xref: /linux-6.15/include/linux/skbuff.h (revision f5e4e7fd)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 #include <net/flow_keys.h>
36 
37 /* Don't change this without changing skb_csum_unnecessary! */
38 #define CHECKSUM_NONE 0
39 #define CHECKSUM_UNNECESSARY 1
40 #define CHECKSUM_COMPLETE 2
41 #define CHECKSUM_PARTIAL 3
42 
43 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
44 				 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_WITH_OVERHEAD(X)	\
46 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
47 #define SKB_MAX_ORDER(X, ORDER) \
48 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
49 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
50 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
51 
52 /* return minimum truesize of one skb containing X bytes of data */
53 #define SKB_TRUESIZE(X) ((X) +						\
54 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
55 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
56 
57 /* A. Checksumming of received packets by device.
58  *
59  *	NONE: device failed to checksum this packet.
60  *		skb->csum is undefined.
61  *
62  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
63  *		skb->csum is undefined.
64  *	      It is bad option, but, unfortunately, many of vendors do this.
65  *	      Apparently with secret goal to sell you new device, when you
66  *	      will add new protocol to your host. F.e. IPv6. 8)
67  *
68  *	COMPLETE: the most generic way. Device supplied checksum of _all_
69  *	    the packet as seen by netif_rx in skb->csum.
70  *	    NOTE: Even if device supports only some protocols, but
71  *	    is able to produce some skb->csum, it MUST use COMPLETE,
72  *	    not UNNECESSARY.
73  *
74  *	PARTIAL: identical to the case for output below.  This may occur
75  *	    on a packet received directly from another Linux OS, e.g.,
76  *	    a virtualised Linux kernel on the same host.  The packet can
77  *	    be treated in the same way as UNNECESSARY except that on
78  *	    output (i.e., forwarding) the checksum must be filled in
79  *	    by the OS or the hardware.
80  *
81  * B. Checksumming on output.
82  *
83  *	NONE: skb is checksummed by protocol or csum is not required.
84  *
85  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
86  *	from skb->csum_start to the end and to record the checksum
87  *	at skb->csum_start + skb->csum_offset.
88  *
89  *	Device must show its capabilities in dev->features, set
90  *	at device setup time.
91  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
92  *			  everything.
93  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
94  *			  TCP/UDP over IPv4. Sigh. Vendors like this
95  *			  way by an unknown reason. Though, see comment above
96  *			  about CHECKSUM_UNNECESSARY. 8)
97  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
98  *
99  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
100  *	that do not want net to perform the checksum calculation should use
101  *	this flag in their outgoing skbs.
102  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
103  *			  offload. Correspondingly, the FCoE protocol driver
104  *			  stack should use CHECKSUM_UNNECESSARY.
105  *
106  *	Any questions? No questions, good. 		--ANK
107  */
108 
109 struct net_device;
110 struct scatterlist;
111 struct pipe_inode_info;
112 
113 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
114 struct nf_conntrack {
115 	atomic_t use;
116 };
117 #endif
118 
119 #ifdef CONFIG_BRIDGE_NETFILTER
120 struct nf_bridge_info {
121 	atomic_t		use;
122 	unsigned int		mask;
123 	struct net_device	*physindev;
124 	struct net_device	*physoutdev;
125 	unsigned long		data[32 / sizeof(unsigned long)];
126 };
127 #endif
128 
129 struct sk_buff_head {
130 	/* These two members must be first. */
131 	struct sk_buff	*next;
132 	struct sk_buff	*prev;
133 
134 	__u32		qlen;
135 	spinlock_t	lock;
136 };
137 
138 struct sk_buff;
139 
140 /* To allow 64K frame to be packed as single skb without frag_list we
141  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
142  * buffers which do not start on a page boundary.
143  *
144  * Since GRO uses frags we allocate at least 16 regardless of page
145  * size.
146  */
147 #if (65536/PAGE_SIZE + 1) < 16
148 #define MAX_SKB_FRAGS 16UL
149 #else
150 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
151 #endif
152 
153 typedef struct skb_frag_struct skb_frag_t;
154 
155 struct skb_frag_struct {
156 	struct {
157 		struct page *p;
158 	} page;
159 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
160 	__u32 page_offset;
161 	__u32 size;
162 #else
163 	__u16 page_offset;
164 	__u16 size;
165 #endif
166 };
167 
168 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
169 {
170 	return frag->size;
171 }
172 
173 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
174 {
175 	frag->size = size;
176 }
177 
178 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
179 {
180 	frag->size += delta;
181 }
182 
183 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
184 {
185 	frag->size -= delta;
186 }
187 
188 #define HAVE_HW_TIME_STAMP
189 
190 /**
191  * struct skb_shared_hwtstamps - hardware time stamps
192  * @hwtstamp:	hardware time stamp transformed into duration
193  *		since arbitrary point in time
194  * @syststamp:	hwtstamp transformed to system time base
195  *
196  * Software time stamps generated by ktime_get_real() are stored in
197  * skb->tstamp. The relation between the different kinds of time
198  * stamps is as follows:
199  *
200  * syststamp and tstamp can be compared against each other in
201  * arbitrary combinations.  The accuracy of a
202  * syststamp/tstamp/"syststamp from other device" comparison is
203  * limited by the accuracy of the transformation into system time
204  * base. This depends on the device driver and its underlying
205  * hardware.
206  *
207  * hwtstamps can only be compared against other hwtstamps from
208  * the same device.
209  *
210  * This structure is attached to packets as part of the
211  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
212  */
213 struct skb_shared_hwtstamps {
214 	ktime_t	hwtstamp;
215 	ktime_t	syststamp;
216 };
217 
218 /* Definitions for tx_flags in struct skb_shared_info */
219 enum {
220 	/* generate hardware time stamp */
221 	SKBTX_HW_TSTAMP = 1 << 0,
222 
223 	/* generate software time stamp */
224 	SKBTX_SW_TSTAMP = 1 << 1,
225 
226 	/* device driver is going to provide hardware time stamp */
227 	SKBTX_IN_PROGRESS = 1 << 2,
228 
229 	/* device driver supports TX zero-copy buffers */
230 	SKBTX_DEV_ZEROCOPY = 1 << 3,
231 
232 	/* generate wifi status information (where possible) */
233 	SKBTX_WIFI_STATUS = 1 << 4,
234 
235 	/* This indicates at least one fragment might be overwritten
236 	 * (as in vmsplice(), sendfile() ...)
237 	 * If we need to compute a TX checksum, we'll need to copy
238 	 * all frags to avoid possible bad checksum
239 	 */
240 	SKBTX_SHARED_FRAG = 1 << 5,
241 };
242 
243 /*
244  * The callback notifies userspace to release buffers when skb DMA is done in
245  * lower device, the skb last reference should be 0 when calling this.
246  * The zerocopy_success argument is true if zero copy transmit occurred,
247  * false on data copy or out of memory error caused by data copy attempt.
248  * The ctx field is used to track device context.
249  * The desc field is used to track userspace buffer index.
250  */
251 struct ubuf_info {
252 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
253 	void *ctx;
254 	unsigned long desc;
255 };
256 
257 /* This data is invariant across clones and lives at
258  * the end of the header data, ie. at skb->end.
259  */
260 struct skb_shared_info {
261 	unsigned char	nr_frags;
262 	__u8		tx_flags;
263 	unsigned short	gso_size;
264 	/* Warning: this field is not always filled in (UFO)! */
265 	unsigned short	gso_segs;
266 	unsigned short  gso_type;
267 	struct sk_buff	*frag_list;
268 	struct skb_shared_hwtstamps hwtstamps;
269 	__be32          ip6_frag_id;
270 
271 	/*
272 	 * Warning : all fields before dataref are cleared in __alloc_skb()
273 	 */
274 	atomic_t	dataref;
275 
276 	/* Intermediate layers must ensure that destructor_arg
277 	 * remains valid until skb destructor */
278 	void *		destructor_arg;
279 
280 	/* must be last field, see pskb_expand_head() */
281 	skb_frag_t	frags[MAX_SKB_FRAGS];
282 };
283 
284 /* We divide dataref into two halves.  The higher 16 bits hold references
285  * to the payload part of skb->data.  The lower 16 bits hold references to
286  * the entire skb->data.  A clone of a headerless skb holds the length of
287  * the header in skb->hdr_len.
288  *
289  * All users must obey the rule that the skb->data reference count must be
290  * greater than or equal to the payload reference count.
291  *
292  * Holding a reference to the payload part means that the user does not
293  * care about modifications to the header part of skb->data.
294  */
295 #define SKB_DATAREF_SHIFT 16
296 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
297 
298 
299 enum {
300 	SKB_FCLONE_UNAVAILABLE,
301 	SKB_FCLONE_ORIG,
302 	SKB_FCLONE_CLONE,
303 };
304 
305 enum {
306 	SKB_GSO_TCPV4 = 1 << 0,
307 	SKB_GSO_UDP = 1 << 1,
308 
309 	/* This indicates the skb is from an untrusted source. */
310 	SKB_GSO_DODGY = 1 << 2,
311 
312 	/* This indicates the tcp segment has CWR set. */
313 	SKB_GSO_TCP_ECN = 1 << 3,
314 
315 	SKB_GSO_TCPV6 = 1 << 4,
316 
317 	SKB_GSO_FCOE = 1 << 5,
318 
319 	SKB_GSO_GRE = 1 << 6,
320 
321 	SKB_GSO_UDP_TUNNEL = 1 << 7,
322 
323 	SKB_GSO_MPLS = 1 << 8,
324 };
325 
326 #if BITS_PER_LONG > 32
327 #define NET_SKBUFF_DATA_USES_OFFSET 1
328 #endif
329 
330 #ifdef NET_SKBUFF_DATA_USES_OFFSET
331 typedef unsigned int sk_buff_data_t;
332 #else
333 typedef unsigned char *sk_buff_data_t;
334 #endif
335 
336 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
337     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
338 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
339 #endif
340 
341 /**
342  *	struct sk_buff - socket buffer
343  *	@next: Next buffer in list
344  *	@prev: Previous buffer in list
345  *	@tstamp: Time we arrived
346  *	@sk: Socket we are owned by
347  *	@dev: Device we arrived on/are leaving by
348  *	@cb: Control buffer. Free for use by every layer. Put private vars here
349  *	@_skb_refdst: destination entry (with norefcount bit)
350  *	@sp: the security path, used for xfrm
351  *	@len: Length of actual data
352  *	@data_len: Data length
353  *	@mac_len: Length of link layer header
354  *	@hdr_len: writable header length of cloned skb
355  *	@csum: Checksum (must include start/offset pair)
356  *	@csum_start: Offset from skb->head where checksumming should start
357  *	@csum_offset: Offset from csum_start where checksum should be stored
358  *	@priority: Packet queueing priority
359  *	@local_df: allow local fragmentation
360  *	@cloned: Head may be cloned (check refcnt to be sure)
361  *	@ip_summed: Driver fed us an IP checksum
362  *	@nohdr: Payload reference only, must not modify header
363  *	@nfctinfo: Relationship of this skb to the connection
364  *	@pkt_type: Packet class
365  *	@fclone: skbuff clone status
366  *	@ipvs_property: skbuff is owned by ipvs
367  *	@peeked: this packet has been seen already, so stats have been
368  *		done for it, don't do them again
369  *	@nf_trace: netfilter packet trace flag
370  *	@protocol: Packet protocol from driver
371  *	@destructor: Destruct function
372  *	@nfct: Associated connection, if any
373  *	@nfct_reasm: netfilter conntrack re-assembly pointer
374  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
375  *	@skb_iif: ifindex of device we arrived on
376  *	@tc_index: Traffic control index
377  *	@tc_verd: traffic control verdict
378  *	@rxhash: the packet hash computed on receive
379  *	@queue_mapping: Queue mapping for multiqueue devices
380  *	@ndisc_nodetype: router type (from link layer)
381  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
382  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
383  *		ports.
