1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 36 #include <linux/netfilter/nf_conntrack_common.h> 37 #endif 38 #include <net/net_debug.h> 39 #include <net/dropreason-core.h> 40 #include <net/netmem.h> 41 42 /** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246 /* Don't change this without changing skb_csum_unnecessary! */ 247 #define CHECKSUM_NONE 0 248 #define CHECKSUM_UNNECESSARY 1 249 #define CHECKSUM_COMPLETE 2 250 #define CHECKSUM_PARTIAL 3 251 252 /* Maximum value in skb->csum_level */ 253 #define SKB_MAX_CSUM_LEVEL 3 254 255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256 #define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259 /* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266 #define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271 /* return minimum truesize of one skb containing X bytes of data */ 272 #define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276 struct ahash_request; 277 struct net_device; 278 struct scatterlist; 279 struct pipe_inode_info; 280 struct iov_iter; 281 struct napi_struct; 282 struct bpf_prog; 283 union bpf_attr; 284 struct skb_ext; 285 struct ts_config; 286 287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288 struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 u8 sabotage_in_done:1; 298 __u16 frag_max_size; 299 int physinif; 300 301 /* always valid & non-NULL from FORWARD on, for physdev match */ 302 struct net_device *physoutdev; 303 union { 304 /* prerouting: detect dnat in orig/reply direction */ 305 __be32 ipv4_daddr; 306 struct in6_addr ipv6_daddr; 307 308 /* after prerouting + nat detected: store original source 309 * mac since neigh resolution overwrites it, only used while 310 * skb is out in neigh layer. 311 */ 312 char neigh_header[8]; 313 }; 314 }; 315 #endif 316 317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 318 /* Chain in tc_skb_ext will be used to share the tc chain with 319 * ovs recirc_id. It will be set to the current chain by tc 320 * and read by ovs to recirc_id. 321 */ 322 struct tc_skb_ext { 323 union { 324 u64 act_miss_cookie; 325 __u32 chain; 326 }; 327 __u16 mru; 328 __u16 zone; 329 u8 post_ct:1; 330 u8 post_ct_snat:1; 331 u8 post_ct_dnat:1; 332 u8 act_miss:1; /* Set if act_miss_cookie is used */ 333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 334 }; 335 #endif 336 337 struct sk_buff_head { 338 /* These two members must be first to match sk_buff. */ 339 struct_group_tagged(sk_buff_list, list, 340 struct sk_buff *next; 341 struct sk_buff *prev; 342 ); 343 344 __u32 qlen; 345 spinlock_t lock; 346 }; 347 348 struct sk_buff; 349 350 #ifndef CONFIG_MAX_SKB_FRAGS 351 # define CONFIG_MAX_SKB_FRAGS 17 352 #endif 353 354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 355 356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 357 * segment using its current segmentation instead. 358 */ 359 #define GSO_BY_FRAGS 0xFFFF 360 361 typedef struct skb_frag { 362 netmem_ref netmem; 363 unsigned int len; 364 unsigned int offset; 365 } skb_frag_t; 366 367 /** 368 * skb_frag_size() - Returns the size of a skb fragment 369 * @frag: skb fragment 370 */ 371 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 372 { 373 return frag->len; 374 } 375 376 /** 377 * skb_frag_size_set() - Sets the size of a skb fragment 378 * @frag: skb fragment 379 * @size: size of fragment 380 */ 381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 382 { 383 frag->len = size; 384 } 385 386 /** 387 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 388 * @frag: skb fragment 389 * @delta: value to add 390 */ 391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 392 { 393 frag->len += delta; 394 } 395 396 /** 397 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 398 * @frag: skb fragment 399 * @delta: value to subtract 400 */ 401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 402 { 403 frag->len -= delta; 404 } 405 406 /** 407 * skb_frag_must_loop - Test if %p is a high memory page 408 * @p: fragment's page 409 */ 410 static inline bool skb_frag_must_loop(struct page *p) 411 { 412 #if defined(CONFIG_HIGHMEM) 413 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 414 return true; 415 #endif 416 return false; 417 } 418 419 /** 420 * skb_frag_foreach_page - loop over pages in a fragment 421 * 422 * @f: skb frag to operate on 423 * @f_off: offset from start of f->netmem 424 * @f_len: length from f_off to loop over 425 * @p: (temp var) current page 426 * @p_off: (temp var) offset from start of current page, 427 * non-zero only on first page. 428 * @p_len: (temp var) length in current page, 429 * < PAGE_SIZE only on first and last page. 430 * @copied: (temp var) length so far, excluding current p_len. 431 * 432 * A fragment can hold a compound page, in which case per-page 433 * operations, notably kmap_atomic, must be called for each 434 * regular page. 435 */ 436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 437 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 438 p_off = (f_off) & (PAGE_SIZE - 1), \ 439 p_len = skb_frag_must_loop(p) ? \ 440 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 441 copied = 0; \ 442 copied < f_len; \ 443 copied += p_len, p++, p_off = 0, \ 444 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 445 446 /** 447 * struct skb_shared_hwtstamps - hardware time stamps 448 * @hwtstamp: hardware time stamp transformed into duration 449 * since arbitrary point in time 450 * @netdev_data: address/cookie of network device driver used as 451 * reference to actual hardware time stamp 452 * 453 * Software time stamps generated by ktime_get_real() are stored in 454 * skb->tstamp. 455 * 456 * hwtstamps can only be compared against other hwtstamps from 457 * the same device. 458 * 459 * This structure is attached to packets as part of the 460 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 461 */ 462 struct skb_shared_hwtstamps { 463 union { 464 ktime_t hwtstamp; 465 void *netdev_data; 466 }; 467 }; 468 469 /* Definitions for tx_flags in struct skb_shared_info */ 470 enum { 471 /* generate hardware time stamp */ 472 SKBTX_HW_TSTAMP = 1 << 0, 473 474 /* generate software time stamp when queueing packet to NIC */ 475 SKBTX_SW_TSTAMP = 1 << 1, 476 477 /* device driver is going to provide hardware time stamp */ 478 SKBTX_IN_PROGRESS = 1 << 2, 479 480 /* generate hardware time stamp based on cycles if supported */ 481 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 482 483 /* generate wifi status information (where possible) */ 484 SKBTX_WIFI_STATUS = 1 << 4, 485 486 /* determine hardware time stamp based on time or cycles */ 487 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 488 489 /* generate software time stamp when entering packet scheduling */ 490 SKBTX_SCHED_TSTAMP = 1 << 6, 491 }; 492 493 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 494 SKBTX_SCHED_TSTAMP) 495 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 496 SKBTX_HW_TSTAMP_USE_CYCLES | \ 497 SKBTX_ANY_SW_TSTAMP) 498 499 /* Definitions for flags in struct skb_shared_info */ 500 enum { 501 /* use zcopy routines */ 502 SKBFL_ZEROCOPY_ENABLE = BIT(0), 503 504 /* This indicates at least one fragment might be overwritten 505 * (as in vmsplice(), sendfile() ...) 506 * If we need to compute a TX checksum, we'll need to copy 507 * all frags to avoid possible bad checksum 508 */ 509 SKBFL_SHARED_FRAG = BIT(1), 510 511 /* segment contains only zerocopy data and should not be 512 * charged to the kernel memory. 513 */ 514 SKBFL_PURE_ZEROCOPY = BIT(2), 515 516 SKBFL_DONT_ORPHAN = BIT(3), 517 518 /* page references are managed by the ubuf_info, so it's safe to 519 * use frags only up until ubuf_info is released 520 */ 521 SKBFL_MANAGED_FRAG_REFS = BIT(4), 522 }; 523 524 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 525 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 526 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 527 528 struct ubuf_info_ops { 529 void (*complete)(struct sk_buff *, struct ubuf_info *, 530 bool zerocopy_success); 531 /* has to be compatible with skb_zcopy_set() */ 532 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); 533 }; 534 535 /* 536 * The callback notifies userspace to release buffers when skb DMA is done in 537 * lower device, the skb last reference should be 0 when calling this. 538 * The zerocopy_success argument is true if zero copy transmit occurred, 539 * false on data copy or out of memory error caused by data copy attempt. 540 * The ctx field is used to track device context. 541 * The desc field is used to track userspace buffer index. 542 */ 543 struct ubuf_info { 544 const struct ubuf_info_ops *ops; 545 refcount_t refcnt; 546 u8 flags; 547 }; 548 549 struct ubuf_info_msgzc { 550 struct ubuf_info ubuf; 551 552 union { 553 struct { 554 unsigned long desc; 555 void *ctx; 556 }; 557 struct { 558 u32 id; 559 u16 len; 560 u16 zerocopy:1; 561 u32 bytelen; 562 }; 563 }; 564 565 struct mmpin { 566 struct user_struct *user; 567 unsigned int num_pg; 568 } mmp; 569 }; 570 571 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 572 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 573 ubuf) 574 575 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 576 void mm_unaccount_pinned_pages(struct mmpin *mmp); 577 578 /* Preserve some data across TX submission and completion. 579 * 580 * Note, this state is stored in the driver. Extending the layout 581 * might need some special care. 582 */ 583 struct xsk_tx_metadata_compl { 584 __u64 *tx_timestamp; 585 }; 586 587 /* This data is invariant across clones and lives at 588 * the end of the header data, ie. at skb->end. 589 */ 590 struct skb_shared_info { 591 __u8 flags; 592 __u8 meta_len; 593 __u8 nr_frags; 594 __u8 tx_flags; 595 unsigned short gso_size; 596 /* Warning: this field is not always filled in (UFO)! */ 597 unsigned short gso_segs; 598 struct sk_buff *frag_list; 599 union { 600 struct skb_shared_hwtstamps hwtstamps; 601 struct xsk_tx_metadata_compl xsk_meta; 602 }; 603 unsigned int gso_type; 604 u32 tskey; 605 606 /* 607 * Warning : all fields before dataref are cleared in __alloc_skb() 608 */ 609 atomic_t dataref; 610 unsigned int xdp_frags_size; 611 612 /* Intermediate layers must ensure that destructor_arg 613 * remains valid until skb destructor */ 614 void * destructor_arg; 615 616 /* must be last field, see pskb_expand_head() */ 617 skb_frag_t frags[MAX_SKB_FRAGS]; 618 }; 619 620 /** 621 * DOC: dataref and headerless skbs 622 * 623 * Transport layers send out clones of payload skbs they hold for 624 * retransmissions. To allow lower layers of the stack to prepend their headers 625 * we split &skb_shared_info.dataref into two halves. 626 * The lower 16 bits count the overall number of references. 627 * The higher 16 bits indicate how many of the references are payload-only. 628 * skb_header_cloned() checks if skb is allowed to add / write the headers. 629 * 630 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 631 * (via __skb_header_release()). Any clone created from marked skb will get 632 * &sk_buff.hdr_len populated with the available headroom. 633 * If there's the only clone in existence it's able to modify the headroom 634 * at will. The sequence of calls inside the transport layer is:: 635 * 636 * <alloc skb> 637 * skb_reserve() 638 * __skb_header_release() 639 * skb_clone() 640 * // send the clone down the stack 641 * 642 * This is not a very generic construct and it depends on the transport layers 643 * doing the right thing. In practice there's usually only one payload-only skb. 644 * Having multiple payload-only skbs with different lengths of hdr_len is not 645 * possible. The payload-only skbs should never leave their owner. 646 */ 647 #define SKB_DATAREF_SHIFT 16 648 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 649 650 651 enum { 652 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 653 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 654 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 655 }; 656 657 enum { 658 SKB_GSO_TCPV4 = 1 << 0, 659 660 /* This indicates the skb is from an untrusted source. */ 661 SKB_GSO_DODGY = 1 << 1, 662 663 /* This indicates the tcp segment has CWR set. */ 664 SKB_GSO_TCP_ECN = 1 << 2, 665 666 SKB_GSO_TCP_FIXEDID = 1 << 3, 667 668 SKB_GSO_TCPV6 = 1 << 4, 669 670 SKB_GSO_FCOE = 1 << 5, 671 672 SKB_GSO_GRE = 1 << 6, 673 674 SKB_GSO_GRE_CSUM = 1 << 7, 675 676 SKB_GSO_IPXIP4 = 1 << 8, 677 678 SKB_GSO_IPXIP6 = 1 << 9, 679 680 SKB_GSO_UDP_TUNNEL = 1 << 10, 681 682 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 683 684 SKB_GSO_PARTIAL = 1 << 12, 685 686 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 687 688 SKB_GSO_SCTP = 1 << 14, 689 690 SKB_GSO_ESP = 1 << 15, 691 692 SKB_GSO_UDP = 1 << 16, 693 694 SKB_GSO_UDP_L4 = 1 << 17, 695 696 SKB_GSO_FRAGLIST = 1 << 18, 697 }; 698 699 #if BITS_PER_LONG > 32 700 #define NET_SKBUFF_DATA_USES_OFFSET 1 701 #endif 702 703 #ifdef NET_SKBUFF_DATA_USES_OFFSET 704 typedef unsigned int sk_buff_data_t; 705 #else 706 typedef unsigned char *sk_buff_data_t; 707 #endif 708 709 enum skb_tstamp_type { 710 SKB_CLOCK_REALTIME, 711 SKB_CLOCK_MONOTONIC, 712 SKB_CLOCK_TAI, 713 __SKB_CLOCK_MAX = SKB_CLOCK_TAI, 714 }; 715 716 /** 717 * DOC: Basic sk_buff geometry 718 * 719 * struct sk_buff itself is a metadata structure and does not hold any packet 720 * data. All the data is held in associated buffers. 721 * 722 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 723 * into two parts: 724 * 725 * - data buffer, containing headers and sometimes payload; 726 * this is the part of the skb operated on by the common helpers 727 * such as skb_put() or skb_pull(); 728 * - shared info (struct skb_shared_info) which holds an array of pointers 729 * to read-only data in the (page, offset, length) format. 730 * 731 * Optionally &skb_shared_info.frag_list may point to another skb. 732 * 733 * Basic diagram may look like this:: 734 * 735 * --------------- 736 * | sk_buff | 737 * --------------- 738 * ,--------------------------- + head 739 * / ,----------------- + data 740 * / / ,----------- + tail 741 * | | | , + end 742 * | | | | 743 * v v v v 744 * ----------------------------------------------- 745 * | headroom | data | tailroom | skb_shared_info | 746 * ----------------------------------------------- 747 * + [page frag] 748 * + [page frag] 749 * + [page frag] 750 * + [page frag] --------- 751 * + frag_list --> | sk_buff | 752 * --------- 753 * 754 */ 755 756 /** 757 * struct sk_buff - socket buffer 758 * @next: Next buffer in list 759 * @prev: Previous buffer in list 760 * @tstamp: Time we arrived/left 761 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 762 * for retransmit timer 763 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 764 * @list: queue head 765 * @ll_node: anchor in an llist (eg socket defer_list) 766 * @sk: Socket we are owned by 767 * @dev: Device we arrived on/are leaving by 768 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 769 * @cb: Control buffer. Free for use by every layer. Put private vars here 770 * @_skb_refdst: destination entry (with norefcount bit) 771 * @len: Length of actual data 772 * @data_len: Data length 773 * @mac_len: Length of link layer header 774 * @hdr_len: writable header length of cloned skb 775 * @csum: Checksum (must include start/offset pair) 776 * @csum_start: Offset from skb->head where checksumming should start 777 * @csum_offset: Offset from csum_start where checksum should be stored 778 * @priority: Packet queueing priority 779 * @ignore_df: allow local fragmentation 780 * @cloned: Head may be cloned (check refcnt to be sure) 781 * @ip_summed: Driver fed us an IP checksum 782 * @nohdr: Payload reference only, must not modify header 783 * @pkt_type: Packet class 784 * @fclone: skbuff clone status 785 * @ipvs_property: skbuff is owned by ipvs 786 * @inner_protocol_type: whether the inner protocol is 787 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 788 * @remcsum_offload: remote checksum offload is enabled 789 * @offload_fwd_mark: Packet was L2-forwarded in hardware 790 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 791 * @tc_skip_classify: do not classify packet. set by IFB device 792 * @tc_at_ingress: used within tc_classify to distinguish in/egress 793 * @redirected: packet was redirected by packet classifier 794 * @from_ingress: packet was redirected from the ingress path 795 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 796 * @peeked: this packet has been seen already, so stats have been 797 * done for it, don't do them again 798 * @nf_trace: netfilter packet trace flag 799 * @protocol: Packet protocol from driver 800 * @destructor: Destruct function 801 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 802 * @_sk_redir: socket redirection information for skmsg 803 * @_nfct: Associated connection, if any (with nfctinfo bits) 804 * @skb_iif: ifindex of device we arrived on 805 * @tc_index: Traffic control index 806 * @hash: the packet hash 807 * @queue_mapping: Queue mapping for multiqueue devices 808 * @head_frag: skb was allocated from page fragments, 809 * not allocated by kmalloc() or vmalloc(). 810 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 811 * @pp_recycle: mark the packet for recycling instead of freeing (implies 812 * page_pool support on driver) 813 * @active_extensions: active extensions (skb_ext_id types) 814 * @ndisc_nodetype: router type (from link layer) 815 * @ooo_okay: allow the mapping of a socket to a queue to be changed 816 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 817 * ports. 818 * @sw_hash: indicates hash was computed in software stack 819 * @wifi_acked_valid: wifi_acked was set 820 * @wifi_acked: whether frame was acked on wifi or not 821 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 822 * @encapsulation: indicates the inner headers in the skbuff are valid 823 * @encap_hdr_csum: software checksum is needed 824 * @csum_valid: checksum is already valid 825 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 826 * @csum_complete_sw: checksum was completed by software 827 * @csum_level: indicates the number of consecutive checksums found in 828 * the packet minus one that have been verified as 829 * CHECKSUM_UNNECESSARY (max 3) 830 * @dst_pending_confirm: need to confirm neighbour 831 * @decrypted: Decrypted SKB 832 * @slow_gro: state present at GRO time, slower prepare step required 833 * @tstamp_type: When set, skb->tstamp has the 834 * delivery_time clock base of skb->tstamp. 