xref: /linux-6.15/include/linux/skbuff.h (revision f94ecbc9)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <net/netmem.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
357  * segment using its current segmentation instead.
358  */
359 #define GSO_BY_FRAGS	0xFFFF
360 
361 typedef struct skb_frag {
362 	netmem_ref netmem;
363 	unsigned int len;
364 	unsigned int offset;
365 } skb_frag_t;
366 
367 /**
368  * skb_frag_size() - Returns the size of a skb fragment
369  * @frag: skb fragment
370  */
371 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
372 {
373 	return frag->len;
374 }
375 
376 /**
377  * skb_frag_size_set() - Sets the size of a skb fragment
378  * @frag: skb fragment
379  * @size: size of fragment
380  */
381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
382 {
383 	frag->len = size;
384 }
385 
386 /**
387  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
388  * @frag: skb fragment
389  * @delta: value to add
390  */
391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
392 {
393 	frag->len += delta;
394 }
395 
396 /**
397  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
398  * @frag: skb fragment
399  * @delta: value to subtract
400  */
401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
402 {
403 	frag->len -= delta;
404 }
405 
406 /**
407  * skb_frag_must_loop - Test if %p is a high memory page
408  * @p: fragment's page
409  */
410 static inline bool skb_frag_must_loop(struct page *p)
411 {
412 #if defined(CONFIG_HIGHMEM)
413 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
414 		return true;
415 #endif
416 	return false;
417 }
418 
419 /**
420  *	skb_frag_foreach_page - loop over pages in a fragment
421  *
422  *	@f:		skb frag to operate on
423  *	@f_off:		offset from start of f->netmem
424  *	@f_len:		length from f_off to loop over
425  *	@p:		(temp var) current page
426  *	@p_off:		(temp var) offset from start of current page,
427  *	                           non-zero only on first page.
428  *	@p_len:		(temp var) length in current page,
429  *				   < PAGE_SIZE only on first and last page.
430  *	@copied:	(temp var) length so far, excluding current p_len.
431  *
432  *	A fragment can hold a compound page, in which case per-page
433  *	operations, notably kmap_atomic, must be called for each
434  *	regular page.
435  */
436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
437 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
438 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
439 	     p_len = skb_frag_must_loop(p) ?				\
440 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
441 	     copied = 0;						\
442 	     copied < f_len;						\
443 	     copied += p_len, p++, p_off = 0,				\
444 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
445 
446 /**
447  * struct skb_shared_hwtstamps - hardware time stamps
448  * @hwtstamp:		hardware time stamp transformed into duration
449  *			since arbitrary point in time
450  * @netdev_data:	address/cookie of network device driver used as
451  *			reference to actual hardware time stamp
452  *
453  * Software time stamps generated by ktime_get_real() are stored in
454  * skb->tstamp.
455  *
456  * hwtstamps can only be compared against other hwtstamps from
457  * the same device.
458  *
459  * This structure is attached to packets as part of the
460  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
461  */
462 struct skb_shared_hwtstamps {
463 	union {
464 		ktime_t	hwtstamp;
465 		void *netdev_data;
466 	};
467 };
468 
469 /* Definitions for tx_flags in struct skb_shared_info */
470 enum {
471 	/* generate hardware time stamp */
472 	SKBTX_HW_TSTAMP = 1 << 0,
473 
474 	/* generate software time stamp when queueing packet to NIC */
475 	SKBTX_SW_TSTAMP = 1 << 1,
476 
477 	/* device driver is going to provide hardware time stamp */
478 	SKBTX_IN_PROGRESS = 1 << 2,
479 
480 	/* generate hardware time stamp based on cycles if supported */
481 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
482 
483 	/* generate wifi status information (where possible) */
484 	SKBTX_WIFI_STATUS = 1 << 4,
485 
486 	/* determine hardware time stamp based on time or cycles */
487 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
488 
489 	/* generate software time stamp when entering packet scheduling */
490 	SKBTX_SCHED_TSTAMP = 1 << 6,
491 };
492 
493 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
494 				 SKBTX_SCHED_TSTAMP)
495 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
496 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
497 				 SKBTX_ANY_SW_TSTAMP)
498 
499 /* Definitions for flags in struct skb_shared_info */
500 enum {
501 	/* use zcopy routines */
502 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
503 
504 	/* This indicates at least one fragment might be overwritten
505 	 * (as in vmsplice(), sendfile() ...)
506 	 * If we need to compute a TX checksum, we'll need to copy
507 	 * all frags to avoid possible bad checksum
508 	 */
509 	SKBFL_SHARED_FRAG = BIT(1),
510 
511 	/* segment contains only zerocopy data and should not be
512 	 * charged to the kernel memory.
513 	 */
514 	SKBFL_PURE_ZEROCOPY = BIT(2),
515 
516 	SKBFL_DONT_ORPHAN = BIT(3),
517 
518 	/* page references are managed by the ubuf_info, so it's safe to
519 	 * use frags only up until ubuf_info is released
520 	 */
521 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
522 };
523 
524 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
525 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
526 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
527 
528 struct ubuf_info_ops {
529 	void (*complete)(struct sk_buff *, struct ubuf_info *,
530 			 bool zerocopy_success);
531 	/* has to be compatible with skb_zcopy_set() */
532 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
533 };
534 
535 /*
536  * The callback notifies userspace to release buffers when skb DMA is done in
537  * lower device, the skb last reference should be 0 when calling this.
538  * The zerocopy_success argument is true if zero copy transmit occurred,
539  * false on data copy or out of memory error caused by data copy attempt.
540  * The ctx field is used to track device context.
541  * The desc field is used to track userspace buffer index.
542  */
543 struct ubuf_info {
544 	const struct ubuf_info_ops *ops;
545 	refcount_t refcnt;
546 	u8 flags;
547 };
548 
549 struct ubuf_info_msgzc {
550 	struct ubuf_info ubuf;
551 
552 	union {
553 		struct {
554 			unsigned long desc;
555 			void *ctx;
556 		};
557 		struct {
558 			u32 id;
559 			u16 len;
560 			u16 zerocopy:1;
561 			u32 bytelen;
562 		};
563 	};
564 
565 	struct mmpin {
566 		struct user_struct *user;
567 		unsigned int num_pg;
568 	} mmp;
569 };
570 
571 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
572 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
573 					     ubuf)
574 
575 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
576 void mm_unaccount_pinned_pages(struct mmpin *mmp);
577 
578 /* Preserve some data across TX submission and completion.
579  *
580  * Note, this state is stored in the driver. Extending the layout
581  * might need some special care.
582  */
583 struct xsk_tx_metadata_compl {
584 	__u64 *tx_timestamp;
585 };
586 
587 /* This data is invariant across clones and lives at
588  * the end of the header data, ie. at skb->end.
589  */
590 struct skb_shared_info {
591 	__u8		flags;
592 	__u8		meta_len;
593 	__u8		nr_frags;
594 	__u8		tx_flags;
595 	unsigned short	gso_size;
596 	/* Warning: this field is not always filled in (UFO)! */
597 	unsigned short	gso_segs;
598 	struct sk_buff	*frag_list;
599 	union {
600 		struct skb_shared_hwtstamps hwtstamps;
601 		struct xsk_tx_metadata_compl xsk_meta;
602 	};
603 	unsigned int	gso_type;
604 	u32		tskey;
605 
606 	/*
607 	 * Warning : all fields before dataref are cleared in __alloc_skb()
608 	 */
609 	atomic_t	dataref;
610 	unsigned int	xdp_frags_size;
611 
612 	/* Intermediate layers must ensure that destructor_arg
613 	 * remains valid until skb destructor */
614 	void *		destructor_arg;
615 
616 	/* must be last field, see pskb_expand_head() */
617 	skb_frag_t	frags[MAX_SKB_FRAGS];
618 };
619 
620 /**
621  * DOC: dataref and headerless skbs
622  *
623  * Transport layers send out clones of payload skbs they hold for
624  * retransmissions. To allow lower layers of the stack to prepend their headers
625  * we split &skb_shared_info.dataref into two halves.
626  * The lower 16 bits count the overall number of references.
627  * The higher 16 bits indicate how many of the references are payload-only.
628  * skb_header_cloned() checks if skb is allowed to add / write the headers.
629  *
630  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
631  * (via __skb_header_release()). Any clone created from marked skb will get
632  * &sk_buff.hdr_len populated with the available headroom.
633  * If there's the only clone in existence it's able to modify the headroom
634  * at will. The sequence of calls inside the transport layer is::
635  *
636  *  <alloc skb>
637  *  skb_reserve()
638  *  __skb_header_release()
639  *  skb_clone()
640  *  // send the clone down the stack
641  *
642  * This is not a very generic construct and it depends on the transport layers
643  * doing the right thing. In practice there's usually only one payload-only skb.
644  * Having multiple payload-only skbs with different lengths of hdr_len is not
645  * possible. The payload-only skbs should never leave their owner.
646  */
647 #define SKB_DATAREF_SHIFT 16
648 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
649 
650 
651 enum {
652 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
653 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
654 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
655 };
656 
657 enum {
658 	SKB_GSO_TCPV4 = 1 << 0,
659 
660 	/* This indicates the skb is from an untrusted source. */
661 	SKB_GSO_DODGY = 1 << 1,
662 
663 	/* This indicates the tcp segment has CWR set. */
664 	SKB_GSO_TCP_ECN = 1 << 2,
665 
666 	SKB_GSO_TCP_FIXEDID = 1 << 3,
667 
668 	SKB_GSO_TCPV6 = 1 << 4,
669 
670 	SKB_GSO_FCOE = 1 << 5,
671 
672 	SKB_GSO_GRE = 1 << 6,
673 
674 	SKB_GSO_GRE_CSUM = 1 << 7,
675 
676 	SKB_GSO_IPXIP4 = 1 << 8,
677 
678 	SKB_GSO_IPXIP6 = 1 << 9,
679 
680 	SKB_GSO_UDP_TUNNEL = 1 << 10,
681 
682 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
683 
684 	SKB_GSO_PARTIAL = 1 << 12,
685 
686 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
687 
688 	SKB_GSO_SCTP = 1 << 14,
689 
690 	SKB_GSO_ESP = 1 << 15,
691 
692 	SKB_GSO_UDP = 1 << 16,
693 
694 	SKB_GSO_UDP_L4 = 1 << 17,
695 
696 	SKB_GSO_FRAGLIST = 1 << 18,
697 };
698 
699 #if BITS_PER_LONG > 32
700 #define NET_SKBUFF_DATA_USES_OFFSET 1
701 #endif
702 
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 typedef unsigned int sk_buff_data_t;
705 #else
706 typedef unsigned char *sk_buff_data_t;
707 #endif
708 
709 enum skb_tstamp_type {
710 	SKB_CLOCK_REALTIME,
711 	SKB_CLOCK_MONOTONIC,
712 	SKB_CLOCK_TAI,
713 	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
714 };
715 
716 /**
717  * DOC: Basic sk_buff geometry
718  *
719  * struct sk_buff itself is a metadata structure and does not hold any packet
720  * data. All the data is held in associated buffers.
721  *
722  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
723  * into two parts:
724  *
725  *  - data buffer, containing headers and sometimes payload;
726  *    this is the part of the skb operated on by the common helpers
727  *    such as skb_put() or skb_pull();
728  *  - shared info (struct skb_shared_info) which holds an array of pointers
729  *    to read-only data in the (page, offset, length) format.
730  *
731  * Optionally &skb_shared_info.frag_list may point to another skb.
732  *
733  * Basic diagram may look like this::
734  *
735  *                                  ---------------
736  *                                 | sk_buff       |
737  *                                  ---------------
738  *     ,---------------------------  + head
739  *    /          ,-----------------  + data
740  *   /          /      ,-----------  + tail
741  *  |          |      |            , + end
742  *  |          |      |           |
743  *  v          v      v           v
744  *   -----------------------------------------------
745  *  | headroom | data |  tailroom | skb_shared_info |
746  *   -----------------------------------------------
747  *                                 + [page frag]
748  *                                 + [page frag]
749  *                                 + [page frag]
750  *                                 + [page frag]       ---------
751  *                                 + frag_list    --> | sk_buff |
752  *                                                     ---------
753  *
754  */
755 
756 /**
757  *	struct sk_buff - socket buffer
758  *	@next: Next buffer in list
759  *	@prev: Previous buffer in list
760  *	@tstamp: Time we arrived/left
761  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
762  *		for retransmit timer
763  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
764  *	@list: queue head
765  *	@ll_node: anchor in an llist (eg socket defer_list)
766  *	@sk: Socket we are owned by
767  *	@dev: Device we arrived on/are leaving by
768  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
769  *	@cb: Control buffer. Free for use by every layer. Put private vars here
770  *	@_skb_refdst: destination entry (with norefcount bit)
771  *	@len: Length of actual data
772  *	@data_len: Data length
773  *	@mac_len: Length of link layer header
774  *	@hdr_len: writable header length of cloned skb
775  *	@csum: Checksum (must include start/offset pair)
776  *	@csum_start: Offset from skb->head where checksumming should start
777  *	@csum_offset: Offset from csum_start where checksum should be stored
778  *	@priority: Packet queueing priority
779  *	@ignore_df: allow local fragmentation
780  *	@cloned: Head may be cloned (check refcnt to be sure)
781  *	@ip_summed: Driver fed us an IP checksum
782  *	@nohdr: Payload reference only, must not modify header
783  *	@pkt_type: Packet class
784  *	@fclone: skbuff clone status
785  *	@ipvs_property: skbuff is owned by ipvs
786  *	@inner_protocol_type: whether the inner protocol is
787  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
788  *	@remcsum_offload: remote checksum offload is enabled
789  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
790  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
791  *	@tc_skip_classify: do not classify packet. set by IFB device
792  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
793  *	@redirected: packet was redirected by packet classifier
794  *	@from_ingress: packet was redirected from the ingress path
795  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
796  *	@peeked: this packet has been seen already, so stats have been
797  *		done for it, don't do them again
798  *	@nf_trace: netfilter packet trace flag
799  *	@protocol: Packet protocol from driver
800  *	@destructor: Destruct function
801  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
802  *	@_sk_redir: socket redirection information for skmsg
803  *	@_nfct: Associated connection, if any (with nfctinfo bits)
804  *	@skb_iif: ifindex of device we arrived on
805  *	@tc_index: Traffic control index
806  *	@hash: the packet hash
807  *	@queue_mapping: Queue mapping for multiqueue devices
808  *	@head_frag: skb was allocated from page fragments,
809  *		not allocated by kmalloc() or vmalloc().
810  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
811  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
812  *		page_pool support on driver)
813  *	@active_extensions: active extensions (skb_ext_id types)
814  *	@ndisc_nodetype: router type (from link layer)
815  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
816  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
817  *		ports.
818  *	@sw_hash: indicates hash was computed in software stack
819  *	@wifi_acked_valid: wifi_acked was set
820  *	@wifi_acked: whether frame was acked on wifi or not
821  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
822  *	@encapsulation: indicates the inner headers in the skbuff are valid
823  *	@encap_hdr_csum: software checksum is needed
824  *	@csum_valid: checksum is already valid
825  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
826  *	@csum_complete_sw: checksum was completed by software
827  *	@csum_level: indicates the number of consecutive checksums found in
828  *		the packet minus one that have been verified as
829  *		CHECKSUM_UNNECESSARY (max 3)
830  *	@dst_pending_confirm: need to confirm neighbour
831  *	@decrypted: Decrypted SKB
832  *	@slow_gro: state present at GRO time, slower prepare step required
833  *	@tstamp_type: When set, skb->tstamp has the
834  *		delivery_time clock base of skb->tstamp.
835  *	@napi_id: id of the NAPI struct this skb came from
836  *	@sender_cpu: (aka @napi_id) source CPU in XPS
837  *	@alloc_cpu: CPU which did the skb allocation.
838  *	@secmark: security marking
839  *	@mark: Generic packet mark
840  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
841  *		at the tail of an sk_buff
842  *	@vlan_all: vlan fields (proto & tci)
843  *	@vlan_proto: vlan encapsulation protocol
844  *	@vlan_tci: vlan tag control information
845  *	@inner_protocol: Protocol (encapsulation)
846  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
847  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
848  *	@inner_transport_header: Inner transport layer header (encapsulation)
849  *	@inner_network_header: Network layer header (encapsulation)
850  *	@inner_mac_header: Link layer header (encapsulation)
851  *	@transport_header: Transport layer header
852  *	@network_header: Network layer header
853  *	@mac_header: Link layer header
854  *	@kcov_handle: KCOV remote handle for remote coverage collection
855  *	@tail: Tail pointer
856  *	@end: End pointer
857  *	@head: Head of buffer
858  *	@data: Data head pointer
859  *	@truesize: Buffer size
860  *	@users: User count - see {datagram,tcp}.c
861  *	@extensions: allocated extensions, valid if active_extensions is nonzero
862  */
863 
864 struct sk_buff {
865 	union {
866 		struct {
867 			/* These two members must be first to match sk_buff_head. */
868 			struct sk_buff		*next;
869 			struct sk_buff		*prev;
870 
871 			union {
872 				struct net_device	*dev;
873 				/* Some protocols might use this space to store information,
874 				 * while device pointer would be NULL.