384  *	@wifi_acked_valid: wifi_acked was set
385  *	@wifi_acked: whether frame was acked on wifi or not
386  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
387  *	@dma_cookie: a cookie to one of several possible DMA operations
388  *		done by skb DMA functions
389   *	@napi_id: id of the NAPI struct this skb came from
390  *	@secmark: security marking
391  *	@mark: Generic packet mark
392  *	@dropcount: total number of sk_receive_queue overflows
393  *	@vlan_proto: vlan encapsulation protocol
394  *	@vlan_tci: vlan tag control information
395  *	@inner_protocol: Protocol (encapsulation)
396  *	@inner_transport_header: Inner transport layer header (encapsulation)
397  *	@inner_network_header: Network layer header (encapsulation)
398  *	@inner_mac_header: Link layer header (encapsulation)
399  *	@transport_header: Transport layer header
400  *	@network_header: Network layer header
401  *	@mac_header: Link layer header
402  *	@tail: Tail pointer
403  *	@end: End pointer
404  *	@head: Head of buffer
405  *	@data: Data head pointer
406  *	@truesize: Buffer size
407  *	@users: User count - see {datagram,tcp}.c
408  */
409 
410 struct sk_buff {
411 	/* These two members must be first. */
412 	struct sk_buff		*next;
413 	struct sk_buff		*prev;
414 
415 	ktime_t			tstamp;
416 
417 	struct sock		*sk;
418 	struct net_device	*dev;
419 
420 	/*
421 	 * This is the control buffer. It is free to use for every
422 	 * layer. Please put your private variables there. If you
423 	 * want to keep them across layers you have to do a skb_clone()
424 	 * first. This is owned by whoever has the skb queued ATM.
425 	 */
426 	char			cb[48] __aligned(8);
427 
428 	unsigned long		_skb_refdst;
429 #ifdef CONFIG_XFRM
430 	struct	sec_path	*sp;
431 #endif
432 	unsigned int		len,
433 				data_len;
434 	__u16			mac_len,
435 				hdr_len;
436 	union {
437 		__wsum		csum;
438 		struct {
439 			__u16	csum_start;
440 			__u16	csum_offset;
441 		};
442 	};
443 	__u32			priority;
444 	kmemcheck_bitfield_begin(flags1);
445 	__u8			local_df:1,
446 				cloned:1,
447 				ip_summed:2,
448 				nohdr:1,
449 				nfctinfo:3;
450 	__u8			pkt_type:3,
451 				fclone:2,
452 				ipvs_property:1,
453 				peeked:1,
454 				nf_trace:1;
455 	kmemcheck_bitfield_end(flags1);
456 	__be16			protocol;
457 
458 	void			(*destructor)(struct sk_buff *skb);
459 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
460 	struct nf_conntrack	*nfct;
461 #endif
462 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
463 	struct sk_buff		*nfct_reasm;
464 #endif
465 #ifdef CONFIG_BRIDGE_NETFILTER
466 	struct nf_bridge_info	*nf_bridge;
467 #endif
468 
469 	int			skb_iif;
470 
471 	__u32			rxhash;
472 
473 	__be16			vlan_proto;
474 	__u16			vlan_tci;
475 
476 #ifdef CONFIG_NET_SCHED
477 	__u16			tc_index;	/* traffic control index */
478 #ifdef CONFIG_NET_CLS_ACT
479 	__u16			tc_verd;	/* traffic control verdict */
480 #endif
481 #endif
482 
483 	__u16			queue_mapping;
484 	kmemcheck_bitfield_begin(flags2);
485 #ifdef CONFIG_IPV6_NDISC_NODETYPE
486 	__u8			ndisc_nodetype:2;
487 #endif
488 	__u8			pfmemalloc:1;
489 	__u8			ooo_okay:1;
490 	__u8			l4_rxhash:1;
491 	__u8			wifi_acked_valid:1;
492 	__u8			wifi_acked:1;
493 	__u8			no_fcs:1;
494 	__u8			head_frag:1;
495 	/* Encapsulation protocol and NIC drivers should use
496 	 * this flag to indicate to each other if the skb contains
497 	 * encapsulated packet or not and maybe use the inner packet
498 	 * headers if needed
499 	 */
500 	__u8			encapsulation:1;
501 	/* 7/9 bit hole (depending on ndisc_nodetype presence) */
502 	kmemcheck_bitfield_end(flags2);
503 
504 #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
505 	union {
506 		unsigned int	napi_id;
507 		dma_cookie_t	dma_cookie;
508 	};
509 #endif
510 #ifdef CONFIG_NETWORK_SECMARK
511 	__u32			secmark;
512 #endif
513 	union {
514 		__u32		mark;
515 		__u32		dropcount;
516 		__u32		reserved_tailroom;
517 	};
518 
519 	__be16			inner_protocol;
520 	__u16			inner_transport_header;
521 	__u16			inner_network_header;
522 	__u16			inner_mac_header;
523 	__u16			transport_header;
524 	__u16			network_header;
525 	__u16			mac_header;
526 	/* These elements must be at the end, see alloc_skb() for details.  */
527 	sk_buff_data_t		tail;
528 	sk_buff_data_t		end;
529 	unsigned char		*head,
530 				*data;
531 	unsigned int		truesize;
532 	atomic_t		users;
533 };
534 
535 #ifdef __KERNEL__
536 /*
537  *	Handling routines are only of interest to the kernel
538  */
539 #include <linux/slab.h>
540 
541 
542 #define SKB_ALLOC_FCLONE	0x01
543 #define SKB_ALLOC_RX		0x02
544 
545 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
546 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
547 {
548 	return unlikely(skb->pfmemalloc);
549 }
550 
551 /*
552  * skb might have a dst pointer attached, refcounted or not.
553  * _skb_refdst low order bit is set if refcount was _not_ taken
554  */
555 #define SKB_DST_NOREF	1UL
556 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
557 
558 /**
559  * skb_dst - returns skb dst_entry
560  * @skb: buffer
561  *
562  * Returns skb dst_entry, regardless of reference taken or not.
563  */
564 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
565 {
566 	/* If refdst was not refcounted, check we still are in a
567 	 * rcu_read_lock section
568 	 */
569 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
570 		!rcu_read_lock_held() &&
571 		!rcu_read_lock_bh_held());
572 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
573 }
574 
575 /**
576  * skb_dst_set - sets skb dst
577  * @skb: buffer
578  * @dst: dst entry
579  *
580  * Sets skb dst, assuming a reference was taken on dst and should
581  * be released by skb_dst_drop()
582  */
583 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
584 {
585 	skb->_skb_refdst = (unsigned long)dst;
586 }
587 
588 extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
589 				bool force);
590 
591 /**
592  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
593  * @skb: buffer
594  * @dst: dst entry
595  *
596  * Sets skb dst, assuming a reference was not taken on dst.
597  * If dst entry is cached, we do not take reference and dst_release
598  * will be avoided by refdst_drop. If dst entry is not cached, we take
599  * reference, so that last dst_release can destroy the dst immediately.
600  */
601 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
602 {
603 	__skb_dst_set_noref(skb, dst, false);
604 }
605 
606 /**
607  * skb_dst_set_noref_force - sets skb dst, without taking reference
608  * @skb: buffer
609  * @dst: dst entry
610  *
611  * Sets skb dst, assuming a reference was not taken on dst.
612  * No reference is taken and no dst_release will be called. While for
613  * cached dsts deferred reclaim is a basic feature, for entries that are
614  * not cached it is caller's job to guarantee that last dst_release for
615  * provided dst happens when nobody uses it, eg. after a RCU grace period.
