1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <[email protected]> 6 * Florian La Roche, <[email protected]> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/compiler.h> 19 #include <linux/time.h> 20 #include <linux/bug.h> 21 #include <linux/cache.h> 22 #include <linux/rbtree.h> 23 #include <linux/socket.h> 24 #include <linux/refcount.h> 25 26 #include <linux/atomic.h> 27 #include <asm/types.h> 28 #include <linux/spinlock.h> 29 #include <linux/net.h> 30 #include <linux/textsearch.h> 31 #include <net/checksum.h> 32 #include <linux/rcupdate.h> 33 #include <linux/hrtimer.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/netdev_features.h> 36 #include <linux/sched.h> 37 #include <linux/sched/clock.h> 38 #include <net/flow_dissector.h> 39 #include <linux/splice.h> 40 #include <linux/in6.h> 41 #include <linux/if_packet.h> 42 #include <net/flow.h> 43 44 /* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver, 51 * a driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is used only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is in set skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum of because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, however they should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum-- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, if should treat as CHECKSUM_NONE being set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note the there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 215 * are set to refer to the outermost checksum being offload (two offloaded 216 * checksums are possible with UDP encapsulation). 217 */ 218 219 /* Don't change this without changing skb_csum_unnecessary! */ 220 #define CHECKSUM_NONE 0 221 #define CHECKSUM_UNNECESSARY 1 222 #define CHECKSUM_COMPLETE 2 223 #define CHECKSUM_PARTIAL 3 224 225 /* Maximum value in skb->csum_level */ 226 #define SKB_MAX_CSUM_LEVEL 3 227 228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229 #define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231 #define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236 /* return minimum truesize of one skb containing X bytes of data */ 237 #define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241 struct net_device; 242 struct scatterlist; 243 struct pipe_inode_info; 244 struct iov_iter; 245 struct napi_struct; 246 struct bpf_prog; 247 union bpf_attr; 248 struct skb_ext; 249 250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 251 struct nf_conntrack { 252 atomic_t use; 253 }; 254 #endif 255 256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 257 struct nf_bridge_info { 258 enum { 259 BRNF_PROTO_UNCHANGED, 260 BRNF_PROTO_8021Q, 261 BRNF_PROTO_PPPOE 262 } orig_proto:8; 263 u8 pkt_otherhost:1; 264 u8 in_prerouting:1; 265 u8 bridged_dnat:1; 266 __u16 frag_max_size; 267 struct net_device *physindev; 268 269 /* always valid & non-NULL from FORWARD on, for physdev match */ 270 struct net_device *physoutdev; 271 union { 272 /* prerouting: detect dnat in orig/reply direction */ 273 __be32 ipv4_daddr; 274 struct in6_addr ipv6_daddr; 275 276 /* after prerouting + nat detected: store original source 277 * mac since neigh resolution overwrites it, only used while 278 * skb is out in neigh layer. 279 */ 280 char neigh_header[8]; 281 }; 282 }; 283 #endif 284 285 struct sk_buff_head { 286 /* These two members must be first. */ 287 struct sk_buff *next; 288 struct sk_buff *prev; 289 290 __u32 qlen; 291 spinlock_t lock; 292 }; 293 294 struct sk_buff; 295 296 /* To allow 64K frame to be packed as single skb without frag_list we 297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 298 * buffers which do not start on a page boundary. 299 * 300 * Since GRO uses frags we allocate at least 16 regardless of page 301 * size. 302 */ 303 #if (65536/PAGE_SIZE + 1) < 16 304 #define MAX_SKB_FRAGS 16UL 305 #else 306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 307 #endif 308 extern int sysctl_max_skb_frags; 309 310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 311 * segment using its current segmentation instead. 312 */ 313 #define GSO_BY_FRAGS 0xFFFF 314 315 typedef struct skb_frag_struct skb_frag_t; 316 317 struct skb_frag_struct { 318 struct { 319 struct page *p; 320 } page; 321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 322 __u32 page_offset; 323 __u32 size; 324 #else 325 __u16 page_offset; 326 __u16 size; 327 #endif 328 }; 329 330 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 331 { 332 return frag->size; 333 } 334 335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 336 { 337 frag->size = size; 338 } 339 340 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 341 { 342 frag->size += delta; 343 } 344 345 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 346 { 347 frag->size -= delta; 348 } 349 350 static inline bool skb_frag_must_loop(struct page *p) 351 { 352 #if defined(CONFIG_HIGHMEM) 353 if (PageHighMem(p)) 354 return true; 355 #endif 356 return false; 357 } 358 359 /** 360 * skb_frag_foreach_page - loop over pages in a fragment 361 * 362 * @f: skb frag to operate on 363 * @f_off: offset from start of f->page.p 364 * @f_len: length from f_off to loop over 365 * @p: (temp var) current page 366 * @p_off: (temp var) offset from start of current page, 367 * non-zero only on first page. 368 * @p_len: (temp var) length in current page, 369 * < PAGE_SIZE only on first and last page. 370 * @copied: (temp var) length so far, excluding current p_len. 371 * 372 * A fragment can hold a compound page, in which case per-page 373 * operations, notably kmap_atomic, must be called for each 374 * regular page. 375 */ 376 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 377 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 378 p_off = (f_off) & (PAGE_SIZE - 1), \ 379 p_len = skb_frag_must_loop(p) ? \ 380 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 381 copied = 0; \ 382 copied < f_len; \ 383 copied += p_len, p++, p_off = 0, \ 384 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 385 386 #define HAVE_HW_TIME_STAMP 387 388 /** 389 * struct skb_shared_hwtstamps - hardware time stamps 390 * @hwtstamp: hardware time stamp transformed into duration 391 * since arbitrary point in time 392 * 393 * Software time stamps generated by ktime_get_real() are stored in 394 * skb->tstamp. 395 * 396 * hwtstamps can only be compared against other hwtstamps from 397 * the same device. 398 * 399 * This structure is attached to packets as part of the 400 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 401 */ 402 struct skb_shared_hwtstamps { 403 ktime_t hwtstamp; 404 }; 405 406 /* Definitions for tx_flags in struct skb_shared_info */ 407 enum { 408 /* generate hardware time stamp */ 409 SKBTX_HW_TSTAMP = 1 << 0, 410 411 /* generate software time stamp when queueing packet to NIC */ 412 SKBTX_SW_TSTAMP = 1 << 1, 413 414 /* device driver is going to provide hardware time stamp */ 415 SKBTX_IN_PROGRESS = 1 << 2, 416 417 /* device driver supports TX zero-copy buffers */ 418 SKBTX_DEV_ZEROCOPY = 1 << 3, 419 420 /* generate wifi status information (where possible) */ 421 SKBTX_WIFI_STATUS = 1 << 4, 422 423 /* This indicates at least one fragment might be overwritten 424 * (as in vmsplice(), sendfile() ...) 425 * If we need to compute a TX checksum, we'll need to copy 426 * all frags to avoid possible bad checksum 427 */ 428 SKBTX_SHARED_FRAG = 1 << 5, 429 430 /* generate software time stamp when entering packet scheduling */ 431 SKBTX_SCHED_TSTAMP = 1 << 6, 432 }; 433 434 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 435 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 436 SKBTX_SCHED_TSTAMP) 437 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 438 439 /* 440 * The callback notifies userspace to release buffers when skb DMA is done in 441 * lower device, the skb last reference should be 0 when calling this. 442 * The zerocopy_success argument is true if zero copy transmit occurred, 443 * false on data copy or out of memory error caused by data copy attempt. 444 * The ctx field is used to track device context. 445 * The desc field is used to track userspace buffer index. 446 */ 447 struct ubuf_info { 448 void (*callback)(struct ubuf_info *, bool zerocopy_success); 449 union { 450 struct { 451 unsigned long desc; 452 void *ctx; 453 }; 454 struct { 455 u32 id; 456 u16 len; 457 u16 zerocopy:1; 458 u32 bytelen; 459 }; 460 }; 461 refcount_t refcnt; 462 463 struct mmpin { 464 struct user_struct *user; 465 unsigned int num_pg; 466 } mmp; 467 }; 468 469 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 470 471 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 472 void mm_unaccount_pinned_pages(struct mmpin *mmp); 473 474 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 475 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 476 struct ubuf_info *uarg); 477 478 static inline void sock_zerocopy_get(struct ubuf_info *uarg) 479 { 480 refcount_inc(&uarg->refcnt); 481 } 482 483 void sock_zerocopy_put(struct ubuf_info *uarg); 484 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 485 486 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 487 488 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 489 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 490 struct msghdr *msg, int len, 491 struct ubuf_info *uarg); 492 493 /* This data is invariant across clones and lives at 494 * the end of the header data, ie. at skb->end. 495 */ 496 struct skb_shared_info { 497 __u8 __unused; 498 __u8 meta_len; 499 __u8 nr_frags; 500 __u8 tx_flags; 501 unsigned short gso_size; 502 /* Warning: this field is not always filled in (UFO)! */ 503 unsigned short gso_segs; 504 struct sk_buff *frag_list; 505 struct skb_shared_hwtstamps hwtstamps; 506 unsigned int gso_type; 507 u32 tskey; 508 509 /* 510 * Warning : all fields before dataref are cleared in __alloc_skb() 511 */ 512 atomic_t dataref; 513 514 /* Intermediate layers must ensure that destructor_arg 515 * remains valid until skb destructor */ 516 void * destructor_arg; 517 518 /* must be last field, see pskb_expand_head() */ 519 skb_frag_t frags[MAX_SKB_FRAGS]; 520 }; 521 522 /* We divide dataref into two halves. The higher 16 bits hold references 523 * to the payload part of skb->data. The lower 16 bits hold references to 524 * the entire skb->data. A clone of a headerless skb holds the length of 525 * the header in skb->hdr_len. 526 * 527 * All users must obey the rule that the skb->data reference count must be 528 * greater than or equal to the payload reference count. 529 * 530 * Holding a reference to the payload part means that the user does not 531 * care about modifications to the header part of skb->data. 532 */ 533 #define SKB_DATAREF_SHIFT 16 534 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 535 536 537 enum { 538 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 539 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 540 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 541 }; 542 543 enum { 544 SKB_GSO_TCPV4 = 1 << 0, 545 546 /* This indicates the skb is from an untrusted source. */ 547 SKB_GSO_DODGY = 1 << 1, 548 549 /* This indicates the tcp segment has CWR set. */ 550 SKB_GSO_TCP_ECN = 1 << 2, 551 552 SKB_GSO_TCP_FIXEDID = 1 << 3, 553 554 SKB_GSO_TCPV6 = 1 << 4, 555 556 SKB_GSO_FCOE = 1 << 5, 557 558 SKB_GSO_GRE = 1 << 6, 559 560 SKB_GSO_GRE_CSUM = 1 << 7, 561 562 SKB_GSO_IPXIP4 = 1 << 8, 563 564 SKB_GSO_IPXIP6 = 1 << 9, 565 566 SKB_GSO_UDP_TUNNEL = 1 << 10, 567 568 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 569 570 SKB_GSO_PARTIAL = 1 << 12, 571 572 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 573 574 SKB_GSO_SCTP = 1 << 14, 575 576 SKB_GSO_ESP = 1 << 15, 577 578 SKB_GSO_UDP = 1 << 16, 579 580 SKB_GSO_UDP_L4 = 1 << 17, 581 }; 582 583 #if BITS_PER_LONG > 32 584 #define NET_SKBUFF_DATA_USES_OFFSET 1 585 #endif 586 587 #ifdef NET_SKBUFF_DATA_USES_OFFSET 588 typedef unsigned int sk_buff_data_t; 589 #else 590 typedef unsigned char *sk_buff_data_t; 591 #endif 592 593 /** 594 * struct sk_buff - socket buffer 595 * @next: Next buffer in list 596 * @prev: Previous buffer in list 597 * @tstamp: Time we arrived/left 598 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 599 * @sk: Socket we are owned by 600 * @dev: Device we arrived on/are leaving by 601 * @cb: Control buffer. Free for use by every layer. Put private vars here 602 * @_skb_refdst: destination entry (with norefcount bit) 603 * @sp: the security path, used for xfrm 604 * @len: Length of actual data 605 * @data_len: Data length 606 * @mac_len: Length of link layer header 607 * @hdr_len: writable header length of cloned skb 608 * @csum: Checksum (must include start/offset pair) 609 * @csum_start: Offset from skb->head where checksumming should start 610 * @csum_offset: Offset from csum_start where checksum should be stored 611 * @priority: Packet queueing priority 612 * @ignore_df: allow local fragmentation 613 * @cloned: Head may be cloned (check refcnt to be sure) 614 * @ip_summed: Driver fed us an IP checksum 615 * @nohdr: Payload reference only, must not modify header 616 * @pkt_type: Packet class 617 * @fclone: skbuff clone status 618 * @ipvs_property: skbuff is owned by ipvs 619 * @offload_fwd_mark: Packet was L2-forwarded in hardware 620 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 621 * @tc_skip_classify: do not classify packet. set by IFB device 622 * @tc_at_ingress: used within tc_classify to distinguish in/egress 623 * @tc_redirected: packet was redirected by a tc action 624 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 625 * @peeked: this packet has been seen already, so stats have been 626 * done for it, don't do them again 627 * @nf_trace: netfilter packet trace flag 628 * @protocol: Packet protocol from driver 629 * @destructor: Destruct function 630 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 631 * @_nfct: Associated connection, if any (with nfctinfo bits) 632 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 633 * @skb_iif: ifindex of device we arrived on 634 * @tc_index: Traffic control index 635 * @hash: the packet hash 636 * @queue_mapping: Queue mapping for multiqueue devices 637 * @xmit_more: More SKBs are pending for this queue 638 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 639 * @active_extensions: active extensions (skb_ext_id types) 640 * @ndisc_nodetype: router type (from link layer) 641 * @ooo_okay: allow the mapping of a socket to a queue to be changed 642 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 643 * ports. 