xref: /linux-6.15/include/linux/skbuff.h (revision f60d24d2)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 
128 typedef struct skb_frag_struct skb_frag_t;
129 
130 struct skb_frag_struct {
131 	struct page *page;
132 	__u32 page_offset;
133 	__u32 size;
134 };
135 
136 #define HAVE_HW_TIME_STAMP
137 
138 /**
139  * struct skb_shared_hwtstamps - hardware time stamps
140  * @hwtstamp:	hardware time stamp transformed into duration
141  *		since arbitrary point in time
142  * @syststamp:	hwtstamp transformed to system time base
143  *
144  * Software time stamps generated by ktime_get_real() are stored in
145  * skb->tstamp. The relation between the different kinds of time
146  * stamps is as follows:
147  *
148  * syststamp and tstamp can be compared against each other in
149  * arbitrary combinations.  The accuracy of a
150  * syststamp/tstamp/"syststamp from other device" comparison is
151  * limited by the accuracy of the transformation into system time
152  * base. This depends on the device driver and its underlying
153  * hardware.
154  *
155  * hwtstamps can only be compared against other hwtstamps from
156  * the same device.
157  *
158  * This structure is attached to packets as part of the
159  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160  */
161 struct skb_shared_hwtstamps {
162 	ktime_t	hwtstamp;
163 	ktime_t	syststamp;
164 };
165 
166 /**
167  * struct skb_shared_tx - instructions for time stamping of outgoing packets
168  * @hardware:		generate hardware time stamp
169  * @software:		generate software time stamp
170  * @in_progress:	device driver is going to provide
171  *			hardware time stamp
172  * @flags:		all shared_tx flags
173  *
174  * These flags are attached to packets as part of the
175  * &skb_shared_info. Use skb_tx() to get a pointer.
176  */
177 union skb_shared_tx {
178 	struct {
179 		__u8	hardware:1,
180 			software:1,
181 			in_progress:1;
182 	};
183 	__u8 flags;
184 };
185 
186 /* This data is invariant across clones and lives at
187  * the end of the header data, ie. at skb->end.
188  */
189 struct skb_shared_info {
190 	atomic_t	dataref;
191 	unsigned short	nr_frags;
192 	unsigned short	gso_size;
193 #ifdef CONFIG_HAS_DMA
194 	dma_addr_t	dma_head;
195 #endif
196 	/* Warning: this field is not always filled in (UFO)! */
197 	unsigned short	gso_segs;
198 	unsigned short  gso_type;
199 	__be32          ip6_frag_id;
200 	union skb_shared_tx tx_flags;
201 	struct sk_buff	*frag_list;
202 	struct skb_shared_hwtstamps hwtstamps;
203 	skb_frag_t	frags[MAX_SKB_FRAGS];
204 #ifdef CONFIG_HAS_DMA
205 	dma_addr_t	dma_maps[MAX_SKB_FRAGS];
206 #endif
207 	/* Intermediate layers must ensure that destructor_arg
208 	 * remains valid until skb destructor */
209 	void *		destructor_arg;
210 };
211 
212 /* We divide dataref into two halves.  The higher 16 bits hold references
213  * to the payload part of skb->data.  The lower 16 bits hold references to
214  * the entire skb->data.  A clone of a headerless skb holds the length of
215  * the header in skb->hdr_len.
216  *
217  * All users must obey the rule that the skb->data reference count must be
218  * greater than or equal to the payload reference count.
219  *
220  * Holding a reference to the payload part means that the user does not
221  * care about modifications to the header part of skb->data.
222  */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225 
226 
227 enum {
228 	SKB_FCLONE_UNAVAILABLE,
229 	SKB_FCLONE_ORIG,
230 	SKB_FCLONE_CLONE,
231 };
232 
233 enum {
234 	SKB_GSO_TCPV4 = 1 << 0,
235 	SKB_GSO_UDP = 1 << 1,
236 
237 	/* This indicates the skb is from an untrusted source. */
238 	SKB_GSO_DODGY = 1 << 2,
239 
240 	/* This indicates the tcp segment has CWR set. */
241 	SKB_GSO_TCP_ECN = 1 << 3,
242 
243 	SKB_GSO_TCPV6 = 1 << 4,
244 
245 	SKB_GSO_FCOE = 1 << 5,
246 };
247 
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251 
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257 
258 /**
259  *	struct sk_buff - socket buffer
260  *	@next: Next buffer in list
261  *	@prev: Previous buffer in list
262  *	@sk: Socket we are owned by
263  *	@tstamp: Time we arrived
264  *	@dev: Device we arrived on/are leaving by
265  *	@transport_header: Transport layer header
266  *	@network_header: Network layer header
267  *	@mac_header: Link layer header
268  *	@_skb_dst: destination entry
269  *	@sp: the security path, used for xfrm
270  *	@cb: Control buffer. Free for use by every layer. Put private vars here
271  *	@len: Length of actual data
272  *	@data_len: Data length
273  *	@mac_len: Length of link layer header
274  *	@hdr_len: writable header length of cloned skb
275  *	@csum: Checksum (must include start/offset pair)
276  *	@csum_start: Offset from skb->head where checksumming should start
277  *	@csum_offset: Offset from csum_start where checksum should be stored
278  *	@local_df: allow local fragmentation
279  *	@cloned: Head may be cloned (check refcnt to be sure)
280  *	@nohdr: Payload reference only, must not modify header
281  *	@pkt_type: Packet class
282  *	@fclone: skbuff clone status
283  *	@ip_summed: Driver fed us an IP checksum
284  *	@priority: Packet queueing priority
285  *	@users: User count - see {datagram,tcp}.c
286  *	@protocol: Packet protocol from driver
287  *	@truesize: Buffer size
288  *	@head: Head of buffer
289  *	@data: Data head pointer
290  *	@tail: Tail pointer
291  *	@end: End pointer
292  *	@destructor: Destruct function
293  *	@mark: Generic packet mark
294  *	@nfct: Associated connection, if any
295  *	@ipvs_property: skbuff is owned by ipvs
296  *	@peeked: this packet has been seen already, so stats have been
297  *		done for it, don't do them again
298  *	@nf_trace: netfilter packet trace flag
299  *	@nfctinfo: Relationship of this skb to the connection
300  *	@nfct_reasm: netfilter conntrack re-assembly pointer
301  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302  *	@iif: ifindex of device we arrived on
303  *	@queue_mapping: Queue mapping for multiqueue devices
304  *	@tc_index: Traffic control index
305  *	@tc_verd: traffic control verdict
306  *	@ndisc_nodetype: router type (from link layer)
307  *	@dma_cookie: a cookie to one of several possible DMA operations
308  *		done by skb DMA functions
309  *	@secmark: security marking
310  *	@vlan_tci: vlan tag control information
311  */
312 
313 struct sk_buff {
314 	/* These two members must be first. */
315 	struct sk_buff		*next;
316 	struct sk_buff		*prev;
317 
318 	struct sock		*sk;
319 	ktime_t			tstamp;
320 	struct net_device	*dev;
321 
322 	unsigned long		_skb_dst;
323 #ifdef CONFIG_XFRM
324 	struct	sec_path	*sp;
325 #endif
326 	/*
327 	 * This is the control buffer. It is free to use for every
328 	 * layer. Please put your private variables there. If you
329 	 * want to keep them across layers you have to do a skb_clone()
330 	 * first. This is owned by whoever has the skb queued ATM.
