xref: /linux-6.15/include/linux/skbuff.h (revision f50fff73)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 
47 /**
48  * DOC: skb checksums
49  *
50  * The interface for checksum offload between the stack and networking drivers
51  * is as follows...
52  *
53  * IP checksum related features
54  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55  *
56  * Drivers advertise checksum offload capabilities in the features of a device.
57  * From the stack's point of view these are capabilities offered by the driver.
58  * A driver typically only advertises features that it is capable of offloading
59  * to its device.
60  *
61  * .. flat-table:: Checksum related device features
62  *   :widths: 1 10
63  *
64  *   * - %NETIF_F_HW_CSUM
65  *     - The driver (or its device) is able to compute one
66  *	 IP (one's complement) checksum for any combination
67  *	 of protocols or protocol layering. The checksum is
68  *	 computed and set in a packet per the CHECKSUM_PARTIAL
69  *	 interface (see below).
70  *
71  *   * - %NETIF_F_IP_CSUM
72  *     - Driver (device) is only able to checksum plain
73  *	 TCP or UDP packets over IPv4. These are specifically
74  *	 unencapsulated packets of the form IPv4|TCP or
75  *	 IPv4|UDP where the Protocol field in the IPv4 header
76  *	 is TCP or UDP. The IPv4 header may contain IP options.
77  *	 This feature cannot be set in features for a device
78  *	 with NETIF_F_HW_CSUM also set. This feature is being
79  *	 DEPRECATED (see below).
80  *
81  *   * - %NETIF_F_IPV6_CSUM
82  *     - Driver (device) is only able to checksum plain
83  *	 TCP or UDP packets over IPv6. These are specifically
84  *	 unencapsulated packets of the form IPv6|TCP or
85  *	 IPv6|UDP where the Next Header field in the IPv6
86  *	 header is either TCP or UDP. IPv6 extension headers
87  *	 are not supported with this feature. This feature
88  *	 cannot be set in features for a device with
89  *	 NETIF_F_HW_CSUM also set. This feature is being
90  *	 DEPRECATED (see below).
91  *
92  *   * - %NETIF_F_RXCSUM
93  *     - Driver (device) performs receive checksum offload.
94  *	 This flag is only used to disable the RX checksum
95  *	 feature for a device. The stack will accept receive
96  *	 checksum indication in packets received on a device
97  *	 regardless of whether NETIF_F_RXCSUM is set.
98  *
99  * Checksumming of received packets by device
100  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
101  *
102  * Indication of checksum verification is set in &sk_buff.ip_summed.
103  * Possible values are:
104  *
105  * - %CHECKSUM_NONE
106  *
107  *   Device did not checksum this packet e.g. due to lack of capabilities.
108  *   The packet contains full (though not verified) checksum in packet but
109  *   not in skb->csum. Thus, skb->csum is undefined in this case.
110  *
111  * - %CHECKSUM_UNNECESSARY
112  *
113  *   The hardware you're dealing with doesn't calculate the full checksum
114  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
115  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
116  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
117  *   though. A driver or device must never modify the checksum field in the
118  *   packet even if checksum is verified.
119  *
120  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
121  *
122  *     - TCP: IPv6 and IPv4.
123  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
124  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
125  *       may perform further validation in this case.
126  *     - GRE: only if the checksum is present in the header.
127  *     - SCTP: indicates the CRC in SCTP header has been validated.
128  *     - FCOE: indicates the CRC in FC frame has been validated.
129  *
130  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
131  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
132  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
133  *   and a device is able to verify the checksums for UDP (possibly zero),
134  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
135  *   two. If the device were only able to verify the UDP checksum and not
136  *   GRE, either because it doesn't support GRE checksum or because GRE
137  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
138  *   not considered in this case).
139  *
140  * - %CHECKSUM_COMPLETE
141  *
142  *   This is the most generic way. The device supplied checksum of the _whole_
143  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
144  *   hardware doesn't need to parse L3/L4 headers to implement this.
145  *
146  *   Notes:
147  *
148  *   - Even if device supports only some protocols, but is able to produce
149  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
150  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
151  *
152  * - %CHECKSUM_PARTIAL
153  *
154  *   A checksum is set up to be offloaded to a device as described in the
155  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
156  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
157  *   on the same host, or it may be set in the input path in GRO or remote
158  *   checksum offload. For the purposes of checksum verification, the checksum
159  *   referred to by skb->csum_start + skb->csum_offset and any preceding
160  *   checksums in the packet are considered verified. Any checksums in the
161  *   packet that are after the checksum being offloaded are not considered to
162  *   be verified.
163  *
164  * Checksumming on transmit for non-GSO
165  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
166  *
167  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
168  * Values are:
169  *
170  * - %CHECKSUM_PARTIAL
171  *
172  *   The driver is required to checksum the packet as seen by hard_start_xmit()
173  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
174  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
175  *   A driver may verify that the
176  *   csum_start and csum_offset values are valid values given the length and
177  *   offset of the packet, but it should not attempt to validate that the
178  *   checksum refers to a legitimate transport layer checksum -- it is the
179  *   purview of the stack to validate that csum_start and csum_offset are set
180  *   correctly.
181  *
182  *   When the stack requests checksum offload for a packet, the driver MUST
183  *   ensure that the checksum is set correctly. A driver can either offload the
184  *   checksum calculation to the device, or call skb_checksum_help (in the case
185  *   that the device does not support offload for a particular checksum).
186  *
187  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
188  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
189  *   checksum offload capability.
190  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
191  *   on network device checksumming capabilities: if a packet does not match
192  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
193  *   &sk_buff.csum_not_inet, see :ref:`crc`)
194  *   is called to resolve the checksum.
195  *
196  * - %CHECKSUM_NONE
197  *
198  *   The skb was already checksummed by the protocol, or a checksum is not
199  *   required.
200  *
201  * - %CHECKSUM_UNNECESSARY
202  *
203  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
204  *   output.
205  *
206  * - %CHECKSUM_COMPLETE
207  *
208  *   Not used in checksum output. If a driver observes a packet with this value
209  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
210  *
211  * .. _crc:
212  *
213  * Non-IP checksum (CRC) offloads
214  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
215  *
216  * .. flat-table::
217  *   :widths: 1 10
218  *
219  *   * - %NETIF_F_SCTP_CRC
220  *     - This feature indicates that a device is capable of
221  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
222  *	 will set csum_start and csum_offset accordingly, set ip_summed to
223  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
224  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
225  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
226  *	 must verify which offload is configured for a packet by testing the
227  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
228  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
229  *
230  *   * - %NETIF_F_FCOE_CRC
231  *     - This feature indicates that a device is capable of offloading the FCOE
232  *	 CRC in a packet. To perform this offload the stack will set ip_summed
233  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
234  *	 accordingly. Note that there is no indication in the skbuff that the
235  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
236  *	 both IP checksum offload and FCOE CRC offload must verify which offload
237  *	 is configured for a packet, presumably by inspecting packet headers.
238  *
239  * Checksumming on output with GSO
240  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
241  *
242  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
243  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
244  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
245  * part of the GSO operation is implied. If a checksum is being offloaded
246  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
247  * csum_offset are set to refer to the outermost checksum being offloaded
248  * (two offloaded checksums are possible with UDP encapsulation).
249  */
250 
251 /* Don't change this without changing skb_csum_unnecessary! */
252 #define CHECKSUM_NONE		0
253 #define CHECKSUM_UNNECESSARY	1
254 #define CHECKSUM_COMPLETE	2
255 #define CHECKSUM_PARTIAL	3
256 
257 /* Maximum value in skb->csum_level */
258 #define SKB_MAX_CSUM_LEVEL	3
259 
260 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
261 #define SKB_WITH_OVERHEAD(X)	\
262 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
263 #define SKB_MAX_ORDER(X, ORDER) \
264 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
265 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
266 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
267 
268 /* return minimum truesize of one skb containing X bytes of data */
269 #define SKB_TRUESIZE(X) ((X) +						\
270 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
271 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
272 
273 struct ahash_request;
274 struct net_device;
275 struct scatterlist;
276 struct pipe_inode_info;
277 struct iov_iter;
278 struct napi_struct;
279 struct bpf_prog;
280 union bpf_attr;
281 struct skb_ext;
282 
283 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
284 struct nf_bridge_info {
285 	enum {
286 		BRNF_PROTO_UNCHANGED,
287 		BRNF_PROTO_8021Q,
288 		BRNF_PROTO_PPPOE
289 	} orig_proto:8;
290 	u8			pkt_otherhost:1;
291 	u8			in_prerouting:1;
292 	u8			bridged_dnat:1;
293 	__u16			frag_max_size;
294 	struct net_device	*physindev;
295 
296 	/* always valid & non-NULL from FORWARD on, for physdev match */
297 	struct net_device	*physoutdev;
298 	union {
299 		/* prerouting: detect dnat in orig/reply direction */
300 		__be32          ipv4_daddr;
301 		struct in6_addr ipv6_daddr;
302 
303 		/* after prerouting + nat detected: store original source
304 		 * mac since neigh resolution overwrites it, only used while
305 		 * skb is out in neigh layer.
306 		 */
307 		char neigh_header[8];
308 	};
309 };
310 #endif
311 
312 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
313 /* Chain in tc_skb_ext will be used to share the tc chain with
314  * ovs recirc_id. It will be set to the current chain by tc
315  * and read by ovs to recirc_id.
316  */
317 struct tc_skb_ext {
318 	__u32 chain;
319 	__u16 mru;
320 	__u16 zone;
321 	u8 post_ct:1;
322 	u8 post_ct_snat:1;
323 	u8 post_ct_dnat:1;
324 };
325 #endif
326 
327 struct sk_buff_head {
328 	/* These two members must be first to match sk_buff. */
329 	struct_group_tagged(sk_buff_list, list,
330 		struct sk_buff	*next;
331 		struct sk_buff	*prev;
332 	);
333 
334 	__u32		qlen;
335 	spinlock_t	lock;
336 };
337 
338 struct sk_buff;
339 
340 /* The reason of skb drop, which is used in kfree_skb_reason().
341  * en...maybe they should be splited by group?
342  *
343  * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
344  * used to translate the reason to string.
345  */
346 enum skb_drop_reason {
347 	SKB_NOT_DROPPED_YET = 0,
348 	SKB_DROP_REASON_NOT_SPECIFIED,	/* drop reason is not specified */
349 	SKB_DROP_REASON_NO_SOCKET,	/* socket not found */
350 	SKB_DROP_REASON_PKT_TOO_SMALL,	/* packet size is too small */
351 	SKB_DROP_REASON_TCP_CSUM,	/* TCP checksum error */
352 	SKB_DROP_REASON_SOCKET_FILTER,	/* dropped by socket filter */
353 	SKB_DROP_REASON_UDP_CSUM,	/* UDP checksum error */
354 	SKB_DROP_REASON_NETFILTER_DROP,	/* dropped by netfilter */
355 	SKB_DROP_REASON_OTHERHOST,	/* packet don't belong to current
356 					 * host (interface is in promisc
357 					 * mode)
358 					 */
359 	SKB_DROP_REASON_IP_CSUM,	/* IP checksum error */
360 	SKB_DROP_REASON_IP_INHDR,	/* there is something wrong with
361 					 * IP header (see
362 					 * IPSTATS_MIB_INHDRERRORS)
363 					 */
364 	SKB_DROP_REASON_IP_RPFILTER,	/* IP rpfilter validate failed.
365 					 * see the document for rp_filter
366 					 * in ip-sysctl.rst for more
367 					 * information
368 					 */
369 	SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
370 						  * is multicast, but L3 is
371 						  * unicast.
372 						  */
373 	SKB_DROP_REASON_XFRM_POLICY,	/* xfrm policy check failed */
374 	SKB_DROP_REASON_IP_NOPROTO,	/* no support for IP protocol */
375 	SKB_DROP_REASON_SOCKET_RCVBUFF,	/* socket receive buff is full */
376 	SKB_DROP_REASON_PROTO_MEM,	/* proto memory limition, such as
377 					 * udp packet drop out of
378 					 * udp_memory_allocated.
379 					 */
380 	SKB_DROP_REASON_TCP_MD5NOTFOUND,	/* no MD5 hash and one
381 						 * expected, corresponding
382 						 * to LINUX_MIB_TCPMD5NOTFOUND
383 						 */
384 	SKB_DROP_REASON_TCP_MD5UNEXPECTED,	/* MD5 hash and we're not
385 						 * expecting one, corresponding
386 						 * to LINUX_MIB_TCPMD5UNEXPECTED
387 						 */
388 	SKB_DROP_REASON_TCP_MD5FAILURE,	/* MD5 hash and its wrong,
389 					 * corresponding to
390 					 * LINUX_MIB_TCPMD5FAILURE
391 					 */
392 	SKB_DROP_REASON_SOCKET_BACKLOG,	/* failed to add skb to socket
393 					 * backlog (see
394 					 * LINUX_MIB_TCPBACKLOGDROP)
395 					 */
396 	SKB_DROP_REASON_TCP_FLAGS,	/* TCP flags invalid */
397 	SKB_DROP_REASON_TCP_ZEROWINDOW,	/* TCP receive window size is zero,
398 					 * see LINUX_MIB_TCPZEROWINDOWDROP
399 					 */
400 	SKB_DROP_REASON_TCP_OLD_DATA,	/* the TCP data reveived is already
401 					 * received before (spurious retrans
402 					 * may happened), see
403 					 * LINUX_MIB_DELAYEDACKLOST
404 					 */
405 	SKB_DROP_REASON_TCP_OVERWINDOW,	/* the TCP data is out of window,
406 					 * the seq of the first byte exceed
407 					 * the right edges of receive
408 					 * window
409 					 */
410 	SKB_DROP_REASON_TCP_OFOMERGE,	/* the data of skb is already in
411 					 * the ofo queue, corresponding to
412 					 * LINUX_MIB_TCPOFOMERGE
413 					 */
414 	SKB_DROP_REASON_TCP_RFC7323_PAWS, /* PAWS check, corresponding to
415 					   * LINUX_MIB_PAWSESTABREJECTED
416 					   */
417 	SKB_DROP_REASON_TCP_INVALID_SEQUENCE, /* Not acceptable SEQ field */
418 	SKB_DROP_REASON_TCP_RESET,	/* Invalid RST packet */
419 	SKB_DROP_REASON_TCP_INVALID_SYN, /* Incoming packet has unexpected SYN flag */
420 	SKB_DROP_REASON_TCP_CLOSE,	/* TCP socket in CLOSE state */
421 	SKB_DROP_REASON_TCP_FASTOPEN,	/* dropped by FASTOPEN request socket */
422 	SKB_DROP_REASON_TCP_OLD_ACK,	/* TCP ACK is old, but in window */
423 	SKB_DROP_REASON_TCP_TOO_OLD_ACK, /* TCP ACK is too old */
424 	SKB_DROP_REASON_TCP_ACK_UNSENT_DATA, /* TCP ACK for data we haven't sent yet */
425 	SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE, /* pruned from TCP OFO queue */
426 	SKB_DROP_REASON_TCP_OFO_DROP,	/* data already in receive queue */
427 	SKB_DROP_REASON_IP_OUTNOROUTES,	/* route lookup failed */
428 	SKB_DROP_REASON_BPF_CGROUP_EGRESS,	/* dropped by
429 						 * BPF_PROG_TYPE_CGROUP_SKB
430 						 * eBPF program
431 						 */
432 	SKB_DROP_REASON_IPV6DISABLED,	/* IPv6 is disabled on the device */
433 	SKB_DROP_REASON_NEIGH_CREATEFAIL,	/* failed to create neigh
434 						 * entry
435 						 */
436 	SKB_DROP_REASON_NEIGH_FAILED,	/* neigh entry in failed state */
437 	SKB_DROP_REASON_NEIGH_QUEUEFULL,	/* arp_queue for neigh
438 						 * entry is full
439 						 */
440 	SKB_DROP_REASON_NEIGH_DEAD,	/* neigh entry is dead */
441 	SKB_DROP_REASON_TC_EGRESS,	/* dropped in TC egress HOOK */
442 	SKB_DROP_REASON_QDISC_DROP,	/* dropped by qdisc when packet
443 					 * outputting (failed to enqueue to
444 					 * current qdisc)
445 					 */
446 	SKB_DROP_REASON_CPU_BACKLOG,	/* failed to enqueue the skb to
447 					 * the per CPU backlog queue. This
448 					 * can be caused by backlog queue
449 					 * full (see netdev_max_backlog in
450 					 * net.rst) or RPS flow limit
451 					 */
452 	SKB_DROP_REASON_XDP,		/* dropped by XDP in input path */
453 	SKB_DROP_REASON_TC_INGRESS,	/* dropped in TC ingress HOOK */
454 	SKB_DROP_REASON_UNHANDLED_PROTO,	/* protocol not implemented
455 						 * or not supported
456 						 */
457 	SKB_DROP_REASON_SKB_CSUM,	/* sk_buff checksum computation
458 					 * error
459 					 */
460 	SKB_DROP_REASON_SKB_GSO_SEG,	/* gso segmentation error */
461 	SKB_DROP_REASON_SKB_UCOPY_FAULT,	/* failed to copy data from
462 						 * user space, e.g., via
463 						 * zerocopy_sg_from_iter()
464 						 * or skb_orphan_frags_rx()
465 						 */
466 	SKB_DROP_REASON_DEV_HDR,	/* device driver specific
467 					 * header/metadata is invalid
468 					 */
469 	/* the device is not ready to xmit/recv due to any of its data
470 	 * structure that is not up/ready/initialized, e.g., the IFF_UP is
471 	 * not set, or driver specific tun->tfiles[txq] is not initialized
472 	 */
473 	SKB_DROP_REASON_DEV_READY,
474 	SKB_DROP_REASON_FULL_RING,	/* ring buffer is full */
475 	SKB_DROP_REASON_NOMEM,		/* error due to OOM */
476 	SKB_DROP_REASON_HDR_TRUNC,      /* failed to trunc/extract the header
477 					 * from networking data, e.g., failed
478 					 * to pull the protocol header from
479 					 * frags via pskb_may_pull()
480 					 */
481 	SKB_DROP_REASON_TAP_FILTER,     /* dropped by (ebpf) filter directly
482 					 * attached to tun/tap, e.g., via
483 					 * TUNSETFILTEREBPF
484 					 */
485 	SKB_DROP_REASON_TAP_TXFILTER,	/* dropped by tx filter implemented
486 					 * at tun/tap, e.g., check_filter()
487 					 */
488 	SKB_DROP_REASON_ICMP_CSUM,	/* ICMP checksum error */
489 	SKB_DROP_REASON_INVALID_PROTO,	/* the packet doesn't follow RFC
490 					 * 2211, such as a broadcasts
491 					 * ICMP_TIMESTAMP
492 					 */
493 	SKB_DROP_REASON_IP_INADDRERRORS,	/* host unreachable, corresponding
494 						 * to IPSTATS_MIB_INADDRERRORS
495 						 */
496 	SKB_DROP_REASON_IP_INNOROUTES,	/* network unreachable, corresponding
497 					 * to IPSTATS_MIB_INADDRERRORS
498 					 */
499 	SKB_DROP_REASON_PKT_TOO_BIG,	/* packet size is too big (maybe exceed
500 					 * the MTU)
501 					 */
502 	SKB_DROP_REASON_MAX,
503 };
504 
505 #define SKB_DR_INIT(name, reason)				\
506 	enum skb_drop_reason name = SKB_DROP_REASON_##reason
507 #define SKB_DR(name)						\
508 	SKB_DR_INIT(name, NOT_SPECIFIED)
509 #define SKB_DR_SET(name, reason)				\
510 	(name = SKB_DROP_REASON_##reason)
511 #define SKB_DR_OR(name, reason)					\
512 	do {							\
513 		if (name == SKB_DROP_REASON_NOT_SPECIFIED ||	\
514 		    name == SKB_NOT_DROPPED_YET)		\
515 			SKB_DR_SET(name, reason);		\
516 	} while (0)
517 
518 /* To allow 64K frame to be packed as single skb without frag_list we
519  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
520  * buffers which do not start on a page boundary.