644 * @sw_hash: indicates hash was computed in software stack 645 * @wifi_acked_valid: wifi_acked was set 646 * @wifi_acked: whether frame was acked on wifi or not 647 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 648 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 649 * @dst_pending_confirm: need to confirm neighbour 650 * @decrypted: Decrypted SKB 651 * @napi_id: id of the NAPI struct this skb came from 652 * @secmark: security marking 653 * @mark: Generic packet mark 654 * @vlan_proto: vlan encapsulation protocol 655 * @vlan_tci: vlan tag control information 656 * @inner_protocol: Protocol (encapsulation) 657 * @inner_transport_header: Inner transport layer header (encapsulation) 658 * @inner_network_header: Network layer header (encapsulation) 659 * @inner_mac_header: Link layer header (encapsulation) 660 * @transport_header: Transport layer header 661 * @network_header: Network layer header 662 * @mac_header: Link layer header 663 * @tail: Tail pointer 664 * @end: End pointer 665 * @head: Head of buffer 666 * @data: Data head pointer 667 * @truesize: Buffer size 668 * @users: User count - see {datagram,tcp}.c 669 * @extensions: allocated extensions, valid if active_extensions is nonzero 670 */ 671 672 struct sk_buff { 673 union { 674 struct { 675 /* These two members must be first. */ 676 struct sk_buff *next; 677 struct sk_buff *prev; 678 679 union { 680 struct net_device *dev; 681 /* Some protocols might use this space to store information, 682 * while device pointer would be NULL. 683 * UDP receive path is one user. 684 */ 685 unsigned long dev_scratch; 686 }; 687 }; 688 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 689 struct list_head list; 690 }; 691 692 union { 693 struct sock *sk; 694 int ip_defrag_offset; 695 }; 696 697 union { 698 ktime_t tstamp; 699 u64 skb_mstamp_ns; /* earliest departure time */ 700 }; 701 /* 702 * This is the control buffer. It is free to use for every 703 * layer. Please put your private variables there. If you 704 * want to keep them across layers you have to do a skb_clone() 705 * first. This is owned by whoever has the skb queued ATM. 706 */ 707 char cb[48] __aligned(8); 708 709 union { 710 struct { 711 unsigned long _skb_refdst; 712 void (*destructor)(struct sk_buff *skb); 713 }; 714 struct list_head tcp_tsorted_anchor; 715 }; 716 717 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 718 unsigned long _nfct; 719 #endif 720 unsigned int len, 721 data_len; 722 __u16 mac_len, 723 hdr_len; 724 725 /* Following fields are _not_ copied in __copy_skb_header() 726 * Note that queue_mapping is here mostly to fill a hole. 727 */ 728 __u16 queue_mapping; 729 730 /* if you move cloned around you also must adapt those constants */ 731 #ifdef __BIG_ENDIAN_BITFIELD 732 #define CLONED_MASK (1 << 7) 733 #else 734 #define CLONED_MASK 1 735 #endif 736 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 737 738 __u8 __cloned_offset[0]; 739 __u8 cloned:1, 740 nohdr:1, 741 fclone:2, 742 peeked:1, 743 head_frag:1, 744 xmit_more:1, 745 pfmemalloc:1; 746 #ifdef CONFIG_SKB_EXTENSIONS 747 __u8 active_extensions; 748 #endif 749 /* fields enclosed in headers_start/headers_end are copied 750 * using a single memcpy() in __copy_skb_header() 751 */ 752 /* private: */ 753 __u32 headers_start[0]; 754 /* public: */ 755 756 /* if you move pkt_type around you also must adapt those constants */ 757 #ifdef __BIG_ENDIAN_BITFIELD 758 #define PKT_TYPE_MAX (7 << 5) 759 #else 760 #define PKT_TYPE_MAX 7 761 #endif 762 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 763 764 __u8 __pkt_type_offset[0]; 765 __u8 pkt_type:3; 766 __u8 ignore_df:1; 767 __u8 nf_trace:1; 768 __u8 ip_summed:2; 769 __u8 ooo_okay:1; 770 771 __u8 l4_hash:1; 772 __u8 sw_hash:1; 773 __u8 wifi_acked_valid:1; 774 __u8 wifi_acked:1; 775 __u8 no_fcs:1; 776 /* Indicates the inner headers are valid in the skbuff. */ 777 __u8 encapsulation:1; 778 __u8 encap_hdr_csum:1; 779 __u8 csum_valid:1; 780 781 #ifdef __BIG_ENDIAN_BITFIELD 782 #define PKT_VLAN_PRESENT_BIT 7 783 #else 784 #define PKT_VLAN_PRESENT_BIT 0 785 #endif 786 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 787 __u8 __pkt_vlan_present_offset[0]; 788 __u8 vlan_present:1; 789 __u8 csum_complete_sw:1; 790 __u8 csum_level:2; 791 __u8 csum_not_inet:1; 792 __u8 dst_pending_confirm:1; 793 #ifdef CONFIG_IPV6_NDISC_NODETYPE 794 __u8 ndisc_nodetype:2; 795 #endif 796 797 __u8 ipvs_property:1; 798 __u8 inner_protocol_type:1; 799 __u8 remcsum_offload:1; 800 #ifdef CONFIG_NET_SWITCHDEV 801 __u8 offload_fwd_mark:1; 802 __u8 offload_l3_fwd_mark:1; 803 #endif 804 #ifdef CONFIG_NET_CLS_ACT 805 __u8 tc_skip_classify:1; 806 __u8 tc_at_ingress:1; 807 __u8 tc_redirected:1; 808 __u8 tc_from_ingress:1; 809 #endif 810 #ifdef CONFIG_TLS_DEVICE 811 __u8 decrypted:1; 812 #endif 813 814 #ifdef CONFIG_NET_SCHED 815 __u16 tc_index; /* traffic control index */ 816 #endif 817 818 union { 819 __wsum csum; 820 struct { 821 __u16 csum_start; 822 __u16 csum_offset; 823 }; 824 }; 825 __u32 priority; 826 int skb_iif; 827 __u32 hash; 828 __be16 vlan_proto; 829 __u16 vlan_tci; 830 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 831 union { 832 unsigned int napi_id; 833 unsigned int sender_cpu; 834 }; 835 #endif 836 #ifdef CONFIG_NETWORK_SECMARK 837 __u32 secmark; 838 #endif 839 840 union { 841 __u32 mark; 842 __u32 reserved_tailroom; 843 }; 844 845 union { 846 __be16 inner_protocol; 847 __u8 inner_ipproto; 848 }; 849 850 __u16 inner_transport_header; 851 __u16 inner_network_header; 852 __u16 inner_mac_header; 853 854 __be16 protocol; 855 __u16 transport_header; 856 __u16 network_header; 857 __u16 mac_header; 858 859 /* private: */ 860 __u32 headers_end[0]; 861 /* public: */ 862 863 /* These elements must be at the end, see alloc_skb() for details. */ 864 sk_buff_data_t tail; 865 sk_buff_data_t end; 866 unsigned char *head, 867 *data; 868 unsigned int truesize; 869 refcount_t users; 870 871 #ifdef CONFIG_SKB_EXTENSIONS 872 /* only useable after checking ->active_extensions != 0 */ 873 struct skb_ext *extensions; 874 #endif 875 }; 876 877 #ifdef __KERNEL__ 878 /* 879 * Handling routines are only of interest to the kernel 880 */ 881 882 #define SKB_ALLOC_FCLONE 0x01 883 #define SKB_ALLOC_RX 0x02 884 #define SKB_ALLOC_NAPI 0x04 885 886 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 887 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 888 { 889 return unlikely(skb->pfmemalloc); 890 } 891 892 /* 893 * skb might have a dst pointer attached, refcounted or not. 894 * _skb_refdst low order bit is set if refcount was _not_ taken 895 */ 896 #define SKB_DST_NOREF 1UL 897 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 898 899 #define SKB_NFCT_PTRMASK ~(7UL) 900 /** 901 * skb_dst - returns skb dst_entry 902 * @skb: buffer 903 * 904 * Returns skb dst_entry, regardless of reference taken or not. 905 */ 906 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 907 { 908 /* If refdst was not refcounted, check we still are in a 909 * rcu_read_lock section 910 */ 911 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 912 !rcu_read_lock_held() && 913 !rcu_read_lock_bh_held()); 914 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 915 } 916 917 /** 918 * skb_dst_set - sets skb dst 919 * @skb: buffer 920 * @dst: dst entry 921 * 922 * Sets skb dst, assuming a reference was taken on dst and should 923 * be released by skb_dst_drop() 924 */ 925 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 926 { 927 skb->_skb_refdst = (unsigned long)dst; 928 } 929 930 /** 931 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 932 * @skb: buffer 933 * @dst: dst entry 934 * 935 * Sets skb dst, assuming a reference was not taken on dst. 936 * If dst entry is cached, we do not take reference and dst_release 937 * will be avoided by refdst_drop. If dst entry is not cached, we take 938 * reference, so that last dst_release can destroy the dst immediately. 939 */ 940 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 941 { 942 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 943 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 944 } 945 946 /** 947 * skb_dst_is_noref - Test if skb dst isn't refcounted 948 * @skb: buffer 949 */ 950 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 951 { 952 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 953 } 954 955 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 956 { 957 return (struct rtable *)skb_dst(skb); 958 } 959 960 /* For mangling skb->pkt_type from user space side from applications 961 * such as nft, tc, etc, we only allow a conservative subset of 962 * possible pkt_types to be set. 963 */ 964 static inline bool skb_pkt_type_ok(u32 ptype) 965 { 966 return ptype <= PACKET_OTHERHOST; 967 } 968 969 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 970 { 971 #ifdef CONFIG_NET_RX_BUSY_POLL 972 return skb->napi_id; 973 #else 974 return 0; 975 #endif 976 } 977 978 /* decrement the reference count and return true if we can free the skb */ 979 static inline bool skb_unref(struct sk_buff *skb) 980 { 981 if (unlikely(!skb)) 982 return false; 983 if (likely(refcount_read(&skb->users) == 1)) 984 smp_rmb(); 985 else if (likely(!refcount_dec_and_test(&skb->users))) 986 return false; 987 988 return true; 989 } 990 991 void skb_release_head_state(struct sk_buff *skb); 992 void kfree_skb(struct sk_buff *skb); 993 void kfree_skb_list(struct sk_buff *segs); 994 void skb_tx_error(struct sk_buff *skb); 995 void consume_skb(struct sk_buff *skb); 996 void __consume_stateless_skb(struct sk_buff *skb); 997 void __kfree_skb(struct sk_buff *skb); 998 extern struct kmem_cache *skbuff_head_cache; 999 1000 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1001 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1002 bool *fragstolen, int *delta_truesize); 1003 1004 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1005 int node); 1006 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1007 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1008 static inline struct sk_buff *alloc_skb(unsigned int size, 1009 gfp_t priority) 1010 { 1011 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1012 } 1013 1014 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1015 unsigned long data_len, 1016 int max_page_order, 1017 int *errcode, 1018 gfp_t gfp_mask); 1019 1020 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1021 struct sk_buff_fclones { 1022 struct sk_buff skb1; 1023 1024 struct sk_buff skb2; 1025 1026 refcount_t fclone_ref; 1027 }; 1028 1029 /** 1030 * skb_fclone_busy - check if fclone is busy 1031 * @sk: socket 1032 * @skb: buffer 1033 * 1034 * Returns true if skb is a fast clone, and its clone is not freed. 1035 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1036 * so we also check that this didnt happen. 1037 */ 1038 static inline bool skb_fclone_busy(const struct sock *sk, 1039 const struct sk_buff *skb) 1040 { 1041 const struct sk_buff_fclones *fclones; 1042 1043 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1044 1045 return skb->fclone == SKB_FCLONE_ORIG && 1046 refcount_read(&fclones->fclone_ref) > 1 && 1047 fclones->skb2.sk == sk; 1048 } 1049 1050 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1051 gfp_t priority) 1052 { 1053 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1054 } 1055 1056 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1057 void skb_headers_offset_update(struct sk_buff *skb, int off); 1058 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1059 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1060 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1061 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1062 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1063 gfp_t gfp_mask, bool fclone); 1064 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1065 gfp_t gfp_mask) 1066 { 1067 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1068 } 1069 1070 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1071 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1072 unsigned int headroom); 1073 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1074 int newtailroom, gfp_t priority); 1075 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1076 int offset, int len); 1077 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1078 int offset, int len); 1079 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1080 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1081 1082 /** 1083 * skb_pad - zero pad the tail of an skb 1084 * @skb: buffer to pad 1085 * @pad: space to pad 1086 * 1087 * Ensure that a buffer is followed by a padding area that is zero 1088 * filled. Used by network drivers which may DMA or transfer data 1089 * beyond the buffer end onto the wire. 1090 * 1091 * May return error in out of memory cases. The skb is freed on error. 1092 */ 1093 static inline int skb_pad(struct sk_buff *skb, int pad) 1094 { 1095 return __skb_pad(skb, pad, true); 1096 } 1097 #define dev_kfree_skb(a) consume_skb(a) 1098 1099 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1100 int offset, size_t size); 1101 1102 struct skb_seq_state { 1103 __u32 lower_offset; 1104 __u32 upper_offset; 1105 __u32 frag_idx; 1106 __u32 stepped_offset; 1107 struct sk_buff *root_skb; 1108 struct sk_buff *cur_skb; 1109 __u8 *frag_data; 1110 }; 1111 1112 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1113 unsigned int to, struct skb_seq_state *st); 1114 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1115 struct skb_seq_state *st); 1116 void skb_abort_seq_read(struct skb_seq_state *st); 1117 1118 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1119 unsigned int to, struct ts_config *config); 1120 1121 /* 1122 * Packet hash types specify the type of hash in skb_set_hash. 1123 * 1124 * Hash types refer to the protocol layer addresses which are used to 1125 * construct a packet's hash. The hashes are used to differentiate or identify 1126 * flows of the protocol layer for the hash type. Hash types are either 1127 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1128 * 1129 * Properties of hashes: 1130 * 1131 * 1) Two packets in different flows have different hash values 1132 * 2) Two packets in the same flow should have the same hash value 1133 * 1134 * A hash at a higher layer is considered to be more specific. A driver should 1135 * set the most specific hash possible. 