331 	 */
332 	char			cb[48];
333 
334 	unsigned int		len,
335 				data_len;
336 	__u16			mac_len,
337 				hdr_len;
338 	union {
339 		__wsum		csum;
340 		struct {
341 			__u16	csum_start;
342 			__u16	csum_offset;
343 		};
344 	};
345 	__u32			priority;
346 	kmemcheck_bitfield_begin(flags1);
347 	__u8			local_df:1,
348 				cloned:1,
349 				ip_summed:2,
350 				nohdr:1,
351 				nfctinfo:3;
352 	__u8			pkt_type:3,
353 				fclone:2,
354 				ipvs_property:1,
355 				peeked:1,
356 				nf_trace:1;
357 	kmemcheck_bitfield_end(flags1);
358 	__be16			protocol;
359 
360 	void			(*destructor)(struct sk_buff *skb);
361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
362 	struct nf_conntrack	*nfct;
363 	struct sk_buff		*nfct_reasm;
364 #endif
365 #ifdef CONFIG_BRIDGE_NETFILTER
366 	struct nf_bridge_info	*nf_bridge;
367 #endif
368 
369 	int			iif;
370 	__u16			queue_mapping;
371 #ifdef CONFIG_NET_SCHED
372 	__u16			tc_index;	/* traffic control index */
373 #ifdef CONFIG_NET_CLS_ACT
374 	__u16			tc_verd;	/* traffic control verdict */
375 #endif
376 #endif
377 
378 	kmemcheck_bitfield_begin(flags2);
379 #ifdef CONFIG_IPV6_NDISC_NODETYPE
380 	__u8			ndisc_nodetype:2;
381 #endif
382 	kmemcheck_bitfield_end(flags2);
383 
384 	/* 0/14 bit hole */
385 
386 #ifdef CONFIG_NET_DMA
387 	dma_cookie_t		dma_cookie;
388 #endif
389 #ifdef CONFIG_NETWORK_SECMARK
390 	__u32			secmark;
391 #endif
392 
393 	__u32			mark;
394 
395 	__u16			vlan_tci;
396 
397 	sk_buff_data_t		transport_header;
398 	sk_buff_data_t		network_header;
399 	sk_buff_data_t		mac_header;
400 	/* These elements must be at the end, see alloc_skb() for details.  */
401 	sk_buff_data_t		tail;
402 	sk_buff_data_t		end;
403 	unsigned char		*head,
404 				*data;
405 	unsigned int		truesize;
406 	atomic_t		users;
407 };
408 
409 #ifdef __KERNEL__
410 /*
411  *	Handling routines are only of interest to the kernel
412  */
413 #include <linux/slab.h>
414 
415 #include <asm/system.h>
416 
417 #ifdef CONFIG_HAS_DMA
418 #include <linux/dma-mapping.h>
419 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
420 		       enum dma_data_direction dir);
421 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
422 			  enum dma_data_direction dir);
423 #endif
424 
425 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
426 {
427 	return (struct dst_entry *)skb->_skb_dst;
428 }
429 
430 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
431 {
432 	skb->_skb_dst = (unsigned long)dst;
433 }
434 
435 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
436 {
437 	return (struct rtable *)skb_dst(skb);
438 }
439 
440 extern void kfree_skb(struct sk_buff *skb);
441 extern void consume_skb(struct sk_buff *skb);
442 extern void	       __kfree_skb(struct sk_buff *skb);
443 extern struct sk_buff *__alloc_skb(unsigned int size,
444 				   gfp_t priority, int fclone, int node);
445 static inline struct sk_buff *alloc_skb(unsigned int size,
446 					gfp_t priority)
447 {
448 	return __alloc_skb(size, priority, 0, -1);
449 }
450 
451 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
452 					       gfp_t priority)
453 {
454 	return __alloc_skb(size, priority, 1, -1);
455 }
456 
457 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
458 
459 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
460 extern struct sk_buff *skb_clone(struct sk_buff *skb,
461 				 gfp_t priority);
462 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
463 				gfp_t priority);
464 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
465 				 gfp_t gfp_mask);
466 extern int	       pskb_expand_head(struct sk_buff *skb,
467 					int nhead, int ntail,
468 					gfp_t gfp_mask);
469 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
470 					    unsigned int headroom);
471 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
472 				       int newheadroom, int newtailroom,
473 				       gfp_t priority);
474 extern int	       skb_to_sgvec(struct sk_buff *skb,
475 				    struct scatterlist *sg, int offset,
476 				    int len);
477 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
478 				    struct sk_buff **trailer);
479 extern int	       skb_pad(struct sk_buff *skb, int pad);
480 #define dev_kfree_skb(a)	consume_skb(a)
481 #define dev_consume_skb(a)	kfree_skb_clean(a)
482 extern void	      skb_over_panic(struct sk_buff *skb, int len,
483 				     void *here);
484 extern void	      skb_under_panic(struct sk_buff *skb, int len,
485 				      void *here);
486 
487 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
488 			int getfrag(void *from, char *to, int offset,
489 			int len,int odd, struct sk_buff *skb),
490 			void *from, int length);
491 
492 struct skb_seq_state
493 {
494 	__u32		lower_offset;
495 	__u32		upper_offset;
496 	__u32		frag_idx;
497 	__u32		stepped_offset;
498 	struct sk_buff	*root_skb;
499 	struct sk_buff	*cur_skb;
500 	__u8		*frag_data;
501 };
502 
503 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
504 					   unsigned int from, unsigned int to,
505 					   struct skb_seq_state *st);
506 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
507 				   struct skb_seq_state *st);
508 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
509 
510 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
511 				    unsigned int to, struct ts_config *config,
512 				    struct ts_state *state);
513 
514 #ifdef NET_SKBUFF_DATA_USES_OFFSET
515 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
516 {
517 	return skb->head + skb->end;
518 }
519 #else
520 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
521 {
522 	return skb->end;
523 }
524 #endif
525 
526 /* Internal */
527 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
528 
529 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
530 {
531 	return &skb_shinfo(skb)->hwtstamps;
532 }
533 
534 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
535 {
536 	return &skb_shinfo(skb)->tx_flags;
537 }
538 
539 /**
540  *	skb_queue_empty - check if a queue is empty
541  *	@list: queue head
542  *
543  *	Returns true if the queue is empty, false otherwise.
544  */
545 static inline int skb_queue_empty(const struct sk_buff_head *list)
546 {
547 	return list->next == (struct sk_buff *)list;
548 }
549 
550 /**
551  *	skb_queue_is_last - check if skb is the last entry in the queue
552  *	@list: queue head
553  *	@skb: buffer
554  *
555  *	Returns true if @skb is the last buffer on the list.
556  */
557 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
558 				     const struct sk_buff *skb)
559 {
560 	return (skb->next == (struct sk_buff *) list);
561 }
562 
563 /**
564  *	skb_queue_is_first - check if skb is the first entry in the queue
565  *	@list: queue head
566  *	@skb: buffer
567  *
568  *	Returns true if @skb is the first buffer on the list.