835 * @napi_id: id of the NAPI struct this skb came from 836 * @sender_cpu: (aka @napi_id) source CPU in XPS 837 * @alloc_cpu: CPU which did the skb allocation. 838 * @secmark: security marking 839 * @mark: Generic packet mark 840 * @reserved_tailroom: (aka @mark) number of bytes of free space available 841 * at the tail of an sk_buff 842 * @vlan_all: vlan fields (proto & tci) 843 * @vlan_proto: vlan encapsulation protocol 844 * @vlan_tci: vlan tag control information 845 * @inner_protocol: Protocol (encapsulation) 846 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 847 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 848 * @inner_transport_header: Inner transport layer header (encapsulation) 849 * @inner_network_header: Network layer header (encapsulation) 850 * @inner_mac_header: Link layer header (encapsulation) 851 * @transport_header: Transport layer header 852 * @network_header: Network layer header 853 * @mac_header: Link layer header 854 * @kcov_handle: KCOV remote handle for remote coverage collection 855 * @tail: Tail pointer 856 * @end: End pointer 857 * @head: Head of buffer 858 * @data: Data head pointer 859 * @truesize: Buffer size 860 * @users: User count - see {datagram,tcp}.c 861 * @extensions: allocated extensions, valid if active_extensions is nonzero 862 */ 863 864 struct sk_buff { 865 union { 866 struct { 867 /* These two members must be first to match sk_buff_head. */ 868 struct sk_buff *next; 869 struct sk_buff *prev; 870 871 union { 872 struct net_device *dev; 873 /* Some protocols might use this space to store information, 874 * while device pointer would be NULL. 875 * UDP receive path is one user. 876 */ 877 unsigned long dev_scratch; 878 }; 879 }; 880 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 881 struct list_head list; 882 struct llist_node ll_node; 883 }; 884 885 struct sock *sk; 886 887 union { 888 ktime_t tstamp; 889 u64 skb_mstamp_ns; /* earliest departure time */ 890 }; 891 /* 892 * This is the control buffer. It is free to use for every 893 * layer. Please put your private variables there. If you 894 * want to keep them across layers you have to do a skb_clone() 895 * first. This is owned by whoever has the skb queued ATM. 896 */ 897 char cb[48] __aligned(8); 898 899 union { 900 struct { 901 unsigned long _skb_refdst; 902 void (*destructor)(struct sk_buff *skb); 903 }; 904 struct list_head tcp_tsorted_anchor; 905 #ifdef CONFIG_NET_SOCK_MSG 906 unsigned long _sk_redir; 907 #endif 908 }; 909 910 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 911 unsigned long _nfct; 912 #endif 913 unsigned int len, 914 data_len; 915 __u16 mac_len, 916 hdr_len; 917 918 /* Following fields are _not_ copied in __copy_skb_header() 919 * Note that queue_mapping is here mostly to fill a hole. 920 */ 921 __u16 queue_mapping; 922 923 /* if you move cloned around you also must adapt those constants */ 924 #ifdef __BIG_ENDIAN_BITFIELD 925 #define CLONED_MASK (1 << 7) 926 #else 927 #define CLONED_MASK 1 928 #endif 929 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 930 931 /* private: */ 932 __u8 __cloned_offset[0]; 933 /* public: */ 934 __u8 cloned:1, 935 nohdr:1, 936 fclone:2, 937 peeked:1, 938 head_frag:1, 939 pfmemalloc:1, 940 pp_recycle:1; /* page_pool recycle indicator */ 941 #ifdef CONFIG_SKB_EXTENSIONS 942 __u8 active_extensions; 943 #endif 944 945 /* Fields enclosed in headers group are copied 946 * using a single memcpy() in __copy_skb_header() 947 */ 948 struct_group(headers, 949 950 /* private: */ 951 __u8 __pkt_type_offset[0]; 952 /* public: */ 953 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 954 __u8 ignore_df:1; 955 __u8 dst_pending_confirm:1; 956 __u8 ip_summed:2; 957 __u8 ooo_okay:1; 958 959 /* private: */ 960 __u8 __mono_tc_offset[0]; 961 /* public: */ 962 __u8 tstamp_type:2; /* See skb_tstamp_type */ 963 #ifdef CONFIG_NET_XGRESS 964 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 965 __u8 tc_skip_classify:1; 966 #endif 967 __u8 remcsum_offload:1; 968 __u8 csum_complete_sw:1; 969 __u8 csum_level:2; 970 __u8 inner_protocol_type:1; 971 972 __u8 l4_hash:1; 973 __u8 sw_hash:1; 974 #ifdef CONFIG_WIRELESS 975 __u8 wifi_acked_valid:1; 976 __u8 wifi_acked:1; 977 #endif 978 __u8 no_fcs:1; 979 /* Indicates the inner headers are valid in the skbuff. */ 980 __u8 encapsulation:1; 981 __u8 encap_hdr_csum:1; 982 __u8 csum_valid:1; 983 #ifdef CONFIG_IPV6_NDISC_NODETYPE 984 __u8 ndisc_nodetype:2; 985 #endif 986 987 #if IS_ENABLED(CONFIG_IP_VS) 988 __u8 ipvs_property:1; 989 #endif 990 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 991 __u8 nf_trace:1; 992 #endif 993 #ifdef CONFIG_NET_SWITCHDEV 994 __u8 offload_fwd_mark:1; 995 __u8 offload_l3_fwd_mark:1; 996 #endif 997 __u8 redirected:1; 998 #ifdef CONFIG_NET_REDIRECT 999 __u8 from_ingress:1; 1000 #endif 1001 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 1002 __u8 nf_skip_egress:1; 1003 #endif 1004 #ifdef CONFIG_SKB_DECRYPTED 1005 __u8 decrypted:1; 1006 #endif 1007 __u8 slow_gro:1; 1008 #if IS_ENABLED(CONFIG_IP_SCTP) 1009 __u8 csum_not_inet:1; 1010 #endif 1011 1012 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1013 __u16 tc_index; /* traffic control index */ 1014 #endif 1015 1016 u16 alloc_cpu; 1017 1018 union { 1019 __wsum csum; 1020 struct { 1021 __u16 csum_start; 1022 __u16 csum_offset; 1023 }; 1024 }; 1025 __u32 priority; 1026 int skb_iif; 1027 __u32 hash; 1028 union { 1029 u32 vlan_all; 1030 struct { 1031 __be16 vlan_proto; 1032 __u16 vlan_tci; 1033 }; 1034 }; 1035 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1036 union { 1037 unsigned int napi_id; 1038 unsigned int sender_cpu; 1039 }; 1040 #endif 1041 #ifdef CONFIG_NETWORK_SECMARK 1042 __u32 secmark; 1043 #endif 1044 1045 union { 1046 __u32 mark; 1047 __u32 reserved_tailroom; 1048 }; 1049 1050 union { 1051 __be16 inner_protocol; 1052 __u8 inner_ipproto; 1053 }; 1054 1055 __u16 inner_transport_header; 1056 __u16 inner_network_header; 1057 __u16 inner_mac_header; 1058 1059 __be16 protocol; 1060 __u16 transport_header; 1061 __u16 network_header; 1062 __u16 mac_header; 1063 1064 #ifdef CONFIG_KCOV 1065 u64 kcov_handle; 1066 #endif 1067 1068 ); /* end headers group */ 1069 1070 /* These elements must be at the end, see alloc_skb() for details. */ 1071 sk_buff_data_t tail; 1072 sk_buff_data_t end; 1073 unsigned char *head, 1074 *data; 1075 unsigned int truesize; 1076 refcount_t users; 1077 1078 #ifdef CONFIG_SKB_EXTENSIONS 1079 /* only usable after checking ->active_extensions != 0 */ 1080 struct skb_ext *extensions; 1081 #endif 1082 }; 1083 1084 /* if you move pkt_type around you also must adapt those constants */ 1085 #ifdef __BIG_ENDIAN_BITFIELD 1086 #define PKT_TYPE_MAX (7 << 5) 1087 #else 1088 #define PKT_TYPE_MAX 7 1089 #endif 1090 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1091 1092 /* if you move tc_at_ingress or tstamp_type 1093 * around, you also must adapt these constants. 1094 */ 1095 #ifdef __BIG_ENDIAN_BITFIELD 1096 #define SKB_TSTAMP_TYPE_MASK (3 << 6) 1097 #define SKB_TSTAMP_TYPE_RSHIFT (6) 1098 #define TC_AT_INGRESS_MASK (1 << 5) 1099 #else 1100 #define SKB_TSTAMP_TYPE_MASK (3) 1101 #define TC_AT_INGRESS_MASK (1 << 2) 1102 #endif 1103 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1104 1105 #ifdef __KERNEL__ 1106 /* 1107 * Handling routines are only of interest to the kernel 1108 */ 1109 1110 #define SKB_ALLOC_FCLONE 0x01 1111 #define SKB_ALLOC_RX 0x02 1112 #define SKB_ALLOC_NAPI 0x04 1113 1114 /** 1115 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1116 * @skb: buffer 1117 */ 1118 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1119 { 1120 return unlikely(skb->pfmemalloc); 1121 } 1122 1123 /* 1124 * skb might have a dst pointer attached, refcounted or not. 1125 * _skb_refdst low order bit is set if refcount was _not_ taken 1126 */ 1127 #define SKB_DST_NOREF 1UL 1128 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1129 1130 /** 1131 * skb_dst - returns skb dst_entry 1132 * @skb: buffer 1133 * 1134 * Returns skb dst_entry, regardless of reference taken or not. 1135 */ 1136 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1137 { 1138 /* If refdst was not refcounted, check we still are in a 1139 * rcu_read_lock section 1140 */ 1141 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1142 !rcu_read_lock_held() && 1143 !rcu_read_lock_bh_held()); 1144 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1145 } 1146 1147 /** 1148 * skb_dst_set - sets skb dst 1149 * @skb: buffer 1150 * @dst: dst entry 1151 * 1152 * Sets skb dst, assuming a reference was taken on dst and should 1153 * be released by skb_dst_drop() 1154 */ 1155 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1156 { 1157 skb->slow_gro |= !!dst; 1158 skb->_skb_refdst = (unsigned long)dst; 1159 } 1160 1161 /** 1162 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1163 * @skb: buffer 1164 * @dst: dst entry 1165 * 1166 * Sets skb dst, assuming a reference was not taken on dst. 1167 * If dst entry is cached, we do not take reference and dst_release 1168 * will be avoided by refdst_drop. If dst entry is not cached, we take 1169 * reference, so that last dst_release can destroy the dst immediately. 1170 */ 1171 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1172 { 1173 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1174 skb->slow_gro |= !!dst; 1175 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1176 } 1177 1178 /** 1179 * skb_dst_is_noref - Test if skb dst isn't refcounted 1180 * @skb: buffer 1181 */ 1182 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1183 { 1184 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1185 } 1186 1187 /* For mangling skb->pkt_type from user space side from applications 1188 * such as nft, tc, etc, we only allow a conservative subset of 1189 * possible pkt_types to be set. 1190 */ 1191 static inline bool skb_pkt_type_ok(u32 ptype) 1192 { 1193 return ptype <= PACKET_OTHERHOST; 1194 } 1195 1196 /** 1197 * skb_napi_id - Returns the skb's NAPI id 1198 * @skb: buffer 1199 */ 1200 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1201 { 1202 #ifdef CONFIG_NET_RX_BUSY_POLL 1203 return skb->napi_id; 1204 #else 1205 return 0; 1206 #endif 1207 } 1208 1209 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1210 { 1211 #ifdef CONFIG_WIRELESS 1212 return skb->wifi_acked_valid; 1213 #else 1214 return 0; 1215 #endif 1216 } 1217 1218 /** 1219 * skb_unref - decrement the skb's reference count 1220 * @skb: buffer 1221 * 1222 * Returns true if we can free the skb. 1223 */ 1224 static inline bool skb_unref(struct sk_buff *skb) 1225 { 1226 if (unlikely(!skb)) 1227 return false; 1228 if (likely(refcount_read(&skb->users) == 1)) 1229 smp_rmb(); 1230 else if (likely(!refcount_dec_and_test(&skb->users))) 1231 return false; 1232 1233 return true; 1234 } 1235 1236 static inline bool skb_data_unref(const struct sk_buff *skb, 1237 struct skb_shared_info *shinfo) 1238 { 1239 int bias; 1240 1241 if (!skb->cloned) 1242 return true; 1243 1244 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1245 1246 if (atomic_read(&shinfo->dataref) == bias) 1247 smp_rmb(); 1248 else if (atomic_sub_return(bias, &shinfo->dataref)) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1255 enum skb_drop_reason reason); 1256 1257 static inline void 1258 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1259 { 1260 sk_skb_reason_drop(NULL, skb, reason); 1261 } 1262 1263 /** 1264 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1265 * @skb: buffer to free 1266 */ 1267 static inline void kfree_skb(struct sk_buff *skb) 1268 { 1269 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1270 } 1271 1272 void skb_release_head_state(struct sk_buff *skb); 1273 void kfree_skb_list_reason(struct sk_buff *segs, 1274 enum skb_drop_reason reason); 1275 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1276 void skb_tx_error(struct sk_buff *skb); 1277 1278 static inline void kfree_skb_list(struct sk_buff *segs) 1279 { 1280 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1281 } 1282 1283 #ifdef CONFIG_TRACEPOINTS 1284 void consume_skb(struct sk_buff *skb); 1285 #else 1286 static inline void consume_skb(struct sk_buff *skb) 1287 { 1288 return kfree_skb(skb); 1289 } 1290 #endif 1291 1292 void __consume_stateless_skb(struct sk_buff *skb); 1293 void __kfree_skb(struct sk_buff *skb); 1294 1295 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1296 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1297 bool *fragstolen, int *delta_truesize); 1298 1299 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1300 int node); 1301 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1302 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1303 struct sk_buff *build_skb_around(struct sk_buff *skb, 1304 void *data, unsigned int frag_size); 1305 void skb_attempt_defer_free(struct sk_buff *skb); 1306 1307 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1308 struct sk_buff *slab_build_skb(void *data); 1309 1310 /** 1311 * alloc_skb - allocate a network buffer 1312 * @size: size to allocate 1313 * @priority: allocation mask 1314 * 1315 * This function is a convenient wrapper around __alloc_skb(). 1316 */ 1317 static inline struct sk_buff *alloc_skb(unsigned int size, 1318 gfp_t priority) 1319 { 1320 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1321 } 1322 1323 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1324 unsigned long data_len, 1325 int max_page_order, 1326 int *errcode, 1327 gfp_t gfp_mask); 1328 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1329 1330 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1331 struct sk_buff_fclones { 1332 struct sk_buff skb1; 1333 1334 struct sk_buff skb2; 1335 1336 refcount_t fclone_ref; 1337 }; 1338 1339 /** 1340 * skb_fclone_busy - check if fclone is busy 1341 * @sk: socket 1342 * @skb: buffer 1343 * 1344 * Returns true if skb is a fast clone, and its clone is not freed. 1345 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1346 * so we also check that didn't happen. 1347 */ 1348 static inline bool skb_fclone_busy(const struct sock *sk, 1349 const struct sk_buff *skb) 1350 { 1351 const struct sk_buff_fclones *fclones; 1352 1353 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1354 1355 return skb->fclone == SKB_FCLONE_ORIG && 1356 refcount_read(&fclones->fclone_ref) > 1 && 1357 READ_ONCE(fclones->skb2.sk) == sk; 1358 } 1359 1360 /** 1361 * alloc_skb_fclone - allocate a network buffer from fclone cache 1362 * @size: size to allocate 1363 * @priority: allocation mask 1364 * 1365 * This function is a convenient wrapper around __alloc_skb(). 1366 */ 1367 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1368 gfp_t priority) 1369 { 1370 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1371 } 1372 1373 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1374 void skb_headers_offset_update(struct sk_buff *skb, int off); 1375 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1376 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1377 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1378 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1379 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1380 gfp_t gfp_mask, bool fclone); 1381 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1382 gfp_t gfp_mask) 1383 { 1384 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1385 } 1386 1387 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1388 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1389 unsigned int headroom); 1390 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1391 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1392 int newtailroom, gfp_t priority); 1393 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1394 int offset, int len); 1395 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1396 int offset, int len); 1397 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1398 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1399 1400 /** 1401 * skb_pad - zero pad the tail of an skb 1402 * @skb: buffer to pad 1403 * @pad: space to pad 1404 * 1405 * Ensure that a buffer is followed by a padding area that is zero 1406 * filled. Used by network drivers which may DMA or transfer data 1407 * beyond the buffer end onto the wire. 1408 * 1409 * May return error in out of memory cases. The skb is freed on error. 1410 */ 1411 static inline int skb_pad(struct sk_buff *skb, int pad) 1412 { 1413 return __skb_pad(skb, pad, true); 1414 } 1415 #define dev_kfree_skb(a) consume_skb(a) 1416 1417 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1418 int offset, size_t size, size_t max_frags); 1419 1420 struct skb_seq_state { 1421 __u32 lower_offset; 1422 __u32 upper_offset; 1423 __u32 frag_idx; 1424 __u32 stepped_offset; 1425 struct sk_buff *root_skb; 1426 struct sk_buff *cur_skb; 1427 __u8 *frag_data; 1428 __u32 frag_off; 1429 }; 1430 1431 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1432 unsigned int to, struct skb_seq_state *st); 1433 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1434 struct skb_seq_state *st); 1435 void skb_abort_seq_read(struct skb_seq_state *st); 1436 1437 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1438 unsigned int to, struct ts_config *config); 1439 1440 /* 1441 * Packet hash types specify the type of hash in skb_set_hash. 1442 * 1443 * Hash types refer to the protocol layer addresses which are used to 1444 * construct a packet's hash. The hashes are used to differentiate or identify 1445 * flows of the protocol layer for the hash type. Hash types are either 1446 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1447 * 1448 * Properties of hashes: 1449 * 1450 * 1) Two packets in different flows have different hash values 1451 * 2) Two packets in the same flow should have the same hash value 1452 * 1453 * A hash at a higher layer is considered to be more specific. A driver should 1454 * set the most specific hash possible. 