1136 * 1137 * A driver cannot indicate a more specific hash than the layer at which a hash 1138 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1139 * 1140 * A driver may indicate a hash level which is less specific than the 1141 * actual layer the hash was computed on. For instance, a hash computed 1142 * at L4 may be considered an L3 hash. This should only be done if the 1143 * driver can't unambiguously determine that the HW computed the hash at 1144 * the higher layer. Note that the "should" in the second property above 1145 * permits this. 1146 */ 1147 enum pkt_hash_types { 1148 PKT_HASH_TYPE_NONE, /* Undefined type */ 1149 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1150 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1151 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1152 }; 1153 1154 static inline void skb_clear_hash(struct sk_buff *skb) 1155 { 1156 skb->hash = 0; 1157 skb->sw_hash = 0; 1158 skb->l4_hash = 0; 1159 } 1160 1161 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1162 { 1163 if (!skb->l4_hash) 1164 skb_clear_hash(skb); 1165 } 1166 1167 static inline void 1168 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1169 { 1170 skb->l4_hash = is_l4; 1171 skb->sw_hash = is_sw; 1172 skb->hash = hash; 1173 } 1174 1175 static inline void 1176 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1177 { 1178 /* Used by drivers to set hash from HW */ 1179 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1180 } 1181 1182 static inline void 1183 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1184 { 1185 __skb_set_hash(skb, hash, true, is_l4); 1186 } 1187 1188 void __skb_get_hash(struct sk_buff *skb); 1189 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1190 u32 skb_get_poff(const struct sk_buff *skb); 1191 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1192 const struct flow_keys_basic *keys, int hlen); 1193 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1194 void *data, int hlen_proto); 1195 1196 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1197 int thoff, u8 ip_proto) 1198 { 1199 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1200 } 1201 1202 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1203 const struct flow_dissector_key *key, 1204 unsigned int key_count); 1205 1206 #ifdef CONFIG_NET 1207 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1208 struct bpf_prog *prog); 1209 1210 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); 1211 #else 1212 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1213 struct bpf_prog *prog) 1214 { 1215 return -EOPNOTSUPP; 1216 } 1217 1218 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 1219 { 1220 return -EOPNOTSUPP; 1221 } 1222 #endif 1223 1224 bool __skb_flow_dissect(const struct sk_buff *skb, 1225 struct flow_dissector *flow_dissector, 1226 void *target_container, 1227 void *data, __be16 proto, int nhoff, int hlen, 1228 unsigned int flags); 1229 1230 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1231 struct flow_dissector *flow_dissector, 1232 void *target_container, unsigned int flags) 1233 { 1234 return __skb_flow_dissect(skb, flow_dissector, target_container, 1235 NULL, 0, 0, 0, flags); 1236 } 1237 1238 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1239 struct flow_keys *flow, 1240 unsigned int flags) 1241 { 1242 memset(flow, 0, sizeof(*flow)); 1243 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1244 NULL, 0, 0, 0, flags); 1245 } 1246 1247 static inline bool 1248 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb, 1249 struct flow_keys_basic *flow, void *data, 1250 __be16 proto, int nhoff, int hlen, 1251 unsigned int flags) 1252 { 1253 memset(flow, 0, sizeof(*flow)); 1254 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow, 1255 data, proto, nhoff, hlen, flags); 1256 } 1257 1258 void 1259 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1260 struct flow_dissector *flow_dissector, 1261 void *target_container); 1262 1263 static inline __u32 skb_get_hash(struct sk_buff *skb) 1264 { 1265 if (!skb->l4_hash && !skb->sw_hash) 1266 __skb_get_hash(skb); 1267 1268 return skb->hash; 1269 } 1270 1271 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1272 { 1273 if (!skb->l4_hash && !skb->sw_hash) { 1274 struct flow_keys keys; 1275 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1276 1277 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1278 } 1279 1280 return skb->hash; 1281 } 1282 1283 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1284 1285 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1286 { 1287 return skb->hash; 1288 } 1289 1290 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1291 { 1292 to->hash = from->hash; 1293 to->sw_hash = from->sw_hash; 1294 to->l4_hash = from->l4_hash; 1295 }; 1296 1297 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1298 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1299 { 1300 return skb->head + skb->end; 1301 } 1302 1303 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1304 { 1305 return skb->end; 1306 } 1307 #else 1308 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1309 { 1310 return skb->end; 1311 } 1312 1313 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1314 { 1315 return skb->end - skb->head; 1316 } 1317 #endif 1318 1319 /* Internal */ 1320 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1321 1322 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1323 { 1324 return &skb_shinfo(skb)->hwtstamps; 1325 } 1326 1327 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1328 { 1329 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1330 1331 return is_zcopy ? skb_uarg(skb) : NULL; 1332 } 1333 1334 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1335 bool *have_ref) 1336 { 1337 if (skb && uarg && !skb_zcopy(skb)) { 1338 if (unlikely(have_ref && *have_ref)) 1339 *have_ref = false; 1340 else 1341 sock_zerocopy_get(uarg); 1342 skb_shinfo(skb)->destructor_arg = uarg; 1343 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1344 } 1345 } 1346 1347 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1348 { 1349 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1350 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1351 } 1352 1353 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1354 { 1355 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1356 } 1357 1358 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1359 { 1360 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1361 } 1362 1363 /* Release a reference on a zerocopy structure */ 1364 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1365 { 1366 struct ubuf_info *uarg = skb_zcopy(skb); 1367 1368 if (uarg) { 1369 if (uarg->callback == sock_zerocopy_callback) { 1370 uarg->zerocopy = uarg->zerocopy && zerocopy; 1371 sock_zerocopy_put(uarg); 1372 } else if (!skb_zcopy_is_nouarg(skb)) { 1373 uarg->callback(uarg, zerocopy); 1374 } 1375 1376 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1377 } 1378 } 1379 1380 /* Abort a zerocopy operation and revert zckey on error in send syscall */ 1381 static inline void skb_zcopy_abort(struct sk_buff *skb) 1382 { 1383 struct ubuf_info *uarg = skb_zcopy(skb); 1384 1385 if (uarg) { 1386 sock_zerocopy_put_abort(uarg, false); 1387 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1388 } 1389 } 1390 1391 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1392 { 1393 skb->next = NULL; 1394 } 1395 1396 static inline void skb_list_del_init(struct sk_buff *skb) 1397 { 1398 __list_del_entry(&skb->list); 1399 skb_mark_not_on_list(skb); 1400 } 1401 1402 /** 1403 * skb_queue_empty - check if a queue is empty 1404 * @list: queue head 1405 * 1406 * Returns true if the queue is empty, false otherwise. 1407 */ 1408 static inline int skb_queue_empty(const struct sk_buff_head *list) 1409 { 1410 return list->next == (const struct sk_buff *) list; 1411 } 1412 1413 /** 1414 * skb_queue_is_last - check if skb is the last entry in the queue 1415 * @list: queue head 1416 * @skb: buffer 1417 * 1418 * Returns true if @skb is the last buffer on the list. 1419 */ 1420 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1421 const struct sk_buff *skb) 1422 { 1423 return skb->next == (const struct sk_buff *) list; 1424 } 1425 1426 /** 1427 * skb_queue_is_first - check if skb is the first entry in the queue 1428 * @list: queue head 1429 * @skb: buffer 1430 * 1431 * Returns true if @skb is the first buffer on the list. 1432 */ 1433 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1434 const struct sk_buff *skb) 1435 { 1436 return skb->prev == (const struct sk_buff *) list; 1437 } 1438 1439 /** 1440 * skb_queue_next - return the next packet in the queue 1441 * @list: queue head 1442 * @skb: current buffer 1443 * 1444 * Return the next packet in @list after @skb. It is only valid to 1445 * call this if skb_queue_is_last() evaluates to false. 1446 */ 1447 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1448 const struct sk_buff *skb) 1449 { 1450 /* This BUG_ON may seem severe, but if we just return then we 1451 * are going to dereference garbage. 1452 */ 1453 BUG_ON(skb_queue_is_last(list, skb)); 1454 return skb->next; 1455 } 1456 1457 /** 1458 * skb_queue_prev - return the prev packet in the queue 1459 * @list: queue head 1460 * @skb: current buffer 1461 * 1462 * Return the prev packet in @list before @skb. It is only valid to 1463 * call this if skb_queue_is_first() evaluates to false. 1464 */ 1465 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1466 const struct sk_buff *skb) 1467 { 1468 /* This BUG_ON may seem severe, but if we just return then we 1469 * are going to dereference garbage. 1470 */ 1471 BUG_ON(skb_queue_is_first(list, skb)); 1472 return skb->prev; 1473 } 1474 1475 /** 1476 * skb_get - reference buffer 1477 * @skb: buffer to reference 1478 * 1479 * Makes another reference to a socket buffer and returns a pointer 1480 * to the buffer. 1481 */ 1482 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1483 { 1484 refcount_inc(&skb->users); 1485 return skb; 1486 } 1487 1488 /* 1489 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1490 */ 1491 1492 /** 1493 * skb_cloned - is the buffer a clone 1494 * @skb: buffer to check 1495 * 1496 * Returns true if the buffer was generated with skb_clone() and is 1497 * one of multiple shared copies of the buffer. Cloned buffers are 1498 * shared data so must not be written to under normal circumstances. 1499 */ 1500 static inline int skb_cloned(const struct sk_buff *skb) 1501 { 1502 return skb->cloned && 1503 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1504 } 1505 1506 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1507 { 1508 might_sleep_if(gfpflags_allow_blocking(pri)); 1509 1510 if (skb_cloned(skb)) 1511 return pskb_expand_head(skb, 0, 0, pri); 1512 1513 return 0; 1514 } 1515 1516 /** 1517 * skb_header_cloned - is the header a clone 1518 * @skb: buffer to check 1519 * 1520 * Returns true if modifying the header part of the buffer requires 1521 * the data to be copied. 1522 */ 1523 static inline int skb_header_cloned(const struct sk_buff *skb) 1524 { 1525 int dataref; 1526 1527 if (!skb->cloned) 1528 return 0; 1529 1530 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1531 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1532 return dataref != 1; 1533 } 1534 1535 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1536 { 1537 might_sleep_if(gfpflags_allow_blocking(pri)); 1538 1539 if (skb_header_cloned(skb)) 1540 return pskb_expand_head(skb, 0, 0, pri); 1541 1542 return 0; 1543 } 1544 1545 /** 1546 * __skb_header_release - release reference to header 1547 * @skb: buffer to operate on 1548 */ 1549 static inline void __skb_header_release(struct sk_buff *skb) 1550 { 1551 skb->nohdr = 1; 1552 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1553 } 1554 1555 1556 /** 1557 * skb_shared - is the buffer shared 1558 * @skb: buffer to check 1559 * 1560 * Returns true if more than one person has a reference to this 1561 * buffer. 1562 */ 1563 static inline int skb_shared(const struct sk_buff *skb) 1564 { 1565 return refcount_read(&skb->users) != 1; 1566 } 1567 1568 /** 1569 * skb_share_check - check if buffer is shared and if so clone it 1570 * @skb: buffer to check 1571 * @pri: priority for memory allocation 1572 * 1573 * If the buffer is shared the buffer is cloned and the old copy 1574 * drops a reference. A new clone with a single reference is returned. 1575 * If the buffer is not shared the original buffer is returned. When 1576 * being called from interrupt status or with spinlocks held pri must 1577 * be GFP_ATOMIC. 1578 * 1579 * NULL is returned on a memory allocation failure. 1580 */ 1581 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1582 { 1583 might_sleep_if(gfpflags_allow_blocking(pri)); 1584 if (skb_shared(skb)) { 1585 struct sk_buff *nskb = skb_clone(skb, pri); 1586 1587 if (likely(nskb)) 1588 consume_skb(skb); 1589 else 1590 kfree_skb(skb); 1591 skb = nskb; 1592 } 1593 return skb; 1594 } 1595 1596 /* 1597 * Copy shared buffers into a new sk_buff. We effectively do COW on 1598 * packets to handle cases where we have a local reader and forward 1599 * and a couple of other messy ones. The normal one is tcpdumping 1600 * a packet thats being forwarded. 1601 */ 1602 1603 /** 1604 * skb_unshare - make a copy of a shared buffer 1605 * @skb: buffer to check 1606 * @pri: priority for memory allocation 1607 * 1608 * If the socket buffer is a clone then this function creates a new 1609 * copy of the data, drops a reference count on the old copy and returns 1610 * the new copy with the reference count at 1. If the buffer is not a clone 1611 * the original buffer is returned. When called with a spinlock held or 1612 * from interrupt state @pri must be %GFP_ATOMIC 1613 * 1614 * %NULL is returned on a memory allocation failure. 1615 */ 1616 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1617 gfp_t pri) 1618 { 1619 might_sleep_if(gfpflags_allow_blocking(pri)); 1620 if (skb_cloned(skb)) { 1621 struct sk_buff *nskb = skb_copy(skb, pri); 1622 1623 /* Free our shared copy */ 1624 if (likely(nskb)) 1625 consume_skb(skb); 1626 else 1627 kfree_skb(skb); 1628 skb = nskb; 1629 } 1630 return skb; 1631 } 1632 1633 /** 1634 * skb_peek - peek at the head of an &sk_buff_head 1635 * @list_: list to peek at 1636 * 1637 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1638 * be careful with this one. A peek leaves the buffer on the 1639 * list and someone else may run off with it. You must hold 1640 * the appropriate locks or have a private queue to do this. 1641 * 1642 * Returns %NULL for an empty list or a pointer to the head element. 1643 * The reference count is not incremented and the reference is therefore 1644 * volatile. Use with caution. 1645 */ 1646 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1647 { 1648 struct sk_buff *skb = list_->next; 1649 1650 if (skb == (struct sk_buff *)list_) 1651 skb = NULL; 1652 return skb; 1653 } 1654 1655 /** 1656 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1657 * @list_: list to peek at 1658 * 1659 * Like skb_peek(), but the caller knows that the list is not empty. 1660 */ 1661 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1662 { 1663 return list_->next; 1664 } 1665 1666 /** 1667 * skb_peek_next - peek skb following the given one from a queue 1668 * @skb: skb to start from 1669 * @list_: list to peek at 1670 * 1671 * Returns %NULL when the end of the list is met or a pointer to the 1672 * next element. The reference count is not incremented and the 1673 * reference is therefore volatile. Use with caution. 1674 */ 1675 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1676 const struct sk_buff_head *list_) 1677 { 1678 struct sk_buff *next = skb->next; 1679 1680 if (next == (struct sk_buff *)list_) 1681 next = NULL; 1682 return next; 1683 } 1684 1685 /** 1686 * skb_peek_tail - peek at the tail of an &sk_buff_head 1687 * @list_: list to peek at 1688 * 1689 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1690 * be careful with this one. A peek leaves the buffer on the 1691 * list and someone else may run off with it. You must hold 1692 * the appropriate locks or have a private queue to do this. 1693 * 1694 * Returns %NULL for an empty list or a pointer to the tail element. 1695 * The reference count is not incremented and the reference is therefore 1696 * volatile. Use with caution. 1697 */ 1698 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1699 { 1700 struct sk_buff *skb = list_->prev; 1701 1702 if (skb == (struct sk_buff *)list_) 1703 skb = NULL; 1704 return skb; 1705 1706 } 1707 1708 /** 1709 * skb_queue_len - get queue length 1710 * @list_: list to measure 1711 * 1712 * Return the length of an &sk_buff queue. 1713 */ 1714 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1715 { 1716 return list_->qlen; 1717 } 1718 1719 /** 1720 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1721 * @list: queue to initialize 1722 * 1723 * This initializes only the list and queue length aspects of 1724 * an sk_buff_head object. This allows to initialize the list 1725 * aspects of an sk_buff_head without reinitializing things like 1726 * the spinlock. It can also be used for on-stack sk_buff_head 1727 * objects where the spinlock is known to not be used. 1728 */ 1729 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1730 { 1731 list->prev = list->next = (struct sk_buff *)list; 1732 list->qlen = 0; 1733 } 1734 1735 /* 1736 * This function creates a split out lock class for each invocation; 1737 * this is needed for now since a whole lot of users of the skb-queue 1738 * infrastructure in drivers have different locking usage (in hardirq) 1739 * than the networking core (in softirq only). In the long run either the 1740 * network layer or drivers should need annotation to consolidate the 1741 * main types of usage into 3 classes. 