569  */
570 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
571 				      const struct sk_buff *skb)
572 {
573 	return (skb->prev == (struct sk_buff *) list);
574 }
575 
576 /**
577  *	skb_queue_next - return the next packet in the queue
578  *	@list: queue head
579  *	@skb: current buffer
580  *
581  *	Return the next packet in @list after @skb.  It is only valid to
582  *	call this if skb_queue_is_last() evaluates to false.
583  */
584 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
585 					     const struct sk_buff *skb)
586 {
587 	/* This BUG_ON may seem severe, but if we just return then we
588 	 * are going to dereference garbage.
589 	 */
590 	BUG_ON(skb_queue_is_last(list, skb));
591 	return skb->next;
592 }
593 
594 /**
595  *	skb_queue_prev - return the prev packet in the queue
596  *	@list: queue head
597  *	@skb: current buffer
598  *
599  *	Return the prev packet in @list before @skb.  It is only valid to
600  *	call this if skb_queue_is_first() evaluates to false.
601  */
602 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
603 					     const struct sk_buff *skb)
604 {
605 	/* This BUG_ON may seem severe, but if we just return then we
606 	 * are going to dereference garbage.
607 	 */
608 	BUG_ON(skb_queue_is_first(list, skb));
609 	return skb->prev;
610 }
611 
612 /**
613  *	skb_get - reference buffer
614  *	@skb: buffer to reference
615  *
616  *	Makes another reference to a socket buffer and returns a pointer
617  *	to the buffer.
618  */
619 static inline struct sk_buff *skb_get(struct sk_buff *skb)
620 {
621 	atomic_inc(&skb->users);
622 	return skb;
623 }
624 
625 /*
626  * If users == 1, we are the only owner and are can avoid redundant
627  * atomic change.
628  */
629 
630 /**
631  *	skb_cloned - is the buffer a clone
632  *	@skb: buffer to check
633  *
634  *	Returns true if the buffer was generated with skb_clone() and is
635  *	one of multiple shared copies of the buffer. Cloned buffers are
636  *	shared data so must not be written to under normal circumstances.
637  */
638 static inline int skb_cloned(const struct sk_buff *skb)
639 {
640 	return skb->cloned &&
641 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
642 }
643 
644 /**
645  *	skb_header_cloned - is the header a clone
646  *	@skb: buffer to check
647  *
648  *	Returns true if modifying the header part of the buffer requires
649  *	the data to be copied.
650  */
651 static inline int skb_header_cloned(const struct sk_buff *skb)
652 {
653 	int dataref;
654 
655 	if (!skb->cloned)
656 		return 0;
657 
658 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
659 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
660 	return dataref != 1;
661 }
662 
663 /**
664  *	skb_header_release - release reference to header
665  *	@skb: buffer to operate on
666  *
667  *	Drop a reference to the header part of the buffer.  This is done
668  *	by acquiring a payload reference.  You must not read from the header
669  *	part of skb->data after this.
670  */
671 static inline void skb_header_release(struct sk_buff *skb)
672 {
673 	BUG_ON(skb->nohdr);
674 	skb->nohdr = 1;
675 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
676 }
677 
678 /**
679  *	skb_shared - is the buffer shared
680  *	@skb: buffer to check
681  *
682  *	Returns true if more than one person has a reference to this
683  *	buffer.
684  */
685 static inline int skb_shared(const struct sk_buff *skb)
686 {
687 	return atomic_read(&skb->users) != 1;
688 }
689 
690 /**
691  *	skb_share_check - check if buffer is shared and if so clone it
692  *	@skb: buffer to check
693  *	@pri: priority for memory allocation
694  *
695  *	If the buffer is shared the buffer is cloned and the old copy
696  *	drops a reference. A new clone with a single reference is returned.
697  *	If the buffer is not shared the original buffer is returned. When
698  *	being called from interrupt status or with spinlocks held pri must
699  *	be GFP_ATOMIC.
700  *
701  *	NULL is returned on a memory allocation failure.
702  */
703 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
704 					      gfp_t pri)
705 {
706 	might_sleep_if(pri & __GFP_WAIT);
707 	if (skb_shared(skb)) {
708 		struct sk_buff *nskb = skb_clone(skb, pri);
709 		kfree_skb(skb);
710 		skb = nskb;
711 	}
712 	return skb;
713 }
714 
715 /*
716  *	Copy shared buffers into a new sk_buff. We effectively do COW on
717  *	packets to handle cases where we have a local reader and forward
718  *	and a couple of other messy ones. The normal one is tcpdumping
719  *	a packet thats being forwarded.
720  */
721 
722 /**
723  *	skb_unshare - make a copy of a shared buffer
724  *	@skb: buffer to check
725  *	@pri: priority for memory allocation
726  *
727  *	If the socket buffer is a clone then this function creates a new
728  *	copy of the data, drops a reference count on the old copy and returns
729  *	the new copy with the reference count at 1. If the buffer is not a clone
730  *	the original buffer is returned. When called with a spinlock held or
731  *	from interrupt state @pri must be %GFP_ATOMIC
732  *
733  *	%NULL is returned on a memory allocation failure.
734  */
735 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
736 					  gfp_t pri)
737 {
738 	might_sleep_if(pri & __GFP_WAIT);
739 	if (skb_cloned(skb)) {
740 		struct sk_buff *nskb = skb_copy(skb, pri);
741 		kfree_skb(skb);	/* Free our shared copy */
742 		skb = nskb;
743 	}
744 	return skb;
745 }
746 
747 /**
748  *	skb_peek
749  *	@list_: list to peek at
750  *
751  *	Peek an &sk_buff. Unlike most other operations you _MUST_
752  *	be careful with this one. A peek leaves the buffer on the
753  *	list and someone else may run off with it. You must hold
754  *	the appropriate locks or have a private queue to do this.
755  *
756  *	Returns %NULL for an empty list or a pointer to the head element.
757  *	The reference count is not incremented and the reference is therefore
758  *	volatile. Use with caution.
759  */
760 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
761 {
762 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
763 	if (list == (struct sk_buff *)list_)
764 		list = NULL;
765 	return list;
766 }
767 
768 /**
769  *	skb_peek_tail
770  *	@list_: list to peek at
771  *
772  *	Peek an &sk_buff. Unlike most other operations you _MUST_
773  *	be careful with this one. A peek leaves the buffer on the
774  *	list and someone else may run off with it. You must hold
775  *	the appropriate locks or have a private queue to do this.
776  *
777  *	Returns %NULL for an empty list or a pointer to the tail element.
778  *	The reference count is not incremented and the reference is therefore
779  *	volatile. Use with caution.
780  */
781 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
782 {
783 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
784 	if (list == (struct sk_buff *)list_)
785 		list = NULL;
786 	return list;
787 }
788 
789 /**
790  *	skb_queue_len	- get queue length
791  *	@list_: list to measure
792  *
793  *	Return the length of an &sk_buff queue.