521  *
522  * Since GRO uses frags we allocate at least 16 regardless of page
523  * size.
524  */
525 #if (65536/PAGE_SIZE + 1) < 16
526 #define MAX_SKB_FRAGS 16UL
527 #else
528 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
529 #endif
530 extern int sysctl_max_skb_frags;
531 
532 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
533  * segment using its current segmentation instead.
534  */
535 #define GSO_BY_FRAGS	0xFFFF
536 
537 typedef struct bio_vec skb_frag_t;
538 
539 /**
540  * skb_frag_size() - Returns the size of a skb fragment
541  * @frag: skb fragment
542  */
543 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
544 {
545 	return frag->bv_len;
546 }
547 
548 /**
549  * skb_frag_size_set() - Sets the size of a skb fragment
550  * @frag: skb fragment
551  * @size: size of fragment
552  */
553 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
554 {
555 	frag->bv_len = size;
556 }
557 
558 /**
559  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
560  * @frag: skb fragment
561  * @delta: value to add
562  */
563 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
564 {
565 	frag->bv_len += delta;
566 }
567 
568 /**
569  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
570  * @frag: skb fragment
571  * @delta: value to subtract
572  */
573 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
574 {
575 	frag->bv_len -= delta;
576 }
577 
578 /**
579  * skb_frag_must_loop - Test if %p is a high memory page
580  * @p: fragment's page
581  */
582 static inline bool skb_frag_must_loop(struct page *p)
583 {
584 #if defined(CONFIG_HIGHMEM)
585 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
586 		return true;
587 #endif
588 	return false;
589 }
590 
591 /**
592  *	skb_frag_foreach_page - loop over pages in a fragment
593  *
594  *	@f:		skb frag to operate on
595  *	@f_off:		offset from start of f->bv_page
596  *	@f_len:		length from f_off to loop over
597  *	@p:		(temp var) current page
598  *	@p_off:		(temp var) offset from start of current page,
599  *	                           non-zero only on first page.
600  *	@p_len:		(temp var) length in current page,
601  *				   < PAGE_SIZE only on first and last page.
602  *	@copied:	(temp var) length so far, excluding current p_len.
603  *
604  *	A fragment can hold a compound page, in which case per-page
605  *	operations, notably kmap_atomic, must be called for each
606  *	regular page.
607  */
608 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
609 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
610 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
611 	     p_len = skb_frag_must_loop(p) ?				\
612 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
613 	     copied = 0;						\
614 	     copied < f_len;						\
615 	     copied += p_len, p++, p_off = 0,				\
616 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
617 
618 #define HAVE_HW_TIME_STAMP
619 
620 /**
621  * struct skb_shared_hwtstamps - hardware time stamps
622  * @hwtstamp:		hardware time stamp transformed into duration
623  *			since arbitrary point in time
624  * @netdev_data:	address/cookie of network device driver used as
625  *			reference to actual hardware time stamp
626  *
627  * Software time stamps generated by ktime_get_real() are stored in
628  * skb->tstamp.
629  *
630  * hwtstamps can only be compared against other hwtstamps from
631  * the same device.
632  *
633  * This structure is attached to packets as part of the
634  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
635  */
636 struct skb_shared_hwtstamps {
637 	union {
638 		ktime_t	hwtstamp;
639 		void *netdev_data;
640 	};
641 };
642 
643 /* Definitions for tx_flags in struct skb_shared_info */
644 enum {
645 	/* generate hardware time stamp */
646 	SKBTX_HW_TSTAMP = 1 << 0,
647 
648 	/* generate software time stamp when queueing packet to NIC */
649 	SKBTX_SW_TSTAMP = 1 << 1,
650 
651 	/* device driver is going to provide hardware time stamp */
652 	SKBTX_IN_PROGRESS = 1 << 2,
653 
654 	/* generate hardware time stamp based on cycles if supported */
655 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
656 
657 	/* generate wifi status information (where possible) */
658 	SKBTX_WIFI_STATUS = 1 << 4,
659 
660 	/* determine hardware time stamp based on time or cycles */
661 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
662 
663 	/* generate software time stamp when entering packet scheduling */
664 	SKBTX_SCHED_TSTAMP = 1 << 6,
665 };
666 
667 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
668 				 SKBTX_SCHED_TSTAMP)
669 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
670 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
671 				 SKBTX_ANY_SW_TSTAMP)
672 
673 /* Definitions for flags in struct skb_shared_info */
674 enum {
675 	/* use zcopy routines */
676 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
677 
678 	/* This indicates at least one fragment might be overwritten
679 	 * (as in vmsplice(), sendfile() ...)
680 	 * If we need to compute a TX checksum, we'll need to copy
681 	 * all frags to avoid possible bad checksum
682 	 */
683 	SKBFL_SHARED_FRAG = BIT(1),
684 
685 	/* segment contains only zerocopy data and should not be
686 	 * charged to the kernel memory.
687 	 */
688 	SKBFL_PURE_ZEROCOPY = BIT(2),
689 
690 	SKBFL_DONT_ORPHAN = BIT(3),
691 
692 	/* page references are managed by the ubuf_info, so it's safe to
693 	 * use frags only up until ubuf_info is released
694 	 */
695 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
696 };
697 
698 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
699 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
700 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
701 
702 /*
703  * The callback notifies userspace to release buffers when skb DMA is done in
704  * lower device, the skb last reference should be 0 when calling this.
705  * The zerocopy_success argument is true if zero copy transmit occurred,
706  * false on data copy or out of memory error caused by data copy attempt.
707  * The ctx field is used to track device context.
708  * The desc field is used to track userspace buffer index.
709  */
710 struct ubuf_info {
711 	void (*callback)(struct sk_buff *, struct ubuf_info *,
712 			 bool zerocopy_success);
713 	union {
714 		struct {
715 			unsigned long desc;
716 			void *ctx;
717 		};
718 		struct {
719 			u32 id;
720 			u16 len;
721 			u16 zerocopy:1;
722 			u32 bytelen;
723 		};
724 	};
725 	refcount_t refcnt;
726 	u8 flags;
727 
728 	struct mmpin {
729 		struct user_struct *user;
730 		unsigned int num_pg;
731 	} mmp;
732 };
733 
734 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
735 
736 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
737 void mm_unaccount_pinned_pages(struct mmpin *mmp);
738 
739 /* This data is invariant across clones and lives at
740  * the end of the header data, ie. at skb->end.
741  */
742 struct skb_shared_info {
743 	__u8		flags;
744 	__u8		meta_len;
745 	__u8		nr_frags;
746 	__u8		tx_flags;
747 	unsigned short	gso_size;
748 	/* Warning: this field is not always filled in (UFO)! */
749 	unsigned short	gso_segs;
750 	struct sk_buff	*frag_list;
751 	struct skb_shared_hwtstamps hwtstamps;
752 	unsigned int	gso_type;
753 	u32		tskey;
754 
755 	/*
756 	 * Warning : all fields before dataref are cleared in __alloc_skb()
757 	 */
758 	atomic_t	dataref;
759 	unsigned int	xdp_frags_size;
760 
761 	/* Intermediate layers must ensure that destructor_arg
762 	 * remains valid until skb destructor */
763 	void *		destructor_arg;
764 
765 	/* must be last field, see pskb_expand_head() */
766 	skb_frag_t	frags[MAX_SKB_FRAGS];
767 };
768 
769 /**
770  * DOC: dataref and headerless skbs
771  *
772  * Transport layers send out clones of payload skbs they hold for
773  * retransmissions. To allow lower layers of the stack to prepend their headers
774  * we split &skb_shared_info.dataref into two halves.
775  * The lower 16 bits count the overall number of references.
776  * The higher 16 bits indicate how many of the references are payload-only.
777  * skb_header_cloned() checks if skb is allowed to add / write the headers.
778  *
779  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
780  * (via __skb_header_release()). Any clone created from marked skb will get
781  * &sk_buff.hdr_len populated with the available headroom.
782  * If there's the only clone in existence it's able to modify the headroom
783  * at will. The sequence of calls inside the transport layer is::
784  *
785  *  <alloc skb>
786  *  skb_reserve()
787  *  __skb_header_release()
788  *  skb_clone()
789  *  // send the clone down the stack
790  *
791  * This is not a very generic construct and it depends on the transport layers
792  * doing the right thing. In practice there's usually only one payload-only skb.
793  * Having multiple payload-only skbs with different lengths of hdr_len is not
794  * possible. The payload-only skbs should never leave their owner.
795  */
796 #define SKB_DATAREF_SHIFT 16
797 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
798 
799 
800 enum {
801 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
802 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
803 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
804 };
805 
806 enum {
807 	SKB_GSO_TCPV4 = 1 << 0,
808 
809 	/* This indicates the skb is from an untrusted source. */
810 	SKB_GSO_DODGY = 1 << 1,
811 
812 	/* This indicates the tcp segment has CWR set. */
813 	SKB_GSO_TCP_ECN = 1 << 2,
814 
815 	SKB_GSO_TCP_FIXEDID = 1 << 3,
816 
817 	SKB_GSO_TCPV6 = 1 << 4,
818 
819 	SKB_GSO_FCOE = 1 << 5,
820 
821 	SKB_GSO_GRE = 1 << 6,
822 
823 	SKB_GSO_GRE_CSUM = 1 << 7,
824 
825 	SKB_GSO_IPXIP4 = 1 << 8,
826 
827 	SKB_GSO_IPXIP6 = 1 << 9,
828 
829 	SKB_GSO_UDP_TUNNEL = 1 << 10,
830 
831 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
832 
833 	SKB_GSO_PARTIAL = 1 << 12,
834 
835 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
836 
837 	SKB_GSO_SCTP = 1 << 14,
838 
839 	SKB_GSO_ESP = 1 << 15,
840 
841 	SKB_GSO_UDP = 1 << 16,
842 
843 	SKB_GSO_UDP_L4 = 1 << 17,
844 
845 	SKB_GSO_FRAGLIST = 1 << 18,
846 };
847 
848 #if BITS_PER_LONG > 32
849 #define NET_SKBUFF_DATA_USES_OFFSET 1
850 #endif
851 
852 #ifdef NET_SKBUFF_DATA_USES_OFFSET
853 typedef unsigned int sk_buff_data_t;
854 #else
855 typedef unsigned char *sk_buff_data_t;
856 #endif
857 
858 /**
859  * DOC: Basic sk_buff geometry
860  *
861  * struct sk_buff itself is a metadata structure and does not hold any packet
862  * data. All the data is held in associated buffers.
863  *
864  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
865  * into two parts:
866  *
867  *  - data buffer, containing headers and sometimes payload;
868  *    this is the part of the skb operated on by the common helpers
869  *    such as skb_put() or skb_pull();
870  *  - shared info (struct skb_shared_info) which holds an array of pointers
871  *    to read-only data in the (page, offset, length) format.
872  *
873  * Optionally &skb_shared_info.frag_list may point to another skb.
874  *
875  * Basic diagram may look like this::
876  *
877  *                                  ---------------
878  *                                 | sk_buff       |
879  *                                  ---------------
880  *     ,---------------------------  + head
881  *    /          ,-----------------  + data
882  *   /          /      ,-----------  + tail
883  *  |          |      |            , + end
884  *  |          |      |           |
885  *  v          v      v           v
886  *   -----------------------------------------------
887  *  | headroom | data |  tailroom | skb_shared_info |
888  *   -----------------------------------------------
889  *                                 + [page frag]
890  *                                 + [page frag]
891  *                                 + [page frag]
892  *                                 + [page frag]       ---------
893  *                                 + frag_list    --> | sk_buff |
894  *                                                     ---------
895  *
896  */
897 
898 /**
899  *	struct sk_buff - socket buffer
900  *	@next: Next buffer in list
901  *	@prev: Previous buffer in list
902  *	@tstamp: Time we arrived/left
903  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
904  *		for retransmit timer
905  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
906  *	@list: queue head
907  *	@ll_node: anchor in an llist (eg socket defer_list)
908  *	@sk: Socket we are owned by
909  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
910  *		fragmentation management
911  *	@dev: Device we arrived on/are leaving by
912  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
913  *	@cb: Control buffer. Free for use by every layer. Put private vars here
914  *	@_skb_refdst: destination entry (with norefcount bit)
915  *	@sp: the security path, used for xfrm
916  *	@len: Length of actual data
917  *	@data_len: Data length
918  *	@mac_len: Length of link layer header
919  *	@hdr_len: writable header length of cloned skb
920  *	@csum: Checksum (must include start/offset pair)
921  *	@csum_start: Offset from skb->head where checksumming should start
922  *	@csum_offset: Offset from csum_start where checksum should be stored
923  *	@priority: Packet queueing priority
924  *	@ignore_df: allow local fragmentation
925  *	@cloned: Head may be cloned (check refcnt to be sure)
926  *	@ip_summed: Driver fed us an IP checksum
927  *	@nohdr: Payload reference only, must not modify header
928  *	@pkt_type: Packet class
929  *	@fclone: skbuff clone status
930  *	@ipvs_property: skbuff is owned by ipvs
931  *	@inner_protocol_type: whether the inner protocol is
932  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
933  *	@remcsum_offload: remote checksum offload is enabled
934  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
935  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
936  *	@tc_skip_classify: do not classify packet. set by IFB device
937  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
938  *	@redirected: packet was redirected by packet classifier
939  *	@from_ingress: packet was redirected from the ingress path
940  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
941  *	@peeked: this packet has been seen already, so stats have been
942  *		done for it, don't do them again
943  *	@nf_trace: netfilter packet trace flag
944  *	@protocol: Packet protocol from driver
945  *	@destructor: Destruct function
946  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
947  *	@_sk_redir: socket redirection information for skmsg
948  *	@_nfct: Associated connection, if any (with nfctinfo bits)
949  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
950  *	@skb_iif: ifindex of device we arrived on
951  *	@tc_index: Traffic control index
952  *	@hash: the packet hash
953  *	@queue_mapping: Queue mapping for multiqueue devices
954  *	@head_frag: skb was allocated from page fragments,
955  *		not allocated by kmalloc() or vmalloc().
956  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
957  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
958  *		page_pool support on driver)
959  *	@active_extensions: active extensions (skb_ext_id types)
960  *	@ndisc_nodetype: router type (from link layer)
961  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
962  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
963  *		ports.
964  *	@sw_hash: indicates hash was computed in software stack
965  *	@wifi_acked_valid: wifi_acked was set
966  *	@wifi_acked: whether frame was acked on wifi or not
967  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
968  *	@encapsulation: indicates the inner headers in the skbuff are valid
969  *	@encap_hdr_csum: software checksum is needed
970  *	@csum_valid: checksum is already valid
971  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
972  *	@csum_complete_sw: checksum was completed by software
973  *	@csum_level: indicates the number of consecutive checksums found in
974  *		the packet minus one that have been verified as
975  *		CHECKSUM_UNNECESSARY (max 3)
976  *	@dst_pending_confirm: need to confirm neighbour
977  *	@decrypted: Decrypted SKB
978  *	@slow_gro: state present at GRO time, slower prepare step required
979  *	@mono_delivery_time: When set, skb->tstamp has the
980  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
981  *		skb->tstamp has the (rcv) timestamp at ingress and
982  *		delivery_time at egress.
983  *	@napi_id: id of the NAPI struct this skb came from
984  *	@sender_cpu: (aka @napi_id) source CPU in XPS
985  *	@alloc_cpu: CPU which did the skb allocation.
986  *	@secmark: security marking
987  *	@mark: Generic packet mark
988  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
989  *		at the tail of an sk_buff
990  *	@vlan_present: VLAN tag is present
991  *	@vlan_proto: vlan encapsulation protocol
992  *	@vlan_tci: vlan tag control information
993  *	@inner_protocol: Protocol (encapsulation)
994  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
995  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
996  *	@inner_transport_header: Inner transport layer header (encapsulation)
997  *	@inner_network_header: Network layer header (encapsulation)
998  *	@inner_mac_header: Link layer header (encapsulation)
999  *	@transport_header: Transport layer header
1000  *	@network_header: Network layer header
1001  *	@mac_header: Link layer header
1002  *	@kcov_handle: KCOV remote handle for remote coverage collection
1003  *	@tail: Tail pointer
1004  *	@end: End pointer
1005  *	@head: Head of buffer
1006  *	@data: Data head pointer
1007  *	@truesize: Buffer size
1008  *	@users: User count - see {datagram,tcp}.c
1009  *	@extensions: allocated extensions, valid if active_extensions is nonzero
1010  */
1011 
1012 struct sk_buff {
1013 	union {
1014 		struct {
1015 			/* These two members must be first to match sk_buff_head. */
1016 			struct sk_buff		*next;
1017 			struct sk_buff		*prev;
1018 
1019 			union {
1020 				struct net_device	*dev;
1021 				/* Some protocols might use this space to store information,
1022 				 * while device pointer would be NULL.
1023 				 * UDP receive path is one user.
1024 				 */
1025 				unsigned long		dev_scratch;
1026 			};
1027 		};
1028 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
1029 		struct list_head	list;
1030 		struct llist_node	ll_node;
1031 	};
1032 
1033 	union {
1034 		struct sock		*sk;
1035 		int			ip_defrag_offset;
1036 	};
1037 
1038 	union {
1039 		ktime_t		tstamp;
1040 		u64		skb_mstamp_ns; /* earliest departure time */
1041 	};
1042 	/*
1043 	 * This is the control buffer. It is free to use for every
1044 	 * layer. Please put your private variables there. If you
1045 	 * want to keep them across layers you have to do a skb_clone()
1046 	 * first. This is owned by whoever has the skb queued ATM.
