xref: /linux-6.15/include/linux/skbuff.h (revision f26de110)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	atomic_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
470 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 					struct ubuf_info *uarg);
472 
473 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474 {
475 	atomic_inc(&uarg->refcnt);
476 }
477 
478 void sock_zerocopy_put(struct ubuf_info *uarg);
479 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480 
481 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482 
483 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 			     struct msghdr *msg, int len,
485 			     struct ubuf_info *uarg);
486 
487 /* This data is invariant across clones and lives at
488  * the end of the header data, ie. at skb->end.
489  */
490 struct skb_shared_info {
491 	unsigned short	_unused;
492 	unsigned char	nr_frags;
493 	__u8		tx_flags;
494 	unsigned short	gso_size;
495 	/* Warning: this field is not always filled in (UFO)! */
496 	unsigned short	gso_segs;
497 	struct sk_buff	*frag_list;
498 	struct skb_shared_hwtstamps hwtstamps;
499 	unsigned int	gso_type;
500 	u32		tskey;
501 	__be32          ip6_frag_id;
502 
503 	/*
504 	 * Warning : all fields before dataref are cleared in __alloc_skb()
505 	 */
506 	atomic_t	dataref;
507 
508 	/* Intermediate layers must ensure that destructor_arg
509 	 * remains valid until skb destructor */
510 	void *		destructor_arg;
511 
512 	/* must be last field, see pskb_expand_head() */
513 	skb_frag_t	frags[MAX_SKB_FRAGS];
514 };
515 
516 /* We divide dataref into two halves.  The higher 16 bits hold references
517  * to the payload part of skb->data.  The lower 16 bits hold references to
518  * the entire skb->data.  A clone of a headerless skb holds the length of
519  * the header in skb->hdr_len.
520  *
521  * All users must obey the rule that the skb->data reference count must be
522  * greater than or equal to the payload reference count.
523  *
524  * Holding a reference to the payload part means that the user does not
525  * care about modifications to the header part of skb->data.
526  */
527 #define SKB_DATAREF_SHIFT 16
528 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529 
530 
531 enum {
532 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
533 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
534 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
535 };
536 
537 enum {
538 	SKB_GSO_TCPV4 = 1 << 0,
539 
540 	/* This indicates the skb is from an untrusted source. */
541 	SKB_GSO_DODGY = 1 << 1,
542 
543 	/* This indicates the tcp segment has CWR set. */
544 	SKB_GSO_TCP_ECN = 1 << 2,
545 
546 	SKB_GSO_TCP_FIXEDID = 1 << 3,
547 
548 	SKB_GSO_TCPV6 = 1 << 4,
549 
550 	SKB_GSO_FCOE = 1 << 5,
551 
552 	SKB_GSO_GRE = 1 << 6,
553 
554 	SKB_GSO_GRE_CSUM = 1 << 7,
555 
556 	SKB_GSO_IPXIP4 = 1 << 8,
557 
558 	SKB_GSO_IPXIP6 = 1 << 9,
559 
560 	SKB_GSO_UDP_TUNNEL = 1 << 10,
561 
562 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
563 
564 	SKB_GSO_PARTIAL = 1 << 12,
565 
566 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
567 
568 	SKB_GSO_SCTP = 1 << 14,
569 
570 	SKB_GSO_ESP = 1 << 15,
571 };
572 
573 #if BITS_PER_LONG > 32
574 #define NET_SKBUFF_DATA_USES_OFFSET 1
575 #endif
576 
577 #ifdef NET_SKBUFF_DATA_USES_OFFSET
578 typedef unsigned int sk_buff_data_t;
579 #else
580 typedef unsigned char *sk_buff_data_t;
581 #endif
582 
583 /**
584  *	struct sk_buff - socket buffer
585  *	@next: Next buffer in list
586  *	@prev: Previous buffer in list
587  *	@tstamp: Time we arrived/left
588  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
589  *	@sk: Socket we are owned by
590  *	@dev: Device we arrived on/are leaving by
591  *	@cb: Control buffer. Free for use by every layer. Put private vars here
592  *	@_skb_refdst: destination entry (with norefcount bit)
593  *	@sp: the security path, used for xfrm
594  *	@len: Length of actual data
595  *	@data_len: Data length
596  *	@mac_len: Length of link layer header
597  *	@hdr_len: writable header length of cloned skb
598  *	@csum: Checksum (must include start/offset pair)
599  *	@csum_start: Offset from skb->head where checksumming should start
600  *	@csum_offset: Offset from csum_start where checksum should be stored
601  *	@priority: Packet queueing priority
602  *	@ignore_df: allow local fragmentation
603  *	@cloned: Head may be cloned (check refcnt to be sure)
604  *	@ip_summed: Driver fed us an IP checksum
605  *	@nohdr: Payload reference only, must not modify header
606  *	@pkt_type: Packet class
607  *	@fclone: skbuff clone status
608  *	@ipvs_property: skbuff is owned by ipvs
609  *	@tc_skip_classify: do not classify packet. set by IFB device
610  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
611  *	@tc_redirected: packet was redirected by a tc action
612  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
613  *	@peeked: this packet has been seen already, so stats have been
614  *		done for it, don't do them again
615  *	@nf_trace: netfilter packet trace flag
616  *	@protocol: Packet protocol from driver
617  *	@destructor: Destruct function
618  *	@_nfct: Associated connection, if any (with nfctinfo bits)
619  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
620  *	@skb_iif: ifindex of device we arrived on
621  *	@tc_index: Traffic control index
622  *	@hash: the packet hash
623  *	@queue_mapping: Queue mapping for multiqueue devices
624  *	@xmit_more: More SKBs are pending for this queue
625  *	@ndisc_nodetype: router type (from link layer)
626  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
627  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
628  *		ports.
629  *	@sw_hash: indicates hash was computed in software stack
630  *	@wifi_acked_valid: wifi_acked was set
631  *	@wifi_acked: whether frame was acked on wifi or not
632  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
633  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
634  *	@dst_pending_confirm: need to confirm neighbour
635   *	@napi_id: id of the NAPI struct this skb came from
636  *	@secmark: security marking
637  *	@mark: Generic packet mark
638  *	@vlan_proto: vlan encapsulation protocol
639  *	@vlan_tci: vlan tag control information
640  *	@inner_protocol: Protocol (encapsulation)
641  *	@inner_transport_header: Inner transport layer header (encapsulation)
642  *	@inner_network_header: Network layer header (encapsulation)
643  *	@inner_mac_header: Link layer header (encapsulation)
644  *	@transport_header: Transport layer header
645  *	@network_header: Network layer header
646  *	@mac_header: Link layer header
647  *	@tail: Tail pointer
648  *	@end: End pointer
649  *	@head: Head of buffer
650  *	@data: Data head pointer
651  *	@truesize: Buffer size
652  *	@users: User count - see {datagram,tcp}.c
653  */
654 
655 struct sk_buff {
656 	union {
657 		struct {
658 			/* These two members must be first. */
659 			struct sk_buff		*next;
660 			struct sk_buff		*prev;
661 
662 			union {
663 				ktime_t		tstamp;
664 				u64		skb_mstamp;
665 			};
666 		};
667 		struct rb_node	rbnode; /* used in netem & tcp stack */
668 	};
669 	struct sock		*sk;
670 
671 	union {
672 		struct net_device	*dev;
673 		/* Some protocols might use this space to store information,
674 		 * while device pointer would be NULL.
675 		 * UDP receive path is one user.
676 		 */
677 		unsigned long		dev_scratch;
678 	};
679 	/*
680 	 * This is the control buffer. It is free to use for every
681 	 * layer. Please put your private variables there. If you
682 	 * want to keep them across layers you have to do a skb_clone()
683 	 * first. This is owned by whoever has the skb queued ATM.
684 	 */
685 	char			cb[48] __aligned(8);
686 
687 	unsigned long		_skb_refdst;
688 	void			(*destructor)(struct sk_buff *skb);
689 #ifdef CONFIG_XFRM
690 	struct	sec_path	*sp;
691 #endif
692 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
693 	unsigned long		 _nfct;
694 #endif
695 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
696 	struct nf_bridge_info	*nf_bridge;
697 #endif
698 	unsigned int		len,
699 				data_len;
700 	__u16			mac_len,
701 				hdr_len;
702 
703 	/* Following fields are _not_ copied in __copy_skb_header()
704 	 * Note that queue_mapping is here mostly to fill a hole.