794  */
795 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
796 {
797 	return list_->qlen;
798 }
799 
800 /**
801  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
802  *	@list: queue to initialize
803  *
804  *	This initializes only the list and queue length aspects of
805  *	an sk_buff_head object.  This allows to initialize the list
806  *	aspects of an sk_buff_head without reinitializing things like
807  *	the spinlock.  It can also be used for on-stack sk_buff_head
808  *	objects where the spinlock is known to not be used.
809  */
810 static inline void __skb_queue_head_init(struct sk_buff_head *list)
811 {
812 	list->prev = list->next = (struct sk_buff *)list;
813 	list->qlen = 0;
814 }
815 
816 /*
817  * This function creates a split out lock class for each invocation;
818  * this is needed for now since a whole lot of users of the skb-queue
819  * infrastructure in drivers have different locking usage (in hardirq)
820  * than the networking core (in softirq only). In the long run either the
821  * network layer or drivers should need annotation to consolidate the
822  * main types of usage into 3 classes.
823  */
824 static inline void skb_queue_head_init(struct sk_buff_head *list)
825 {
826 	spin_lock_init(&list->lock);
827 	__skb_queue_head_init(list);
828 }
829 
830 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
831 		struct lock_class_key *class)
832 {
833 	skb_queue_head_init(list);
834 	lockdep_set_class(&list->lock, class);
835 }
836 
837 /*
838  *	Insert an sk_buff on a list.
839  *
840  *	The "__skb_xxxx()" functions are the non-atomic ones that
841  *	can only be called with interrupts disabled.
842  */
843 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
844 static inline void __skb_insert(struct sk_buff *newsk,
845 				struct sk_buff *prev, struct sk_buff *next,
846 				struct sk_buff_head *list)
847 {
848 	newsk->next = next;
849 	newsk->prev = prev;
850 	next->prev  = prev->next = newsk;
851 	list->qlen++;
852 }
853 
854 static inline void __skb_queue_splice(const struct sk_buff_head *list,
855 				      struct sk_buff *prev,
856 				      struct sk_buff *next)
857 {
858 	struct sk_buff *first = list->next;
859 	struct sk_buff *last = list->prev;
860 
861 	first->prev = prev;
862 	prev->next = first;
863 
864 	last->next = next;
865 	next->prev = last;
866 }
867 
868 /**
869  *	skb_queue_splice - join two skb lists, this is designed for stacks
870  *	@list: the new list to add
871  *	@head: the place to add it in the first list
872  */
873 static inline void skb_queue_splice(const struct sk_buff_head *list,
874 				    struct sk_buff_head *head)
875 {
876 	if (!skb_queue_empty(list)) {
877 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
878 		head->qlen += list->qlen;
879 	}
880 }
881 
882 /**
883  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
884  *	@list: the new list to add
885  *	@head: the place to add it in the first list
886  *
887  *	The list at @list is reinitialised
888  */
889 static inline void skb_queue_splice_init(struct sk_buff_head *list,
890 					 struct sk_buff_head *head)
891 {
892 	if (!skb_queue_empty(list)) {
893 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
894 		head->qlen += list->qlen;
895 		__skb_queue_head_init(list);
896 	}
897 }
898 
899 /**
900  *	skb_queue_splice_tail - join two skb lists, each list being a queue
901  *	@list: the new list to add
902  *	@head: the place to add it in the first list
903  */
904 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
905 					 struct sk_buff_head *head)
906 {
907 	if (!skb_queue_empty(list)) {
908 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
909 		head->qlen += list->qlen;
910 	}
911 }
912 
913 /**
914  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
915  *	@list: the new list to add
916  *	@head: the place to add it in the first list
917  *
918  *	Each of the lists is a queue.
919  *	The list at @list is reinitialised
920  */
921 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
922 					      struct sk_buff_head *head)
923 {
924 	if (!skb_queue_empty(list)) {
925 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
926 		head->qlen += list->qlen;
927 		__skb_queue_head_init(list);
928 	}
929 }
930 
931 /**
932  *	__skb_queue_after - queue a buffer at the list head
933  *	@list: list to use
934  *	@prev: place after this buffer
935  *	@newsk: buffer to queue
936  *
937  *	Queue a buffer int the middle of a list. This function takes no locks
938  *	and you must therefore hold required locks before calling it.
939  *
940  *	A buffer cannot be placed on two lists at the same time.
941  */
942 static inline void __skb_queue_after(struct sk_buff_head *list,
943 				     struct sk_buff *prev,
944 				     struct sk_buff *newsk)
945 {
946 	__skb_insert(newsk, prev, prev->next, list);
947 }
948 
949 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
950 		       struct sk_buff_head *list);
951 
952 static inline void __skb_queue_before(struct sk_buff_head *list,
953 				      struct sk_buff *next,
954 				      struct sk_buff *newsk)
955 {
956 	__skb_insert(newsk, next->prev, next, list);
957 }
958 
959 /**
960  *	__skb_queue_head - queue a buffer at the list head
961  *	@list: list to use
962  *	@newsk: buffer to queue
963  *
964  *	Queue a buffer at the start of a list. This function takes no locks
965  *	and you must therefore hold required locks before calling it.
966  *
967  *	A buffer cannot be placed on two lists at the same time.
968  */
969 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
970 static inline void __skb_queue_head(struct sk_buff_head *list,
971 				    struct sk_buff *newsk)
972 {
973 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
974 }
975 
976 /**
977  *	__skb_queue_tail - queue a buffer at the list tail
978  *	@list: list to use
979  *	@newsk: buffer to queue
980  *
981  *	Queue a buffer at the end of a list. This function takes no locks
982  *	and you must therefore hold required locks before calling it.
983  *
984  *	A buffer cannot be placed on two lists at the same time.
985  */
986 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
987 static inline void __skb_queue_tail(struct sk_buff_head *list,
988 				   struct sk_buff *newsk)
989 {
990 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
991 }
992 
993 /*
994  * remove sk_buff from list. _Must_ be called atomically, and with
995  * the list known..
996  */
997 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
998 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
999 {
1000 	struct sk_buff *next, *prev;
1001 
1002 	list->qlen--;
1003 	next	   = skb->next;
1004 	prev	   = skb->prev;
1005 	skb->next  = skb->prev = NULL;
1006 	next->prev = prev;
1007 	prev->next = next;
1008 }
1009 
1010 /**
1011  *	__skb_dequeue - remove from the head of the queue
1012  *	@list: list to dequeue from
1013  *
1014  *	Remove the head of the list. This function does not take any locks
1015  *	so must be used with appropriate locks held only. The head item is
1016  *	returned or %NULL if the list is empty.
1017  */
1018 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1019 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1020 {
1021 	struct sk_buff *skb = skb_peek(list);
1022 	if (skb)
1023 		__skb_unlink(skb, list);
1024 	return skb;
1025 }
1026 
1027 /**
1028  *	__skb_dequeue_tail - remove from the tail of the queue
1029  *	@list: list to dequeue from
1030  *
1031  *	Remove the tail of the list. This function does not take any locks
1032  *	so must be used with appropriate locks held only. The tail item is
1033  *	returned or %NULL if the list is empty.