1047 	 */
1048 	char			cb[48] __aligned(8);
1049 
1050 	union {
1051 		struct {
1052 			unsigned long	_skb_refdst;
1053 			void		(*destructor)(struct sk_buff *skb);
1054 		};
1055 		struct list_head	tcp_tsorted_anchor;
1056 #ifdef CONFIG_NET_SOCK_MSG
1057 		unsigned long		_sk_redir;
1058 #endif
1059 	};
1060 
1061 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1062 	unsigned long		 _nfct;
1063 #endif
1064 	unsigned int		len,
1065 				data_len;
1066 	__u16			mac_len,
1067 				hdr_len;
1068 
1069 	/* Following fields are _not_ copied in __copy_skb_header()
1070 	 * Note that queue_mapping is here mostly to fill a hole.
1071 	 */
1072 	__u16			queue_mapping;
1073 
1074 /* if you move cloned around you also must adapt those constants */
1075 #ifdef __BIG_ENDIAN_BITFIELD
1076 #define CLONED_MASK	(1 << 7)
1077 #else
1078 #define CLONED_MASK	1
1079 #endif
1080 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
1081 
1082 	/* private: */
1083 	__u8			__cloned_offset[0];
1084 	/* public: */
1085 	__u8			cloned:1,
1086 				nohdr:1,
1087 				fclone:2,
1088 				peeked:1,
1089 				head_frag:1,
1090 				pfmemalloc:1,
1091 				pp_recycle:1; /* page_pool recycle indicator */
1092 #ifdef CONFIG_SKB_EXTENSIONS
1093 	__u8			active_extensions;
1094 #endif
1095 
1096 	/* Fields enclosed in headers group are copied
1097 	 * using a single memcpy() in __copy_skb_header()
1098 	 */
1099 	struct_group(headers,
1100 
1101 	/* private: */
1102 	__u8			__pkt_type_offset[0];
1103 	/* public: */
1104 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
1105 	__u8			ignore_df:1;
1106 	__u8			nf_trace:1;
1107 	__u8			ip_summed:2;
1108 	__u8			ooo_okay:1;
1109 
1110 	__u8			l4_hash:1;
1111 	__u8			sw_hash:1;
1112 	__u8			wifi_acked_valid:1;
1113 	__u8			wifi_acked:1;
1114 	__u8			no_fcs:1;
1115 	/* Indicates the inner headers are valid in the skbuff. */
1116 	__u8			encapsulation:1;
1117 	__u8			encap_hdr_csum:1;
1118 	__u8			csum_valid:1;
1119 
1120 	/* private: */
1121 	__u8			__pkt_vlan_present_offset[0];
1122 	/* public: */
1123 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
1124 	__u8			csum_complete_sw:1;
1125 	__u8			csum_level:2;
1126 	__u8			dst_pending_confirm:1;
1127 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
1128 #ifdef CONFIG_NET_CLS_ACT
1129 	__u8			tc_skip_classify:1;
1130 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
1131 #endif
1132 #ifdef CONFIG_IPV6_NDISC_NODETYPE
1133 	__u8			ndisc_nodetype:2;
1134 #endif
1135 
1136 	__u8			ipvs_property:1;
1137 	__u8			inner_protocol_type:1;
1138 	__u8			remcsum_offload:1;
1139 #ifdef CONFIG_NET_SWITCHDEV
1140 	__u8			offload_fwd_mark:1;
1141 	__u8			offload_l3_fwd_mark:1;
1142 #endif
1143 	__u8			redirected:1;
1144 #ifdef CONFIG_NET_REDIRECT
1145 	__u8			from_ingress:1;
1146 #endif
1147 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1148 	__u8			nf_skip_egress:1;
1149 #endif
1150 #ifdef CONFIG_TLS_DEVICE
1151 	__u8			decrypted:1;
1152 #endif
1153 	__u8			slow_gro:1;
1154 	__u8			csum_not_inet:1;
1155 
1156 #ifdef CONFIG_NET_SCHED
1157 	__u16			tc_index;	/* traffic control index */
1158 #endif
1159 
1160 	union {
1161 		__wsum		csum;
1162 		struct {
1163 			__u16	csum_start;
1164 			__u16	csum_offset;
1165 		};
1166 	};
1167 	__u32			priority;
1168 	int			skb_iif;
1169 	__u32			hash;
1170 	__be16			vlan_proto;
1171 	__u16			vlan_tci;
1172 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1173 	union {
1174 		unsigned int	napi_id;
1175 		unsigned int	sender_cpu;
1176 	};
1177 #endif
1178 	u16			alloc_cpu;
1179 #ifdef CONFIG_NETWORK_SECMARK
1180 	__u32		secmark;
1181 #endif
1182 
1183 	union {
1184 		__u32		mark;
1185 		__u32		reserved_tailroom;
1186 	};
1187 
1188 	union {
1189 		__be16		inner_protocol;
1190 		__u8		inner_ipproto;
1191 	};
1192 
1193 	__u16			inner_transport_header;
1194 	__u16			inner_network_header;
1195 	__u16			inner_mac_header;
1196 
1197 	__be16			protocol;
1198 	__u16			transport_header;
1199 	__u16			network_header;
1200 	__u16			mac_header;
1201 
1202 #ifdef CONFIG_KCOV
1203 	u64			kcov_handle;
1204 #endif
1205 
1206 	); /* end headers group */
1207 
1208 	/* These elements must be at the end, see alloc_skb() for details.  */
1209 	sk_buff_data_t		tail;
1210 	sk_buff_data_t		end;
1211 	unsigned char		*head,
1212 				*data;
1213 	unsigned int		truesize;
1214 	refcount_t		users;
1215 
1216 #ifdef CONFIG_SKB_EXTENSIONS
1217 	/* only useable after checking ->active_extensions != 0 */
1218 	struct skb_ext		*extensions;
1219 #endif
1220 };
1221 
1222 /* if you move pkt_type around you also must adapt those constants */
1223 #ifdef __BIG_ENDIAN_BITFIELD
1224 #define PKT_TYPE_MAX	(7 << 5)
1225 #else
1226 #define PKT_TYPE_MAX	7
1227 #endif
1228 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1229 
1230 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1231  * around, you also must adapt these constants.
1232  */
1233 #ifdef __BIG_ENDIAN_BITFIELD
1234 #define PKT_VLAN_PRESENT_BIT	7
1235 #define TC_AT_INGRESS_MASK		(1 << 0)
1236 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1237 #else
1238 #define PKT_VLAN_PRESENT_BIT	0
1239 #define TC_AT_INGRESS_MASK		(1 << 7)
1240 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1241 #endif
1242 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1243 
1244 #ifdef __KERNEL__
1245 /*
1246  *	Handling routines are only of interest to the kernel
1247  */
1248 
1249 #define SKB_ALLOC_FCLONE	0x01
1250 #define SKB_ALLOC_RX		0x02
1251 #define SKB_ALLOC_NAPI		0x04
1252 
1253 /**
1254  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1255  * @skb: buffer
1256  */
1257 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1258 {
1259 	return unlikely(skb->pfmemalloc);
1260 }
1261 
1262 /*
1263  * skb might have a dst pointer attached, refcounted or not.
1264  * _skb_refdst low order bit is set if refcount was _not_ taken
1265  */
1266 #define SKB_DST_NOREF	1UL
1267 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1268 
1269 /**
1270  * skb_dst - returns skb dst_entry
1271  * @skb: buffer
1272  *
1273  * Returns skb dst_entry, regardless of reference taken or not.
1274  */
1275 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1276 {
1277 	/* If refdst was not refcounted, check we still are in a
1278 	 * rcu_read_lock section
1279 	 */
1280 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1281 		!rcu_read_lock_held() &&
1282 		!rcu_read_lock_bh_held());
1283 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1284 }
1285 
1286 /**
1287  * skb_dst_set - sets skb dst
1288  * @skb: buffer
1289  * @dst: dst entry
1290  *
1291  * Sets skb dst, assuming a reference was taken on dst and should
1292  * be released by skb_dst_drop()
1293  */
1294 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1295 {
1296 	skb->slow_gro |= !!dst;
1297 	skb->_skb_refdst = (unsigned long)dst;
1298 }
1299 
1300 /**
1301  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1302  * @skb: buffer
1303  * @dst: dst entry
1304  *
1305  * Sets skb dst, assuming a reference was not taken on dst.
1306  * If dst entry is cached, we do not take reference and dst_release
1307  * will be avoided by refdst_drop. If dst entry is not cached, we take
1308  * reference, so that last dst_release can destroy the dst immediately.
1309  */
1310 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1311 {
1312 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1313 	skb->slow_gro |= !!dst;
1314 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1315 }
1316 
1317 /**
1318  * skb_dst_is_noref - Test if skb dst isn't refcounted
1319  * @skb: buffer
1320  */
1321 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1322 {
1323 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1324 }
1325 
1326 /**
1327  * skb_rtable - Returns the skb &rtable
1328  * @skb: buffer
1329  */
1330 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1331 {
1332 	return (struct rtable *)skb_dst(skb);
1333 }
1334 
1335 /* For mangling skb->pkt_type from user space side from applications
1336  * such as nft, tc, etc, we only allow a conservative subset of
1337  * possible pkt_types to be set.
1338 */
1339 static inline bool skb_pkt_type_ok(u32 ptype)
1340 {
1341 	return ptype <= PACKET_OTHERHOST;
1342 }
1343 
1344 /**
1345  * skb_napi_id - Returns the skb's NAPI id
1346  * @skb: buffer
1347  */
1348 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1349 {
1350 #ifdef CONFIG_NET_RX_BUSY_POLL
1351 	return skb->napi_id;
1352 #else
1353 	return 0;
1354 #endif
1355 }
1356 
1357 /**
1358  * skb_unref - decrement the skb's reference count
1359  * @skb: buffer
1360  *
1361  * Returns true if we can free the skb.
1362  */
1363 static inline bool skb_unref(struct sk_buff *skb)
1364 {
1365 	if (unlikely(!skb))
1366 		return false;
1367 	if (likely(refcount_read(&skb->users) == 1))
1368 		smp_rmb();
1369 	else if (likely(!refcount_dec_and_test(&skb->users)))
1370 		return false;
1371 
1372 	return true;
1373 }
1374 
1375 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1376 
1377 /**
1378  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1379  *	@skb: buffer to free
1380  */
1381 static inline void kfree_skb(struct sk_buff *skb)
1382 {
1383 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1384 }
1385 
1386 void skb_release_head_state(struct sk_buff *skb);
1387 void kfree_skb_list_reason(struct sk_buff *segs,
1388 			   enum skb_drop_reason reason);
1389 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1390 void skb_tx_error(struct sk_buff *skb);
1391 
1392 static inline void kfree_skb_list(struct sk_buff *segs)
1393 {
1394 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1395 }
1396 
1397 #ifdef CONFIG_TRACEPOINTS
1398 void consume_skb(struct sk_buff *skb);
1399 #else
1400 static inline void consume_skb(struct sk_buff *skb)
1401 {
1402 	return kfree_skb(skb);
1403 }
1404 #endif
1405 
1406 void __consume_stateless_skb(struct sk_buff *skb);
1407 void  __kfree_skb(struct sk_buff *skb);
1408 extern struct kmem_cache *skbuff_head_cache;
1409 
1410 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1411 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1412 		      bool *fragstolen, int *delta_truesize);
1413 
1414 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1415 			    int node);
1416 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1417 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1418 struct sk_buff *build_skb_around(struct sk_buff *skb,
1419 				 void *data, unsigned int frag_size);
1420 void skb_attempt_defer_free(struct sk_buff *skb);
1421 
1422 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1423 
1424 /**
1425  * alloc_skb - allocate a network buffer
1426  * @size: size to allocate
1427  * @priority: allocation mask
1428  *
1429  * This function is a convenient wrapper around __alloc_skb().
1430  */
1431 static inline struct sk_buff *alloc_skb(unsigned int size,
1432 					gfp_t priority)
1433 {
1434 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1435 }
1436 
1437 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1438 				     unsigned long data_len,
1439 				     int max_page_order,
1440 				     int *errcode,
1441 				     gfp_t gfp_mask);
1442 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1443 
1444 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1445 struct sk_buff_fclones {
1446 	struct sk_buff	skb1;
1447 
1448 	struct sk_buff	skb2;
1449 
1450 	refcount_t	fclone_ref;
1451 };
1452 
1453 /**
1454  *	skb_fclone_busy - check if fclone is busy
1455  *	@sk: socket
1456  *	@skb: buffer
1457  *
1458  * Returns true if skb is a fast clone, and its clone is not freed.
1459  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1460  * so we also check that this didnt happen.
1461  */
1462 static inline bool skb_fclone_busy(const struct sock *sk,
1463 				   const struct sk_buff *skb)
1464 {
1465 	const struct sk_buff_fclones *fclones;
1466 
1467 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1468 
1469 	return skb->fclone == SKB_FCLONE_ORIG &&
1470 	       refcount_read(&fclones->fclone_ref) > 1 &&
1471 	       READ_ONCE(fclones->skb2.sk) == sk;
1472 }
1473 
1474 /**
1475  * alloc_skb_fclone - allocate a network buffer from fclone cache
1476  * @size: size to allocate
1477  * @priority: allocation mask
1478  *
1479  * This function is a convenient wrapper around __alloc_skb().
1480  */
1481 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1482 					       gfp_t priority)
1483 {
1484 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1485 }
1486 
1487 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1488 void skb_headers_offset_update(struct sk_buff *skb, int off);
1489 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1490 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1491 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1492 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1493 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1494 				   gfp_t gfp_mask, bool fclone);
1495 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1496 					  gfp_t gfp_mask)
1497 {
1498 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1499 }
1500 
1501 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1502 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1503 				     unsigned int headroom);
1504 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1505 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1506 				int newtailroom, gfp_t priority);
1507 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1508 				     int offset, int len);
1509 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1510 			      int offset, int len);
1511 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1512 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1513 
1514 /**
1515  *	skb_pad			-	zero pad the tail of an skb
1516  *	@skb: buffer to pad
1517  *	@pad: space to pad
1518  *
1519  *	Ensure that a buffer is followed by a padding area that is zero
1520  *	filled. Used by network drivers which may DMA or transfer data
1521  *	beyond the buffer end onto the wire.
1522  *
1523  *	May return error in out of memory cases. The skb is freed on error.
1524  */
1525 static inline int skb_pad(struct sk_buff *skb, int pad)
1526 {
1527 	return __skb_pad(skb, pad, true);
1528 }
1529 #define dev_kfree_skb(a)	consume_skb(a)
1530 
1531 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1532 			 int offset, size_t size);
1533 
1534 struct skb_seq_state {
1535 	__u32		lower_offset;
1536 	__u32		upper_offset;
1537 	__u32		frag_idx;
1538 	__u32		stepped_offset;
1539 	struct sk_buff	*root_skb;
1540 	struct sk_buff	*cur_skb;
1541 	__u8		*frag_data;
1542 	__u32		frag_off;
1543 };
1544 
1545 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1546 			  unsigned int to, struct skb_seq_state *st);
1547 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1548 			  struct skb_seq_state *st);
1549 void skb_abort_seq_read(struct skb_seq_state *st);
1550 
1551 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1552 			   unsigned int to, struct ts_config *config);
1553 
1554 /*
1555  * Packet hash types specify the type of hash in skb_set_hash.
1556  *
1557  * Hash types refer to the protocol layer addresses which are used to
1558  * construct a packet's hash. The hashes are used to differentiate or identify
1559  * flows of the protocol layer for the hash type. Hash types are either
1560  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1561  *
1562  * Properties of hashes:
1563  *
1564  * 1) Two packets in different flows have different hash values
1565  * 2) Two packets in the same flow should have the same hash value
1566  *
1567  * A hash at a higher layer is considered to be more specific. A driver should
1568  * set the most specific hash possible.
1569  *
1570  * A driver cannot indicate a more specific hash than the layer at which a hash
1571  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1572  *
1573  * A driver may indicate a hash level which is less specific than the
1574  * actual layer the hash was computed on. For instance, a hash computed
1575  * at L4 may be considered an L3 hash. This should only be done if the
1576  * driver can't unambiguously determine that the HW computed the hash at
1577  * the higher layer. Note that the "should" in the second property above
1578  * permits this.
1579  */
1580 enum pkt_hash_types {
1581 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1582 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1583 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1584 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1585 };
1586 
1587 static inline void skb_clear_hash(struct sk_buff *skb)
1588 {
1589 	skb->hash = 0;
1590 	skb->sw_hash = 0;
1591 	skb->l4_hash = 0;
1592 }
1593 
1594 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1595 {
1596 	if (!skb->l4_hash)
1597 		skb_clear_hash(skb);
1598 }
1599 
1600 static inline void
1601 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1602 {
1603 	skb->l4_hash = is_l4;
1604 	skb->sw_hash = is_sw;
1605 	skb->hash = hash;
1606 }
1607 
1608 static inline void
1609 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1610 {
1611 	/* Used by drivers to set hash from HW */
1612 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1613 }
1614 
1615 static inline void
1616 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1617 {
1618 	__skb_set_hash(skb, hash, true, is_l4);
1619 }
1620 
1621 void __skb_get_hash(struct sk_buff *skb);
1622 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1623 u32 skb_get_poff(const struct sk_buff *skb);
1624 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1625 		   const struct flow_keys_basic *keys, int hlen);
1626 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1627 			    const void *data, int hlen_proto);
1628 
1629 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1630 					int thoff, u8 ip_proto)
1631 {
1632 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1633 }
1634 
1635 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1636 			     const struct flow_dissector_key *key,
1637 			     unsigned int key_count);
1638 
1639 struct bpf_flow_dissector;
1640 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1641 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1642 
1643 bool __skb_flow_dissect(const struct net *net,
1644 			const struct sk_buff *skb,
1645 			struct flow_dissector *flow_dissector,
1646 			void *target_container, const void *data,
1647 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1648 
1649 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1650 				    struct flow_dissector *flow_dissector,
1651 				    void *target_container, unsigned int flags)
1652 {
1653 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1654 				  target_container, NULL, 0, 0, 0, flags);
1655 }
1656 
1657 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1658 					      struct flow_keys *flow,
1659 					      unsigned int flags)
1660 {
1661 	memset(flow, 0, sizeof(*flow));
1662 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1663 				  flow, NULL, 0, 0, 0, flags);
1664 }
1665 
1666 static inline bool
1667 skb_flow_dissect_flow_keys_basic(const struct net *net,
1668 				 const struct sk_buff *skb,
1669 				 struct flow_keys_basic *flow,
1670 				 const void *data, __be16 proto,
1671 				 int nhoff, int hlen, unsigned int flags)
1672 {
1673 	memset(flow, 0, sizeof(*flow));
1674 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1675 				  data, proto, nhoff, hlen, flags);
1676 }
1677 
1678 void skb_flow_dissect_meta(const struct sk_buff *skb,
1679 			   struct flow_dissector *flow_dissector,
1680 			   void *target_container);
1681 
1682 /* Gets a skb connection tracking info, ctinfo map should be a
1683  * map of mapsize to translate enum ip_conntrack_info states
1684  * to user states.