1455 * 1456 * A driver cannot indicate a more specific hash than the layer at which a hash 1457 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1458 * 1459 * A driver may indicate a hash level which is less specific than the 1460 * actual layer the hash was computed on. For instance, a hash computed 1461 * at L4 may be considered an L3 hash. This should only be done if the 1462 * driver can't unambiguously determine that the HW computed the hash at 1463 * the higher layer. Note that the "should" in the second property above 1464 * permits this. 1465 */ 1466 enum pkt_hash_types { 1467 PKT_HASH_TYPE_NONE, /* Undefined type */ 1468 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1469 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1470 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1471 }; 1472 1473 static inline void skb_clear_hash(struct sk_buff *skb) 1474 { 1475 skb->hash = 0; 1476 skb->sw_hash = 0; 1477 skb->l4_hash = 0; 1478 } 1479 1480 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1481 { 1482 if (!skb->l4_hash) 1483 skb_clear_hash(skb); 1484 } 1485 1486 static inline void 1487 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1488 { 1489 skb->l4_hash = is_l4; 1490 skb->sw_hash = is_sw; 1491 skb->hash = hash; 1492 } 1493 1494 static inline void 1495 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1496 { 1497 /* Used by drivers to set hash from HW */ 1498 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1499 } 1500 1501 static inline void 1502 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1503 { 1504 __skb_set_hash(skb, hash, true, is_l4); 1505 } 1506 1507 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb); 1508 1509 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1510 { 1511 return __skb_get_hash_symmetric_net(NULL, skb); 1512 } 1513 1514 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb); 1515 u32 skb_get_poff(const struct sk_buff *skb); 1516 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1517 const struct flow_keys_basic *keys, int hlen); 1518 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1519 const void *data, int hlen_proto); 1520 1521 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1522 int thoff, u8 ip_proto) 1523 { 1524 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1525 } 1526 1527 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1528 const struct flow_dissector_key *key, 1529 unsigned int key_count); 1530 1531 struct bpf_flow_dissector; 1532 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1533 __be16 proto, int nhoff, int hlen, unsigned int flags); 1534 1535 bool __skb_flow_dissect(const struct net *net, 1536 const struct sk_buff *skb, 1537 struct flow_dissector *flow_dissector, 1538 void *target_container, const void *data, 1539 __be16 proto, int nhoff, int hlen, unsigned int flags); 1540 1541 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1542 struct flow_dissector *flow_dissector, 1543 void *target_container, unsigned int flags) 1544 { 1545 return __skb_flow_dissect(NULL, skb, flow_dissector, 1546 target_container, NULL, 0, 0, 0, flags); 1547 } 1548 1549 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1550 struct flow_keys *flow, 1551 unsigned int flags) 1552 { 1553 memset(flow, 0, sizeof(*flow)); 1554 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1555 flow, NULL, 0, 0, 0, flags); 1556 } 1557 1558 static inline bool 1559 skb_flow_dissect_flow_keys_basic(const struct net *net, 1560 const struct sk_buff *skb, 1561 struct flow_keys_basic *flow, 1562 const void *data, __be16 proto, 1563 int nhoff, int hlen, unsigned int flags) 1564 { 1565 memset(flow, 0, sizeof(*flow)); 1566 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1567 data, proto, nhoff, hlen, flags); 1568 } 1569 1570 void skb_flow_dissect_meta(const struct sk_buff *skb, 1571 struct flow_dissector *flow_dissector, 1572 void *target_container); 1573 1574 /* Gets a skb connection tracking info, ctinfo map should be a 1575 * map of mapsize to translate enum ip_conntrack_info states 1576 * to user states. 1577 */ 1578 void 1579 skb_flow_dissect_ct(const struct sk_buff *skb, 1580 struct flow_dissector *flow_dissector, 1581 void *target_container, 1582 u16 *ctinfo_map, size_t mapsize, 1583 bool post_ct, u16 zone); 1584 void 1585 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1586 struct flow_dissector *flow_dissector, 1587 void *target_container); 1588 1589 void skb_flow_dissect_hash(const struct sk_buff *skb, 1590 struct flow_dissector *flow_dissector, 1591 void *target_container); 1592 1593 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb) 1594 { 1595 if (!skb->l4_hash && !skb->sw_hash) 1596 __skb_get_hash_net(net, skb); 1597 1598 return skb->hash; 1599 } 1600 1601 static inline __u32 skb_get_hash(struct sk_buff *skb) 1602 { 1603 if (!skb->l4_hash && !skb->sw_hash) 1604 __skb_get_hash_net(NULL, skb); 1605 1606 return skb->hash; 1607 } 1608 1609 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1610 { 1611 if (!skb->l4_hash && !skb->sw_hash) { 1612 struct flow_keys keys; 1613 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1614 1615 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1616 } 1617 1618 return skb->hash; 1619 } 1620 1621 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1622 const siphash_key_t *perturb); 1623 1624 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1625 { 1626 return skb->hash; 1627 } 1628 1629 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1630 { 1631 to->hash = from->hash; 1632 to->sw_hash = from->sw_hash; 1633 to->l4_hash = from->l4_hash; 1634 }; 1635 1636 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1637 const struct sk_buff *skb2) 1638 { 1639 #ifdef CONFIG_SKB_DECRYPTED 1640 return skb2->decrypted - skb1->decrypted; 1641 #else 1642 return 0; 1643 #endif 1644 } 1645 1646 static inline bool skb_is_decrypted(const struct sk_buff *skb) 1647 { 1648 #ifdef CONFIG_SKB_DECRYPTED 1649 return skb->decrypted; 1650 #else 1651 return false; 1652 #endif 1653 } 1654 1655 static inline void skb_copy_decrypted(struct sk_buff *to, 1656 const struct sk_buff *from) 1657 { 1658 #ifdef CONFIG_SKB_DECRYPTED 1659 to->decrypted = from->decrypted; 1660 #endif 1661 } 1662 1663 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1664 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1665 { 1666 return skb->head + skb->end; 1667 } 1668 1669 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1670 { 1671 return skb->end; 1672 } 1673 1674 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1675 { 1676 skb->end = offset; 1677 } 1678 #else 1679 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1680 { 1681 return skb->end; 1682 } 1683 1684 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1685 { 1686 return skb->end - skb->head; 1687 } 1688 1689 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1690 { 1691 skb->end = skb->head + offset; 1692 } 1693 #endif 1694 1695 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; 1696 1697 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1698 struct ubuf_info *uarg); 1699 1700 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1701 1702 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1703 struct sk_buff *skb, struct iov_iter *from, 1704 size_t length); 1705 1706 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1707 struct msghdr *msg, int len) 1708 { 1709 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1710 } 1711 1712 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1713 struct msghdr *msg, int len, 1714 struct ubuf_info *uarg); 1715 1716 /* Internal */ 1717 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1718 1719 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1720 { 1721 return &skb_shinfo(skb)->hwtstamps; 1722 } 1723 1724 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1725 { 1726 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1727 1728 return is_zcopy ? skb_uarg(skb) : NULL; 1729 } 1730 1731 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1732 { 1733 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1734 } 1735 1736 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1737 { 1738 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1739 } 1740 1741 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1742 const struct sk_buff *skb2) 1743 { 1744 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1745 } 1746 1747 static inline void net_zcopy_get(struct ubuf_info *uarg) 1748 { 1749 refcount_inc(&uarg->refcnt); 1750 } 1751 1752 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1753 { 1754 skb_shinfo(skb)->destructor_arg = uarg; 1755 skb_shinfo(skb)->flags |= uarg->flags; 1756 } 1757 1758 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1759 bool *have_ref) 1760 { 1761 if (skb && uarg && !skb_zcopy(skb)) { 1762 if (unlikely(have_ref && *have_ref)) 1763 *have_ref = false; 1764 else 1765 net_zcopy_get(uarg); 1766 skb_zcopy_init(skb, uarg); 1767 } 1768 } 1769 1770 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1771 { 1772 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1773 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1774 } 1775 1776 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1777 { 1778 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1779 } 1780 1781 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1782 { 1783 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1784 } 1785 1786 static inline void net_zcopy_put(struct ubuf_info *uarg) 1787 { 1788 if (uarg) 1789 uarg->ops->complete(NULL, uarg, true); 1790 } 1791 1792 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1793 { 1794 if (uarg) { 1795 if (uarg->ops == &msg_zerocopy_ubuf_ops) 1796 msg_zerocopy_put_abort(uarg, have_uref); 1797 else if (have_uref) 1798 net_zcopy_put(uarg); 1799 } 1800 } 1801 1802 /* Release a reference on a zerocopy structure */ 1803 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1804 { 1805 struct ubuf_info *uarg = skb_zcopy(skb); 1806 1807 if (uarg) { 1808 if (!skb_zcopy_is_nouarg(skb)) 1809 uarg->ops->complete(skb, uarg, zerocopy_success); 1810 1811 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1812 } 1813 } 1814 1815 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1816 1817 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1818 { 1819 if (unlikely(skb_zcopy_managed(skb))) 1820 __skb_zcopy_downgrade_managed(skb); 1821 } 1822 1823 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1824 { 1825 skb->next = NULL; 1826 } 1827 1828 static inline void skb_poison_list(struct sk_buff *skb) 1829 { 1830 #ifdef CONFIG_DEBUG_NET 1831 skb->next = SKB_LIST_POISON_NEXT; 1832 #endif 1833 } 1834 1835 /* Iterate through singly-linked GSO fragments of an skb. */ 1836 #define skb_list_walk_safe(first, skb, next_skb) \ 1837 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1838 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1839 1840 static inline void skb_list_del_init(struct sk_buff *skb) 1841 { 1842 __list_del_entry(&skb->list); 1843 skb_mark_not_on_list(skb); 1844 } 1845 1846 /** 1847 * skb_queue_empty - check if a queue is empty 1848 * @list: queue head 1849 * 1850 * Returns true if the queue is empty, false otherwise. 1851 */ 1852 static inline int skb_queue_empty(const struct sk_buff_head *list) 1853 { 1854 return list->next == (const struct sk_buff *) list; 1855 } 1856 1857 /** 1858 * skb_queue_empty_lockless - check if a queue is empty 1859 * @list: queue head 1860 * 1861 * Returns true if the queue is empty, false otherwise. 1862 * This variant can be used in lockless contexts. 1863 */ 1864 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1865 { 1866 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1867 } 1868 1869 1870 /** 1871 * skb_queue_is_last - check if skb is the last entry in the queue 1872 * @list: queue head 1873 * @skb: buffer 1874 * 1875 * Returns true if @skb is the last buffer on the list. 1876 */ 1877 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1878 const struct sk_buff *skb) 1879 { 1880 return skb->next == (const struct sk_buff *) list; 1881 } 1882 1883 /** 1884 * skb_queue_is_first - check if skb is the first entry in the queue 1885 * @list: queue head 1886 * @skb: buffer 1887 * 1888 * Returns true if @skb is the first buffer on the list. 1889 */ 1890 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1891 const struct sk_buff *skb) 1892 { 1893 return skb->prev == (const struct sk_buff *) list; 1894 } 1895 1896 /** 1897 * skb_queue_next - return the next packet in the queue 1898 * @list: queue head 1899 * @skb: current buffer 1900 * 1901 * Return the next packet in @list after @skb. It is only valid to 1902 * call this if skb_queue_is_last() evaluates to false. 1903 */ 1904 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1905 const struct sk_buff *skb) 1906 { 1907 /* This BUG_ON may seem severe, but if we just return then we 1908 * are going to dereference garbage. 1909 */ 1910 BUG_ON(skb_queue_is_last(list, skb)); 1911 return skb->next; 1912 } 1913 1914 /** 1915 * skb_queue_prev - return the prev packet in the queue 1916 * @list: queue head 1917 * @skb: current buffer 1918 * 1919 * Return the prev packet in @list before @skb. It is only valid to 1920 * call this if skb_queue_is_first() evaluates to false. 1921 */ 1922 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1923 const struct sk_buff *skb) 1924 { 1925 /* This BUG_ON may seem severe, but if we just return then we 1926 * are going to dereference garbage. 1927 */ 1928 BUG_ON(skb_queue_is_first(list, skb)); 1929 return skb->prev; 1930 } 1931 1932 /** 1933 * skb_get - reference buffer 1934 * @skb: buffer to reference 1935 * 1936 * Makes another reference to a socket buffer and returns a pointer 1937 * to the buffer. 1938 */ 1939 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1940 { 1941 refcount_inc(&skb->users); 1942 return skb; 1943 } 1944 1945 /* 1946 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1947 */ 1948 1949 /** 1950 * skb_cloned - is the buffer a clone 1951 * @skb: buffer to check 1952 * 1953 * Returns true if the buffer was generated with skb_clone() and is 1954 * one of multiple shared copies of the buffer. Cloned buffers are 1955 * shared data so must not be written to under normal circumstances. 1956 */ 1957 static inline int skb_cloned(const struct sk_buff *skb) 1958 { 1959 return skb->cloned && 1960 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1961 } 1962 1963 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1964 { 1965 might_sleep_if(gfpflags_allow_blocking(pri)); 1966 1967 if (skb_cloned(skb)) 1968 return pskb_expand_head(skb, 0, 0, pri); 1969 1970 return 0; 1971 } 1972 1973 /* This variant of skb_unclone() makes sure skb->truesize 1974 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1975 * 1976 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1977 * when various debugging features are in place. 1978 */ 1979 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1980 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1981 { 1982 might_sleep_if(gfpflags_allow_blocking(pri)); 1983 1984 if (skb_cloned(skb)) 1985 return __skb_unclone_keeptruesize(skb, pri); 1986 return 0; 1987 } 1988 1989 /** 1990 * skb_header_cloned - is the header a clone 1991 * @skb: buffer to check 1992 * 1993 * Returns true if modifying the header part of the buffer requires 1994 * the data to be copied. 1995 */ 1996 static inline int skb_header_cloned(const struct sk_buff *skb) 1997 { 1998 int dataref; 1999 2000 if (!skb->cloned) 2001 return 0; 2002 2003 dataref = atomic_read(&skb_shinfo(skb)->dataref); 2004 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 2005 return dataref != 1; 2006 } 2007 2008 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 2009 { 2010 might_sleep_if(gfpflags_allow_blocking(pri)); 2011 2012 if (skb_header_cloned(skb)) 2013 return pskb_expand_head(skb, 0, 0, pri); 2014 2015 return 0; 2016 } 2017 2018 /** 2019 * __skb_header_release() - allow clones to use the headroom 2020 * @skb: buffer to operate on 2021 * 2022 * See "DOC: dataref and headerless skbs". 2023 */ 2024 static inline void __skb_header_release(struct sk_buff *skb) 2025 { 2026 skb->nohdr = 1; 2027 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2028 } 2029 2030 2031 /** 2032 * skb_shared - is the buffer shared 2033 * @skb: buffer to check 2034 * 2035 * Returns true if more than one person has a reference to this 2036 * buffer. 2037 */ 2038 static inline int skb_shared(const struct sk_buff *skb) 2039 { 2040 return refcount_read(&skb->users) != 1; 2041 } 2042 2043 /** 2044 * skb_share_check - check if buffer is shared and if so clone it 2045 * @skb: buffer to check 2046 * @pri: priority for memory allocation 2047 * 2048 * If the buffer is shared the buffer is cloned and the old copy 2049 * drops a reference. A new clone with a single reference is returned. 2050 * If the buffer is not shared the original buffer is returned. When 2051 * being called from interrupt status or with spinlocks held pri must 2052 * be GFP_ATOMIC. 2053 * 2054 * NULL is returned on a memory allocation failure. 2055 */ 2056 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2057 { 2058 might_sleep_if(gfpflags_allow_blocking(pri)); 2059 if (skb_shared(skb)) { 2060 struct sk_buff *nskb = skb_clone(skb, pri); 2061 2062 if (likely(nskb)) 2063 consume_skb(skb); 2064 else 2065 kfree_skb(skb); 2066 skb = nskb; 2067 } 2068 return skb; 2069 } 2070 2071 /* 2072 * Copy shared buffers into a new sk_buff. We effectively do COW on 2073 * packets to handle cases where we have a local reader and forward 2074 * and a couple of other messy ones. The normal one is tcpdumping 2075 * a packet that's being forwarded. 2076 */ 2077 2078 /** 2079 * skb_unshare - make a copy of a shared buffer 2080 * @skb: buffer to check 2081 * @pri: priority for memory allocation 2082 * 2083 * If the socket buffer is a clone then this function creates a new 2084 * copy of the data, drops a reference count on the old copy and returns 2085 * the new copy with the reference count at 1. If the buffer is not a clone 2086 * the original buffer is returned. When called with a spinlock held or 2087 * from interrupt state @pri must be %GFP_ATOMIC 2088 * 2089 * %NULL is returned on a memory allocation failure. 