1034  */
1035 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1036 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1037 {
1038 	struct sk_buff *skb = skb_peek_tail(list);
1039 	if (skb)
1040 		__skb_unlink(skb, list);
1041 	return skb;
1042 }
1043 
1044 
1045 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1046 {
1047 	return skb->data_len;
1048 }
1049 
1050 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1051 {
1052 	return skb->len - skb->data_len;
1053 }
1054 
1055 static inline int skb_pagelen(const struct sk_buff *skb)
1056 {
1057 	int i, len = 0;
1058 
1059 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1060 		len += skb_shinfo(skb)->frags[i].size;
1061 	return len + skb_headlen(skb);
1062 }
1063 
1064 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1065 				      struct page *page, int off, int size)
1066 {
1067 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1068 
1069 	frag->page		  = page;
1070 	frag->page_offset	  = off;
1071 	frag->size		  = size;
1072 	skb_shinfo(skb)->nr_frags = i + 1;
1073 }
1074 
1075 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1076 			    int off, int size);
1077 
1078 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1079 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frags(skb))
1080 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1081 
1082 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1083 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1084 {
1085 	return skb->head + skb->tail;
1086 }
1087 
1088 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1089 {
1090 	skb->tail = skb->data - skb->head;
1091 }
1092 
1093 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1094 {
1095 	skb_reset_tail_pointer(skb);
1096 	skb->tail += offset;
1097 }
1098 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1099 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1100 {
1101 	return skb->tail;
1102 }
1103 
1104 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1105 {
1106 	skb->tail = skb->data;
1107 }
1108 
1109 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1110 {
1111 	skb->tail = skb->data + offset;
1112 }
1113 
1114 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1115 
1116 /*
1117  *	Add data to an sk_buff
1118  */
1119 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1120 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1121 {
1122 	unsigned char *tmp = skb_tail_pointer(skb);
1123 	SKB_LINEAR_ASSERT(skb);
1124 	skb->tail += len;
1125 	skb->len  += len;
1126 	return tmp;
1127 }
1128 
1129 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1130 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1131 {
1132 	skb->data -= len;
1133 	skb->len  += len;
1134 	return skb->data;
1135 }
1136 
1137 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1138 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1139 {
1140 	skb->len -= len;
1141 	BUG_ON(skb->len < skb->data_len);
1142 	return skb->data += len;
1143 }
1144 
1145 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1146 
1147 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1148 {
1149 	if (len > skb_headlen(skb) &&
1150 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1151 		return NULL;
1152 	skb->len -= len;
1153 	return skb->data += len;
1154 }
1155 
1156 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1157 {
1158 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1159 }
1160 
1161 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1162 {
1163 	if (likely(len <= skb_headlen(skb)))
1164 		return 1;
1165 	if (unlikely(len > skb->len))
1166 		return 0;
1167 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1168 }
1169 
1170 /**
1171  *	skb_headroom - bytes at buffer head
1172  *	@skb: buffer to check
1173  *
1174  *	Return the number of bytes of free space at the head of an &sk_buff.
1175  */
1176 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1177 {
1178 	return skb->data - skb->head;
1179 }
1180 
1181 /**
1182  *	skb_tailroom - bytes at buffer end
1183  *	@skb: buffer to check
1184  *
1185  *	Return the number of bytes of free space at the tail of an sk_buff
1186  */
1187 static inline int skb_tailroom(const struct sk_buff *skb)
1188 {
1189 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1190 }
1191 
1192 /**
1193  *	skb_reserve - adjust headroom
1194  *	@skb: buffer to alter
1195  *	@len: bytes to move
1196  *
1197  *	Increase the headroom of an empty &sk_buff by reducing the tail
1198  *	room. This is only allowed for an empty buffer.
1199  */
1200 static inline void skb_reserve(struct sk_buff *skb, int len)
1201 {
1202 	skb->data += len;
1203 	skb->tail += len;
1204 }
1205 
1206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1207 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1208 {
1209 	return skb->head + skb->transport_header;
1210 }
1211 
1212 static inline void skb_reset_transport_header(struct sk_buff *skb)
1213 {
1214 	skb->transport_header = skb->data - skb->head;
1215 }
1216 
1217 static inline void skb_set_transport_header(struct sk_buff *skb,
1218 					    const int offset)
1219 {
1220 	skb_reset_transport_header(skb);
1221 	skb->transport_header += offset;
1222 }
1223 
1224 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1225 {
1226 	return skb->head + skb->network_header;
1227 }
1228 
1229 static inline void skb_reset_network_header(struct sk_buff *skb)
1230 {
1231 	skb->network_header = skb->data - skb->head;
1232 }
1233 
1234 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1235 {
1236 	skb_reset_network_header(skb);
1237 	skb->network_header += offset;
1238 }
1239 
1240 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1241 {
1242 	return skb->head + skb->mac_header;
1243 }
1244 
1245 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1246 {
1247 	return skb->mac_header != ~0U;
1248 }
1249 
1250 static inline void skb_reset_mac_header(struct sk_buff *skb)
1251 {
1252 	skb->mac_header = skb->data - skb->head;
1253 }
1254 
1255 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1256 {
1257 	skb_reset_mac_header(skb);
1258 	skb->mac_header += offset;
1259 }
1260 
1261 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1262 
1263 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1264 {
1265 	return skb->transport_header;
1266 }
1267 
1268 static inline void skb_reset_transport_header(struct sk_buff *skb)
1269 {
1270 	skb->transport_header = skb->data;
1271 }
1272 
1273 static inline void skb_set_transport_header(struct sk_buff *skb,
1274 					    const int offset)
1275 {
1276 	skb->transport_header = skb->data + offset;
1277 }
1278 
1279 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1280 {
1281 	return skb->network_header;
1282 }
1283 
1284 static inline void skb_reset_network_header(struct sk_buff *skb)
1285 {
1286 	skb->network_header = skb->data;
1287 }
1288 
1289 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1290 {
1291 	skb->network_header = skb->data + offset;
1292 }
1293 
1294 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1295 {
1296 	return skb->mac_header;
1297 }
1298 
1299 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1300 {
1301 	return skb->mac_header != NULL;
1302 }
1303 
1304 static inline void skb_reset_mac_header(struct sk_buff *skb)
1305 {
1306 	skb->mac_header = skb->data;
1307 }
1308 
1309 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1310 {
1311 	skb->mac_header = skb->data + offset;
1312 }
1313 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1314 
1315 static inline int skb_transport_offset(const struct sk_buff *skb)
1316 {
1317 	return skb_transport_header(skb) - skb->data;
1318 }
1319 
1320 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1321 {
1322 	return skb->transport_header - skb->network_header;
1323 }
1324 
1325 static inline int skb_network_offset(const struct sk_buff *skb)
1326 {
1327 	return skb_network_header(skb) - skb->data;
1328 }
1329 
1330 /*
1331  * CPUs often take a performance hit when accessing unaligned memory
1332  * locations. The actual performance hit varies, it can be small if the
1333  * hardware handles it or large if we have to take an exception and fix it
1334  * in software.
1335  *
1336  * Since an ethernet header is 14 bytes network drivers often end up with
1337  * the IP header at an unaligned offset. The IP header can be aligned by
1338  * shifting the start of the packet by 2 bytes. Drivers should do this
1339  * with:
1340  *
1341  * skb_reserve(skb, NET_IP_ALIGN);
1342  *
1343  * The downside to this alignment of the IP header is that the DMA is now
1344  * unaligned. On some architectures the cost of an unaligned DMA is high
1345  * and this cost outweighs the gains made by aligning the IP header.