616  */
617 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
618 					   struct dst_entry *dst)
619 {
620 	__skb_dst_set_noref(skb, dst, true);
621 }
622 
623 /**
624  * skb_dst_is_noref - Test if skb dst isn't refcounted
625  * @skb: buffer
626  */
627 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
628 {
629 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
630 }
631 
632 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
633 {
634 	return (struct rtable *)skb_dst(skb);
635 }
636 
637 extern void kfree_skb(struct sk_buff *skb);
638 extern void kfree_skb_list(struct sk_buff *segs);
639 extern void skb_tx_error(struct sk_buff *skb);
640 extern void consume_skb(struct sk_buff *skb);
641 extern void	       __kfree_skb(struct sk_buff *skb);
642 extern struct kmem_cache *skbuff_head_cache;
643 
644 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
645 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
646 			     bool *fragstolen, int *delta_truesize);
647 
648 extern struct sk_buff *__alloc_skb(unsigned int size,
649 				   gfp_t priority, int flags, int node);
650 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
651 static inline struct sk_buff *alloc_skb(unsigned int size,
652 					gfp_t priority)
653 {
654 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
655 }
656 
657 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
658 					       gfp_t priority)
659 {
660 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
661 }
662 
663 extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
664 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
665 {
666 	return __alloc_skb_head(priority, -1);
667 }
668 
669 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
670 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
671 extern struct sk_buff *skb_clone(struct sk_buff *skb,
672 				 gfp_t priority);
673 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
674 				gfp_t priority);
675 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
676 				 int headroom, gfp_t gfp_mask);
677 
678 extern int	       pskb_expand_head(struct sk_buff *skb,
679 					int nhead, int ntail,
680 					gfp_t gfp_mask);
681 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
682 					    unsigned int headroom);
683 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
684 				       int newheadroom, int newtailroom,
685 				       gfp_t priority);
686 extern int	       skb_to_sgvec(struct sk_buff *skb,
687 				    struct scatterlist *sg, int offset,
688 				    int len);
689 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
690 				    struct sk_buff **trailer);
691 extern int	       skb_pad(struct sk_buff *skb, int pad);
692 #define dev_kfree_skb(a)	consume_skb(a)
693 
694 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
695 			int getfrag(void *from, char *to, int offset,
696 			int len,int odd, struct sk_buff *skb),
697 			void *from, int length);
698 
699 struct skb_seq_state {
700 	__u32		lower_offset;
701 	__u32		upper_offset;
702 	__u32		frag_idx;
703 	__u32		stepped_offset;
704 	struct sk_buff	*root_skb;
705 	struct sk_buff	*cur_skb;
706 	__u8		*frag_data;
707 };
708 
709 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
710 					   unsigned int from, unsigned int to,
711 					   struct skb_seq_state *st);
712 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
713 				   struct skb_seq_state *st);
714 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
715 
716 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
717 				    unsigned int to, struct ts_config *config,
718 				    struct ts_state *state);
719 
720 extern void __skb_get_rxhash(struct sk_buff *skb);
721 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
722 {
723 	if (!skb->l4_rxhash)
724 		__skb_get_rxhash(skb);
725 
726 	return skb->rxhash;
727 }
728 
729 #ifdef NET_SKBUFF_DATA_USES_OFFSET
730 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
731 {
732 	return skb->head + skb->end;
733 }
734 
735 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
736 {
737 	return skb->end;
738 }
739 #else
740 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
741 {
742 	return skb->end;
743 }
744 
745 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
746 {
747 	return skb->end - skb->head;
748 }
749 #endif
750 
751 /* Internal */
752 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
753 
754 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
755 {
756 	return &skb_shinfo(skb)->hwtstamps;
757 }
758 
759 /**
760  *	skb_queue_empty - check if a queue is empty
761  *	@list: queue head
762  *
763  *	Returns true if the queue is empty, false otherwise.
764  */
765 static inline int skb_queue_empty(const struct sk_buff_head *list)
766 {
767 	return list->next == (struct sk_buff *)list;
768 }
769 
770 /**
771  *	skb_queue_is_last - check if skb is the last entry in the queue
772  *	@list: queue head
773  *	@skb: buffer
774  *
775  *	Returns true if @skb is the last buffer on the list.
776  */
777 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
778 				     const struct sk_buff *skb)
779 {
780 	return skb->next == (struct sk_buff *)list;
781 }
782 
783 /**
784  *	skb_queue_is_first - check if skb is the first entry in the queue
785  *	@list: queue head
786  *	@skb: buffer
787  *
788  *	Returns true if @skb is the first buffer on the list.
789  */
790 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
791 				      const struct sk_buff *skb)
792 {
793 	return skb->prev == (struct sk_buff *)list;
794 }
795 
796 /**
797  *	skb_queue_next - return the next packet in the queue
798  *	@list: queue head
799  *	@skb: current buffer
800  *
801  *	Return the next packet in @list after @skb.  It is only valid to
802  *	call this if skb_queue_is_last() evaluates to false.
803  */
804 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
805 					     const struct sk_buff *skb)
806 {
807 	/* This BUG_ON may seem severe, but if we just return then we
808 	 * are going to dereference garbage.
809 	 */
810 	BUG_ON(skb_queue_is_last(list, skb));
811 	return skb->next;
812 }
813 
814 /**
815  *	skb_queue_prev - return the prev packet in the queue
816  *	@list: queue head
817  *	@skb: current buffer
818  *
819  *	Return the prev packet in @list before @skb.  It is only valid to
820  *	call this if skb_queue_is_first() evaluates to false.
821  */
822 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
823 					     const struct sk_buff *skb)
824 {
825 	/* This BUG_ON may seem severe, but if we just return then we
826 	 * are going to dereference garbage.
827 	 */
828 	BUG_ON(skb_queue_is_first(list, skb));
829 	return skb->prev;
830 }
831 
832 /**
833  *	skb_get - reference buffer
834  *	@skb: buffer to reference
835  *
836  *	Makes another reference to a socket buffer and returns a pointer
837  *	to the buffer.
838  */
839 static inline struct sk_buff *skb_get(struct sk_buff *skb)
840 {
841 	atomic_inc(&skb->users);
842 	return skb;
843 }
844 
845 /*
846  * If users == 1, we are the only owner and are can avoid redundant
847  * atomic change.
848  */
849 
850 /**
851  *	skb_cloned - is the buffer a clone
852  *	@skb: buffer to check
853  *
854  *	Returns true if the buffer was generated with skb_clone() and is
855  *	one of multiple shared copies of the buffer. Cloned buffers are
856  *	shared data so must not be written to under normal circumstances.
857  */
858 static inline int skb_cloned(const struct sk_buff *skb)
859 {
860 	return skb->cloned &&
861 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
862 }
863 
864 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
865 {
866 	might_sleep_if(pri & __GFP_WAIT);
867 
868 	if (skb_cloned(skb))
869 		return pskb_expand_head(skb, 0, 0, pri);
870 
871 	return 0;
872 }
873 
874 /**
875  *	skb_header_cloned - is the header a clone
876  *	@skb: buffer to check
877  *
878  *	Returns true if modifying the header part of the buffer requires
879  *	the data to be copied.
880  */
881 static inline int skb_header_cloned(const struct sk_buff *skb)
882 {
883 	int dataref;
884 
885 	if (!skb->cloned)
886 		return 0;
887 
888 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
889 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
890 	return dataref != 1;
891 }
892 
893 /**
894  *	skb_header_release - release reference to header
895  *	@skb: buffer to operate on
896  *
897  *	Drop a reference to the header part of the buffer.  This is done
898  *	by acquiring a payload reference.  You must not read from the header
899  *	part of skb->data after this.
900  */
901 static inline void skb_header_release(struct sk_buff *skb)
902 {
903 	BUG_ON(skb->nohdr);
904 	skb->nohdr = 1;
905 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
906 }
907 
908 /**
909  *	skb_shared - is the buffer shared
910  *	@skb: buffer to check
911  *
912  *	Returns true if more than one person has a reference to this
913  *	buffer.
914  */
915 static inline int skb_shared(const struct sk_buff *skb)
916 {
917 	return atomic_read(&skb->users) != 1;
918 }
919 
920 /**
921  *	skb_share_check - check if buffer is shared and if so clone it
922  *	@skb: buffer to check
923  *	@pri: priority for memory allocation
924  *
925  *	If the buffer is shared the buffer is cloned and the old copy
926  *	drops a reference. A new clone with a single reference is returned.
927  *	If the buffer is not shared the original buffer is returned. When
928  *	being called from interrupt status or with spinlocks held pri must
929  *	be GFP_ATOMIC.
930  *
931  *	NULL is returned on a memory allocation failure.
932  */
933 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
934 {
935 	might_sleep_if(pri & __GFP_WAIT);
936 	if (skb_shared(skb)) {
937 		struct sk_buff *nskb = skb_clone(skb, pri);
938 
939 		if (likely(nskb))
940 			consume_skb(skb);
941 		else
942 			kfree_skb(skb);
943 		skb = nskb;
944 	}
945 	return skb;
946 }
947 
948 /*
949  *	Copy shared buffers into a new sk_buff. We effectively do COW on
950  *	packets to handle cases where we have a local reader and forward
951  *	and a couple of other messy ones. The normal one is tcpdumping
952  *	a packet thats being forwarded.
953  */
954 
955 /**
956  *	skb_unshare - make a copy of a shared buffer
957  *	@skb: buffer to check
958  *	@pri: priority for memory allocation
959  *
960  *	If the socket buffer is a clone then this function creates a new
961  *	copy of the data, drops a reference count on the old copy and returns
962  *	the new copy with the reference count at 1. If the buffer is not a clone
963  *	the original buffer is returned. When called with a spinlock held or
964  *	from interrupt state @pri must be %GFP_ATOMIC
965  *
966  *	%NULL is returned on a memory allocation failure.
967  */
968 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
969 					  gfp_t pri)
970 {
971 	might_sleep_if(pri & __GFP_WAIT);
972 	if (skb_cloned(skb)) {
973 		struct sk_buff *nskb = skb_copy(skb, pri);
974 		kfree_skb(skb);	/* Free our shared copy */
975 		skb = nskb;
976 	}
977 	return skb;
978 }
979 
980 /**
981  *	skb_peek - peek at the head of an &sk_buff_head
982  *	@list_: list to peek at
983  *
984  *	Peek an &sk_buff. Unlike most other operations you _MUST_
985  *	be careful with this one. A peek leaves the buffer on the
986  *	list and someone else may run off with it. You must hold
987  *	the appropriate locks or have a private queue to do this.
988  *
989  *	Returns %NULL for an empty list or a pointer to the head element.
990  *	The reference count is not incremented and the reference is therefore
991  *	volatile. Use with caution.
992  */
993 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
994 {
995 	struct sk_buff *skb = list_->next;
996 
997 	if (skb == (struct sk_buff *)list_)
998 		skb = NULL;
999 	return skb;
1000 }
1001 
1002 /**
1003  *	skb_peek_next - peek skb following the given one from a queue
1004  *	@skb: skb to start from
1005  *	@list_: list to peek at
1006  *
1007  *	Returns %NULL when the end of the list is met or a pointer to the
1008  *	next element. The reference count is not incremented and the
1009  *	reference is therefore volatile. Use with caution.