2090 */ 2091 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2092 gfp_t pri) 2093 { 2094 might_sleep_if(gfpflags_allow_blocking(pri)); 2095 if (skb_cloned(skb)) { 2096 struct sk_buff *nskb = skb_copy(skb, pri); 2097 2098 /* Free our shared copy */ 2099 if (likely(nskb)) 2100 consume_skb(skb); 2101 else 2102 kfree_skb(skb); 2103 skb = nskb; 2104 } 2105 return skb; 2106 } 2107 2108 /** 2109 * skb_peek - peek at the head of an &sk_buff_head 2110 * @list_: list to peek at 2111 * 2112 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2113 * be careful with this one. A peek leaves the buffer on the 2114 * list and someone else may run off with it. You must hold 2115 * the appropriate locks or have a private queue to do this. 2116 * 2117 * Returns %NULL for an empty list or a pointer to the head element. 2118 * The reference count is not incremented and the reference is therefore 2119 * volatile. Use with caution. 2120 */ 2121 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2122 { 2123 struct sk_buff *skb = list_->next; 2124 2125 if (skb == (struct sk_buff *)list_) 2126 skb = NULL; 2127 return skb; 2128 } 2129 2130 /** 2131 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2132 * @list_: list to peek at 2133 * 2134 * Like skb_peek(), but the caller knows that the list is not empty. 2135 */ 2136 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2137 { 2138 return list_->next; 2139 } 2140 2141 /** 2142 * skb_peek_next - peek skb following the given one from a queue 2143 * @skb: skb to start from 2144 * @list_: list to peek at 2145 * 2146 * Returns %NULL when the end of the list is met or a pointer to the 2147 * next element. The reference count is not incremented and the 2148 * reference is therefore volatile. Use with caution. 2149 */ 2150 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2151 const struct sk_buff_head *list_) 2152 { 2153 struct sk_buff *next = skb->next; 2154 2155 if (next == (struct sk_buff *)list_) 2156 next = NULL; 2157 return next; 2158 } 2159 2160 /** 2161 * skb_peek_tail - peek at the tail of an &sk_buff_head 2162 * @list_: list to peek at 2163 * 2164 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2165 * be careful with this one. A peek leaves the buffer on the 2166 * list and someone else may run off with it. You must hold 2167 * the appropriate locks or have a private queue to do this. 2168 * 2169 * Returns %NULL for an empty list or a pointer to the tail element. 2170 * The reference count is not incremented and the reference is therefore 2171 * volatile. Use with caution. 2172 */ 2173 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2174 { 2175 struct sk_buff *skb = READ_ONCE(list_->prev); 2176 2177 if (skb == (struct sk_buff *)list_) 2178 skb = NULL; 2179 return skb; 2180 2181 } 2182 2183 /** 2184 * skb_queue_len - get queue length 2185 * @list_: list to measure 2186 * 2187 * Return the length of an &sk_buff queue. 2188 */ 2189 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2190 { 2191 return list_->qlen; 2192 } 2193 2194 /** 2195 * skb_queue_len_lockless - get queue length 2196 * @list_: list to measure 2197 * 2198 * Return the length of an &sk_buff queue. 2199 * This variant can be used in lockless contexts. 2200 */ 2201 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2202 { 2203 return READ_ONCE(list_->qlen); 2204 } 2205 2206 /** 2207 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2208 * @list: queue to initialize 2209 * 2210 * This initializes only the list and queue length aspects of 2211 * an sk_buff_head object. This allows to initialize the list 2212 * aspects of an sk_buff_head without reinitializing things like 2213 * the spinlock. It can also be used for on-stack sk_buff_head 2214 * objects where the spinlock is known to not be used. 2215 */ 2216 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2217 { 2218 list->prev = list->next = (struct sk_buff *)list; 2219 list->qlen = 0; 2220 } 2221 2222 /* 2223 * This function creates a split out lock class for each invocation; 2224 * this is needed for now since a whole lot of users of the skb-queue 2225 * infrastructure in drivers have different locking usage (in hardirq) 2226 * than the networking core (in softirq only). In the long run either the 2227 * network layer or drivers should need annotation to consolidate the 2228 * main types of usage into 3 classes. 2229 */ 2230 static inline void skb_queue_head_init(struct sk_buff_head *list) 2231 { 2232 spin_lock_init(&list->lock); 2233 __skb_queue_head_init(list); 2234 } 2235 2236 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2237 struct lock_class_key *class) 2238 { 2239 skb_queue_head_init(list); 2240 lockdep_set_class(&list->lock, class); 2241 } 2242 2243 /* 2244 * Insert an sk_buff on a list. 2245 * 2246 * The "__skb_xxxx()" functions are the non-atomic ones that 2247 * can only be called with interrupts disabled. 2248 */ 2249 static inline void __skb_insert(struct sk_buff *newsk, 2250 struct sk_buff *prev, struct sk_buff *next, 2251 struct sk_buff_head *list) 2252 { 2253 /* See skb_queue_empty_lockless() and skb_peek_tail() 2254 * for the opposite READ_ONCE() 2255 */ 2256 WRITE_ONCE(newsk->next, next); 2257 WRITE_ONCE(newsk->prev, prev); 2258 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2259 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2260 WRITE_ONCE(list->qlen, list->qlen + 1); 2261 } 2262 2263 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2264 struct sk_buff *prev, 2265 struct sk_buff *next) 2266 { 2267 struct sk_buff *first = list->next; 2268 struct sk_buff *last = list->prev; 2269 2270 WRITE_ONCE(first->prev, prev); 2271 WRITE_ONCE(prev->next, first); 2272 2273 WRITE_ONCE(last->next, next); 2274 WRITE_ONCE(next->prev, last); 2275 } 2276 2277 /** 2278 * skb_queue_splice - join two skb lists, this is designed for stacks 2279 * @list: the new list to add 2280 * @head: the place to add it in the first list 2281 */ 2282 static inline void skb_queue_splice(const struct sk_buff_head *list, 2283 struct sk_buff_head *head) 2284 { 2285 if (!skb_queue_empty(list)) { 2286 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2287 head->qlen += list->qlen; 2288 } 2289 } 2290 2291 /** 2292 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2293 * @list: the new list to add 2294 * @head: the place to add it in the first list 2295 * 2296 * The list at @list is reinitialised 2297 */ 2298 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2299 struct sk_buff_head *head) 2300 { 2301 if (!skb_queue_empty(list)) { 2302 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2303 head->qlen += list->qlen; 2304 __skb_queue_head_init(list); 2305 } 2306 } 2307 2308 /** 2309 * skb_queue_splice_tail - join two skb lists, each list being a queue 2310 * @list: the new list to add 2311 * @head: the place to add it in the first list 2312 */ 2313 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2314 struct sk_buff_head *head) 2315 { 2316 if (!skb_queue_empty(list)) { 2317 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2318 head->qlen += list->qlen; 2319 } 2320 } 2321 2322 /** 2323 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2324 * @list: the new list to add 2325 * @head: the place to add it in the first list 2326 * 2327 * Each of the lists is a queue. 2328 * The list at @list is reinitialised 2329 */ 2330 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2331 struct sk_buff_head *head) 2332 { 2333 if (!skb_queue_empty(list)) { 2334 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2335 head->qlen += list->qlen; 2336 __skb_queue_head_init(list); 2337 } 2338 } 2339 2340 /** 2341 * __skb_queue_after - queue a buffer at the list head 2342 * @list: list to use 2343 * @prev: place after this buffer 2344 * @newsk: buffer to queue 2345 * 2346 * Queue a buffer int the middle of a list. This function takes no locks 2347 * and you must therefore hold required locks before calling it. 2348 * 2349 * A buffer cannot be placed on two lists at the same time. 2350 */ 2351 static inline void __skb_queue_after(struct sk_buff_head *list, 2352 struct sk_buff *prev, 2353 struct sk_buff *newsk) 2354 { 2355 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2356 } 2357 2358 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2359 struct sk_buff_head *list); 2360 2361 static inline void __skb_queue_before(struct sk_buff_head *list, 2362 struct sk_buff *next, 2363 struct sk_buff *newsk) 2364 { 2365 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2366 } 2367 2368 /** 2369 * __skb_queue_head - queue a buffer at the list head 2370 * @list: list to use 2371 * @newsk: buffer to queue 2372 * 2373 * Queue a buffer at the start of a list. This function takes no locks 2374 * and you must therefore hold required locks before calling it. 2375 * 2376 * A buffer cannot be placed on two lists at the same time. 2377 */ 2378 static inline void __skb_queue_head(struct sk_buff_head *list, 2379 struct sk_buff *newsk) 2380 { 2381 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2382 } 2383 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2384 2385 /** 2386 * __skb_queue_tail - queue a buffer at the list tail 2387 * @list: list to use 2388 * @newsk: buffer to queue 2389 * 2390 * Queue a buffer at the end of a list. This function takes no locks 2391 * and you must therefore hold required locks before calling it. 2392 * 2393 * A buffer cannot be placed on two lists at the same time. 2394 */ 2395 static inline void __skb_queue_tail(struct sk_buff_head *list, 2396 struct sk_buff *newsk) 2397 { 2398 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2399 } 2400 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2401 2402 /* 2403 * remove sk_buff from list. _Must_ be called atomically, and with 2404 * the list known.. 2405 */ 2406 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2407 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2408 { 2409 struct sk_buff *next, *prev; 2410 2411 WRITE_ONCE(list->qlen, list->qlen - 1); 2412 next = skb->next; 2413 prev = skb->prev; 2414 skb->next = skb->prev = NULL; 2415 WRITE_ONCE(next->prev, prev); 2416 WRITE_ONCE(prev->next, next); 2417 } 2418 2419 /** 2420 * __skb_dequeue - remove from the head of the queue 2421 * @list: list to dequeue from 2422 * 2423 * Remove the head of the list. This function does not take any locks 2424 * so must be used with appropriate locks held only. The head item is 2425 * returned or %NULL if the list is empty. 2426 */ 2427 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2428 { 2429 struct sk_buff *skb = skb_peek(list); 2430 if (skb) 2431 __skb_unlink(skb, list); 2432 return skb; 2433 } 2434 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2435 2436 /** 2437 * __skb_dequeue_tail - remove from the tail of the queue 2438 * @list: list to dequeue from 2439 * 2440 * Remove the tail of the list. This function does not take any locks 2441 * so must be used with appropriate locks held only. The tail item is 2442 * returned or %NULL if the list is empty. 2443 */ 2444 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2445 { 2446 struct sk_buff *skb = skb_peek_tail(list); 2447 if (skb) 2448 __skb_unlink(skb, list); 2449 return skb; 2450 } 2451 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2452 2453 2454 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2455 { 2456 return skb->data_len; 2457 } 2458 2459 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2460 { 2461 return skb->len - skb->data_len; 2462 } 2463 2464 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2465 { 2466 unsigned int i, len = 0; 2467 2468 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2469 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2470 return len; 2471 } 2472 2473 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2474 { 2475 return skb_headlen(skb) + __skb_pagelen(skb); 2476 } 2477 2478 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2479 netmem_ref netmem, int off, 2480 int size) 2481 { 2482 frag->netmem = netmem; 2483 frag->offset = off; 2484 skb_frag_size_set(frag, size); 2485 } 2486 2487 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2488 struct page *page, 2489 int off, int size) 2490 { 2491 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2492 } 2493 2494 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2495 int i, netmem_ref netmem, 2496 int off, int size) 2497 { 2498 skb_frag_t *frag = &shinfo->frags[i]; 2499 2500 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2501 } 2502 2503 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2504 int i, struct page *page, 2505 int off, int size) 2506 { 2507 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2508 size); 2509 } 2510 2511 /** 2512 * skb_len_add - adds a number to len fields of skb 2513 * @skb: buffer to add len to 2514 * @delta: number of bytes to add 2515 */ 2516 static inline void skb_len_add(struct sk_buff *skb, int delta) 2517 { 2518 skb->len += delta; 2519 skb->data_len += delta; 2520 skb->truesize += delta; 2521 } 2522 2523 /** 2524 * __skb_fill_netmem_desc - initialise a fragment in an skb 2525 * @skb: buffer containing fragment to be initialised 2526 * @i: fragment index to initialise 2527 * @netmem: the netmem to use for this fragment 2528 * @off: the offset to the data with @page 2529 * @size: the length of the data 2530 * 2531 * Initialises the @i'th fragment of @skb to point to &size bytes at 2532 * offset @off within @page. 2533 * 2534 * Does not take any additional reference on the fragment. 2535 */ 2536 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2537 netmem_ref netmem, int off, int size) 2538 { 2539 struct page *page = netmem_to_page(netmem); 2540 2541 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2542 2543 /* Propagate page pfmemalloc to the skb if we can. The problem is 2544 * that not all callers have unique ownership of the page but rely 2545 * on page_is_pfmemalloc doing the right thing(tm). 2546 */ 2547 page = compound_head(page); 2548 if (page_is_pfmemalloc(page)) 2549 skb->pfmemalloc = true; 2550 } 2551 2552 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2553 struct page *page, int off, int size) 2554 { 2555 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2556 } 2557 2558 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2559 netmem_ref netmem, int off, int size) 2560 { 2561 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2562 skb_shinfo(skb)->nr_frags = i + 1; 2563 } 2564 2565 /** 2566 * skb_fill_page_desc - initialise a paged fragment in an skb 2567 * @skb: buffer containing fragment to be initialised 2568 * @i: paged fragment index to initialise 2569 * @page: the page to use for this fragment 2570 * @off: the offset to the data with @page 2571 * @size: the length of the data 2572 * 2573 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2574 * @skb to point to @size bytes at offset @off within @page. In 2575 * addition updates @skb such that @i is the last fragment. 2576 * 2577 * Does not take any additional reference on the fragment. 2578 */ 2579 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2580 struct page *page, int off, int size) 2581 { 2582 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2583 } 2584 2585 /** 2586 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2587 * @skb: buffer containing fragment to be initialised 2588 * @i: paged fragment index to initialise 2589 * @page: the page to use for this fragment 2590 * @off: the offset to the data with @page 2591 * @size: the length of the data 2592 * 2593 * Variant of skb_fill_page_desc() which does not deal with 2594 * pfmemalloc, if page is not owned by us. 2595 */ 2596 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2597 struct page *page, int off, 2598 int size) 2599 { 2600 struct skb_shared_info *shinfo = skb_shinfo(skb); 2601 2602 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2603 shinfo->nr_frags = i + 1; 2604 } 2605 2606 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2607 int off, int size, unsigned int truesize); 2608 2609 static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2610 struct page *page, int off, int size, 2611 unsigned int truesize) 2612 { 2613 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2614 truesize); 2615 } 2616 2617 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2618 unsigned int truesize); 2619 2620 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2621 2622 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2623 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2624 { 2625 return skb->head + skb->tail; 2626 } 2627 2628 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2629 { 2630 skb->tail = skb->data - skb->head; 2631 } 2632 2633 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2634 { 2635 skb_reset_tail_pointer(skb); 2636 skb->tail += offset; 2637 } 2638 2639 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2640 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2641 { 2642 return skb->tail; 2643 } 2644 2645 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2646 { 2647 skb->tail = skb->data; 2648 } 2649 2650 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2651 { 2652 skb->tail = skb->data + offset; 2653 } 2654 2655 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2656 2657 static inline void skb_assert_len(struct sk_buff *skb) 2658 { 2659 #ifdef CONFIG_DEBUG_NET 2660 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2661 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2662 #endif /* CONFIG_DEBUG_NET */ 2663 } 2664 2665 /* 2666 * Add data to an sk_buff 2667 */ 2668 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2669 void *skb_put(struct sk_buff *skb, unsigned int len); 2670 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2671 { 2672 void *tmp = skb_tail_pointer(skb); 2673 SKB_LINEAR_ASSERT(skb); 2674 skb->tail += len; 2675 skb->len += len; 2676 return tmp; 2677 } 2678 2679 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2680 { 2681 void *tmp = __skb_put(skb, len); 2682 2683 memset(tmp, 0, len); 2684 return tmp; 2685 } 2686 2687 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2688 unsigned int len) 2689 { 2690 void *tmp = __skb_put(skb, len); 2691 2692 memcpy(tmp, data, len); 2693 return tmp; 2694 } 2695 2696 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2697 { 2698 *(u8 *)__skb_put(skb, 1) = val; 2699 } 2700 2701 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2702 { 2703 void *tmp = skb_put(skb, len); 2704 2705 memset(tmp, 0, len); 2706 2707 return tmp; 2708 } 2709 2710 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2711 unsigned int len) 2712 { 2713 void *tmp = skb_put(skb, len); 2714 2715 memcpy(tmp, data, len); 2716 2717 return tmp; 2718 } 2719 2720 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2721 { 2722 *(u8 *)skb_put(skb, 1) = val; 2723 } 2724 2725 void *skb_push(struct sk_buff *skb, unsigned int len); 2726 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2727 { 2728 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2729 2730 skb->data -= len; 2731 skb->len += len; 2732 return skb->data; 2733 } 2734 2735 void *skb_pull(struct sk_buff *skb, unsigned int len); 2736 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2737 { 2738 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2739 2740 skb->len -= len; 2741 if (unlikely(skb->len < skb->data_len)) { 2742 #if defined(CONFIG_DEBUG_NET) 2743 skb->len += len; 2744 pr_err("__skb_pull(len=%u)\n", len); 2745 skb_dump(KERN_ERR, skb, false); 2746 #endif 2747 BUG(); 2748 } 2749 return skb->data += len; 2750 } 2751 2752 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2753 { 2754 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2755 } 2756 2757 void *skb_pull_data(struct sk_buff *skb, size_t len); 2758 2759 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2760 2761 static inline enum skb_drop_reason 2762 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2763 { 2764 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2765 2766 if (likely(len <= skb_headlen(skb))) 2767 return SKB_NOT_DROPPED_YET; 2768 2769 if (unlikely(len > skb->len)) 2770 return SKB_DROP_REASON_PKT_TOO_SMALL; 2771 2772 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2773 return SKB_DROP_REASON_NOMEM; 2774 2775 return SKB_NOT_DROPPED_YET; 2776 } 2777 2778 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2779 { 2780 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2781 } 2782 2783 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2784 { 2785 if (!pskb_may_pull(skb, len)) 2786 return NULL; 2787 2788 skb->len -= len; 2789 return skb->data += len; 2790 } 2791 2792 void skb_condense(struct sk_buff *skb); 2793 2794 /** 2795 * skb_headroom - bytes at buffer head 2796 * @skb: buffer to check 2797 * 2798 * Return the number of bytes of free space at the head of an &sk_buff. 2799 */ 2800 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2801 { 2802 return skb->data - skb->head; 2803 } 2804 2805 /** 2806 * skb_tailroom - bytes at buffer end 2807 * @skb: buffer to check 2808 * 2809 * Return the number of bytes of free space at the tail of an sk_buff 2810 */ 2811 static inline int skb_tailroom(const struct sk_buff *skb) 2812 { 2813 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2814 } 2815 2816 /** 2817 * skb_availroom - bytes at buffer end 2818 * @skb: buffer to check 2819 * 2820 * Return the number of bytes of free space at the tail of an sk_buff 2821 * allocated by sk_stream_alloc() 2822 */ 2823 static inline int skb_availroom(const struct sk_buff *skb) 2824 { 2825 if (skb_is_nonlinear(skb)) 2826 return 0; 2827 2828 return skb->end - skb->tail - skb->reserved_tailroom; 2829 } 2830 2831 /** 2832 * skb_reserve - adjust headroom 2833 * @skb: buffer to alter 2834 * @len: bytes to move 2835 * 2836 * Increase the headroom of an empty &sk_buff by reducing the tail 2837 * room. This is only allowed for an empty buffer. 2838 */ 2839 static inline void skb_reserve(struct sk_buff *skb, int len) 2840 { 2841 skb->data += len; 2842 skb->tail += len; 2843 } 2844 2845 /** 2846 * skb_tailroom_reserve - adjust reserved_tailroom 2847 * @skb: buffer to alter 2848 * @mtu: maximum amount of headlen permitted 2849 * @needed_tailroom: minimum amount of reserved_tailroom 2850 * 2851 * Set reserved_tailroom so that headlen can be as large as possible but 2852 * not larger than mtu and tailroom cannot be smaller than 2853 * needed_tailroom. 2854 * The required headroom should already have been reserved before using 2855 * this function. 2856 */ 2857 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2858 unsigned int needed_tailroom) 2859 { 2860 SKB_LINEAR_ASSERT(skb); 2861 if (mtu < skb_tailroom(skb) - needed_tailroom) 2862 /* use at most mtu */ 2863 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2864 else 2865 /* use up to all available space */ 2866 skb->reserved_tailroom = needed_tailroom; 2867 } 2868 2869 #define ENCAP_TYPE_ETHER 0 2870 #define ENCAP_TYPE_IPPROTO 1 2871 2872 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2873 __be16 protocol) 2874 { 2875 skb->inner_protocol = protocol; 2876 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2877 } 2878 2879 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2880 __u8 ipproto) 2881 { 2882 skb->inner_ipproto = ipproto; 2883 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2884 } 2885 2886 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2887 { 2888 skb->inner_mac_header = skb->mac_header; 2889 skb->inner_network_header = skb->network_header; 2890 skb->inner_transport_header = skb->transport_header; 2891 } 2892 2893 static inline void skb_reset_mac_len(struct sk_buff *skb) 2894 { 2895 skb->mac_len = skb->network_header - skb->mac_header; 2896 } 2897 2898 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2899 *skb) 2900 { 2901 return skb->head + skb->inner_transport_header; 2902 } 2903 2904 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2905 { 2906 return skb_inner_transport_header(skb) - skb->data; 2907 } 2908 2909 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2910 { 2911 skb->inner_transport_header = skb->data - skb->head; 2912 } 2913 2914 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2915 const int offset) 2916 { 2917 skb_reset_inner_transport_header(skb); 2918 skb->inner_transport_header += offset; 2919 } 2920 2921 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2922 { 2923 return skb->head + skb->inner_network_header; 2924 } 2925 2926 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2927 { 2928 skb->inner_network_header = skb->data - skb->head; 2929 } 2930 2931 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2932 const int offset) 2933 { 2934 skb_reset_inner_network_header(skb); 2935 skb->inner_network_header += offset; 2936 } 2937 2938 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2939 { 2940 return skb->inner_network_header > 0; 2941 } 2942 2943 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2944 { 2945 return skb->head + skb->inner_mac_header; 2946 } 2947 2948 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2949 { 2950 skb->inner_mac_header = skb->data - skb->head; 2951 } 2952 2953 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2954 const int offset) 2955 { 2956 skb_reset_inner_mac_header(skb); 2957 skb->inner_mac_header += offset; 2958 } 2959 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2960 { 2961 return skb->transport_header != (typeof(skb->transport_header))~0U; 2962 } 2963 2964 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2965 { 2966 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2967 return skb->head + skb->transport_header; 2968 } 2969 2970 static inline void skb_reset_transport_header(struct sk_buff *skb) 2971 { 2972 skb->transport_header = skb->data - skb->head; 2973 } 2974 2975 static inline void skb_set_transport_header(struct sk_buff *skb, 2976 const int offset) 2977 { 2978 skb_reset_transport_header(skb); 2979 skb->transport_header += offset; 2980 } 2981 2982 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2983 { 2984 return skb->head + skb->network_header; 2985 } 2986 2987 static inline void skb_reset_network_header(struct sk_buff *skb) 2988 { 2989 skb->network_header = skb->data - skb->head; 2990 } 2991 2992 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2993 { 2994 skb_reset_network_header(skb); 2995 skb->network_header += offset; 2996 } 2997 2998 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2999 { 3000 return skb->mac_header != (typeof(skb->mac_header))~0U; 3001 } 3002 3003 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 3004 { 3005 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3006 return skb->head + skb->mac_header; 3007 } 3008 3009 static inline int skb_mac_offset(const struct sk_buff *skb) 3010 { 3011 return skb_mac_header(skb) - skb->data; 3012 } 3013 3014 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 3015 { 3016 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3017 return skb->network_header - skb->mac_header; 3018 } 3019 3020 static inline void skb_unset_mac_header(struct sk_buff *skb) 3021 { 3022 skb->mac_header = (typeof(skb->mac_header))~0U; 3023 } 3024 3025 static inline void skb_reset_mac_header(struct sk_buff *skb) 3026 { 3027 skb->mac_header = skb->data - skb->head; 3028 } 3029 3030 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3031 { 3032 skb_reset_mac_header(skb); 3033 skb->mac_header += offset; 3034 } 3035 3036 static inline void skb_pop_mac_header(struct sk_buff *skb) 3037 { 3038 skb->mac_header = skb->network_header; 3039 } 3040 3041 static inline void skb_probe_transport_header(struct sk_buff *skb) 3042 { 3043 struct flow_keys_basic keys; 3044 3045 if (skb_transport_header_was_set(skb)) 3046 return; 3047 3048 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3049 NULL, 0, 0, 0, 0)) 3050 skb_set_transport_header(skb, keys.control.thoff); 3051 } 3052 3053 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3054 { 3055 if (skb_mac_header_was_set(skb)) { 3056 const unsigned char *old_mac = skb_mac_header(skb); 3057 3058 skb_set_mac_header(skb, -skb->mac_len); 3059 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3060 } 3061 } 3062 3063 /* Move the full mac header up to current network_header. 3064 * Leaves skb->data pointing at offset skb->mac_len into the mac_header. 3065 * Must be provided the complete mac header length. 3066 */ 3067 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) 3068 { 3069 if (skb_mac_header_was_set(skb)) { 3070 const unsigned char *old_mac = skb_mac_header(skb); 3071 3072 skb_set_mac_header(skb, -full_mac_len); 3073 memmove(skb_mac_header(skb), old_mac, full_mac_len); 3074 __skb_push(skb, full_mac_len - skb->mac_len); 3075 } 3076 } 3077 3078 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3079 { 3080 return skb->csum_start - skb_headroom(skb); 3081 } 3082 3083 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3084 { 3085 return skb->head + skb->csum_start; 3086 } 3087 3088 static inline int skb_transport_offset(const struct sk_buff *skb) 3089 { 3090 return skb_transport_header(skb) - skb->data; 3091 } 3092 3093 static inline u32 skb_network_header_len(const struct sk_buff *skb) 3094 { 3095 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3096 return skb->transport_header - skb->network_header; 3097 } 3098 3099 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3100 { 3101 return skb->inner_transport_header - skb->inner_network_header; 3102 } 3103 3104 static inline int skb_network_offset(const struct sk_buff *skb) 3105 { 3106 return skb_network_header(skb) - skb->data; 3107 } 3108 3109 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3110 { 3111 return skb_inner_network_header(skb) - skb->data; 3112 } 3113 3114 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3115 { 3116 return pskb_may_pull(skb, skb_network_offset(skb) + len); 3117 } 3118 3119 /* 3120 * CPUs often take a performance hit when accessing unaligned memory 3121 * locations. The actual performance hit varies, it can be small if the 3122 * hardware handles it or large if we have to take an exception and fix it 3123 * in software. 3124 * 3125 * Since an ethernet header is 14 bytes network drivers often end up with 3126 * the IP header at an unaligned offset. The IP header can be aligned by 3127 * shifting the start of the packet by 2 bytes. Drivers should do this 3128 * with: 3129 * 3130 * skb_reserve(skb, NET_IP_ALIGN); 3131 * 3132 * The downside to this alignment of the IP header is that the DMA is now 3133 * unaligned. On some architectures the cost of an unaligned DMA is high 3134 * and this cost outweighs the gains made by aligning the IP header. 3135 * 3136 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3137 * to be overridden. 3138 */ 3139 #ifndef NET_IP_ALIGN 3140 #define NET_IP_ALIGN 2 3141 #endif 3142 3143 /* 3144 * The networking layer reserves some headroom in skb data (via 3145 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3146 * the header has to grow. In the default case, if the header has to grow 3147 * 32 bytes or less we avoid the reallocation. 3148 * 3149 * Unfortunately this headroom changes the DMA alignment of the resulting 3150 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3151 * on some architectures. An architecture can override this value, 3152 * perhaps setting it to a cacheline in size (since that will maintain 3153 * cacheline alignment of the DMA). It must be a power of 2. 3154 * 3155 * Various parts of the networking layer expect at least 32 bytes of 3156 * headroom, you should not reduce this. 3157 * 3158 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3159 * to reduce average number of cache lines per packet. 3160 * get_rps_cpu() for example only access one 64 bytes aligned block : 3161 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3162 */ 3163 #ifndef NET_SKB_PAD 3164 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3165 #endif 3166 3167 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3168 3169 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3170 { 3171 if (WARN_ON(skb_is_nonlinear(skb))) 3172 return; 3173 skb->len = len; 3174 skb_set_tail_pointer(skb, len); 3175 } 3176 3177 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3178 { 3179 __skb_set_length(skb, len); 3180 } 3181 3182 void skb_trim(struct sk_buff *skb, unsigned int len); 3183 3184 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3185 { 3186 if (skb->data_len) 3187 return ___pskb_trim(skb, len); 3188 __skb_trim(skb, len); 3189 return 0; 3190 } 3191 3192 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3193 { 3194 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3195 } 3196 3197 /** 3198 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3199 * @skb: buffer to alter 3200 * @len: new length 3201 * 3202 * This is identical to pskb_trim except that the caller knows that 3203 * the skb is not cloned so we should never get an error due to out- 3204 * of-memory. 3205 */ 3206 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3207 { 3208 int err = pskb_trim(skb, len); 3209 BUG_ON(err); 3210 } 3211 3212 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3213 { 3214 unsigned int diff = len - skb->len; 3215 3216 if (skb_tailroom(skb) < diff) { 3217 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3218 GFP_ATOMIC); 3219 if (ret) 3220 return ret; 3221 } 3222 __skb_set_length(skb, len); 3223 return 0; 3224 } 3225 3226 /** 3227 * skb_orphan - orphan a buffer 3228 * @skb: buffer to orphan 3229 * 3230 * If a buffer currently has an owner then we call the owner's 3231 * destructor function and make the @skb unowned. The buffer continues 3232 * to exist but is no longer charged to its former owner. 3233 */ 3234 static inline void skb_orphan(struct sk_buff *skb) 3235 { 3236 if (skb->destructor) { 3237 skb->destructor(skb); 3238 skb->destructor = NULL; 3239 skb->sk = NULL; 3240 } else { 3241 BUG_ON(skb->sk); 3242 } 3243 } 3244 3245 /** 3246 * skb_orphan_frags - orphan the frags contained in a buffer 3247 * @skb: buffer to orphan frags from 3248 * @gfp_mask: allocation mask for replacement pages 3249 * 3250 * For each frag in the SKB which needs a destructor (i.e. has an 3251 * owner) create a copy of that frag and release the original 3252 * page by calling the destructor. 3253 */ 3254 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3255 { 3256 if (likely(!skb_zcopy(skb))) 3257 return 0; 3258 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3259 return 0; 3260 return skb_copy_ubufs(skb, gfp_mask); 3261 } 3262 3263 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3264 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3265 { 3266 if (likely(!skb_zcopy(skb))) 3267 return 0; 3268 return skb_copy_ubufs(skb, gfp_mask); 3269 } 3270 3271 /** 3272 * __skb_queue_purge_reason - empty a list 3273 * @list: list to empty 3274 * @reason: drop reason 3275 * 3276 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3277 * the list and one reference dropped. This function does not take the 3278 * list lock and the caller must hold the relevant locks to use it. 3279 */ 3280 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3281 enum skb_drop_reason reason) 3282 { 3283 struct sk_buff *skb; 3284 3285 while ((skb = __skb_dequeue(list)) != NULL) 3286 kfree_skb_reason(skb, reason); 3287 } 3288 3289 static inline void __skb_queue_purge(struct sk_buff_head *list) 3290 { 3291 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3292 } 3293 3294 void skb_queue_purge_reason(struct sk_buff_head *list, 3295 enum skb_drop_reason reason); 3296 3297 static inline void skb_queue_purge(struct sk_buff_head *list) 3298 { 3299 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3300 } 3301 3302 unsigned int skb_rbtree_purge(struct rb_root *root); 3303 void skb_errqueue_purge(struct sk_buff_head *list); 3304 3305 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3306 3307 /** 3308 * netdev_alloc_frag - allocate a page fragment 3309 * @fragsz: fragment size 3310 * 3311 * Allocates a frag from a page for receive buffer. 3312 * Uses GFP_ATOMIC allocations. 3313 */ 3314 static inline void *netdev_alloc_frag(unsigned int fragsz) 3315 { 3316 return __netdev_alloc_frag_align(fragsz, ~0u); 3317 } 3318 3319 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3320 unsigned int align) 3321 { 3322 WARN_ON_ONCE(!is_power_of_2(align)); 3323 return __netdev_alloc_frag_align(fragsz, -align); 3324 } 3325 3326 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3327 gfp_t gfp_mask); 3328 3329 /** 3330 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3331 * @dev: network device to receive on 3332 * @length: length to allocate 3333 * 3334 * Allocate a new &sk_buff and assign it a usage count of one. The 3335 * buffer has unspecified headroom built in. Users should allocate 3336 * the headroom they think they need without accounting for the 3337 * built in space. The built in space is used for optimisations. 