1346  *
1347  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1348  * to be overridden.
1349  */
1350 #ifndef NET_IP_ALIGN
1351 #define NET_IP_ALIGN	2
1352 #endif
1353 
1354 /*
1355  * The networking layer reserves some headroom in skb data (via
1356  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1357  * the header has to grow. In the default case, if the header has to grow
1358  * 32 bytes or less we avoid the reallocation.
1359  *
1360  * Unfortunately this headroom changes the DMA alignment of the resulting
1361  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1362  * on some architectures. An architecture can override this value,
1363  * perhaps setting it to a cacheline in size (since that will maintain
1364  * cacheline alignment of the DMA). It must be a power of 2.
1365  *
1366  * Various parts of the networking layer expect at least 32 bytes of
1367  * headroom, you should not reduce this.
1368  */
1369 #ifndef NET_SKB_PAD
1370 #define NET_SKB_PAD	32
1371 #endif
1372 
1373 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1374 
1375 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1376 {
1377 	if (unlikely(skb->data_len)) {
1378 		WARN_ON(1);
1379 		return;
1380 	}
1381 	skb->len = len;
1382 	skb_set_tail_pointer(skb, len);
1383 }
1384 
1385 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1386 
1387 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1388 {
1389 	if (skb->data_len)
1390 		return ___pskb_trim(skb, len);
1391 	__skb_trim(skb, len);
1392 	return 0;
1393 }
1394 
1395 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1396 {
1397 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1398 }
1399 
1400 /**
1401  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1402  *	@skb: buffer to alter
1403  *	@len: new length
1404  *
1405  *	This is identical to pskb_trim except that the caller knows that
1406  *	the skb is not cloned so we should never get an error due to out-
1407  *	of-memory.
1408  */
1409 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1410 {
1411 	int err = pskb_trim(skb, len);
1412 	BUG_ON(err);
1413 }
1414 
1415 /**
1416  *	skb_orphan - orphan a buffer
1417  *	@skb: buffer to orphan
1418  *
1419  *	If a buffer currently has an owner then we call the owner's
1420  *	destructor function and make the @skb unowned. The buffer continues
1421  *	to exist but is no longer charged to its former owner.
1422  */
1423 static inline void skb_orphan(struct sk_buff *skb)
1424 {
1425 	if (skb->destructor)
1426 		skb->destructor(skb);
1427 	skb->destructor = NULL;
1428 	skb->sk		= NULL;
1429 }
1430 
1431 /**
1432  *	__skb_queue_purge - empty a list
1433  *	@list: list to empty
1434  *
1435  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1436  *	the list and one reference dropped. This function does not take the
1437  *	list lock and the caller must hold the relevant locks to use it.
1438  */
1439 extern void skb_queue_purge(struct sk_buff_head *list);
1440 static inline void __skb_queue_purge(struct sk_buff_head *list)
1441 {
1442 	struct sk_buff *skb;
1443 	while ((skb = __skb_dequeue(list)) != NULL)
1444 		kfree_skb(skb);
1445 }
1446 
1447 /**
1448  *	__dev_alloc_skb - allocate an skbuff for receiving
1449  *	@length: length to allocate
1450  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1451  *
1452  *	Allocate a new &sk_buff and assign it a usage count of one. The
1453  *	buffer has unspecified headroom built in. Users should allocate
1454  *	the headroom they think they need without accounting for the
1455  *	built in space. The built in space is used for optimisations.
1456  *
1457  *	%NULL is returned if there is no free memory.
1458  */
1459 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1460 					      gfp_t gfp_mask)
1461 {
1462 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1463 	if (likely(skb))
1464 		skb_reserve(skb, NET_SKB_PAD);
1465 	return skb;
1466 }
1467 
1468 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1469 
1470 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1471 		unsigned int length, gfp_t gfp_mask);
1472 
1473 /**
1474  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1475  *	@dev: network device to receive on
1476  *	@length: length to allocate
1477  *
1478  *	Allocate a new &sk_buff and assign it a usage count of one. The
1479  *	buffer has unspecified headroom built in. Users should allocate
1480  *	the headroom they think they need without accounting for the
1481  *	built in space. The built in space is used for optimisations.
1482  *
1483  *	%NULL is returned if there is no free memory. Although this function
1484  *	allocates memory it can be called from an interrupt.
1485  */
1486 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1487 		unsigned int length)
1488 {
1489 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1490 }
1491 
1492 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1493 
1494 /**
1495  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1496  *	@dev: network device to receive on
1497  *
1498  * 	Allocate a new page node local to the specified device.
1499  *
1500  * 	%NULL is returned if there is no free memory.
1501  */
1502 static inline struct page *netdev_alloc_page(struct net_device *dev)
1503 {
1504 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1505 }
1506 
1507 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1508 {
1509 	__free_page(page);
1510 }
1511 
1512 /**
1513  *	skb_clone_writable - is the header of a clone writable
1514  *	@skb: buffer to check
1515  *	@len: length up to which to write
1516  *
1517  *	Returns true if modifying the header part of the cloned buffer
1518  *	does not requires the data to be copied.
1519  */
1520 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1521 {
1522 	return !skb_header_cloned(skb) &&
1523 	       skb_headroom(skb) + len <= skb->hdr_len;
1524 }
1525 
1526 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1527 			    int cloned)
1528 {
1529 	int delta = 0;
1530 
1531 	if (headroom < NET_SKB_PAD)
1532 		headroom = NET_SKB_PAD;
1533 	if (headroom > skb_headroom(skb))
1534 		delta = headroom - skb_headroom(skb);
1535 
1536 	if (delta || cloned)
1537 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1538 					GFP_ATOMIC);
1539 	return 0;
1540 }
1541 
1542 /**
1543  *	skb_cow - copy header of skb when it is required
1544  *	@skb: buffer to cow
1545  *	@headroom: needed headroom
1546  *
1547  *	If the skb passed lacks sufficient headroom or its data part
1548  *	is shared, data is reallocated. If reallocation fails, an error
1549  *	is returned and original skb is not changed.
1550  *
1551  *	The result is skb with writable area skb->head...skb->tail
1552  *	and at least @headroom of space at head.
1553  */
1554 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1555 {
1556 	return __skb_cow(skb, headroom, skb_cloned(skb));
1557 }
1558 
1559 /**
1560  *	skb_cow_head - skb_cow but only making the head writable
1561  *	@skb: buffer to cow
1562  *	@headroom: needed headroom
1563  *
1564  *	This function is identical to skb_cow except that we replace the
1565  *	skb_cloned check by skb_header_cloned.  It should be used when
1566  *	you only need to push on some header and do not need to modify
1567  *	the data.
1568  */
1569 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1570 {
1571 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1572 }
1573 
1574 /**
1575  *	skb_padto	- pad an skbuff up to a minimal size
1576  *	@skb: buffer to pad
1577  *	@len: minimal length
1578  *
1579  *	Pads up a buffer to ensure the trailing bytes exist and are
1580  *	blanked. If the buffer already contains sufficient data it
1581  *	is untouched. Otherwise it is extended. Returns zero on
1582  *	success. The skb is freed on error.