1010  */
1011 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1012 		const struct sk_buff_head *list_)
1013 {
1014 	struct sk_buff *next = skb->next;
1015 
1016 	if (next == (struct sk_buff *)list_)
1017 		next = NULL;
1018 	return next;
1019 }
1020 
1021 /**
1022  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1023  *	@list_: list to peek at
1024  *
1025  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1026  *	be careful with this one. A peek leaves the buffer on the
1027  *	list and someone else may run off with it. You must hold
1028  *	the appropriate locks or have a private queue to do this.
1029  *
1030  *	Returns %NULL for an empty list or a pointer to the tail element.
1031  *	The reference count is not incremented and the reference is therefore
1032  *	volatile. Use with caution.
1033  */
1034 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1035 {
1036 	struct sk_buff *skb = list_->prev;
1037 
1038 	if (skb == (struct sk_buff *)list_)
1039 		skb = NULL;
1040 	return skb;
1041 
1042 }
1043 
1044 /**
1045  *	skb_queue_len	- get queue length
1046  *	@list_: list to measure
1047  *
1048  *	Return the length of an &sk_buff queue.
1049  */
1050 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1051 {
1052 	return list_->qlen;
1053 }
1054 
1055 /**
1056  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1057  *	@list: queue to initialize
1058  *
1059  *	This initializes only the list and queue length aspects of
1060  *	an sk_buff_head object.  This allows to initialize the list
1061  *	aspects of an sk_buff_head without reinitializing things like
1062  *	the spinlock.  It can also be used for on-stack sk_buff_head
1063  *	objects where the spinlock is known to not be used.
1064  */
1065 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1066 {
1067 	list->prev = list->next = (struct sk_buff *)list;
1068 	list->qlen = 0;
1069 }
1070 
1071 /*
1072  * This function creates a split out lock class for each invocation;
1073  * this is needed for now since a whole lot of users of the skb-queue
1074  * infrastructure in drivers have different locking usage (in hardirq)
1075  * than the networking core (in softirq only). In the long run either the
1076  * network layer or drivers should need annotation to consolidate the
1077  * main types of usage into 3 classes.
1078  */
1079 static inline void skb_queue_head_init(struct sk_buff_head *list)
1080 {
1081 	spin_lock_init(&list->lock);
1082 	__skb_queue_head_init(list);
1083 }
1084 
1085 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1086 		struct lock_class_key *class)
1087 {
1088 	skb_queue_head_init(list);
1089 	lockdep_set_class(&list->lock, class);
1090 }
1091 
1092 /*
1093  *	Insert an sk_buff on a list.
1094  *
1095  *	The "__skb_xxxx()" functions are the non-atomic ones that
1096  *	can only be called with interrupts disabled.
1097  */
1098 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1099 static inline void __skb_insert(struct sk_buff *newsk,
1100 				struct sk_buff *prev, struct sk_buff *next,
1101 				struct sk_buff_head *list)
1102 {
1103 	newsk->next = next;
1104 	newsk->prev = prev;
1105 	next->prev  = prev->next = newsk;
1106 	list->qlen++;
1107 }
1108 
1109 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1110 				      struct sk_buff *prev,
1111 				      struct sk_buff *next)
1112 {
1113 	struct sk_buff *first = list->next;
1114 	struct sk_buff *last = list->prev;
1115 
1116 	first->prev = prev;
1117 	prev->next = first;
1118 
1119 	last->next = next;
1120 	next->prev = last;
1121 }
1122 
1123 /**
1124  *	skb_queue_splice - join two skb lists, this is designed for stacks
1125  *	@list: the new list to add
1126  *	@head: the place to add it in the first list
1127  */
1128 static inline void skb_queue_splice(const struct sk_buff_head *list,
1129 				    struct sk_buff_head *head)
1130 {
1131 	if (!skb_queue_empty(list)) {
1132 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1133 		head->qlen += list->qlen;
1134 	}
1135 }
1136 
1137 /**
1138  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1139  *	@list: the new list to add
1140  *	@head: the place to add it in the first list
1141  *
1142  *	The list at @list is reinitialised
1143  */
1144 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1145 					 struct sk_buff_head *head)
1146 {
1147 	if (!skb_queue_empty(list)) {
1148 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1149 		head->qlen += list->qlen;
1150 		__skb_queue_head_init(list);
1151 	}
1152 }
1153 
1154 /**
1155  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1156  *	@list: the new list to add
1157  *	@head: the place to add it in the first list
1158  */
1159 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1160 					 struct sk_buff_head *head)
1161 {
1162 	if (!skb_queue_empty(list)) {
1163 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1164 		head->qlen += list->qlen;
1165 	}
1166 }
1167 
1168 /**
1169  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1170  *	@list: the new list to add
1171  *	@head: the place to add it in the first list
1172  *
1173  *	Each of the lists is a queue.
1174  *	The list at @list is reinitialised
1175  */
1176 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1177 					      struct sk_buff_head *head)
1178 {
1179 	if (!skb_queue_empty(list)) {
1180 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1181 		head->qlen += list->qlen;
1182 		__skb_queue_head_init(list);
1183 	}
1184 }
1185 
1186 /**
1187  *	__skb_queue_after - queue a buffer at the list head
1188  *	@list: list to use
1189  *	@prev: place after this buffer
1190  *	@newsk: buffer to queue
1191  *
1192  *	Queue a buffer int the middle of a list. This function takes no locks
1193  *	and you must therefore hold required locks before calling it.
1194  *
1195  *	A buffer cannot be placed on two lists at the same time.
1196  */
1197 static inline void __skb_queue_after(struct sk_buff_head *list,
1198 				     struct sk_buff *prev,
1199 				     struct sk_buff *newsk)
1200 {
1201 	__skb_insert(newsk, prev, prev->next, list);
1202 }
1203 
1204 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1205 		       struct sk_buff_head *list);
1206 
1207 static inline void __skb_queue_before(struct sk_buff_head *list,
1208 				      struct sk_buff *next,
1209 				      struct sk_buff *newsk)
1210 {
1211 	__skb_insert(newsk, next->prev, next, list);
1212 }
1213 
1214 /**
1215  *	__skb_queue_head - queue a buffer at the list head
1216  *	@list: list to use
1217  *	@newsk: buffer to queue
1218  *
1219  *	Queue a buffer at the start of a list. This function takes no locks
1220  *	and you must therefore hold required locks before calling it.
1221  *
1222  *	A buffer cannot be placed on two lists at the same time.
1223  */
1224 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1225 static inline void __skb_queue_head(struct sk_buff_head *list,
1226 				    struct sk_buff *newsk)
1227 {
1228 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1229 }
1230 
1231 /**
1232  *	__skb_queue_tail - queue a buffer at the list tail
1233  *	@list: list to use
1234  *	@newsk: buffer to queue
1235  *
1236  *	Queue a buffer at the end of a list. This function takes no locks
1237  *	and you must therefore hold required locks before calling it.
1238  *
1239  *	A buffer cannot be placed on two lists at the same time.
1240  */
1241 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1242 static inline void __skb_queue_tail(struct sk_buff_head *list,
1243 				   struct sk_buff *newsk)
1244 {
1245 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1246 }
1247 
1248 /*
1249  * remove sk_buff from list. _Must_ be called atomically, and with
1250  * the list known..
1251  */
1252 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1253 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1254 {
1255 	struct sk_buff *next, *prev;
1256 
1257 	list->qlen--;
1258 	next	   = skb->next;
1259 	prev	   = skb->prev;
1260 	skb->next  = skb->prev = NULL;
1261 	next->prev = prev;
1262 	prev->next = next;
1263 }
1264 
1265 /**
1266  *	__skb_dequeue - remove from the head of the queue
1267  *	@list: list to dequeue from
1268  *
1269  *	Remove the head of the list. This function does not take any locks
1270  *	so must be used with appropriate locks held only. The head item is
1271  *	returned or %NULL if the list is empty.
1272  */
1273 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1274 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1275 {
1276 	struct sk_buff *skb = skb_peek(list);
1277 	if (skb)
1278 		__skb_unlink(skb, list);
1279 	return skb;
1280 }
1281 
1282 /**
1283  *	__skb_dequeue_tail - remove from the tail of the queue
1284  *	@list: list to dequeue from
1285  *
1286  *	Remove the tail of the list. This function does not take any locks
1287  *	so must be used with appropriate locks held only. The tail item is
1288  *	returned or %NULL if the list is empty.
1289  */
1290 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1291 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1292 {
1293 	struct sk_buff *skb = skb_peek_tail(list);
1294 	if (skb)
1295 		__skb_unlink(skb, list);
1296 	return skb;
1297 }
1298 
1299 
1300 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1301 {
1302 	return skb->data_len;
1303 }
1304 
1305 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1306 {
1307 	return skb->len - skb->data_len;
1308 }
1309 
1310 static inline int skb_pagelen(const struct sk_buff *skb)
1311 {
1312 	int i, len = 0;
1313 
1314 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1315 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1316 	return len + skb_headlen(skb);
1317 }
1318 
1319 /**
1320  * __skb_fill_page_desc - initialise a paged fragment in an skb
1321  * @skb: buffer containing fragment to be initialised
1322  * @i: paged fragment index to initialise
1323  * @page: the page to use for this fragment
1324  * @off: the offset to the data with @page
1325  * @size: the length of the data
1326  *
1327  * Initialises the @i'th fragment of @skb to point to &size bytes at
1328  * offset @off within @page.
1329  *
1330  * Does not take any additional reference on the fragment.
1331  */
1332 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1333 					struct page *page, int off, int size)
1334 {
1335 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1336 
1337 	/*
1338 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1339 	 * that not all callers have unique ownership of the page. If
1340 	 * pfmemalloc is set, we check the mapping as a mapping implies
1341 	 * page->index is set (index and pfmemalloc share space).
1342 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1343 	 * do not lose pfmemalloc information as the pages would not be
1344 	 * allocated using __GFP_MEMALLOC.