875 				 * UDP receive path is one user.
876 				 */
877 				unsigned long		dev_scratch;
878 			};
879 		};
880 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
881 		struct list_head	list;
882 		struct llist_node	ll_node;
883 	};
884 
885 	struct sock		*sk;
886 
887 	union {
888 		ktime_t		tstamp;
889 		u64		skb_mstamp_ns; /* earliest departure time */
890 	};
891 	/*
892 	 * This is the control buffer. It is free to use for every
893 	 * layer. Please put your private variables there. If you
894 	 * want to keep them across layers you have to do a skb_clone()
895 	 * first. This is owned by whoever has the skb queued ATM.
896 	 */
897 	char			cb[48] __aligned(8);
898 
899 	union {
900 		struct {
901 			unsigned long	_skb_refdst;
902 			void		(*destructor)(struct sk_buff *skb);
903 		};
904 		struct list_head	tcp_tsorted_anchor;
905 #ifdef CONFIG_NET_SOCK_MSG
906 		unsigned long		_sk_redir;
907 #endif
908 	};
909 
910 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
911 	unsigned long		 _nfct;
912 #endif
913 	unsigned int		len,
914 				data_len;
915 	__u16			mac_len,
916 				hdr_len;
917 
918 	/* Following fields are _not_ copied in __copy_skb_header()
919 	 * Note that queue_mapping is here mostly to fill a hole.
920 	 */
921 	__u16			queue_mapping;
922 
923 /* if you move cloned around you also must adapt those constants */
924 #ifdef __BIG_ENDIAN_BITFIELD
925 #define CLONED_MASK	(1 << 7)
926 #else
927 #define CLONED_MASK	1
928 #endif
929 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
930 
931 	/* private: */
932 	__u8			__cloned_offset[0];
933 	/* public: */
934 	__u8			cloned:1,
935 				nohdr:1,
936 				fclone:2,
937 				peeked:1,
938 				head_frag:1,
939 				pfmemalloc:1,
940 				pp_recycle:1; /* page_pool recycle indicator */
941 #ifdef CONFIG_SKB_EXTENSIONS
942 	__u8			active_extensions;
943 #endif
944 
945 	/* Fields enclosed in headers group are copied
946 	 * using a single memcpy() in __copy_skb_header()
947 	 */
948 	struct_group(headers,
949 
950 	/* private: */
951 	__u8			__pkt_type_offset[0];
952 	/* public: */
953 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
954 	__u8			ignore_df:1;
955 	__u8			dst_pending_confirm:1;
956 	__u8			ip_summed:2;
957 	__u8			ooo_okay:1;
958 
959 	/* private: */
960 	__u8			__mono_tc_offset[0];
961 	/* public: */
962 	__u8			tstamp_type:2;	/* See skb_tstamp_type */
963 #ifdef CONFIG_NET_XGRESS
964 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
965 	__u8			tc_skip_classify:1;
966 #endif
967 	__u8			remcsum_offload:1;
968 	__u8			csum_complete_sw:1;
969 	__u8			csum_level:2;
970 	__u8			inner_protocol_type:1;
971 
972 	__u8			l4_hash:1;
973 	__u8			sw_hash:1;
974 #ifdef CONFIG_WIRELESS
975 	__u8			wifi_acked_valid:1;
976 	__u8			wifi_acked:1;
977 #endif
978 	__u8			no_fcs:1;
979 	/* Indicates the inner headers are valid in the skbuff. */
980 	__u8			encapsulation:1;
981 	__u8			encap_hdr_csum:1;
982 	__u8			csum_valid:1;
983 #ifdef CONFIG_IPV6_NDISC_NODETYPE
984 	__u8			ndisc_nodetype:2;
985 #endif
986 
987 #if IS_ENABLED(CONFIG_IP_VS)
988 	__u8			ipvs_property:1;
989 #endif
990 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
991 	__u8			nf_trace:1;
992 #endif
993 #ifdef CONFIG_NET_SWITCHDEV
994 	__u8			offload_fwd_mark:1;
995 	__u8			offload_l3_fwd_mark:1;
996 #endif
997 	__u8			redirected:1;
998 #ifdef CONFIG_NET_REDIRECT
999 	__u8			from_ingress:1;
1000 #endif
1001 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1002 	__u8			nf_skip_egress:1;
1003 #endif
1004 #ifdef CONFIG_SKB_DECRYPTED
1005 	__u8			decrypted:1;
1006 #endif
1007 	__u8			slow_gro:1;
1008 #if IS_ENABLED(CONFIG_IP_SCTP)
1009 	__u8			csum_not_inet:1;
1010 #endif
1011 
1012 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1013 	__u16			tc_index;	/* traffic control index */
1014 #endif
1015 
1016 	u16			alloc_cpu;
1017 
1018 	union {
1019 		__wsum		csum;
1020 		struct {
1021 			__u16	csum_start;
1022 			__u16	csum_offset;
1023 		};
1024 	};
1025 	__u32			priority;
1026 	int			skb_iif;
1027 	__u32			hash;
1028 	union {
1029 		u32		vlan_all;
1030 		struct {
1031 			__be16	vlan_proto;
1032 			__u16	vlan_tci;
1033 		};
1034 	};
1035 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1036 	union {
1037 		unsigned int	napi_id;
1038 		unsigned int	sender_cpu;
1039 	};
1040 #endif
1041 #ifdef CONFIG_NETWORK_SECMARK
1042 	__u32		secmark;
1043 #endif
1044 
1045 	union {
1046 		__u32		mark;
1047 		__u32		reserved_tailroom;
1048 	};
1049 
1050 	union {
1051 		__be16		inner_protocol;
1052 		__u8		inner_ipproto;
1053 	};
1054 
1055 	__u16			inner_transport_header;
1056 	__u16			inner_network_header;
1057 	__u16			inner_mac_header;
1058 
1059 	__be16			protocol;
1060 	__u16			transport_header;
1061 	__u16			network_header;
1062 	__u16			mac_header;
1063 
1064 #ifdef CONFIG_KCOV
1065 	u64			kcov_handle;
1066 #endif
1067 
1068 	); /* end headers group */
1069 
1070 	/* These elements must be at the end, see alloc_skb() for details.  */
1071 	sk_buff_data_t		tail;
1072 	sk_buff_data_t		end;
1073 	unsigned char		*head,
1074 				*data;
1075 	unsigned int		truesize;
1076 	refcount_t		users;
1077 
1078 #ifdef CONFIG_SKB_EXTENSIONS
1079 	/* only usable after checking ->active_extensions != 0 */
1080 	struct skb_ext		*extensions;
1081 #endif
1082 };
1083 
1084 /* if you move pkt_type around you also must adapt those constants */
1085 #ifdef __BIG_ENDIAN_BITFIELD
1086 #define PKT_TYPE_MAX	(7 << 5)
1087 #else
1088 #define PKT_TYPE_MAX	7
1089 #endif
1090 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1091 
1092 /* if you move tc_at_ingress or tstamp_type
1093  * around, you also must adapt these constants.
1094  */
1095 #ifdef __BIG_ENDIAN_BITFIELD
1096 #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1097 #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1098 #define TC_AT_INGRESS_MASK		(1 << 5)
1099 #else
1100 #define SKB_TSTAMP_TYPE_MASK		(3)
1101 #define TC_AT_INGRESS_MASK		(1 << 2)
1102 #endif
1103 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1104 
1105 #ifdef __KERNEL__
1106 /*
1107  *	Handling routines are only of interest to the kernel
1108  */
1109 
1110 #define SKB_ALLOC_FCLONE	0x01
1111 #define SKB_ALLOC_RX		0x02
1112 #define SKB_ALLOC_NAPI		0x04
1113 
1114 /**
1115  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1116  * @skb: buffer
1117  */
1118 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1119 {
1120 	return unlikely(skb->pfmemalloc);
1121 }
1122 
1123 /*
1124  * skb might have a dst pointer attached, refcounted or not.
1125  * _skb_refdst low order bit is set if refcount was _not_ taken
1126  */
1127 #define SKB_DST_NOREF	1UL
1128 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1129 
1130 /**
1131  * skb_dst - returns skb dst_entry
1132  * @skb: buffer
1133  *
1134  * Returns skb dst_entry, regardless of reference taken or not.
1135  */
1136 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1137 {
1138 	/* If refdst was not refcounted, check we still are in a
1139 	 * rcu_read_lock section
1140 	 */
1141 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1142 		!rcu_read_lock_held() &&
1143 		!rcu_read_lock_bh_held());
1144 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1145 }
1146 
1147 /**
1148  * skb_dst_set - sets skb dst
1149  * @skb: buffer
1150  * @dst: dst entry
1151  *
1152  * Sets skb dst, assuming a reference was taken on dst and should
1153  * be released by skb_dst_drop()
1154  */
1155 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1156 {
1157 	skb->slow_gro |= !!dst;
1158 	skb->_skb_refdst = (unsigned long)dst;
1159 }
1160 
1161 /**
1162  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1163  * @skb: buffer
1164  * @dst: dst entry
1165  *
1166  * Sets skb dst, assuming a reference was not taken on dst.
1167  * If dst entry is cached, we do not take reference and dst_release
1168  * will be avoided by refdst_drop. If dst entry is not cached, we take
1169  * reference, so that last dst_release can destroy the dst immediately.
1170  */
1171 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1172 {
1173 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1174 	skb->slow_gro |= !!dst;
1175 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1176 }
1177 
1178 /**
1179  * skb_dst_is_noref - Test if skb dst isn't refcounted
1180  * @skb: buffer
1181  */
1182 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1183 {
1184 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1185 }
1186 
1187 /* For mangling skb->pkt_type from user space side from applications
1188  * such as nft, tc, etc, we only allow a conservative subset of
1189  * possible pkt_types to be set.
1190 */
1191 static inline bool skb_pkt_type_ok(u32 ptype)
1192 {
1193 	return ptype <= PACKET_OTHERHOST;
1194 }
1195 
1196 /**
1197  * skb_napi_id - Returns the skb's NAPI id
1198  * @skb: buffer
1199  */
1200 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1201 {
1202 #ifdef CONFIG_NET_RX_BUSY_POLL
1203 	return skb->napi_id;
1204 #else
1205 	return 0;
1206 #endif
1207 }
1208 
1209 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1210 {
1211 #ifdef CONFIG_WIRELESS
1212 	return skb->wifi_acked_valid;
1213 #else
1214 	return 0;
1215 #endif
1216 }
1217 
1218 /**
1219  * skb_unref - decrement the skb's reference count
1220  * @skb: buffer
1221  *
1222  * Returns true if we can free the skb.
1223  */
1224 static inline bool skb_unref(struct sk_buff *skb)
1225 {
1226 	if (unlikely(!skb))
1227 		return false;
1228 	if (likely(refcount_read(&skb->users) == 1))
1229 		smp_rmb();
1230 	else if (likely(!refcount_dec_and_test(&skb->users)))
1231 		return false;
1232 
1233 	return true;
1234 }
1235 
1236 static inline bool skb_data_unref(const struct sk_buff *skb,
1237 				  struct skb_shared_info *shinfo)
1238 {
1239 	int bias;
1240 
1241 	if (!skb->cloned)
1242 		return true;
1243 
1244 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1245 
1246 	if (atomic_read(&shinfo->dataref) == bias)
1247 		smp_rmb();
1248 	else if (atomic_sub_return(bias, &shinfo->dataref))
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1255 				      enum skb_drop_reason reason);
1256 
1257 static inline void
1258 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1259 {
1260 	sk_skb_reason_drop(NULL, skb, reason);
1261 }
1262 
1263 /**
1264  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1265  *	@skb: buffer to free
1266  */
1267 static inline void kfree_skb(struct sk_buff *skb)
1268 {
1269 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1270 }
1271 
1272 void skb_release_head_state(struct sk_buff *skb);
1273 void kfree_skb_list_reason(struct sk_buff *segs,
1274 			   enum skb_drop_reason reason);
1275 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1276 void skb_tx_error(struct sk_buff *skb);
1277 
1278 static inline void kfree_skb_list(struct sk_buff *segs)
1279 {
1280 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1281 }
1282 
1283 #ifdef CONFIG_TRACEPOINTS
1284 void consume_skb(struct sk_buff *skb);
1285 #else
1286 static inline void consume_skb(struct sk_buff *skb)
1287 {
1288 	return kfree_skb(skb);
1289 }
1290 #endif
1291 
1292 void __consume_stateless_skb(struct sk_buff *skb);
1293 void  __kfree_skb(struct sk_buff *skb);
1294 
1295 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1296 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1297 		      bool *fragstolen, int *delta_truesize);
1298 
1299 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1300 			    int node);
1301 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1302 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1303 struct sk_buff *build_skb_around(struct sk_buff *skb,
1304 				 void *data, unsigned int frag_size);
1305 void skb_attempt_defer_free(struct sk_buff *skb);
1306 
1307 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1308 struct sk_buff *slab_build_skb(void *data);
1309 
1310 /**
1311  * alloc_skb - allocate a network buffer
1312  * @size: size to allocate
1313  * @priority: allocation mask
1314  *
1315  * This function is a convenient wrapper around __alloc_skb().
1316  */
1317 static inline struct sk_buff *alloc_skb(unsigned int size,
1318 					gfp_t priority)
1319 {
1320 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1321 }
1322 
1323 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1324 				     unsigned long data_len,
1325 				     int max_page_order,
1326 				     int *errcode,
1327 				     gfp_t gfp_mask);
1328 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1329 
1330 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1331 struct sk_buff_fclones {
1332 	struct sk_buff	skb1;
1333 
1334 	struct sk_buff	skb2;
1335 
1336 	refcount_t	fclone_ref;
1337 };
1338 
1339 /**
1340  *	skb_fclone_busy - check if fclone is busy
1341  *	@sk: socket
1342  *	@skb: buffer
1343  *
1344  * Returns true if skb is a fast clone, and its clone is not freed.
1345  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1346  * so we also check that didn't happen.
1347  */
1348 static inline bool skb_fclone_busy(const struct sock *sk,
1349 				   const struct sk_buff *skb)
1350 {
1351 	const struct sk_buff_fclones *fclones;
1352 
1353 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1354 
1355 	return skb->fclone == SKB_FCLONE_ORIG &&
1356 	       refcount_read(&fclones->fclone_ref) > 1 &&
1357 	       READ_ONCE(fclones->skb2.sk) == sk;
1358 }
1359 
1360 /**
1361  * alloc_skb_fclone - allocate a network buffer from fclone cache
1362  * @size: size to allocate
1363  * @priority: allocation mask
1364  *
1365  * This function is a convenient wrapper around __alloc_skb().
1366  */
1367 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1368 					       gfp_t priority)
1369 {
1370 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1371 }
1372 
1373 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1374 void skb_headers_offset_update(struct sk_buff *skb, int off);
1375 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1376 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1377 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1378 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1379 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1380 				   gfp_t gfp_mask, bool fclone);
1381 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1382 					  gfp_t gfp_mask)
1383 {
1384 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1385 }
1386 
1387 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1388 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1389 				     unsigned int headroom);
1390 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1391 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1392 				int newtailroom, gfp_t priority);
1393 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1394 				     int offset, int len);
1395 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1396 			      int offset, int len);
1397 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1398 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1399 
1400 /**
1401  *	skb_pad			-	zero pad the tail of an skb
1402  *	@skb: buffer to pad
1403  *	@pad: space to pad
1404  *
1405  *	Ensure that a buffer is followed by a padding area that is zero
1406  *	filled. Used by network drivers which may DMA or transfer data
1407  *	beyond the buffer end onto the wire.
1408  *
1409  *	May return error in out of memory cases. The skb is freed on error.
1410  */
1411 static inline int skb_pad(struct sk_buff *skb, int pad)
1412 {
1413 	return __skb_pad(skb, pad, true);
1414 }
1415 #define dev_kfree_skb(a)	consume_skb(a)
1416 
1417 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1418 			 int offset, size_t size, size_t max_frags);
1419 
1420 struct skb_seq_state {
1421 	__u32		lower_offset;
1422 	__u32		upper_offset;
1423 	__u32		frag_idx;
1424 	__u32		stepped_offset;
1425 	struct sk_buff	*root_skb;
1426 	struct sk_buff	*cur_skb;
1427 	__u8		*frag_data;
1428 	__u32		frag_off;
1429 };
1430 
1431 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1432 			  unsigned int to, struct skb_seq_state *st);
1433 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1434 			  struct skb_seq_state *st);
1435 void skb_abort_seq_read(struct skb_seq_state *st);
1436 
1437 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1438 			   unsigned int to, struct ts_config *config);
1439 
1440 /*
1441  * Packet hash types specify the type of hash in skb_set_hash.