1583  */
1584 
1585 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1586 {
1587 	unsigned int size = skb->len;
1588 	if (likely(size >= len))
1589 		return 0;
1590 	return skb_pad(skb, len - size);
1591 }
1592 
1593 static inline int skb_add_data(struct sk_buff *skb,
1594 			       char __user *from, int copy)
1595 {
1596 	const int off = skb->len;
1597 
1598 	if (skb->ip_summed == CHECKSUM_NONE) {
1599 		int err = 0;
1600 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1601 							    copy, 0, &err);
1602 		if (!err) {
1603 			skb->csum = csum_block_add(skb->csum, csum, off);
1604 			return 0;
1605 		}
1606 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1607 		return 0;
1608 
1609 	__skb_trim(skb, off);
1610 	return -EFAULT;
1611 }
1612 
1613 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1614 				   struct page *page, int off)
1615 {
1616 	if (i) {
1617 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1618 
1619 		return page == frag->page &&
1620 		       off == frag->page_offset + frag->size;
1621 	}
1622 	return 0;
1623 }
1624 
1625 static inline int __skb_linearize(struct sk_buff *skb)
1626 {
1627 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1628 }
1629 
1630 /**
1631  *	skb_linearize - convert paged skb to linear one
1632  *	@skb: buffer to linarize
1633  *
1634  *	If there is no free memory -ENOMEM is returned, otherwise zero
1635  *	is returned and the old skb data released.
1636  */
1637 static inline int skb_linearize(struct sk_buff *skb)
1638 {
1639 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1640 }
1641 
1642 /**
1643  *	skb_linearize_cow - make sure skb is linear and writable
1644  *	@skb: buffer to process
1645  *
1646  *	If there is no free memory -ENOMEM is returned, otherwise zero
1647  *	is returned and the old skb data released.
1648  */
1649 static inline int skb_linearize_cow(struct sk_buff *skb)
1650 {
1651 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1652 	       __skb_linearize(skb) : 0;
1653 }
1654 
1655 /**
1656  *	skb_postpull_rcsum - update checksum for received skb after pull
1657  *	@skb: buffer to update
1658  *	@start: start of data before pull
1659  *	@len: length of data pulled
1660  *
1661  *	After doing a pull on a received packet, you need to call this to
1662  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1663  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1664  */
1665 
1666 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1667 				      const void *start, unsigned int len)
1668 {
1669 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1670 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1671 }
1672 
1673 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1674 
1675 /**
1676  *	pskb_trim_rcsum - trim received skb and update checksum
1677  *	@skb: buffer to trim
1678  *	@len: new length
1679  *
1680  *	This is exactly the same as pskb_trim except that it ensures the
1681  *	checksum of received packets are still valid after the operation.
1682  */
1683 
1684 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1685 {
1686 	if (likely(len >= skb->len))
1687 		return 0;
1688 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1689 		skb->ip_summed = CHECKSUM_NONE;
1690 	return __pskb_trim(skb, len);
1691 }
1692 
1693 #define skb_queue_walk(queue, skb) \
1694 		for (skb = (queue)->next;					\
1695 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1696 		     skb = skb->next)
1697 
1698 #define skb_queue_walk_safe(queue, skb, tmp)					\
1699 		for (skb = (queue)->next, tmp = skb->next;			\
1700 		     skb != (struct sk_buff *)(queue);				\
1701 		     skb = tmp, tmp = skb->next)
1702 
1703 #define skb_queue_walk_from(queue, skb)						\
1704 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1705 		     skb = skb->next)
1706 
1707 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1708 		for (tmp = skb->next;						\
1709 		     skb != (struct sk_buff *)(queue);				\
1710 		     skb = tmp, tmp = skb->next)
1711 
1712 #define skb_queue_reverse_walk(queue, skb) \
1713 		for (skb = (queue)->prev;					\
1714 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1715 		     skb = skb->prev)
1716 
1717 
1718 static inline bool skb_has_frags(const struct sk_buff *skb)
1719 {
1720 	return skb_shinfo(skb)->frag_list != NULL;
1721 }
1722 
1723 static inline void skb_frag_list_init(struct sk_buff *skb)
1724 {
1725 	skb_shinfo(skb)->frag_list = NULL;
1726 }
1727 
1728 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1729 {
1730 	frag->next = skb_shinfo(skb)->frag_list;
1731 	skb_shinfo(skb)->frag_list = frag;
1732 }
1733 
1734 #define skb_walk_frags(skb, iter)	\
1735 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1736 
1737 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1738 					   int *peeked, int *err);
1739 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1740 					 int noblock, int *err);
1741 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1742 				     struct poll_table_struct *wait);
1743 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1744 					       int offset, struct iovec *to,
1745 					       int size);
1746 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1747 							int hlen,
1748 							struct iovec *iov);
1749 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1750 						    int offset,
1751 						    const struct iovec *from,
1752 						    int from_offset,
1753 						    int len);
1754 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1755 						     int offset,
1756 						     const struct iovec *to,
1757 						     int to_offset,
1758 						     int size);
1759 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1760 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1761 					 unsigned int flags);
1762 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1763 				    int len, __wsum csum);
1764 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1765 				     void *to, int len);
1766 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1767 				      const void *from, int len);
1768 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1769 					      int offset, u8 *to, int len,
1770 					      __wsum csum);
1771 extern int             skb_splice_bits(struct sk_buff *skb,
1772 						unsigned int offset,
1773 						struct pipe_inode_info *pipe,
1774 						unsigned int len,
1775 						unsigned int flags);
1776 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1777 extern void	       skb_split(struct sk_buff *skb,
1778 				 struct sk_buff *skb1, const u32 len);
1779 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1780 				 int shiftlen);
1781 
1782 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1783 
1784 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1785 				       int len, void *buffer)
1786 {
1787 	int hlen = skb_headlen(skb);
1788 
1789 	if (hlen - offset >= len)
1790 		return skb->data + offset;
1791 
1792 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1793 		return NULL;
1794 
1795 	return buffer;
1796 }
1797 
1798 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1799 					     void *to,
1800 					     const unsigned int len)
1801 {
1802 	memcpy(to, skb->data, len);
1803 }
1804 
1805 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1806 						    const int offset, void *to,
1807 						    const unsigned int len)
1808 {
1809 	memcpy(to, skb->data + offset, len);
1810 }
1811 
1812 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1813 					   const void *from,
1814 					   const unsigned int len)
1815 {
1816 	memcpy(skb->data, from, len);
1817 }
1818 
1819 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1820 						  const int offset,
1821 						  const void *from,
1822 						  const unsigned int len)
1823 {
1824 	memcpy(skb->data + offset, from, len);
1825 }
1826 
1827 extern void skb_init(void);
1828 
1829 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1830 {
1831 	return skb->tstamp;
1832 }
1833 
1834 /**
1835  *	skb_get_timestamp - get timestamp from a skb
1836  *	@skb: skb to get stamp from
1837  *	@stamp: pointer to struct timeval to store stamp in
1838  *
1839  *	Timestamps are stored in the skb as offsets to a base timestamp.