1742 */ 1743 static inline void skb_queue_head_init(struct sk_buff_head *list) 1744 { 1745 spin_lock_init(&list->lock); 1746 __skb_queue_head_init(list); 1747 } 1748 1749 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1750 struct lock_class_key *class) 1751 { 1752 skb_queue_head_init(list); 1753 lockdep_set_class(&list->lock, class); 1754 } 1755 1756 /* 1757 * Insert an sk_buff on a list. 1758 * 1759 * The "__skb_xxxx()" functions are the non-atomic ones that 1760 * can only be called with interrupts disabled. 1761 */ 1762 static inline void __skb_insert(struct sk_buff *newsk, 1763 struct sk_buff *prev, struct sk_buff *next, 1764 struct sk_buff_head *list) 1765 { 1766 newsk->next = next; 1767 newsk->prev = prev; 1768 next->prev = prev->next = newsk; 1769 list->qlen++; 1770 } 1771 1772 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1773 struct sk_buff *prev, 1774 struct sk_buff *next) 1775 { 1776 struct sk_buff *first = list->next; 1777 struct sk_buff *last = list->prev; 1778 1779 first->prev = prev; 1780 prev->next = first; 1781 1782 last->next = next; 1783 next->prev = last; 1784 } 1785 1786 /** 1787 * skb_queue_splice - join two skb lists, this is designed for stacks 1788 * @list: the new list to add 1789 * @head: the place to add it in the first list 1790 */ 1791 static inline void skb_queue_splice(const struct sk_buff_head *list, 1792 struct sk_buff_head *head) 1793 { 1794 if (!skb_queue_empty(list)) { 1795 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1796 head->qlen += list->qlen; 1797 } 1798 } 1799 1800 /** 1801 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1802 * @list: the new list to add 1803 * @head: the place to add it in the first list 1804 * 1805 * The list at @list is reinitialised 1806 */ 1807 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1808 struct sk_buff_head *head) 1809 { 1810 if (!skb_queue_empty(list)) { 1811 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1812 head->qlen += list->qlen; 1813 __skb_queue_head_init(list); 1814 } 1815 } 1816 1817 /** 1818 * skb_queue_splice_tail - join two skb lists, each list being a queue 1819 * @list: the new list to add 1820 * @head: the place to add it in the first list 1821 */ 1822 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1823 struct sk_buff_head *head) 1824 { 1825 if (!skb_queue_empty(list)) { 1826 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1827 head->qlen += list->qlen; 1828 } 1829 } 1830 1831 /** 1832 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1833 * @list: the new list to add 1834 * @head: the place to add it in the first list 1835 * 1836 * Each of the lists is a queue. 1837 * The list at @list is reinitialised 1838 */ 1839 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1840 struct sk_buff_head *head) 1841 { 1842 if (!skb_queue_empty(list)) { 1843 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1844 head->qlen += list->qlen; 1845 __skb_queue_head_init(list); 1846 } 1847 } 1848 1849 /** 1850 * __skb_queue_after - queue a buffer at the list head 1851 * @list: list to use 1852 * @prev: place after this buffer 1853 * @newsk: buffer to queue 1854 * 1855 * Queue a buffer int the middle of a list. This function takes no locks 1856 * and you must therefore hold required locks before calling it. 1857 * 1858 * A buffer cannot be placed on two lists at the same time. 1859 */ 1860 static inline void __skb_queue_after(struct sk_buff_head *list, 1861 struct sk_buff *prev, 1862 struct sk_buff *newsk) 1863 { 1864 __skb_insert(newsk, prev, prev->next, list); 1865 } 1866 1867 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1868 struct sk_buff_head *list); 1869 1870 static inline void __skb_queue_before(struct sk_buff_head *list, 1871 struct sk_buff *next, 1872 struct sk_buff *newsk) 1873 { 1874 __skb_insert(newsk, next->prev, next, list); 1875 } 1876 1877 /** 1878 * __skb_queue_head - queue a buffer at the list head 1879 * @list: list to use 1880 * @newsk: buffer to queue 1881 * 1882 * Queue a buffer at the start of a list. This function takes no locks 1883 * and you must therefore hold required locks before calling it. 1884 * 1885 * A buffer cannot be placed on two lists at the same time. 1886 */ 1887 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1888 static inline void __skb_queue_head(struct sk_buff_head *list, 1889 struct sk_buff *newsk) 1890 { 1891 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1892 } 1893 1894 /** 1895 * __skb_queue_tail - queue a buffer at the list tail 1896 * @list: list to use 1897 * @newsk: buffer to queue 1898 * 1899 * Queue a buffer at the end of a list. This function takes no locks 1900 * and you must therefore hold required locks before calling it. 1901 * 1902 * A buffer cannot be placed on two lists at the same time. 1903 */ 1904 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1905 static inline void __skb_queue_tail(struct sk_buff_head *list, 1906 struct sk_buff *newsk) 1907 { 1908 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1909 } 1910 1911 /* 1912 * remove sk_buff from list. _Must_ be called atomically, and with 1913 * the list known.. 1914 */ 1915 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1916 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1917 { 1918 struct sk_buff *next, *prev; 1919 1920 list->qlen--; 1921 next = skb->next; 1922 prev = skb->prev; 1923 skb->next = skb->prev = NULL; 1924 next->prev = prev; 1925 prev->next = next; 1926 } 1927 1928 /** 1929 * __skb_dequeue - remove from the head of the queue 1930 * @list: list to dequeue from 1931 * 1932 * Remove the head of the list. This function does not take any locks 1933 * so must be used with appropriate locks held only. The head item is 1934 * returned or %NULL if the list is empty. 1935 */ 1936 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1937 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1938 { 1939 struct sk_buff *skb = skb_peek(list); 1940 if (skb) 1941 __skb_unlink(skb, list); 1942 return skb; 1943 } 1944 1945 /** 1946 * __skb_dequeue_tail - remove from the tail of the queue 1947 * @list: list to dequeue from 1948 * 1949 * Remove the tail of the list. This function does not take any locks 1950 * so must be used with appropriate locks held only. The tail item is 1951 * returned or %NULL if the list is empty. 1952 */ 1953 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1954 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1955 { 1956 struct sk_buff *skb = skb_peek_tail(list); 1957 if (skb) 1958 __skb_unlink(skb, list); 1959 return skb; 1960 } 1961 1962 1963 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1964 { 1965 return skb->data_len; 1966 } 1967 1968 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1969 { 1970 return skb->len - skb->data_len; 1971 } 1972 1973 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 1974 { 1975 unsigned int i, len = 0; 1976 1977 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 1978 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1979 return len; 1980 } 1981 1982 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 1983 { 1984 return skb_headlen(skb) + __skb_pagelen(skb); 1985 } 1986 1987 /** 1988 * __skb_fill_page_desc - initialise a paged fragment in an skb 1989 * @skb: buffer containing fragment to be initialised 1990 * @i: paged fragment index to initialise 1991 * @page: the page to use for this fragment 1992 * @off: the offset to the data with @page 1993 * @size: the length of the data 1994 * 1995 * Initialises the @i'th fragment of @skb to point to &size bytes at 1996 * offset @off within @page. 1997 * 1998 * Does not take any additional reference on the fragment. 1999 */ 2000 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2001 struct page *page, int off, int size) 2002 { 2003 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2004 2005 /* 2006 * Propagate page pfmemalloc to the skb if we can. The problem is 2007 * that not all callers have unique ownership of the page but rely 2008 * on page_is_pfmemalloc doing the right thing(tm). 2009 */ 2010 frag->page.p = page; 2011 frag->page_offset = off; 2012 skb_frag_size_set(frag, size); 2013 2014 page = compound_head(page); 2015 if (page_is_pfmemalloc(page)) 2016 skb->pfmemalloc = true; 2017 } 2018 2019 /** 2020 * skb_fill_page_desc - initialise a paged fragment in an skb 2021 * @skb: buffer containing fragment to be initialised 2022 * @i: paged fragment index to initialise 2023 * @page: the page to use for this fragment 2024 * @off: the offset to the data with @page 2025 * @size: the length of the data 2026 * 2027 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2028 * @skb to point to @size bytes at offset @off within @page. In 2029 * addition updates @skb such that @i is the last fragment. 2030 * 2031 * Does not take any additional reference on the fragment. 2032 */ 2033 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2034 struct page *page, int off, int size) 2035 { 2036 __skb_fill_page_desc(skb, i, page, off, size); 2037 skb_shinfo(skb)->nr_frags = i + 1; 2038 } 2039 2040 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2041 int size, unsigned int truesize); 2042 2043 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2044 unsigned int truesize); 2045 2046 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 2047 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 2048 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2049 2050 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2051 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2052 { 2053 return skb->head + skb->tail; 2054 } 2055 2056 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2057 { 2058 skb->tail = skb->data - skb->head; 2059 } 2060 2061 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2062 { 2063 skb_reset_tail_pointer(skb); 2064 skb->tail += offset; 2065 } 2066 2067 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2068 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2069 { 2070 return skb->tail; 2071 } 2072 2073 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2074 { 2075 skb->tail = skb->data; 2076 } 2077 2078 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2079 { 2080 skb->tail = skb->data + offset; 2081 } 2082 2083 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2084 2085 /* 2086 * Add data to an sk_buff 2087 */ 2088 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2089 void *skb_put(struct sk_buff *skb, unsigned int len); 2090 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2091 { 2092 void *tmp = skb_tail_pointer(skb); 2093 SKB_LINEAR_ASSERT(skb); 2094 skb->tail += len; 2095 skb->len += len; 2096 return tmp; 2097 } 2098 2099 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2100 { 2101 void *tmp = __skb_put(skb, len); 2102 2103 memset(tmp, 0, len); 2104 return tmp; 2105 } 2106 2107 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2108 unsigned int len) 2109 { 2110 void *tmp = __skb_put(skb, len); 2111 2112 memcpy(tmp, data, len); 2113 return tmp; 2114 } 2115 2116 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2117 { 2118 *(u8 *)__skb_put(skb, 1) = val; 2119 } 2120 2121 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2122 { 2123 void *tmp = skb_put(skb, len); 2124 2125 memset(tmp, 0, len); 2126 2127 return tmp; 2128 } 2129 2130 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2131 unsigned int len) 2132 { 2133 void *tmp = skb_put(skb, len); 2134 2135 memcpy(tmp, data, len); 2136 2137 return tmp; 2138 } 2139 2140 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2141 { 2142 *(u8 *)skb_put(skb, 1) = val; 2143 } 2144 2145 void *skb_push(struct sk_buff *skb, unsigned int len); 2146 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2147 { 2148 skb->data -= len; 2149 skb->len += len; 2150 return skb->data; 2151 } 2152 2153 void *skb_pull(struct sk_buff *skb, unsigned int len); 2154 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2155 { 2156 skb->len -= len; 2157 BUG_ON(skb->len < skb->data_len); 2158 return skb->data += len; 2159 } 2160 2161 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2162 { 2163 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2164 } 2165 2166 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2167 2168 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2169 { 2170 if (len > skb_headlen(skb) && 2171 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2172 return NULL; 2173 skb->len -= len; 2174 return skb->data += len; 2175 } 2176 2177 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2178 { 2179 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2180 } 2181 2182 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2183 { 2184 if (likely(len <= skb_headlen(skb))) 2185 return 1; 2186 if (unlikely(len > skb->len)) 2187 return 0; 2188 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2189 } 2190 2191 void skb_condense(struct sk_buff *skb); 2192 2193 /** 2194 * skb_headroom - bytes at buffer head 2195 * @skb: buffer to check 2196 * 2197 * Return the number of bytes of free space at the head of an &sk_buff. 2198 */ 2199 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2200 { 2201 return skb->data - skb->head; 2202 } 2203 2204 /** 2205 * skb_tailroom - bytes at buffer end 2206 * @skb: buffer to check 2207 * 2208 * Return the number of bytes of free space at the tail of an sk_buff 2209 */ 2210 static inline int skb_tailroom(const struct sk_buff *skb) 2211 { 2212 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2213 } 2214 2215 /** 2216 * skb_availroom - bytes at buffer end 2217 * @skb: buffer to check 2218 * 2219 * Return the number of bytes of free space at the tail of an sk_buff 2220 * allocated by sk_stream_alloc() 2221 */ 2222 static inline int skb_availroom(const struct sk_buff *skb) 2223 { 2224 if (skb_is_nonlinear(skb)) 2225 return 0; 2226 2227 return skb->end - skb->tail - skb->reserved_tailroom; 2228 } 2229 2230 /** 2231 * skb_reserve - adjust headroom 2232 * @skb: buffer to alter 2233 * @len: bytes to move 2234 * 2235 * Increase the headroom of an empty &sk_buff by reducing the tail 2236 * room. This is only allowed for an empty buffer. 2237 */ 2238 static inline void skb_reserve(struct sk_buff *skb, int len) 2239 { 2240 skb->data += len; 2241 skb->tail += len; 2242 } 2243 2244 /** 2245 * skb_tailroom_reserve - adjust reserved_tailroom 2246 * @skb: buffer to alter 2247 * @mtu: maximum amount of headlen permitted 2248 * @needed_tailroom: minimum amount of reserved_tailroom 2249 * 2250 * Set reserved_tailroom so that headlen can be as large as possible but 2251 * not larger than mtu and tailroom cannot be smaller than 2252 * needed_tailroom. 2253 * The required headroom should already have been reserved before using 2254 * this function. 