1345 	 */
1346 	frag->page.p		  = page;
1347 	frag->page_offset	  = off;
1348 	skb_frag_size_set(frag, size);
1349 
1350 	page = compound_head(page);
1351 	if (page->pfmemalloc && !page->mapping)
1352 		skb->pfmemalloc	= true;
1353 }
1354 
1355 /**
1356  * skb_fill_page_desc - initialise a paged fragment in an skb
1357  * @skb: buffer containing fragment to be initialised
1358  * @i: paged fragment index to initialise
1359  * @page: the page to use for this fragment
1360  * @off: the offset to the data with @page
1361  * @size: the length of the data
1362  *
1363  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1364  * @skb to point to &size bytes at offset @off within @page. In
1365  * addition updates @skb such that @i is the last fragment.
1366  *
1367  * Does not take any additional reference on the fragment.
1368  */
1369 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1370 				      struct page *page, int off, int size)
1371 {
1372 	__skb_fill_page_desc(skb, i, page, off, size);
1373 	skb_shinfo(skb)->nr_frags = i + 1;
1374 }
1375 
1376 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1377 			    int off, int size, unsigned int truesize);
1378 
1379 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1380 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1381 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1382 
1383 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1384 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1385 {
1386 	return skb->head + skb->tail;
1387 }
1388 
1389 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1390 {
1391 	skb->tail = skb->data - skb->head;
1392 }
1393 
1394 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1395 {
1396 	skb_reset_tail_pointer(skb);
1397 	skb->tail += offset;
1398 }
1399 
1400 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1401 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1402 {
1403 	return skb->tail;
1404 }
1405 
1406 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1407 {
1408 	skb->tail = skb->data;
1409 }
1410 
1411 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1412 {
1413 	skb->tail = skb->data + offset;
1414 }
1415 
1416 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1417 
1418 /*
1419  *	Add data to an sk_buff
1420  */
1421 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1422 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1423 {
1424 	unsigned char *tmp = skb_tail_pointer(skb);
1425 	SKB_LINEAR_ASSERT(skb);
1426 	skb->tail += len;
1427 	skb->len  += len;
1428 	return tmp;
1429 }
1430 
1431 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1432 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1433 {
1434 	skb->data -= len;
1435 	skb->len  += len;
1436 	return skb->data;
1437 }
1438 
1439 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1440 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1441 {
1442 	skb->len -= len;
1443 	BUG_ON(skb->len < skb->data_len);
1444 	return skb->data += len;
1445 }
1446 
1447 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1448 {
1449 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1450 }
1451 
1452 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1453 
1454 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1455 {
1456 	if (len > skb_headlen(skb) &&
1457 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1458 		return NULL;
1459 	skb->len -= len;
1460 	return skb->data += len;
1461 }
1462 
1463 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1464 {
1465 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1466 }
1467 
1468 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1469 {
1470 	if (likely(len <= skb_headlen(skb)))
1471 		return 1;
1472 	if (unlikely(len > skb->len))
1473 		return 0;
1474 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1475 }
1476 
1477 /**
1478  *	skb_headroom - bytes at buffer head
1479  *	@skb: buffer to check
1480  *
1481  *	Return the number of bytes of free space at the head of an &sk_buff.
1482  */
1483 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1484 {
1485 	return skb->data - skb->head;
1486 }
1487 
1488 /**
1489  *	skb_tailroom - bytes at buffer end
1490  *	@skb: buffer to check
1491  *
1492  *	Return the number of bytes of free space at the tail of an sk_buff
1493  */
1494 static inline int skb_tailroom(const struct sk_buff *skb)
1495 {
1496 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1497 }
1498 
1499 /**
1500  *	skb_availroom - bytes at buffer end
1501  *	@skb: buffer to check
1502  *
1503  *	Return the number of bytes of free space at the tail of an sk_buff
1504  *	allocated by sk_stream_alloc()
1505  */
1506 static inline int skb_availroom(const struct sk_buff *skb)
1507 {
1508 	if (skb_is_nonlinear(skb))
1509 		return 0;
1510 
1511 	return skb->end - skb->tail - skb->reserved_tailroom;
1512 }
1513 
1514 /**
1515  *	skb_reserve - adjust headroom
1516  *	@skb: buffer to alter
1517  *	@len: bytes to move
1518  *
1519  *	Increase the headroom of an empty &sk_buff by reducing the tail
1520  *	room. This is only allowed for an empty buffer.
1521  */
1522 static inline void skb_reserve(struct sk_buff *skb, int len)
1523 {
1524 	skb->data += len;
1525 	skb->tail += len;
1526 }
1527 
1528 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1529 {
1530 	skb->inner_mac_header = skb->mac_header;
1531 	skb->inner_network_header = skb->network_header;
1532 	skb->inner_transport_header = skb->transport_header;
1533 }
1534 
1535 static inline void skb_reset_mac_len(struct sk_buff *skb)
1536 {
1537 	skb->mac_len = skb->network_header - skb->mac_header;
1538 }
1539 
1540 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1541 							*skb)
1542 {
1543 	return skb->head + skb->inner_transport_header;
1544 }
1545 
1546 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1547 {
1548 	skb->inner_transport_header = skb->data - skb->head;
1549 }
1550 
1551 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1552 						   const int offset)
1553 {
1554 	skb_reset_inner_transport_header(skb);
1555 	skb->inner_transport_header += offset;
1556 }
1557 
1558 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1559 {
1560 	return skb->head + skb->inner_network_header;
1561 }
1562 
1563 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1564 {
1565 	skb->inner_network_header = skb->data - skb->head;
1566 }
1567 
1568 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1569 						const int offset)
1570 {
1571 	skb_reset_inner_network_header(skb);
1572 	skb->inner_network_header += offset;
1573 }
1574 
1575 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1576 {
1577 	return skb->head + skb->inner_mac_header;
1578 }
1579 
1580 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1581 {
1582 	skb->inner_mac_header = skb->data - skb->head;
1583 }
1584 
1585 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1586 					    const int offset)
1587 {
1588 	skb_reset_inner_mac_header(skb);
1589 	skb->inner_mac_header += offset;
1590 }
1591 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1592 {
1593 	return skb->transport_header != (typeof(skb->transport_header))~0U;
1594 }
1595 
1596 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1597 {
1598 	return skb->head + skb->transport_header;
1599 }
1600 
1601 static inline void skb_reset_transport_header(struct sk_buff *skb)
1602 {
1603 	skb->transport_header = skb->data - skb->head;
1604 }
1605 
1606 static inline void skb_set_transport_header(struct sk_buff *skb,
1607 					    const int offset)
1608 {
1609 	skb_reset_transport_header(skb);
1610 	skb->transport_header += offset;
1611 }
1612 
1613 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1614 {
1615 	return skb->head + skb->network_header;
1616 }
1617 
1618 static inline void skb_reset_network_header(struct sk_buff *skb)
1619 {
1620 	skb->network_header = skb->data - skb->head;
1621 }
1622 
1623 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1624 {
1625 	skb_reset_network_header(skb);
1626 	skb->network_header += offset;
1627 }
1628 
1629 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1630 {
1631 	return skb->head + skb->mac_header;
1632 }
1633 
1634 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1635 {
1636 	return skb->mac_header != (typeof(skb->mac_header))~0U;
1637 }
1638 
1639 static inline void skb_reset_mac_header(struct sk_buff *skb)
1640 {
1641 	skb->mac_header = skb->data - skb->head;
1642 }
1643 
1644 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1645 {
1646 	skb_reset_mac_header(skb);
1647 	skb->mac_header += offset;
1648 }
1649 
1650 static inline void skb_probe_transport_header(struct sk_buff *skb,
1651 					      const int offset_hint)
1652 {
1653 	struct flow_keys keys;
1654 
1655 	if (skb_transport_header_was_set(skb))
1656 		return;
1657 	else if (skb_flow_dissect(skb, &keys))
1658 		skb_set_transport_header(skb, keys.thoff);
1659 	else
1660 		skb_set_transport_header(skb, offset_hint);
1661 }
1662 
1663 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1664 {
1665 	if (skb_mac_header_was_set(skb)) {
1666 		const unsigned char *old_mac = skb_mac_header(skb);
1667 
1668 		skb_set_mac_header(skb, -skb->mac_len);
1669 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1670 	}
1671 }
1672 
1673 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1674 {
1675 	return skb->csum_start - skb_headroom(skb);
1676 }
1677 
1678 static inline int skb_transport_offset(const struct sk_buff *skb)
1679 {
1680 	return skb_transport_header(skb) - skb->data;
1681 }
1682 
1683 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1684 {
1685 	return skb->transport_header - skb->network_header;
1686 }
1687 
1688 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1689 {
1690 	return skb->inner_transport_header - skb->inner_network_header;
1691 }
1692 
1693 static inline int skb_network_offset(const struct sk_buff *skb)
1694 {
1695 	return skb_network_header(skb) - skb->data;
1696 }
1697 
1698 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1699 {
1700 	return skb_inner_network_header(skb) - skb->data;
1701 }
1702 
1703 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1704 {
1705 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1706 }
1707 
1708 /*
1709  * CPUs often take a performance hit when accessing unaligned memory
1710  * locations. The actual performance hit varies, it can be small if the
1711  * hardware handles it or large if we have to take an exception and fix it
1712  * in software.
1713  *
1714  * Since an ethernet header is 14 bytes network drivers often end up with
1715  * the IP header at an unaligned offset. The IP header can be aligned by
1716  * shifting the start of the packet by 2 bytes. Drivers should do this
1717  * with:
1718  *
1719  * skb_reserve(skb, NET_IP_ALIGN);
1720  *
1721  * The downside to this alignment of the IP header is that the DMA is now
1722  * unaligned. On some architectures the cost of an unaligned DMA is high
1723  * and this cost outweighs the gains made by aligning the IP header.
1724  *
1725  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1726  * to be overridden.
1727  */
1728 #ifndef NET_IP_ALIGN
1729 #define NET_IP_ALIGN	2
1730 #endif
1731 
1732 /*
1733  * The networking layer reserves some headroom in skb data (via
1734  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1735  * the header has to grow. In the default case, if the header has to grow
1736  * 32 bytes or less we avoid the reallocation.
1737  *
1738  * Unfortunately this headroom changes the DMA alignment of the resulting
1739  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1740  * on some architectures. An architecture can override this value,
1741  * perhaps setting it to a cacheline in size (since that will maintain
1742  * cacheline alignment of the DMA). It must be a power of 2.
1743  *
1744  * Various parts of the networking layer expect at least 32 bytes of
1745  * headroom, you should not reduce this.