1685  */
1686 void
1687 skb_flow_dissect_ct(const struct sk_buff *skb,
1688 		    struct flow_dissector *flow_dissector,
1689 		    void *target_container,
1690 		    u16 *ctinfo_map, size_t mapsize,
1691 		    bool post_ct, u16 zone);
1692 void
1693 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1694 			     struct flow_dissector *flow_dissector,
1695 			     void *target_container);
1696 
1697 void skb_flow_dissect_hash(const struct sk_buff *skb,
1698 			   struct flow_dissector *flow_dissector,
1699 			   void *target_container);
1700 
1701 static inline __u32 skb_get_hash(struct sk_buff *skb)
1702 {
1703 	if (!skb->l4_hash && !skb->sw_hash)
1704 		__skb_get_hash(skb);
1705 
1706 	return skb->hash;
1707 }
1708 
1709 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1710 {
1711 	if (!skb->l4_hash && !skb->sw_hash) {
1712 		struct flow_keys keys;
1713 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1714 
1715 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1716 	}
1717 
1718 	return skb->hash;
1719 }
1720 
1721 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1722 			   const siphash_key_t *perturb);
1723 
1724 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1725 {
1726 	return skb->hash;
1727 }
1728 
1729 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1730 {
1731 	to->hash = from->hash;
1732 	to->sw_hash = from->sw_hash;
1733 	to->l4_hash = from->l4_hash;
1734 };
1735 
1736 static inline void skb_copy_decrypted(struct sk_buff *to,
1737 				      const struct sk_buff *from)
1738 {
1739 #ifdef CONFIG_TLS_DEVICE
1740 	to->decrypted = from->decrypted;
1741 #endif
1742 }
1743 
1744 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1745 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1746 {
1747 	return skb->head + skb->end;
1748 }
1749 
1750 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1751 {
1752 	return skb->end;
1753 }
1754 
1755 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1756 {
1757 	skb->end = offset;
1758 }
1759 #else
1760 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1761 {
1762 	return skb->end;
1763 }
1764 
1765 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1766 {
1767 	return skb->end - skb->head;
1768 }
1769 
1770 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1771 {
1772 	skb->end = skb->head + offset;
1773 }
1774 #endif
1775 
1776 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1777 				       struct ubuf_info *uarg);
1778 
1779 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1780 
1781 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1782 			   bool success);
1783 
1784 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1785 			    struct sk_buff *skb, struct iov_iter *from,
1786 			    size_t length);
1787 
1788 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1789 					  struct msghdr *msg, int len)
1790 {
1791 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1792 }
1793 
1794 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1795 			     struct msghdr *msg, int len,
1796 			     struct ubuf_info *uarg);
1797 
1798 /* Internal */
1799 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1800 
1801 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1802 {
1803 	return &skb_shinfo(skb)->hwtstamps;
1804 }
1805 
1806 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1807 {
1808 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1809 
1810 	return is_zcopy ? skb_uarg(skb) : NULL;
1811 }
1812 
1813 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1814 {
1815 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1816 }
1817 
1818 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1819 {
1820 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1821 }
1822 
1823 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1824 				       const struct sk_buff *skb2)
1825 {
1826 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1827 }
1828 
1829 static inline void net_zcopy_get(struct ubuf_info *uarg)
1830 {
1831 	refcount_inc(&uarg->refcnt);
1832 }
1833 
1834 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1835 {
1836 	skb_shinfo(skb)->destructor_arg = uarg;
1837 	skb_shinfo(skb)->flags |= uarg->flags;
1838 }
1839 
1840 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1841 				 bool *have_ref)
1842 {
1843 	if (skb && uarg && !skb_zcopy(skb)) {
1844 		if (unlikely(have_ref && *have_ref))
1845 			*have_ref = false;
1846 		else
1847 			net_zcopy_get(uarg);
1848 		skb_zcopy_init(skb, uarg);
1849 	}
1850 }
1851 
1852 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1853 {
1854 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1855 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1856 }
1857 
1858 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1859 {
1860 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1861 }
1862 
1863 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1864 {
1865 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1866 }
1867 
1868 static inline void net_zcopy_put(struct ubuf_info *uarg)
1869 {
1870 	if (uarg)
1871 		uarg->callback(NULL, uarg, true);
1872 }
1873 
1874 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1875 {
1876 	if (uarg) {
1877 		if (uarg->callback == msg_zerocopy_callback)
1878 			msg_zerocopy_put_abort(uarg, have_uref);
1879 		else if (have_uref)
1880 			net_zcopy_put(uarg);
1881 	}
1882 }
1883 
1884 /* Release a reference on a zerocopy structure */
1885 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1886 {
1887 	struct ubuf_info *uarg = skb_zcopy(skb);
1888 
1889 	if (uarg) {
1890 		if (!skb_zcopy_is_nouarg(skb))
1891 			uarg->callback(skb, uarg, zerocopy_success);
1892 
1893 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1894 	}
1895 }
1896 
1897 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1898 
1899 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1900 {
1901 	if (unlikely(skb_zcopy_managed(skb)))
1902 		__skb_zcopy_downgrade_managed(skb);
1903 }
1904 
1905 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1906 {
1907 	skb->next = NULL;
1908 }
1909 
1910 /* Iterate through singly-linked GSO fragments of an skb. */
1911 #define skb_list_walk_safe(first, skb, next_skb)                               \
1912 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1913 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1914 
1915 static inline void skb_list_del_init(struct sk_buff *skb)
1916 {
1917 	__list_del_entry(&skb->list);
1918 	skb_mark_not_on_list(skb);
1919 }
1920 
1921 /**
1922  *	skb_queue_empty - check if a queue is empty
1923  *	@list: queue head
1924  *
1925  *	Returns true if the queue is empty, false otherwise.
1926  */
1927 static inline int skb_queue_empty(const struct sk_buff_head *list)
1928 {
1929 	return list->next == (const struct sk_buff *) list;
1930 }
1931 
1932 /**
1933  *	skb_queue_empty_lockless - check if a queue is empty
1934  *	@list: queue head
1935  *
1936  *	Returns true if the queue is empty, false otherwise.
1937  *	This variant can be used in lockless contexts.
1938  */
1939 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1940 {
1941 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1942 }
1943 
1944 
1945 /**
1946  *	skb_queue_is_last - check if skb is the last entry in the queue
1947  *	@list: queue head
1948  *	@skb: buffer
1949  *
1950  *	Returns true if @skb is the last buffer on the list.
1951  */
1952 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1953 				     const struct sk_buff *skb)
1954 {
1955 	return skb->next == (const struct sk_buff *) list;
1956 }
1957 
1958 /**
1959  *	skb_queue_is_first - check if skb is the first entry in the queue
1960  *	@list: queue head
1961  *	@skb: buffer
1962  *
1963  *	Returns true if @skb is the first buffer on the list.
1964  */
1965 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1966 				      const struct sk_buff *skb)
1967 {
1968 	return skb->prev == (const struct sk_buff *) list;
1969 }
1970 
1971 /**
1972  *	skb_queue_next - return the next packet in the queue
1973  *	@list: queue head
1974  *	@skb: current buffer
1975  *
1976  *	Return the next packet in @list after @skb.  It is only valid to
1977  *	call this if skb_queue_is_last() evaluates to false.
1978  */
1979 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1980 					     const struct sk_buff *skb)
1981 {
1982 	/* This BUG_ON may seem severe, but if we just return then we
1983 	 * are going to dereference garbage.
1984 	 */
1985 	BUG_ON(skb_queue_is_last(list, skb));
1986 	return skb->next;
1987 }
1988 
1989 /**
1990  *	skb_queue_prev - return the prev packet in the queue
1991  *	@list: queue head
1992  *	@skb: current buffer
1993  *
1994  *	Return the prev packet in @list before @skb.  It is only valid to
1995  *	call this if skb_queue_is_first() evaluates to false.
1996  */
1997 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1998 					     const struct sk_buff *skb)
1999 {
2000 	/* This BUG_ON may seem severe, but if we just return then we
2001 	 * are going to dereference garbage.
2002 	 */
2003 	BUG_ON(skb_queue_is_first(list, skb));
2004 	return skb->prev;
2005 }
2006 
2007 /**
2008  *	skb_get - reference buffer
2009  *	@skb: buffer to reference
2010  *
2011  *	Makes another reference to a socket buffer and returns a pointer
2012  *	to the buffer.
2013  */
2014 static inline struct sk_buff *skb_get(struct sk_buff *skb)
2015 {
2016 	refcount_inc(&skb->users);
2017 	return skb;
2018 }
2019 
2020 /*
2021  * If users == 1, we are the only owner and can avoid redundant atomic changes.
2022  */
2023 
2024 /**
2025  *	skb_cloned - is the buffer a clone
2026  *	@skb: buffer to check
2027  *
2028  *	Returns true if the buffer was generated with skb_clone() and is
2029  *	one of multiple shared copies of the buffer. Cloned buffers are
2030  *	shared data so must not be written to under normal circumstances.
2031  */
2032 static inline int skb_cloned(const struct sk_buff *skb)
2033 {
2034 	return skb->cloned &&
2035 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
2036 }
2037 
2038 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
2039 {
2040 	might_sleep_if(gfpflags_allow_blocking(pri));
2041 
2042 	if (skb_cloned(skb))
2043 		return pskb_expand_head(skb, 0, 0, pri);
2044 
2045 	return 0;
2046 }
2047 
2048 /* This variant of skb_unclone() makes sure skb->truesize
2049  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
2050  *
2051  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2052  * when various debugging features are in place.
2053  */
2054 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
2055 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2056 {
2057 	might_sleep_if(gfpflags_allow_blocking(pri));
2058 
2059 	if (skb_cloned(skb))
2060 		return __skb_unclone_keeptruesize(skb, pri);
2061 	return 0;
2062 }
2063 
2064 /**
2065  *	skb_header_cloned - is the header a clone
2066  *	@skb: buffer to check
2067  *
2068  *	Returns true if modifying the header part of the buffer requires
2069  *	the data to be copied.
2070  */
2071 static inline int skb_header_cloned(const struct sk_buff *skb)
2072 {
2073 	int dataref;
2074 
2075 	if (!skb->cloned)
2076 		return 0;
2077 
2078 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2079 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2080 	return dataref != 1;
2081 }
2082 
2083 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2084 {
2085 	might_sleep_if(gfpflags_allow_blocking(pri));
2086 
2087 	if (skb_header_cloned(skb))
2088 		return pskb_expand_head(skb, 0, 0, pri);
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  * __skb_header_release() - allow clones to use the headroom
2095  * @skb: buffer to operate on
2096  *
2097  * See "DOC: dataref and headerless skbs".
2098  */
2099 static inline void __skb_header_release(struct sk_buff *skb)
2100 {
2101 	skb->nohdr = 1;
2102 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2103 }
2104 
2105 
2106 /**
2107  *	skb_shared - is the buffer shared
2108  *	@skb: buffer to check
2109  *
2110  *	Returns true if more than one person has a reference to this
2111  *	buffer.
2112  */
2113 static inline int skb_shared(const struct sk_buff *skb)
2114 {
2115 	return refcount_read(&skb->users) != 1;
2116 }
2117 
2118 /**
2119  *	skb_share_check - check if buffer is shared and if so clone it
2120  *	@skb: buffer to check
2121  *	@pri: priority for memory allocation
2122  *
2123  *	If the buffer is shared the buffer is cloned and the old copy
2124  *	drops a reference. A new clone with a single reference is returned.
2125  *	If the buffer is not shared the original buffer is returned. When
2126  *	being called from interrupt status or with spinlocks held pri must
2127  *	be GFP_ATOMIC.
2128  *
2129  *	NULL is returned on a memory allocation failure.
2130  */
2131 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2132 {
2133 	might_sleep_if(gfpflags_allow_blocking(pri));
2134 	if (skb_shared(skb)) {
2135 		struct sk_buff *nskb = skb_clone(skb, pri);
2136 
2137 		if (likely(nskb))
2138 			consume_skb(skb);
2139 		else
2140 			kfree_skb(skb);
2141 		skb = nskb;
2142 	}
2143 	return skb;
2144 }
2145 
2146 /*
2147  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2148  *	packets to handle cases where we have a local reader and forward
2149  *	and a couple of other messy ones. The normal one is tcpdumping
2150  *	a packet thats being forwarded.
2151  */
2152 
2153 /**
2154  *	skb_unshare - make a copy of a shared buffer
2155  *	@skb: buffer to check
2156  *	@pri: priority for memory allocation
2157  *
2158  *	If the socket buffer is a clone then this function creates a new
2159  *	copy of the data, drops a reference count on the old copy and returns
2160  *	the new copy with the reference count at 1. If the buffer is not a clone
2161  *	the original buffer is returned. When called with a spinlock held or
2162  *	from interrupt state @pri must be %GFP_ATOMIC
2163  *
2164  *	%NULL is returned on a memory allocation failure.
2165  */
2166 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2167 					  gfp_t pri)
2168 {
2169 	might_sleep_if(gfpflags_allow_blocking(pri));
2170 	if (skb_cloned(skb)) {
2171 		struct sk_buff *nskb = skb_copy(skb, pri);
2172 
2173 		/* Free our shared copy */
2174 		if (likely(nskb))
2175 			consume_skb(skb);
2176 		else
2177 			kfree_skb(skb);
2178 		skb = nskb;
2179 	}
2180 	return skb;
2181 }
2182 
2183 /**
2184  *	skb_peek - peek at the head of an &sk_buff_head
2185  *	@list_: list to peek at
2186  *
2187  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2188  *	be careful with this one. A peek leaves the buffer on the
2189  *	list and someone else may run off with it. You must hold
2190  *	the appropriate locks or have a private queue to do this.
2191  *
2192  *	Returns %NULL for an empty list or a pointer to the head element.
2193  *	The reference count is not incremented and the reference is therefore
2194  *	volatile. Use with caution.
2195  */
2196 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2197 {
2198 	struct sk_buff *skb = list_->next;
2199 
2200 	if (skb == (struct sk_buff *)list_)
2201 		skb = NULL;
2202 	return skb;
2203 }
2204 
2205 /**
2206  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2207  *	@list_: list to peek at
2208  *
2209  *	Like skb_peek(), but the caller knows that the list is not empty.
2210  */
2211 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2212 {
2213 	return list_->next;
2214 }
2215 
2216 /**
2217  *	skb_peek_next - peek skb following the given one from a queue
2218  *	@skb: skb to start from
2219  *	@list_: list to peek at
2220  *
2221  *	Returns %NULL when the end of the list is met or a pointer to the
2222  *	next element. The reference count is not incremented and the
2223  *	reference is therefore volatile. Use with caution.
2224  */
2225 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2226 		const struct sk_buff_head *list_)
2227 {
2228 	struct sk_buff *next = skb->next;
2229 
2230 	if (next == (struct sk_buff *)list_)
2231 		next = NULL;
2232 	return next;
2233 }
2234 
2235 /**
2236  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2237  *	@list_: list to peek at
2238  *
2239  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2240  *	be careful with this one. A peek leaves the buffer on the
2241  *	list and someone else may run off with it. You must hold
2242  *	the appropriate locks or have a private queue to do this.
2243  *
2244  *	Returns %NULL for an empty list or a pointer to the tail element.
2245  *	The reference count is not incremented and the reference is therefore
2246  *	volatile. Use with caution.
2247  */
2248 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2249 {
2250 	struct sk_buff *skb = READ_ONCE(list_->prev);
2251 
2252 	if (skb == (struct sk_buff *)list_)
2253 		skb = NULL;
2254 	return skb;
2255 
2256 }
2257 
2258 /**
2259  *	skb_queue_len	- get queue length
2260  *	@list_: list to measure
2261  *
2262  *	Return the length of an &sk_buff queue.
2263  */
2264 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2265 {
2266 	return list_->qlen;
2267 }
2268 
2269 /**
2270  *	skb_queue_len_lockless	- get queue length
2271  *	@list_: list to measure
2272  *
2273  *	Return the length of an &sk_buff queue.
2274  *	This variant can be used in lockless contexts.
2275  */
2276 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2277 {
2278 	return READ_ONCE(list_->qlen);
2279 }
2280 
2281 /**
2282  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2283  *	@list: queue to initialize
2284  *
2285  *	This initializes only the list and queue length aspects of
2286  *	an sk_buff_head object.  This allows to initialize the list
2287  *	aspects of an sk_buff_head without reinitializing things like
2288  *	the spinlock.  It can also be used for on-stack sk_buff_head
2289  *	objects where the spinlock is known to not be used.
2290  */
2291 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2292 {
2293 	list->prev = list->next = (struct sk_buff *)list;
2294 	list->qlen = 0;
2295 }
2296 
2297 /*
2298  * This function creates a split out lock class for each invocation;
2299  * this is needed for now since a whole lot of users of the skb-queue
2300  * infrastructure in drivers have different locking usage (in hardirq)
2301  * than the networking core (in softirq only). In the long run either the
2302  * network layer or drivers should need annotation to consolidate the
2303  * main types of usage into 3 classes.
2304  */
2305 static inline void skb_queue_head_init(struct sk_buff_head *list)
2306 {
2307 	spin_lock_init(&list->lock);
2308 	__skb_queue_head_init(list);
2309 }
2310 
2311 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2312 		struct lock_class_key *class)
2313 {
2314 	skb_queue_head_init(list);
2315 	lockdep_set_class(&list->lock, class);
2316 }
2317 
2318 /*
2319  *	Insert an sk_buff on a list.
2320  *
2321  *	The "__skb_xxxx()" functions are the non-atomic ones that
2322  *	can only be called with interrupts disabled.
2323  */
2324 static inline void __skb_insert(struct sk_buff *newsk,
2325 				struct sk_buff *prev, struct sk_buff *next,
2326 				struct sk_buff_head *list)
2327 {
2328 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2329 	 * for the opposite READ_ONCE()
2330 	 */
2331 	WRITE_ONCE(newsk->next, next);
2332 	WRITE_ONCE(newsk->prev, prev);
2333 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2334 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2335 	WRITE_ONCE(list->qlen, list->qlen + 1);
2336 }
2337 
2338 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2339 				      struct sk_buff *prev,
2340 				      struct sk_buff *next)
2341 {
2342 	struct sk_buff *first = list->next;
2343 	struct sk_buff *last = list->prev;
2344 
2345 	WRITE_ONCE(first->prev, prev);
2346 	WRITE_ONCE(prev->next, first);
2347 
2348 	WRITE_ONCE(last->next, next);
2349 	WRITE_ONCE(next->prev, last);
2350 }
2351 
2352 /**
2353  *	skb_queue_splice - join two skb lists, this is designed for stacks
2354  *	@list: the new list to add
2355  *	@head: the place to add it in the first list
2356  */
2357 static inline void skb_queue_splice(const struct sk_buff_head *list,
2358 				    struct sk_buff_head *head)
2359 {
2360 	if (!skb_queue_empty(list)) {
2361 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2362 		head->qlen += list->qlen;
2363 	}
2364 }
2365 
2366 /**
2367  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2368  *	@list: the new list to add
2369  *	@head: the place to add it in the first list
2370  *
2371  *	The list at @list is reinitialised
2372  */
2373 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2374 					 struct sk_buff_head *head)
2375 {
2376 	if (!skb_queue_empty(list)) {
2377 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2378 		head->qlen += list->qlen;
2379 		__skb_queue_head_init(list);
2380 	}
2381 }
2382 
2383 /**
2384  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2385  *	@list: the new list to add
2386  *	@head: the place to add it in the first list
2387  */
2388 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2389 					 struct sk_buff_head *head)
2390 {
2391 	if (!skb_queue_empty(list)) {
2392 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2393 		head->qlen += list->qlen;
2394 	}
2395 }
2396 
2397 /**
2398  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2399  *	@list: the new list to add
2400  *	@head: the place to add it in the first list
2401  *
2402  *	Each of the lists is a queue.