705 	 */
706 	kmemcheck_bitfield_begin(flags1);
707 	__u16			queue_mapping;
708 
709 /* if you move cloned around you also must adapt those constants */
710 #ifdef __BIG_ENDIAN_BITFIELD
711 #define CLONED_MASK	(1 << 7)
712 #else
713 #define CLONED_MASK	1
714 #endif
715 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
716 
717 	__u8			__cloned_offset[0];
718 	__u8			cloned:1,
719 				nohdr:1,
720 				fclone:2,
721 				peeked:1,
722 				head_frag:1,
723 				xmit_more:1,
724 				__unused:1; /* one bit hole */
725 	kmemcheck_bitfield_end(flags1);
726 
727 	/* fields enclosed in headers_start/headers_end are copied
728 	 * using a single memcpy() in __copy_skb_header()
729 	 */
730 	/* private: */
731 	__u32			headers_start[0];
732 	/* public: */
733 
734 /* if you move pkt_type around you also must adapt those constants */
735 #ifdef __BIG_ENDIAN_BITFIELD
736 #define PKT_TYPE_MAX	(7 << 5)
737 #else
738 #define PKT_TYPE_MAX	7
739 #endif
740 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
741 
742 	__u8			__pkt_type_offset[0];
743 	__u8			pkt_type:3;
744 	__u8			pfmemalloc:1;
745 	__u8			ignore_df:1;
746 
747 	__u8			nf_trace:1;
748 	__u8			ip_summed:2;
749 	__u8			ooo_okay:1;
750 	__u8			l4_hash:1;
751 	__u8			sw_hash:1;
752 	__u8			wifi_acked_valid:1;
753 	__u8			wifi_acked:1;
754 
755 	__u8			no_fcs:1;
756 	/* Indicates the inner headers are valid in the skbuff. */
757 	__u8			encapsulation:1;
758 	__u8			encap_hdr_csum:1;
759 	__u8			csum_valid:1;
760 	__u8			csum_complete_sw:1;
761 	__u8			csum_level:2;
762 	__u8			csum_not_inet:1;
763 
764 	__u8			dst_pending_confirm:1;
765 #ifdef CONFIG_IPV6_NDISC_NODETYPE
766 	__u8			ndisc_nodetype:2;
767 #endif
768 	__u8			ipvs_property:1;
769 	__u8			inner_protocol_type:1;
770 	__u8			remcsum_offload:1;
771 #ifdef CONFIG_NET_SWITCHDEV
772 	__u8			offload_fwd_mark:1;
773 #endif
774 #ifdef CONFIG_NET_CLS_ACT
775 	__u8			tc_skip_classify:1;
776 	__u8			tc_at_ingress:1;
777 	__u8			tc_redirected:1;
778 	__u8			tc_from_ingress:1;
779 #endif
780 
781 #ifdef CONFIG_NET_SCHED
782 	__u16			tc_index;	/* traffic control index */
783 #endif
784 
785 	union {
786 		__wsum		csum;
787 		struct {
788 			__u16	csum_start;
789 			__u16	csum_offset;
790 		};
791 	};
792 	__u32			priority;
793 	int			skb_iif;
794 	__u32			hash;
795 	__be16			vlan_proto;
796 	__u16			vlan_tci;
797 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
798 	union {
799 		unsigned int	napi_id;
800 		unsigned int	sender_cpu;
801 	};
802 #endif
803 #ifdef CONFIG_NETWORK_SECMARK
804 	__u32		secmark;
805 #endif
806 
807 	union {
808 		__u32		mark;
809 		__u32		reserved_tailroom;
810 	};
811 
812 	union {
813 		__be16		inner_protocol;
814 		__u8		inner_ipproto;
815 	};
816 
817 	__u16			inner_transport_header;
818 	__u16			inner_network_header;
819 	__u16			inner_mac_header;
820 
821 	__be16			protocol;
822 	__u16			transport_header;
823 	__u16			network_header;
824 	__u16			mac_header;
825 
826 	/* private: */
827 	__u32			headers_end[0];
828 	/* public: */
829 
830 	/* These elements must be at the end, see alloc_skb() for details.  */
831 	sk_buff_data_t		tail;
832 	sk_buff_data_t		end;
833 	unsigned char		*head,
834 				*data;
835 	unsigned int		truesize;
836 	refcount_t		users;
837 };
838 
839 #ifdef __KERNEL__
840 /*
841  *	Handling routines are only of interest to the kernel
842  */
843 #include <linux/slab.h>
844 
845 
846 #define SKB_ALLOC_FCLONE	0x01
847 #define SKB_ALLOC_RX		0x02
848 #define SKB_ALLOC_NAPI		0x04
849 
850 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
851 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
852 {
853 	return unlikely(skb->pfmemalloc);
854 }
855 
856 /*
857  * skb might have a dst pointer attached, refcounted or not.
858  * _skb_refdst low order bit is set if refcount was _not_ taken
859  */
860 #define SKB_DST_NOREF	1UL
861 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
862 
863 #define SKB_NFCT_PTRMASK	~(7UL)
864 /**
865  * skb_dst - returns skb dst_entry
866  * @skb: buffer
867  *
868  * Returns skb dst_entry, regardless of reference taken or not.
869  */
870 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
871 {
872 	/* If refdst was not refcounted, check we still are in a
873 	 * rcu_read_lock section
874 	 */
875 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
876 		!rcu_read_lock_held() &&
877 		!rcu_read_lock_bh_held());
878 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
879 }
880 
881 /**
882  * skb_dst_set - sets skb dst
883  * @skb: buffer
884  * @dst: dst entry
885  *
886  * Sets skb dst, assuming a reference was taken on dst and should
887  * be released by skb_dst_drop()
888  */
889 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
890 {
891 	skb->_skb_refdst = (unsigned long)dst;
892 }
893 
894 /**
895  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
896  * @skb: buffer
897  * @dst: dst entry
898  *
899  * Sets skb dst, assuming a reference was not taken on dst.
900  * If dst entry is cached, we do not take reference and dst_release
901  * will be avoided by refdst_drop. If dst entry is not cached, we take
902  * reference, so that last dst_release can destroy the dst immediately.
903  */
904 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
905 {
906 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
907 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
908 }
909 
910 /**
911  * skb_dst_is_noref - Test if skb dst isn't refcounted
912  * @skb: buffer
913  */
914 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
915 {
916 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
917 }
918 
919 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
920 {
921 	return (struct rtable *)skb_dst(skb);
922 }
923 
924 /* For mangling skb->pkt_type from user space side from applications
925  * such as nft, tc, etc, we only allow a conservative subset of
926  * possible pkt_types to be set.
927 */
928 static inline bool skb_pkt_type_ok(u32 ptype)
929 {
930 	return ptype <= PACKET_OTHERHOST;
931 }
932 
933 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
934 {
935 #ifdef CONFIG_NET_RX_BUSY_POLL
936 	return skb->napi_id;
937 #else
938 	return 0;
939 #endif
940 }
941 
942 /* decrement the reference count and return true if we can free the skb */
943 static inline bool skb_unref(struct sk_buff *skb)
944 {
945 	if (unlikely(!skb))
946 		return false;
947 	if (likely(refcount_read(&skb->users) == 1))
948 		smp_rmb();
949 	else if (likely(!refcount_dec_and_test(&skb->users)))
950 		return false;
951 
952 	return true;
953 }
954 
955 void skb_release_head_state(struct sk_buff *skb);
956 void kfree_skb(struct sk_buff *skb);
957 void kfree_skb_list(struct sk_buff *segs);
958 void skb_tx_error(struct sk_buff *skb);
959 void consume_skb(struct sk_buff *skb);
960 void consume_stateless_skb(struct sk_buff *skb);
961 void  __kfree_skb(struct sk_buff *skb);
962 extern struct kmem_cache *skbuff_head_cache;
963 
964 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
965 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
966 		      bool *fragstolen, int *delta_truesize);
967 
968 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
969 			    int node);
970 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
971 struct sk_buff *build_skb(void *data, unsigned int frag_size);
972 static inline struct sk_buff *alloc_skb(unsigned int size,
973 					gfp_t priority)
974 {
975 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
976 }
977 
978 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
979 				     unsigned long data_len,
980 				     int max_page_order,
981 				     int *errcode,
982 				     gfp_t gfp_mask);
983 
984 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
985 struct sk_buff_fclones {
986 	struct sk_buff	skb1;
987 
988 	struct sk_buff	skb2;
989 
990 	refcount_t	fclone_ref;
991 };
992 
993 /**
994  *	skb_fclone_busy - check if fclone is busy
995  *	@sk: socket
996  *	@skb: buffer
997  *
998  * Returns true if skb is a fast clone, and its clone is not freed.
999  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1000  * so we also check that this didnt happen.
1001  */
1002 static inline bool skb_fclone_busy(const struct sock *sk,
1003 				   const struct sk_buff *skb)
1004 {
1005 	const struct sk_buff_fclones *fclones;
1006 
1007 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1008 
1009 	return skb->fclone == SKB_FCLONE_ORIG &&
1010 	       refcount_read(&fclones->fclone_ref) > 1 &&
1011 	       fclones->skb2.sk == sk;
1012 }
1013 
1014 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1015 					       gfp_t priority)
1016 {
1017 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1018 }
1019 
1020 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1021 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1022 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1023 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1024 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1025 				   gfp_t gfp_mask, bool fclone);
1026 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1027 					  gfp_t gfp_mask)
1028 {
1029 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1030 }
1031 
1032 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1033 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1034 				     unsigned int headroom);
1035 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1036 				int newtailroom, gfp_t priority);
1037 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1038 				     int offset, int len);
1039 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1040 			      int offset, int len);
1041 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1042 int skb_pad(struct sk_buff *skb, int pad);
1043 #define dev_kfree_skb(a)	consume_skb(a)
1044 
1045 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1046 			    int getfrag(void *from, char *to, int offset,
1047 					int len, int odd, struct sk_buff *skb),
1048 			    void *from, int length);
1049 
1050 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1051 			 int offset, size_t size);
1052 
1053 struct skb_seq_state {
1054 	__u32		lower_offset;
1055 	__u32		upper_offset;
1056 	__u32		frag_idx;
1057 	__u32		stepped_offset;
1058 	struct sk_buff	*root_skb;
1059 	struct sk_buff	*cur_skb;
1060 	__u8		*frag_data;
1061 };
1062 
1063 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1064 			  unsigned int to, struct skb_seq_state *st);
1065 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1066 			  struct skb_seq_state *st);
1067 void skb_abort_seq_read(struct skb_seq_state *st);
1068 
1069 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1070 			   unsigned int to, struct ts_config *config);
1071 
1072 /*
1073  * Packet hash types specify the type of hash in skb_set_hash.
1074  *
1075  * Hash types refer to the protocol layer addresses which are used to
1076  * construct a packet's hash. The hashes are used to differentiate or identify
1077  * flows of the protocol layer for the hash type. Hash types are either
1078  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1079  *
1080  * Properties of hashes:
1081  *
1082  * 1) Two packets in different flows have different hash values
1083  * 2) Two packets in the same flow should have the same hash value
1084  *
1085  * A hash at a higher layer is considered to be more specific. A driver should
1086  * set the most specific hash possible.
1087  *
1088  * A driver cannot indicate a more specific hash than the layer at which a hash
1089  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1090  *
1091  * A driver may indicate a hash level which is less specific than the
1092  * actual layer the hash was computed on. For instance, a hash computed
1093  * at L4 may be considered an L3 hash. This should only be done if the
1094  * driver can't unambiguously determine that the HW computed the hash at
1095  * the higher layer. Note that the "should" in the second property above
1096  * permits this.