1746  *
1747  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1748  * to reduce average number of cache lines per packet.
1749  * get_rps_cpus() for example only access one 64 bytes aligned block :
1750  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1751  */
1752 #ifndef NET_SKB_PAD
1753 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1754 #endif
1755 
1756 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1757 
1758 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1759 {
1760 	if (unlikely(skb_is_nonlinear(skb))) {
1761 		WARN_ON(1);
1762 		return;
1763 	}
1764 	skb->len = len;
1765 	skb_set_tail_pointer(skb, len);
1766 }
1767 
1768 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1769 
1770 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1771 {
1772 	if (skb->data_len)
1773 		return ___pskb_trim(skb, len);
1774 	__skb_trim(skb, len);
1775 	return 0;
1776 }
1777 
1778 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1779 {
1780 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1781 }
1782 
1783 /**
1784  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1785  *	@skb: buffer to alter
1786  *	@len: new length
1787  *
1788  *	This is identical to pskb_trim except that the caller knows that
1789  *	the skb is not cloned so we should never get an error due to out-
1790  *	of-memory.
1791  */
1792 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1793 {
1794 	int err = pskb_trim(skb, len);
1795 	BUG_ON(err);
1796 }
1797 
1798 /**
1799  *	skb_orphan - orphan a buffer
1800  *	@skb: buffer to orphan
1801  *
1802  *	If a buffer currently has an owner then we call the owner's
1803  *	destructor function and make the @skb unowned. The buffer continues
1804  *	to exist but is no longer charged to its former owner.
1805  */
1806 static inline void skb_orphan(struct sk_buff *skb)
1807 {
1808 	if (skb->destructor)
1809 		skb->destructor(skb);
1810 	skb->destructor = NULL;
1811 	skb->sk		= NULL;
1812 }
1813 
1814 /**
1815  *	skb_orphan_frags - orphan the frags contained in a buffer
1816  *	@skb: buffer to orphan frags from
1817  *	@gfp_mask: allocation mask for replacement pages
1818  *
1819  *	For each frag in the SKB which needs a destructor (i.e. has an
1820  *	owner) create a copy of that frag and release the original
1821  *	page by calling the destructor.
1822  */
1823 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1824 {
1825 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1826 		return 0;
1827 	return skb_copy_ubufs(skb, gfp_mask);
1828 }
1829 
1830 /**
1831  *	__skb_queue_purge - empty a list
1832  *	@list: list to empty
1833  *
1834  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1835  *	the list and one reference dropped. This function does not take the
1836  *	list lock and the caller must hold the relevant locks to use it.
1837  */
1838 extern void skb_queue_purge(struct sk_buff_head *list);
1839 static inline void __skb_queue_purge(struct sk_buff_head *list)
1840 {
1841 	struct sk_buff *skb;
1842 	while ((skb = __skb_dequeue(list)) != NULL)
1843 		kfree_skb(skb);
1844 }
1845 
1846 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1847 #define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1848 #define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE
1849 
1850 extern void *netdev_alloc_frag(unsigned int fragsz);
1851 
1852 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1853 					  unsigned int length,
1854 					  gfp_t gfp_mask);
1855 
1856 /**
1857  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1858  *	@dev: network device to receive on
1859  *	@length: length to allocate
1860  *
1861  *	Allocate a new &sk_buff and assign it a usage count of one. The
1862  *	buffer has unspecified headroom built in. Users should allocate
1863  *	the headroom they think they need without accounting for the
1864  *	built in space. The built in space is used for optimisations.
1865  *
1866  *	%NULL is returned if there is no free memory. Although this function
1867  *	allocates memory it can be called from an interrupt.
1868  */
1869 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1870 					       unsigned int length)
1871 {
1872 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1873 }
1874 
1875 /* legacy helper around __netdev_alloc_skb() */
1876 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1877 					      gfp_t gfp_mask)
1878 {
1879 	return __netdev_alloc_skb(NULL, length, gfp_mask);
1880 }
1881 
1882 /* legacy helper around netdev_alloc_skb() */
1883 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1884 {
1885 	return netdev_alloc_skb(NULL, length);
1886 }
1887 
1888 
1889 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1890 		unsigned int length, gfp_t gfp)
1891 {
1892 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1893 
1894 	if (NET_IP_ALIGN && skb)
1895 		skb_reserve(skb, NET_IP_ALIGN);
1896 	return skb;
1897 }
1898 
1899 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1900 		unsigned int length)
1901 {
1902 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1903 }
1904 
1905 /*
1906  *	__skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
1907  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1908  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1909  *	@order: size of the allocation
1910  *
1911  * 	Allocate a new page.
1912  *
1913  * 	%NULL is returned if there is no free memory.
1914 */
1915 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1916 					      struct sk_buff *skb,
1917 					      unsigned int order)
1918 {
1919 	struct page *page;
1920 
1921 	gfp_mask |= __GFP_COLD;
1922 
1923 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1924 		gfp_mask |= __GFP_MEMALLOC;
1925 
1926 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1927 	if (skb && page && page->pfmemalloc)
1928 		skb->pfmemalloc = true;
1929 
1930 	return page;
1931 }
1932 
1933 /**
1934  *	__skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1935  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1936  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1937  *
1938  * 	Allocate a new page.
1939  *
1940  * 	%NULL is returned if there is no free memory.
1941  */
1942 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1943 					     struct sk_buff *skb)
1944 {
1945 	return __skb_alloc_pages(gfp_mask, skb, 0);
1946 }
1947 
1948 /**
1949  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1950  *	@page: The page that was allocated from skb_alloc_page
1951  *	@skb: The skb that may need pfmemalloc set
1952  */
1953 static inline void skb_propagate_pfmemalloc(struct page *page,
1954 					     struct sk_buff *skb)
1955 {
1956 	if (page && page->pfmemalloc)
1957 		skb->pfmemalloc = true;
1958 }
1959 
1960 /**
1961  * skb_frag_page - retrieve the page refered to by a paged fragment
1962  * @frag: the paged fragment
1963  *
1964  * Returns the &struct page associated with @frag.
1965  */
1966 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1967 {
1968 	return frag->page.p;
1969 }
1970 
1971 /**
1972  * __skb_frag_ref - take an addition reference on a paged fragment.
1973  * @frag: the paged fragment
1974  *
1975  * Takes an additional reference on the paged fragment @frag.
1976  */
1977 static inline void __skb_frag_ref(skb_frag_t *frag)
1978 {
1979 	get_page(skb_frag_page(frag));
1980 }
1981 
1982 /**
1983  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1984  * @skb: the buffer
1985  * @f: the fragment offset.
1986  *
1987  * Takes an additional reference on the @f'th paged fragment of @skb.
1988  */
1989 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1990 {
1991 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1992 }
1993 
1994 /**
1995  * __skb_frag_unref - release a reference on a paged fragment.
1996  * @frag: the paged fragment
1997  *
1998  * Releases a reference on the paged fragment @frag.
1999  */
2000 static inline void __skb_frag_unref(skb_frag_t *frag)
2001 {
2002 	put_page(skb_frag_page(frag));
2003 }
2004 
2005 /**
2006  * skb_frag_unref - release a reference on a paged fragment of an skb.
2007  * @skb: the buffer
2008  * @f: the fragment offset
2009  *
2010  * Releases a reference on the @f'th paged fragment of @skb.
2011  */
2012 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2013 {
2014 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2015 }
2016 
2017 /**
2018  * skb_frag_address - gets the address of the data contained in a paged fragment
2019  * @frag: the paged fragment buffer
2020  *
2021  * Returns the address of the data within @frag. The page must already
2022  * be mapped.
2023  */
2024 static inline void *skb_frag_address(const skb_frag_t *frag)
2025 {
2026 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2027 }
2028 
2029 /**
2030  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2031  * @frag: the paged fragment buffer
2032  *
2033  * Returns the address of the data within @frag. Checks that the page
2034  * is mapped and returns %NULL otherwise.
2035  */
2036 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2037 {
2038 	void *ptr = page_address(skb_frag_page(frag));
2039 	if (unlikely(!ptr))
2040 		return NULL;
2041 
2042 	return ptr + frag->page_offset;
2043 }
2044 
2045 /**
2046  * __skb_frag_set_page - sets the page contained in a paged fragment
2047  * @frag: the paged fragment
2048  * @page: the page to set
2049  *
2050  * Sets the fragment @frag to contain @page.
2051  */
2052 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2053 {
2054 	frag->page.p = page;
2055 }
2056 
2057 /**
2058  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2059  * @skb: the buffer
2060  * @f: the fragment offset
2061  * @page: the page to set
2062  *
2063  * Sets the @f'th fragment of @skb to contain @page.
2064  */
2065 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2066 				     struct page *page)
2067 {
2068 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2069 }
2070 
2071 /**
2072  * skb_frag_dma_map - maps a paged fragment via the DMA API
2073  * @dev: the device to map the fragment to
2074  * @frag: the paged fragment to map
2075  * @offset: the offset within the fragment (starting at the
2076  *          fragment's own offset)
2077  * @size: the number of bytes to map
2078  * @dir: the direction of the mapping (%PCI_DMA_*)
2079  *
2080  * Maps the page associated with @frag to @device.
2081  */
2082 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2083 					  const skb_frag_t *frag,
2084 					  size_t offset, size_t size,
2085 					  enum dma_data_direction dir)
2086 {
2087 	return dma_map_page(dev, skb_frag_page(frag),
2088 			    frag->page_offset + offset, size, dir);
2089 }
2090 
2091 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2092 					gfp_t gfp_mask)
2093 {
2094 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2095 }
2096 
2097 /**
2098  *	skb_clone_writable - is the header of a clone writable
2099  *	@skb: buffer to check
2100  *	@len: length up to which to write
2101  *
2102  *	Returns true if modifying the header part of the cloned buffer
2103  *	does not requires the data to be copied.