2403  *	The list at @list is reinitialised
2404  */
2405 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2406 					      struct sk_buff_head *head)
2407 {
2408 	if (!skb_queue_empty(list)) {
2409 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2410 		head->qlen += list->qlen;
2411 		__skb_queue_head_init(list);
2412 	}
2413 }
2414 
2415 /**
2416  *	__skb_queue_after - queue a buffer at the list head
2417  *	@list: list to use
2418  *	@prev: place after this buffer
2419  *	@newsk: buffer to queue
2420  *
2421  *	Queue a buffer int the middle of a list. This function takes no locks
2422  *	and you must therefore hold required locks before calling it.
2423  *
2424  *	A buffer cannot be placed on two lists at the same time.
2425  */
2426 static inline void __skb_queue_after(struct sk_buff_head *list,
2427 				     struct sk_buff *prev,
2428 				     struct sk_buff *newsk)
2429 {
2430 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2431 }
2432 
2433 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2434 		struct sk_buff_head *list);
2435 
2436 static inline void __skb_queue_before(struct sk_buff_head *list,
2437 				      struct sk_buff *next,
2438 				      struct sk_buff *newsk)
2439 {
2440 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2441 }
2442 
2443 /**
2444  *	__skb_queue_head - queue a buffer at the list head
2445  *	@list: list to use
2446  *	@newsk: buffer to queue
2447  *
2448  *	Queue a buffer at the start of a list. This function takes no locks
2449  *	and you must therefore hold required locks before calling it.
2450  *
2451  *	A buffer cannot be placed on two lists at the same time.
2452  */
2453 static inline void __skb_queue_head(struct sk_buff_head *list,
2454 				    struct sk_buff *newsk)
2455 {
2456 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2457 }
2458 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2459 
2460 /**
2461  *	__skb_queue_tail - queue a buffer at the list tail
2462  *	@list: list to use
2463  *	@newsk: buffer to queue
2464  *
2465  *	Queue a buffer at the end of a list. This function takes no locks
2466  *	and you must therefore hold required locks before calling it.
2467  *
2468  *	A buffer cannot be placed on two lists at the same time.
2469  */
2470 static inline void __skb_queue_tail(struct sk_buff_head *list,
2471 				   struct sk_buff *newsk)
2472 {
2473 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2474 }
2475 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2476 
2477 /*
2478  * remove sk_buff from list. _Must_ be called atomically, and with
2479  * the list known..
2480  */
2481 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2482 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2483 {
2484 	struct sk_buff *next, *prev;
2485 
2486 	WRITE_ONCE(list->qlen, list->qlen - 1);
2487 	next	   = skb->next;
2488 	prev	   = skb->prev;
2489 	skb->next  = skb->prev = NULL;
2490 	WRITE_ONCE(next->prev, prev);
2491 	WRITE_ONCE(prev->next, next);
2492 }
2493 
2494 /**
2495  *	__skb_dequeue - remove from the head of the queue
2496  *	@list: list to dequeue from
2497  *
2498  *	Remove the head of the list. This function does not take any locks
2499  *	so must be used with appropriate locks held only. The head item is
2500  *	returned or %NULL if the list is empty.
2501  */
2502 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2503 {
2504 	struct sk_buff *skb = skb_peek(list);
2505 	if (skb)
2506 		__skb_unlink(skb, list);
2507 	return skb;
2508 }
2509 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2510 
2511 /**
2512  *	__skb_dequeue_tail - remove from the tail of the queue
2513  *	@list: list to dequeue from
2514  *
2515  *	Remove the tail of the list. This function does not take any locks
2516  *	so must be used with appropriate locks held only. The tail item is
2517  *	returned or %NULL if the list is empty.
2518  */
2519 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2520 {
2521 	struct sk_buff *skb = skb_peek_tail(list);
2522 	if (skb)
2523 		__skb_unlink(skb, list);
2524 	return skb;
2525 }
2526 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2527 
2528 
2529 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2530 {
2531 	return skb->data_len;
2532 }
2533 
2534 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2535 {
2536 	return skb->len - skb->data_len;
2537 }
2538 
2539 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2540 {
2541 	unsigned int i, len = 0;
2542 
2543 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2544 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2545 	return len;
2546 }
2547 
2548 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2549 {
2550 	return skb_headlen(skb) + __skb_pagelen(skb);
2551 }
2552 
2553 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2554 					      int i, struct page *page,
2555 					      int off, int size)
2556 {
2557 	skb_frag_t *frag = &shinfo->frags[i];
2558 
2559 	/*
2560 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2561 	 * that not all callers have unique ownership of the page but rely
2562 	 * on page_is_pfmemalloc doing the right thing(tm).
2563 	 */
2564 	frag->bv_page		  = page;
2565 	frag->bv_offset		  = off;
2566 	skb_frag_size_set(frag, size);
2567 }
2568 
2569 /**
2570  * __skb_fill_page_desc - initialise a paged fragment in an skb
2571  * @skb: buffer containing fragment to be initialised
2572  * @i: paged fragment index to initialise
2573  * @page: the page to use for this fragment
2574  * @off: the offset to the data with @page
2575  * @size: the length of the data
2576  *
2577  * Initialises the @i'th fragment of @skb to point to &size bytes at
2578  * offset @off within @page.
2579  *
2580  * Does not take any additional reference on the fragment.
2581  */
2582 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2583 					struct page *page, int off, int size)
2584 {
2585 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2586 	page = compound_head(page);
2587 	if (page_is_pfmemalloc(page))
2588 		skb->pfmemalloc	= true;
2589 }
2590 
2591 /**
2592  * skb_fill_page_desc - initialise a paged fragment in an skb
2593  * @skb: buffer containing fragment to be initialised
2594  * @i: paged fragment index to initialise
2595  * @page: the page to use for this fragment
2596  * @off: the offset to the data with @page
2597  * @size: the length of the data
2598  *
2599  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2600  * @skb to point to @size bytes at offset @off within @page. In
2601  * addition updates @skb such that @i is the last fragment.
2602  *
2603  * Does not take any additional reference on the fragment.
2604  */
2605 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2606 				      struct page *page, int off, int size)
2607 {
2608 	__skb_fill_page_desc(skb, i, page, off, size);
2609 	skb_shinfo(skb)->nr_frags = i + 1;
2610 }
2611 
2612 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2613 		     int size, unsigned int truesize);
2614 
2615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2616 			  unsigned int truesize);
2617 
2618 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2619 
2620 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2621 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2622 {
2623 	return skb->head + skb->tail;
2624 }
2625 
2626 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2627 {
2628 	skb->tail = skb->data - skb->head;
2629 }
2630 
2631 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2632 {
2633 	skb_reset_tail_pointer(skb);
2634 	skb->tail += offset;
2635 }
2636 
2637 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2638 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2639 {
2640 	return skb->tail;
2641 }
2642 
2643 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2644 {
2645 	skb->tail = skb->data;
2646 }
2647 
2648 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2649 {
2650 	skb->tail = skb->data + offset;
2651 }
2652 
2653 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2654 
2655 /*
2656  *	Add data to an sk_buff
2657  */
2658 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2659 void *skb_put(struct sk_buff *skb, unsigned int len);
2660 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2661 {
2662 	void *tmp = skb_tail_pointer(skb);
2663 	SKB_LINEAR_ASSERT(skb);
2664 	skb->tail += len;
2665 	skb->len  += len;
2666 	return tmp;
2667 }
2668 
2669 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2670 {
2671 	void *tmp = __skb_put(skb, len);
2672 
2673 	memset(tmp, 0, len);
2674 	return tmp;
2675 }
2676 
2677 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2678 				   unsigned int len)
2679 {
2680 	void *tmp = __skb_put(skb, len);
2681 
2682 	memcpy(tmp, data, len);
2683 	return tmp;
2684 }
2685 
2686 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2687 {
2688 	*(u8 *)__skb_put(skb, 1) = val;
2689 }
2690 
2691 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2692 {
2693 	void *tmp = skb_put(skb, len);
2694 
2695 	memset(tmp, 0, len);
2696 
2697 	return tmp;
2698 }
2699 
2700 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2701 				 unsigned int len)
2702 {
2703 	void *tmp = skb_put(skb, len);
2704 
2705 	memcpy(tmp, data, len);
2706 
2707 	return tmp;
2708 }
2709 
2710 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2711 {
2712 	*(u8 *)skb_put(skb, 1) = val;
2713 }
2714 
2715 void *skb_push(struct sk_buff *skb, unsigned int len);
2716 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2717 {
2718 	skb->data -= len;
2719 	skb->len  += len;
2720 	return skb->data;
2721 }
2722 
2723 void *skb_pull(struct sk_buff *skb, unsigned int len);
2724 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2725 {
2726 	skb->len -= len;
2727 	if (unlikely(skb->len < skb->data_len)) {
2728 #if defined(CONFIG_DEBUG_NET)
2729 		skb->len += len;
2730 		pr_err("__skb_pull(len=%u)\n", len);
2731 		skb_dump(KERN_ERR, skb, false);
2732 #endif
2733 		BUG();
2734 	}
2735 	return skb->data += len;
2736 }
2737 
2738 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2739 {
2740 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2741 }
2742 
2743 void *skb_pull_data(struct sk_buff *skb, size_t len);
2744 
2745 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2746 
2747 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2748 {
2749 	if (len > skb_headlen(skb) &&
2750 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2751 		return NULL;
2752 	skb->len -= len;
2753 	return skb->data += len;
2754 }
2755 
2756 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2757 {
2758 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2759 }
2760 
2761 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2762 {
2763 	if (likely(len <= skb_headlen(skb)))
2764 		return true;
2765 	if (unlikely(len > skb->len))
2766 		return false;
2767 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2768 }
2769 
2770 void skb_condense(struct sk_buff *skb);
2771 
2772 /**
2773  *	skb_headroom - bytes at buffer head
2774  *	@skb: buffer to check
2775  *
2776  *	Return the number of bytes of free space at the head of an &sk_buff.
2777  */
2778 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2779 {
2780 	return skb->data - skb->head;
2781 }
2782 
2783 /**
2784  *	skb_tailroom - bytes at buffer end
2785  *	@skb: buffer to check
2786  *
2787  *	Return the number of bytes of free space at the tail of an sk_buff
2788  */
2789 static inline int skb_tailroom(const struct sk_buff *skb)
2790 {
2791 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2792 }
2793 
2794 /**
2795  *	skb_availroom - bytes at buffer end
2796  *	@skb: buffer to check
2797  *
2798  *	Return the number of bytes of free space at the tail of an sk_buff
2799  *	allocated by sk_stream_alloc()
2800  */
2801 static inline int skb_availroom(const struct sk_buff *skb)
2802 {
2803 	if (skb_is_nonlinear(skb))
2804 		return 0;
2805 
2806 	return skb->end - skb->tail - skb->reserved_tailroom;
2807 }
2808 
2809 /**
2810  *	skb_reserve - adjust headroom
2811  *	@skb: buffer to alter
2812  *	@len: bytes to move
2813  *
2814  *	Increase the headroom of an empty &sk_buff by reducing the tail
2815  *	room. This is only allowed for an empty buffer.
2816  */
2817 static inline void skb_reserve(struct sk_buff *skb, int len)
2818 {
2819 	skb->data += len;
2820 	skb->tail += len;
2821 }
2822 
2823 /**
2824  *	skb_tailroom_reserve - adjust reserved_tailroom
2825  *	@skb: buffer to alter
2826  *	@mtu: maximum amount of headlen permitted
2827  *	@needed_tailroom: minimum amount of reserved_tailroom
2828  *
2829  *	Set reserved_tailroom so that headlen can be as large as possible but
2830  *	not larger than mtu and tailroom cannot be smaller than
2831  *	needed_tailroom.
2832  *	The required headroom should already have been reserved before using
2833  *	this function.
2834  */
2835 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2836 					unsigned int needed_tailroom)
2837 {
2838 	SKB_LINEAR_ASSERT(skb);
2839 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2840 		/* use at most mtu */
2841 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2842 	else
2843 		/* use up to all available space */
2844 		skb->reserved_tailroom = needed_tailroom;
2845 }
2846 
2847 #define ENCAP_TYPE_ETHER	0
2848 #define ENCAP_TYPE_IPPROTO	1
2849 
2850 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2851 					  __be16 protocol)
2852 {
2853 	skb->inner_protocol = protocol;
2854 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2855 }
2856 
2857 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2858 					 __u8 ipproto)
2859 {
2860 	skb->inner_ipproto = ipproto;
2861 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2862 }
2863 
2864 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2865 {
2866 	skb->inner_mac_header = skb->mac_header;
2867 	skb->inner_network_header = skb->network_header;
2868 	skb->inner_transport_header = skb->transport_header;
2869 }
2870 
2871 static inline void skb_reset_mac_len(struct sk_buff *skb)
2872 {
2873 	skb->mac_len = skb->network_header - skb->mac_header;
2874 }
2875 
2876 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2877 							*skb)
2878 {
2879 	return skb->head + skb->inner_transport_header;
2880 }
2881 
2882 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2883 {
2884 	return skb_inner_transport_header(skb) - skb->data;
2885 }
2886 
2887 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2888 {
2889 	skb->inner_transport_header = skb->data - skb->head;
2890 }
2891 
2892 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2893 						   const int offset)
2894 {
2895 	skb_reset_inner_transport_header(skb);
2896 	skb->inner_transport_header += offset;
2897 }
2898 
2899 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2900 {
2901 	return skb->head + skb->inner_network_header;
2902 }
2903 
2904 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2905 {
2906 	skb->inner_network_header = skb->data - skb->head;
2907 }
2908 
2909 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2910 						const int offset)
2911 {
2912 	skb_reset_inner_network_header(skb);
2913 	skb->inner_network_header += offset;
2914 }
2915 
2916 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2917 {
2918 	return skb->head + skb->inner_mac_header;
2919 }
2920 
2921 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2922 {
2923 	skb->inner_mac_header = skb->data - skb->head;
2924 }
2925 
2926 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2927 					    const int offset)
2928 {
2929 	skb_reset_inner_mac_header(skb);
2930 	skb->inner_mac_header += offset;
2931 }
2932 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2933 {
2934 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2935 }
2936 
2937 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2938 {
2939 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2940 	return skb->head + skb->transport_header;
2941 }
2942 
2943 static inline void skb_reset_transport_header(struct sk_buff *skb)
2944 {
2945 	skb->transport_header = skb->data - skb->head;
2946 }
2947 
2948 static inline void skb_set_transport_header(struct sk_buff *skb,
2949 					    const int offset)
2950 {
2951 	skb_reset_transport_header(skb);
2952 	skb->transport_header += offset;
2953 }
2954 
2955 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2956 {
2957 	return skb->head + skb->network_header;
2958 }
2959 
2960 static inline void skb_reset_network_header(struct sk_buff *skb)
2961 {
2962 	skb->network_header = skb->data - skb->head;
2963 }
2964 
2965 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2966 {
2967 	skb_reset_network_header(skb);
2968 	skb->network_header += offset;
2969 }
2970 
2971 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2972 {
2973 	return skb->head + skb->mac_header;
2974 }
2975 
2976 static inline int skb_mac_offset(const struct sk_buff *skb)
2977 {
2978 	return skb_mac_header(skb) - skb->data;
2979 }
2980 
2981 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2982 {
2983 	return skb->network_header - skb->mac_header;
2984 }
2985 
2986 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2987 {
2988 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2989 }
2990 
2991 static inline void skb_unset_mac_header(struct sk_buff *skb)
2992 {
2993 	skb->mac_header = (typeof(skb->mac_header))~0U;
2994 }
2995 
2996 static inline void skb_reset_mac_header(struct sk_buff *skb)
2997 {
2998 	skb->mac_header = skb->data - skb->head;
2999 }
3000 
3001 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3002 {
3003 	skb_reset_mac_header(skb);
3004 	skb->mac_header += offset;
3005 }
3006 
3007 static inline void skb_pop_mac_header(struct sk_buff *skb)
3008 {
3009 	skb->mac_header = skb->network_header;
3010 }
3011 
3012 static inline void skb_probe_transport_header(struct sk_buff *skb)
3013 {
3014 	struct flow_keys_basic keys;
3015 
3016 	if (skb_transport_header_was_set(skb))
3017 		return;
3018 
3019 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3020 					     NULL, 0, 0, 0, 0))
3021 		skb_set_transport_header(skb, keys.control.thoff);
3022 }
3023 
3024 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3025 {
3026 	if (skb_mac_header_was_set(skb)) {
3027 		const unsigned char *old_mac = skb_mac_header(skb);
3028 
3029 		skb_set_mac_header(skb, -skb->mac_len);
3030 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3031 	}
3032 }
3033 
3034 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3035 {
3036 	return skb->csum_start - skb_headroom(skb);
3037 }
3038 
3039 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3040 {
3041 	return skb->head + skb->csum_start;
3042 }
3043 
3044 static inline int skb_transport_offset(const struct sk_buff *skb)
3045 {
3046 	return skb_transport_header(skb) - skb->data;
3047 }
3048 
3049 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3050 {
3051 	return skb->transport_header - skb->network_header;
3052 }
3053 
3054 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3055 {
3056 	return skb->inner_transport_header - skb->inner_network_header;
3057 }
3058 
3059 static inline int skb_network_offset(const struct sk_buff *skb)
3060 {
3061 	return skb_network_header(skb) - skb->data;
3062 }
3063 
3064 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3065 {
3066 	return skb_inner_network_header(skb) - skb->data;
3067 }
3068 
3069 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3070 {
3071 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3072 }
3073 
3074 /*
3075  * CPUs often take a performance hit when accessing unaligned memory
3076  * locations. The actual performance hit varies, it can be small if the
3077  * hardware handles it or large if we have to take an exception and fix it
3078  * in software.
3079  *
3080  * Since an ethernet header is 14 bytes network drivers often end up with
3081  * the IP header at an unaligned offset. The IP header can be aligned by
3082  * shifting the start of the packet by 2 bytes. Drivers should do this
3083  * with:
3084  *
3085  * skb_reserve(skb, NET_IP_ALIGN);
3086  *
3087  * The downside to this alignment of the IP header is that the DMA is now
3088  * unaligned. On some architectures the cost of an unaligned DMA is high
3089  * and this cost outweighs the gains made by aligning the IP header.
3090  *
3091  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3092  * to be overridden.