1097  */
1098 enum pkt_hash_types {
1099 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1100 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1101 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1102 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1103 };
1104 
1105 static inline void skb_clear_hash(struct sk_buff *skb)
1106 {
1107 	skb->hash = 0;
1108 	skb->sw_hash = 0;
1109 	skb->l4_hash = 0;
1110 }
1111 
1112 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1113 {
1114 	if (!skb->l4_hash)
1115 		skb_clear_hash(skb);
1116 }
1117 
1118 static inline void
1119 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1120 {
1121 	skb->l4_hash = is_l4;
1122 	skb->sw_hash = is_sw;
1123 	skb->hash = hash;
1124 }
1125 
1126 static inline void
1127 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1128 {
1129 	/* Used by drivers to set hash from HW */
1130 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1131 }
1132 
1133 static inline void
1134 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1135 {
1136 	__skb_set_hash(skb, hash, true, is_l4);
1137 }
1138 
1139 void __skb_get_hash(struct sk_buff *skb);
1140 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1141 u32 skb_get_poff(const struct sk_buff *skb);
1142 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1143 		   const struct flow_keys *keys, int hlen);
1144 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1145 			    void *data, int hlen_proto);
1146 
1147 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1148 					int thoff, u8 ip_proto)
1149 {
1150 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1151 }
1152 
1153 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1154 			     const struct flow_dissector_key *key,
1155 			     unsigned int key_count);
1156 
1157 bool __skb_flow_dissect(const struct sk_buff *skb,
1158 			struct flow_dissector *flow_dissector,
1159 			void *target_container,
1160 			void *data, __be16 proto, int nhoff, int hlen,
1161 			unsigned int flags);
1162 
1163 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1164 				    struct flow_dissector *flow_dissector,
1165 				    void *target_container, unsigned int flags)
1166 {
1167 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1168 				  NULL, 0, 0, 0, flags);
1169 }
1170 
1171 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1172 					      struct flow_keys *flow,
1173 					      unsigned int flags)
1174 {
1175 	memset(flow, 0, sizeof(*flow));
1176 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1177 				  NULL, 0, 0, 0, flags);
1178 }
1179 
1180 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1181 						  void *data, __be16 proto,
1182 						  int nhoff, int hlen,
1183 						  unsigned int flags)
1184 {
1185 	memset(flow, 0, sizeof(*flow));
1186 	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1187 				  data, proto, nhoff, hlen, flags);
1188 }
1189 
1190 static inline __u32 skb_get_hash(struct sk_buff *skb)
1191 {
1192 	if (!skb->l4_hash && !skb->sw_hash)
1193 		__skb_get_hash(skb);
1194 
1195 	return skb->hash;
1196 }
1197 
1198 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1199 {
1200 	if (!skb->l4_hash && !skb->sw_hash) {
1201 		struct flow_keys keys;
1202 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1203 
1204 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1205 	}
1206 
1207 	return skb->hash;
1208 }
1209 
1210 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1211 
1212 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1213 {
1214 	return skb->hash;
1215 }
1216 
1217 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1218 {
1219 	to->hash = from->hash;
1220 	to->sw_hash = from->sw_hash;
1221 	to->l4_hash = from->l4_hash;
1222 };
1223 
1224 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1225 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1226 {
1227 	return skb->head + skb->end;
1228 }
1229 
1230 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1231 {
1232 	return skb->end;
1233 }
1234 #else
1235 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1236 {
1237 	return skb->end;
1238 }
1239 
1240 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1241 {
1242 	return skb->end - skb->head;
1243 }
1244 #endif
1245 
1246 /* Internal */
1247 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1248 
1249 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1250 {
1251 	return &skb_shinfo(skb)->hwtstamps;
1252 }
1253 
1254 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1255 {
1256 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1257 
1258 	return is_zcopy ? skb_uarg(skb) : NULL;
1259 }
1260 
1261 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1262 {
1263 	if (skb && uarg && !skb_zcopy(skb)) {
1264 		sock_zerocopy_get(uarg);
1265 		skb_shinfo(skb)->destructor_arg = uarg;
1266 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1267 	}
1268 }
1269 
1270 /* Release a reference on a zerocopy structure */
1271 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1272 {
1273 	struct ubuf_info *uarg = skb_zcopy(skb);
1274 
1275 	if (uarg) {
1276 		if (uarg->callback == sock_zerocopy_callback) {
1277 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1278 			sock_zerocopy_put(uarg);
1279 		} else {
1280 			uarg->callback(uarg, zerocopy);
1281 		}
1282 
1283 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1284 	}
1285 }
1286 
1287 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1288 static inline void skb_zcopy_abort(struct sk_buff *skb)
1289 {
1290 	struct ubuf_info *uarg = skb_zcopy(skb);
1291 
1292 	if (uarg) {
1293 		sock_zerocopy_put_abort(uarg);
1294 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1295 	}
1296 }
1297 
1298 /**
1299  *	skb_queue_empty - check if a queue is empty
1300  *	@list: queue head
1301  *
1302  *	Returns true if the queue is empty, false otherwise.
1303  */
1304 static inline int skb_queue_empty(const struct sk_buff_head *list)
1305 {
1306 	return list->next == (const struct sk_buff *) list;
1307 }
1308 
1309 /**
1310  *	skb_queue_is_last - check if skb is the last entry in the queue
1311  *	@list: queue head
1312  *	@skb: buffer
1313  *
1314  *	Returns true if @skb is the last buffer on the list.
1315  */
1316 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1317 				     const struct sk_buff *skb)
1318 {
1319 	return skb->next == (const struct sk_buff *) list;
1320 }
1321 
1322 /**
1323  *	skb_queue_is_first - check if skb is the first entry in the queue
1324  *	@list: queue head
1325  *	@skb: buffer
1326  *
1327  *	Returns true if @skb is the first buffer on the list.
1328  */
1329 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1330 				      const struct sk_buff *skb)
1331 {
1332 	return skb->prev == (const struct sk_buff *) list;
1333 }
1334 
1335 /**
1336  *	skb_queue_next - return the next packet in the queue
1337  *	@list: queue head
1338  *	@skb: current buffer
1339  *
1340  *	Return the next packet in @list after @skb.  It is only valid to
1341  *	call this if skb_queue_is_last() evaluates to false.
1342  */
1343 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1344 					     const struct sk_buff *skb)
1345 {
1346 	/* This BUG_ON may seem severe, but if we just return then we
1347 	 * are going to dereference garbage.
1348 	 */
1349 	BUG_ON(skb_queue_is_last(list, skb));
1350 	return skb->next;
1351 }
1352 
1353 /**
1354  *	skb_queue_prev - return the prev packet in the queue
1355  *	@list: queue head
1356  *	@skb: current buffer
1357  *
1358  *	Return the prev packet in @list before @skb.  It is only valid to
1359  *	call this if skb_queue_is_first() evaluates to false.
1360  */
1361 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1362 					     const struct sk_buff *skb)
1363 {
1364 	/* This BUG_ON may seem severe, but if we just return then we
1365 	 * are going to dereference garbage.
1366 	 */
1367 	BUG_ON(skb_queue_is_first(list, skb));
1368 	return skb->prev;
1369 }
1370 
1371 /**
1372  *	skb_get - reference buffer
1373  *	@skb: buffer to reference
1374  *
1375  *	Makes another reference to a socket buffer and returns a pointer
1376  *	to the buffer.
1377  */
1378 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1379 {
1380 	refcount_inc(&skb->users);
1381 	return skb;
1382 }
1383 
1384 /*
1385  * If users == 1, we are the only owner and are can avoid redundant
1386  * atomic change.
1387  */
1388 
1389 /**
1390  *	skb_cloned - is the buffer a clone
1391  *	@skb: buffer to check
1392  *
1393  *	Returns true if the buffer was generated with skb_clone() and is
1394  *	one of multiple shared copies of the buffer. Cloned buffers are
1395  *	shared data so must not be written to under normal circumstances.
1396  */
1397 static inline int skb_cloned(const struct sk_buff *skb)
1398 {
1399 	return skb->cloned &&
1400 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1401 }
1402 
1403 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1404 {
1405 	might_sleep_if(gfpflags_allow_blocking(pri));
1406 
1407 	if (skb_cloned(skb))
1408 		return pskb_expand_head(skb, 0, 0, pri);
1409 
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	skb_header_cloned - is the header a clone
1415  *	@skb: buffer to check
1416  *
1417  *	Returns true if modifying the header part of the buffer requires
1418  *	the data to be copied.
1419  */
1420 static inline int skb_header_cloned(const struct sk_buff *skb)
1421 {
1422 	int dataref;
1423 
1424 	if (!skb->cloned)
1425 		return 0;
1426 
1427 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1428 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1429 	return dataref != 1;
1430 }
1431 
1432 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1433 {
1434 	might_sleep_if(gfpflags_allow_blocking(pri));
1435 
1436 	if (skb_header_cloned(skb))
1437 		return pskb_expand_head(skb, 0, 0, pri);
1438 
1439 	return 0;
1440 }
1441 
1442 /**
1443  *	skb_header_release - release reference to header
1444  *	@skb: buffer to operate on
1445  *
1446  *	Drop a reference to the header part of the buffer.  This is done
1447  *	by acquiring a payload reference.  You must not read from the header
1448  *	part of skb->data after this.
1449  *	Note : Check if you can use __skb_header_release() instead.
1450  */
1451 static inline void skb_header_release(struct sk_buff *skb)
1452 {
1453 	BUG_ON(skb->nohdr);
1454 	skb->nohdr = 1;
1455 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1456 }
1457 
1458 /**
1459  *	__skb_header_release - release reference to header
1460  *	@skb: buffer to operate on
1461  *
1462  *	Variant of skb_header_release() assuming skb is private to caller.
1463  *	We can avoid one atomic operation.
1464  */
1465 static inline void __skb_header_release(struct sk_buff *skb)
1466 {
1467 	skb->nohdr = 1;
1468 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1469 }
1470 
1471 
1472 /**
1473  *	skb_shared - is the buffer shared
1474  *	@skb: buffer to check
1475  *
1476  *	Returns true if more than one person has a reference to this
1477  *	buffer.
1478  */
1479 static inline int skb_shared(const struct sk_buff *skb)
1480 {
1481 	return refcount_read(&skb->users) != 1;
1482 }
1483 
1484 /**
1485  *	skb_share_check - check if buffer is shared and if so clone it
1486  *	@skb: buffer to check
1487  *	@pri: priority for memory allocation
1488  *
1489  *	If the buffer is shared the buffer is cloned and the old copy
1490  *	drops a reference. A new clone with a single reference is returned.
1491  *	If the buffer is not shared the original buffer is returned. When
1492  *	being called from interrupt status or with spinlocks held pri must
1493  *	be GFP_ATOMIC.
1494  *
1495  *	NULL is returned on a memory allocation failure.
1496  */
1497 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1498 {
1499 	might_sleep_if(gfpflags_allow_blocking(pri));
1500 	if (skb_shared(skb)) {
1501 		struct sk_buff *nskb = skb_clone(skb, pri);
1502 
1503 		if (likely(nskb))
1504 			consume_skb(skb);
1505 		else
1506 			kfree_skb(skb);
1507 		skb = nskb;
1508 	}
1509 	return skb;
1510 }
1511 
1512 /*
1513  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1514  *	packets to handle cases where we have a local reader and forward
1515  *	and a couple of other messy ones. The normal one is tcpdumping
1516  *	a packet thats being forwarded.