2255 */ 2256 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2257 unsigned int needed_tailroom) 2258 { 2259 SKB_LINEAR_ASSERT(skb); 2260 if (mtu < skb_tailroom(skb) - needed_tailroom) 2261 /* use at most mtu */ 2262 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2263 else 2264 /* use up to all available space */ 2265 skb->reserved_tailroom = needed_tailroom; 2266 } 2267 2268 #define ENCAP_TYPE_ETHER 0 2269 #define ENCAP_TYPE_IPPROTO 1 2270 2271 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2272 __be16 protocol) 2273 { 2274 skb->inner_protocol = protocol; 2275 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2276 } 2277 2278 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2279 __u8 ipproto) 2280 { 2281 skb->inner_ipproto = ipproto; 2282 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2283 } 2284 2285 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2286 { 2287 skb->inner_mac_header = skb->mac_header; 2288 skb->inner_network_header = skb->network_header; 2289 skb->inner_transport_header = skb->transport_header; 2290 } 2291 2292 static inline void skb_reset_mac_len(struct sk_buff *skb) 2293 { 2294 skb->mac_len = skb->network_header - skb->mac_header; 2295 } 2296 2297 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2298 *skb) 2299 { 2300 return skb->head + skb->inner_transport_header; 2301 } 2302 2303 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2304 { 2305 return skb_inner_transport_header(skb) - skb->data; 2306 } 2307 2308 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2309 { 2310 skb->inner_transport_header = skb->data - skb->head; 2311 } 2312 2313 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2314 const int offset) 2315 { 2316 skb_reset_inner_transport_header(skb); 2317 skb->inner_transport_header += offset; 2318 } 2319 2320 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2321 { 2322 return skb->head + skb->inner_network_header; 2323 } 2324 2325 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2326 { 2327 skb->inner_network_header = skb->data - skb->head; 2328 } 2329 2330 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2331 const int offset) 2332 { 2333 skb_reset_inner_network_header(skb); 2334 skb->inner_network_header += offset; 2335 } 2336 2337 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2338 { 2339 return skb->head + skb->inner_mac_header; 2340 } 2341 2342 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2343 { 2344 skb->inner_mac_header = skb->data - skb->head; 2345 } 2346 2347 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2348 const int offset) 2349 { 2350 skb_reset_inner_mac_header(skb); 2351 skb->inner_mac_header += offset; 2352 } 2353 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2354 { 2355 return skb->transport_header != (typeof(skb->transport_header))~0U; 2356 } 2357 2358 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2359 { 2360 return skb->head + skb->transport_header; 2361 } 2362 2363 static inline void skb_reset_transport_header(struct sk_buff *skb) 2364 { 2365 skb->transport_header = skb->data - skb->head; 2366 } 2367 2368 static inline void skb_set_transport_header(struct sk_buff *skb, 2369 const int offset) 2370 { 2371 skb_reset_transport_header(skb); 2372 skb->transport_header += offset; 2373 } 2374 2375 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2376 { 2377 return skb->head + skb->network_header; 2378 } 2379 2380 static inline void skb_reset_network_header(struct sk_buff *skb) 2381 { 2382 skb->network_header = skb->data - skb->head; 2383 } 2384 2385 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2386 { 2387 skb_reset_network_header(skb); 2388 skb->network_header += offset; 2389 } 2390 2391 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2392 { 2393 return skb->head + skb->mac_header; 2394 } 2395 2396 static inline int skb_mac_offset(const struct sk_buff *skb) 2397 { 2398 return skb_mac_header(skb) - skb->data; 2399 } 2400 2401 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2402 { 2403 return skb->network_header - skb->mac_header; 2404 } 2405 2406 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2407 { 2408 return skb->mac_header != (typeof(skb->mac_header))~0U; 2409 } 2410 2411 static inline void skb_reset_mac_header(struct sk_buff *skb) 2412 { 2413 skb->mac_header = skb->data - skb->head; 2414 } 2415 2416 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2417 { 2418 skb_reset_mac_header(skb); 2419 skb->mac_header += offset; 2420 } 2421 2422 static inline void skb_pop_mac_header(struct sk_buff *skb) 2423 { 2424 skb->mac_header = skb->network_header; 2425 } 2426 2427 static inline void skb_probe_transport_header(struct sk_buff *skb, 2428 const int offset_hint) 2429 { 2430 struct flow_keys_basic keys; 2431 2432 if (skb_transport_header_was_set(skb)) 2433 return; 2434 2435 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0)) 2436 skb_set_transport_header(skb, keys.control.thoff); 2437 else 2438 skb_set_transport_header(skb, offset_hint); 2439 } 2440 2441 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2442 { 2443 if (skb_mac_header_was_set(skb)) { 2444 const unsigned char *old_mac = skb_mac_header(skb); 2445 2446 skb_set_mac_header(skb, -skb->mac_len); 2447 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2448 } 2449 } 2450 2451 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2452 { 2453 return skb->csum_start - skb_headroom(skb); 2454 } 2455 2456 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2457 { 2458 return skb->head + skb->csum_start; 2459 } 2460 2461 static inline int skb_transport_offset(const struct sk_buff *skb) 2462 { 2463 return skb_transport_header(skb) - skb->data; 2464 } 2465 2466 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2467 { 2468 return skb->transport_header - skb->network_header; 2469 } 2470 2471 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2472 { 2473 return skb->inner_transport_header - skb->inner_network_header; 2474 } 2475 2476 static inline int skb_network_offset(const struct sk_buff *skb) 2477 { 2478 return skb_network_header(skb) - skb->data; 2479 } 2480 2481 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2482 { 2483 return skb_inner_network_header(skb) - skb->data; 2484 } 2485 2486 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2487 { 2488 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2489 } 2490 2491 /* 2492 * CPUs often take a performance hit when accessing unaligned memory 2493 * locations. The actual performance hit varies, it can be small if the 2494 * hardware handles it or large if we have to take an exception and fix it 2495 * in software. 2496 * 2497 * Since an ethernet header is 14 bytes network drivers often end up with 2498 * the IP header at an unaligned offset. The IP header can be aligned by 2499 * shifting the start of the packet by 2 bytes. Drivers should do this 2500 * with: 2501 * 2502 * skb_reserve(skb, NET_IP_ALIGN); 2503 * 2504 * The downside to this alignment of the IP header is that the DMA is now 2505 * unaligned. On some architectures the cost of an unaligned DMA is high 2506 * and this cost outweighs the gains made by aligning the IP header. 2507 * 2508 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2509 * to be overridden. 2510 */ 2511 #ifndef NET_IP_ALIGN 2512 #define NET_IP_ALIGN 2 2513 #endif 2514 2515 /* 2516 * The networking layer reserves some headroom in skb data (via 2517 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2518 * the header has to grow. In the default case, if the header has to grow 2519 * 32 bytes or less we avoid the reallocation. 2520 * 2521 * Unfortunately this headroom changes the DMA alignment of the resulting 2522 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2523 * on some architectures. An architecture can override this value, 2524 * perhaps setting it to a cacheline in size (since that will maintain 2525 * cacheline alignment of the DMA). It must be a power of 2. 2526 * 2527 * Various parts of the networking layer expect at least 32 bytes of 2528 * headroom, you should not reduce this. 2529 * 2530 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2531 * to reduce average number of cache lines per packet. 2532 * get_rps_cpus() for example only access one 64 bytes aligned block : 2533 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2534 */ 2535 #ifndef NET_SKB_PAD 2536 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2537 #endif 2538 2539 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2540 2541 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2542 { 2543 if (WARN_ON(skb_is_nonlinear(skb))) 2544 return; 2545 skb->len = len; 2546 skb_set_tail_pointer(skb, len); 2547 } 2548 2549 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2550 { 2551 __skb_set_length(skb, len); 2552 } 2553 2554 void skb_trim(struct sk_buff *skb, unsigned int len); 2555 2556 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2557 { 2558 if (skb->data_len) 2559 return ___pskb_trim(skb, len); 2560 __skb_trim(skb, len); 2561 return 0; 2562 } 2563 2564 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2565 { 2566 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2567 } 2568 2569 /** 2570 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2571 * @skb: buffer to alter 2572 * @len: new length 2573 * 2574 * This is identical to pskb_trim except that the caller knows that 2575 * the skb is not cloned so we should never get an error due to out- 2576 * of-memory. 2577 */ 2578 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2579 { 2580 int err = pskb_trim(skb, len); 2581 BUG_ON(err); 2582 } 2583 2584 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2585 { 2586 unsigned int diff = len - skb->len; 2587 2588 if (skb_tailroom(skb) < diff) { 2589 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2590 GFP_ATOMIC); 2591 if (ret) 2592 return ret; 2593 } 2594 __skb_set_length(skb, len); 2595 return 0; 2596 } 2597 2598 /** 2599 * skb_orphan - orphan a buffer 2600 * @skb: buffer to orphan 2601 * 2602 * If a buffer currently has an owner then we call the owner's 2603 * destructor function and make the @skb unowned. The buffer continues 2604 * to exist but is no longer charged to its former owner. 2605 */ 2606 static inline void skb_orphan(struct sk_buff *skb) 2607 { 2608 if (skb->destructor) { 2609 skb->destructor(skb); 2610 skb->destructor = NULL; 2611 skb->sk = NULL; 2612 } else { 2613 BUG_ON(skb->sk); 2614 } 2615 } 2616 2617 /** 2618 * skb_orphan_frags - orphan the frags contained in a buffer 2619 * @skb: buffer to orphan frags from 2620 * @gfp_mask: allocation mask for replacement pages 2621 * 2622 * For each frag in the SKB which needs a destructor (i.e. has an 2623 * owner) create a copy of that frag and release the original 2624 * page by calling the destructor. 2625 */ 2626 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2627 { 2628 if (likely(!skb_zcopy(skb))) 2629 return 0; 2630 if (skb_uarg(skb)->callback == sock_zerocopy_callback) 2631 return 0; 2632 return skb_copy_ubufs(skb, gfp_mask); 2633 } 2634 2635 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2636 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2637 { 2638 if (likely(!skb_zcopy(skb))) 2639 return 0; 2640 return skb_copy_ubufs(skb, gfp_mask); 2641 } 2642 2643 /** 2644 * __skb_queue_purge - empty a list 2645 * @list: list to empty 2646 * 2647 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2648 * the list and one reference dropped. This function does not take the 2649 * list lock and the caller must hold the relevant locks to use it. 2650 */ 2651 void skb_queue_purge(struct sk_buff_head *list); 2652 static inline void __skb_queue_purge(struct sk_buff_head *list) 2653 { 2654 struct sk_buff *skb; 2655 while ((skb = __skb_dequeue(list)) != NULL) 2656 kfree_skb(skb); 2657 } 2658 2659 unsigned int skb_rbtree_purge(struct rb_root *root); 2660 2661 void *netdev_alloc_frag(unsigned int fragsz); 2662 2663 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2664 gfp_t gfp_mask); 2665 2666 /** 2667 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2668 * @dev: network device to receive on 2669 * @length: length to allocate 2670 * 2671 * Allocate a new &sk_buff and assign it a usage count of one. The 2672 * buffer has unspecified headroom built in. Users should allocate 2673 * the headroom they think they need without accounting for the 2674 * built in space. The built in space is used for optimisations. 2675 * 2676 * %NULL is returned if there is no free memory. Although this function 2677 * allocates memory it can be called from an interrupt. 2678 */ 2679 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2680 unsigned int length) 2681 { 2682 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2683 } 2684 2685 /* legacy helper around __netdev_alloc_skb() */ 2686 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2687 gfp_t gfp_mask) 2688 { 2689 return __netdev_alloc_skb(NULL, length, gfp_mask); 2690 } 2691 2692 /* legacy helper around netdev_alloc_skb() */ 2693 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2694 { 2695 return netdev_alloc_skb(NULL, length); 2696 } 2697 2698 2699 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2700 unsigned int length, gfp_t gfp) 2701 { 2702 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2703 2704 if (NET_IP_ALIGN && skb) 2705 skb_reserve(skb, NET_IP_ALIGN); 2706 return skb; 2707 } 2708 2709 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2710 unsigned int length) 2711 { 2712 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2713 } 2714 2715 static inline void skb_free_frag(void *addr) 2716 { 2717 page_frag_free(addr); 2718 } 2719 2720 void *napi_alloc_frag(unsigned int fragsz); 2721 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2722 unsigned int length, gfp_t gfp_mask); 2723 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2724 unsigned int length) 2725 { 2726 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2727 } 2728 void napi_consume_skb(struct sk_buff *skb, int budget); 2729 2730 void __kfree_skb_flush(void); 2731 void __kfree_skb_defer(struct sk_buff *skb); 2732 2733 /** 2734 * __dev_alloc_pages - allocate page for network Rx 2735 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2736 * @order: size of the allocation 2737 * 2738 * Allocate a new page. 2739 * 2740 * %NULL is returned if there is no free memory. 2741 */ 2742 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2743 unsigned int order) 2744 { 2745 /* This piece of code contains several assumptions. 2746 * 1. This is for device Rx, therefor a cold page is preferred. 2747 * 2. The expectation is the user wants a compound page. 2748 * 3. If requesting a order 0 page it will not be compound 2749 * due to the check to see if order has a value in prep_new_page 2750 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2751 * code in gfp_to_alloc_flags that should be enforcing this. 2752 */ 2753 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2754 2755 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2756 } 2757 2758 static inline struct page *dev_alloc_pages(unsigned int order) 2759 { 2760 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2761 } 2762 2763 /** 2764 * __dev_alloc_page - allocate a page for network Rx 2765 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2766 * 2767 * Allocate a new page. 2768 * 2769 * %NULL is returned if there is no free memory. 2770 */ 2771 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2772 { 2773 return __dev_alloc_pages(gfp_mask, 0); 2774 } 2775 2776 static inline struct page *dev_alloc_page(void) 2777 { 2778 return dev_alloc_pages(0); 2779 } 2780 2781 /** 2782 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2783 * @page: The page that was allocated from skb_alloc_page 2784 * @skb: The skb that may need pfmemalloc set 2785 */ 2786 static inline void skb_propagate_pfmemalloc(struct page *page, 2787 struct sk_buff *skb) 2788 { 2789 if (page_is_pfmemalloc(page)) 2790 skb->pfmemalloc = true; 2791 } 2792 2793 /** 2794 * skb_frag_page - retrieve the page referred to by a paged fragment 2795 * @frag: the paged fragment 2796 * 2797 * Returns the &struct page associated with @frag. 2798 */ 2799 static inline struct page *skb_frag_page(const skb_frag_t *frag) 2800 { 2801 return frag->page.p; 2802 } 2803 2804 /** 2805 * __skb_frag_ref - take an addition reference on a paged fragment. 