1442  *
1443  * Hash types refer to the protocol layer addresses which are used to
1444  * construct a packet's hash. The hashes are used to differentiate or identify
1445  * flows of the protocol layer for the hash type. Hash types are either
1446  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1447  *
1448  * Properties of hashes:
1449  *
1450  * 1) Two packets in different flows have different hash values
1451  * 2) Two packets in the same flow should have the same hash value
1452  *
1453  * A hash at a higher layer is considered to be more specific. A driver should
1454  * set the most specific hash possible.
1455  *
1456  * A driver cannot indicate a more specific hash than the layer at which a hash
1457  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1458  *
1459  * A driver may indicate a hash level which is less specific than the
1460  * actual layer the hash was computed on. For instance, a hash computed
1461  * at L4 may be considered an L3 hash. This should only be done if the
1462  * driver can't unambiguously determine that the HW computed the hash at
1463  * the higher layer. Note that the "should" in the second property above
1464  * permits this.
1465  */
1466 enum pkt_hash_types {
1467 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1468 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1469 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1470 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1471 };
1472 
1473 static inline void skb_clear_hash(struct sk_buff *skb)
1474 {
1475 	skb->hash = 0;
1476 	skb->sw_hash = 0;
1477 	skb->l4_hash = 0;
1478 }
1479 
1480 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1481 {
1482 	if (!skb->l4_hash)
1483 		skb_clear_hash(skb);
1484 }
1485 
1486 static inline void
1487 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1488 {
1489 	skb->l4_hash = is_l4;
1490 	skb->sw_hash = is_sw;
1491 	skb->hash = hash;
1492 }
1493 
1494 static inline void
1495 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1496 {
1497 	/* Used by drivers to set hash from HW */
1498 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1499 }
1500 
1501 static inline void
1502 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1503 {
1504 	__skb_set_hash(skb, hash, true, is_l4);
1505 }
1506 
1507 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1508 
1509 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1510 {
1511 	return __skb_get_hash_symmetric_net(NULL, skb);
1512 }
1513 
1514 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1515 u32 skb_get_poff(const struct sk_buff *skb);
1516 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1517 		   const struct flow_keys_basic *keys, int hlen);
1518 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1519 			    const void *data, int hlen_proto);
1520 
1521 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1522 					int thoff, u8 ip_proto)
1523 {
1524 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1525 }
1526 
1527 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1528 			     const struct flow_dissector_key *key,
1529 			     unsigned int key_count);
1530 
1531 struct bpf_flow_dissector;
1532 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1533 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1534 
1535 bool __skb_flow_dissect(const struct net *net,
1536 			const struct sk_buff *skb,
1537 			struct flow_dissector *flow_dissector,
1538 			void *target_container, const void *data,
1539 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1540 
1541 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1542 				    struct flow_dissector *flow_dissector,
1543 				    void *target_container, unsigned int flags)
1544 {
1545 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1546 				  target_container, NULL, 0, 0, 0, flags);
1547 }
1548 
1549 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1550 					      struct flow_keys *flow,
1551 					      unsigned int flags)
1552 {
1553 	memset(flow, 0, sizeof(*flow));
1554 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1555 				  flow, NULL, 0, 0, 0, flags);
1556 }
1557 
1558 static inline bool
1559 skb_flow_dissect_flow_keys_basic(const struct net *net,
1560 				 const struct sk_buff *skb,
1561 				 struct flow_keys_basic *flow,
1562 				 const void *data, __be16 proto,
1563 				 int nhoff, int hlen, unsigned int flags)
1564 {
1565 	memset(flow, 0, sizeof(*flow));
1566 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1567 				  data, proto, nhoff, hlen, flags);
1568 }
1569 
1570 void skb_flow_dissect_meta(const struct sk_buff *skb,
1571 			   struct flow_dissector *flow_dissector,
1572 			   void *target_container);
1573 
1574 /* Gets a skb connection tracking info, ctinfo map should be a
1575  * map of mapsize to translate enum ip_conntrack_info states
1576  * to user states.
1577  */
1578 void
1579 skb_flow_dissect_ct(const struct sk_buff *skb,
1580 		    struct flow_dissector *flow_dissector,
1581 		    void *target_container,
1582 		    u16 *ctinfo_map, size_t mapsize,
1583 		    bool post_ct, u16 zone);
1584 void
1585 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1586 			     struct flow_dissector *flow_dissector,
1587 			     void *target_container);
1588 
1589 void skb_flow_dissect_hash(const struct sk_buff *skb,
1590 			   struct flow_dissector *flow_dissector,
1591 			   void *target_container);
1592 
1593 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1594 {
1595 	if (!skb->l4_hash && !skb->sw_hash)
1596 		__skb_get_hash_net(net, skb);
1597 
1598 	return skb->hash;
1599 }
1600 
1601 static inline __u32 skb_get_hash(struct sk_buff *skb)
1602 {
1603 	if (!skb->l4_hash && !skb->sw_hash)
1604 		__skb_get_hash_net(NULL, skb);
1605 
1606 	return skb->hash;
1607 }
1608 
1609 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1610 {
1611 	if (!skb->l4_hash && !skb->sw_hash) {
1612 		struct flow_keys keys;
1613 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1614 
1615 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1616 	}
1617 
1618 	return skb->hash;
1619 }
1620 
1621 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1622 			   const siphash_key_t *perturb);
1623 
1624 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1625 {
1626 	return skb->hash;
1627 }
1628 
1629 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1630 {
1631 	to->hash = from->hash;
1632 	to->sw_hash = from->sw_hash;
1633 	to->l4_hash = from->l4_hash;
1634 };
1635 
1636 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1637 				    const struct sk_buff *skb2)
1638 {
1639 #ifdef CONFIG_SKB_DECRYPTED
1640 	return skb2->decrypted - skb1->decrypted;
1641 #else
1642 	return 0;
1643 #endif
1644 }
1645 
1646 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1647 {
1648 #ifdef CONFIG_SKB_DECRYPTED
1649 	return skb->decrypted;
1650 #else
1651 	return false;
1652 #endif
1653 }
1654 
1655 static inline void skb_copy_decrypted(struct sk_buff *to,
1656 				      const struct sk_buff *from)
1657 {
1658 #ifdef CONFIG_SKB_DECRYPTED
1659 	to->decrypted = from->decrypted;
1660 #endif
1661 }
1662 
1663 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1664 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1665 {
1666 	return skb->head + skb->end;
1667 }
1668 
1669 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1670 {
1671 	return skb->end;
1672 }
1673 
1674 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1675 {
1676 	skb->end = offset;
1677 }
1678 #else
1679 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1680 {
1681 	return skb->end;
1682 }
1683 
1684 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1685 {
1686 	return skb->end - skb->head;
1687 }
1688 
1689 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1690 {
1691 	skb->end = skb->head + offset;
1692 }
1693 #endif
1694 
1695 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1696 
1697 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1698 				       struct ubuf_info *uarg);
1699 
1700 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1701 
1702 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1703 			    struct sk_buff *skb, struct iov_iter *from,
1704 			    size_t length);
1705 
1706 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1707 					  struct msghdr *msg, int len)
1708 {
1709 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1710 }
1711 
1712 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1713 			     struct msghdr *msg, int len,
1714 			     struct ubuf_info *uarg);
1715 
1716 /* Internal */
1717 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1718 
1719 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1720 {
1721 	return &skb_shinfo(skb)->hwtstamps;
1722 }
1723 
1724 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1725 {
1726 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1727 
1728 	return is_zcopy ? skb_uarg(skb) : NULL;
1729 }
1730 
1731 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1732 {
1733 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1734 }
1735 
1736 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1737 {
1738 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1739 }
1740 
1741 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1742 				       const struct sk_buff *skb2)
1743 {
1744 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1745 }
1746 
1747 static inline void net_zcopy_get(struct ubuf_info *uarg)
1748 {
1749 	refcount_inc(&uarg->refcnt);
1750 }
1751 
1752 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1753 {
1754 	skb_shinfo(skb)->destructor_arg = uarg;
1755 	skb_shinfo(skb)->flags |= uarg->flags;
1756 }
1757 
1758 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1759 				 bool *have_ref)
1760 {
1761 	if (skb && uarg && !skb_zcopy(skb)) {
1762 		if (unlikely(have_ref && *have_ref))
1763 			*have_ref = false;
1764 		else
1765 			net_zcopy_get(uarg);
1766 		skb_zcopy_init(skb, uarg);
1767 	}
1768 }
1769 
1770 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1771 {
1772 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1773 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1774 }
1775 
1776 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1777 {
1778 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1779 }
1780 
1781 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1782 {
1783 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1784 }
1785 
1786 static inline void net_zcopy_put(struct ubuf_info *uarg)
1787 {
1788 	if (uarg)
1789 		uarg->ops->complete(NULL, uarg, true);
1790 }
1791 
1792 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1793 {
1794 	if (uarg) {
1795 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1796 			msg_zerocopy_put_abort(uarg, have_uref);
1797 		else if (have_uref)
1798 			net_zcopy_put(uarg);
1799 	}
1800 }
1801 
1802 /* Release a reference on a zerocopy structure */
1803 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1804 {
1805 	struct ubuf_info *uarg = skb_zcopy(skb);
1806 
1807 	if (uarg) {
1808 		if (!skb_zcopy_is_nouarg(skb))
1809 			uarg->ops->complete(skb, uarg, zerocopy_success);
1810 
1811 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1812 	}
1813 }
1814 
1815 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1816 
1817 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1818 {
1819 	if (unlikely(skb_zcopy_managed(skb)))
1820 		__skb_zcopy_downgrade_managed(skb);
1821 }
1822 
1823 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1824 {
1825 	skb->next = NULL;
1826 }
1827 
1828 static inline void skb_poison_list(struct sk_buff *skb)
1829 {
1830 #ifdef CONFIG_DEBUG_NET
1831 	skb->next = SKB_LIST_POISON_NEXT;
1832 #endif
1833 }
1834 
1835 /* Iterate through singly-linked GSO fragments of an skb. */
1836 #define skb_list_walk_safe(first, skb, next_skb)                               \
1837 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1838 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1839 
1840 static inline void skb_list_del_init(struct sk_buff *skb)
1841 {
1842 	__list_del_entry(&skb->list);
1843 	skb_mark_not_on_list(skb);
1844 }
1845 
1846 /**
1847  *	skb_queue_empty - check if a queue is empty
1848  *	@list: queue head
1849  *
1850  *	Returns true if the queue is empty, false otherwise.
1851  */
1852 static inline int skb_queue_empty(const struct sk_buff_head *list)
1853 {
1854 	return list->next == (const struct sk_buff *) list;
1855 }
1856 
1857 /**
1858  *	skb_queue_empty_lockless - check if a queue is empty
1859  *	@list: queue head
1860  *
1861  *	Returns true if the queue is empty, false otherwise.
1862  *	This variant can be used in lockless contexts.
1863  */
1864 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1865 {
1866 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1867 }
1868 
1869 
1870 /**
1871  *	skb_queue_is_last - check if skb is the last entry in the queue
1872  *	@list: queue head
1873  *	@skb: buffer
1874  *
1875  *	Returns true if @skb is the last buffer on the list.
1876  */
1877 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1878 				     const struct sk_buff *skb)
1879 {
1880 	return skb->next == (const struct sk_buff *) list;
1881 }
1882 
1883 /**
1884  *	skb_queue_is_first - check if skb is the first entry in the queue
1885  *	@list: queue head
1886  *	@skb: buffer
1887  *
1888  *	Returns true if @skb is the first buffer on the list.
1889  */
1890 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1891 				      const struct sk_buff *skb)
1892 {
1893 	return skb->prev == (const struct sk_buff *) list;
1894 }
1895 
1896 /**
1897  *	skb_queue_next - return the next packet in the queue
1898  *	@list: queue head
1899  *	@skb: current buffer
1900  *
1901  *	Return the next packet in @list after @skb.  It is only valid to
1902  *	call this if skb_queue_is_last() evaluates to false.
1903  */
1904 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1905 					     const struct sk_buff *skb)
1906 {
1907 	/* This BUG_ON may seem severe, but if we just return then we
1908 	 * are going to dereference garbage.
1909 	 */
1910 	BUG_ON(skb_queue_is_last(list, skb));
1911 	return skb->next;
1912 }
1913 
1914 /**
1915  *	skb_queue_prev - return the prev packet in the queue
1916  *	@list: queue head
1917  *	@skb: current buffer
1918  *
1919  *	Return the prev packet in @list before @skb.  It is only valid to
1920  *	call this if skb_queue_is_first() evaluates to false.
1921  */
1922 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1923 					     const struct sk_buff *skb)
1924 {
1925 	/* This BUG_ON may seem severe, but if we just return then we
1926 	 * are going to dereference garbage.
1927 	 */
1928 	BUG_ON(skb_queue_is_first(list, skb));
1929 	return skb->prev;
1930 }
1931 
1932 /**
1933  *	skb_get - reference buffer
1934  *	@skb: buffer to reference
1935  *
1936  *	Makes another reference to a socket buffer and returns a pointer
1937  *	to the buffer.
1938  */
1939 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1940 {
1941 	refcount_inc(&skb->users);
1942 	return skb;
1943 }
1944 
1945 /*
1946  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1947  */
1948 
1949 /**
1950  *	skb_cloned - is the buffer a clone
1951  *	@skb: buffer to check
1952  *
1953  *	Returns true if the buffer was generated with skb_clone() and is
1954  *	one of multiple shared copies of the buffer. Cloned buffers are
1955  *	shared data so must not be written to under normal circumstances.
1956  */
1957 static inline int skb_cloned(const struct sk_buff *skb)
1958 {
1959 	return skb->cloned &&
1960 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1961 }
1962 
1963 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1964 {
1965 	might_sleep_if(gfpflags_allow_blocking(pri));
1966 
1967 	if (skb_cloned(skb))
1968 		return pskb_expand_head(skb, 0, 0, pri);
1969 
1970 	return 0;
1971 }
1972 
1973 /* This variant of skb_unclone() makes sure skb->truesize
1974  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1975  *
1976  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1977  * when various debugging features are in place.
1978  */
1979 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1980 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1981 {
1982 	might_sleep_if(gfpflags_allow_blocking(pri));
1983 
1984 	if (skb_cloned(skb))
1985 		return __skb_unclone_keeptruesize(skb, pri);
1986 	return 0;
1987 }
1988 
1989 /**
1990  *	skb_header_cloned - is the header a clone
1991  *	@skb: buffer to check
1992  *
1993  *	Returns true if modifying the header part of the buffer requires
1994  *	the data to be copied.
1995  */
1996 static inline int skb_header_cloned(const struct sk_buff *skb)
1997 {
1998 	int dataref;
1999 
2000 	if (!skb->cloned)
2001 		return 0;
2002 
2003 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2004 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2005 	return dataref != 1;
2006 }
2007 
2008 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2009 {
2010 	might_sleep_if(gfpflags_allow_blocking(pri));
2011 
2012 	if (skb_header_cloned(skb))
2013 		return pskb_expand_head(skb, 0, 0, pri);
2014 
2015 	return 0;
2016 }
2017 
2018 /**
2019  * __skb_header_release() - allow clones to use the headroom
2020  * @skb: buffer to operate on
2021  *
2022  * See "DOC: dataref and headerless skbs".
2023  */
2024 static inline void __skb_header_release(struct sk_buff *skb)
2025 {
2026 	skb->nohdr = 1;
2027 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2028 }
2029 
2030 
2031 /**
2032  *	skb_shared - is the buffer shared
2033  *	@skb: buffer to check
2034  *
2035  *	Returns true if more than one person has a reference to this
2036  *	buffer.
2037  */
2038 static inline int skb_shared(const struct sk_buff *skb)
2039 {
2040 	return refcount_read(&skb->users) != 1;
2041 }
2042 
2043 /**
2044  *	skb_share_check - check if buffer is shared and if so clone it
2045  *	@skb: buffer to check
2046  *	@pri: priority for memory allocation
2047  *
2048  *	If the buffer is shared the buffer is cloned and the old copy
2049  *	drops a reference. A new clone with a single reference is returned.
2050  *	If the buffer is not shared the original buffer is returned. When
2051  *	being called from interrupt status or with spinlocks held pri must
2052  *	be GFP_ATOMIC.
2053  *
2054  *	NULL is returned on a memory allocation failure.