1517  */
1518 
1519 /**
1520  *	skb_unshare - make a copy of a shared buffer
1521  *	@skb: buffer to check
1522  *	@pri: priority for memory allocation
1523  *
1524  *	If the socket buffer is a clone then this function creates a new
1525  *	copy of the data, drops a reference count on the old copy and returns
1526  *	the new copy with the reference count at 1. If the buffer is not a clone
1527  *	the original buffer is returned. When called with a spinlock held or
1528  *	from interrupt state @pri must be %GFP_ATOMIC
1529  *
1530  *	%NULL is returned on a memory allocation failure.
1531  */
1532 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1533 					  gfp_t pri)
1534 {
1535 	might_sleep_if(gfpflags_allow_blocking(pri));
1536 	if (skb_cloned(skb)) {
1537 		struct sk_buff *nskb = skb_copy(skb, pri);
1538 
1539 		/* Free our shared copy */
1540 		if (likely(nskb))
1541 			consume_skb(skb);
1542 		else
1543 			kfree_skb(skb);
1544 		skb = nskb;
1545 	}
1546 	return skb;
1547 }
1548 
1549 /**
1550  *	skb_peek - peek at the head of an &sk_buff_head
1551  *	@list_: list to peek at
1552  *
1553  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1554  *	be careful with this one. A peek leaves the buffer on the
1555  *	list and someone else may run off with it. You must hold
1556  *	the appropriate locks or have a private queue to do this.
1557  *
1558  *	Returns %NULL for an empty list or a pointer to the head element.
1559  *	The reference count is not incremented and the reference is therefore
1560  *	volatile. Use with caution.
1561  */
1562 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1563 {
1564 	struct sk_buff *skb = list_->next;
1565 
1566 	if (skb == (struct sk_buff *)list_)
1567 		skb = NULL;
1568 	return skb;
1569 }
1570 
1571 /**
1572  *	skb_peek_next - peek skb following the given one from a queue
1573  *	@skb: skb to start from
1574  *	@list_: list to peek at
1575  *
1576  *	Returns %NULL when the end of the list is met or a pointer to the
1577  *	next element. The reference count is not incremented and the
1578  *	reference is therefore volatile. Use with caution.
1579  */
1580 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1581 		const struct sk_buff_head *list_)
1582 {
1583 	struct sk_buff *next = skb->next;
1584 
1585 	if (next == (struct sk_buff *)list_)
1586 		next = NULL;
1587 	return next;
1588 }
1589 
1590 /**
1591  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1592  *	@list_: list to peek at
1593  *
1594  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1595  *	be careful with this one. A peek leaves the buffer on the
1596  *	list and someone else may run off with it. You must hold
1597  *	the appropriate locks or have a private queue to do this.
1598  *
1599  *	Returns %NULL for an empty list or a pointer to the tail element.
1600  *	The reference count is not incremented and the reference is therefore
1601  *	volatile. Use with caution.
1602  */
1603 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1604 {
1605 	struct sk_buff *skb = list_->prev;
1606 
1607 	if (skb == (struct sk_buff *)list_)
1608 		skb = NULL;
1609 	return skb;
1610 
1611 }
1612 
1613 /**
1614  *	skb_queue_len	- get queue length
1615  *	@list_: list to measure
1616  *
1617  *	Return the length of an &sk_buff queue.
1618  */
1619 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1620 {
1621 	return list_->qlen;
1622 }
1623 
1624 /**
1625  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1626  *	@list: queue to initialize
1627  *
1628  *	This initializes only the list and queue length aspects of
1629  *	an sk_buff_head object.  This allows to initialize the list
1630  *	aspects of an sk_buff_head without reinitializing things like
1631  *	the spinlock.  It can also be used for on-stack sk_buff_head
1632  *	objects where the spinlock is known to not be used.
1633  */
1634 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1635 {
1636 	list->prev = list->next = (struct sk_buff *)list;
1637 	list->qlen = 0;
1638 }
1639 
1640 /*
1641  * This function creates a split out lock class for each invocation;
1642  * this is needed for now since a whole lot of users of the skb-queue
1643  * infrastructure in drivers have different locking usage (in hardirq)
1644  * than the networking core (in softirq only). In the long run either the
1645  * network layer or drivers should need annotation to consolidate the
1646  * main types of usage into 3 classes.
1647  */
1648 static inline void skb_queue_head_init(struct sk_buff_head *list)
1649 {
1650 	spin_lock_init(&list->lock);
1651 	__skb_queue_head_init(list);
1652 }
1653 
1654 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1655 		struct lock_class_key *class)
1656 {
1657 	skb_queue_head_init(list);
1658 	lockdep_set_class(&list->lock, class);
1659 }
1660 
1661 /*
1662  *	Insert an sk_buff on a list.
1663  *
1664  *	The "__skb_xxxx()" functions are the non-atomic ones that
1665  *	can only be called with interrupts disabled.
1666  */
1667 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1668 		struct sk_buff_head *list);
1669 static inline void __skb_insert(struct sk_buff *newsk,
1670 				struct sk_buff *prev, struct sk_buff *next,
1671 				struct sk_buff_head *list)
1672 {
1673 	newsk->next = next;
1674 	newsk->prev = prev;
1675 	next->prev  = prev->next = newsk;
1676 	list->qlen++;
1677 }
1678 
1679 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1680 				      struct sk_buff *prev,
1681 				      struct sk_buff *next)
1682 {
1683 	struct sk_buff *first = list->next;
1684 	struct sk_buff *last = list->prev;
1685 
1686 	first->prev = prev;
1687 	prev->next = first;
1688 
1689 	last->next = next;
1690 	next->prev = last;
1691 }
1692 
1693 /**
1694  *	skb_queue_splice - join two skb lists, this is designed for stacks
1695  *	@list: the new list to add
1696  *	@head: the place to add it in the first list
1697  */
1698 static inline void skb_queue_splice(const struct sk_buff_head *list,
1699 				    struct sk_buff_head *head)
1700 {
1701 	if (!skb_queue_empty(list)) {
1702 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1703 		head->qlen += list->qlen;
1704 	}
1705 }
1706 
1707 /**
1708  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1709  *	@list: the new list to add
1710  *	@head: the place to add it in the first list
1711  *
1712  *	The list at @list is reinitialised
1713  */
1714 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1715 					 struct sk_buff_head *head)
1716 {
1717 	if (!skb_queue_empty(list)) {
1718 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1719 		head->qlen += list->qlen;
1720 		__skb_queue_head_init(list);
1721 	}
1722 }
1723 
1724 /**
1725  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1726  *	@list: the new list to add
1727  *	@head: the place to add it in the first list
1728  */
1729 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1730 					 struct sk_buff_head *head)
1731 {
1732 	if (!skb_queue_empty(list)) {
1733 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1734 		head->qlen += list->qlen;
1735 	}
1736 }
1737 
1738 /**
1739  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1740  *	@list: the new list to add
1741  *	@head: the place to add it in the first list
1742  *
1743  *	Each of the lists is a queue.
1744  *	The list at @list is reinitialised
1745  */
1746 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1747 					      struct sk_buff_head *head)
1748 {
1749 	if (!skb_queue_empty(list)) {
1750 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1751 		head->qlen += list->qlen;
1752 		__skb_queue_head_init(list);
1753 	}
1754 }
1755 
1756 /**
1757  *	__skb_queue_after - queue a buffer at the list head
1758  *	@list: list to use
1759  *	@prev: place after this buffer
1760  *	@newsk: buffer to queue
1761  *
1762  *	Queue a buffer int the middle of a list. This function takes no locks
1763  *	and you must therefore hold required locks before calling it.
1764  *
1765  *	A buffer cannot be placed on two lists at the same time.
1766  */
1767 static inline void __skb_queue_after(struct sk_buff_head *list,
1768 				     struct sk_buff *prev,
1769 				     struct sk_buff *newsk)
1770 {
1771 	__skb_insert(newsk, prev, prev->next, list);
1772 }
1773 
1774 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1775 		struct sk_buff_head *list);
1776 
1777 static inline void __skb_queue_before(struct sk_buff_head *list,
1778 				      struct sk_buff *next,
1779 				      struct sk_buff *newsk)
1780 {
1781 	__skb_insert(newsk, next->prev, next, list);
1782 }
1783 
1784 /**
1785  *	__skb_queue_head - queue a buffer at the list head
1786  *	@list: list to use
1787  *	@newsk: buffer to queue
1788  *
1789  *	Queue a buffer at the start of a list. This function takes no locks
1790  *	and you must therefore hold required locks before calling it.
1791  *
1792  *	A buffer cannot be placed on two lists at the same time.
1793  */
1794 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1795 static inline void __skb_queue_head(struct sk_buff_head *list,
1796 				    struct sk_buff *newsk)
1797 {
1798 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1799 }
1800 
1801 /**
1802  *	__skb_queue_tail - queue a buffer at the list tail
1803  *	@list: list to use
1804  *	@newsk: buffer to queue
1805  *
1806  *	Queue a buffer at the end of a list. This function takes no locks
1807  *	and you must therefore hold required locks before calling it.
1808  *
1809  *	A buffer cannot be placed on two lists at the same time.
1810  */
1811 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1812 static inline void __skb_queue_tail(struct sk_buff_head *list,
1813 				   struct sk_buff *newsk)
1814 {
1815 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1816 }
1817 
1818 /*
1819  * remove sk_buff from list. _Must_ be called atomically, and with
1820  * the list known..
1821  */
1822 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1823 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1824 {
1825 	struct sk_buff *next, *prev;
1826 
1827 	list->qlen--;
1828 	next	   = skb->next;
1829 	prev	   = skb->prev;
1830 	skb->next  = skb->prev = NULL;
1831 	next->prev = prev;
1832 	prev->next = next;
1833 }
1834 
1835 /**
1836  *	__skb_dequeue - remove from the head of the queue
1837  *	@list: list to dequeue from
1838  *
1839  *	Remove the head of the list. This function does not take any locks
1840  *	so must be used with appropriate locks held only. The head item is
1841  *	returned or %NULL if the list is empty.
1842  */
1843 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1844 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1845 {
1846 	struct sk_buff *skb = skb_peek(list);
1847 	if (skb)
1848 		__skb_unlink(skb, list);
1849 	return skb;
1850 }
1851 
1852 /**
1853  *	__skb_dequeue_tail - remove from the tail of the queue
1854  *	@list: list to dequeue from
1855  *
1856  *	Remove the tail of the list. This function does not take any locks
1857  *	so must be used with appropriate locks held only. The tail item is
1858  *	returned or %NULL if the list is empty.