1840  *	This function converts the offset back to a struct timeval and stores
1841  *	it in stamp.
1842  */
1843 static inline void skb_get_timestamp(const struct sk_buff *skb,
1844 				     struct timeval *stamp)
1845 {
1846 	*stamp = ktime_to_timeval(skb->tstamp);
1847 }
1848 
1849 static inline void skb_get_timestampns(const struct sk_buff *skb,
1850 				       struct timespec *stamp)
1851 {
1852 	*stamp = ktime_to_timespec(skb->tstamp);
1853 }
1854 
1855 static inline void __net_timestamp(struct sk_buff *skb)
1856 {
1857 	skb->tstamp = ktime_get_real();
1858 }
1859 
1860 static inline ktime_t net_timedelta(ktime_t t)
1861 {
1862 	return ktime_sub(ktime_get_real(), t);
1863 }
1864 
1865 static inline ktime_t net_invalid_timestamp(void)
1866 {
1867 	return ktime_set(0, 0);
1868 }
1869 
1870 /**
1871  * skb_tstamp_tx - queue clone of skb with send time stamps
1872  * @orig_skb:	the original outgoing packet
1873  * @hwtstamps:	hardware time stamps, may be NULL if not available
1874  *
1875  * If the skb has a socket associated, then this function clones the
1876  * skb (thus sharing the actual data and optional structures), stores
1877  * the optional hardware time stamping information (if non NULL) or
1878  * generates a software time stamp (otherwise), then queues the clone
1879  * to the error queue of the socket.  Errors are silently ignored.
1880  */
1881 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1882 			struct skb_shared_hwtstamps *hwtstamps);
1883 
1884 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1885 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1886 
1887 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1888 {
1889 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1890 }
1891 
1892 /**
1893  *	skb_checksum_complete - Calculate checksum of an entire packet
1894  *	@skb: packet to process
1895  *
1896  *	This function calculates the checksum over the entire packet plus
1897  *	the value of skb->csum.  The latter can be used to supply the
1898  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1899  *	checksum.
1900  *
1901  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1902  *	this function can be used to verify that checksum on received
1903  *	packets.  In that case the function should return zero if the
1904  *	checksum is correct.  In particular, this function will return zero
1905  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1906  *	hardware has already verified the correctness of the checksum.
1907  */
1908 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1909 {
1910 	return skb_csum_unnecessary(skb) ?
1911 	       0 : __skb_checksum_complete(skb);
1912 }
1913 
1914 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1915 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1916 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1917 {
1918 	if (nfct && atomic_dec_and_test(&nfct->use))
1919 		nf_conntrack_destroy(nfct);
1920 }
1921 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1922 {
1923 	if (nfct)
1924 		atomic_inc(&nfct->use);
1925 }
1926 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1927 {
1928 	if (skb)
1929 		atomic_inc(&skb->users);
1930 }
1931 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1932 {
1933 	if (skb)
1934 		kfree_skb(skb);
1935 }
1936 #endif
1937 #ifdef CONFIG_BRIDGE_NETFILTER
1938 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1939 {
1940 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1941 		kfree(nf_bridge);
1942 }
1943 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1944 {
1945 	if (nf_bridge)
1946 		atomic_inc(&nf_bridge->use);
1947 }
1948 #endif /* CONFIG_BRIDGE_NETFILTER */
1949 static inline void nf_reset(struct sk_buff *skb)
1950 {
1951 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1952 	nf_conntrack_put(skb->nfct);
1953 	skb->nfct = NULL;
1954 	nf_conntrack_put_reasm(skb->nfct_reasm);
1955 	skb->nfct_reasm = NULL;
1956 #endif
1957 #ifdef CONFIG_BRIDGE_NETFILTER
1958 	nf_bridge_put(skb->nf_bridge);
1959 	skb->nf_bridge = NULL;
1960 #endif
1961 }
1962 
1963 /* Note: This doesn't put any conntrack and bridge info in dst. */
1964 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1965 {
1966 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1967 	dst->nfct = src->nfct;
1968 	nf_conntrack_get(src->nfct);
1969 	dst->nfctinfo = src->nfctinfo;
1970 	dst->nfct_reasm = src->nfct_reasm;
1971 	nf_conntrack_get_reasm(src->nfct_reasm);
1972 #endif
1973 #ifdef CONFIG_BRIDGE_NETFILTER
1974 	dst->nf_bridge  = src->nf_bridge;
1975 	nf_bridge_get(src->nf_bridge);
1976 #endif
1977 }
1978 
1979 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1980 {
1981 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1982 	nf_conntrack_put(dst->nfct);
1983 	nf_conntrack_put_reasm(dst->nfct_reasm);
1984 #endif
1985 #ifdef CONFIG_BRIDGE_NETFILTER
1986 	nf_bridge_put(dst->nf_bridge);
1987 #endif
1988 	__nf_copy(dst, src);
1989 }
1990 
1991 #ifdef CONFIG_NETWORK_SECMARK
1992 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1993 {
1994 	to->secmark = from->secmark;
1995 }
1996 
1997 static inline void skb_init_secmark(struct sk_buff *skb)
1998 {
1999 	skb->secmark = 0;
2000 }
2001 #else
2002 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2003 { }
2004 
2005 static inline void skb_init_secmark(struct sk_buff *skb)
2006 { }
2007 #endif
2008 
2009 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2010 {
2011 	skb->queue_mapping = queue_mapping;
2012 }
2013 
2014 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2015 {
2016 	return skb->queue_mapping;
2017 }
2018 
2019 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2020 {
2021 	to->queue_mapping = from->queue_mapping;
2022 }
2023 
2024 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2025 {
2026 	skb->queue_mapping = rx_queue + 1;
2027 }
2028 
2029 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2030 {
2031 	return skb->queue_mapping - 1;
2032 }
2033 
2034 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2035 {
2036 	return (skb->queue_mapping != 0);
2037 }
2038 
2039 extern u16 skb_tx_hash(const struct net_device *dev,
2040 		       const struct sk_buff *skb);
2041 
2042 #ifdef CONFIG_XFRM
2043 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2044 {
2045 	return skb->sp;
2046 }
2047 #else
2048 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2049 {
2050 	return NULL;
2051 }
2052 #endif
2053 
2054 static inline int skb_is_gso(const struct sk_buff *skb)
2055 {
2056 	return skb_shinfo(skb)->gso_size;
2057 }
2058 
2059 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2060 {
2061 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2062 }
2063 
2064 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2065 
2066 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2067 {
2068 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2069 	 * wanted then gso_type will be set. */
2070 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2071 	if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2072 		__skb_warn_lro_forwarding(skb);
2073 		return true;
2074 	}
2075 	return false;
2076 }
2077 
2078 static inline void skb_forward_csum(struct sk_buff *skb)
2079 {
2080 	/* Unfortunately we don't support this one.  Any brave souls? */
2081 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2082 		skb->ip_summed = CHECKSUM_NONE;
2083 }
2084 
2085 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2086 #endif	/* __KERNEL__ */
2087 #endif	/* _LINUX_SKBUFF_H */
2088