2055  */
2056 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2057 {
2058 	might_sleep_if(gfpflags_allow_blocking(pri));
2059 	if (skb_shared(skb)) {
2060 		struct sk_buff *nskb = skb_clone(skb, pri);
2061 
2062 		if (likely(nskb))
2063 			consume_skb(skb);
2064 		else
2065 			kfree_skb(skb);
2066 		skb = nskb;
2067 	}
2068 	return skb;
2069 }
2070 
2071 /*
2072  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2073  *	packets to handle cases where we have a local reader and forward
2074  *	and a couple of other messy ones. The normal one is tcpdumping
2075  *	a packet that's being forwarded.
2076  */
2077 
2078 /**
2079  *	skb_unshare - make a copy of a shared buffer
2080  *	@skb: buffer to check
2081  *	@pri: priority for memory allocation
2082  *
2083  *	If the socket buffer is a clone then this function creates a new
2084  *	copy of the data, drops a reference count on the old copy and returns
2085  *	the new copy with the reference count at 1. If the buffer is not a clone
2086  *	the original buffer is returned. When called with a spinlock held or
2087  *	from interrupt state @pri must be %GFP_ATOMIC
2088  *
2089  *	%NULL is returned on a memory allocation failure.
2090  */
2091 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2092 					  gfp_t pri)
2093 {
2094 	might_sleep_if(gfpflags_allow_blocking(pri));
2095 	if (skb_cloned(skb)) {
2096 		struct sk_buff *nskb = skb_copy(skb, pri);
2097 
2098 		/* Free our shared copy */
2099 		if (likely(nskb))
2100 			consume_skb(skb);
2101 		else
2102 			kfree_skb(skb);
2103 		skb = nskb;
2104 	}
2105 	return skb;
2106 }
2107 
2108 /**
2109  *	skb_peek - peek at the head of an &sk_buff_head
2110  *	@list_: list to peek at
2111  *
2112  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2113  *	be careful with this one. A peek leaves the buffer on the
2114  *	list and someone else may run off with it. You must hold
2115  *	the appropriate locks or have a private queue to do this.
2116  *
2117  *	Returns %NULL for an empty list or a pointer to the head element.
2118  *	The reference count is not incremented and the reference is therefore
2119  *	volatile. Use with caution.
2120  */
2121 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2122 {
2123 	struct sk_buff *skb = list_->next;
2124 
2125 	if (skb == (struct sk_buff *)list_)
2126 		skb = NULL;
2127 	return skb;
2128 }
2129 
2130 /**
2131  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2132  *	@list_: list to peek at
2133  *
2134  *	Like skb_peek(), but the caller knows that the list is not empty.
2135  */
2136 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2137 {
2138 	return list_->next;
2139 }
2140 
2141 /**
2142  *	skb_peek_next - peek skb following the given one from a queue
2143  *	@skb: skb to start from
2144  *	@list_: list to peek at
2145  *
2146  *	Returns %NULL when the end of the list is met or a pointer to the
2147  *	next element. The reference count is not incremented and the
2148  *	reference is therefore volatile. Use with caution.
2149  */
2150 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2151 		const struct sk_buff_head *list_)
2152 {
2153 	struct sk_buff *next = skb->next;
2154 
2155 	if (next == (struct sk_buff *)list_)
2156 		next = NULL;
2157 	return next;
2158 }
2159 
2160 /**
2161  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2162  *	@list_: list to peek at
2163  *
2164  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2165  *	be careful with this one. A peek leaves the buffer on the
2166  *	list and someone else may run off with it. You must hold
2167  *	the appropriate locks or have a private queue to do this.
2168  *
2169  *	Returns %NULL for an empty list or a pointer to the tail element.
2170  *	The reference count is not incremented and the reference is therefore
2171  *	volatile. Use with caution.
2172  */
2173 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2174 {
2175 	struct sk_buff *skb = READ_ONCE(list_->prev);
2176 
2177 	if (skb == (struct sk_buff *)list_)
2178 		skb = NULL;
2179 	return skb;
2180 
2181 }
2182 
2183 /**
2184  *	skb_queue_len	- get queue length
2185  *	@list_: list to measure
2186  *
2187  *	Return the length of an &sk_buff queue.
2188  */
2189 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2190 {
2191 	return list_->qlen;
2192 }
2193 
2194 /**
2195  *	skb_queue_len_lockless	- get queue length
2196  *	@list_: list to measure
2197  *
2198  *	Return the length of an &sk_buff queue.
2199  *	This variant can be used in lockless contexts.
2200  */
2201 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2202 {
2203 	return READ_ONCE(list_->qlen);
2204 }
2205 
2206 /**
2207  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2208  *	@list: queue to initialize
2209  *
2210  *	This initializes only the list and queue length aspects of
2211  *	an sk_buff_head object.  This allows to initialize the list
2212  *	aspects of an sk_buff_head without reinitializing things like
2213  *	the spinlock.  It can also be used for on-stack sk_buff_head
2214  *	objects where the spinlock is known to not be used.
2215  */
2216 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2217 {
2218 	list->prev = list->next = (struct sk_buff *)list;
2219 	list->qlen = 0;
2220 }
2221 
2222 /*
2223  * This function creates a split out lock class for each invocation;
2224  * this is needed for now since a whole lot of users of the skb-queue
2225  * infrastructure in drivers have different locking usage (in hardirq)
2226  * than the networking core (in softirq only). In the long run either the
2227  * network layer or drivers should need annotation to consolidate the
2228  * main types of usage into 3 classes.
2229  */
2230 static inline void skb_queue_head_init(struct sk_buff_head *list)
2231 {
2232 	spin_lock_init(&list->lock);
2233 	__skb_queue_head_init(list);
2234 }
2235 
2236 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2237 		struct lock_class_key *class)
2238 {
2239 	skb_queue_head_init(list);
2240 	lockdep_set_class(&list->lock, class);
2241 }
2242 
2243 /*
2244  *	Insert an sk_buff on a list.
2245  *
2246  *	The "__skb_xxxx()" functions are the non-atomic ones that
2247  *	can only be called with interrupts disabled.
2248  */
2249 static inline void __skb_insert(struct sk_buff *newsk,
2250 				struct sk_buff *prev, struct sk_buff *next,
2251 				struct sk_buff_head *list)
2252 {
2253 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2254 	 * for the opposite READ_ONCE()
2255 	 */
2256 	WRITE_ONCE(newsk->next, next);
2257 	WRITE_ONCE(newsk->prev, prev);
2258 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2259 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2260 	WRITE_ONCE(list->qlen, list->qlen + 1);
2261 }
2262 
2263 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2264 				      struct sk_buff *prev,
2265 				      struct sk_buff *next)
2266 {
2267 	struct sk_buff *first = list->next;
2268 	struct sk_buff *last = list->prev;
2269 
2270 	WRITE_ONCE(first->prev, prev);
2271 	WRITE_ONCE(prev->next, first);
2272 
2273 	WRITE_ONCE(last->next, next);
2274 	WRITE_ONCE(next->prev, last);
2275 }
2276 
2277 /**
2278  *	skb_queue_splice - join two skb lists, this is designed for stacks
2279  *	@list: the new list to add
2280  *	@head: the place to add it in the first list
2281  */
2282 static inline void skb_queue_splice(const struct sk_buff_head *list,
2283 				    struct sk_buff_head *head)
2284 {
2285 	if (!skb_queue_empty(list)) {
2286 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2287 		head->qlen += list->qlen;
2288 	}
2289 }
2290 
2291 /**
2292  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2293  *	@list: the new list to add
2294  *	@head: the place to add it in the first list
2295  *
2296  *	The list at @list is reinitialised
2297  */
2298 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2299 					 struct sk_buff_head *head)
2300 {
2301 	if (!skb_queue_empty(list)) {
2302 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2303 		head->qlen += list->qlen;
2304 		__skb_queue_head_init(list);
2305 	}
2306 }
2307 
2308 /**
2309  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2310  *	@list: the new list to add
2311  *	@head: the place to add it in the first list
2312  */
2313 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2314 					 struct sk_buff_head *head)
2315 {
2316 	if (!skb_queue_empty(list)) {
2317 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2318 		head->qlen += list->qlen;
2319 	}
2320 }
2321 
2322 /**
2323  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2324  *	@list: the new list to add
2325  *	@head: the place to add it in the first list
2326  *
2327  *	Each of the lists is a queue.
2328  *	The list at @list is reinitialised
2329  */
2330 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2331 					      struct sk_buff_head *head)
2332 {
2333 	if (!skb_queue_empty(list)) {
2334 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2335 		head->qlen += list->qlen;
2336 		__skb_queue_head_init(list);
2337 	}
2338 }
2339 
2340 /**
2341  *	__skb_queue_after - queue a buffer at the list head
2342  *	@list: list to use
2343  *	@prev: place after this buffer
2344  *	@newsk: buffer to queue
2345  *
2346  *	Queue a buffer int the middle of a list. This function takes no locks
2347  *	and you must therefore hold required locks before calling it.
2348  *
2349  *	A buffer cannot be placed on two lists at the same time.
2350  */
2351 static inline void __skb_queue_after(struct sk_buff_head *list,
2352 				     struct sk_buff *prev,
2353 				     struct sk_buff *newsk)
2354 {
2355 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2356 }
2357 
2358 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2359 		struct sk_buff_head *list);
2360 
2361 static inline void __skb_queue_before(struct sk_buff_head *list,
2362 				      struct sk_buff *next,
2363 				      struct sk_buff *newsk)
2364 {
2365 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2366 }
2367 
2368 /**
2369  *	__skb_queue_head - queue a buffer at the list head
2370  *	@list: list to use
2371  *	@newsk: buffer to queue
2372  *
2373  *	Queue a buffer at the start of a list. This function takes no locks
2374  *	and you must therefore hold required locks before calling it.
2375  *
2376  *	A buffer cannot be placed on two lists at the same time.
2377  */
2378 static inline void __skb_queue_head(struct sk_buff_head *list,
2379 				    struct sk_buff *newsk)
2380 {
2381 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2382 }
2383 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2384 
2385 /**
2386  *	__skb_queue_tail - queue a buffer at the list tail
2387  *	@list: list to use
2388  *	@newsk: buffer to queue
2389  *
2390  *	Queue a buffer at the end of a list. This function takes no locks
2391  *	and you must therefore hold required locks before calling it.
2392  *
2393  *	A buffer cannot be placed on two lists at the same time.
2394  */
2395 static inline void __skb_queue_tail(struct sk_buff_head *list,
2396 				   struct sk_buff *newsk)
2397 {
2398 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2399 }
2400 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2401 
2402 /*
2403  * remove sk_buff from list. _Must_ be called atomically, and with
2404  * the list known..
2405  */
2406 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2407 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2408 {
2409 	struct sk_buff *next, *prev;
2410 
2411 	WRITE_ONCE(list->qlen, list->qlen - 1);
2412 	next	   = skb->next;
2413 	prev	   = skb->prev;
2414 	skb->next  = skb->prev = NULL;
2415 	WRITE_ONCE(next->prev, prev);
2416 	WRITE_ONCE(prev->next, next);
2417 }
2418 
2419 /**
2420  *	__skb_dequeue - remove from the head of the queue
2421  *	@list: list to dequeue from
2422  *
2423  *	Remove the head of the list. This function does not take any locks
2424  *	so must be used with appropriate locks held only. The head item is
2425  *	returned or %NULL if the list is empty.
2426  */
2427 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2428 {
2429 	struct sk_buff *skb = skb_peek(list);
2430 	if (skb)
2431 		__skb_unlink(skb, list);
2432 	return skb;
2433 }
2434 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2435 
2436 /**
2437  *	__skb_dequeue_tail - remove from the tail of the queue
2438  *	@list: list to dequeue from
2439  *
2440  *	Remove the tail of the list. This function does not take any locks
2441  *	so must be used with appropriate locks held only. The tail item is
2442  *	returned or %NULL if the list is empty.
2443  */
2444 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2445 {
2446 	struct sk_buff *skb = skb_peek_tail(list);
2447 	if (skb)
2448 		__skb_unlink(skb, list);
2449 	return skb;
2450 }
2451 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2452 
2453 
2454 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2455 {
2456 	return skb->data_len;
2457 }
2458 
2459 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2460 {
2461 	return skb->len - skb->data_len;
2462 }
2463 
2464 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2465 {
2466 	unsigned int i, len = 0;
2467 
2468 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2469 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2470 	return len;
2471 }
2472 
2473 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2474 {
2475 	return skb_headlen(skb) + __skb_pagelen(skb);
2476 }
2477 
2478 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2479 					     netmem_ref netmem, int off,
2480 					     int size)
2481 {
2482 	frag->netmem = netmem;
2483 	frag->offset = off;
2484 	skb_frag_size_set(frag, size);
2485 }
2486 
2487 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2488 					   struct page *page,
2489 					   int off, int size)
2490 {
2491 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2492 }
2493 
2494 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2495 						int i, netmem_ref netmem,
2496 						int off, int size)
2497 {
2498 	skb_frag_t *frag = &shinfo->frags[i];
2499 
2500 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2501 }
2502 
2503 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2504 					      int i, struct page *page,
2505 					      int off, int size)
2506 {
2507 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2508 				     size);
2509 }
2510 
2511 /**
2512  * skb_len_add - adds a number to len fields of skb
2513  * @skb: buffer to add len to
2514  * @delta: number of bytes to add
2515  */
2516 static inline void skb_len_add(struct sk_buff *skb, int delta)
2517 {
2518 	skb->len += delta;
2519 	skb->data_len += delta;
2520 	skb->truesize += delta;
2521 }
2522 
2523 /**
2524  * __skb_fill_netmem_desc - initialise a fragment in an skb
2525  * @skb: buffer containing fragment to be initialised
2526  * @i: fragment index to initialise
2527  * @netmem: the netmem to use for this fragment
2528  * @off: the offset to the data with @page
2529  * @size: the length of the data
2530  *
2531  * Initialises the @i'th fragment of @skb to point to &size bytes at
2532  * offset @off within @page.
2533  *
2534  * Does not take any additional reference on the fragment.
2535  */
2536 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2537 					  netmem_ref netmem, int off, int size)
2538 {
2539 	struct page *page = netmem_to_page(netmem);
2540 
2541 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2542 
2543 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2544 	 * that not all callers have unique ownership of the page but rely
2545 	 * on page_is_pfmemalloc doing the right thing(tm).
2546 	 */
2547 	page = compound_head(page);
2548 	if (page_is_pfmemalloc(page))
2549 		skb->pfmemalloc = true;
2550 }
2551 
2552 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2553 					struct page *page, int off, int size)
2554 {
2555 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2556 }
2557 
2558 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2559 					netmem_ref netmem, int off, int size)
2560 {
2561 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2562 	skb_shinfo(skb)->nr_frags = i + 1;
2563 }
2564 
2565 /**
2566  * skb_fill_page_desc - initialise a paged fragment in an skb
2567  * @skb: buffer containing fragment to be initialised
2568  * @i: paged fragment index to initialise
2569  * @page: the page to use for this fragment
2570  * @off: the offset to the data with @page
2571  * @size: the length of the data
2572  *
2573  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2574  * @skb to point to @size bytes at offset @off within @page. In
2575  * addition updates @skb such that @i is the last fragment.
2576  *
2577  * Does not take any additional reference on the fragment.
2578  */
2579 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2580 				      struct page *page, int off, int size)
2581 {
2582 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2583 }
2584 
2585 /**
2586  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2587  * @skb: buffer containing fragment to be initialised
2588  * @i: paged fragment index to initialise
2589  * @page: the page to use for this fragment
2590  * @off: the offset to the data with @page
2591  * @size: the length of the data
2592  *
2593  * Variant of skb_fill_page_desc() which does not deal with
2594  * pfmemalloc, if page is not owned by us.