1859  */
1860 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1861 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1862 {
1863 	struct sk_buff *skb = skb_peek_tail(list);
1864 	if (skb)
1865 		__skb_unlink(skb, list);
1866 	return skb;
1867 }
1868 
1869 
1870 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1871 {
1872 	return skb->data_len;
1873 }
1874 
1875 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1876 {
1877 	return skb->len - skb->data_len;
1878 }
1879 
1880 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1881 {
1882 	unsigned int i, len = 0;
1883 
1884 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1885 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1886 	return len;
1887 }
1888 
1889 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1890 {
1891 	return skb_headlen(skb) + __skb_pagelen(skb);
1892 }
1893 
1894 /**
1895  * __skb_fill_page_desc - initialise a paged fragment in an skb
1896  * @skb: buffer containing fragment to be initialised
1897  * @i: paged fragment index to initialise
1898  * @page: the page to use for this fragment
1899  * @off: the offset to the data with @page
1900  * @size: the length of the data
1901  *
1902  * Initialises the @i'th fragment of @skb to point to &size bytes at
1903  * offset @off within @page.
1904  *
1905  * Does not take any additional reference on the fragment.
1906  */
1907 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1908 					struct page *page, int off, int size)
1909 {
1910 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1911 
1912 	/*
1913 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1914 	 * that not all callers have unique ownership of the page but rely
1915 	 * on page_is_pfmemalloc doing the right thing(tm).
1916 	 */
1917 	frag->page.p		  = page;
1918 	frag->page_offset	  = off;
1919 	skb_frag_size_set(frag, size);
1920 
1921 	page = compound_head(page);
1922 	if (page_is_pfmemalloc(page))
1923 		skb->pfmemalloc	= true;
1924 }
1925 
1926 /**
1927  * skb_fill_page_desc - initialise a paged fragment in an skb
1928  * @skb: buffer containing fragment to be initialised
1929  * @i: paged fragment index to initialise
1930  * @page: the page to use for this fragment
1931  * @off: the offset to the data with @page
1932  * @size: the length of the data
1933  *
1934  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1935  * @skb to point to @size bytes at offset @off within @page. In
1936  * addition updates @skb such that @i is the last fragment.
1937  *
1938  * Does not take any additional reference on the fragment.
1939  */
1940 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1941 				      struct page *page, int off, int size)
1942 {
1943 	__skb_fill_page_desc(skb, i, page, off, size);
1944 	skb_shinfo(skb)->nr_frags = i + 1;
1945 }
1946 
1947 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1948 		     int size, unsigned int truesize);
1949 
1950 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1951 			  unsigned int truesize);
1952 
1953 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1954 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1955 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1956 
1957 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1958 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1959 {
1960 	return skb->head + skb->tail;
1961 }
1962 
1963 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1964 {
1965 	skb->tail = skb->data - skb->head;
1966 }
1967 
1968 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1969 {
1970 	skb_reset_tail_pointer(skb);
1971 	skb->tail += offset;
1972 }
1973 
1974 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1975 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1976 {
1977 	return skb->tail;
1978 }
1979 
1980 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1981 {
1982 	skb->tail = skb->data;
1983 }
1984 
1985 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1986 {
1987 	skb->tail = skb->data + offset;
1988 }
1989 
1990 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1991 
1992 /*
1993  *	Add data to an sk_buff
1994  */
1995 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1996 void *skb_put(struct sk_buff *skb, unsigned int len);
1997 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1998 {
1999 	void *tmp = skb_tail_pointer(skb);
2000 	SKB_LINEAR_ASSERT(skb);
2001 	skb->tail += len;
2002 	skb->len  += len;
2003 	return tmp;
2004 }
2005 
2006 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2007 {
2008 	void *tmp = __skb_put(skb, len);
2009 
2010 	memset(tmp, 0, len);
2011 	return tmp;
2012 }
2013 
2014 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2015 				   unsigned int len)
2016 {
2017 	void *tmp = __skb_put(skb, len);
2018 
2019 	memcpy(tmp, data, len);
2020 	return tmp;
2021 }
2022 
2023 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2024 {
2025 	*(u8 *)__skb_put(skb, 1) = val;
2026 }
2027 
2028 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2029 {
2030 	void *tmp = skb_put(skb, len);
2031 
2032 	memset(tmp, 0, len);
2033 
2034 	return tmp;
2035 }
2036 
2037 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2038 				 unsigned int len)
2039 {
2040 	void *tmp = skb_put(skb, len);
2041 
2042 	memcpy(tmp, data, len);
2043 
2044 	return tmp;
2045 }
2046 
2047 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2048 {
2049 	*(u8 *)skb_put(skb, 1) = val;
2050 }
2051 
2052 void *skb_push(struct sk_buff *skb, unsigned int len);
2053 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2054 {
2055 	skb->data -= len;
2056 	skb->len  += len;
2057 	return skb->data;
2058 }
2059 
2060 void *skb_pull(struct sk_buff *skb, unsigned int len);
2061 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2062 {
2063 	skb->len -= len;
2064 	BUG_ON(skb->len < skb->data_len);
2065 	return skb->data += len;
2066 }
2067 
2068 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2069 {
2070 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2071 }
2072 
2073 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2074 
2075 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2076 {
2077 	if (len > skb_headlen(skb) &&
2078 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2079 		return NULL;
2080 	skb->len -= len;
2081 	return skb->data += len;
2082 }
2083 
2084 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2085 {
2086 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2087 }
2088 
2089 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2090 {
2091 	if (likely(len <= skb_headlen(skb)))
2092 		return 1;
2093 	if (unlikely(len > skb->len))
2094 		return 0;
2095 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2096 }
2097 
2098 void skb_condense(struct sk_buff *skb);
2099 
2100 /**
2101  *	skb_headroom - bytes at buffer head
2102  *	@skb: buffer to check
2103  *
2104  *	Return the number of bytes of free space at the head of an &sk_buff.
2105  */
2106 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2107 {
2108 	return skb->data - skb->head;
2109 }
2110 
2111 /**
2112  *	skb_tailroom - bytes at buffer end
2113  *	@skb: buffer to check
2114  *
2115  *	Return the number of bytes of free space at the tail of an sk_buff
2116  */
2117 static inline int skb_tailroom(const struct sk_buff *skb)
2118 {
2119 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2120 }
2121 
2122 /**
2123  *	skb_availroom - bytes at buffer end
2124  *	@skb: buffer to check
2125  *
2126  *	Return the number of bytes of free space at the tail of an sk_buff
2127  *	allocated by sk_stream_alloc()
2128  */
2129 static inline int skb_availroom(const struct sk_buff *skb)
2130 {
2131 	if (skb_is_nonlinear(skb))
2132 		return 0;
2133 
2134 	return skb->end - skb->tail - skb->reserved_tailroom;
2135 }
2136 
2137 /**
2138  *	skb_reserve - adjust headroom
2139  *	@skb: buffer to alter
2140  *	@len: bytes to move
2141  *
2142  *	Increase the headroom of an empty &sk_buff by reducing the tail
2143  *	room. This is only allowed for an empty buffer.
2144  */
2145 static inline void skb_reserve(struct sk_buff *skb, int len)
2146 {
2147 	skb->data += len;
2148 	skb->tail += len;
2149 }
2150 
2151 /**
2152  *	skb_tailroom_reserve - adjust reserved_tailroom
2153  *	@skb: buffer to alter
2154  *	@mtu: maximum amount of headlen permitted
2155  *	@needed_tailroom: minimum amount of reserved_tailroom
2156  *
2157  *	Set reserved_tailroom so that headlen can be as large as possible but
2158  *	not larger than mtu and tailroom cannot be smaller than
2159  *	needed_tailroom.
2160  *	The required headroom should already have been reserved before using
2161  *	this function.