2806 * @frag: the paged fragment 2807 * 2808 * Takes an additional reference on the paged fragment @frag. 2809 */ 2810 static inline void __skb_frag_ref(skb_frag_t *frag) 2811 { 2812 get_page(skb_frag_page(frag)); 2813 } 2814 2815 /** 2816 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2817 * @skb: the buffer 2818 * @f: the fragment offset. 2819 * 2820 * Takes an additional reference on the @f'th paged fragment of @skb. 2821 */ 2822 static inline void skb_frag_ref(struct sk_buff *skb, int f) 2823 { 2824 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2825 } 2826 2827 /** 2828 * __skb_frag_unref - release a reference on a paged fragment. 2829 * @frag: the paged fragment 2830 * 2831 * Releases a reference on the paged fragment @frag. 2832 */ 2833 static inline void __skb_frag_unref(skb_frag_t *frag) 2834 { 2835 put_page(skb_frag_page(frag)); 2836 } 2837 2838 /** 2839 * skb_frag_unref - release a reference on a paged fragment of an skb. 2840 * @skb: the buffer 2841 * @f: the fragment offset 2842 * 2843 * Releases a reference on the @f'th paged fragment of @skb. 2844 */ 2845 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2846 { 2847 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2848 } 2849 2850 /** 2851 * skb_frag_address - gets the address of the data contained in a paged fragment 2852 * @frag: the paged fragment buffer 2853 * 2854 * Returns the address of the data within @frag. The page must already 2855 * be mapped. 2856 */ 2857 static inline void *skb_frag_address(const skb_frag_t *frag) 2858 { 2859 return page_address(skb_frag_page(frag)) + frag->page_offset; 2860 } 2861 2862 /** 2863 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2864 * @frag: the paged fragment buffer 2865 * 2866 * Returns the address of the data within @frag. Checks that the page 2867 * is mapped and returns %NULL otherwise. 2868 */ 2869 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2870 { 2871 void *ptr = page_address(skb_frag_page(frag)); 2872 if (unlikely(!ptr)) 2873 return NULL; 2874 2875 return ptr + frag->page_offset; 2876 } 2877 2878 /** 2879 * __skb_frag_set_page - sets the page contained in a paged fragment 2880 * @frag: the paged fragment 2881 * @page: the page to set 2882 * 2883 * Sets the fragment @frag to contain @page. 2884 */ 2885 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2886 { 2887 frag->page.p = page; 2888 } 2889 2890 /** 2891 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2892 * @skb: the buffer 2893 * @f: the fragment offset 2894 * @page: the page to set 2895 * 2896 * Sets the @f'th fragment of @skb to contain @page. 2897 */ 2898 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2899 struct page *page) 2900 { 2901 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2902 } 2903 2904 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2905 2906 /** 2907 * skb_frag_dma_map - maps a paged fragment via the DMA API 2908 * @dev: the device to map the fragment to 2909 * @frag: the paged fragment to map 2910 * @offset: the offset within the fragment (starting at the 2911 * fragment's own offset) 2912 * @size: the number of bytes to map 2913 * @dir: the direction of the mapping (``PCI_DMA_*``) 2914 * 2915 * Maps the page associated with @frag to @device. 2916 */ 2917 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2918 const skb_frag_t *frag, 2919 size_t offset, size_t size, 2920 enum dma_data_direction dir) 2921 { 2922 return dma_map_page(dev, skb_frag_page(frag), 2923 frag->page_offset + offset, size, dir); 2924 } 2925 2926 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2927 gfp_t gfp_mask) 2928 { 2929 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2930 } 2931 2932 2933 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2934 gfp_t gfp_mask) 2935 { 2936 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2937 } 2938 2939 2940 /** 2941 * skb_clone_writable - is the header of a clone writable 2942 * @skb: buffer to check 2943 * @len: length up to which to write 2944 * 2945 * Returns true if modifying the header part of the cloned buffer 2946 * does not requires the data to be copied. 2947 */ 2948 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2949 { 2950 return !skb_header_cloned(skb) && 2951 skb_headroom(skb) + len <= skb->hdr_len; 2952 } 2953 2954 static inline int skb_try_make_writable(struct sk_buff *skb, 2955 unsigned int write_len) 2956 { 2957 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2958 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2959 } 2960 2961 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2962 int cloned) 2963 { 2964 int delta = 0; 2965 2966 if (headroom > skb_headroom(skb)) 2967 delta = headroom - skb_headroom(skb); 2968 2969 if (delta || cloned) 2970 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2971 GFP_ATOMIC); 2972 return 0; 2973 } 2974 2975 /** 2976 * skb_cow - copy header of skb when it is required 2977 * @skb: buffer to cow 2978 * @headroom: needed headroom 2979 * 2980 * If the skb passed lacks sufficient headroom or its data part 2981 * is shared, data is reallocated. If reallocation fails, an error 2982 * is returned and original skb is not changed. 2983 * 2984 * The result is skb with writable area skb->head...skb->tail 2985 * and at least @headroom of space at head. 2986 */ 2987 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2988 { 2989 return __skb_cow(skb, headroom, skb_cloned(skb)); 2990 } 2991 2992 /** 2993 * skb_cow_head - skb_cow but only making the head writable 2994 * @skb: buffer to cow 2995 * @headroom: needed headroom 2996 * 2997 * This function is identical to skb_cow except that we replace the 2998 * skb_cloned check by skb_header_cloned. It should be used when 2999 * you only need to push on some header and do not need to modify 3000 * the data. 3001 */ 3002 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3003 { 3004 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3005 } 3006 3007 /** 3008 * skb_padto - pad an skbuff up to a minimal size 3009 * @skb: buffer to pad 3010 * @len: minimal length 3011 * 3012 * Pads up a buffer to ensure the trailing bytes exist and are 3013 * blanked. If the buffer already contains sufficient data it 3014 * is untouched. Otherwise it is extended. Returns zero on 3015 * success. The skb is freed on error. 3016 */ 3017 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3018 { 3019 unsigned int size = skb->len; 3020 if (likely(size >= len)) 3021 return 0; 3022 return skb_pad(skb, len - size); 3023 } 3024 3025 /** 3026 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3027 * @skb: buffer to pad 3028 * @len: minimal length 3029 * @free_on_error: free buffer on error 3030 * 3031 * Pads up a buffer to ensure the trailing bytes exist and are 3032 * blanked. If the buffer already contains sufficient data it 3033 * is untouched. Otherwise it is extended. Returns zero on 3034 * success. The skb is freed on error if @free_on_error is true. 3035 */ 3036 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3037 bool free_on_error) 3038 { 3039 unsigned int size = skb->len; 3040 3041 if (unlikely(size < len)) { 3042 len -= size; 3043 if (__skb_pad(skb, len, free_on_error)) 3044 return -ENOMEM; 3045 __skb_put(skb, len); 3046 } 3047 return 0; 3048 } 3049 3050 /** 3051 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3052 * @skb: buffer to pad 3053 * @len: minimal length 3054 * 3055 * Pads up a buffer to ensure the trailing bytes exist and are 3056 * blanked. If the buffer already contains sufficient data it 3057 * is untouched. Otherwise it is extended. Returns zero on 3058 * success. The skb is freed on error. 3059 */ 3060 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3061 { 3062 return __skb_put_padto(skb, len, true); 3063 } 3064 3065 static inline int skb_add_data(struct sk_buff *skb, 3066 struct iov_iter *from, int copy) 3067 { 3068 const int off = skb->len; 3069 3070 if (skb->ip_summed == CHECKSUM_NONE) { 3071 __wsum csum = 0; 3072 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3073 &csum, from)) { 3074 skb->csum = csum_block_add(skb->csum, csum, off); 3075 return 0; 3076 } 3077 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3078 return 0; 3079 3080 __skb_trim(skb, off); 3081 return -EFAULT; 3082 } 3083 3084 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3085 const struct page *page, int off) 3086 { 3087 if (skb_zcopy(skb)) 3088 return false; 3089 if (i) { 3090 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3091 3092 return page == skb_frag_page(frag) && 3093 off == frag->page_offset + skb_frag_size(frag); 3094 } 3095 return false; 3096 } 3097 3098 static inline int __skb_linearize(struct sk_buff *skb) 3099 { 3100 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3101 } 3102 3103 /** 3104 * skb_linearize - convert paged skb to linear one 3105 * @skb: buffer to linarize 3106 * 3107 * If there is no free memory -ENOMEM is returned, otherwise zero 3108 * is returned and the old skb data released. 3109 */ 3110 static inline int skb_linearize(struct sk_buff *skb) 3111 { 3112 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3113 } 3114 3115 /** 3116 * skb_has_shared_frag - can any frag be overwritten 3117 * @skb: buffer to test 3118 * 3119 * Return true if the skb has at least one frag that might be modified 3120 * by an external entity (as in vmsplice()/sendfile()) 3121 */ 3122 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3123 { 3124 return skb_is_nonlinear(skb) && 3125 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3126 } 3127 3128 /** 3129 * skb_linearize_cow - make sure skb is linear and writable 3130 * @skb: buffer to process 3131 * 3132 * If there is no free memory -ENOMEM is returned, otherwise zero 3133 * is returned and the old skb data released. 3134 */ 3135 static inline int skb_linearize_cow(struct sk_buff *skb) 3136 { 3137 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3138 __skb_linearize(skb) : 0; 3139 } 3140 3141 static __always_inline void 3142 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3143 unsigned int off) 3144 { 3145 if (skb->ip_summed == CHECKSUM_COMPLETE) 3146 skb->csum = csum_block_sub(skb->csum, 3147 csum_partial(start, len, 0), off); 3148 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3149 skb_checksum_start_offset(skb) < 0) 3150 skb->ip_summed = CHECKSUM_NONE; 3151 } 3152 3153 /** 3154 * skb_postpull_rcsum - update checksum for received skb after pull 3155 * @skb: buffer to update 3156 * @start: start of data before pull 3157 * @len: length of data pulled 3158 * 3159 * After doing a pull on a received packet, you need to call this to 3160 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3161 * CHECKSUM_NONE so that it can be recomputed from scratch. 3162 */ 3163 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3164 const void *start, unsigned int len) 3165 { 3166 __skb_postpull_rcsum(skb, start, len, 0); 3167 } 3168 3169 static __always_inline void 3170 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3171 unsigned int off) 3172 { 3173 if (skb->ip_summed == CHECKSUM_COMPLETE) 3174 skb->csum = csum_block_add(skb->csum, 3175 csum_partial(start, len, 0), off); 3176 } 3177 3178 /** 3179 * skb_postpush_rcsum - update checksum for received skb after push 3180 * @skb: buffer to update 3181 * @start: start of data after push 3182 * @len: length of data pushed 3183 * 3184 * After doing a push on a received packet, you need to call this to 3185 * update the CHECKSUM_COMPLETE checksum. 3186 */ 3187 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3188 const void *start, unsigned int len) 3189 { 3190 __skb_postpush_rcsum(skb, start, len, 0); 3191 } 3192 3193 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3194 3195 /** 3196 * skb_push_rcsum - push skb and update receive checksum 3197 * @skb: buffer to update 3198 * @len: length of data pulled 3199 * 3200 * This function performs an skb_push on the packet and updates 3201 * the CHECKSUM_COMPLETE checksum. It should be used on 3202 * receive path processing instead of skb_push unless you know 3203 * that the checksum difference is zero (e.g., a valid IP header) 3204 * or you are setting ip_summed to CHECKSUM_NONE. 3205 */ 3206 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3207 { 3208 skb_push(skb, len); 3209 skb_postpush_rcsum(skb, skb->data, len); 3210 return skb->data; 3211 } 3212 3213 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3214 /** 3215 * pskb_trim_rcsum - trim received skb and update checksum 3216 * @skb: buffer to trim 3217 * @len: new length 3218 * 3219 * This is exactly the same as pskb_trim except that it ensures the 3220 * checksum of received packets are still valid after the operation. 3221 * It can change skb pointers. 3222 */ 3223 3224 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3225 { 3226 if (likely(len >= skb->len)) 3227 return 0; 3228 return pskb_trim_rcsum_slow(skb, len); 3229 } 3230 3231 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3232 { 3233 if (skb->ip_summed == CHECKSUM_COMPLETE) 3234 skb->ip_summed = CHECKSUM_NONE; 3235 __skb_trim(skb, len); 3236 return 0; 3237 } 3238 3239 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3240 { 3241 if (skb->ip_summed == CHECKSUM_COMPLETE) 3242 skb->ip_summed = CHECKSUM_NONE; 3243 return __skb_grow(skb, len); 3244 } 3245 3246 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3247 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3248 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3249 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3250 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3251 3252 #define skb_queue_walk(queue, skb) \ 3253 for (skb = (queue)->next; \ 3254 skb != (struct sk_buff *)(queue); \ 3255 skb = skb->next) 3256 3257 #define skb_queue_walk_safe(queue, skb, tmp) \ 3258 for (skb = (queue)->next, tmp = skb->next; \ 3259 skb != (struct sk_buff *)(queue); \ 3260 skb = tmp, tmp = skb->next) 3261 3262 #define skb_queue_walk_from(queue, skb) \ 3263 for (; skb != (struct sk_buff *)(queue); \ 3264 skb = skb->next) 3265 3266 #define skb_rbtree_walk(skb, root) \ 3267 for (skb = skb_rb_first(root); skb != NULL; \ 3268 skb = skb_rb_next(skb)) 3269 3270 #define skb_rbtree_walk_from(skb) \ 3271 for (; skb != NULL; \ 3272 skb = skb_rb_next(skb)) 3273 3274 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3275 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3276 skb = tmp) 3277 3278 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3279 for (tmp = skb->next; \ 3280 skb != (struct sk_buff *)(queue); \ 3281 skb = tmp, tmp = skb->next) 3282 3283 #define skb_queue_reverse_walk(queue, skb) \ 3284 for (skb = (queue)->prev; \ 3285 skb != (struct sk_buff *)(queue); \ 3286 skb = skb->prev) 3287 3288 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3289 for (skb = (queue)->prev, tmp = skb->prev; \ 3290 skb != (struct sk_buff *)(queue); \ 3291 skb = tmp, tmp = skb->prev) 3292 3293 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3294 for (tmp = skb->prev; \ 3295 skb != (struct sk_buff *)(queue); \ 3296 skb = tmp, tmp = skb->prev) 3297 3298 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3299 { 3300 return skb_shinfo(skb)->frag_list != NULL; 3301 } 3302 3303 static inline void skb_frag_list_init(struct sk_buff *skb) 3304 { 3305 skb_shinfo(skb)->frag_list = NULL; 3306 } 3307 3308 #define skb_walk_frags(skb, iter) \ 3309 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3310 3311 3312 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3313 const struct sk_buff *skb); 3314 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3315 