3338 * 3339 * %NULL is returned if there is no free memory. Although this function 3340 * allocates memory it can be called from an interrupt. 3341 */ 3342 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3343 unsigned int length) 3344 { 3345 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3346 } 3347 3348 /* legacy helper around __netdev_alloc_skb() */ 3349 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3350 gfp_t gfp_mask) 3351 { 3352 return __netdev_alloc_skb(NULL, length, gfp_mask); 3353 } 3354 3355 /* legacy helper around netdev_alloc_skb() */ 3356 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3357 { 3358 return netdev_alloc_skb(NULL, length); 3359 } 3360 3361 3362 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3363 unsigned int length, gfp_t gfp) 3364 { 3365 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3366 3367 if (NET_IP_ALIGN && skb) 3368 skb_reserve(skb, NET_IP_ALIGN); 3369 return skb; 3370 } 3371 3372 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3373 unsigned int length) 3374 { 3375 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3376 } 3377 3378 static inline void skb_free_frag(void *addr) 3379 { 3380 page_frag_free(addr); 3381 } 3382 3383 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3384 3385 static inline void *napi_alloc_frag(unsigned int fragsz) 3386 { 3387 return __napi_alloc_frag_align(fragsz, ~0u); 3388 } 3389 3390 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3391 unsigned int align) 3392 { 3393 WARN_ON_ONCE(!is_power_of_2(align)); 3394 return __napi_alloc_frag_align(fragsz, -align); 3395 } 3396 3397 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3398 void napi_consume_skb(struct sk_buff *skb, int budget); 3399 3400 void napi_skb_free_stolen_head(struct sk_buff *skb); 3401 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3402 3403 /** 3404 * __dev_alloc_pages - allocate page for network Rx 3405 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3406 * @order: size of the allocation 3407 * 3408 * Allocate a new page. 3409 * 3410 * %NULL is returned if there is no free memory. 3411 */ 3412 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, 3413 unsigned int order) 3414 { 3415 /* This piece of code contains several assumptions. 3416 * 1. This is for device Rx, therefore a cold page is preferred. 3417 * 2. The expectation is the user wants a compound page. 3418 * 3. If requesting a order 0 page it will not be compound 3419 * due to the check to see if order has a value in prep_new_page 3420 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3421 * code in gfp_to_alloc_flags that should be enforcing this. 3422 */ 3423 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3424 3425 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); 3426 } 3427 #define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) 3428 3429 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) 3430 3431 /** 3432 * __dev_alloc_page - allocate a page for network Rx 3433 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3434 * 3435 * Allocate a new page. 3436 * 3437 * %NULL is returned if there is no free memory. 3438 */ 3439 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) 3440 { 3441 return __dev_alloc_pages_noprof(gfp_mask, 0); 3442 } 3443 #define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) 3444 3445 #define dev_alloc_page() dev_alloc_pages(0) 3446 3447 /** 3448 * dev_page_is_reusable - check whether a page can be reused for network Rx 3449 * @page: the page to test 3450 * 3451 * A page shouldn't be considered for reusing/recycling if it was allocated 3452 * under memory pressure or at a distant memory node. 3453 * 3454 * Returns false if this page should be returned to page allocator, true 3455 * otherwise. 3456 */ 3457 static inline bool dev_page_is_reusable(const struct page *page) 3458 { 3459 return likely(page_to_nid(page) == numa_mem_id() && 3460 !page_is_pfmemalloc(page)); 3461 } 3462 3463 /** 3464 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3465 * @page: The page that was allocated from skb_alloc_page 3466 * @skb: The skb that may need pfmemalloc set 3467 */ 3468 static inline void skb_propagate_pfmemalloc(const struct page *page, 3469 struct sk_buff *skb) 3470 { 3471 if (page_is_pfmemalloc(page)) 3472 skb->pfmemalloc = true; 3473 } 3474 3475 /** 3476 * skb_frag_off() - Returns the offset of a skb fragment 3477 * @frag: the paged fragment 3478 */ 3479 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3480 { 3481 return frag->offset; 3482 } 3483 3484 /** 3485 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3486 * @frag: skb fragment 3487 * @delta: value to add 3488 */ 3489 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3490 { 3491 frag->offset += delta; 3492 } 3493 3494 /** 3495 * skb_frag_off_set() - Sets the offset of a skb fragment 3496 * @frag: skb fragment 3497 * @offset: offset of fragment 3498 */ 3499 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3500 { 3501 frag->offset = offset; 3502 } 3503 3504 /** 3505 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3506 * @fragto: skb fragment where offset is set 3507 * @fragfrom: skb fragment offset is copied from 3508 */ 3509 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3510 const skb_frag_t *fragfrom) 3511 { 3512 fragto->offset = fragfrom->offset; 3513 } 3514 3515 /** 3516 * skb_frag_page - retrieve the page referred to by a paged fragment 3517 * @frag: the paged fragment 3518 * 3519 * Returns the &struct page associated with @frag. 3520 */ 3521 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3522 { 3523 return netmem_to_page(frag->netmem); 3524 } 3525 3526 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3527 unsigned int headroom); 3528 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3529 struct bpf_prog *prog); 3530 /** 3531 * skb_frag_address - gets the address of the data contained in a paged fragment 3532 * @frag: the paged fragment buffer 3533 * 3534 * Returns the address of the data within @frag. The page must already 3535 * be mapped. 3536 */ 3537 static inline void *skb_frag_address(const skb_frag_t *frag) 3538 { 3539 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3540 } 3541 3542 /** 3543 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3544 * @frag: the paged fragment buffer 3545 * 3546 * Returns the address of the data within @frag. Checks that the page 3547 * is mapped and returns %NULL otherwise. 3548 */ 3549 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3550 { 3551 void *ptr = page_address(skb_frag_page(frag)); 3552 if (unlikely(!ptr)) 3553 return NULL; 3554 3555 return ptr + skb_frag_off(frag); 3556 } 3557 3558 /** 3559 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3560 * @fragto: skb fragment where page is set 3561 * @fragfrom: skb fragment page is copied from 3562 */ 3563 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3564 const skb_frag_t *fragfrom) 3565 { 3566 fragto->netmem = fragfrom->netmem; 3567 } 3568 3569 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3570 3571 /** 3572 * skb_frag_dma_map - maps a paged fragment via the DMA API 3573 * @dev: the device to map the fragment to 3574 * @frag: the paged fragment to map 3575 * @offset: the offset within the fragment (starting at the 3576 * fragment's own offset) 3577 * @size: the number of bytes to map 3578 * @dir: the direction of the mapping (``PCI_DMA_*``) 3579 * 3580 * Maps the page associated with @frag to @device. 3581 */ 3582 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3583 const skb_frag_t *frag, 3584 size_t offset, size_t size, 3585 enum dma_data_direction dir) 3586 { 3587 return dma_map_page(dev, skb_frag_page(frag), 3588 skb_frag_off(frag) + offset, size, dir); 3589 } 3590 3591 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3592 gfp_t gfp_mask) 3593 { 3594 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3595 } 3596 3597 3598 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3599 gfp_t gfp_mask) 3600 { 3601 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3602 } 3603 3604 3605 /** 3606 * skb_clone_writable - is the header of a clone writable 3607 * @skb: buffer to check 3608 * @len: length up to which to write 3609 * 3610 * Returns true if modifying the header part of the cloned buffer 3611 * does not requires the data to be copied. 3612 */ 3613 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3614 { 3615 return !skb_header_cloned(skb) && 3616 skb_headroom(skb) + len <= skb->hdr_len; 3617 } 3618 3619 static inline int skb_try_make_writable(struct sk_buff *skb, 3620 unsigned int write_len) 3621 { 3622 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3623 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3624 } 3625 3626 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3627 int cloned) 3628 { 3629 int delta = 0; 3630 3631 if (headroom > skb_headroom(skb)) 3632 delta = headroom - skb_headroom(skb); 3633 3634 if (delta || cloned) 3635 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3636 GFP_ATOMIC); 3637 return 0; 3638 } 3639 3640 /** 3641 * skb_cow - copy header of skb when it is required 3642 * @skb: buffer to cow 3643 * @headroom: needed headroom 3644 * 3645 * If the skb passed lacks sufficient headroom or its data part 3646 * is shared, data is reallocated. If reallocation fails, an error 3647 * is returned and original skb is not changed. 3648 * 3649 * The result is skb with writable area skb->head...skb->tail 3650 * and at least @headroom of space at head. 3651 */ 3652 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3653 { 3654 return __skb_cow(skb, headroom, skb_cloned(skb)); 3655 } 3656 3657 /** 3658 * skb_cow_head - skb_cow but only making the head writable 3659 * @skb: buffer to cow 3660 * @headroom: needed headroom 3661 * 3662 * This function is identical to skb_cow except that we replace the 3663 * skb_cloned check by skb_header_cloned. It should be used when 3664 * you only need to push on some header and do not need to modify 3665 * the data. 3666 */ 3667 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3668 { 3669 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3670 } 3671 3672 /** 3673 * skb_padto - pad an skbuff up to a minimal size 3674 * @skb: buffer to pad 3675 * @len: minimal length 3676 * 3677 * Pads up a buffer to ensure the trailing bytes exist and are 3678 * blanked. If the buffer already contains sufficient data it 3679 * is untouched. Otherwise it is extended. Returns zero on 3680 * success. The skb is freed on error. 3681 */ 3682 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3683 { 3684 unsigned int size = skb->len; 3685 if (likely(size >= len)) 3686 return 0; 3687 return skb_pad(skb, len - size); 3688 } 3689 3690 /** 3691 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3692 * @skb: buffer to pad 3693 * @len: minimal length 3694 * @free_on_error: free buffer on error 3695 * 3696 * Pads up a buffer to ensure the trailing bytes exist and are 3697 * blanked. If the buffer already contains sufficient data it 3698 * is untouched. Otherwise it is extended. Returns zero on 3699 * success. The skb is freed on error if @free_on_error is true. 3700 */ 3701 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3702 unsigned int len, 3703 bool free_on_error) 3704 { 3705 unsigned int size = skb->len; 3706 3707 if (unlikely(size < len)) { 3708 len -= size; 3709 if (__skb_pad(skb, len, free_on_error)) 3710 return -ENOMEM; 3711 __skb_put(skb, len); 3712 } 3713 return 0; 3714 } 3715 3716 /** 3717 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3718 * @skb: buffer to pad 3719 * @len: minimal length 3720 * 3721 * Pads up a buffer to ensure the trailing bytes exist and are 3722 * blanked. If the buffer already contains sufficient data it 3723 * is untouched. Otherwise it is extended. Returns zero on 3724 * success. The skb is freed on error. 3725 */ 3726 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3727 { 3728 return __skb_put_padto(skb, len, true); 3729 } 3730 3731 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3732 __must_check; 3733 3734 static inline int skb_add_data(struct sk_buff *skb, 3735 struct iov_iter *from, int copy) 3736 { 3737 const int off = skb->len; 3738 3739 if (skb->ip_summed == CHECKSUM_NONE) { 3740 __wsum csum = 0; 3741 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3742 &csum, from)) { 3743 skb->csum = csum_block_add(skb->csum, csum, off); 3744 return 0; 3745 } 3746 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3747 return 0; 3748 3749 __skb_trim(skb, off); 3750 return -EFAULT; 3751 } 3752 3753 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3754 const struct page *page, int off) 3755 { 3756 if (skb_zcopy(skb)) 3757 return false; 3758 if (i) { 3759 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3760 3761 return page == skb_frag_page(frag) && 3762 off == skb_frag_off(frag) + skb_frag_size(frag); 3763 } 3764 return false; 3765 } 3766 3767 static inline int __skb_linearize(struct sk_buff *skb) 3768 { 3769 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3770 } 3771 3772 /** 3773 * skb_linearize - convert paged skb to linear one 3774 * @skb: buffer to linarize 3775 * 3776 * If there is no free memory -ENOMEM is returned, otherwise zero 3777 * is returned and the old skb data released. 3778 */ 3779 static inline int skb_linearize(struct sk_buff *skb) 3780 { 3781 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3782 } 3783 3784 /** 3785 * skb_has_shared_frag - can any frag be overwritten 3786 * @skb: buffer to test 3787 * 3788 * Return true if the skb has at least one frag that might be modified 3789 * by an external entity (as in vmsplice()/sendfile()) 3790 */ 3791 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3792 { 3793 return skb_is_nonlinear(skb) && 3794 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3795 } 3796 3797 /** 3798 * skb_linearize_cow - make sure skb is linear and writable 3799 * @skb: buffer to process 3800 * 3801 * If there is no free memory -ENOMEM is returned, otherwise zero 3802 * is returned and the old skb data released. 3803 */ 3804 static inline int skb_linearize_cow(struct sk_buff *skb) 3805 { 3806 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3807 __skb_linearize(skb) : 0; 3808 } 3809 3810 static __always_inline void 3811 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3812 unsigned int off) 3813 { 3814 if (skb->ip_summed == CHECKSUM_COMPLETE) 3815 skb->csum = csum_block_sub(skb->csum, 3816 csum_partial(start, len, 0), off); 3817 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3818 skb_checksum_start_offset(skb) < 0) 3819 skb->ip_summed = CHECKSUM_NONE; 3820 } 3821 3822 /** 3823 * skb_postpull_rcsum - update checksum for received skb after pull 3824 * @skb: buffer to update 3825 * @start: start of data before pull 3826 * @len: length of data pulled 3827 * 3828 * After doing a pull on a received packet, you need to call this to 3829 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3830 * CHECKSUM_NONE so that it can be recomputed from scratch. 3831 */ 3832 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3833 const void *start, unsigned int len) 3834 { 3835 if (skb->ip_summed == CHECKSUM_COMPLETE) 3836 skb->csum = wsum_negate(csum_partial(start, len, 3837 wsum_negate(skb->csum))); 3838 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3839 skb_checksum_start_offset(skb) < 0) 3840 skb->ip_summed = CHECKSUM_NONE; 3841 } 3842 3843 static __always_inline void 3844 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3845 unsigned int off) 3846 { 3847 if (skb->ip_summed == CHECKSUM_COMPLETE) 3848 skb->csum = csum_block_add(skb->csum, 3849 csum_partial(start, len, 0), off); 3850 } 3851 3852 /** 3853 * skb_postpush_rcsum - update checksum for received skb after push 3854 * @skb: buffer to update 3855 * @start: start of data after push 3856 * @len: length of data pushed 3857 * 3858 * After doing a push on a received packet, you need to call this to 3859 * update the CHECKSUM_COMPLETE checksum. 3860 */ 3861 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3862 const void *start, unsigned int len) 3863 { 3864 __skb_postpush_rcsum(skb, start, len, 0); 3865 } 3866 3867 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3868 3869 /** 3870 * skb_push_rcsum - push skb and update receive checksum 3871 * @skb: buffer to update 3872 * @len: length of data pulled 3873 * 3874 * This function performs an skb_push on the packet and updates 3875 * the CHECKSUM_COMPLETE checksum. It should be used on 3876 * receive path processing instead of skb_push unless you know 3877 * that the checksum difference is zero (e.g., a valid IP header) 3878 * or you are setting ip_summed to CHECKSUM_NONE. 3879 */ 3880 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3881 { 3882 skb_push(skb, len); 3883 skb_postpush_rcsum(skb, skb->data, len); 3884 return skb->data; 3885 } 3886 3887 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3888 /** 3889 * pskb_trim_rcsum - trim received skb and update checksum 3890 * @skb: buffer to trim 3891 * @len: new length 3892 * 3893 * This is exactly the same as pskb_trim except that it ensures the 3894 * checksum of received packets are still valid after the operation. 3895 * It can change skb pointers. 