2162  */
2163 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2164 					unsigned int needed_tailroom)
2165 {
2166 	SKB_LINEAR_ASSERT(skb);
2167 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2168 		/* use at most mtu */
2169 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2170 	else
2171 		/* use up to all available space */
2172 		skb->reserved_tailroom = needed_tailroom;
2173 }
2174 
2175 #define ENCAP_TYPE_ETHER	0
2176 #define ENCAP_TYPE_IPPROTO	1
2177 
2178 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2179 					  __be16 protocol)
2180 {
2181 	skb->inner_protocol = protocol;
2182 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2183 }
2184 
2185 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2186 					 __u8 ipproto)
2187 {
2188 	skb->inner_ipproto = ipproto;
2189 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2190 }
2191 
2192 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2193 {
2194 	skb->inner_mac_header = skb->mac_header;
2195 	skb->inner_network_header = skb->network_header;
2196 	skb->inner_transport_header = skb->transport_header;
2197 }
2198 
2199 static inline void skb_reset_mac_len(struct sk_buff *skb)
2200 {
2201 	skb->mac_len = skb->network_header - skb->mac_header;
2202 }
2203 
2204 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2205 							*skb)
2206 {
2207 	return skb->head + skb->inner_transport_header;
2208 }
2209 
2210 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2211 {
2212 	return skb_inner_transport_header(skb) - skb->data;
2213 }
2214 
2215 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2216 {
2217 	skb->inner_transport_header = skb->data - skb->head;
2218 }
2219 
2220 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2221 						   const int offset)
2222 {
2223 	skb_reset_inner_transport_header(skb);
2224 	skb->inner_transport_header += offset;
2225 }
2226 
2227 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2228 {
2229 	return skb->head + skb->inner_network_header;
2230 }
2231 
2232 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2233 {
2234 	skb->inner_network_header = skb->data - skb->head;
2235 }
2236 
2237 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2238 						const int offset)
2239 {
2240 	skb_reset_inner_network_header(skb);
2241 	skb->inner_network_header += offset;
2242 }
2243 
2244 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2245 {
2246 	return skb->head + skb->inner_mac_header;
2247 }
2248 
2249 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2250 {
2251 	skb->inner_mac_header = skb->data - skb->head;
2252 }
2253 
2254 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2255 					    const int offset)
2256 {
2257 	skb_reset_inner_mac_header(skb);
2258 	skb->inner_mac_header += offset;
2259 }
2260 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2261 {
2262 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2263 }
2264 
2265 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2266 {
2267 	return skb->head + skb->transport_header;
2268 }
2269 
2270 static inline void skb_reset_transport_header(struct sk_buff *skb)
2271 {
2272 	skb->transport_header = skb->data - skb->head;
2273 }
2274 
2275 static inline void skb_set_transport_header(struct sk_buff *skb,
2276 					    const int offset)
2277 {
2278 	skb_reset_transport_header(skb);
2279 	skb->transport_header += offset;
2280 }
2281 
2282 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2283 {
2284 	return skb->head + skb->network_header;
2285 }
2286 
2287 static inline void skb_reset_network_header(struct sk_buff *skb)
2288 {
2289 	skb->network_header = skb->data - skb->head;
2290 }
2291 
2292 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2293 {
2294 	skb_reset_network_header(skb);
2295 	skb->network_header += offset;
2296 }
2297 
2298 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2299 {
2300 	return skb->head + skb->mac_header;
2301 }
2302 
2303 static inline int skb_mac_offset(const struct sk_buff *skb)
2304 {
2305 	return skb_mac_header(skb) - skb->data;
2306 }
2307 
2308 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2309 {
2310 	return skb->network_header - skb->mac_header;
2311 }
2312 
2313 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2314 {
2315 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2316 }
2317 
2318 static inline void skb_reset_mac_header(struct sk_buff *skb)
2319 {
2320 	skb->mac_header = skb->data - skb->head;
2321 }
2322 
2323 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2324 {
2325 	skb_reset_mac_header(skb);
2326 	skb->mac_header += offset;
2327 }
2328 
2329 static inline void skb_pop_mac_header(struct sk_buff *skb)
2330 {
2331 	skb->mac_header = skb->network_header;
2332 }
2333 
2334 static inline void skb_probe_transport_header(struct sk_buff *skb,
2335 					      const int offset_hint)
2336 {
2337 	struct flow_keys keys;
2338 
2339 	if (skb_transport_header_was_set(skb))
2340 		return;
2341 	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2342 		skb_set_transport_header(skb, keys.control.thoff);
2343 	else
2344 		skb_set_transport_header(skb, offset_hint);
2345 }
2346 
2347 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2348 {
2349 	if (skb_mac_header_was_set(skb)) {
2350 		const unsigned char *old_mac = skb_mac_header(skb);
2351 
2352 		skb_set_mac_header(skb, -skb->mac_len);
2353 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2354 	}
2355 }
2356 
2357 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2358 {
2359 	return skb->csum_start - skb_headroom(skb);
2360 }
2361 
2362 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2363 {
2364 	return skb->head + skb->csum_start;
2365 }
2366 
2367 static inline int skb_transport_offset(const struct sk_buff *skb)
2368 {
2369 	return skb_transport_header(skb) - skb->data;
2370 }
2371 
2372 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2373 {
2374 	return skb->transport_header - skb->network_header;
2375 }
2376 
2377 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2378 {
2379 	return skb->inner_transport_header - skb->inner_network_header;
2380 }
2381 
2382 static inline int skb_network_offset(const struct sk_buff *skb)
2383 {
2384 	return skb_network_header(skb) - skb->data;
2385 }
2386 
2387 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2388 {
2389 	return skb_inner_network_header(skb) - skb->data;
2390 }
2391 
2392 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2393 {
2394 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2395 }
2396 
2397 /*
2398  * CPUs often take a performance hit when accessing unaligned memory
2399  * locations. The actual performance hit varies, it can be small if the
2400  * hardware handles it or large if we have to take an exception and fix it
2401  * in software.
2402  *
2403  * Since an ethernet header is 14 bytes network drivers often end up with
2404  * the IP header at an unaligned offset. The IP header can be aligned by
2405  * shifting the start of the packet by 2 bytes. Drivers should do this
2406  * with:
2407  *
2408  * skb_reserve(skb, NET_IP_ALIGN);
2409  *
2410  * The downside to this alignment of the IP header is that the DMA is now
2411  * unaligned. On some architectures the cost of an unaligned DMA is high
2412  * and this cost outweighs the gains made by aligning the IP header.
2413  *
2414  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2415  * to be overridden.
2416  */
2417 #ifndef NET_IP_ALIGN
2418 #define NET_IP_ALIGN	2
2419 #endif
2420 
2421 /*
2422  * The networking layer reserves some headroom in skb data (via
2423  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2424  * the header has to grow. In the default case, if the header has to grow
2425  * 32 bytes or less we avoid the reallocation.
2426  *
2427  * Unfortunately this headroom changes the DMA alignment of the resulting
2428  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2429  * on some architectures. An architecture can override this value,
2430  * perhaps setting it to a cacheline in size (since that will maintain
2431  * cacheline alignment of the DMA). It must be a power of 2.
2432  *
2433  * Various parts of the networking layer expect at least 32 bytes of
2434  * headroom, you should not reduce this.
2435  *
2436  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2437  * to reduce average number of cache lines per packet.
2438  * get_rps_cpus() for example only access one 64 bytes aligned block :
2439  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2440  */
2441 #ifndef NET_SKB_PAD
2442 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2443 #endif
2444 
2445 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2446 
2447 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2448 {
2449 	if (unlikely(skb_is_nonlinear(skb))) {
2450 		WARN_ON(1);
2451 		return;
2452 	}
2453 	skb->len = len;
2454 	skb_set_tail_pointer(skb, len);
2455 }
2456 
2457 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2458 {
2459 	__skb_set_length(skb, len);
2460 }
2461 
2462 void skb_trim(struct sk_buff *skb, unsigned int len);
2463 
2464 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2465 {
2466 	if (skb->data_len)
2467 		return ___pskb_trim(skb, len);
2468 	__skb_trim(skb, len);
2469 	return 0;
2470 }
2471 
2472 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2473 {
2474 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2475 }
2476 
2477 /**
2478  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2479  *	@skb: buffer to alter
2480  *	@len: new length
2481  *
2482  *	This is identical to pskb_trim except that the caller knows that
2483  *	the skb is not cloned so we should never get an error due to out-
2484  *	of-memory.
2485  */
2486 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2487 {
2488 	int err = pskb_trim(skb, len);
2489 	BUG_ON(err);
2490 }
2491 
2492 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2493 {
2494 	unsigned int diff = len - skb->len;
2495 
2496 	if (skb_tailroom(skb) < diff) {
2497 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2498 					   GFP_ATOMIC);
2499 		if (ret)
2500 			return ret;
2501 	}
2502 	__skb_set_length(skb, len);
2503 	return 0;
2504 }
2505 
2506 /**
2507  *	skb_orphan - orphan a buffer
2508  *	@skb: buffer to orphan
2509  *
2510  *	If a buffer currently has an owner then we call the owner's
2511  *	destructor function and make the @skb unowned. The buffer continues
2512  *	to exist but is no longer charged to its former owner.
2513  */
2514 static inline void skb_orphan(struct sk_buff *skb)
2515 {
2516 	if (skb->destructor) {
2517 		skb->destructor(skb);
2518 		skb->destructor = NULL;
2519 		skb->sk		= NULL;
2520 	} else {
2521 		BUG_ON(skb->sk);
2522 	}
2523 }
2524 
2525 /**
2526  *	skb_orphan_frags - orphan the frags contained in a buffer
2527  *	@skb: buffer to orphan frags from
2528  *	@gfp_mask: allocation mask for replacement pages
2529  *
2530  *	For each frag in the SKB which needs a destructor (i.e. has an
2531  *	owner) create a copy of that frag and release the original
2532  *	page by calling the destructor.
2533  */
2534 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2535 {
2536 	if (likely(!skb_zcopy(skb)))
2537 		return 0;
2538 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2539 		return 0;
2540 	return skb_copy_ubufs(skb, gfp_mask);
2541 }
2542 
2543 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2544 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2545 {
2546 	if (likely(!skb_zcopy(skb)))
2547 		return 0;
2548 	return skb_copy_ubufs(skb, gfp_mask);
2549 }
2550 
2551 /**
2552  *	__skb_queue_purge - empty a list
2553  *	@list: list to empty
2554  *
2555  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2556  *	the list and one reference dropped. This function does not take the
2557  *	list lock and the caller must hold the relevant locks to use it.
2558  */
2559 void skb_queue_purge(struct sk_buff_head *list);
2560 static inline void __skb_queue_purge(struct sk_buff_head *list)
2561 {
2562 	struct sk_buff *skb;
2563 	while ((skb = __skb_dequeue(list)) != NULL)
2564 		kfree_skb(skb);
2565 }
2566 
2567 void skb_rbtree_purge(struct rb_root *root);
2568 
2569 void *netdev_alloc_frag(unsigned int fragsz);
2570 
2571 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2572 				   gfp_t gfp_mask);
2573 
2574 /**
2575  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2576  *	@dev: network device to receive on
2577  *	@length: length to allocate
2578  *
2579  *	Allocate a new &sk_buff and assign it a usage count of one. The
2580  *	buffer has unspecified headroom built in. Users should allocate
2581  *	the headroom they think they need without accounting for the
2582  *	built in space. The built in space is used for optimisations.
2583  *
2584  *	%NULL is returned if there is no free memory. Although this function
2585  *	allocates memory it can be called from an interrupt.
2586  */
2587 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2588 					       unsigned int length)
2589 {
2590 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2591 }
2592 
2593 /* legacy helper around __netdev_alloc_skb() */
2594 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2595 					      gfp_t gfp_mask)
2596 {
2597 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2598 }
2599 
2600 /* legacy helper around netdev_alloc_skb() */
2601 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2602 {
2603 	return netdev_alloc_skb(NULL, length);
2604 }
2605 
2606 
2607 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2608 		unsigned int length, gfp_t gfp)
2609 {
2610 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2611 
2612 	if (NET_IP_ALIGN && skb)
2613 		skb_reserve(skb, NET_IP_ALIGN);
2614 	return skb;
2615 }
2616 
2617 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2618 		unsigned int length)
2619 {
2620 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2621 }
2622 
2623 static inline void skb_free_frag(void *addr)
2624 {
2625 	page_frag_free(addr);
2626 }
2627 
2628 void *napi_alloc_frag(unsigned int fragsz);
2629 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2630 				 unsigned int length, gfp_t gfp_mask);
2631 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2632 					     unsigned int length)
2633 {
2634 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2635 }
2636 void napi_consume_skb(struct sk_buff *skb, int budget);
2637 
2638 void __kfree_skb_flush(void);
2639 void __kfree_skb_defer(struct sk_buff *skb);
2640 
2641 /**
2642  * __dev_alloc_pages - allocate page for network Rx
2643  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2644  * @order: size of the allocation
2645  *
2646  * Allocate a new page.
2647  *
2648  * %NULL is returned if there is no free memory.
2649 */
2650 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2651 					     unsigned int order)
2652 {
2653 	/* This piece of code contains several assumptions.
2654 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2655 	 * 2.  The expectation is the user wants a compound page.
