } 1964 1965 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 1966 { 1967 return false; 1968 } 1969 1970 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 1971 1972 /** 1973 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 1974 * 1975 * @skb: clone of the the original outgoing packet 1976 * @hwtstamps: hardware time stamps 1977 * 1978 */ 1979 void skb_complete_tx_timestamp(struct sk_buff *skb, 1980 struct skb_shared_hwtstamps *hwtstamps); 1981 1982 /** 1983 * skb_tstamp_tx - queue clone of skb with send time stamps 1984 * @orig_skb: the original outgoing packet 1985 * @hwtstamps: hardware time stamps, may be NULL if not available 1986 * 1987 * If the skb has a socket associated, then this function clones the 1988 * skb (thus sharing the actual data and optional structures), stores 1989 * the optional hardware time stamping information (if non NULL) or 1990 * generates a software time stamp (otherwise), then queues the clone 1991 * to the error queue of the socket. Errors are silently ignored. 1992 */ 1993 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1994 struct skb_shared_hwtstamps *hwtstamps); 1995 1996 static inline void sw_tx_timestamp(struct sk_buff *skb) 1997 { 1998 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 1999 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2000 skb_tstamp_tx(skb, NULL); 2001 } 2002 2003 /** 2004 * skb_tx_timestamp() - Driver hook for transmit timestamping 2005 * 2006 * Ethernet MAC Drivers should call this function in their hard_xmit() 2007 * function as soon as possible after giving the sk_buff to the MAC 2008 * hardware, but before freeing the sk_buff. 2009 * 2010 * @skb: A socket buffer. 2011 */ 2012 static inline void skb_tx_timestamp(struct sk_buff *skb) 2013 { 2014 skb_clone_tx_timestamp(skb); 2015 sw_tx_timestamp(skb); 2016 } 2017 2018 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2019 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2020 2021 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2022 { 2023 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2024 } 2025 2026 /** 2027 * skb_checksum_complete - Calculate checksum of an entire packet 2028 * @skb: packet to process 2029 * 2030 * This function calculates the checksum over the entire packet plus 2031 * the value of skb->csum. The latter can be used to supply the 2032 * checksum of a pseudo header as used by TCP/UDP. It returns the 2033 * checksum. 2034 * 2035 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2036 * this function can be used to verify that checksum on received 2037 * packets. In that case the function should return zero if the 2038 * checksum is correct. In particular, this function will return zero 2039 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2040 * hardware has already verified the correctness of the checksum. 2041 */ 2042 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2043 { 2044 return skb_csum_unnecessary(skb) ? 2045 0 : __skb_checksum_complete(skb); 2046 } 2047 2048 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2049 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2050 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2051 { 2052 if (nfct && atomic_dec_and_test(&nfct->use)) 2053 nf_conntrack_destroy(nfct); 2054 } 2055 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2056 { 2057 if (nfct) 2058 atomic_inc(&nfct->use); 2059 } 2060 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2061 { 2062 if (skb) 2063 atomic_inc(&skb->users); 2064 } 2065 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2066 { 2067 if (skb) 2068 kfree_skb(skb); 2069 } 2070 #endif 2071 #ifdef CONFIG_BRIDGE_NETFILTER 2072 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2073 { 2074 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2075 kfree(nf_bridge); 2076 } 2077 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2078 { 2079 if (nf_bridge) 2080 atomic_inc(&nf_bridge->use); 2081 } 2082 #endif /* CONFIG_BRIDGE_NETFILTER */ 2083 static inline void nf_reset(struct sk_buff *skb) 2084 { 2085 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2086 nf_conntrack_put(skb->nfct); 2087 skb->nfct = NULL; 2088 nf_conntrack_put_reasm(skb->nfct_reasm); 2089 skb->nfct_reasm = NULL; 2090 #endif 2091 #ifdef CONFIG_BRIDGE_NETFILTER 2092 nf_bridge_put(skb->nf_bridge); 2093 skb->nf_bridge = NULL; 2094 #endif 2095 } 2096 2097 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2098 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2099 { 2100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2101 dst->nfct = src->nfct; 2102 nf_conntrack_get(src->nfct); 2103 dst->nfctinfo = src->nfctinfo; 2104 dst->nfct_reasm = src->nfct_reasm; 2105 nf_conntrack_get_reasm(src->nfct_reasm); 2106 #endif 2107 #ifdef CONFIG_BRIDGE_NETFILTER 2108 dst->nf_bridge = src->nf_bridge; 2109 nf_bridge_get(src->nf_bridge); 2110 #endif 2111 } 2112 2113 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2114 { 2115 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2116 nf_conntrack_put(dst->nfct); 2117 nf_conntrack_put_reasm(dst->nfct_reasm); 2118 #endif 2119 #ifdef CONFIG_BRIDGE_NETFILTER 2120 nf_bridge_put(dst->nf_bridge); 2121 #endif 2122 __nf_copy(dst, src); 2123 } 2124 2125 #ifdef CONFIG_NETWORK_SECMARK 2126 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2127 { 2128 to->secmark = from->secmark; 2129 } 2130 2131 static inline void skb_init_secmark(struct sk_buff *skb) 2132 { 2133 skb->secmark = 0; 2134 } 2135 #else 2136 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2137 { } 2138 2139 static inline void skb_init_secmark(struct sk_buff *skb) 2140 { } 2141 #endif 2142 2143 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2144 { 2145 skb->queue_mapping = queue_mapping; 2146 } 2147 2148 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2149 { 2150 return skb->queue_mapping; 2151 } 2152 2153 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2154 { 2155 to->queue_mapping = from->queue_mapping; 2156 } 2157 2158 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2159 { 2160 skb->queue_mapping = rx_queue + 1; 2161 } 2162 2163 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2164 { 2165 return skb->queue_mapping - 1; 2166 } 2167 2168 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2169 { 2170 return skb->queue_mapping != 0; 2171 } 2172 2173 extern u16 __skb_tx_hash(const struct net_device *dev, 2174 const struct sk_buff *skb, 2175 unsigned int num_tx_queues); 2176 2177 #ifdef CONFIG_XFRM 2178 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2179 { 2180 return skb->sp; 2181 } 2182 #else 2183 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2184 { 2185 return NULL; 2186 } 2187 #endif 2188 2189 static inline int skb_is_gso(const struct sk_buff *skb) 2190 { 2191 return skb_shinfo(skb)->gso_size; 2192 } 2193 2194 static inline int skb_is_gso_v6(const struct sk_buff *skb) 2195 { 2196 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2197 } 2198 2199 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2200 2201 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2202 { 2203 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2204 * wanted then gso_type will be set. */ 2205 struct skb_shared_info *shinfo = skb_shinfo(skb); 2206 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2207 unlikely(shinfo->gso_type == 0)) { 2208 __skb_warn_lro_forwarding(skb); 2209 return true; 2210 } 2211 return false; 2212 } 2213 2214 static inline void skb_forward_csum(struct sk_buff *skb) 2215 { 2216 /* Unfortunately we don't support this one. Any brave souls? */ 2217 if (skb->ip_summed == CHECKSUM_COMPLETE) 2218 skb->ip_summed = CHECKSUM_NONE; 2219 } 2220 2221 /** 2222 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2223 * @skb: skb to check 2224 * 2225 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2226 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2227 * use this helper, to document places where we make this assertion. 2228 */ 2229 static inline void skb_checksum_none_assert(struct sk_buff *skb) 2230 { 2231 #ifdef DEBUG 2232 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2233 #endif 2234 } 2235 2236 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2237 #endif /* __KERNEL__ */ 2238 #endif /* _LINUX_SKBUFF_H */ 2239