struct sk_buff_head *queue, 3316 unsigned int flags, 3317 void (*destructor)(struct sock *sk, 3318 struct sk_buff *skb), 3319 int *peeked, int *off, int *err, 3320 struct sk_buff **last); 3321 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3322 void (*destructor)(struct sock *sk, 3323 struct sk_buff *skb), 3324 int *peeked, int *off, int *err, 3325 struct sk_buff **last); 3326 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3327 void (*destructor)(struct sock *sk, 3328 struct sk_buff *skb), 3329 int *peeked, int *off, int *err); 3330 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3331 int *err); 3332 __poll_t datagram_poll(struct file *file, struct socket *sock, 3333 struct poll_table_struct *wait); 3334 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3335 struct iov_iter *to, int size); 3336 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3337 struct msghdr *msg, int size) 3338 { 3339 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3340 } 3341 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3342 struct msghdr *msg); 3343 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3344 struct iov_iter *to, int len, 3345 struct ahash_request *hash); 3346 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3347 struct iov_iter *from, int len); 3348 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3349 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3350 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3351 static inline void skb_free_datagram_locked(struct sock *sk, 3352 struct sk_buff *skb) 3353 { 3354 __skb_free_datagram_locked(sk, skb, 0); 3355 } 3356 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3357 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3358 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3359 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3360 int len, __wsum csum); 3361 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3362 struct pipe_inode_info *pipe, unsigned int len, 3363 unsigned int flags); 3364 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3365 int len); 3366 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3367 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3368 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3369 int len, int hlen); 3370 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3371 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3372 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3373 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3374 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3375 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3376 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3377 int skb_ensure_writable(struct sk_buff *skb, int write_len); 3378 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3379 int skb_vlan_pop(struct sk_buff *skb); 3380 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3381 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3382 gfp_t gfp); 3383 3384 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3385 { 3386 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3387 } 3388 3389 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3390 { 3391 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3392 } 3393 3394 struct skb_checksum_ops { 3395 __wsum (*update)(const void *mem, int len, __wsum wsum); 3396 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3397 }; 3398 3399 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3400 3401 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3402 __wsum csum, const struct skb_checksum_ops *ops); 3403 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3404 __wsum csum); 3405 3406 static inline void * __must_check 3407 __skb_header_pointer(const struct sk_buff *skb, int offset, 3408 int len, void *data, int hlen, void *buffer) 3409 { 3410 if (hlen - offset >= len) 3411 return data + offset; 3412 3413 if (!skb || 3414 skb_copy_bits(skb, offset, buffer, len) < 0) 3415 return NULL; 3416 3417 return buffer; 3418 } 3419 3420 static inline void * __must_check 3421 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3422 { 3423 return __skb_header_pointer(skb, offset, len, skb->data, 3424 skb_headlen(skb), buffer); 3425 } 3426 3427 /** 3428 * skb_needs_linearize - check if we need to linearize a given skb 3429 * depending on the given device features. 3430 * @skb: socket buffer to check 3431 * @features: net device features 3432 * 3433 * Returns true if either: 3434 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3435 * 2. skb is fragmented and the device does not support SG. 3436 */ 3437 static inline bool skb_needs_linearize(struct sk_buff *skb, 3438 netdev_features_t features) 3439 { 3440 return skb_is_nonlinear(skb) && 3441 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3442 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3443 } 3444 3445 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3446 void *to, 3447 const unsigned int len) 3448 { 3449 memcpy(to, skb->data, len); 3450 } 3451 3452 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3453 const int offset, void *to, 3454 const unsigned int len) 3455 { 3456 memcpy(to, skb->data + offset, len); 3457 } 3458 3459 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3460 const void *from, 3461 const unsigned int len) 3462 { 3463 memcpy(skb->data, from, len); 3464 } 3465 3466 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3467 const int offset, 3468 const void *from, 3469 const unsigned int len) 3470 { 3471 memcpy(skb->data + offset, from, len); 3472 } 3473 3474 void skb_init(void); 3475 3476 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3477 { 3478 return skb->tstamp; 3479 } 3480 3481 /** 3482 * skb_get_timestamp - get timestamp from a skb 3483 * @skb: skb to get stamp from 3484 * @stamp: pointer to struct timeval to store stamp in 3485 * 3486 * Timestamps are stored in the skb as offsets to a base timestamp. 3487 * This function converts the offset back to a struct timeval and stores 3488 * it in stamp. 3489 */ 3490 static inline void skb_get_timestamp(const struct sk_buff *skb, 3491 struct timeval *stamp) 3492 { 3493 *stamp = ktime_to_timeval(skb->tstamp); 3494 } 3495 3496 static inline void skb_get_timestampns(const struct sk_buff *skb, 3497 struct timespec *stamp) 3498 { 3499 *stamp = ktime_to_timespec(skb->tstamp); 3500 } 3501 3502 static inline void __net_timestamp(struct sk_buff *skb) 3503 { 3504 skb->tstamp = ktime_get_real(); 3505 } 3506 3507 static inline ktime_t net_timedelta(ktime_t t) 3508 { 3509 return ktime_sub(ktime_get_real(), t); 3510 } 3511 3512 static inline ktime_t net_invalid_timestamp(void) 3513 { 3514 return 0; 3515 } 3516 3517 static inline u8 skb_metadata_len(const struct sk_buff *skb) 3518 { 3519 return skb_shinfo(skb)->meta_len; 3520 } 3521 3522 static inline void *skb_metadata_end(const struct sk_buff *skb) 3523 { 3524 return skb_mac_header(skb); 3525 } 3526 3527 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3528 const struct sk_buff *skb_b, 3529 u8 meta_len) 3530 { 3531 const void *a = skb_metadata_end(skb_a); 3532 const void *b = skb_metadata_end(skb_b); 3533 /* Using more efficient varaiant than plain call to memcmp(). */ 3534 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3535 u64 diffs = 0; 3536 3537 switch (meta_len) { 3538 #define __it(x, op) (x -= sizeof(u##op)) 3539 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3540 case 32: diffs |= __it_diff(a, b, 64); 3541 /* fall through */ 3542 case 24: diffs |= __it_diff(a, b, 64); 3543 /* fall through */ 3544 case 16: diffs |= __it_diff(a, b, 64); 3545 /* fall through */ 3546 case 8: diffs |= __it_diff(a, b, 64); 3547 break; 3548 case 28: diffs |= __it_diff(a, b, 64); 3549 /* fall through */ 3550 case 20: diffs |= __it_diff(a, b, 64); 3551 /* fall through */ 3552 case 12: diffs |= __it_diff(a, b, 64); 3553 /* fall through */ 3554 case 4: diffs |= __it_diff(a, b, 32); 3555 break; 3556 } 3557 return diffs; 3558 #else 3559 return memcmp(a - meta_len, b - meta_len, meta_len); 3560 #endif 3561 } 3562 3563 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3564 const struct sk_buff *skb_b) 3565 { 3566 u8 len_a = skb_metadata_len(skb_a); 3567 u8 len_b = skb_metadata_len(skb_b); 3568 3569 if (!(len_a | len_b)) 3570 return false; 3571 3572 return len_a != len_b ? 3573 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3574 } 3575 3576 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3577 { 3578 skb_shinfo(skb)->meta_len = meta_len; 3579 } 3580 3581 static inline void skb_metadata_clear(struct sk_buff *skb) 3582 { 3583 skb_metadata_set(skb, 0); 3584 } 3585 3586 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3587 3588 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3589 3590 void skb_clone_tx_timestamp(struct sk_buff *skb); 3591 bool skb_defer_rx_timestamp(struct sk_buff *skb); 3592 3593 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3594 3595 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3596 { 3597 } 3598 3599 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3600 { 3601 return false; 3602 } 3603 3604 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3605 3606 /** 3607 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3608 * 3609 * PHY drivers may accept clones of transmitted packets for 3610 * timestamping via their phy_driver.txtstamp method. These drivers 3611 * must call this function to return the skb back to the stack with a 3612 * timestamp. 3613 * 3614 * @skb: clone of the the original outgoing packet 3615 * @hwtstamps: hardware time stamps 3616 * 3617 */ 3618 void skb_complete_tx_timestamp(struct sk_buff *skb, 3619 struct skb_shared_hwtstamps *hwtstamps); 3620 3621 void __skb_tstamp_tx(struct sk_buff *orig_skb, 3622 struct skb_shared_hwtstamps *hwtstamps, 3623 struct sock *sk, int tstype); 3624 3625 /** 3626 * skb_tstamp_tx - queue clone of skb with send time stamps 3627 * @orig_skb: the original outgoing packet 3628 * @hwtstamps: hardware time stamps, may be NULL if not available 3629 * 3630 * If the skb has a socket associated, then this function clones the 3631 * skb (thus sharing the actual data and optional structures), stores 3632 * the optional hardware time stamping information (if non NULL) or 3633 * generates a software time stamp (otherwise), then queues the clone 3634 * to the error queue of the socket. Errors are silently ignored. 3635 */ 3636 void skb_tstamp_tx(struct sk_buff *orig_skb, 3637 struct skb_shared_hwtstamps *hwtstamps); 3638 3639 /** 3640 * skb_tx_timestamp() - Driver hook for transmit timestamping 3641 * 3642 * Ethernet MAC Drivers should call this function in their hard_xmit() 3643 * function immediately before giving the sk_buff to the MAC hardware. 3644 * 3645 * Specifically, one should make absolutely sure that this function is 3646 * called before TX completion of this packet can trigger. Otherwise 3647 * the packet could potentially already be freed. 3648 * 3649 * @skb: A socket buffer. 3650 */ 3651 static inline void skb_tx_timestamp(struct sk_buff *skb) 3652 { 3653 skb_clone_tx_timestamp(skb); 3654 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3655 skb_tstamp_tx(skb, NULL); 3656 } 3657 3658 /** 3659 * skb_complete_wifi_ack - deliver skb with wifi status 3660 * 3661 * @skb: the original outgoing packet 3662 * @acked: ack status 3663 * 3664 */ 3665 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3666 3667 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3668 __sum16 __skb_checksum_complete(struct sk_buff *skb); 3669 3670 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3671 { 3672 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3673 skb->csum_valid || 3674 (skb->ip_summed == CHECKSUM_PARTIAL && 3675 skb_checksum_start_offset(skb) >= 0)); 3676 } 3677 3678 /** 3679 * skb_checksum_complete - Calculate checksum of an entire packet 3680 * @skb: packet to process 3681 * 3682 * This function calculates the checksum over the entire packet plus 3683 * the value of skb->csum. The latter can be used to supply the 3684 * checksum of a pseudo header as used by TCP/UDP. It returns the 3685 * checksum. 3686 * 3687 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3688 * this function can be used to verify that checksum on received 3689 * packets. In that case the function should return zero if the 3690 * checksum is correct. In particular, this function will return zero 3691 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3692 * hardware has already verified the correctness of the checksum. 3693 */ 3694 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3695 { 3696 return skb_csum_unnecessary(skb) ? 3697 0 : __skb_checksum_complete(skb); 3698 } 3699 3700 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3701 { 3702 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3703 if (skb->csum_level == 0) 3704 skb->ip_summed = CHECKSUM_NONE; 3705 else 3706 skb->csum_level--; 3707 } 3708 } 3709 3710 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3711 { 3712 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3713 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3714 skb->csum_level++; 3715 } else if (skb->ip_summed == CHECKSUM_NONE) { 3716 skb->ip_summed = CHECKSUM_UNNECESSARY; 3717 skb->csum_level = 0; 3718 } 3719 } 3720 3721 /* Check if we need to perform checksum complete validation. 3722 * 3723 * Returns true if checksum complete is needed, false otherwise 3724 * (either checksum is unnecessary or zero checksum is allowed). 3725 */ 3726 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3727 bool zero_okay, 3728 __sum16 check) 3729 { 3730 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3731 skb->csum_valid = 1; 3732 __skb_decr_checksum_unnecessary(skb); 3733 return false; 3734 } 3735 3736 return true; 3737 } 3738 3739 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3740 * in checksum_init. 3741 */ 3742 #define CHECKSUM_BREAK 76 3743 3744 /* Unset checksum-complete 3745 * 3746 * Unset checksum complete can be done when packet is being modified 3747 * (uncompressed for instance) and checksum-complete value is 3748 * invalidated. 3749 */ 3750 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3751 { 3752 if (skb->ip_summed == CHECKSUM_COMPLETE) 3753 skb->ip_summed = CHECKSUM_NONE; 3754 } 3755 3756 /* Validate (init) checksum based on checksum complete. 3757 * 3758 * Return values: 3759 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3760 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3761 * checksum is stored in skb->csum for use in __skb_checksum_complete 3762 * non-zero: value of invalid checksum 3763 * 3764 */ 3765 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3766 bool complete, 3767 __wsum psum) 3768 { 3769 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3770 if (!csum_fold(csum_add(psum, skb->csum))) { 3771 skb->csum_valid = 1; 3772 return 0; 3773 } 3774 } 3775 3776 skb->csum = psum; 3777 3778 if (complete || skb->len <= CHECKSUM_BREAK) { 3779 __sum16 csum; 3780 3781 csum = __skb_checksum_complete(skb); 3782 skb->csum_valid = !csum; 3783 return csum; 3784 } 3785 3786 return 0; 3787 } 3788 3789 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3790 { 3791 return 0; 3792 } 3793 3794 /* Perform checksum validate (init). Note that this is a macro since we only 3795 * want to calculate the pseudo header which is an input function if necessary. 3796 * First we try to validate without any computation (checksum unnecessary) and 3797 * then calculate based on checksum complete calling the function to compute 3798 * pseudo header. 