2656 	 * 3.  If requesting a order 0 page it will not be compound
2657 	 *     due to the check to see if order has a value in prep_new_page
2658 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2659 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2660 	 */
2661 	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2662 
2663 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2664 }
2665 
2666 static inline struct page *dev_alloc_pages(unsigned int order)
2667 {
2668 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2669 }
2670 
2671 /**
2672  * __dev_alloc_page - allocate a page for network Rx
2673  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2674  *
2675  * Allocate a new page.
2676  *
2677  * %NULL is returned if there is no free memory.
2678  */
2679 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2680 {
2681 	return __dev_alloc_pages(gfp_mask, 0);
2682 }
2683 
2684 static inline struct page *dev_alloc_page(void)
2685 {
2686 	return dev_alloc_pages(0);
2687 }
2688 
2689 /**
2690  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2691  *	@page: The page that was allocated from skb_alloc_page
2692  *	@skb: The skb that may need pfmemalloc set
2693  */
2694 static inline void skb_propagate_pfmemalloc(struct page *page,
2695 					     struct sk_buff *skb)
2696 {
2697 	if (page_is_pfmemalloc(page))
2698 		skb->pfmemalloc = true;
2699 }
2700 
2701 /**
2702  * skb_frag_page - retrieve the page referred to by a paged fragment
2703  * @frag: the paged fragment
2704  *
2705  * Returns the &struct page associated with @frag.
2706  */
2707 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2708 {
2709 	return frag->page.p;
2710 }
2711 
2712 /**
2713  * __skb_frag_ref - take an addition reference on a paged fragment.
2714  * @frag: the paged fragment
2715  *
2716  * Takes an additional reference on the paged fragment @frag.
2717  */
2718 static inline void __skb_frag_ref(skb_frag_t *frag)
2719 {
2720 	get_page(skb_frag_page(frag));
2721 }
2722 
2723 /**
2724  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2725  * @skb: the buffer
2726  * @f: the fragment offset.
2727  *
2728  * Takes an additional reference on the @f'th paged fragment of @skb.
2729  */
2730 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2731 {
2732 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2733 }
2734 
2735 /**
2736  * __skb_frag_unref - release a reference on a paged fragment.
2737  * @frag: the paged fragment
2738  *
2739  * Releases a reference on the paged fragment @frag.
2740  */
2741 static inline void __skb_frag_unref(skb_frag_t *frag)
2742 {
2743 	put_page(skb_frag_page(frag));
2744 }
2745 
2746 /**
2747  * skb_frag_unref - release a reference on a paged fragment of an skb.
2748  * @skb: the buffer
2749  * @f: the fragment offset
2750  *
2751  * Releases a reference on the @f'th paged fragment of @skb.
2752  */
2753 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2754 {
2755 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2756 }
2757 
2758 /**
2759  * skb_frag_address - gets the address of the data contained in a paged fragment
2760  * @frag: the paged fragment buffer
2761  *
2762  * Returns the address of the data within @frag. The page must already
2763  * be mapped.
2764  */
2765 static inline void *skb_frag_address(const skb_frag_t *frag)
2766 {
2767 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2768 }
2769 
2770 /**
2771  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2772  * @frag: the paged fragment buffer
2773  *
2774  * Returns the address of the data within @frag. Checks that the page
2775  * is mapped and returns %NULL otherwise.
2776  */
2777 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2778 {
2779 	void *ptr = page_address(skb_frag_page(frag));
2780 	if (unlikely(!ptr))
2781 		return NULL;
2782 
2783 	return ptr + frag->page_offset;
2784 }
2785 
2786 /**
2787  * __skb_frag_set_page - sets the page contained in a paged fragment
2788  * @frag: the paged fragment
2789  * @page: the page to set
2790  *
2791  * Sets the fragment @frag to contain @page.
2792  */
2793 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2794 {
2795 	frag->page.p = page;
2796 }
2797 
2798 /**
2799  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2800  * @skb: the buffer
2801  * @f: the fragment offset
2802  * @page: the page to set
2803  *
2804  * Sets the @f'th fragment of @skb to contain @page.
2805  */
2806 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2807 				     struct page *page)
2808 {
2809 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2810 }
2811 
2812 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2813 
2814 /**
2815  * skb_frag_dma_map - maps a paged fragment via the DMA API
2816  * @dev: the device to map the fragment to
2817  * @frag: the paged fragment to map
2818  * @offset: the offset within the fragment (starting at the
2819  *          fragment's own offset)
2820  * @size: the number of bytes to map
2821  * @dir: the direction of the mapping (``PCI_DMA_*``)
2822  *
2823  * Maps the page associated with @frag to @device.
2824  */
2825 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2826 					  const skb_frag_t *frag,
2827 					  size_t offset, size_t size,
2828 					  enum dma_data_direction dir)
2829 {
2830 	return dma_map_page(dev, skb_frag_page(frag),
2831 			    frag->page_offset + offset, size, dir);
2832 }
2833 
2834 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2835 					gfp_t gfp_mask)
2836 {
2837 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2838 }
2839 
2840 
2841 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2842 						  gfp_t gfp_mask)
2843 {
2844 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2845 }
2846 
2847 
2848 /**
2849  *	skb_clone_writable - is the header of a clone writable
2850  *	@skb: buffer to check
2851  *	@len: length up to which to write
2852  *
2853  *	Returns true if modifying the header part of the cloned buffer
2854  *	does not requires the data to be copied.
2855  */
2856 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2857 {
2858 	return !skb_header_cloned(skb) &&
2859 	       skb_headroom(skb) + len <= skb->hdr_len;
2860 }
2861 
2862 static inline int skb_try_make_writable(struct sk_buff *skb,
2863 					unsigned int write_len)
2864 {
2865 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2866 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2867 }
2868 
2869 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2870 			    int cloned)
2871 {
2872 	int delta = 0;
2873 
2874 	if (headroom > skb_headroom(skb))
2875 		delta = headroom - skb_headroom(skb);
2876 
2877 	if (delta || cloned)
2878 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2879 					GFP_ATOMIC);
2880 	return 0;
2881 }
2882 
2883 /**
2884  *	skb_cow - copy header of skb when it is required
2885  *	@skb: buffer to cow
2886  *	@headroom: needed headroom
2887  *
2888  *	If the skb passed lacks sufficient headroom or its data part
2889  *	is shared, data is reallocated. If reallocation fails, an error
2890  *	is returned and original skb is not changed.
2891  *
2892  *	The result is skb with writable area skb->head...skb->tail
2893  *	and at least @headroom of space at head.
2894  */
2895 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2896 {
2897 	return __skb_cow(skb, headroom, skb_cloned(skb));
2898 }
2899 
2900 /**
2901  *	skb_cow_head - skb_cow but only making the head writable
2902  *	@skb: buffer to cow
2903  *	@headroom: needed headroom
2904  *
2905  *	This function is identical to skb_cow except that we replace the
2906  *	skb_cloned check by skb_header_cloned.  It should be used when
2907  *	you only need to push on some header and do not need to modify
2908  *	the data.
2909  */
2910 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2911 {
2912 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2913 }
2914 
2915 /**
2916  *	skb_padto	- pad an skbuff up to a minimal size
2917  *	@skb: buffer to pad
2918  *	@len: minimal length
2919  *
2920  *	Pads up a buffer to ensure the trailing bytes exist and are
2921  *	blanked. If the buffer already contains sufficient data it
2922  *	is untouched. Otherwise it is extended. Returns zero on
2923  *	success. The skb is freed on error.
2924  */
2925 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2926 {
2927 	unsigned int size = skb->len;
2928 	if (likely(size >= len))
2929 		return 0;
2930 	return skb_pad(skb, len - size);
2931 }
2932 
2933 /**
2934  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2935  *	@skb: buffer to pad
2936  *	@len: minimal length
2937  *
2938  *	Pads up a buffer to ensure the trailing bytes exist and are
2939  *	blanked. If the buffer already contains sufficient data it
2940  *	is untouched. Otherwise it is extended. Returns zero on
2941  *	success. The skb is freed on error.
2942  */
2943 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2944 {
2945 	unsigned int size = skb->len;
2946 
2947 	if (unlikely(size < len)) {
2948 		len -= size;
2949 		if (skb_pad(skb, len))
2950 			return -ENOMEM;
2951 		__skb_put(skb, len);
2952 	}
2953 	return 0;
2954 }
2955 
2956 static inline int skb_add_data(struct sk_buff *skb,
2957 			       struct iov_iter *from, int copy)
2958 {
2959 	const int off = skb->len;
2960 
2961 	if (skb->ip_summed == CHECKSUM_NONE) {
2962 		__wsum csum = 0;
2963 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2964 					         &csum, from)) {
2965 			skb->csum = csum_block_add(skb->csum, csum, off);
2966 			return 0;
2967 		}
2968 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2969 		return 0;
2970 
2971 	__skb_trim(skb, off);
2972 	return -EFAULT;
2973 }
2974 
2975 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2976 				    const struct page *page, int off)
2977 {
2978 	if (skb_zcopy(skb))
2979 		return false;
2980 	if (i) {
2981 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2982 
2983 		return page == skb_frag_page(frag) &&
2984 		       off == frag->page_offset + skb_frag_size(frag);
2985 	}
2986 	return false;
2987 }
2988 
2989 static inline int __skb_linearize(struct sk_buff *skb)
2990 {
2991 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2992 }
2993 
2994 /**
2995  *	skb_linearize - convert paged skb to linear one
2996  *	@skb: buffer to linarize
2997  *
2998  *	If there is no free memory -ENOMEM is returned, otherwise zero
2999  *	is returned and the old skb data released.
3000  */
3001 static inline int skb_linearize(struct sk_buff *skb)
3002 {
3003 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3004 }
3005 
3006 /**
3007  * skb_has_shared_frag - can any frag be overwritten
3008  * @skb: buffer to test
3009  *
3010  * Return true if the skb has at least one frag that might be modified
3011  * by an external entity (as in vmsplice()/sendfile())
3012  */
3013 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3014 {
3015 	return skb_is_nonlinear(skb) &&
3016 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3017 }
3018 
3019 /**
3020  *	skb_linearize_cow - make sure skb is linear and writable
3021  *	@skb: buffer to process
3022  *
3023  *	If there is no free memory -ENOMEM is returned, otherwise zero
3024  *	is returned and the old skb data released.