2595  */
2596 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2597 					    struct page *page, int off,
2598 					    int size)
2599 {
2600 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2601 
2602 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2603 	shinfo->nr_frags = i + 1;
2604 }
2605 
2606 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2607 			    int off, int size, unsigned int truesize);
2608 
2609 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2610 				   struct page *page, int off, int size,
2611 				   unsigned int truesize)
2612 {
2613 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2614 			       truesize);
2615 }
2616 
2617 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2618 			  unsigned int truesize);
2619 
2620 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2621 
2622 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2623 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2624 {
2625 	return skb->head + skb->tail;
2626 }
2627 
2628 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2629 {
2630 	skb->tail = skb->data - skb->head;
2631 }
2632 
2633 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2634 {
2635 	skb_reset_tail_pointer(skb);
2636 	skb->tail += offset;
2637 }
2638 
2639 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2640 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2641 {
2642 	return skb->tail;
2643 }
2644 
2645 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2646 {
2647 	skb->tail = skb->data;
2648 }
2649 
2650 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2651 {
2652 	skb->tail = skb->data + offset;
2653 }
2654 
2655 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2656 
2657 static inline void skb_assert_len(struct sk_buff *skb)
2658 {
2659 #ifdef CONFIG_DEBUG_NET
2660 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2661 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2662 #endif /* CONFIG_DEBUG_NET */
2663 }
2664 
2665 /*
2666  *	Add data to an sk_buff
2667  */
2668 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2669 void *skb_put(struct sk_buff *skb, unsigned int len);
2670 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2671 {
2672 	void *tmp = skb_tail_pointer(skb);
2673 	SKB_LINEAR_ASSERT(skb);
2674 	skb->tail += len;
2675 	skb->len  += len;
2676 	return tmp;
2677 }
2678 
2679 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2680 {
2681 	void *tmp = __skb_put(skb, len);
2682 
2683 	memset(tmp, 0, len);
2684 	return tmp;
2685 }
2686 
2687 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2688 				   unsigned int len)
2689 {
2690 	void *tmp = __skb_put(skb, len);
2691 
2692 	memcpy(tmp, data, len);
2693 	return tmp;
2694 }
2695 
2696 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2697 {
2698 	*(u8 *)__skb_put(skb, 1) = val;
2699 }
2700 
2701 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2702 {
2703 	void *tmp = skb_put(skb, len);
2704 
2705 	memset(tmp, 0, len);
2706 
2707 	return tmp;
2708 }
2709 
2710 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2711 				 unsigned int len)
2712 {
2713 	void *tmp = skb_put(skb, len);
2714 
2715 	memcpy(tmp, data, len);
2716 
2717 	return tmp;
2718 }
2719 
2720 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2721 {
2722 	*(u8 *)skb_put(skb, 1) = val;
2723 }
2724 
2725 void *skb_push(struct sk_buff *skb, unsigned int len);
2726 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2727 {
2728 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2729 
2730 	skb->data -= len;
2731 	skb->len  += len;
2732 	return skb->data;
2733 }
2734 
2735 void *skb_pull(struct sk_buff *skb, unsigned int len);
2736 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2737 {
2738 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2739 
2740 	skb->len -= len;
2741 	if (unlikely(skb->len < skb->data_len)) {
2742 #if defined(CONFIG_DEBUG_NET)
2743 		skb->len += len;
2744 		pr_err("__skb_pull(len=%u)\n", len);
2745 		skb_dump(KERN_ERR, skb, false);
2746 #endif
2747 		BUG();
2748 	}
2749 	return skb->data += len;
2750 }
2751 
2752 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2753 {
2754 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2755 }
2756 
2757 void *skb_pull_data(struct sk_buff *skb, size_t len);
2758 
2759 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2760 
2761 static inline enum skb_drop_reason
2762 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2763 {
2764 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2765 
2766 	if (likely(len <= skb_headlen(skb)))
2767 		return SKB_NOT_DROPPED_YET;
2768 
2769 	if (unlikely(len > skb->len))
2770 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2771 
2772 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2773 		return SKB_DROP_REASON_NOMEM;
2774 
2775 	return SKB_NOT_DROPPED_YET;
2776 }
2777 
2778 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2779 {
2780 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2781 }
2782 
2783 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2784 {
2785 	if (!pskb_may_pull(skb, len))
2786 		return NULL;
2787 
2788 	skb->len -= len;
2789 	return skb->data += len;
2790 }
2791 
2792 void skb_condense(struct sk_buff *skb);
2793 
2794 /**
2795  *	skb_headroom - bytes at buffer head
2796  *	@skb: buffer to check
2797  *
2798  *	Return the number of bytes of free space at the head of an &sk_buff.
2799  */
2800 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2801 {
2802 	return skb->data - skb->head;
2803 }
2804 
2805 /**
2806  *	skb_tailroom - bytes at buffer end
2807  *	@skb: buffer to check
2808  *
2809  *	Return the number of bytes of free space at the tail of an sk_buff
2810  */
2811 static inline int skb_tailroom(const struct sk_buff *skb)
2812 {
2813 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2814 }
2815 
2816 /**
2817  *	skb_availroom - bytes at buffer end
2818  *	@skb: buffer to check
2819  *
2820  *	Return the number of bytes of free space at the tail of an sk_buff
2821  *	allocated by sk_stream_alloc()
2822  */
2823 static inline int skb_availroom(const struct sk_buff *skb)
2824 {
2825 	if (skb_is_nonlinear(skb))
2826 		return 0;
2827 
2828 	return skb->end - skb->tail - skb->reserved_tailroom;
2829 }
2830 
2831 /**
2832  *	skb_reserve - adjust headroom
2833  *	@skb: buffer to alter
2834  *	@len: bytes to move
2835  *
2836  *	Increase the headroom of an empty &sk_buff by reducing the tail
2837  *	room. This is only allowed for an empty buffer.
2838  */
2839 static inline void skb_reserve(struct sk_buff *skb, int len)
2840 {
2841 	skb->data += len;
2842 	skb->tail += len;
2843 }
2844 
2845 /**
2846  *	skb_tailroom_reserve - adjust reserved_tailroom
2847  *	@skb: buffer to alter
2848  *	@mtu: maximum amount of headlen permitted
2849  *	@needed_tailroom: minimum amount of reserved_tailroom
2850  *
2851  *	Set reserved_tailroom so that headlen can be as large as possible but
2852  *	not larger than mtu and tailroom cannot be smaller than
2853  *	needed_tailroom.
2854  *	The required headroom should already have been reserved before using
2855  *	this function.
2856  */
2857 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2858 					unsigned int needed_tailroom)
2859 {
2860 	SKB_LINEAR_ASSERT(skb);
2861 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2862 		/* use at most mtu */
2863 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2864 	else
2865 		/* use up to all available space */
2866 		skb->reserved_tailroom = needed_tailroom;
2867 }
2868 
2869 #define ENCAP_TYPE_ETHER	0
2870 #define ENCAP_TYPE_IPPROTO	1
2871 
2872 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2873 					  __be16 protocol)
2874 {
2875 	skb->inner_protocol = protocol;
2876 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2877 }
2878 
2879 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2880 					 __u8 ipproto)
2881 {
2882 	skb->inner_ipproto = ipproto;
2883 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2884 }
2885 
2886 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2887 {
2888 	skb->inner_mac_header = skb->mac_header;
2889 	skb->inner_network_header = skb->network_header;
2890 	skb->inner_transport_header = skb->transport_header;
2891 }
2892 
2893 static inline void skb_reset_mac_len(struct sk_buff *skb)
2894 {
2895 	skb->mac_len = skb->network_header - skb->mac_header;
2896 }
2897 
2898 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2899 							*skb)
2900 {
2901 	return skb->head + skb->inner_transport_header;
2902 }
2903 
2904 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2905 {
2906 	return skb_inner_transport_header(skb) - skb->data;
2907 }
2908 
2909 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2910 {
2911 	skb->inner_transport_header = skb->data - skb->head;
2912 }
2913 
2914 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2915 						   const int offset)
2916 {
2917 	skb_reset_inner_transport_header(skb);
2918 	skb->inner_transport_header += offset;
2919 }
2920 
2921 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2922 {
2923 	return skb->head + skb->inner_network_header;
2924 }
2925 
2926 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2927 {
2928 	skb->inner_network_header = skb->data - skb->head;
2929 }
2930 
2931 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2932 						const int offset)
2933 {
2934 	skb_reset_inner_network_header(skb);
2935 	skb->inner_network_header += offset;
2936 }
2937 
2938 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2939 {
2940 	return skb->inner_network_header > 0;
2941 }
2942 
2943 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2944 {
2945 	return skb->head + skb->inner_mac_header;
2946 }
2947 
2948 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2949 {
2950 	skb->inner_mac_header = skb->data - skb->head;
2951 }
2952 
2953 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2954 					    const int offset)
2955 {
2956 	skb_reset_inner_mac_header(skb);
2957 	skb->inner_mac_header += offset;
2958 }
2959 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2960 {
2961 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2962 }
2963 
2964 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2965 {
2966 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2967 	return skb->head + skb->transport_header;
2968 }
2969 
2970 static inline void skb_reset_transport_header(struct sk_buff *skb)
2971 {
2972 	skb->transport_header = skb->data - skb->head;
2973 }
2974 
2975 static inline void skb_set_transport_header(struct sk_buff *skb,
2976 					    const int offset)
2977 {
2978 	skb_reset_transport_header(skb);
2979 	skb->transport_header += offset;
2980 }
2981 
2982 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2983 {
2984 	return skb->head + skb->network_header;
2985 }
2986 
2987 static inline void skb_reset_network_header(struct sk_buff *skb)
2988 {
2989 	skb->network_header = skb->data - skb->head;
2990 }
2991 
2992 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2993 {
2994 	skb_reset_network_header(skb);
2995 	skb->network_header += offset;
2996 }
2997 
2998 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2999 {
3000 	return skb->mac_header != (typeof(skb->mac_header))~0U;
3001 }
3002 
3003 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3004 {
3005 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3006 	return skb->head + skb->mac_header;
3007 }
3008 
3009 static inline int skb_mac_offset(const struct sk_buff *skb)
3010 {
3011 	return skb_mac_header(skb) - skb->data;
3012 }
3013 
3014 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3015 {
3016 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3017 	return skb->network_header - skb->mac_header;
3018 }
3019 
3020 static inline void skb_unset_mac_header(struct sk_buff *skb)
3021 {
3022 	skb->mac_header = (typeof(skb->mac_header))~0U;
3023 }
3024 
3025 static inline void skb_reset_mac_header(struct sk_buff *skb)
3026 {
3027 	skb->mac_header = skb->data - skb->head;
3028 }
3029 
3030 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3031 {
3032 	skb_reset_mac_header(skb);
3033 	skb->mac_header += offset;
3034 }
3035 
3036 static inline void skb_pop_mac_header(struct sk_buff *skb)
3037 {
3038 	skb->mac_header = skb->network_header;
3039 }
3040 
3041 static inline void skb_probe_transport_header(struct sk_buff *skb)
3042 {
3043 	struct flow_keys_basic keys;
3044 
3045 	if (skb_transport_header_was_set(skb))
3046 		return;
3047 
3048 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3049 					     NULL, 0, 0, 0, 0))
3050 		skb_set_transport_header(skb, keys.control.thoff);
3051 }
3052 
3053 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3054 {
3055 	if (skb_mac_header_was_set(skb)) {
3056 		const unsigned char *old_mac = skb_mac_header(skb);
3057 
3058 		skb_set_mac_header(skb, -skb->mac_len);
3059 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3060 	}
3061 }
3062 
3063 /* Move the full mac header up to current network_header.
3064  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3065  * Must be provided the complete mac header length.
3066  */
3067 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3068 {
3069 	if (skb_mac_header_was_set(skb)) {
3070 		const unsigned char *old_mac = skb_mac_header(skb);
3071 
3072 		skb_set_mac_header(skb, -full_mac_len);
3073 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3074 		__skb_push(skb, full_mac_len - skb->mac_len);
3075 	}
3076 }
3077 
3078 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3079 {
3080 	return skb->csum_start - skb_headroom(skb);
3081 }
3082 
3083 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3084 {
3085 	return skb->head + skb->csum_start;
3086 }
3087 
3088 static inline int skb_transport_offset(const struct sk_buff *skb)
3089 {
3090 	return skb_transport_header(skb) - skb->data;
3091 }
3092 
3093 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3094 {
3095 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3096 	return skb->transport_header - skb->network_header;
3097 }
3098 
3099 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3100 {
3101 	return skb->inner_transport_header - skb->inner_network_header;
3102 }
3103 
3104 static inline int skb_network_offset(const struct sk_buff *skb)
3105 {
3106 	return skb_network_header(skb) - skb->data;
3107 }
3108 
3109 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3110 {
3111 	return skb_inner_network_header(skb) - skb->data;
3112 }
3113 
3114 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3115 {
3116 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3117 }
3118 
3119 /*
3120  * CPUs often take a performance hit when accessing unaligned memory
3121  * locations. The actual performance hit varies, it can be small if the
3122  * hardware handles it or large if we have to take an exception and fix it
3123  * in software.
3124  *
3125  * Since an ethernet header is 14 bytes network drivers often end up with
3126  * the IP header at an unaligned offset. The IP header can be aligned by
3127  * shifting the start of the packet by 2 bytes. Drivers should do this
3128  * with:
3129  *
3130  * skb_reserve(skb, NET_IP_ALIGN);
3131  *
3132  * The downside to this alignment of the IP header is that the DMA is now
3133  * unaligned. On some architectures the cost of an unaligned DMA is high
3134  * and this cost outweighs the gains made by aligning the IP header.
3135  *
3136  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3137  * to be overridden.
3138  */
3139 #ifndef NET_IP_ALIGN
3140 #define NET_IP_ALIGN	2
3141 #endif
3142 
3143 /*
3144  * The networking layer reserves some headroom in skb data (via
3145  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3146  * the header has to grow. In the default case, if the header has to grow
3147  * 32 bytes or less we avoid the reallocation.
3148  *
3149  * Unfortunately this headroom changes the DMA alignment of the resulting
3150  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3151  * on some architectures. An architecture can override this value,
3152  * perhaps setting it to a cacheline in size (since that will maintain
3153  * cacheline alignment of the DMA). It must be a power of 2.
3154  *
3155  * Various parts of the networking layer expect at least 32 bytes of
3156  * headroom, you should not reduce this.
3157  *
3158  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3159  * to reduce average number of cache lines per packet.
3160  * get_rps_cpu() for example only access one 64 bytes aligned block :
3161  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3162  */
3163 #ifndef NET_SKB_PAD
3164 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3165 #endif
3166 
3167 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3168 
3169 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3170 {
3171 	if (WARN_ON(skb_is_nonlinear(skb)))
3172 		return;
3173 	skb->len = len;
3174 	skb_set_tail_pointer(skb, len);
3175 }
3176 
3177 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3178 {
3179 	__skb_set_length(skb, len);
3180 }
3181 
3182 void skb_trim(struct sk_buff *skb, unsigned int len);
3183 
3184 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3185 {
3186 	if (skb->data_len)
3187 		return ___pskb_trim(skb, len);
3188 	__skb_trim(skb, len);
3189 	return 0;
3190 }
3191 
3192 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3193 {
3194 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3195 }
3196 
3197 /**
3198  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3199  *	@skb: buffer to alter
3200  *	@len: new length
3201  *
3202  *	This is identical to pskb_trim except that the caller knows that
3203  *	the skb is not cloned so we should never get an error due to out-
3204  *	of-memory.
3205  */
3206 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3207 {
3208 	int err = pskb_trim(skb, len);
3209 	BUG_ON(err);
3210 }
3211 
3212 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3213 {
3214 	unsigned int diff = len - skb->len;
3215 
3216 	if (skb_tailroom(skb) < diff) {
3217 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3218 					   GFP_ATOMIC);
3219 		if (ret)
3220 			return ret;
3221 	}
3222 	__skb_set_length(skb, len);
3223 	return 0;
3224 }
3225 
3226 /**
3227  *	skb_orphan - orphan a buffer
3228  *	@skb: buffer to orphan
3229  *
3230  *	If a buffer currently has an owner then we call the owner's
3231  *	destructor function and make the @skb unowned. The buffer continues
3232  *	to exist but is no longer charged to its former owner.
3233  */
3234 static inline void skb_orphan(struct sk_buff *skb)
3235 {
3236 	if (skb->destructor) {
3237 		skb->destructor(skb);
3238 		skb->destructor = NULL;
3239 		skb->sk		= NULL;
3240 	} else {
3241 		BUG_ON(skb->sk);
3242 	}
3243 }
3244 
3245 /**
3246  *	skb_orphan_frags - orphan the frags contained in a buffer
3247  *	@skb: buffer to orphan frags from
3248  *	@gfp_mask: allocation mask for replacement pages
3249  *
3250  *	For each frag in the SKB which needs a destructor (i.e. has an
3251  *	owner) create a copy of that frag and release the original
3252  *	page by calling the destructor.
3253  */
3254 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3255 {
3256 	if (likely(!skb_zcopy(skb)))
3257 		return 0;
3258 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3259 		return 0;
3260 	return skb_copy_ubufs(skb, gfp_mask);
3261 }
3262 
3263 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3264 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3265 {
3266 	if (likely(!skb_zcopy(skb)))
3267 		return 0;
3268 	return skb_copy_ubufs(skb, gfp_mask);
3269 }
3270 
3271 /**
3272  *	__skb_queue_purge_reason - empty a list
3273  *	@list: list to empty
3274  *	@reason: drop reason
3275  *
3276  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3277  *	the list and one reference dropped. This function does not take the
3278  *	list lock and the caller must hold the relevant locks to use it.