3896 */ 3897 3898 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3899 { 3900 if (likely(len >= skb->len)) 3901 return 0; 3902 return pskb_trim_rcsum_slow(skb, len); 3903 } 3904 3905 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3906 { 3907 if (skb->ip_summed == CHECKSUM_COMPLETE) 3908 skb->ip_summed = CHECKSUM_NONE; 3909 __skb_trim(skb, len); 3910 return 0; 3911 } 3912 3913 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3914 { 3915 if (skb->ip_summed == CHECKSUM_COMPLETE) 3916 skb->ip_summed = CHECKSUM_NONE; 3917 return __skb_grow(skb, len); 3918 } 3919 3920 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3921 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3922 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3923 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3924 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3925 3926 #define skb_queue_walk(queue, skb) \ 3927 for (skb = (queue)->next; \ 3928 skb != (struct sk_buff *)(queue); \ 3929 skb = skb->next) 3930 3931 #define skb_queue_walk_safe(queue, skb, tmp) \ 3932 for (skb = (queue)->next, tmp = skb->next; \ 3933 skb != (struct sk_buff *)(queue); \ 3934 skb = tmp, tmp = skb->next) 3935 3936 #define skb_queue_walk_from(queue, skb) \ 3937 for (; skb != (struct sk_buff *)(queue); \ 3938 skb = skb->next) 3939 3940 #define skb_rbtree_walk(skb, root) \ 3941 for (skb = skb_rb_first(root); skb != NULL; \ 3942 skb = skb_rb_next(skb)) 3943 3944 #define skb_rbtree_walk_from(skb) \ 3945 for (; skb != NULL; \ 3946 skb = skb_rb_next(skb)) 3947 3948 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3949 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3950 skb = tmp) 3951 3952 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3953 for (tmp = skb->next; \ 3954 skb != (struct sk_buff *)(queue); \ 3955 skb = tmp, tmp = skb->next) 3956 3957 #define skb_queue_reverse_walk(queue, skb) \ 3958 for (skb = (queue)->prev; \ 3959 skb != (struct sk_buff *)(queue); \ 3960 skb = skb->prev) 3961 3962 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3963 for (skb = (queue)->prev, tmp = skb->prev; \ 3964 skb != (struct sk_buff *)(queue); \ 3965 skb = tmp, tmp = skb->prev) 3966 3967 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3968 for (tmp = skb->prev; \ 3969 skb != (struct sk_buff *)(queue); \ 3970 skb = tmp, tmp = skb->prev) 3971 3972 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3973 { 3974 return skb_shinfo(skb)->frag_list != NULL; 3975 } 3976 3977 static inline void skb_frag_list_init(struct sk_buff *skb) 3978 { 3979 skb_shinfo(skb)->frag_list = NULL; 3980 } 3981 3982 #define skb_walk_frags(skb, iter) \ 3983 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3984 3985 3986 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3987 int *err, long *timeo_p, 3988 const struct sk_buff *skb); 3989 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3990 struct sk_buff_head *queue, 3991 unsigned int flags, 3992 int *off, int *err, 3993 struct sk_buff **last); 3994 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3995 struct sk_buff_head *queue, 3996 unsigned int flags, int *off, int *err, 3997 struct sk_buff **last); 3998 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3999 struct sk_buff_head *sk_queue, 4000 unsigned int flags, int *off, int *err); 4001 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 4002 __poll_t datagram_poll(struct file *file, struct socket *sock, 4003 struct poll_table_struct *wait); 4004 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 4005 struct iov_iter *to, int size); 4006 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 4007 struct msghdr *msg, int size) 4008 { 4009 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 4010 } 4011 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 4012 struct msghdr *msg); 4013 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 4014 struct iov_iter *to, int len, 4015 struct ahash_request *hash); 4016 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 4017 struct iov_iter *from, int len); 4018 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 4019 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4020 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4021 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4022 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4023 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4024 int len); 4025 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4026 struct pipe_inode_info *pipe, unsigned int len, 4027 unsigned int flags); 4028 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4029 int len); 4030 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4031 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4032 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4033 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4034 int len, int hlen); 4035 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4036 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4037 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4038 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4039 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4040 unsigned int offset); 4041 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4042 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4043 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4044 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4045 int skb_vlan_pop(struct sk_buff *skb); 4046 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4047 int skb_eth_pop(struct sk_buff *skb); 4048 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4049 const unsigned char *src); 4050 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4051 int mac_len, bool ethernet); 4052 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4053 bool ethernet); 4054 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4055 int skb_mpls_dec_ttl(struct sk_buff *skb); 4056 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4057 gfp_t gfp); 4058 4059 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4060 { 4061 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4062 } 4063 4064 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4065 { 4066 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4067 } 4068 4069 struct skb_checksum_ops { 4070 __wsum (*update)(const void *mem, int len, __wsum wsum); 4071 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4072 }; 4073 4074 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4075 4076 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4077 __wsum csum, const struct skb_checksum_ops *ops); 4078 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4079 __wsum csum); 4080 4081 static inline void * __must_check 4082 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4083 const void *data, int hlen, void *buffer) 4084 { 4085 if (likely(hlen - offset >= len)) 4086 return (void *)data + offset; 4087 4088 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4089 return NULL; 4090 4091 return buffer; 4092 } 4093 4094 static inline void * __must_check 4095 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4096 { 4097 return __skb_header_pointer(skb, offset, len, skb->data, 4098 skb_headlen(skb), buffer); 4099 } 4100 4101 static inline void * __must_check 4102 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4103 { 4104 if (likely(skb_headlen(skb) - offset >= len)) 4105 return skb->data + offset; 4106 return NULL; 4107 } 4108 4109 /** 4110 * skb_needs_linearize - check if we need to linearize a given skb 4111 * depending on the given device features. 4112 * @skb: socket buffer to check 4113 * @features: net device features 4114 * 4115 * Returns true if either: 4116 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4117 * 2. skb is fragmented and the device does not support SG. 4118 */ 4119 static inline bool skb_needs_linearize(struct sk_buff *skb, 4120 netdev_features_t features) 4121 { 4122 return skb_is_nonlinear(skb) && 4123 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4124 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4125 } 4126 4127 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4128 void *to, 4129 const unsigned int len) 4130 { 4131 memcpy(to, skb->data, len); 4132 } 4133 4134 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4135 const int offset, void *to, 4136 const unsigned int len) 4137 { 4138 memcpy(to, skb->data + offset, len); 4139 } 4140 4141 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4142 const void *from, 4143 const unsigned int len) 4144 { 4145 memcpy(skb->data, from, len); 4146 } 4147 4148 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4149 const int offset, 4150 const void *from, 4151 const unsigned int len) 4152 { 4153 memcpy(skb->data + offset, from, len); 4154 } 4155 4156 void skb_init(void); 4157 4158 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4159 { 4160 return skb->tstamp; 4161 } 4162 4163 /** 4164 * skb_get_timestamp - get timestamp from a skb 4165 * @skb: skb to get stamp from 4166 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4167 * 4168 * Timestamps are stored in the skb as offsets to a base timestamp. 4169 * This function converts the offset back to a struct timeval and stores 4170 * it in stamp. 4171 */ 4172 static inline void skb_get_timestamp(const struct sk_buff *skb, 4173 struct __kernel_old_timeval *stamp) 4174 { 4175 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4176 } 4177 4178 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4179 struct __kernel_sock_timeval *stamp) 4180 { 4181 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4182 4183 stamp->tv_sec = ts.tv_sec; 4184 stamp->tv_usec = ts.tv_nsec / 1000; 4185 } 4186 4187 static inline void skb_get_timestampns(const struct sk_buff *skb, 4188 struct __kernel_old_timespec *stamp) 4189 { 4190 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4191 4192 stamp->tv_sec = ts.tv_sec; 4193 stamp->tv_nsec = ts.tv_nsec; 4194 } 4195 4196 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4197 struct __kernel_timespec *stamp) 4198 { 4199 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4200 4201 stamp->tv_sec = ts.tv_sec; 4202 stamp->tv_nsec = ts.tv_nsec; 4203 } 4204 4205 static inline void __net_timestamp(struct sk_buff *skb) 4206 { 4207 skb->tstamp = ktime_get_real(); 4208 skb->tstamp_type = SKB_CLOCK_REALTIME; 4209 } 4210 4211 static inline ktime_t net_timedelta(ktime_t t) 4212 { 4213 return ktime_sub(ktime_get_real(), t); 4214 } 4215 4216 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4217 u8 tstamp_type) 4218 { 4219 skb->tstamp = kt; 4220 4221 if (kt) 4222 skb->tstamp_type = tstamp_type; 4223 else 4224 skb->tstamp_type = SKB_CLOCK_REALTIME; 4225 } 4226 4227 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, 4228 ktime_t kt, clockid_t clockid) 4229 { 4230 u8 tstamp_type = SKB_CLOCK_REALTIME; 4231 4232 switch (clockid) { 4233 case CLOCK_REALTIME: 4234 break; 4235 case CLOCK_MONOTONIC: 4236 tstamp_type = SKB_CLOCK_MONOTONIC; 4237 break; 4238 case CLOCK_TAI: 4239 tstamp_type = SKB_CLOCK_TAI; 4240 break; 4241 default: 4242 WARN_ON_ONCE(1); 4243 kt = 0; 4244 } 4245 4246 skb_set_delivery_time(skb, kt, tstamp_type); 4247 } 4248 4249 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4250 4251 /* It is used in the ingress path to clear the delivery_time. 4252 * If needed, set the skb->tstamp to the (rcv) timestamp. 4253 */ 4254 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4255 { 4256 if (skb->tstamp_type) { 4257 skb->tstamp_type = SKB_CLOCK_REALTIME; 4258 if (static_branch_unlikely(&netstamp_needed_key)) 4259 skb->tstamp = ktime_get_real(); 4260 else 4261 skb->tstamp = 0; 4262 } 4263 } 4264 4265 static inline void skb_clear_tstamp(struct sk_buff *skb) 4266 { 4267 if (skb->tstamp_type) 4268 return; 4269 4270 skb->tstamp = 0; 4271 } 4272 4273 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4274 { 4275 if (skb->tstamp_type) 4276 return 0; 4277 4278 return skb->tstamp; 4279 } 4280 4281 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4282 { 4283 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) 4284 return skb->tstamp; 4285 4286 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4287 return ktime_get_real(); 4288 4289 return 0; 4290 } 4291 4292 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4293 { 4294 return skb_shinfo(skb)->meta_len; 4295 } 4296 4297 static inline void *skb_metadata_end(const struct sk_buff *skb) 4298 { 4299 return skb_mac_header(skb); 4300 } 4301 4302 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4303 const struct sk_buff *skb_b, 4304 u8 meta_len) 4305 { 4306 const void *a = skb_metadata_end(skb_a); 4307 const void *b = skb_metadata_end(skb_b); 4308 u64 diffs = 0; 4309 4310 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4311 BITS_PER_LONG != 64) 4312 goto slow; 4313 4314 /* Using more efficient variant than plain call to memcmp(). */ 4315 switch (meta_len) { 4316 #define __it(x, op) (x -= sizeof(u##op)) 4317 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4318 case 32: diffs |= __it_diff(a, b, 64); 4319 fallthrough; 4320 case 24: diffs |= __it_diff(a, b, 64); 4321 fallthrough; 4322 case 16: diffs |= __it_diff(a, b, 64); 4323 fallthrough; 4324 case 8: diffs |= __it_diff(a, b, 64); 4325 break; 4326 case 28: diffs |= __it_diff(a, b, 64); 4327 fallthrough; 4328 case 20: diffs |= __it_diff(a, b, 64); 4329 fallthrough; 4330 case 12: diffs |= __it_diff(a, b, 64); 4331 fallthrough; 4332 case 4: diffs |= __it_diff(a, b, 32); 4333 break; 4334 default: 4335 slow: 4336 return memcmp(a - meta_len, b - meta_len, meta_len); 4337 } 4338 return diffs; 4339 } 4340 4341 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4342 const struct sk_buff *skb_b) 4343 { 4344 u8 len_a = skb_metadata_len(skb_a); 4345 u8 len_b = skb_metadata_len(skb_b); 4346 4347 if (!(len_a | len_b)) 4348 return false; 4349 4350 return len_a != len_b ? 4351 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4352 } 4353 4354 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4355 { 4356 skb_shinfo(skb)->meta_len = meta_len; 4357 } 4358 4359 static inline void skb_metadata_clear(struct sk_buff *skb) 4360 { 4361 skb_metadata_set(skb, 0); 4362 } 4363 4364 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4365 4366 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4367 4368 void skb_clone_tx_timestamp(struct sk_buff *skb); 4369 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4370 4371 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4372 4373 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4374 { 4375 } 4376 4377 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4378 { 4379 return false; 4380 } 4381 4382 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4383 4384 /** 4385 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4386 * 4387 * PHY drivers may accept clones of transmitted packets for 4388 * timestamping via their phy_driver.txtstamp method. These drivers 4389 * must call this function to return the skb back to the stack with a 4390 * timestamp. 4391 * 4392 * @skb: clone of the original outgoing packet 4393 * @hwtstamps: hardware time stamps 4394 * 4395 */ 4396 void skb_complete_tx_timestamp(struct sk_buff *skb, 4397 struct skb_shared_hwtstamps *hwtstamps); 4398 4399 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4400 struct skb_shared_hwtstamps *hwtstamps, 4401 struct sock *sk, int tstype); 4402 4403 /** 4404 * skb_tstamp_tx - queue clone of skb with send time stamps 4405 * @orig_skb: the original outgoing packet 4406 * @hwtstamps: hardware time stamps, may be NULL if not available 4407 * 4408 * If the skb has a socket associated, then this function clones the 4409 * skb (thus sharing the actual data and optional structures), stores 4410 * the optional hardware time stamping information (if non NULL) or 4411 * generates a software time stamp (otherwise), then queues the clone 4412 * to the error queue of the socket. Errors are silently ignored. 4413 */ 4414 void skb_tstamp_tx(struct sk_buff *orig_skb, 4415 struct skb_shared_hwtstamps *hwtstamps); 4416 4417 /** 4418 * skb_tx_timestamp() - Driver hook for transmit timestamping 4419 * 4420 * Ethernet MAC Drivers should call this function in their hard_xmit() 4421 * function immediately before giving the sk_buff to the MAC hardware. 4422 * 4423 * Specifically, one should make absolutely sure that this function is 4424 * called before TX completion of this packet can trigger. Otherwise 4425 * the packet could potentially already be freed. 4426 * 4427 * @skb: A socket buffer. 4428 */ 4429 static inline void skb_tx_timestamp(struct sk_buff *skb) 4430 { 4431 skb_clone_tx_timestamp(skb); 4432 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4433 skb_tstamp_tx(skb, NULL); 4434 } 4435 4436 /** 4437 * skb_complete_wifi_ack - deliver skb with wifi status 4438 * 4439 * @skb: the original outgoing packet 4440 * @acked: ack status 4441 * 4442 */ 4443 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4444 4445 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4446 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4447 4448 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4449 { 4450 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4451 skb->csum_valid || 4452 (skb->ip_summed == CHECKSUM_PARTIAL && 4453 skb_checksum_start_offset(skb) >= 0)); 4454 } 4455 4456 /** 4457 * skb_checksum_complete - Calculate checksum of an entire packet 4458 * @skb: packet to process 4459 * 4460 * This function calculates the checksum over the entire packet plus 4461 * the value of skb->csum. The latter can be used to supply the 4462 * checksum of a pseudo header as used by TCP/UDP. It returns the 4463 * checksum. 4464 * 4465 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4466 * this function can be used to verify that checksum on received 4467 * packets. In that case the function should return zero if the 4468 * checksum is correct. In particular, this function will return zero 4469 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4470 * hardware has already verified the correctness of the checksum. 4471 */ 4472 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4473 { 4474 return skb_csum_unnecessary(skb) ? 4475 0 : __skb_checksum_complete(skb); 4476 } 4477 4478 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4479 { 4480 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4481 if (skb->csum_level == 0) 4482 skb->ip_summed = CHECKSUM_NONE; 4483 else 4484 skb->csum_level--; 4485 } 4486 } 4487 4488 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4489 { 4490 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4491 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4492 skb->csum_level++; 4493 } else if (skb->ip_summed == CHECKSUM_NONE) { 4494 skb->ip_summed = CHECKSUM_UNNECESSARY; 4495 skb->csum_level = 0; 4496 } 4497 } 4498 4499 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4500 { 4501 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4502 skb->ip_summed = CHECKSUM_NONE; 4503 skb->csum_level = 0; 4504 } 4505 } 4506 4507 /* Check if we need to perform checksum complete validation. 