3093  */
3094 #ifndef NET_IP_ALIGN
3095 #define NET_IP_ALIGN	2
3096 #endif
3097 
3098 /*
3099  * The networking layer reserves some headroom in skb data (via
3100  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3101  * the header has to grow. In the default case, if the header has to grow
3102  * 32 bytes or less we avoid the reallocation.
3103  *
3104  * Unfortunately this headroom changes the DMA alignment of the resulting
3105  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3106  * on some architectures. An architecture can override this value,
3107  * perhaps setting it to a cacheline in size (since that will maintain
3108  * cacheline alignment of the DMA). It must be a power of 2.
3109  *
3110  * Various parts of the networking layer expect at least 32 bytes of
3111  * headroom, you should not reduce this.
3112  *
3113  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3114  * to reduce average number of cache lines per packet.
3115  * get_rps_cpu() for example only access one 64 bytes aligned block :
3116  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3117  */
3118 #ifndef NET_SKB_PAD
3119 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3120 #endif
3121 
3122 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3123 
3124 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3125 {
3126 	if (WARN_ON(skb_is_nonlinear(skb)))
3127 		return;
3128 	skb->len = len;
3129 	skb_set_tail_pointer(skb, len);
3130 }
3131 
3132 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3133 {
3134 	__skb_set_length(skb, len);
3135 }
3136 
3137 void skb_trim(struct sk_buff *skb, unsigned int len);
3138 
3139 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3140 {
3141 	if (skb->data_len)
3142 		return ___pskb_trim(skb, len);
3143 	__skb_trim(skb, len);
3144 	return 0;
3145 }
3146 
3147 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3148 {
3149 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3150 }
3151 
3152 /**
3153  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3154  *	@skb: buffer to alter
3155  *	@len: new length
3156  *
3157  *	This is identical to pskb_trim except that the caller knows that
3158  *	the skb is not cloned so we should never get an error due to out-
3159  *	of-memory.
3160  */
3161 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3162 {
3163 	int err = pskb_trim(skb, len);
3164 	BUG_ON(err);
3165 }
3166 
3167 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3168 {
3169 	unsigned int diff = len - skb->len;
3170 
3171 	if (skb_tailroom(skb) < diff) {
3172 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3173 					   GFP_ATOMIC);
3174 		if (ret)
3175 			return ret;
3176 	}
3177 	__skb_set_length(skb, len);
3178 	return 0;
3179 }
3180 
3181 /**
3182  *	skb_orphan - orphan a buffer
3183  *	@skb: buffer to orphan
3184  *
3185  *	If a buffer currently has an owner then we call the owner's
3186  *	destructor function and make the @skb unowned. The buffer continues
3187  *	to exist but is no longer charged to its former owner.
3188  */
3189 static inline void skb_orphan(struct sk_buff *skb)
3190 {
3191 	if (skb->destructor) {
3192 		skb->destructor(skb);
3193 		skb->destructor = NULL;
3194 		skb->sk		= NULL;
3195 	} else {
3196 		BUG_ON(skb->sk);
3197 	}
3198 }
3199 
3200 /**
3201  *	skb_orphan_frags - orphan the frags contained in a buffer
3202  *	@skb: buffer to orphan frags from
3203  *	@gfp_mask: allocation mask for replacement pages
3204  *
3205  *	For each frag in the SKB which needs a destructor (i.e. has an
3206  *	owner) create a copy of that frag and release the original
3207  *	page by calling the destructor.
3208  */
3209 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3210 {
3211 	if (likely(!skb_zcopy(skb)))
3212 		return 0;
3213 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3214 		return 0;
3215 	return skb_copy_ubufs(skb, gfp_mask);
3216 }
3217 
3218 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3219 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3220 {
3221 	if (likely(!skb_zcopy(skb)))
3222 		return 0;
3223 	return skb_copy_ubufs(skb, gfp_mask);
3224 }
3225 
3226 /**
3227  *	__skb_queue_purge - empty a list
3228  *	@list: list to empty
3229  *
3230  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3231  *	the list and one reference dropped. This function does not take the
3232  *	list lock and the caller must hold the relevant locks to use it.
3233  */
3234 static inline void __skb_queue_purge(struct sk_buff_head *list)
3235 {
3236 	struct sk_buff *skb;
3237 	while ((skb = __skb_dequeue(list)) != NULL)
3238 		kfree_skb(skb);
3239 }
3240 void skb_queue_purge(struct sk_buff_head *list);
3241 
3242 unsigned int skb_rbtree_purge(struct rb_root *root);
3243 
3244 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3245 
3246 /**
3247  * netdev_alloc_frag - allocate a page fragment
3248  * @fragsz: fragment size
3249  *
3250  * Allocates a frag from a page for receive buffer.
3251  * Uses GFP_ATOMIC allocations.
3252  */
3253 static inline void *netdev_alloc_frag(unsigned int fragsz)
3254 {
3255 	return __netdev_alloc_frag_align(fragsz, ~0u);
3256 }
3257 
3258 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3259 					    unsigned int align)
3260 {
3261 	WARN_ON_ONCE(!is_power_of_2(align));
3262 	return __netdev_alloc_frag_align(fragsz, -align);
3263 }
3264 
3265 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3266 				   gfp_t gfp_mask);
3267 
3268 /**
3269  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3270  *	@dev: network device to receive on
3271  *	@length: length to allocate
3272  *
3273  *	Allocate a new &sk_buff and assign it a usage count of one. The
3274  *	buffer has unspecified headroom built in. Users should allocate
3275  *	the headroom they think they need without accounting for the
3276  *	built in space. The built in space is used for optimisations.
3277  *
3278  *	%NULL is returned if there is no free memory. Although this function
3279  *	allocates memory it can be called from an interrupt.
3280  */
3281 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3282 					       unsigned int length)
3283 {
3284 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3285 }
3286 
3287 /* legacy helper around __netdev_alloc_skb() */
3288 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3289 					      gfp_t gfp_mask)
3290 {
3291 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3292 }
3293 
3294 /* legacy helper around netdev_alloc_skb() */
3295 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3296 {
3297 	return netdev_alloc_skb(NULL, length);
3298 }
3299 
3300 
3301 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3302 		unsigned int length, gfp_t gfp)
3303 {
3304 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3305 
3306 	if (NET_IP_ALIGN && skb)
3307 		skb_reserve(skb, NET_IP_ALIGN);
3308 	return skb;
3309 }
3310 
3311 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3312 		unsigned int length)
3313 {
3314 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3315 }
3316 
3317 static inline void skb_free_frag(void *addr)
3318 {
3319 	page_frag_free(addr);
3320 }
3321 
3322 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3323 
3324 static inline void *napi_alloc_frag(unsigned int fragsz)
3325 {
3326 	return __napi_alloc_frag_align(fragsz, ~0u);
3327 }
3328 
3329 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3330 					  unsigned int align)
3331 {
3332 	WARN_ON_ONCE(!is_power_of_2(align));
3333 	return __napi_alloc_frag_align(fragsz, -align);
3334 }
3335 
3336 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3337 				 unsigned int length, gfp_t gfp_mask);
3338 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3339 					     unsigned int length)
3340 {
3341 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3342 }
3343 void napi_consume_skb(struct sk_buff *skb, int budget);
3344 
3345 void napi_skb_free_stolen_head(struct sk_buff *skb);
3346 void __kfree_skb_defer(struct sk_buff *skb);
3347 
3348 /**
3349  * __dev_alloc_pages - allocate page for network Rx
3350  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3351  * @order: size of the allocation
3352  *
3353  * Allocate a new page.
3354  *
3355  * %NULL is returned if there is no free memory.
3356 */
3357 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3358 					     unsigned int order)
3359 {
3360 	/* This piece of code contains several assumptions.
3361 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3362 	 * 2.  The expectation is the user wants a compound page.
3363 	 * 3.  If requesting a order 0 page it will not be compound
3364 	 *     due to the check to see if order has a value in prep_new_page
3365 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3366 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3367 	 */
3368 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3369 
3370 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3371 }
3372 
3373 static inline struct page *dev_alloc_pages(unsigned int order)
3374 {
3375 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3376 }
3377 
3378 /**
3379  * __dev_alloc_page - allocate a page for network Rx
3380  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3381  *
3382  * Allocate a new page.
3383  *
3384  * %NULL is returned if there is no free memory.
3385  */
3386 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3387 {
3388 	return __dev_alloc_pages(gfp_mask, 0);
3389 }
3390 
3391 static inline struct page *dev_alloc_page(void)
3392 {
3393 	return dev_alloc_pages(0);
3394 }
3395 
3396 /**
3397  * dev_page_is_reusable - check whether a page can be reused for network Rx
3398  * @page: the page to test
3399  *
3400  * A page shouldn't be considered for reusing/recycling if it was allocated
3401  * under memory pressure or at a distant memory node.
3402  *
3403  * Returns false if this page should be returned to page allocator, true
3404  * otherwise.
3405  */
3406 static inline bool dev_page_is_reusable(const struct page *page)
3407 {
3408 	return likely(page_to_nid(page) == numa_mem_id() &&
3409 		      !page_is_pfmemalloc(page));
3410 }
3411 
3412 /**
3413  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3414  *	@page: The page that was allocated from skb_alloc_page
3415  *	@skb: The skb that may need pfmemalloc set
3416  */
3417 static inline void skb_propagate_pfmemalloc(const struct page *page,
3418 					    struct sk_buff *skb)
3419 {
3420 	if (page_is_pfmemalloc(page))
3421 		skb->pfmemalloc = true;
3422 }
3423 
3424 /**
3425  * skb_frag_off() - Returns the offset of a skb fragment
3426  * @frag: the paged fragment
3427  */
3428 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3429 {
3430 	return frag->bv_offset;
3431 }
3432 
3433 /**
3434  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3435  * @frag: skb fragment
3436  * @delta: value to add
3437  */
3438 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3439 {
3440 	frag->bv_offset += delta;
3441 }
3442 
3443 /**
3444  * skb_frag_off_set() - Sets the offset of a skb fragment
3445  * @frag: skb fragment
3446  * @offset: offset of fragment
3447  */
3448 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3449 {
3450 	frag->bv_offset = offset;
3451 }
3452 
3453 /**
3454  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3455  * @fragto: skb fragment where offset is set
3456  * @fragfrom: skb fragment offset is copied from
3457  */
3458 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3459 				     const skb_frag_t *fragfrom)
3460 {
3461 	fragto->bv_offset = fragfrom->bv_offset;
3462 }
3463 
3464 /**
3465  * skb_frag_page - retrieve the page referred to by a paged fragment
3466  * @frag: the paged fragment
3467  *
3468  * Returns the &struct page associated with @frag.
3469  */
3470 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3471 {
3472 	return frag->bv_page;
3473 }
3474 
3475 /**
3476  * __skb_frag_ref - take an addition reference on a paged fragment.
3477  * @frag: the paged fragment
3478  *
3479  * Takes an additional reference on the paged fragment @frag.
3480  */
3481 static inline void __skb_frag_ref(skb_frag_t *frag)
3482 {
3483 	get_page(skb_frag_page(frag));
3484 }
3485 
3486 /**
3487  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3488  * @skb: the buffer
3489  * @f: the fragment offset.
3490  *
3491  * Takes an additional reference on the @f'th paged fragment of @skb.
3492  */
3493 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3494 {
3495 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3496 }
3497 
3498 /**
3499  * __skb_frag_unref - release a reference on a paged fragment.
3500  * @frag: the paged fragment
3501  * @recycle: recycle the page if allocated via page_pool
3502  *
3503  * Releases a reference on the paged fragment @frag
3504  * or recycles the page via the page_pool API.
3505  */
3506 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3507 {
3508 	struct page *page = skb_frag_page(frag);
3509 
3510 #ifdef CONFIG_PAGE_POOL
3511 	if (recycle && page_pool_return_skb_page(page))
3512 		return;
3513 #endif
3514 	put_page(page);
3515 }
3516 
3517 /**
3518  * skb_frag_unref - release a reference on a paged fragment of an skb.
3519  * @skb: the buffer
3520  * @f: the fragment offset
3521  *
3522  * Releases a reference on the @f'th paged fragment of @skb.
3523  */
3524 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3525 {
3526 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3527 
3528 	if (!skb_zcopy_managed(skb))
3529 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3530 }
3531 
3532 /**
3533  * skb_frag_address - gets the address of the data contained in a paged fragment
3534  * @frag: the paged fragment buffer
3535  *
3536  * Returns the address of the data within @frag. The page must already
3537  * be mapped.
3538  */
3539 static inline void *skb_frag_address(const skb_frag_t *frag)
3540 {
3541 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3542 }
3543 
3544 /**
3545  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3546  * @frag: the paged fragment buffer
3547  *
3548  * Returns the address of the data within @frag. Checks that the page
3549  * is mapped and returns %NULL otherwise.
3550  */
3551 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3552 {
3553 	void *ptr = page_address(skb_frag_page(frag));
3554 	if (unlikely(!ptr))
3555 		return NULL;
3556 
3557 	return ptr + skb_frag_off(frag);
3558 }
3559 
3560 /**
3561  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3562  * @fragto: skb fragment where page is set
3563  * @fragfrom: skb fragment page is copied from
3564  */
3565 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3566 				      const skb_frag_t *fragfrom)
3567 {
3568 	fragto->bv_page = fragfrom->bv_page;
3569 }
3570 
3571 /**
3572  * __skb_frag_set_page - sets the page contained in a paged fragment
3573  * @frag: the paged fragment
3574  * @page: the page to set
3575  *
3576  * Sets the fragment @frag to contain @page.
3577  */
3578 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3579 {
3580 	frag->bv_page = page;
3581 }
3582 
3583 /**
3584  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3585  * @skb: the buffer
3586  * @f: the fragment offset
3587  * @page: the page to set
3588  *
3589  * Sets the @f'th fragment of @skb to contain @page.
3590  */
3591 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3592 				     struct page *page)
3593 {
3594 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3595 }
3596 
3597 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3598 
3599 /**
3600  * skb_frag_dma_map - maps a paged fragment via the DMA API
3601  * @dev: the device to map the fragment to
3602  * @frag: the paged fragment to map
3603  * @offset: the offset within the fragment (starting at the
3604  *          fragment's own offset)
3605  * @size: the number of bytes to map
3606  * @dir: the direction of the mapping (``PCI_DMA_*``)
3607  *
3608  * Maps the page associated with @frag to @device.
3609  */
3610 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3611 					  const skb_frag_t *frag,
3612 					  size_t offset, size_t size,
3613 					  enum dma_data_direction dir)
3614 {
3615 	return dma_map_page(dev, skb_frag_page(frag),
3616 			    skb_frag_off(frag) + offset, size, dir);
3617 }
3618 
3619 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3620 					gfp_t gfp_mask)
3621 {
3622 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3623 }
3624 
3625 
3626 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3627 						  gfp_t gfp_mask)
3628 {
3629 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3630 }
3631 
3632 
3633 /**
3634  *	skb_clone_writable - is the header of a clone writable
3635  *	@skb: buffer to check
3636  *	@len: length up to which to write
3637  *
3638  *	Returns true if modifying the header part of the cloned buffer
3639  *	does not requires the data to be copied.
3640  */
3641 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3642 {
3643 	return !skb_header_cloned(skb) &&
3644 	       skb_headroom(skb) + len <= skb->hdr_len;
3645 }
3646 
3647 static inline int skb_try_make_writable(struct sk_buff *skb,
3648 					unsigned int write_len)
3649 {
3650 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3651 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3652 }
3653 
3654 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3655 			    int cloned)
3656 {
3657 	int delta = 0;
3658 
3659 	if (headroom > skb_headroom(skb))
3660 		delta = headroom - skb_headroom(skb);
3661 
3662 	if (delta || cloned)
3663 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3664 					GFP_ATOMIC);
3665 	return 0;
3666 }
3667 
3668 /**
3669  *	skb_cow - copy header of skb when it is required
3670  *	@skb: buffer to cow
3671  *	@headroom: needed headroom
3672  *
3673  *	If the skb passed lacks sufficient headroom or its data part
3674  *	is shared, data is reallocated. If reallocation fails, an error
3675  *	is returned and original skb is not changed.
3676  *
3677  *	The result is skb with writable area skb->head...skb->tail
3678  *	and at least @headroom of space at head.
3679  */
3680 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3681 {
3682 	return __skb_cow(skb, headroom, skb_cloned(skb));
3683 }
3684 
3685 /**
3686  *	skb_cow_head - skb_cow but only making the head writable
3687  *	@skb: buffer to cow
3688  *	@headroom: needed headroom
3689  *
3690  *	This function is identical to skb_cow except that we replace the
3691  *	skb_cloned check by skb_header_cloned.  It should be used when
3692  *	you only need to push on some header and do not need to modify
3693  *	the data.
3694  */
3695 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3696 {
3697 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3698 }
3699 
3700 /**
3701  *	skb_padto	- pad an skbuff up to a minimal size
3702  *	@skb: buffer to pad
3703  *	@len: minimal length
3704  *
3705  *	Pads up a buffer to ensure the trailing bytes exist and are
3706  *	blanked. If the buffer already contains sufficient data it
3707  *	is untouched. Otherwise it is extended. Returns zero on
3708  *	success. The skb is freed on error.
3709  */
3710 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3711 {
3712 	unsigned int size = skb->len;
3713 	if (likely(size >= len))
3714 		return 0;
3715 	return skb_pad(skb, len - size);
3716 }
3717 
3718 /**
3719  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3720  *	@skb: buffer to pad
3721  *	@len: minimal length
3722  *	@free_on_error: free buffer on error
3723  *
3724  *	Pads up a buffer to ensure the trailing bytes exist and are
3725  *	blanked. If the buffer already contains sufficient data it
3726  *	is untouched. Otherwise it is extended. Returns zero on
3727  *	success. The skb is freed on error if @free_on_error is true.
3728  */
3729 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3730 					       unsigned int len,
3731 					       bool free_on_error)
3732 {
3733 	unsigned int size = skb->len;
3734 
3735 	if (unlikely(size < len)) {
3736 		len -= size;
3737 		if (__skb_pad(skb, len, free_on_error))
3738 			return -ENOMEM;
3739 		__skb_put(skb, len);
3740 	}
3741 	return 0;
3742 }
3743 
3744 /**
3745  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3746  *	@skb: buffer to pad
3747  *	@len: minimal length
3748  *
3749  *	Pads up a buffer to ensure the trailing bytes exist and are
3750  *	blanked. If the buffer already contains sufficient data it
3751  *	is untouched. Otherwise it is extended. Returns zero on
3752  *	success. The skb is freed on error.