3279  */
3280 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3281 					    enum skb_drop_reason reason)
3282 {
3283 	struct sk_buff *skb;
3284 
3285 	while ((skb = __skb_dequeue(list)) != NULL)
3286 		kfree_skb_reason(skb, reason);
3287 }
3288 
3289 static inline void __skb_queue_purge(struct sk_buff_head *list)
3290 {
3291 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3292 }
3293 
3294 void skb_queue_purge_reason(struct sk_buff_head *list,
3295 			    enum skb_drop_reason reason);
3296 
3297 static inline void skb_queue_purge(struct sk_buff_head *list)
3298 {
3299 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3300 }
3301 
3302 unsigned int skb_rbtree_purge(struct rb_root *root);
3303 void skb_errqueue_purge(struct sk_buff_head *list);
3304 
3305 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3306 
3307 /**
3308  * netdev_alloc_frag - allocate a page fragment
3309  * @fragsz: fragment size
3310  *
3311  * Allocates a frag from a page for receive buffer.
3312  * Uses GFP_ATOMIC allocations.
3313  */
3314 static inline void *netdev_alloc_frag(unsigned int fragsz)
3315 {
3316 	return __netdev_alloc_frag_align(fragsz, ~0u);
3317 }
3318 
3319 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3320 					    unsigned int align)
3321 {
3322 	WARN_ON_ONCE(!is_power_of_2(align));
3323 	return __netdev_alloc_frag_align(fragsz, -align);
3324 }
3325 
3326 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3327 				   gfp_t gfp_mask);
3328 
3329 /**
3330  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3331  *	@dev: network device to receive on
3332  *	@length: length to allocate
3333  *
3334  *	Allocate a new &sk_buff and assign it a usage count of one. The
3335  *	buffer has unspecified headroom built in. Users should allocate
3336  *	the headroom they think they need without accounting for the
3337  *	built in space. The built in space is used for optimisations.
3338  *
3339  *	%NULL is returned if there is no free memory. Although this function
3340  *	allocates memory it can be called from an interrupt.
3341  */
3342 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3343 					       unsigned int length)
3344 {
3345 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3346 }
3347 
3348 /* legacy helper around __netdev_alloc_skb() */
3349 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3350 					      gfp_t gfp_mask)
3351 {
3352 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3353 }
3354 
3355 /* legacy helper around netdev_alloc_skb() */
3356 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3357 {
3358 	return netdev_alloc_skb(NULL, length);
3359 }
3360 
3361 
3362 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3363 		unsigned int length, gfp_t gfp)
3364 {
3365 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3366 
3367 	if (NET_IP_ALIGN && skb)
3368 		skb_reserve(skb, NET_IP_ALIGN);
3369 	return skb;
3370 }
3371 
3372 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3373 		unsigned int length)
3374 {
3375 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3376 }
3377 
3378 static inline void skb_free_frag(void *addr)
3379 {
3380 	page_frag_free(addr);
3381 }
3382 
3383 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3384 
3385 static inline void *napi_alloc_frag(unsigned int fragsz)
3386 {
3387 	return __napi_alloc_frag_align(fragsz, ~0u);
3388 }
3389 
3390 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3391 					  unsigned int align)
3392 {
3393 	WARN_ON_ONCE(!is_power_of_2(align));
3394 	return __napi_alloc_frag_align(fragsz, -align);
3395 }
3396 
3397 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3398 void napi_consume_skb(struct sk_buff *skb, int budget);
3399 
3400 void napi_skb_free_stolen_head(struct sk_buff *skb);
3401 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3402 
3403 /**
3404  * __dev_alloc_pages - allocate page for network Rx
3405  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3406  * @order: size of the allocation
3407  *
3408  * Allocate a new page.
3409  *
3410  * %NULL is returned if there is no free memory.
3411 */
3412 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3413 					     unsigned int order)
3414 {
3415 	/* This piece of code contains several assumptions.
3416 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3417 	 * 2.  The expectation is the user wants a compound page.
3418 	 * 3.  If requesting a order 0 page it will not be compound
3419 	 *     due to the check to see if order has a value in prep_new_page
3420 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3421 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3422 	 */
3423 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3424 
3425 	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3426 }
3427 #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3428 
3429 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3430 
3431 /**
3432  * __dev_alloc_page - allocate a page for network Rx
3433  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3434  *
3435  * Allocate a new page.
3436  *
3437  * %NULL is returned if there is no free memory.
3438  */
3439 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3440 {
3441 	return __dev_alloc_pages_noprof(gfp_mask, 0);
3442 }
3443 #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3444 
3445 #define dev_alloc_page()	dev_alloc_pages(0)
3446 
3447 /**
3448  * dev_page_is_reusable - check whether a page can be reused for network Rx
3449  * @page: the page to test
3450  *
3451  * A page shouldn't be considered for reusing/recycling if it was allocated
3452  * under memory pressure or at a distant memory node.
3453  *
3454  * Returns false if this page should be returned to page allocator, true
3455  * otherwise.
3456  */
3457 static inline bool dev_page_is_reusable(const struct page *page)
3458 {
3459 	return likely(page_to_nid(page) == numa_mem_id() &&
3460 		      !page_is_pfmemalloc(page));
3461 }
3462 
3463 /**
3464  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3465  *	@page: The page that was allocated from skb_alloc_page
3466  *	@skb: The skb that may need pfmemalloc set
3467  */
3468 static inline void skb_propagate_pfmemalloc(const struct page *page,
3469 					    struct sk_buff *skb)
3470 {
3471 	if (page_is_pfmemalloc(page))
3472 		skb->pfmemalloc = true;
3473 }
3474 
3475 /**
3476  * skb_frag_off() - Returns the offset of a skb fragment
3477  * @frag: the paged fragment
3478  */
3479 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3480 {
3481 	return frag->offset;
3482 }
3483 
3484 /**
3485  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3486  * @frag: skb fragment
3487  * @delta: value to add
3488  */
3489 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3490 {
3491 	frag->offset += delta;
3492 }
3493 
3494 /**
3495  * skb_frag_off_set() - Sets the offset of a skb fragment
3496  * @frag: skb fragment
3497  * @offset: offset of fragment
3498  */
3499 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3500 {
3501 	frag->offset = offset;
3502 }
3503 
3504 /**
3505  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3506  * @fragto: skb fragment where offset is set
3507  * @fragfrom: skb fragment offset is copied from
3508  */
3509 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3510 				     const skb_frag_t *fragfrom)
3511 {
3512 	fragto->offset = fragfrom->offset;
3513 }
3514 
3515 /**
3516  * skb_frag_page - retrieve the page referred to by a paged fragment
3517  * @frag: the paged fragment
3518  *
3519  * Returns the &struct page associated with @frag.
3520  */
3521 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3522 {
3523 	return netmem_to_page(frag->netmem);
3524 }
3525 
3526 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3527 		    unsigned int headroom);
3528 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3529 			 struct bpf_prog *prog);
3530 /**
3531  * skb_frag_address - gets the address of the data contained in a paged fragment
3532  * @frag: the paged fragment buffer
3533  *
3534  * Returns the address of the data within @frag. The page must already
3535  * be mapped.
3536  */
3537 static inline void *skb_frag_address(const skb_frag_t *frag)
3538 {
3539 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3540 }
3541 
3542 /**
3543  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3544  * @frag: the paged fragment buffer
3545  *
3546  * Returns the address of the data within @frag. Checks that the page
3547  * is mapped and returns %NULL otherwise.
3548  */
3549 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3550 {
3551 	void *ptr = page_address(skb_frag_page(frag));
3552 	if (unlikely(!ptr))
3553 		return NULL;
3554 
3555 	return ptr + skb_frag_off(frag);
3556 }
3557 
3558 /**
3559  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3560  * @fragto: skb fragment where page is set
3561  * @fragfrom: skb fragment page is copied from
3562  */
3563 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3564 				      const skb_frag_t *fragfrom)
3565 {
3566 	fragto->netmem = fragfrom->netmem;
3567 }
3568 
3569 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3570 
3571 /**
3572  * skb_frag_dma_map - maps a paged fragment via the DMA API
3573  * @dev: the device to map the fragment to
3574  * @frag: the paged fragment to map
3575  * @offset: the offset within the fragment (starting at the
3576  *          fragment's own offset)
3577  * @size: the number of bytes to map
3578  * @dir: the direction of the mapping (``PCI_DMA_*``)
3579  *
3580  * Maps the page associated with @frag to @device.
3581  */
3582 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3583 					  const skb_frag_t *frag,
3584 					  size_t offset, size_t size,
3585 					  enum dma_data_direction dir)
3586 {
3587 	return dma_map_page(dev, skb_frag_page(frag),
3588 			    skb_frag_off(frag) + offset, size, dir);
3589 }
3590 
3591 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3592 					gfp_t gfp_mask)
3593 {
3594 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3595 }
3596 
3597 
3598 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3599 						  gfp_t gfp_mask)
3600 {
3601 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3602 }
3603 
3604 
3605 /**
3606  *	skb_clone_writable - is the header of a clone writable
3607  *	@skb: buffer to check
3608  *	@len: length up to which to write
3609  *
3610  *	Returns true if modifying the header part of the cloned buffer
3611  *	does not requires the data to be copied.
3612  */
3613 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3614 {
3615 	return !skb_header_cloned(skb) &&
3616 	       skb_headroom(skb) + len <= skb->hdr_len;
3617 }
3618 
3619 static inline int skb_try_make_writable(struct sk_buff *skb,
3620 					unsigned int write_len)
3621 {
3622 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3623 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3624 }
3625 
3626 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3627 			    int cloned)
3628 {
3629 	int delta = 0;
3630 
3631 	if (headroom > skb_headroom(skb))
3632 		delta = headroom - skb_headroom(skb);
3633 
3634 	if (delta || cloned)
3635 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3636 					GFP_ATOMIC);
3637 	return 0;
3638 }
3639 
3640 /**
3641  *	skb_cow - copy header of skb when it is required
3642  *	@skb: buffer to cow
3643  *	@headroom: needed headroom
3644  *
3645  *	If the skb passed lacks sufficient headroom or its data part
3646  *	is shared, data is reallocated. If reallocation fails, an error
3647  *	is returned and original skb is not changed.
3648  *
3649  *	The result is skb with writable area skb->head...skb->tail
3650  *	and at least @headroom of space at head.
3651  */
3652 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3653 {
3654 	return __skb_cow(skb, headroom, skb_cloned(skb));
3655 }
3656 
3657 /**
3658  *	skb_cow_head - skb_cow but only making the head writable
3659  *	@skb: buffer to cow
3660  *	@headroom: needed headroom
3661  *
3662  *	This function is identical to skb_cow except that we replace the
3663  *	skb_cloned check by skb_header_cloned.  It should be used when
3664  *	you only need to push on some header and do not need to modify
3665  *	the data.
3666  */
3667 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3668 {
3669 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3670 }
3671 
3672 /**
3673  *	skb_padto	- pad an skbuff up to a minimal size
3674  *	@skb: buffer to pad
3675  *	@len: minimal length
3676  *
3677  *	Pads up a buffer to ensure the trailing bytes exist and are
3678  *	blanked. If the buffer already contains sufficient data it
3679  *	is untouched. Otherwise it is extended. Returns zero on
3680  *	success. The skb is freed on error.
3681  */
3682 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3683 {
3684 	unsigned int size = skb->len;
3685 	if (likely(size >= len))
3686 		return 0;
3687 	return skb_pad(skb, len - size);
3688 }
3689 
3690 /**
3691  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3692  *	@skb: buffer to pad
3693  *	@len: minimal length
3694  *	@free_on_error: free buffer on error
3695  *
3696  *	Pads up a buffer to ensure the trailing bytes exist and are
3697  *	blanked. If the buffer already contains sufficient data it
3698  *	is untouched. Otherwise it is extended. Returns zero on
3699  *	success. The skb is freed on error if @free_on_error is true.
3700  */
3701 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3702 					       unsigned int len,
3703 					       bool free_on_error)
3704 {
3705 	unsigned int size = skb->len;
3706 
3707 	if (unlikely(size < len)) {
3708 		len -= size;
3709 		if (__skb_pad(skb, len, free_on_error))
3710 			return -ENOMEM;
3711 		__skb_put(skb, len);
3712 	}
3713 	return 0;
3714 }
3715 
3716 /**
3717  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3718  *	@skb: buffer to pad
3719  *	@len: minimal length
3720  *
3721  *	Pads up a buffer to ensure the trailing bytes exist and are
3722  *	blanked. If the buffer already contains sufficient data it
3723  *	is untouched. Otherwise it is extended. Returns zero on
3724  *	success. The skb is freed on error.
3725  */
3726 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3727 {
3728 	return __skb_put_padto(skb, len, true);
3729 }
3730 
3731 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3732 	__must_check;
3733 
3734 static inline int skb_add_data(struct sk_buff *skb,
3735 			       struct iov_iter *from, int copy)
3736 {
3737 	const int off = skb->len;
3738 
3739 	if (skb->ip_summed == CHECKSUM_NONE) {
3740 		__wsum csum = 0;
3741 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3742 					         &csum, from)) {
3743 			skb->csum = csum_block_add(skb->csum, csum, off);
3744 			return 0;
3745 		}
3746 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3747 		return 0;
3748 
3749 	__skb_trim(skb, off);
3750 	return -EFAULT;
3751 }
3752 
3753 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3754 				    const struct page *page, int off)
3755 {
3756 	if (skb_zcopy(skb))
3757 		return false;
3758 	if (i) {
3759 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3760 
3761 		return page == skb_frag_page(frag) &&
3762 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3763 	}
3764 	return false;
3765 }
3766 
3767 static inline int __skb_linearize(struct sk_buff *skb)
3768 {
3769 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3770 }
3771 
3772 /**
3773  *	skb_linearize - convert paged skb to linear one
3774  *	@skb: buffer to linarize
3775  *
3776  *	If there is no free memory -ENOMEM is returned, otherwise zero
3777  *	is returned and the old skb data released.
3778  */
3779 static inline int skb_linearize(struct sk_buff *skb)
3780 {
3781 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3782 }
3783 
3784 /**
3785  * skb_has_shared_frag - can any frag be overwritten
3786  * @skb: buffer to test
3787  *
3788  * Return true if the skb has at least one frag that might be modified
3789  * by an external entity (as in vmsplice()/sendfile())
3790  */
3791 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3792 {
3793 	return skb_is_nonlinear(skb) &&
3794 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3795 }
3796 
3797 /**
3798  *	skb_linearize_cow - make sure skb is linear and writable
3799  *	@skb: buffer to process
3800  *
3801  *	If there is no free memory -ENOMEM is returned, otherwise zero
3802  *	is returned and the old skb data released.
3803  */
3804 static inline int skb_linearize_cow(struct sk_buff *skb)
3805 {
3806 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3807 	       __skb_linearize(skb) : 0;
3808 }
3809 
3810 static __always_inline void
3811 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3812 		     unsigned int off)
3813 {
3814 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3815 		skb->csum = csum_block_sub(skb->csum,
3816 					   csum_partial(start, len, 0), off);
3817 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3818 		 skb_checksum_start_offset(skb) < 0)
3819 		skb->ip_summed = CHECKSUM_NONE;
3820 }
3821 
3822 /**
3823  *	skb_postpull_rcsum - update checksum for received skb after pull
3824  *	@skb: buffer to update
3825  *	@start: start of data before pull
3826  *	@len: length of data pulled
3827  *
3828  *	After doing a pull on a received packet, you need to call this to
3829  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3830  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3831  */
3832 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3833 				      const void *start, unsigned int len)
3834 {
3835 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3836 		skb->csum = wsum_negate(csum_partial(start, len,
3837 						     wsum_negate(skb->csum)));
3838 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3839 		 skb_checksum_start_offset(skb) < 0)
3840 		skb->ip_summed = CHECKSUM_NONE;
3841 }
3842 
3843 static __always_inline void
3844 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3845 		     unsigned int off)
3846 {
3847 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3848 		skb->csum = csum_block_add(skb->csum,
3849 					   csum_partial(start, len, 0), off);
3850 }
3851 
3852 /**
3853  *	skb_postpush_rcsum - update checksum for received skb after push
3854  *	@skb: buffer to update
3855  *	@start: start of data after push
3856  *	@len: length of data pushed
3857  *
3858  *	After doing a push on a received packet, you need to call this to
3859  *	update the CHECKSUM_COMPLETE checksum.
3860  */
3861 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3862 				      const void *start, unsigned int len)
3863 {
3864 	__skb_postpush_rcsum(skb, start, len, 0);
3865 }
3866 
3867 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3868 
3869 /**
3870  *	skb_push_rcsum - push skb and update receive checksum
3871  *	@skb: buffer to update
3872  *	@len: length of data pulled
3873  *
3874  *	This function performs an skb_push on the packet and updates
3875  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3876  *	receive path processing instead of skb_push unless you know
3877  *	that the checksum difference is zero (e.g., a valid IP header)
3878  *	or you are setting ip_summed to CHECKSUM_NONE.