2104  */
2105 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2106 {
2107 	return !skb_header_cloned(skb) &&
2108 	       skb_headroom(skb) + len <= skb->hdr_len;
2109 }
2110 
2111 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2112 			    int cloned)
2113 {
2114 	int delta = 0;
2115 
2116 	if (headroom > skb_headroom(skb))
2117 		delta = headroom - skb_headroom(skb);
2118 
2119 	if (delta || cloned)
2120 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2121 					GFP_ATOMIC);
2122 	return 0;
2123 }
2124 
2125 /**
2126  *	skb_cow - copy header of skb when it is required
2127  *	@skb: buffer to cow
2128  *	@headroom: needed headroom
2129  *
2130  *	If the skb passed lacks sufficient headroom or its data part
2131  *	is shared, data is reallocated. If reallocation fails, an error
2132  *	is returned and original skb is not changed.
2133  *
2134  *	The result is skb with writable area skb->head...skb->tail
2135  *	and at least @headroom of space at head.
2136  */
2137 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2138 {
2139 	return __skb_cow(skb, headroom, skb_cloned(skb));
2140 }
2141 
2142 /**
2143  *	skb_cow_head - skb_cow but only making the head writable
2144  *	@skb: buffer to cow
2145  *	@headroom: needed headroom
2146  *
2147  *	This function is identical to skb_cow except that we replace the
2148  *	skb_cloned check by skb_header_cloned.  It should be used when
2149  *	you only need to push on some header and do not need to modify
2150  *	the data.
2151  */
2152 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2153 {
2154 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2155 }
2156 
2157 /**
2158  *	skb_padto	- pad an skbuff up to a minimal size
2159  *	@skb: buffer to pad
2160  *	@len: minimal length
2161  *
2162  *	Pads up a buffer to ensure the trailing bytes exist and are
2163  *	blanked. If the buffer already contains sufficient data it
2164  *	is untouched. Otherwise it is extended. Returns zero on
2165  *	success. The skb is freed on error.
2166  */
2167 
2168 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2169 {
2170 	unsigned int size = skb->len;
2171 	if (likely(size >= len))
2172 		return 0;
2173 	return skb_pad(skb, len - size);
2174 }
2175 
2176 static inline int skb_add_data(struct sk_buff *skb,
2177 			       char __user *from, int copy)
2178 {
2179 	const int off = skb->len;
2180 
2181 	if (skb->ip_summed == CHECKSUM_NONE) {
2182 		int err = 0;
2183 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2184 							    copy, 0, &err);
2185 		if (!err) {
2186 			skb->csum = csum_block_add(skb->csum, csum, off);
2187 			return 0;
2188 		}
2189 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
2190 		return 0;
2191 
2192 	__skb_trim(skb, off);
2193 	return -EFAULT;
2194 }
2195 
2196 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2197 				    const struct page *page, int off)
2198 {
2199 	if (i) {
2200 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2201 
2202 		return page == skb_frag_page(frag) &&
2203 		       off == frag->page_offset + skb_frag_size(frag);
2204 	}
2205 	return false;
2206 }
2207 
2208 static inline int __skb_linearize(struct sk_buff *skb)
2209 {
2210 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2211 }
2212 
2213 /**
2214  *	skb_linearize - convert paged skb to linear one
2215  *	@skb: buffer to linarize
2216  *
2217  *	If there is no free memory -ENOMEM is returned, otherwise zero
2218  *	is returned and the old skb data released.
2219  */
2220 static inline int skb_linearize(struct sk_buff *skb)
2221 {
2222 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2223 }
2224 
2225 /**
2226  * skb_has_shared_frag - can any frag be overwritten
2227  * @skb: buffer to test
2228  *
2229  * Return true if the skb has at least one frag that might be modified
2230  * by an external entity (as in vmsplice()/sendfile())
2231  */
2232 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2233 {
2234 	return skb_is_nonlinear(skb) &&
2235 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2236 }
2237 
2238 /**
2239  *	skb_linearize_cow - make sure skb is linear and writable
2240  *	@skb: buffer to process
2241  *
2242  *	If there is no free memory -ENOMEM is returned, otherwise zero
2243  *	is returned and the old skb data released.
2244  */
2245 static inline int skb_linearize_cow(struct sk_buff *skb)
2246 {
2247 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2248 	       __skb_linearize(skb) : 0;
2249 }
2250 
2251 /**
2252  *	skb_postpull_rcsum - update checksum for received skb after pull
2253  *	@skb: buffer to update
2254  *	@start: start of data before pull
2255  *	@len: length of data pulled
2256  *
2257  *	After doing a pull on a received packet, you need to call this to
2258  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2259  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2260  */
2261 
2262 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2263 				      const void *start, unsigned int len)
2264 {
2265 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2266 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2267 }
2268 
2269 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2270 
2271 /**
2272  *	pskb_trim_rcsum - trim received skb and update checksum
2273  *	@skb: buffer to trim
2274  *	@len: new length
2275  *
2276  *	This is exactly the same as pskb_trim except that it ensures the
2277  *	checksum of received packets are still valid after the operation.
2278  */
2279 
2280 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2281 {
2282 	if (likely(len >= skb->len))
2283 		return 0;
2284 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2285 		skb->ip_summed = CHECKSUM_NONE;
2286 	return __pskb_trim(skb, len);
2287 }
2288 
2289 #define skb_queue_walk(queue, skb) \
2290 		for (skb = (queue)->next;					\
2291 		     skb != (struct sk_buff *)(queue);				\
2292 		     skb = skb->next)
2293 
2294 #define skb_queue_walk_safe(queue, skb, tmp)					\
2295 		for (skb = (queue)->next, tmp = skb->next;			\
2296 		     skb != (struct sk_buff *)(queue);				\
2297 		     skb = tmp, tmp = skb->next)
2298 
2299 #define skb_queue_walk_from(queue, skb)						\
2300 		for (; skb != (struct sk_buff *)(queue);			\
2301 		     skb = skb->next)
2302 
2303 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2304 		for (tmp = skb->next;						\
2305 		     skb != (struct sk_buff *)(queue);				\
2306 		     skb = tmp, tmp = skb->next)
2307 
2308 #define skb_queue_reverse_walk(queue, skb) \
2309 		for (skb = (queue)->prev;					\
2310 		     skb != (struct sk_buff *)(queue);				\
2311 		     skb = skb->prev)
2312 
2313 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2314 		for (skb = (queue)->prev, tmp = skb->prev;			\
2315 		     skb != (struct sk_buff *)(queue);				\
2316 		     skb = tmp, tmp = skb->prev)
2317 
2318 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2319 		for (tmp = skb->prev;						\
2320 		     skb != (struct sk_buff *)(queue);				\
2321 		     skb = tmp, tmp = skb->prev)
2322 
2323 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2324 {
2325 	return skb_shinfo(skb)->frag_list != NULL;
2326 }
2327 
2328 static inline void skb_frag_list_init(struct sk_buff *skb)
2329 {
2330 	skb_shinfo(skb)->frag_list = NULL;
2331 }
2332 
2333 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2334 {
2335 	frag->next = skb_shinfo(skb)->frag_list;
2336 	skb_shinfo(skb)->frag_list = frag;
2337 }
2338 
2339 #define skb_walk_frags(skb, iter)	\
2340 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2341 
2342 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2343 					   int *peeked, int *off, int *err);
2344 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2345 					 int noblock, int *err);
2346 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2347 				     struct poll_table_struct *wait);
2348 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2349 					       int offset, struct iovec *to,
2350 					       int size);
2351 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2352 							int hlen,
2353 							struct iovec *iov);
2354 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2355 						    int offset,
2356 						    const struct iovec *from,
2357 						    int from_offset,
2358 						    int len);
2359 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2360 						     int offset,
2361 						     const struct iovec *to,
2362 						     int to_offset,
2363 						     int size);
2364 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2365 extern void	       skb_free_datagram_locked(struct sock *sk,
2366 						struct sk_buff *skb);
2367 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2368 					 unsigned int flags);
2369 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2370 				    int len, __wsum csum);
2371 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2372 				     void *to, int len);
2373 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2374 				      const void *from, int len);
2375 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2376 					      int offset, u8 *to, int len,
2377 					      __wsum csum);
2378 extern int             skb_splice_bits(struct sk_buff *skb,
2379 						unsigned int offset,
2380 						struct pipe_inode_info *pipe,
2381 						unsigned int len,
2382 						unsigned int flags);
2383 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2384 extern void	       skb_split(struct sk_buff *skb,
2385 				 struct sk_buff *skb1, const u32 len);
2386 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2387 				 int shiftlen);
2388 extern void	       skb_scrub_packet(struct sk_buff *skb);
2389 
2390 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2391 				   netdev_features_t features);
2392 
2393 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2394 				       int len, void *buffer)
2395 {
2396 	int hlen = skb_headlen(skb);
2397 
2398 	if (hlen - offset >= len)
2399 		return skb->data + offset;
2400 
2401 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2402 		return NULL;
2403 
2404 	return buffer;
2405 }
2406 
2407 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2408 					     void *to,
2409 					     const unsigned int len)
2410 {
2411 	memcpy(to, skb->data, len);
2412 }
2413 
2414 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2415 						    const int offset, void *to,
2416 						    const unsigned int len)
2417 {
2418 	memcpy(to, skb->data + offset, len);
2419 }
2420 
2421 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2422 					   const void *from,
2423 					   const unsigned int len)
2424 {
2425 	memcpy(skb->data, from, len);
2426 }
2427 
2428 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2429 						  const int offset,
2430 						  const void *from,
2431 						  const unsigned int len)
2432 {
2433 	memcpy(skb->data + offset, from, len);
2434 }
2435 
2436 extern void skb_init(void);
2437 
2438 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2439 {
2440 	return skb->tstamp;
2441 }
2442 
2443 /**
2444  *	skb_get_timestamp - get timestamp from a skb
2445  *	@skb: skb to get stamp from
2446  *	@stamp: pointer to struct timeval to store stamp in
2447  *
2448  *	Timestamps are stored in the skb as offsets to a base timestamp.
2449  *	This function converts the offset back to a struct timeval and stores
2450  *	it in stamp.