3753  */
3754 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3755 {
3756 	return __skb_put_padto(skb, len, true);
3757 }
3758 
3759 static inline int skb_add_data(struct sk_buff *skb,
3760 			       struct iov_iter *from, int copy)
3761 {
3762 	const int off = skb->len;
3763 
3764 	if (skb->ip_summed == CHECKSUM_NONE) {
3765 		__wsum csum = 0;
3766 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3767 					         &csum, from)) {
3768 			skb->csum = csum_block_add(skb->csum, csum, off);
3769 			return 0;
3770 		}
3771 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3772 		return 0;
3773 
3774 	__skb_trim(skb, off);
3775 	return -EFAULT;
3776 }
3777 
3778 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3779 				    const struct page *page, int off)
3780 {
3781 	if (skb_zcopy(skb))
3782 		return false;
3783 	if (i) {
3784 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3785 
3786 		return page == skb_frag_page(frag) &&
3787 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3788 	}
3789 	return false;
3790 }
3791 
3792 static inline int __skb_linearize(struct sk_buff *skb)
3793 {
3794 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3795 }
3796 
3797 /**
3798  *	skb_linearize - convert paged skb to linear one
3799  *	@skb: buffer to linarize
3800  *
3801  *	If there is no free memory -ENOMEM is returned, otherwise zero
3802  *	is returned and the old skb data released.
3803  */
3804 static inline int skb_linearize(struct sk_buff *skb)
3805 {
3806 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3807 }
3808 
3809 /**
3810  * skb_has_shared_frag - can any frag be overwritten
3811  * @skb: buffer to test
3812  *
3813  * Return true if the skb has at least one frag that might be modified
3814  * by an external entity (as in vmsplice()/sendfile())
3815  */
3816 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3817 {
3818 	return skb_is_nonlinear(skb) &&
3819 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3820 }
3821 
3822 /**
3823  *	skb_linearize_cow - make sure skb is linear and writable
3824  *	@skb: buffer to process
3825  *
3826  *	If there is no free memory -ENOMEM is returned, otherwise zero
3827  *	is returned and the old skb data released.
3828  */
3829 static inline int skb_linearize_cow(struct sk_buff *skb)
3830 {
3831 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3832 	       __skb_linearize(skb) : 0;
3833 }
3834 
3835 static __always_inline void
3836 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3837 		     unsigned int off)
3838 {
3839 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3840 		skb->csum = csum_block_sub(skb->csum,
3841 					   csum_partial(start, len, 0), off);
3842 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3843 		 skb_checksum_start_offset(skb) < 0)
3844 		skb->ip_summed = CHECKSUM_NONE;
3845 }
3846 
3847 /**
3848  *	skb_postpull_rcsum - update checksum for received skb after pull
3849  *	@skb: buffer to update
3850  *	@start: start of data before pull
3851  *	@len: length of data pulled
3852  *
3853  *	After doing a pull on a received packet, you need to call this to
3854  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3855  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3856  */
3857 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3858 				      const void *start, unsigned int len)
3859 {
3860 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3861 		skb->csum = wsum_negate(csum_partial(start, len,
3862 						     wsum_negate(skb->csum)));
3863 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3864 		 skb_checksum_start_offset(skb) < 0)
3865 		skb->ip_summed = CHECKSUM_NONE;
3866 }
3867 
3868 static __always_inline void
3869 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3870 		     unsigned int off)
3871 {
3872 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3873 		skb->csum = csum_block_add(skb->csum,
3874 					   csum_partial(start, len, 0), off);
3875 }
3876 
3877 /**
3878  *	skb_postpush_rcsum - update checksum for received skb after push
3879  *	@skb: buffer to update
3880  *	@start: start of data after push
3881  *	@len: length of data pushed
3882  *
3883  *	After doing a push on a received packet, you need to call this to
3884  *	update the CHECKSUM_COMPLETE checksum.
3885  */
3886 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3887 				      const void *start, unsigned int len)
3888 {
3889 	__skb_postpush_rcsum(skb, start, len, 0);
3890 }
3891 
3892 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3893 
3894 /**
3895  *	skb_push_rcsum - push skb and update receive checksum
3896  *	@skb: buffer to update
3897  *	@len: length of data pulled
3898  *
3899  *	This function performs an skb_push on the packet and updates
3900  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3901  *	receive path processing instead of skb_push unless you know
3902  *	that the checksum difference is zero (e.g., a valid IP header)
3903  *	or you are setting ip_summed to CHECKSUM_NONE.
3904  */
3905 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3906 {
3907 	skb_push(skb, len);
3908 	skb_postpush_rcsum(skb, skb->data, len);
3909 	return skb->data;
3910 }
3911 
3912 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3913 /**
3914  *	pskb_trim_rcsum - trim received skb and update checksum
3915  *	@skb: buffer to trim
3916  *	@len: new length
3917  *
3918  *	This is exactly the same as pskb_trim except that it ensures the
3919  *	checksum of received packets are still valid after the operation.
3920  *	It can change skb pointers.
3921  */
3922 
3923 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3924 {
3925 	if (likely(len >= skb->len))
3926 		return 0;
3927 	return pskb_trim_rcsum_slow(skb, len);
3928 }
3929 
3930 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3931 {
3932 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3933 		skb->ip_summed = CHECKSUM_NONE;
3934 	__skb_trim(skb, len);
3935 	return 0;
3936 }
3937 
3938 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3939 {
3940 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3941 		skb->ip_summed = CHECKSUM_NONE;
3942 	return __skb_grow(skb, len);
3943 }
3944 
3945 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3946 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3947 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3948 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3949 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3950 
3951 #define skb_queue_walk(queue, skb) \
3952 		for (skb = (queue)->next;					\
3953 		     skb != (struct sk_buff *)(queue);				\
3954 		     skb = skb->next)
3955 
3956 #define skb_queue_walk_safe(queue, skb, tmp)					\
3957 		for (skb = (queue)->next, tmp = skb->next;			\
3958 		     skb != (struct sk_buff *)(queue);				\
3959 		     skb = tmp, tmp = skb->next)
3960 
3961 #define skb_queue_walk_from(queue, skb)						\
3962 		for (; skb != (struct sk_buff *)(queue);			\
3963 		     skb = skb->next)
3964 
3965 #define skb_rbtree_walk(skb, root)						\
3966 		for (skb = skb_rb_first(root); skb != NULL;			\
3967 		     skb = skb_rb_next(skb))
3968 
3969 #define skb_rbtree_walk_from(skb)						\
3970 		for (; skb != NULL;						\
3971 		     skb = skb_rb_next(skb))
3972 
3973 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3974 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3975 		     skb = tmp)
3976 
3977 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3978 		for (tmp = skb->next;						\
3979 		     skb != (struct sk_buff *)(queue);				\
3980 		     skb = tmp, tmp = skb->next)
3981 
3982 #define skb_queue_reverse_walk(queue, skb) \
3983 		for (skb = (queue)->prev;					\
3984 		     skb != (struct sk_buff *)(queue);				\
3985 		     skb = skb->prev)
3986 
3987 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3988 		for (skb = (queue)->prev, tmp = skb->prev;			\
3989 		     skb != (struct sk_buff *)(queue);				\
3990 		     skb = tmp, tmp = skb->prev)
3991 
3992 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3993 		for (tmp = skb->prev;						\
3994 		     skb != (struct sk_buff *)(queue);				\
3995 		     skb = tmp, tmp = skb->prev)
3996 
3997 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3998 {
3999 	return skb_shinfo(skb)->frag_list != NULL;
4000 }
4001 
4002 static inline void skb_frag_list_init(struct sk_buff *skb)
4003 {
4004 	skb_shinfo(skb)->frag_list = NULL;
4005 }
4006 
4007 #define skb_walk_frags(skb, iter)	\
4008 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4009 
4010 
4011 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4012 				int *err, long *timeo_p,
4013 				const struct sk_buff *skb);
4014 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4015 					  struct sk_buff_head *queue,
4016 					  unsigned int flags,
4017 					  int *off, int *err,
4018 					  struct sk_buff **last);
4019 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4020 					struct sk_buff_head *queue,
4021 					unsigned int flags, int *off, int *err,
4022 					struct sk_buff **last);
4023 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4024 				    struct sk_buff_head *sk_queue,
4025 				    unsigned int flags, int *off, int *err);
4026 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4027 __poll_t datagram_poll(struct file *file, struct socket *sock,
4028 			   struct poll_table_struct *wait);
4029 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4030 			   struct iov_iter *to, int size);
4031 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4032 					struct msghdr *msg, int size)
4033 {
4034 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4035 }
4036 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4037 				   struct msghdr *msg);
4038 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4039 			   struct iov_iter *to, int len,
4040 			   struct ahash_request *hash);
4041 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4042 				 struct iov_iter *from, int len);
4043 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4044 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4045 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
4046 static inline void skb_free_datagram_locked(struct sock *sk,
4047 					    struct sk_buff *skb)
4048 {
4049 	__skb_free_datagram_locked(sk, skb, 0);
4050 }
4051 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4052 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4053 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4054 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4055 			      int len);
4056 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4057 		    struct pipe_inode_info *pipe, unsigned int len,
4058 		    unsigned int flags);
4059 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4060 			 int len);
4061 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4062 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4063 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4064 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4065 		 int len, int hlen);
4066 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4067 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4068 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4069 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
4070 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
4071 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4072 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4073 				 unsigned int offset);
4074 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4075 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4076 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4077 int skb_vlan_pop(struct sk_buff *skb);
4078 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4079 int skb_eth_pop(struct sk_buff *skb);
4080 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4081 		 const unsigned char *src);
4082 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4083 		  int mac_len, bool ethernet);
4084 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4085 		 bool ethernet);
4086 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4087 int skb_mpls_dec_ttl(struct sk_buff *skb);
4088 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4089 			     gfp_t gfp);
4090 
4091 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4092 {
4093 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4094 }
4095 
4096 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4097 {
4098 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4099 }
4100 
4101 struct skb_checksum_ops {
4102 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4103 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4104 };
4105 
4106 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4107 
4108 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4109 		      __wsum csum, const struct skb_checksum_ops *ops);
4110 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4111 		    __wsum csum);
4112 
4113 static inline void * __must_check
4114 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4115 		     const void *data, int hlen, void *buffer)
4116 {
4117 	if (likely(hlen - offset >= len))
4118 		return (void *)data + offset;
4119 
4120 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4121 		return NULL;
4122 
4123 	return buffer;
4124 }
4125 
4126 static inline void * __must_check
4127 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4128 {
4129 	return __skb_header_pointer(skb, offset, len, skb->data,
4130 				    skb_headlen(skb), buffer);
4131 }
4132 
4133 /**
4134  *	skb_needs_linearize - check if we need to linearize a given skb
4135  *			      depending on the given device features.
4136  *	@skb: socket buffer to check
4137  *	@features: net device features
4138  *
4139  *	Returns true if either:
4140  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4141  *	2. skb is fragmented and the device does not support SG.
4142  */
4143 static inline bool skb_needs_linearize(struct sk_buff *skb,
4144 				       netdev_features_t features)
4145 {
4146 	return skb_is_nonlinear(skb) &&
4147 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4148 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4149 }
4150 
4151 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4152 					     void *to,
4153 					     const unsigned int len)
4154 {
4155 	memcpy(to, skb->data, len);
4156 }
4157 
4158 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4159 						    const int offset, void *to,
4160 						    const unsigned int len)
4161 {
4162 	memcpy(to, skb->data + offset, len);
4163 }
4164 
4165 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4166 					   const void *from,
4167 					   const unsigned int len)
4168 {
4169 	memcpy(skb->data, from, len);
4170 }
4171 
4172 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4173 						  const int offset,
4174 						  const void *from,
4175 						  const unsigned int len)
4176 {
4177 	memcpy(skb->data + offset, from, len);
4178 }
4179 
4180 void skb_init(void);
4181 
4182 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4183 {
4184 	return skb->tstamp;
4185 }
4186 
4187 /**
4188  *	skb_get_timestamp - get timestamp from a skb
4189  *	@skb: skb to get stamp from
4190  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4191  *
4192  *	Timestamps are stored in the skb as offsets to a base timestamp.
4193  *	This function converts the offset back to a struct timeval and stores
4194  *	it in stamp.
4195  */
4196 static inline void skb_get_timestamp(const struct sk_buff *skb,
4197 				     struct __kernel_old_timeval *stamp)
4198 {
4199 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4200 }
4201 
4202 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4203 					 struct __kernel_sock_timeval *stamp)
4204 {
4205 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4206 
4207 	stamp->tv_sec = ts.tv_sec;
4208 	stamp->tv_usec = ts.tv_nsec / 1000;
4209 }
4210 
4211 static inline void skb_get_timestampns(const struct sk_buff *skb,
4212 				       struct __kernel_old_timespec *stamp)
4213 {
4214 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4215 
4216 	stamp->tv_sec = ts.tv_sec;
4217 	stamp->tv_nsec = ts.tv_nsec;
4218 }
4219 
4220 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4221 					   struct __kernel_timespec *stamp)
4222 {
4223 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4224 
4225 	stamp->tv_sec = ts.tv_sec;
4226 	stamp->tv_nsec = ts.tv_nsec;
4227 }
4228 
4229 static inline void __net_timestamp(struct sk_buff *skb)
4230 {
4231 	skb->tstamp = ktime_get_real();
4232 	skb->mono_delivery_time = 0;
4233 }
4234 
4235 static inline ktime_t net_timedelta(ktime_t t)
4236 {
4237 	return ktime_sub(ktime_get_real(), t);
4238 }
4239 
4240 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4241 					 bool mono)
4242 {
4243 	skb->tstamp = kt;
4244 	skb->mono_delivery_time = kt && mono;
4245 }
4246 
4247 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4248 
4249 /* It is used in the ingress path to clear the delivery_time.
4250  * If needed, set the skb->tstamp to the (rcv) timestamp.
4251  */
4252 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4253 {
4254 	if (skb->mono_delivery_time) {
4255 		skb->mono_delivery_time = 0;
4256 		if (static_branch_unlikely(&netstamp_needed_key))
4257 			skb->tstamp = ktime_get_real();
4258 		else
4259 			skb->tstamp = 0;
4260 	}
4261 }
4262 
4263 static inline void skb_clear_tstamp(struct sk_buff *skb)
4264 {
4265 	if (skb->mono_delivery_time)
4266 		return;
4267 
4268 	skb->tstamp = 0;
4269 }
4270 
4271 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4272 {
4273 	if (skb->mono_delivery_time)
4274 		return 0;
4275 
4276 	return skb->tstamp;
4277 }
4278 
4279 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4280 {
4281 	if (!skb->mono_delivery_time && skb->tstamp)
4282 		return skb->tstamp;
4283 
4284 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4285 		return ktime_get_real();
4286 
4287 	return 0;
4288 }
4289 
4290 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4291 {
4292 	return skb_shinfo(skb)->meta_len;
4293 }
4294 
4295 static inline void *skb_metadata_end(const struct sk_buff *skb)
4296 {
4297 	return skb_mac_header(skb);
4298 }
4299 
4300 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4301 					  const struct sk_buff *skb_b,
4302 					  u8 meta_len)
4303 {
4304 	const void *a = skb_metadata_end(skb_a);
4305 	const void *b = skb_metadata_end(skb_b);
4306 	/* Using more efficient varaiant than plain call to memcmp(). */
4307 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4308 	u64 diffs = 0;
4309 
4310 	switch (meta_len) {
4311 #define __it(x, op) (x -= sizeof(u##op))
4312 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4313 	case 32: diffs |= __it_diff(a, b, 64);
4314 		fallthrough;
4315 	case 24: diffs |= __it_diff(a, b, 64);
4316 		fallthrough;
4317 	case 16: diffs |= __it_diff(a, b, 64);
4318 		fallthrough;
4319 	case  8: diffs |= __it_diff(a, b, 64);
4320 		break;
4321 	case 28: diffs |= __it_diff(a, b, 64);
4322 		fallthrough;
4323 	case 20: diffs |= __it_diff(a, b, 64);
4324 		fallthrough;
4325 	case 12: diffs |= __it_diff(a, b, 64);
4326 		fallthrough;
4327 	case  4: diffs |= __it_diff(a, b, 32);
4328 		break;
4329 	}
4330 	return diffs;
4331 #else
4332 	return memcmp(a - meta_len, b - meta_len, meta_len);
4333 #endif
4334 }
4335 
4336 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4337 					const struct sk_buff *skb_b)
4338 {
4339 	u8 len_a = skb_metadata_len(skb_a);
4340 	u8 len_b = skb_metadata_len(skb_b);
4341 
4342 	if (!(len_a | len_b))
4343 		return false;
4344 
4345 	return len_a != len_b ?
4346 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4347 }
4348 
4349 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4350 {
4351 	skb_shinfo(skb)->meta_len = meta_len;
4352 }
4353 
4354 static inline void skb_metadata_clear(struct sk_buff *skb)
4355 {
4356 	skb_metadata_set(skb, 0);
4357 }
4358 
4359 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4360 
4361 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4362 
4363 void skb_clone_tx_timestamp(struct sk_buff *skb);
4364 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4365 
4366 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4367 
4368 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4369 {
4370 }
4371 
4372 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4373 {
4374 	return false;
4375 }
4376 
4377 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4378 
4379 /**
4380  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4381  *
4382  * PHY drivers may accept clones of transmitted packets for
4383  * timestamping via their phy_driver.txtstamp method. These drivers
4384  * must call this function to return the skb back to the stack with a
4385  * timestamp.
4386  *
4387  * @skb: clone of the original outgoing packet
4388  * @hwtstamps: hardware time stamps
4389  *
4390  */
4391 void skb_complete_tx_timestamp(struct sk_buff *skb,
4392 			       struct skb_shared_hwtstamps *hwtstamps);
4393 
4394 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4395 		     struct skb_shared_hwtstamps *hwtstamps,
4396 		     struct sock *sk, int tstype);
4397 
4398 /**
4399  * skb_tstamp_tx - queue clone of skb with send time stamps
4400  * @orig_skb:	the original outgoing packet
4401  * @hwtstamps:	hardware time stamps, may be NULL if not available
4402  *
4403  * If the skb has a socket associated, then this function clones the
4404  * skb (thus sharing the actual data and optional structures), stores
4405  * the optional hardware time stamping information (if non NULL) or
4406  * generates a software time stamp (otherwise), then queues the clone
4407  * to the error queue of the socket.  Errors are silently ignored.
4408  */
4409 void skb_tstamp_tx(struct sk_buff *orig_skb,
4410 		   struct skb_shared_hwtstamps *hwtstamps);
4411 
4412 /**
4413  * skb_tx_timestamp() - Driver hook for transmit timestamping
4414  *
4415  * Ethernet MAC Drivers should call this function in their hard_xmit()
4416  * function immediately before giving the sk_buff to the MAC hardware.
4417  *
4418  * Specifically, one should make absolutely sure that this function is
4419  * called before TX completion of this packet can trigger.  Otherwise
4420  * the packet could potentially already be freed.
4421  *
4422  * @skb: A socket buffer.
4423  */
4424 static inline void skb_tx_timestamp(struct sk_buff *skb)
4425 {
4426 	skb_clone_tx_timestamp(skb);
4427 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4428 		skb_tstamp_tx(skb, NULL);
4429 }
4430 
4431 /**
4432  * skb_complete_wifi_ack - deliver skb with wifi status
4433  *
4434  * @skb: the original outgoing packet
4435  * @acked: ack status
4436  *
4437  */
4438 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4439 
4440 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4441 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4442 
4443 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4444 {
4445 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4446 		skb->csum_valid ||
4447 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4448 		 skb_checksum_start_offset(skb) >= 0));
4449 }
4450 
4451 /**
4452  *	skb_checksum_complete - Calculate checksum of an entire packet
4453  *	@skb: packet to process
4454  *
4455  *	This function calculates the checksum over the entire packet plus
4456  *	the value of skb->csum.  The latter can be used to supply the
4457  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4458  *	checksum.