3879  */
3880 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3881 {
3882 	skb_push(skb, len);
3883 	skb_postpush_rcsum(skb, skb->data, len);
3884 	return skb->data;
3885 }
3886 
3887 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3888 /**
3889  *	pskb_trim_rcsum - trim received skb and update checksum
3890  *	@skb: buffer to trim
3891  *	@len: new length
3892  *
3893  *	This is exactly the same as pskb_trim except that it ensures the
3894  *	checksum of received packets are still valid after the operation.
3895  *	It can change skb pointers.
3896  */
3897 
3898 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3899 {
3900 	if (likely(len >= skb->len))
3901 		return 0;
3902 	return pskb_trim_rcsum_slow(skb, len);
3903 }
3904 
3905 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3906 {
3907 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3908 		skb->ip_summed = CHECKSUM_NONE;
3909 	__skb_trim(skb, len);
3910 	return 0;
3911 }
3912 
3913 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3914 {
3915 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3916 		skb->ip_summed = CHECKSUM_NONE;
3917 	return __skb_grow(skb, len);
3918 }
3919 
3920 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3921 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3922 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3923 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3924 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3925 
3926 #define skb_queue_walk(queue, skb) \
3927 		for (skb = (queue)->next;					\
3928 		     skb != (struct sk_buff *)(queue);				\
3929 		     skb = skb->next)
3930 
3931 #define skb_queue_walk_safe(queue, skb, tmp)					\
3932 		for (skb = (queue)->next, tmp = skb->next;			\
3933 		     skb != (struct sk_buff *)(queue);				\
3934 		     skb = tmp, tmp = skb->next)
3935 
3936 #define skb_queue_walk_from(queue, skb)						\
3937 		for (; skb != (struct sk_buff *)(queue);			\
3938 		     skb = skb->next)
3939 
3940 #define skb_rbtree_walk(skb, root)						\
3941 		for (skb = skb_rb_first(root); skb != NULL;			\
3942 		     skb = skb_rb_next(skb))
3943 
3944 #define skb_rbtree_walk_from(skb)						\
3945 		for (; skb != NULL;						\
3946 		     skb = skb_rb_next(skb))
3947 
3948 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3949 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3950 		     skb = tmp)
3951 
3952 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3953 		for (tmp = skb->next;						\
3954 		     skb != (struct sk_buff *)(queue);				\
3955 		     skb = tmp, tmp = skb->next)
3956 
3957 #define skb_queue_reverse_walk(queue, skb) \
3958 		for (skb = (queue)->prev;					\
3959 		     skb != (struct sk_buff *)(queue);				\
3960 		     skb = skb->prev)
3961 
3962 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3963 		for (skb = (queue)->prev, tmp = skb->prev;			\
3964 		     skb != (struct sk_buff *)(queue);				\
3965 		     skb = tmp, tmp = skb->prev)
3966 
3967 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3968 		for (tmp = skb->prev;						\
3969 		     skb != (struct sk_buff *)(queue);				\
3970 		     skb = tmp, tmp = skb->prev)
3971 
3972 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3973 {
3974 	return skb_shinfo(skb)->frag_list != NULL;
3975 }
3976 
3977 static inline void skb_frag_list_init(struct sk_buff *skb)
3978 {
3979 	skb_shinfo(skb)->frag_list = NULL;
3980 }
3981 
3982 #define skb_walk_frags(skb, iter)	\
3983 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3984 
3985 
3986 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3987 				int *err, long *timeo_p,
3988 				const struct sk_buff *skb);
3989 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3990 					  struct sk_buff_head *queue,
3991 					  unsigned int flags,
3992 					  int *off, int *err,
3993 					  struct sk_buff **last);
3994 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3995 					struct sk_buff_head *queue,
3996 					unsigned int flags, int *off, int *err,
3997 					struct sk_buff **last);
3998 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3999 				    struct sk_buff_head *sk_queue,
4000 				    unsigned int flags, int *off, int *err);
4001 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4002 __poll_t datagram_poll(struct file *file, struct socket *sock,
4003 			   struct poll_table_struct *wait);
4004 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4005 			   struct iov_iter *to, int size);
4006 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4007 					struct msghdr *msg, int size)
4008 {
4009 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4010 }
4011 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4012 				   struct msghdr *msg);
4013 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4014 			   struct iov_iter *to, int len,
4015 			   struct ahash_request *hash);
4016 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4017 				 struct iov_iter *from, int len);
4018 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4019 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4020 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4021 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4022 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4023 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4024 			      int len);
4025 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4026 		    struct pipe_inode_info *pipe, unsigned int len,
4027 		    unsigned int flags);
4028 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4029 			 int len);
4030 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4031 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4032 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4033 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4034 		 int len, int hlen);
4035 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4036 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4037 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4038 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4039 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4040 				 unsigned int offset);
4041 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4042 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4043 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4044 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4045 int skb_vlan_pop(struct sk_buff *skb);
4046 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4047 int skb_eth_pop(struct sk_buff *skb);
4048 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4049 		 const unsigned char *src);
4050 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4051 		  int mac_len, bool ethernet);
4052 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4053 		 bool ethernet);
4054 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4055 int skb_mpls_dec_ttl(struct sk_buff *skb);
4056 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4057 			     gfp_t gfp);
4058 
4059 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4060 {
4061 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4062 }
4063 
4064 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4065 {
4066 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4067 }
4068 
4069 struct skb_checksum_ops {
4070 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4071 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4072 };
4073 
4074 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4075 
4076 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4077 		      __wsum csum, const struct skb_checksum_ops *ops);
4078 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4079 		    __wsum csum);
4080 
4081 static inline void * __must_check
4082 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4083 		     const void *data, int hlen, void *buffer)
4084 {
4085 	if (likely(hlen - offset >= len))
4086 		return (void *)data + offset;
4087 
4088 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4089 		return NULL;
4090 
4091 	return buffer;
4092 }
4093 
4094 static inline void * __must_check
4095 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4096 {
4097 	return __skb_header_pointer(skb, offset, len, skb->data,
4098 				    skb_headlen(skb), buffer);
4099 }
4100 
4101 static inline void * __must_check
4102 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4103 {
4104 	if (likely(skb_headlen(skb) - offset >= len))
4105 		return skb->data + offset;
4106 	return NULL;
4107 }
4108 
4109 /**
4110  *	skb_needs_linearize - check if we need to linearize a given skb
4111  *			      depending on the given device features.
4112  *	@skb: socket buffer to check
4113  *	@features: net device features
4114  *
4115  *	Returns true if either:
4116  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4117  *	2. skb is fragmented and the device does not support SG.
4118  */
4119 static inline bool skb_needs_linearize(struct sk_buff *skb,
4120 				       netdev_features_t features)
4121 {
4122 	return skb_is_nonlinear(skb) &&
4123 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4124 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4125 }
4126 
4127 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4128 					     void *to,
4129 					     const unsigned int len)
4130 {
4131 	memcpy(to, skb->data, len);
4132 }
4133 
4134 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4135 						    const int offset, void *to,
4136 						    const unsigned int len)
4137 {
4138 	memcpy(to, skb->data + offset, len);
4139 }
4140 
4141 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4142 					   const void *from,
4143 					   const unsigned int len)
4144 {
4145 	memcpy(skb->data, from, len);
4146 }
4147 
4148 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4149 						  const int offset,
4150 						  const void *from,
4151 						  const unsigned int len)
4152 {
4153 	memcpy(skb->data + offset, from, len);
4154 }
4155 
4156 void skb_init(void);
4157 
4158 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4159 {
4160 	return skb->tstamp;
4161 }
4162 
4163 /**
4164  *	skb_get_timestamp - get timestamp from a skb
4165  *	@skb: skb to get stamp from
4166  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4167  *
4168  *	Timestamps are stored in the skb as offsets to a base timestamp.
4169  *	This function converts the offset back to a struct timeval and stores
4170  *	it in stamp.
4171  */
4172 static inline void skb_get_timestamp(const struct sk_buff *skb,
4173 				     struct __kernel_old_timeval *stamp)
4174 {
4175 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4176 }
4177 
4178 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4179 					 struct __kernel_sock_timeval *stamp)
4180 {
4181 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4182 
4183 	stamp->tv_sec = ts.tv_sec;
4184 	stamp->tv_usec = ts.tv_nsec / 1000;
4185 }
4186 
4187 static inline void skb_get_timestampns(const struct sk_buff *skb,
4188 				       struct __kernel_old_timespec *stamp)
4189 {
4190 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4191 
4192 	stamp->tv_sec = ts.tv_sec;
4193 	stamp->tv_nsec = ts.tv_nsec;
4194 }
4195 
4196 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4197 					   struct __kernel_timespec *stamp)
4198 {
4199 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4200 
4201 	stamp->tv_sec = ts.tv_sec;
4202 	stamp->tv_nsec = ts.tv_nsec;
4203 }
4204 
4205 static inline void __net_timestamp(struct sk_buff *skb)
4206 {
4207 	skb->tstamp = ktime_get_real();
4208 	skb->tstamp_type = SKB_CLOCK_REALTIME;
4209 }
4210 
4211 static inline ktime_t net_timedelta(ktime_t t)
4212 {
4213 	return ktime_sub(ktime_get_real(), t);
4214 }
4215 
4216 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4217 					 u8 tstamp_type)
4218 {
4219 	skb->tstamp = kt;
4220 
4221 	if (kt)
4222 		skb->tstamp_type = tstamp_type;
4223 	else
4224 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4225 }
4226 
4227 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4228 						    ktime_t kt, clockid_t clockid)
4229 {
4230 	u8 tstamp_type = SKB_CLOCK_REALTIME;
4231 
4232 	switch (clockid) {
4233 	case CLOCK_REALTIME:
4234 		break;
4235 	case CLOCK_MONOTONIC:
4236 		tstamp_type = SKB_CLOCK_MONOTONIC;
4237 		break;
4238 	case CLOCK_TAI:
4239 		tstamp_type = SKB_CLOCK_TAI;
4240 		break;
4241 	default:
4242 		WARN_ON_ONCE(1);
4243 		kt = 0;
4244 	}
4245 
4246 	skb_set_delivery_time(skb, kt, tstamp_type);
4247 }
4248 
4249 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4250 
4251 /* It is used in the ingress path to clear the delivery_time.
4252  * If needed, set the skb->tstamp to the (rcv) timestamp.
4253  */
4254 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4255 {
4256 	if (skb->tstamp_type) {
4257 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4258 		if (static_branch_unlikely(&netstamp_needed_key))
4259 			skb->tstamp = ktime_get_real();
4260 		else
4261 			skb->tstamp = 0;
4262 	}
4263 }
4264 
4265 static inline void skb_clear_tstamp(struct sk_buff *skb)
4266 {
4267 	if (skb->tstamp_type)
4268 		return;
4269 
4270 	skb->tstamp = 0;
4271 }
4272 
4273 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4274 {
4275 	if (skb->tstamp_type)
4276 		return 0;
4277 
4278 	return skb->tstamp;
4279 }
4280 
4281 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4282 {
4283 	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4284 		return skb->tstamp;
4285 
4286 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4287 		return ktime_get_real();
4288 
4289 	return 0;
4290 }
4291 
4292 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4293 {
4294 	return skb_shinfo(skb)->meta_len;
4295 }
4296 
4297 static inline void *skb_metadata_end(const struct sk_buff *skb)
4298 {
4299 	return skb_mac_header(skb);
4300 }
4301 
4302 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4303 					  const struct sk_buff *skb_b,
4304 					  u8 meta_len)
4305 {
4306 	const void *a = skb_metadata_end(skb_a);
4307 	const void *b = skb_metadata_end(skb_b);
4308 	u64 diffs = 0;
4309 
4310 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4311 	    BITS_PER_LONG != 64)
4312 		goto slow;
4313 
4314 	/* Using more efficient variant than plain call to memcmp(). */
4315 	switch (meta_len) {
4316 #define __it(x, op) (x -= sizeof(u##op))
4317 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4318 	case 32: diffs |= __it_diff(a, b, 64);
4319 		fallthrough;
4320 	case 24: diffs |= __it_diff(a, b, 64);
4321 		fallthrough;
4322 	case 16: diffs |= __it_diff(a, b, 64);
4323 		fallthrough;
4324 	case  8: diffs |= __it_diff(a, b, 64);
4325 		break;
4326 	case 28: diffs |= __it_diff(a, b, 64);
4327 		fallthrough;
4328 	case 20: diffs |= __it_diff(a, b, 64);
4329 		fallthrough;
4330 	case 12: diffs |= __it_diff(a, b, 64);
4331 		fallthrough;
4332 	case  4: diffs |= __it_diff(a, b, 32);
4333 		break;
4334 	default:
4335 slow:
4336 		return memcmp(a - meta_len, b - meta_len, meta_len);
4337 	}
4338 	return diffs;
4339 }
4340 
4341 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4342 					const struct sk_buff *skb_b)
4343 {
4344 	u8 len_a = skb_metadata_len(skb_a);
4345 	u8 len_b = skb_metadata_len(skb_b);
4346 
4347 	if (!(len_a | len_b))
4348 		return false;
4349 
4350 	return len_a != len_b ?
4351 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4352 }
4353 
4354 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4355 {
4356 	skb_shinfo(skb)->meta_len = meta_len;
4357 }
4358 
4359 static inline void skb_metadata_clear(struct sk_buff *skb)
4360 {
4361 	skb_metadata_set(skb, 0);
4362 }
4363 
4364 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4365 
4366 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4367 
4368 void skb_clone_tx_timestamp(struct sk_buff *skb);
4369 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4370 
4371 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4372 
4373 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4374 {
4375 }
4376 
4377 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4378 {
4379 	return false;
4380 }
4381 
4382 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4383 
4384 /**
4385  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4386  *
4387  * PHY drivers may accept clones of transmitted packets for
4388  * timestamping via their phy_driver.txtstamp method. These drivers
4389  * must call this function to return the skb back to the stack with a
4390  * timestamp.
4391  *
4392  * @skb: clone of the original outgoing packet
4393  * @hwtstamps: hardware time stamps
4394  *
4395  */
4396 void skb_complete_tx_timestamp(struct sk_buff *skb,
4397 			       struct skb_shared_hwtstamps *hwtstamps);
4398 
4399 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4400 		     struct skb_shared_hwtstamps *hwtstamps,
4401 		     struct sock *sk, int tstype);
4402 
4403 /**
4404  * skb_tstamp_tx - queue clone of skb with send time stamps
4405  * @orig_skb:	the original outgoing packet
4406  * @hwtstamps:	hardware time stamps, may be NULL if not available
4407  *
4408  * If the skb has a socket associated, then this function clones the
4409  * skb (thus sharing the actual data and optional structures), stores
4410  * the optional hardware time stamping information (if non NULL) or
4411  * generates a software time stamp (otherwise), then queues the clone
4412  * to the error queue of the socket.  Errors are silently ignored.
4413  */
4414 void skb_tstamp_tx(struct sk_buff *orig_skb,
4415 		   struct skb_shared_hwtstamps *hwtstamps);
4416 
4417 /**
4418  * skb_tx_timestamp() - Driver hook for transmit timestamping
4419  *
4420  * Ethernet MAC Drivers should call this function in their hard_xmit()
4421  * function immediately before giving the sk_buff to the MAC hardware.
4422  *
4423  * Specifically, one should make absolutely sure that this function is
4424  * called before TX completion of this packet can trigger.  Otherwise
4425  * the packet could potentially already be freed.
4426  *
4427  * @skb: A socket buffer.
4428  */
4429 static inline void skb_tx_timestamp(struct sk_buff *skb)
4430 {
4431 	skb_clone_tx_timestamp(skb);
4432 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4433 		skb_tstamp_tx(skb, NULL);
4434 }
4435 
4436 /**
4437  * skb_complete_wifi_ack - deliver skb with wifi status
4438  *
4439  * @skb: the original outgoing packet
4440  * @acked: ack status
4441  *
4442  */
4443 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4444 
4445 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4446 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4447 
4448 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4449 {
4450 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4451 		skb->csum_valid ||
4452 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4453 		 skb_checksum_start_offset(skb) >= 0));
4454 }
4455 
4456 /**
4457  *	skb_checksum_complete - Calculate checksum of an entire packet
4458  *	@skb: packet to process
4459  *
4460  *	This function calculates the checksum over the entire packet plus
4461  *	the value of skb->csum.  The latter can be used to supply the
4462  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4463  *	checksum.
4464  *
4465  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4466  *	this function can be used to verify that checksum on received
4467  *	packets.  In that case the function should return zero if the
4468  *	checksum is correct.  In particular, this function will return zero
4469  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4470  *	hardware has already verified the correctness of the checksum.
4471  */
4472 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4473 {
4474 	return skb_csum_unnecessary(skb) ?