2451  */
2452 static inline void skb_get_timestamp(const struct sk_buff *skb,
2453 				     struct timeval *stamp)
2454 {
2455 	*stamp = ktime_to_timeval(skb->tstamp);
2456 }
2457 
2458 static inline void skb_get_timestampns(const struct sk_buff *skb,
2459 				       struct timespec *stamp)
2460 {
2461 	*stamp = ktime_to_timespec(skb->tstamp);
2462 }
2463 
2464 static inline void __net_timestamp(struct sk_buff *skb)
2465 {
2466 	skb->tstamp = ktime_get_real();
2467 }
2468 
2469 static inline ktime_t net_timedelta(ktime_t t)
2470 {
2471 	return ktime_sub(ktime_get_real(), t);
2472 }
2473 
2474 static inline ktime_t net_invalid_timestamp(void)
2475 {
2476 	return ktime_set(0, 0);
2477 }
2478 
2479 extern void skb_timestamping_init(void);
2480 
2481 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2482 
2483 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2484 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2485 
2486 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2487 
2488 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2489 {
2490 }
2491 
2492 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2493 {
2494 	return false;
2495 }
2496 
2497 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2498 
2499 /**
2500  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2501  *
2502  * PHY drivers may accept clones of transmitted packets for
2503  * timestamping via their phy_driver.txtstamp method. These drivers
2504  * must call this function to return the skb back to the stack, with
2505  * or without a timestamp.
2506  *
2507  * @skb: clone of the the original outgoing packet
2508  * @hwtstamps: hardware time stamps, may be NULL if not available
2509  *
2510  */
2511 void skb_complete_tx_timestamp(struct sk_buff *skb,
2512 			       struct skb_shared_hwtstamps *hwtstamps);
2513 
2514 /**
2515  * skb_tstamp_tx - queue clone of skb with send time stamps
2516  * @orig_skb:	the original outgoing packet
2517  * @hwtstamps:	hardware time stamps, may be NULL if not available
2518  *
2519  * If the skb has a socket associated, then this function clones the
2520  * skb (thus sharing the actual data and optional structures), stores
2521  * the optional hardware time stamping information (if non NULL) or
2522  * generates a software time stamp (otherwise), then queues the clone
2523  * to the error queue of the socket.  Errors are silently ignored.
2524  */
2525 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2526 			struct skb_shared_hwtstamps *hwtstamps);
2527 
2528 static inline void sw_tx_timestamp(struct sk_buff *skb)
2529 {
2530 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2531 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2532 		skb_tstamp_tx(skb, NULL);
2533 }
2534 
2535 /**
2536  * skb_tx_timestamp() - Driver hook for transmit timestamping
2537  *
2538  * Ethernet MAC Drivers should call this function in their hard_xmit()
2539  * function immediately before giving the sk_buff to the MAC hardware.
2540  *
2541  * @skb: A socket buffer.
2542  */
2543 static inline void skb_tx_timestamp(struct sk_buff *skb)
2544 {
2545 	skb_clone_tx_timestamp(skb);
2546 	sw_tx_timestamp(skb);
2547 }
2548 
2549 /**
2550  * skb_complete_wifi_ack - deliver skb with wifi status
2551  *
2552  * @skb: the original outgoing packet
2553  * @acked: ack status
2554  *
2555  */
2556 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2557 
2558 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2559 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2560 
2561 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2562 {
2563 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2564 }
2565 
2566 /**
2567  *	skb_checksum_complete - Calculate checksum of an entire packet
2568  *	@skb: packet to process
2569  *
2570  *	This function calculates the checksum over the entire packet plus
2571  *	the value of skb->csum.  The latter can be used to supply the
2572  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2573  *	checksum.
2574  *
2575  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2576  *	this function can be used to verify that checksum on received
2577  *	packets.  In that case the function should return zero if the
2578  *	checksum is correct.  In particular, this function will return zero
2579  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2580  *	hardware has already verified the correctness of the checksum.
2581  */
2582 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2583 {
2584 	return skb_csum_unnecessary(skb) ?
2585 	       0 : __skb_checksum_complete(skb);
2586 }
2587 
2588 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2589 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2590 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2591 {
2592 	if (nfct && atomic_dec_and_test(&nfct->use))
2593 		nf_conntrack_destroy(nfct);
2594 }
2595 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2596 {
2597 	if (nfct)
2598 		atomic_inc(&nfct->use);
2599 }
2600 #endif
2601 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2602 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2603 {
2604 	if (skb)
2605 		atomic_inc(&skb->users);
2606 }
2607 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2608 {
2609 	if (skb)
2610 		kfree_skb(skb);
2611 }
2612 #endif
2613 #ifdef CONFIG_BRIDGE_NETFILTER
2614 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2615 {
2616 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2617 		kfree(nf_bridge);
2618 }
2619 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2620 {
2621 	if (nf_bridge)
2622 		atomic_inc(&nf_bridge->use);
2623 }
2624 #endif /* CONFIG_BRIDGE_NETFILTER */
2625 static inline void nf_reset(struct sk_buff *skb)
2626 {
2627 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2628 	nf_conntrack_put(skb->nfct);
2629 	skb->nfct = NULL;
2630 #endif
2631 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2632 	nf_conntrack_put_reasm(skb->nfct_reasm);
2633 	skb->nfct_reasm = NULL;
2634 #endif
2635 #ifdef CONFIG_BRIDGE_NETFILTER
2636 	nf_bridge_put(skb->nf_bridge);
2637 	skb->nf_bridge = NULL;
2638 #endif
2639 }
2640 
2641 static inline void nf_reset_trace(struct sk_buff *skb)
2642 {
2643 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2644 	skb->nf_trace = 0;
2645 #endif
2646 }
2647 
2648 /* Note: This doesn't put any conntrack and bridge info in dst. */
2649 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2650 {
2651 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2652 	dst->nfct = src->nfct;
2653 	nf_conntrack_get(src->nfct);
2654 	dst->nfctinfo = src->nfctinfo;
2655 #endif
2656 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2657 	dst->nfct_reasm = src->nfct_reasm;
2658 	nf_conntrack_get_reasm(src->nfct_reasm);
2659 #endif
2660 #ifdef CONFIG_BRIDGE_NETFILTER
2661 	dst->nf_bridge  = src->nf_bridge;
2662 	nf_bridge_get(src->nf_bridge);
2663 #endif
2664 }
2665 
2666 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2667 {
2668 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2669 	nf_conntrack_put(dst->nfct);
2670 #endif
2671 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2672 	nf_conntrack_put_reasm(dst->nfct_reasm);
2673 #endif
2674 #ifdef CONFIG_BRIDGE_NETFILTER
2675 	nf_bridge_put(dst->nf_bridge);
2676 #endif
2677 	__nf_copy(dst, src);
2678 }
2679 
2680 #ifdef CONFIG_NETWORK_SECMARK
2681 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2682 {
2683 	to->secmark = from->secmark;
2684 }
2685 
2686 static inline void skb_init_secmark(struct sk_buff *skb)
2687 {
2688 	skb->secmark = 0;
2689 }
2690 #else
2691 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2692 { }
2693 
2694 static inline void skb_init_secmark(struct sk_buff *skb)
2695 { }
2696 #endif
2697 
2698 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2699 {
2700 	skb->queue_mapping = queue_mapping;
2701 }
2702 
2703 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2704 {
2705 	return skb->queue_mapping;
2706 }
2707 
2708 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2709 {
2710 	to->queue_mapping = from->queue_mapping;
2711 }
2712 
2713 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2714 {
2715 	skb->queue_mapping = rx_queue + 1;
2716 }
2717 
2718 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2719 {
2720 	return skb->queue_mapping - 1;
2721 }
2722 
2723 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2724 {
2725 	return skb->queue_mapping != 0;
2726 }
2727 
2728 extern u16 __skb_tx_hash(const struct net_device *dev,
2729 			 const struct sk_buff *skb,
2730 			 unsigned int num_tx_queues);
2731 
2732 #ifdef CONFIG_XFRM
2733 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2734 {
2735 	return skb->sp;
2736 }
2737 #else
2738 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2739 {
2740 	return NULL;
2741 }
2742 #endif
2743 
2744 /* Keeps track of mac header offset relative to skb->head.
2745  * It is useful for TSO of Tunneling protocol. e.g. GRE.
2746  * For non-tunnel skb it points to skb_mac_header() and for
2747  * tunnel skb it points to outer mac header. */
2748 struct skb_gso_cb {
2749 	int mac_offset;
2750 };
2751 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2752 
2753 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
2754 {
2755 	return (skb_mac_header(inner_skb) - inner_skb->head) -
2756 		SKB_GSO_CB(inner_skb)->mac_offset;
2757 }
2758 
2759 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
2760 {
2761 	int new_headroom, headroom;
2762 	int ret;
2763 
2764 	headroom = skb_headroom(skb);
2765 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
2766 	if (ret)
2767 		return ret;
2768 
2769 	new_headroom = skb_headroom(skb);
2770 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
2771 	return 0;
2772 }
2773 
2774 static inline bool skb_is_gso(const struct sk_buff *skb)
2775 {
2776 	return skb_shinfo(skb)->gso_size;
2777 }
2778 
2779 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2780 {
2781 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2782 }
2783 
2784 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2785 
2786 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2787 {
2788 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2789 	 * wanted then gso_type will be set. */
2790 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2791 
2792 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2793 	    unlikely(shinfo->gso_type == 0)) {
2794 		__skb_warn_lro_forwarding(skb);
2795 		return true;
2796 	}
2797 	return false;
2798 }
2799 
2800 static inline void skb_forward_csum(struct sk_buff *skb)
2801 {
2802 	/* Unfortunately we don't support this one.  Any brave souls? */
2803 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2804 		skb->ip_summed = CHECKSUM_NONE;
2805 }
2806 
2807 /**
2808  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2809  * @skb: skb to check
2810  *
2811  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2812  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2813  * use this helper, to document places where we make this assertion.
2814  */
2815 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2816 {
2817 #ifdef DEBUG
2818 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2819 #endif
2820 }
2821 
2822 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2823 
2824 u32 __skb_get_poff(const struct sk_buff *skb);
2825 
2826 /**
2827  * skb_head_is_locked - Determine if the skb->head is locked down
2828  * @skb: skb to check
2829  *
2830  * The head on skbs build around a head frag can be removed if they are
2831  * not cloned.  This function returns true if the skb head is locked down
2832  * due to either being allocated via kmalloc, or by being a clone with
2833  * multiple references to the head.
2834  */
2835 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2836 {
2837 	return !skb->head_frag || skb_cloned(skb);
2838 }
2839 #endif	/* __KERNEL__ */
2840 #endif	/* _LINUX_SKBUFF_H */
2841