4508 * 4509 * Returns true if checksum complete is needed, false otherwise 4510 * (either checksum is unnecessary or zero checksum is allowed). 4511 */ 4512 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4513 bool zero_okay, 4514 __sum16 check) 4515 { 4516 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4517 skb->csum_valid = 1; 4518 __skb_decr_checksum_unnecessary(skb); 4519 return false; 4520 } 4521 4522 return true; 4523 } 4524 4525 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4526 * in checksum_init. 4527 */ 4528 #define CHECKSUM_BREAK 76 4529 4530 /* Unset checksum-complete 4531 * 4532 * Unset checksum complete can be done when packet is being modified 4533 * (uncompressed for instance) and checksum-complete value is 4534 * invalidated. 4535 */ 4536 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4537 { 4538 if (skb->ip_summed == CHECKSUM_COMPLETE) 4539 skb->ip_summed = CHECKSUM_NONE; 4540 } 4541 4542 /* Validate (init) checksum based on checksum complete. 4543 * 4544 * Return values: 4545 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4546 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4547 * checksum is stored in skb->csum for use in __skb_checksum_complete 4548 * non-zero: value of invalid checksum 4549 * 4550 */ 4551 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4552 bool complete, 4553 __wsum psum) 4554 { 4555 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4556 if (!csum_fold(csum_add(psum, skb->csum))) { 4557 skb->csum_valid = 1; 4558 return 0; 4559 } 4560 } 4561 4562 skb->csum = psum; 4563 4564 if (complete || skb->len <= CHECKSUM_BREAK) { 4565 __sum16 csum; 4566 4567 csum = __skb_checksum_complete(skb); 4568 skb->csum_valid = !csum; 4569 return csum; 4570 } 4571 4572 return 0; 4573 } 4574 4575 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4576 { 4577 return 0; 4578 } 4579 4580 /* Perform checksum validate (init). Note that this is a macro since we only 4581 * want to calculate the pseudo header which is an input function if necessary. 4582 * First we try to validate without any computation (checksum unnecessary) and 4583 * then calculate based on checksum complete calling the function to compute 4584 * pseudo header. 4585 * 4586 * Return values: 4587 * 0: checksum is validated or try to in skb_checksum_complete 4588 * non-zero: value of invalid checksum 4589 */ 4590 #define __skb_checksum_validate(skb, proto, complete, \ 4591 zero_okay, check, compute_pseudo) \ 4592 ({ \ 4593 __sum16 __ret = 0; \ 4594 skb->csum_valid = 0; \ 4595 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4596 __ret = __skb_checksum_validate_complete(skb, \ 4597 complete, compute_pseudo(skb, proto)); \ 4598 __ret; \ 4599 }) 4600 4601 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4602 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4603 4604 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4605 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4606 4607 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4608 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4609 4610 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4611 compute_pseudo) \ 4612 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4613 4614 #define skb_checksum_simple_validate(skb) \ 4615 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4616 4617 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4618 { 4619 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4620 } 4621 4622 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4623 { 4624 skb->csum = ~pseudo; 4625 skb->ip_summed = CHECKSUM_COMPLETE; 4626 } 4627 4628 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4629 do { \ 4630 if (__skb_checksum_convert_check(skb)) \ 4631 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4632 } while (0) 4633 4634 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4635 u16 start, u16 offset) 4636 { 4637 skb->ip_summed = CHECKSUM_PARTIAL; 4638 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4639 skb->csum_offset = offset - start; 4640 } 4641 4642 /* Update skbuf and packet to reflect the remote checksum offload operation. 4643 * When called, ptr indicates the starting point for skb->csum when 4644 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4645 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4646 */ 4647 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4648 int start, int offset, bool nopartial) 4649 { 4650 __wsum delta; 4651 4652 if (!nopartial) { 4653 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4654 return; 4655 } 4656 4657 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4658 __skb_checksum_complete(skb); 4659 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4660 } 4661 4662 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4663 4664 /* Adjust skb->csum since we changed the packet */ 4665 skb->csum = csum_add(skb->csum, delta); 4666 } 4667 4668 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4669 { 4670 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4671 return (void *)(skb->_nfct & NFCT_PTRMASK); 4672 #else 4673 return NULL; 4674 #endif 4675 } 4676 4677 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4678 { 4679 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4680 return skb->_nfct; 4681 #else 4682 return 0UL; 4683 #endif 4684 } 4685 4686 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4687 { 4688 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4689 skb->slow_gro |= !!nfct; 4690 skb->_nfct = nfct; 4691 #endif 4692 } 4693 4694 #ifdef CONFIG_SKB_EXTENSIONS 4695 enum skb_ext_id { 4696 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4697 SKB_EXT_BRIDGE_NF, 4698 #endif 4699 #ifdef CONFIG_XFRM 4700 SKB_EXT_SEC_PATH, 4701 #endif 4702 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4703 TC_SKB_EXT, 4704 #endif 4705 #if IS_ENABLED(CONFIG_MPTCP) 4706 SKB_EXT_MPTCP, 4707 #endif 4708 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4709 SKB_EXT_MCTP, 4710 #endif 4711 SKB_EXT_NUM, /* must be last */ 4712 }; 4713 4714 /** 4715 * struct skb_ext - sk_buff extensions 4716 * @refcnt: 1 on allocation, deallocated on 0 4717 * @offset: offset to add to @data to obtain extension address 4718 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4719 * @data: start of extension data, variable sized 4720 * 4721 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4722 * to use 'u8' types while allowing up to 2kb worth of extension data. 4723 */ 4724 struct skb_ext { 4725 refcount_t refcnt; 4726 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4727 u8 chunks; /* same */ 4728 char data[] __aligned(8); 4729 }; 4730 4731 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4732 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4733 struct skb_ext *ext); 4734 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4735 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4736 void __skb_ext_put(struct skb_ext *ext); 4737 4738 static inline void skb_ext_put(struct sk_buff *skb) 4739 { 4740 if (skb->active_extensions) 4741 __skb_ext_put(skb->extensions); 4742 } 4743 4744 static inline void __skb_ext_copy(struct sk_buff *dst, 4745 const struct sk_buff *src) 4746 { 4747 dst->active_extensions = src->active_extensions; 4748 4749 if (src->active_extensions) { 4750 struct skb_ext *ext = src->extensions; 4751 4752 refcount_inc(&ext->refcnt); 4753 dst->extensions = ext; 4754 } 4755 } 4756 4757 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4758 { 4759 skb_ext_put(dst); 4760 __skb_ext_copy(dst, src); 4761 } 4762 4763 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4764 { 4765 return !!ext->offset[i]; 4766 } 4767 4768 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4769 { 4770 return skb->active_extensions & (1 << id); 4771 } 4772 4773 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4774 { 4775 if (skb_ext_exist(skb, id)) 4776 __skb_ext_del(skb, id); 4777 } 4778 4779 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4780 { 4781 if (skb_ext_exist(skb, id)) { 4782 struct skb_ext *ext = skb->extensions; 4783 4784 return (void *)ext + (ext->offset[id] << 3); 4785 } 4786 4787 return NULL; 4788 } 4789 4790 static inline void skb_ext_reset(struct sk_buff *skb) 4791 { 4792 if (unlikely(skb->active_extensions)) { 4793 __skb_ext_put(skb->extensions); 4794 skb->active_extensions = 0; 4795 } 4796 } 4797 4798 static inline bool skb_has_extensions(struct sk_buff *skb) 4799 { 4800 return unlikely(skb->active_extensions); 4801 } 4802 #else 4803 static inline void skb_ext_put(struct sk_buff *skb) {} 4804 static inline void skb_ext_reset(struct sk_buff *skb) {} 4805 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4806 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4807 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4808 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4809 #endif /* CONFIG_SKB_EXTENSIONS */ 4810 4811 static inline void nf_reset_ct(struct sk_buff *skb) 4812 { 4813 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4814 nf_conntrack_put(skb_nfct(skb)); 4815 skb->_nfct = 0; 4816 #endif 4817 } 4818 4819 static inline void nf_reset_trace(struct sk_buff *skb) 4820 { 4821 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4822 skb->nf_trace = 0; 4823 #endif 4824 } 4825 4826 static inline void ipvs_reset(struct sk_buff *skb) 4827 { 4828 #if IS_ENABLED(CONFIG_IP_VS) 4829 skb->ipvs_property = 0; 4830 #endif 4831 } 4832 4833 /* Note: This doesn't put any conntrack info in dst. */ 4834 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4835 bool copy) 4836 { 4837 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4838 dst->_nfct = src->_nfct; 4839 nf_conntrack_get(skb_nfct(src)); 4840 #endif 4841 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4842 if (copy) 4843 dst->nf_trace = src->nf_trace; 4844 #endif 4845 } 4846 4847 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4848 { 4849 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4850 nf_conntrack_put(skb_nfct(dst)); 4851 #endif 4852 dst->slow_gro = src->slow_gro; 4853 __nf_copy(dst, src, true); 4854 } 4855 4856 #ifdef CONFIG_NETWORK_SECMARK 4857 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4858 { 4859 to->secmark = from->secmark; 4860 } 4861 4862 static inline void skb_init_secmark(struct sk_buff *skb) 4863 { 4864 skb->secmark = 0; 4865 } 4866 #else 4867 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4868 { } 4869 4870 static inline void skb_init_secmark(struct sk_buff *skb) 4871 { } 4872 #endif 4873 4874 static inline int secpath_exists(const struct sk_buff *skb) 4875 { 4876 #ifdef CONFIG_XFRM 4877 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4878 #else 4879 return 0; 4880 #endif 4881 } 4882 4883 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4884 { 4885 return !skb->destructor && 4886 !secpath_exists(skb) && 4887 !skb_nfct(skb) && 4888 !skb->_skb_refdst && 4889 !skb_has_frag_list(skb); 4890 } 4891 4892 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4893 { 4894 skb->queue_mapping = queue_mapping; 4895 } 4896 4897 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4898 { 4899 return skb->queue_mapping; 4900 } 4901 4902 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4903 { 4904 to->queue_mapping = from->queue_mapping; 4905 } 4906 4907 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4908 { 4909 skb->queue_mapping = rx_queue + 1; 4910 } 4911 4912 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4913 { 4914 return skb->queue_mapping - 1; 4915 } 4916 4917 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4918 { 4919 return skb->queue_mapping != 0; 4920 } 4921 4922 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4923 { 4924 skb->dst_pending_confirm = val; 4925 } 4926 4927 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4928 { 4929 return skb->dst_pending_confirm != 0; 4930 } 4931 4932 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4933 { 4934 #ifdef CONFIG_XFRM 4935 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4936 #else 4937 return NULL; 4938 #endif 4939 } 4940 4941 static inline bool skb_is_gso(const struct sk_buff *skb) 4942 { 4943 return skb_shinfo(skb)->gso_size; 4944 } 4945 4946 /* Note: Should be called only if skb_is_gso(skb) is true */ 4947 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4948 { 4949 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4950 } 4951 4952 /* Note: Should be called only if skb_is_gso(skb) is true */ 4953 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4954 { 4955 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4956 } 4957 4958 /* Note: Should be called only if skb_is_gso(skb) is true */ 4959 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4960 { 4961 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4962 } 4963 4964 static inline void skb_gso_reset(struct sk_buff *skb) 4965 { 4966 skb_shinfo(skb)->gso_size = 0; 4967 skb_shinfo(skb)->gso_segs = 0; 4968 skb_shinfo(skb)->gso_type = 0; 4969 } 4970 4971 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4972 u16 increment) 4973 { 4974 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4975 return; 4976 shinfo->gso_size += increment; 4977 } 4978 4979 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4980 u16 decrement) 4981 { 4982 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4983 return; 4984 shinfo->gso_size -= decrement; 4985 } 4986 4987 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4988 4989 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4990 { 4991 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4992 * wanted then gso_type will be set. */ 4993 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4994 4995 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4996 unlikely(shinfo->gso_type == 0)) { 4997 __skb_warn_lro_forwarding(skb); 4998 return true; 4999 } 5000 return false; 5001 } 5002 5003 static inline void skb_forward_csum(struct sk_buff *skb) 5004 { 5005 /* Unfortunately we don't support this one. Any brave souls? */ 5006 if (skb->ip_summed == CHECKSUM_COMPLETE) 5007 skb->ip_summed = CHECKSUM_NONE; 5008 } 5009 5010 /** 5011 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 5012 * @skb: skb to check 5013 * 5014 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 5015 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 5016 * use this helper, to document places where we make this assertion. 5017 */ 5018 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 5019 { 5020 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5021 } 5022 5023 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5024 5025 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5026 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5027 unsigned int transport_len, 5028 __sum16(*skb_chkf)(struct sk_buff *skb)); 5029 5030 /** 5031 * skb_head_is_locked - Determine if the skb->head is locked down 5032 * @skb: skb to check 5033 * 5034 * The head on skbs build around a head frag can be removed if they are 5035 * not cloned. This function returns true if the skb head is locked down 5036 * due to either being allocated via kmalloc, or by being a clone with 5037 * multiple references to the head. 5038 */ 5039 static inline bool skb_head_is_locked(const struct sk_buff *skb) 5040 { 5041 return !skb->head_frag || skb_cloned(skb); 5042 } 5043 5044 /* Local Checksum Offload. 5045 * Compute outer checksum based on the assumption that the 5046 * inner checksum will be offloaded later. 5047 * See Documentation/networking/checksum-offloads.rst for 5048 * explanation of how this works. 5049 * Fill in outer checksum adjustment (e.g. with sum of outer 5050 * pseudo-header) before calling. 5051 * Also ensure that inner checksum is in linear data area. 5052 */ 5053 static inline __wsum lco_csum(struct sk_buff *skb) 5054 { 5055 unsigned char *csum_start = skb_checksum_start(skb); 5056 unsigned char *l4_hdr = skb_transport_header(skb); 5057 __wsum partial; 5058 5059 /* Start with complement of inner checksum adjustment */ 5060 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5061 skb->csum_offset)); 5062 5063 /* Add in checksum of our headers (incl. outer checksum 5064 * adjustment filled in by caller) and return result. 5065 */ 5066 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5067 } 5068 5069 static inline bool skb_is_redirected(const struct sk_buff *skb) 5070 { 5071 return skb->redirected; 5072 } 5073 5074 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5075 { 5076 skb->redirected = 1; 5077 #ifdef CONFIG_NET_REDIRECT 5078 skb->from_ingress = from_ingress; 5079 if (skb->from_ingress) 5080 skb_clear_tstamp(skb); 5081 #endif 5082 } 5083 5084 static inline void skb_reset_redirect(struct sk_buff *skb) 5085 { 5086 skb->redirected = 0; 5087 } 5088 5089 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5090 bool from_ingress) 5091 { 5092 skb->redirected = 1; 5093 #ifdef CONFIG_NET_REDIRECT 5094 skb->from_ingress = from_ingress; 5095 #endif 5096 } 5097 5098 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5099 { 5100 #if IS_ENABLED(CONFIG_IP_SCTP) 5101 return skb->csum_not_inet; 5102 #else 5103 return 0; 5104 #endif 5105 } 5106 5107 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5108 { 5109 skb->ip_summed = CHECKSUM_NONE; 5110 #if IS_ENABLED(CONFIG_IP_SCTP) 5111 skb->csum_not_inet = 0; 5112 #endif 5113 } 5114 5115 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5116 const u64 kcov_handle) 5117 { 5118 #ifdef CONFIG_KCOV 5119 skb->kcov_handle = kcov_handle; 5120 #endif 5121 } 5122 5123 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5124 { 5125 #ifdef CONFIG_KCOV 5126 return skb->kcov_handle; 5127 #else 5128 return 0; 5129 #endif 5130 } 5131 5132 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5133 { 5134 #ifdef CONFIG_PAGE_POOL 5135 skb->pp_recycle = 1; 5136 #endif 5137 } 5138 5139 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5140 ssize_t maxsize, gfp_t gfp); 5141 5142 #endif /* __KERNEL__ */ 5143 #endif /* _LINUX_SKBUFF_H */ 5144