3799 * 3800 * Return values: 3801 * 0: checksum is validated or try to in skb_checksum_complete 3802 * non-zero: value of invalid checksum 3803 */ 3804 #define __skb_checksum_validate(skb, proto, complete, \ 3805 zero_okay, check, compute_pseudo) \ 3806 ({ \ 3807 __sum16 __ret = 0; \ 3808 skb->csum_valid = 0; \ 3809 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3810 __ret = __skb_checksum_validate_complete(skb, \ 3811 complete, compute_pseudo(skb, proto)); \ 3812 __ret; \ 3813 }) 3814 3815 #define skb_checksum_init(skb, proto, compute_pseudo) \ 3816 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3817 3818 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3819 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3820 3821 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 3822 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3823 3824 #define skb_checksum_validate_zero_check(skb, proto, check, \ 3825 compute_pseudo) \ 3826 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3827 3828 #define skb_checksum_simple_validate(skb) \ 3829 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3830 3831 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3832 { 3833 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3834 } 3835 3836 static inline void __skb_checksum_convert(struct sk_buff *skb, 3837 __sum16 check, __wsum pseudo) 3838 { 3839 skb->csum = ~pseudo; 3840 skb->ip_summed = CHECKSUM_COMPLETE; 3841 } 3842 3843 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3844 do { \ 3845 if (__skb_checksum_convert_check(skb)) \ 3846 __skb_checksum_convert(skb, check, \ 3847 compute_pseudo(skb, proto)); \ 3848 } while (0) 3849 3850 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3851 u16 start, u16 offset) 3852 { 3853 skb->ip_summed = CHECKSUM_PARTIAL; 3854 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3855 skb->csum_offset = offset - start; 3856 } 3857 3858 /* Update skbuf and packet to reflect the remote checksum offload operation. 3859 * When called, ptr indicates the starting point for skb->csum when 3860 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3861 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3862 */ 3863 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3864 int start, int offset, bool nopartial) 3865 { 3866 __wsum delta; 3867 3868 if (!nopartial) { 3869 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3870 return; 3871 } 3872 3873 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3874 __skb_checksum_complete(skb); 3875 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3876 } 3877 3878 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3879 3880 /* Adjust skb->csum since we changed the packet */ 3881 skb->csum = csum_add(skb->csum, delta); 3882 } 3883 3884 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3885 { 3886 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 3887 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3888 #else 3889 return NULL; 3890 #endif 3891 } 3892 3893 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3894 void nf_conntrack_destroy(struct nf_conntrack *nfct); 3895 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3896 { 3897 if (nfct && atomic_dec_and_test(&nfct->use)) 3898 nf_conntrack_destroy(nfct); 3899 } 3900 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3901 { 3902 if (nfct) 3903 atomic_inc(&nfct->use); 3904 } 3905 #endif 3906 3907 #ifdef CONFIG_SKB_EXTENSIONS 3908 enum skb_ext_id { 3909 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3910 SKB_EXT_BRIDGE_NF, 3911 #endif 3912 #ifdef CONFIG_XFRM 3913 SKB_EXT_SEC_PATH, 3914 #endif 3915 SKB_EXT_NUM, /* must be last */ 3916 }; 3917 3918 /** 3919 * struct skb_ext - sk_buff extensions 3920 * @refcnt: 1 on allocation, deallocated on 0 3921 * @offset: offset to add to @data to obtain extension address 3922 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 3923 * @data: start of extension data, variable sized 3924 * 3925 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 3926 * to use 'u8' types while allowing up to 2kb worth of extension data. 3927 */ 3928 struct skb_ext { 3929 refcount_t refcnt; 3930 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 3931 u8 chunks; /* same */ 3932 char data[0] __aligned(8); 3933 }; 3934 3935 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 3936 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 3937 void __skb_ext_put(struct skb_ext *ext); 3938 3939 static inline void skb_ext_put(struct sk_buff *skb) 3940 { 3941 if (skb->active_extensions) 3942 __skb_ext_put(skb->extensions); 3943 } 3944 3945 static inline void __skb_ext_copy(struct sk_buff *dst, 3946 const struct sk_buff *src) 3947 { 3948 dst->active_extensions = src->active_extensions; 3949 3950 if (src->active_extensions) { 3951 struct skb_ext *ext = src->extensions; 3952 3953 refcount_inc(&ext->refcnt); 3954 dst->extensions = ext; 3955 } 3956 } 3957 3958 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 3959 { 3960 skb_ext_put(dst); 3961 __skb_ext_copy(dst, src); 3962 } 3963 3964 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 3965 { 3966 return !!ext->offset[i]; 3967 } 3968 3969 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 3970 { 3971 return skb->active_extensions & (1 << id); 3972 } 3973 3974 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 3975 { 3976 if (skb_ext_exist(skb, id)) 3977 __skb_ext_del(skb, id); 3978 } 3979 3980 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 3981 { 3982 if (skb_ext_exist(skb, id)) { 3983 struct skb_ext *ext = skb->extensions; 3984 3985 return (void *)ext + (ext->offset[id] << 3); 3986 } 3987 3988 return NULL; 3989 } 3990 #else 3991 static inline void skb_ext_put(struct sk_buff *skb) {} 3992 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 3993 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 3994 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 3995 #endif /* CONFIG_SKB_EXTENSIONS */ 3996 3997 static inline void nf_reset(struct sk_buff *skb) 3998 { 3999 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4000 nf_conntrack_put(skb_nfct(skb)); 4001 skb->_nfct = 0; 4002 #endif 4003 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4004 skb_ext_del(skb, SKB_EXT_BRIDGE_NF); 4005 #endif 4006 } 4007 4008 static inline void nf_reset_trace(struct sk_buff *skb) 4009 { 4010 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4011 skb->nf_trace = 0; 4012 #endif 4013 } 4014 4015 static inline void ipvs_reset(struct sk_buff *skb) 4016 { 4017 #if IS_ENABLED(CONFIG_IP_VS) 4018 skb->ipvs_property = 0; 4019 #endif 4020 } 4021 4022 /* Note: This doesn't put any conntrack info in dst. */ 4023 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4024 bool copy) 4025 { 4026 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4027 dst->_nfct = src->_nfct; 4028 nf_conntrack_get(skb_nfct(src)); 4029 #endif 4030 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4031 if (copy) 4032 dst->nf_trace = src->nf_trace; 4033 #endif 4034 } 4035 4036 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4037 { 4038 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4039 nf_conntrack_put(skb_nfct(dst)); 4040 #endif 4041 __nf_copy(dst, src, true); 4042 } 4043 4044 #ifdef CONFIG_NETWORK_SECMARK 4045 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4046 { 4047 to->secmark = from->secmark; 4048 } 4049 4050 static inline void skb_init_secmark(struct sk_buff *skb) 4051 { 4052 skb->secmark = 0; 4053 } 4054 #else 4055 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4056 { } 4057 4058 static inline void skb_init_secmark(struct sk_buff *skb) 4059 { } 4060 #endif 4061 4062 static inline int secpath_exists(const struct sk_buff *skb) 4063 { 4064 #ifdef CONFIG_XFRM 4065 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4066 #else 4067 return 0; 4068 #endif 4069 } 4070 4071 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4072 { 4073 return !skb->destructor && 4074 !secpath_exists(skb) && 4075 !skb_nfct(skb) && 4076 !skb->_skb_refdst && 4077 !skb_has_frag_list(skb); 4078 } 4079 4080 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4081 { 4082 skb->queue_mapping = queue_mapping; 4083 } 4084 4085 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4086 { 4087 return skb->queue_mapping; 4088 } 4089 4090 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4091 { 4092 to->queue_mapping = from->queue_mapping; 4093 } 4094 4095 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4096 { 4097 skb->queue_mapping = rx_queue + 1; 4098 } 4099 4100 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4101 { 4102 return skb->queue_mapping - 1; 4103 } 4104 4105 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4106 { 4107 return skb->queue_mapping != 0; 4108 } 4109 4110 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4111 { 4112 skb->dst_pending_confirm = val; 4113 } 4114 4115 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4116 { 4117 return skb->dst_pending_confirm != 0; 4118 } 4119 4120 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4121 { 4122 #ifdef CONFIG_XFRM 4123 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4124 #else 4125 return NULL; 4126 #endif 4127 } 4128 4129 /* Keeps track of mac header offset relative to skb->head. 4130 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4131 * For non-tunnel skb it points to skb_mac_header() and for 4132 * tunnel skb it points to outer mac header. 4133 * Keeps track of level of encapsulation of network headers. 4134 */ 4135 struct skb_gso_cb { 4136 union { 4137 int mac_offset; 4138 int data_offset; 4139 }; 4140 int encap_level; 4141 __wsum csum; 4142 __u16 csum_start; 4143 }; 4144 #define SKB_SGO_CB_OFFSET 32 4145 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 4146 4147 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4148 { 4149 return (skb_mac_header(inner_skb) - inner_skb->head) - 4150 SKB_GSO_CB(inner_skb)->mac_offset; 4151 } 4152 4153 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4154 { 4155 int new_headroom, headroom; 4156 int ret; 4157 4158 headroom = skb_headroom(skb); 4159 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4160 if (ret) 4161 return ret; 4162 4163 new_headroom = skb_headroom(skb); 4164 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4165 return 0; 4166 } 4167 4168 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4169 { 4170 /* Do not update partial checksums if remote checksum is enabled. */ 4171 if (skb->remcsum_offload) 4172 return; 4173 4174 SKB_GSO_CB(skb)->csum = res; 4175 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4176 } 4177 4178 /* Compute the checksum for a gso segment. First compute the checksum value 4179 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4180 * then add in skb->csum (checksum from csum_start to end of packet). 4181 * skb->csum and csum_start are then updated to reflect the checksum of the 4182 * resultant packet starting from the transport header-- the resultant checksum 4183 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4184 * header. 4185 */ 4186 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4187 { 4188 unsigned char *csum_start = skb_transport_header(skb); 4189 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4190 __wsum partial = SKB_GSO_CB(skb)->csum; 4191 4192 SKB_GSO_CB(skb)->csum = res; 4193 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4194 4195 return csum_fold(csum_partial(csum_start, plen, partial)); 4196 } 4197 4198 static inline bool skb_is_gso(const struct sk_buff *skb) 4199 { 4200 return skb_shinfo(skb)->gso_size; 4201 } 4202 4203 /* Note: Should be called only if skb_is_gso(skb) is true */ 4204 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4205 { 4206 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4207 } 4208 4209 /* Note: Should be called only if skb_is_gso(skb) is true */ 4210 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4211 { 4212 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4213 } 4214 4215 static inline void skb_gso_reset(struct sk_buff *skb) 4216 { 4217 skb_shinfo(skb)->gso_size = 0; 4218 skb_shinfo(skb)->gso_segs = 0; 4219 skb_shinfo(skb)->gso_type = 0; 4220 } 4221 4222 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4223 u16 increment) 4224 { 4225 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4226 return; 4227 shinfo->gso_size += increment; 4228 } 4229 4230 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4231 u16 decrement) 4232 { 4233 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4234 return; 4235 shinfo->gso_size -= decrement; 4236 } 4237 4238 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4239 4240 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4241 { 4242 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4243 * wanted then gso_type will be set. */ 4244 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4245 4246 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4247 unlikely(shinfo->gso_type == 0)) { 4248 __skb_warn_lro_forwarding(skb); 4249 return true; 4250 } 4251 return false; 4252 } 4253 4254 static inline void skb_forward_csum(struct sk_buff *skb) 4255 { 4256 /* Unfortunately we don't support this one. Any brave souls? */ 4257 if (skb->ip_summed == CHECKSUM_COMPLETE) 4258 skb->ip_summed = CHECKSUM_NONE; 4259 } 4260 4261 /** 4262 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4263 * @skb: skb to check 4264 * 4265 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4266 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4267 * use this helper, to document places where we make this assertion. 4268 */ 4269 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4270 { 4271 #ifdef DEBUG 4272 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4273 #endif 4274 } 4275 4276 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4277 4278 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4279 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4280 unsigned int transport_len, 4281 __sum16(*skb_chkf)(struct sk_buff *skb)); 4282 4283 /** 4284 * skb_head_is_locked - Determine if the skb->head is locked down 4285 * @skb: skb to check 4286 * 4287 * The head on skbs build around a head frag can be removed if they are 4288 * not cloned. This function returns true if the skb head is locked down 4289 * due to either being allocated via kmalloc, or by being a clone with 4290 * multiple references to the head. 4291 */ 4292 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4293 { 4294 return !skb->head_frag || skb_cloned(skb); 4295 } 4296 4297 /* Local Checksum Offload. 4298 * Compute outer checksum based on the assumption that the 4299 * inner checksum will be offloaded later. 4300 * See Documentation/networking/checksum-offloads.txt for 4301 * explanation of how this works. 4302 * Fill in outer checksum adjustment (e.g. with sum of outer 4303 * pseudo-header) before calling. 4304 * Also ensure that inner checksum is in linear data area. 4305 */ 4306 static inline __wsum lco_csum(struct sk_buff *skb) 4307 { 4308 unsigned char *csum_start = skb_checksum_start(skb); 4309 unsigned char *l4_hdr = skb_transport_header(skb); 4310 __wsum partial; 4311 4312 /* Start with complement of inner checksum adjustment */ 4313 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4314 skb->csum_offset)); 4315 4316 /* Add in checksum of our headers (incl. outer checksum 4317 * adjustment filled in by caller) and return result. 4318 */ 4319 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4320 } 4321 4322 #endif /* __KERNEL__ */ 4323 #endif /* _LINUX_SKBUFF_H */ 4324