4459  *
4460  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4461  *	this function can be used to verify that checksum on received
4462  *	packets.  In that case the function should return zero if the
4463  *	checksum is correct.  In particular, this function will return zero
4464  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4465  *	hardware has already verified the correctness of the checksum.
4466  */
4467 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4468 {
4469 	return skb_csum_unnecessary(skb) ?
4470 	       0 : __skb_checksum_complete(skb);
4471 }
4472 
4473 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4474 {
4475 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4476 		if (skb->csum_level == 0)
4477 			skb->ip_summed = CHECKSUM_NONE;
4478 		else
4479 			skb->csum_level--;
4480 	}
4481 }
4482 
4483 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4484 {
4485 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4486 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4487 			skb->csum_level++;
4488 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4489 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4490 		skb->csum_level = 0;
4491 	}
4492 }
4493 
4494 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4495 {
4496 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4497 		skb->ip_summed = CHECKSUM_NONE;
4498 		skb->csum_level = 0;
4499 	}
4500 }
4501 
4502 /* Check if we need to perform checksum complete validation.
4503  *
4504  * Returns true if checksum complete is needed, false otherwise
4505  * (either checksum is unnecessary or zero checksum is allowed).
4506  */
4507 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4508 						  bool zero_okay,
4509 						  __sum16 check)
4510 {
4511 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4512 		skb->csum_valid = 1;
4513 		__skb_decr_checksum_unnecessary(skb);
4514 		return false;
4515 	}
4516 
4517 	return true;
4518 }
4519 
4520 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4521  * in checksum_init.
4522  */
4523 #define CHECKSUM_BREAK 76
4524 
4525 /* Unset checksum-complete
4526  *
4527  * Unset checksum complete can be done when packet is being modified
4528  * (uncompressed for instance) and checksum-complete value is
4529  * invalidated.
4530  */
4531 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4532 {
4533 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4534 		skb->ip_summed = CHECKSUM_NONE;
4535 }
4536 
4537 /* Validate (init) checksum based on checksum complete.
4538  *
4539  * Return values:
4540  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4541  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4542  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4543  *   non-zero: value of invalid checksum
4544  *
4545  */
4546 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4547 						       bool complete,
4548 						       __wsum psum)
4549 {
4550 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4551 		if (!csum_fold(csum_add(psum, skb->csum))) {
4552 			skb->csum_valid = 1;
4553 			return 0;
4554 		}
4555 	}
4556 
4557 	skb->csum = psum;
4558 
4559 	if (complete || skb->len <= CHECKSUM_BREAK) {
4560 		__sum16 csum;
4561 
4562 		csum = __skb_checksum_complete(skb);
4563 		skb->csum_valid = !csum;
4564 		return csum;
4565 	}
4566 
4567 	return 0;
4568 }
4569 
4570 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4571 {
4572 	return 0;
4573 }
4574 
4575 /* Perform checksum validate (init). Note that this is a macro since we only
4576  * want to calculate the pseudo header which is an input function if necessary.
4577  * First we try to validate without any computation (checksum unnecessary) and
4578  * then calculate based on checksum complete calling the function to compute
4579  * pseudo header.
4580  *
4581  * Return values:
4582  *   0: checksum is validated or try to in skb_checksum_complete
4583  *   non-zero: value of invalid checksum
4584  */
4585 #define __skb_checksum_validate(skb, proto, complete,			\
4586 				zero_okay, check, compute_pseudo)	\
4587 ({									\
4588 	__sum16 __ret = 0;						\
4589 	skb->csum_valid = 0;						\
4590 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4591 		__ret = __skb_checksum_validate_complete(skb,		\
4592 				complete, compute_pseudo(skb, proto));	\
4593 	__ret;								\
4594 })
4595 
4596 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4597 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4598 
4599 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4600 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4601 
4602 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4603 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4604 
4605 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4606 					 compute_pseudo)		\
4607 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4608 
4609 #define skb_checksum_simple_validate(skb)				\
4610 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4611 
4612 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4613 {
4614 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4615 }
4616 
4617 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4618 {
4619 	skb->csum = ~pseudo;
4620 	skb->ip_summed = CHECKSUM_COMPLETE;
4621 }
4622 
4623 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4624 do {									\
4625 	if (__skb_checksum_convert_check(skb))				\
4626 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4627 } while (0)
4628 
4629 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4630 					      u16 start, u16 offset)
4631 {
4632 	skb->ip_summed = CHECKSUM_PARTIAL;
4633 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4634 	skb->csum_offset = offset - start;
4635 }
4636 
4637 /* Update skbuf and packet to reflect the remote checksum offload operation.
4638  * When called, ptr indicates the starting point for skb->csum when
4639  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4640  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4641  */
4642 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4643 				       int start, int offset, bool nopartial)
4644 {
4645 	__wsum delta;
4646 
4647 	if (!nopartial) {
4648 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4649 		return;
4650 	}
4651 
4652 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4653 		__skb_checksum_complete(skb);
4654 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4655 	}
4656 
4657 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4658 
4659 	/* Adjust skb->csum since we changed the packet */
4660 	skb->csum = csum_add(skb->csum, delta);
4661 }
4662 
4663 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4664 {
4665 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4666 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4667 #else
4668 	return NULL;
4669 #endif
4670 }
4671 
4672 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4673 {
4674 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4675 	return skb->_nfct;
4676 #else
4677 	return 0UL;
4678 #endif
4679 }
4680 
4681 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4682 {
4683 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4684 	skb->slow_gro |= !!nfct;
4685 	skb->_nfct = nfct;
4686 #endif
4687 }
4688 
4689 #ifdef CONFIG_SKB_EXTENSIONS
4690 enum skb_ext_id {
4691 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4692 	SKB_EXT_BRIDGE_NF,
4693 #endif
4694 #ifdef CONFIG_XFRM
4695 	SKB_EXT_SEC_PATH,
4696 #endif
4697 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4698 	TC_SKB_EXT,
4699 #endif
4700 #if IS_ENABLED(CONFIG_MPTCP)
4701 	SKB_EXT_MPTCP,
4702 #endif
4703 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4704 	SKB_EXT_MCTP,
4705 #endif
4706 	SKB_EXT_NUM, /* must be last */
4707 };
4708 
4709 /**
4710  *	struct skb_ext - sk_buff extensions
4711  *	@refcnt: 1 on allocation, deallocated on 0
4712  *	@offset: offset to add to @data to obtain extension address
4713  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4714  *	@data: start of extension data, variable sized
4715  *
4716  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4717  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4718  */
4719 struct skb_ext {
4720 	refcount_t refcnt;
4721 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4722 	u8 chunks;		/* same */
4723 	char data[] __aligned(8);
4724 };
4725 
4726 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4727 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4728 		    struct skb_ext *ext);
4729 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4730 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4731 void __skb_ext_put(struct skb_ext *ext);
4732 
4733 static inline void skb_ext_put(struct sk_buff *skb)
4734 {
4735 	if (skb->active_extensions)
4736 		__skb_ext_put(skb->extensions);
4737 }
4738 
4739 static inline void __skb_ext_copy(struct sk_buff *dst,
4740 				  const struct sk_buff *src)
4741 {
4742 	dst->active_extensions = src->active_extensions;
4743 
4744 	if (src->active_extensions) {
4745 		struct skb_ext *ext = src->extensions;
4746 
4747 		refcount_inc(&ext->refcnt);
4748 		dst->extensions = ext;
4749 	}
4750 }
4751 
4752 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4753 {
4754 	skb_ext_put(dst);
4755 	__skb_ext_copy(dst, src);
4756 }
4757 
4758 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4759 {
4760 	return !!ext->offset[i];
4761 }
4762 
4763 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4764 {
4765 	return skb->active_extensions & (1 << id);
4766 }
4767 
4768 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4769 {
4770 	if (skb_ext_exist(skb, id))
4771 		__skb_ext_del(skb, id);
4772 }
4773 
4774 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4775 {
4776 	if (skb_ext_exist(skb, id)) {
4777 		struct skb_ext *ext = skb->extensions;
4778 
4779 		return (void *)ext + (ext->offset[id] << 3);
4780 	}
4781 
4782 	return NULL;
4783 }
4784 
4785 static inline void skb_ext_reset(struct sk_buff *skb)
4786 {
4787 	if (unlikely(skb->active_extensions)) {
4788 		__skb_ext_put(skb->extensions);
4789 		skb->active_extensions = 0;
4790 	}
4791 }
4792 
4793 static inline bool skb_has_extensions(struct sk_buff *skb)
4794 {
4795 	return unlikely(skb->active_extensions);
4796 }
4797 #else
4798 static inline void skb_ext_put(struct sk_buff *skb) {}
4799 static inline void skb_ext_reset(struct sk_buff *skb) {}
4800 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4801 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4802 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4803 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4804 #endif /* CONFIG_SKB_EXTENSIONS */
4805 
4806 static inline void nf_reset_ct(struct sk_buff *skb)
4807 {
4808 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4809 	nf_conntrack_put(skb_nfct(skb));
4810 	skb->_nfct = 0;
4811 #endif
4812 }
4813 
4814 static inline void nf_reset_trace(struct sk_buff *skb)
4815 {
4816 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4817 	skb->nf_trace = 0;
4818 #endif
4819 }
4820 
4821 static inline void ipvs_reset(struct sk_buff *skb)
4822 {
4823 #if IS_ENABLED(CONFIG_IP_VS)
4824 	skb->ipvs_property = 0;
4825 #endif
4826 }
4827 
4828 /* Note: This doesn't put any conntrack info in dst. */
4829 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4830 			     bool copy)
4831 {
4832 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4833 	dst->_nfct = src->_nfct;
4834 	nf_conntrack_get(skb_nfct(src));
4835 #endif
4836 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4837 	if (copy)
4838 		dst->nf_trace = src->nf_trace;
4839 #endif
4840 }
4841 
4842 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4843 {
4844 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4845 	nf_conntrack_put(skb_nfct(dst));
4846 #endif
4847 	dst->slow_gro = src->slow_gro;
4848 	__nf_copy(dst, src, true);
4849 }
4850 
4851 #ifdef CONFIG_NETWORK_SECMARK
4852 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4853 {
4854 	to->secmark = from->secmark;
4855 }
4856 
4857 static inline void skb_init_secmark(struct sk_buff *skb)
4858 {
4859 	skb->secmark = 0;
4860 }
4861 #else
4862 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4863 { }
4864 
4865 static inline void skb_init_secmark(struct sk_buff *skb)
4866 { }
4867 #endif
4868 
4869 static inline int secpath_exists(const struct sk_buff *skb)
4870 {
4871 #ifdef CONFIG_XFRM
4872 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4873 #else
4874 	return 0;
4875 #endif
4876 }
4877 
4878 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4879 {
4880 	return !skb->destructor &&
4881 		!secpath_exists(skb) &&
4882 		!skb_nfct(skb) &&
4883 		!skb->_skb_refdst &&
4884 		!skb_has_frag_list(skb);
4885 }
4886 
4887 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4888 {
4889 	skb->queue_mapping = queue_mapping;
4890 }
4891 
4892 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4893 {
4894 	return skb->queue_mapping;
4895 }
4896 
4897 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4898 {
4899 	to->queue_mapping = from->queue_mapping;
4900 }
4901 
4902 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4903 {
4904 	skb->queue_mapping = rx_queue + 1;
4905 }
4906 
4907 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4908 {
4909 	return skb->queue_mapping - 1;
4910 }
4911 
4912 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4913 {
4914 	return skb->queue_mapping != 0;
4915 }
4916 
4917 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4918 {
4919 	skb->dst_pending_confirm = val;
4920 }
4921 
4922 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4923 {
4924 	return skb->dst_pending_confirm != 0;
4925 }
4926 
4927 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4928 {
4929 #ifdef CONFIG_XFRM
4930 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4931 #else
4932 	return NULL;
4933 #endif
4934 }
4935 
4936 /* Keeps track of mac header offset relative to skb->head.
4937  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4938  * For non-tunnel skb it points to skb_mac_header() and for
4939  * tunnel skb it points to outer mac header.
4940  * Keeps track of level of encapsulation of network headers.
4941  */
4942 struct skb_gso_cb {
4943 	union {
4944 		int	mac_offset;
4945 		int	data_offset;
4946 	};
4947 	int	encap_level;
4948 	__wsum	csum;
4949 	__u16	csum_start;
4950 };
4951 #define SKB_GSO_CB_OFFSET	32
4952 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4953 
4954 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4955 {
4956 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4957 		SKB_GSO_CB(inner_skb)->mac_offset;
4958 }
4959 
4960 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4961 {
4962 	int new_headroom, headroom;
4963 	int ret;
4964 
4965 	headroom = skb_headroom(skb);
4966 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4967 	if (ret)
4968 		return ret;
4969 
4970 	new_headroom = skb_headroom(skb);
4971 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4972 	return 0;
4973 }
4974 
4975 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4976 {
4977 	/* Do not update partial checksums if remote checksum is enabled. */
4978 	if (skb->remcsum_offload)
4979 		return;
4980 
4981 	SKB_GSO_CB(skb)->csum = res;
4982 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4983 }
4984 
4985 /* Compute the checksum for a gso segment. First compute the checksum value
4986  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4987  * then add in skb->csum (checksum from csum_start to end of packet).
4988  * skb->csum and csum_start are then updated to reflect the checksum of the
4989  * resultant packet starting from the transport header-- the resultant checksum
4990  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4991  * header.
4992  */
4993 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4994 {
4995 	unsigned char *csum_start = skb_transport_header(skb);
4996 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4997 	__wsum partial = SKB_GSO_CB(skb)->csum;
4998 
4999 	SKB_GSO_CB(skb)->csum = res;
5000 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
5001 
5002 	return csum_fold(csum_partial(csum_start, plen, partial));
5003 }
5004 
5005 static inline bool skb_is_gso(const struct sk_buff *skb)
5006 {
5007 	return skb_shinfo(skb)->gso_size;
5008 }
5009 
5010 /* Note: Should be called only if skb_is_gso(skb) is true */
5011 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5012 {
5013 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5014 }
5015 
5016 /* Note: Should be called only if skb_is_gso(skb) is true */
5017 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5018 {
5019 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5020 }
5021 
5022 /* Note: Should be called only if skb_is_gso(skb) is true */
5023 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5024 {
5025 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5026 }
5027 
5028 static inline void skb_gso_reset(struct sk_buff *skb)
5029 {
5030 	skb_shinfo(skb)->gso_size = 0;
5031 	skb_shinfo(skb)->gso_segs = 0;
5032 	skb_shinfo(skb)->gso_type = 0;
5033 }
5034 
5035 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5036 					 u16 increment)
5037 {
5038 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5039 		return;
5040 	shinfo->gso_size += increment;
5041 }
5042 
5043 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5044 					 u16 decrement)
5045 {
5046 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5047 		return;
5048 	shinfo->gso_size -= decrement;
5049 }
5050 
5051 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5052 
5053 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5054 {
5055 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5056 	 * wanted then gso_type will be set. */
5057 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5058 
5059 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5060 	    unlikely(shinfo->gso_type == 0)) {
5061 		__skb_warn_lro_forwarding(skb);
5062 		return true;
5063 	}
5064 	return false;
5065 }
5066 
5067 static inline void skb_forward_csum(struct sk_buff *skb)
5068 {
5069 	/* Unfortunately we don't support this one.  Any brave souls? */
5070 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5071 		skb->ip_summed = CHECKSUM_NONE;
5072 }
5073 
5074 /**
5075  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5076  * @skb: skb to check
5077  *
5078  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5079  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5080  * use this helper, to document places where we make this assertion.
5081  */
5082 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5083 {
5084 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5085 }
5086 
5087 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5088 
5089 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5090 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5091 				     unsigned int transport_len,
5092 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5093 
5094 /**
5095  * skb_head_is_locked - Determine if the skb->head is locked down
5096  * @skb: skb to check
5097  *
5098  * The head on skbs build around a head frag can be removed if they are
5099  * not cloned.  This function returns true if the skb head is locked down
5100  * due to either being allocated via kmalloc, or by being a clone with
5101  * multiple references to the head.
5102  */
5103 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5104 {
5105 	return !skb->head_frag || skb_cloned(skb);
5106 }
5107 
5108 /* Local Checksum Offload.
5109  * Compute outer checksum based on the assumption that the
5110  * inner checksum will be offloaded later.
5111  * See Documentation/networking/checksum-offloads.rst for
5112  * explanation of how this works.
5113  * Fill in outer checksum adjustment (e.g. with sum of outer
5114  * pseudo-header) before calling.
5115  * Also ensure that inner checksum is in linear data area.
5116  */
5117 static inline __wsum lco_csum(struct sk_buff *skb)
5118 {
5119 	unsigned char *csum_start = skb_checksum_start(skb);
5120 	unsigned char *l4_hdr = skb_transport_header(skb);
5121 	__wsum partial;
5122 
5123 	/* Start with complement of inner checksum adjustment */
5124 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5125 						    skb->csum_offset));
5126 
5127 	/* Add in checksum of our headers (incl. outer checksum
5128 	 * adjustment filled in by caller) and return result.
5129 	 */
5130 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5131 }
5132 
5133 static inline bool skb_is_redirected(const struct sk_buff *skb)
5134 {
5135 	return skb->redirected;
5136 }
5137 
5138 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5139 {
5140 	skb->redirected = 1;
5141 #ifdef CONFIG_NET_REDIRECT
5142 	skb->from_ingress = from_ingress;
5143 	if (skb->from_ingress)
5144 		skb_clear_tstamp(skb);
5145 #endif
5146 }
5147 
5148 static inline void skb_reset_redirect(struct sk_buff *skb)
5149 {
5150 	skb->redirected = 0;
5151 }
5152 
5153 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5154 {
5155 	return skb->csum_not_inet;
5156 }
5157 
5158 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5159 				       const u64 kcov_handle)
5160 {
5161 #ifdef CONFIG_KCOV
5162 	skb->kcov_handle = kcov_handle;
5163 #endif
5164 }
5165 
5166 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5167 {
5168 #ifdef CONFIG_KCOV
5169 	return skb->kcov_handle;
5170 #else
5171 	return 0;
5172 #endif
5173 }
5174 
5175 #ifdef CONFIG_PAGE_POOL
5176 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5177 {
5178 	skb->pp_recycle = 1;
5179 }
5180 #endif
5181 
5182 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5183 {
5184 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5185 		return false;
5186 	return page_pool_return_skb_page(virt_to_page(data));
5187 }
5188 
5189 #endif	/* __KERNEL__ */
5190 #endif	/* _LINUX_SKBUFF_H */
5191