4475 	       0 : __skb_checksum_complete(skb);
4476 }
4477 
4478 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4479 {
4480 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4481 		if (skb->csum_level == 0)
4482 			skb->ip_summed = CHECKSUM_NONE;
4483 		else
4484 			skb->csum_level--;
4485 	}
4486 }
4487 
4488 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4489 {
4490 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4491 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4492 			skb->csum_level++;
4493 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4494 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4495 		skb->csum_level = 0;
4496 	}
4497 }
4498 
4499 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4500 {
4501 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4502 		skb->ip_summed = CHECKSUM_NONE;
4503 		skb->csum_level = 0;
4504 	}
4505 }
4506 
4507 /* Check if we need to perform checksum complete validation.
4508  *
4509  * Returns true if checksum complete is needed, false otherwise
4510  * (either checksum is unnecessary or zero checksum is allowed).
4511  */
4512 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4513 						  bool zero_okay,
4514 						  __sum16 check)
4515 {
4516 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4517 		skb->csum_valid = 1;
4518 		__skb_decr_checksum_unnecessary(skb);
4519 		return false;
4520 	}
4521 
4522 	return true;
4523 }
4524 
4525 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4526  * in checksum_init.
4527  */
4528 #define CHECKSUM_BREAK 76
4529 
4530 /* Unset checksum-complete
4531  *
4532  * Unset checksum complete can be done when packet is being modified
4533  * (uncompressed for instance) and checksum-complete value is
4534  * invalidated.
4535  */
4536 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4537 {
4538 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4539 		skb->ip_summed = CHECKSUM_NONE;
4540 }
4541 
4542 /* Validate (init) checksum based on checksum complete.
4543  *
4544  * Return values:
4545  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4546  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4547  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4548  *   non-zero: value of invalid checksum
4549  *
4550  */
4551 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4552 						       bool complete,
4553 						       __wsum psum)
4554 {
4555 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4556 		if (!csum_fold(csum_add(psum, skb->csum))) {
4557 			skb->csum_valid = 1;
4558 			return 0;
4559 		}
4560 	}
4561 
4562 	skb->csum = psum;
4563 
4564 	if (complete || skb->len <= CHECKSUM_BREAK) {
4565 		__sum16 csum;
4566 
4567 		csum = __skb_checksum_complete(skb);
4568 		skb->csum_valid = !csum;
4569 		return csum;
4570 	}
4571 
4572 	return 0;
4573 }
4574 
4575 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4576 {
4577 	return 0;
4578 }
4579 
4580 /* Perform checksum validate (init). Note that this is a macro since we only
4581  * want to calculate the pseudo header which is an input function if necessary.
4582  * First we try to validate without any computation (checksum unnecessary) and
4583  * then calculate based on checksum complete calling the function to compute
4584  * pseudo header.
4585  *
4586  * Return values:
4587  *   0: checksum is validated or try to in skb_checksum_complete
4588  *   non-zero: value of invalid checksum
4589  */
4590 #define __skb_checksum_validate(skb, proto, complete,			\
4591 				zero_okay, check, compute_pseudo)	\
4592 ({									\
4593 	__sum16 __ret = 0;						\
4594 	skb->csum_valid = 0;						\
4595 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4596 		__ret = __skb_checksum_validate_complete(skb,		\
4597 				complete, compute_pseudo(skb, proto));	\
4598 	__ret;								\
4599 })
4600 
4601 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4602 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4603 
4604 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4605 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4606 
4607 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4608 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4609 
4610 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4611 					 compute_pseudo)		\
4612 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4613 
4614 #define skb_checksum_simple_validate(skb)				\
4615 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4616 
4617 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4618 {
4619 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4620 }
4621 
4622 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4623 {
4624 	skb->csum = ~pseudo;
4625 	skb->ip_summed = CHECKSUM_COMPLETE;
4626 }
4627 
4628 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4629 do {									\
4630 	if (__skb_checksum_convert_check(skb))				\
4631 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4632 } while (0)
4633 
4634 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4635 					      u16 start, u16 offset)
4636 {
4637 	skb->ip_summed = CHECKSUM_PARTIAL;
4638 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4639 	skb->csum_offset = offset - start;
4640 }
4641 
4642 /* Update skbuf and packet to reflect the remote checksum offload operation.
4643  * When called, ptr indicates the starting point for skb->csum when
4644  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4645  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4646  */
4647 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4648 				       int start, int offset, bool nopartial)
4649 {
4650 	__wsum delta;
4651 
4652 	if (!nopartial) {
4653 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4654 		return;
4655 	}
4656 
4657 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4658 		__skb_checksum_complete(skb);
4659 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4660 	}
4661 
4662 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4663 
4664 	/* Adjust skb->csum since we changed the packet */
4665 	skb->csum = csum_add(skb->csum, delta);
4666 }
4667 
4668 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4669 {
4670 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4671 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4672 #else
4673 	return NULL;
4674 #endif
4675 }
4676 
4677 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4678 {
4679 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4680 	return skb->_nfct;
4681 #else
4682 	return 0UL;
4683 #endif
4684 }
4685 
4686 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4687 {
4688 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4689 	skb->slow_gro |= !!nfct;
4690 	skb->_nfct = nfct;
4691 #endif
4692 }
4693 
4694 #ifdef CONFIG_SKB_EXTENSIONS
4695 enum skb_ext_id {
4696 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4697 	SKB_EXT_BRIDGE_NF,
4698 #endif
4699 #ifdef CONFIG_XFRM
4700 	SKB_EXT_SEC_PATH,
4701 #endif
4702 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4703 	TC_SKB_EXT,
4704 #endif
4705 #if IS_ENABLED(CONFIG_MPTCP)
4706 	SKB_EXT_MPTCP,
4707 #endif
4708 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4709 	SKB_EXT_MCTP,
4710 #endif
4711 	SKB_EXT_NUM, /* must be last */
4712 };
4713 
4714 /**
4715  *	struct skb_ext - sk_buff extensions
4716  *	@refcnt: 1 on allocation, deallocated on 0
4717  *	@offset: offset to add to @data to obtain extension address
4718  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4719  *	@data: start of extension data, variable sized
4720  *
4721  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4722  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4723  */
4724 struct skb_ext {
4725 	refcount_t refcnt;
4726 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4727 	u8 chunks;		/* same */
4728 	char data[] __aligned(8);
4729 };
4730 
4731 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4732 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4733 		    struct skb_ext *ext);
4734 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4735 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4736 void __skb_ext_put(struct skb_ext *ext);
4737 
4738 static inline void skb_ext_put(struct sk_buff *skb)
4739 {
4740 	if (skb->active_extensions)
4741 		__skb_ext_put(skb->extensions);
4742 }
4743 
4744 static inline void __skb_ext_copy(struct sk_buff *dst,
4745 				  const struct sk_buff *src)
4746 {
4747 	dst->active_extensions = src->active_extensions;
4748 
4749 	if (src->active_extensions) {
4750 		struct skb_ext *ext = src->extensions;
4751 
4752 		refcount_inc(&ext->refcnt);
4753 		dst->extensions = ext;
4754 	}
4755 }
4756 
4757 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4758 {
4759 	skb_ext_put(dst);
4760 	__skb_ext_copy(dst, src);
4761 }
4762 
4763 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4764 {
4765 	return !!ext->offset[i];
4766 }
4767 
4768 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4769 {
4770 	return skb->active_extensions & (1 << id);
4771 }
4772 
4773 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4774 {
4775 	if (skb_ext_exist(skb, id))
4776 		__skb_ext_del(skb, id);
4777 }
4778 
4779 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4780 {
4781 	if (skb_ext_exist(skb, id)) {
4782 		struct skb_ext *ext = skb->extensions;
4783 
4784 		return (void *)ext + (ext->offset[id] << 3);
4785 	}
4786 
4787 	return NULL;
4788 }
4789 
4790 static inline void skb_ext_reset(struct sk_buff *skb)
4791 {
4792 	if (unlikely(skb->active_extensions)) {
4793 		__skb_ext_put(skb->extensions);
4794 		skb->active_extensions = 0;
4795 	}
4796 }
4797 
4798 static inline bool skb_has_extensions(struct sk_buff *skb)
4799 {
4800 	return unlikely(skb->active_extensions);
4801 }
4802 #else
4803 static inline void skb_ext_put(struct sk_buff *skb) {}
4804 static inline void skb_ext_reset(struct sk_buff *skb) {}
4805 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4806 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4807 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4808 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4809 #endif /* CONFIG_SKB_EXTENSIONS */
4810 
4811 static inline void nf_reset_ct(struct sk_buff *skb)
4812 {
4813 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4814 	nf_conntrack_put(skb_nfct(skb));
4815 	skb->_nfct = 0;
4816 #endif
4817 }
4818 
4819 static inline void nf_reset_trace(struct sk_buff *skb)
4820 {
4821 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4822 	skb->nf_trace = 0;
4823 #endif
4824 }
4825 
4826 static inline void ipvs_reset(struct sk_buff *skb)
4827 {
4828 #if IS_ENABLED(CONFIG_IP_VS)
4829 	skb->ipvs_property = 0;
4830 #endif
4831 }
4832 
4833 /* Note: This doesn't put any conntrack info in dst. */
4834 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4835 			     bool copy)
4836 {
4837 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4838 	dst->_nfct = src->_nfct;
4839 	nf_conntrack_get(skb_nfct(src));
4840 #endif
4841 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4842 	if (copy)
4843 		dst->nf_trace = src->nf_trace;
4844 #endif
4845 }
4846 
4847 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4848 {
4849 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4850 	nf_conntrack_put(skb_nfct(dst));
4851 #endif
4852 	dst->slow_gro = src->slow_gro;
4853 	__nf_copy(dst, src, true);
4854 }
4855 
4856 #ifdef CONFIG_NETWORK_SECMARK
4857 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4858 {
4859 	to->secmark = from->secmark;
4860 }
4861 
4862 static inline void skb_init_secmark(struct sk_buff *skb)
4863 {
4864 	skb->secmark = 0;
4865 }
4866 #else
4867 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4868 { }
4869 
4870 static inline void skb_init_secmark(struct sk_buff *skb)
4871 { }
4872 #endif
4873 
4874 static inline int secpath_exists(const struct sk_buff *skb)
4875 {
4876 #ifdef CONFIG_XFRM
4877 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4878 #else
4879 	return 0;
4880 #endif
4881 }
4882 
4883 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4884 {
4885 	return !skb->destructor &&
4886 		!secpath_exists(skb) &&
4887 		!skb_nfct(skb) &&
4888 		!skb->_skb_refdst &&
4889 		!skb_has_frag_list(skb);
4890 }
4891 
4892 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4893 {
4894 	skb->queue_mapping = queue_mapping;
4895 }
4896 
4897 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4898 {
4899 	return skb->queue_mapping;
4900 }
4901 
4902 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4903 {
4904 	to->queue_mapping = from->queue_mapping;
4905 }
4906 
4907 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4908 {
4909 	skb->queue_mapping = rx_queue + 1;
4910 }
4911 
4912 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4913 {
4914 	return skb->queue_mapping - 1;
4915 }
4916 
4917 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4918 {
4919 	return skb->queue_mapping != 0;
4920 }
4921 
4922 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4923 {
4924 	skb->dst_pending_confirm = val;
4925 }
4926 
4927 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4928 {
4929 	return skb->dst_pending_confirm != 0;
4930 }
4931 
4932 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4933 {
4934 #ifdef CONFIG_XFRM
4935 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4936 #else
4937 	return NULL;
4938 #endif
4939 }
4940 
4941 static inline bool skb_is_gso(const struct sk_buff *skb)
4942 {
4943 	return skb_shinfo(skb)->gso_size;
4944 }
4945 
4946 /* Note: Should be called only if skb_is_gso(skb) is true */
4947 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4948 {
4949 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4950 }
4951 
4952 /* Note: Should be called only if skb_is_gso(skb) is true */
4953 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4954 {
4955 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4956 }
4957 
4958 /* Note: Should be called only if skb_is_gso(skb) is true */
4959 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4960 {
4961 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4962 }
4963 
4964 static inline void skb_gso_reset(struct sk_buff *skb)
4965 {
4966 	skb_shinfo(skb)->gso_size = 0;
4967 	skb_shinfo(skb)->gso_segs = 0;
4968 	skb_shinfo(skb)->gso_type = 0;
4969 }
4970 
4971 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4972 					 u16 increment)
4973 {
4974 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4975 		return;
4976 	shinfo->gso_size += increment;
4977 }
4978 
4979 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4980 					 u16 decrement)
4981 {
4982 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4983 		return;
4984 	shinfo->gso_size -= decrement;
4985 }
4986 
4987 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4988 
4989 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4990 {
4991 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4992 	 * wanted then gso_type will be set. */
4993 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4994 
4995 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4996 	    unlikely(shinfo->gso_type == 0)) {
4997 		__skb_warn_lro_forwarding(skb);
4998 		return true;
4999 	}
5000 	return false;
5001 }
5002 
5003 static inline void skb_forward_csum(struct sk_buff *skb)
5004 {
5005 	/* Unfortunately we don't support this one.  Any brave souls? */
5006 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5007 		skb->ip_summed = CHECKSUM_NONE;
5008 }
5009 
5010 /**
5011  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5012  * @skb: skb to check
5013  *
5014  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5015  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5016  * use this helper, to document places where we make this assertion.
5017  */
5018 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5019 {
5020 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5021 }
5022 
5023 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5024 
5025 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5026 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5027 				     unsigned int transport_len,
5028 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5029 
5030 /**
5031  * skb_head_is_locked - Determine if the skb->head is locked down
5032  * @skb: skb to check
5033  *
5034  * The head on skbs build around a head frag can be removed if they are
5035  * not cloned.  This function returns true if the skb head is locked down
5036  * due to either being allocated via kmalloc, or by being a clone with
5037  * multiple references to the head.
5038  */
5039 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5040 {
5041 	return !skb->head_frag || skb_cloned(skb);
5042 }
5043 
5044 /* Local Checksum Offload.
5045  * Compute outer checksum based on the assumption that the
5046  * inner checksum will be offloaded later.
5047  * See Documentation/networking/checksum-offloads.rst for
5048  * explanation of how this works.
5049  * Fill in outer checksum adjustment (e.g. with sum of outer
5050  * pseudo-header) before calling.
5051  * Also ensure that inner checksum is in linear data area.
5052  */
5053 static inline __wsum lco_csum(struct sk_buff *skb)
5054 {
5055 	unsigned char *csum_start = skb_checksum_start(skb);
5056 	unsigned char *l4_hdr = skb_transport_header(skb);
5057 	__wsum partial;
5058 
5059 	/* Start with complement of inner checksum adjustment */
5060 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5061 						    skb->csum_offset));
5062 
5063 	/* Add in checksum of our headers (incl. outer checksum
5064 	 * adjustment filled in by caller) and return result.
5065 	 */
5066 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5067 }
5068 
5069 static inline bool skb_is_redirected(const struct sk_buff *skb)
5070 {
5071 	return skb->redirected;
5072 }
5073 
5074 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5075 {
5076 	skb->redirected = 1;
5077 #ifdef CONFIG_NET_REDIRECT
5078 	skb->from_ingress = from_ingress;
5079 	if (skb->from_ingress)
5080 		skb_clear_tstamp(skb);
5081 #endif
5082 }
5083 
5084 static inline void skb_reset_redirect(struct sk_buff *skb)
5085 {
5086 	skb->redirected = 0;
5087 }
5088 
5089 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5090 					      bool from_ingress)
5091 {
5092 	skb->redirected = 1;
5093 #ifdef CONFIG_NET_REDIRECT
5094 	skb->from_ingress = from_ingress;
5095 #endif
5096 }
5097 
5098 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5099 {
5100 #if IS_ENABLED(CONFIG_IP_SCTP)
5101 	return skb->csum_not_inet;
5102 #else
5103 	return 0;
5104 #endif
5105 }
5106 
5107 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5108 {
5109 	skb->ip_summed = CHECKSUM_NONE;
5110 #if IS_ENABLED(CONFIG_IP_SCTP)
5111 	skb->csum_not_inet = 0;
5112 #endif
5113 }
5114 
5115 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5116 				       const u64 kcov_handle)
5117 {
5118 #ifdef CONFIG_KCOV
5119 	skb->kcov_handle = kcov_handle;
5120 #endif
5121 }
5122 
5123 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5124 {
5125 #ifdef CONFIG_KCOV
5126 	return skb->kcov_handle;
5127 #else
5128 	return 0;
5129 #endif
5130 }
5131 
5132 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5133 {
5134 #ifdef CONFIG_PAGE_POOL
5135 	skb->pp_recycle = 1;
5136 #endif
5137 }
5138 
5139 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5140 			     ssize_t maxsize, gfp_t gfp);
5141 
5142 #endif	/* __KERNEL__ */
5143 #endif	/* _LINUX_SKBUFF_H */
5144