3025  */
3026 static inline int skb_linearize_cow(struct sk_buff *skb)
3027 {
3028 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3029 	       __skb_linearize(skb) : 0;
3030 }
3031 
3032 static __always_inline void
3033 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3034 		     unsigned int off)
3035 {
3036 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3037 		skb->csum = csum_block_sub(skb->csum,
3038 					   csum_partial(start, len, 0), off);
3039 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3040 		 skb_checksum_start_offset(skb) < 0)
3041 		skb->ip_summed = CHECKSUM_NONE;
3042 }
3043 
3044 /**
3045  *	skb_postpull_rcsum - update checksum for received skb after pull
3046  *	@skb: buffer to update
3047  *	@start: start of data before pull
3048  *	@len: length of data pulled
3049  *
3050  *	After doing a pull on a received packet, you need to call this to
3051  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3052  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3053  */
3054 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3055 				      const void *start, unsigned int len)
3056 {
3057 	__skb_postpull_rcsum(skb, start, len, 0);
3058 }
3059 
3060 static __always_inline void
3061 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3062 		     unsigned int off)
3063 {
3064 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3065 		skb->csum = csum_block_add(skb->csum,
3066 					   csum_partial(start, len, 0), off);
3067 }
3068 
3069 /**
3070  *	skb_postpush_rcsum - update checksum for received skb after push
3071  *	@skb: buffer to update
3072  *	@start: start of data after push
3073  *	@len: length of data pushed
3074  *
3075  *	After doing a push on a received packet, you need to call this to
3076  *	update the CHECKSUM_COMPLETE checksum.
3077  */
3078 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3079 				      const void *start, unsigned int len)
3080 {
3081 	__skb_postpush_rcsum(skb, start, len, 0);
3082 }
3083 
3084 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3085 
3086 /**
3087  *	skb_push_rcsum - push skb and update receive checksum
3088  *	@skb: buffer to update
3089  *	@len: length of data pulled
3090  *
3091  *	This function performs an skb_push on the packet and updates
3092  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3093  *	receive path processing instead of skb_push unless you know
3094  *	that the checksum difference is zero (e.g., a valid IP header)
3095  *	or you are setting ip_summed to CHECKSUM_NONE.
3096  */
3097 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3098 {
3099 	skb_push(skb, len);
3100 	skb_postpush_rcsum(skb, skb->data, len);
3101 	return skb->data;
3102 }
3103 
3104 /**
3105  *	pskb_trim_rcsum - trim received skb and update checksum
3106  *	@skb: buffer to trim
3107  *	@len: new length
3108  *
3109  *	This is exactly the same as pskb_trim except that it ensures the
3110  *	checksum of received packets are still valid after the operation.
3111  */
3112 
3113 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3114 {
3115 	if (likely(len >= skb->len))
3116 		return 0;
3117 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3118 		skb->ip_summed = CHECKSUM_NONE;
3119 	return __pskb_trim(skb, len);
3120 }
3121 
3122 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3123 {
3124 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3125 		skb->ip_summed = CHECKSUM_NONE;
3126 	__skb_trim(skb, len);
3127 	return 0;
3128 }
3129 
3130 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3131 {
3132 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3133 		skb->ip_summed = CHECKSUM_NONE;
3134 	return __skb_grow(skb, len);
3135 }
3136 
3137 #define skb_queue_walk(queue, skb) \
3138 		for (skb = (queue)->next;					\
3139 		     skb != (struct sk_buff *)(queue);				\
3140 		     skb = skb->next)
3141 
3142 #define skb_queue_walk_safe(queue, skb, tmp)					\
3143 		for (skb = (queue)->next, tmp = skb->next;			\
3144 		     skb != (struct sk_buff *)(queue);				\
3145 		     skb = tmp, tmp = skb->next)
3146 
3147 #define skb_queue_walk_from(queue, skb)						\
3148 		for (; skb != (struct sk_buff *)(queue);			\
3149 		     skb = skb->next)
3150 
3151 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3152 		for (tmp = skb->next;						\
3153 		     skb != (struct sk_buff *)(queue);				\
3154 		     skb = tmp, tmp = skb->next)
3155 
3156 #define skb_queue_reverse_walk(queue, skb) \
3157 		for (skb = (queue)->prev;					\
3158 		     skb != (struct sk_buff *)(queue);				\
3159 		     skb = skb->prev)
3160 
3161 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3162 		for (skb = (queue)->prev, tmp = skb->prev;			\
3163 		     skb != (struct sk_buff *)(queue);				\
3164 		     skb = tmp, tmp = skb->prev)
3165 
3166 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3167 		for (tmp = skb->prev;						\
3168 		     skb != (struct sk_buff *)(queue);				\
3169 		     skb = tmp, tmp = skb->prev)
3170 
3171 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3172 {
3173 	return skb_shinfo(skb)->frag_list != NULL;
3174 }
3175 
3176 static inline void skb_frag_list_init(struct sk_buff *skb)
3177 {
3178 	skb_shinfo(skb)->frag_list = NULL;
3179 }
3180 
3181 #define skb_walk_frags(skb, iter)	\
3182 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3183 
3184 
3185 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3186 				const struct sk_buff *skb);
3187 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3188 					  struct sk_buff_head *queue,
3189 					  unsigned int flags,
3190 					  void (*destructor)(struct sock *sk,
3191 							   struct sk_buff *skb),
3192 					  int *peeked, int *off, int *err,
3193 					  struct sk_buff **last);
3194 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3195 					void (*destructor)(struct sock *sk,
3196 							   struct sk_buff *skb),
3197 					int *peeked, int *off, int *err,
3198 					struct sk_buff **last);
3199 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3200 				    void (*destructor)(struct sock *sk,
3201 						       struct sk_buff *skb),
3202 				    int *peeked, int *off, int *err);
3203 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3204 				  int *err);
3205 unsigned int datagram_poll(struct file *file, struct socket *sock,
3206 			   struct poll_table_struct *wait);
3207 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3208 			   struct iov_iter *to, int size);
3209 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3210 					struct msghdr *msg, int size)
3211 {
3212 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3213 }
3214 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3215 				   struct msghdr *msg);
3216 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3217 				 struct iov_iter *from, int len);
3218 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3219 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3220 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3221 static inline void skb_free_datagram_locked(struct sock *sk,
3222 					    struct sk_buff *skb)
3223 {
3224 	__skb_free_datagram_locked(sk, skb, 0);
3225 }
3226 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3227 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3228 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3229 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3230 			      int len, __wsum csum);
3231 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3232 		    struct pipe_inode_info *pipe, unsigned int len,
3233 		    unsigned int flags);
3234 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3235 			 int len);
3236 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3237 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3238 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3239 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3240 		 int len, int hlen);
3241 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3242 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3243 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3244 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3245 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3246 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3247 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3248 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3249 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3250 int skb_vlan_pop(struct sk_buff *skb);
3251 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3252 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3253 			     gfp_t gfp);
3254 
3255 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3256 {
3257 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3258 }
3259 
3260 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3261 {
3262 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3263 }
3264 
3265 struct skb_checksum_ops {
3266 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3267 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3268 };
3269 
3270 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3271 
3272 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3273 		      __wsum csum, const struct skb_checksum_ops *ops);
3274 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3275 		    __wsum csum);
3276 
3277 static inline void * __must_check
3278 __skb_header_pointer(const struct sk_buff *skb, int offset,
3279 		     int len, void *data, int hlen, void *buffer)
3280 {
3281 	if (hlen - offset >= len)
3282 		return data + offset;
3283 
3284 	if (!skb ||
3285 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3286 		return NULL;
3287 
3288 	return buffer;
3289 }
3290 
3291 static inline void * __must_check
3292 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3293 {
3294 	return __skb_header_pointer(skb, offset, len, skb->data,
3295 				    skb_headlen(skb), buffer);
3296 }
3297 
3298 /**
3299  *	skb_needs_linearize - check if we need to linearize a given skb
3300  *			      depending on the given device features.
3301  *	@skb: socket buffer to check
3302  *	@features: net device features
3303  *
3304  *	Returns true if either:
3305  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3306  *	2. skb is fragmented and the device does not support SG.
3307  */
3308 static inline bool skb_needs_linearize(struct sk_buff *skb,
3309 				       netdev_features_t features)
3310 {
3311 	return skb_is_nonlinear(skb) &&
3312 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3313 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3314 }
3315 
3316 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3317 					     void *to,
3318 					     const unsigned int len)
3319 {
3320 	memcpy(to, skb->data, len);
3321 }
3322 
3323 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3324 						    const int offset, void *to,
3325 						    const unsigned int len)
3326 {
3327 	memcpy(to, skb->data + offset, len);
3328 }
3329 
3330 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3331 					   const void *from,
3332 					   const unsigned int len)
3333 {
3334 	memcpy(skb->data, from, len);
3335 }
3336 
3337 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3338 						  const int offset,
3339 						  const void *from,
3340 						  const unsigned int len)
3341 {
3342 	memcpy(skb->data + offset, from, len);
3343 }
3344 
3345 void skb_init(void);
3346 
3347 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3348 {
3349 	return skb->tstamp;
3350 }
3351 
3352 /**
3353  *	skb_get_timestamp - get timestamp from a skb
3354  *	@skb: skb to get stamp from
3355  *	@stamp: pointer to struct timeval to store stamp in
3356  *
3357  *	Timestamps are stored in the skb as offsets to a base timestamp.
3358  *	This function converts the offset back to a struct timeval and stores
3359  *	it in stamp.
3360  */
3361 static inline void skb_get_timestamp(const struct sk_buff *skb,
3362 				     struct timeval *stamp)
3363 {
3364 	*stamp = ktime_to_timeval(skb->tstamp);
3365 }
3366 
3367 static inline void skb_get_timestampns(const struct sk_buff *skb,
3368 				       struct timespec *stamp)
3369 {
3370 	*stamp = ktime_to_timespec(skb->tstamp);
3371 }
3372 
3373 static inline void __net_timestamp(struct sk_buff *skb)
3374 {
3375 	skb->tstamp = ktime_get_real();
3376 }
3377 
3378 static inline ktime_t net_timedelta(ktime_t t)
3379 {
3380 	return ktime_sub(ktime_get_real(), t);
3381 }
3382 
3383 static inline ktime_t net_invalid_timestamp(void)
3384 {
3385 	return 0;
3386 }
3387 
3388 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3389 
3390 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3391 
3392 void skb_clone_tx_timestamp(struct sk_buff *skb);
3393 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3394 
3395 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3396 
3397 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3398 {
3399 }
3400 
3401 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3402 {
3403 	return false;
3404 }
3405 
3406 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3407 
3408 /**
3409  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3410  *
3411  * PHY drivers may accept clones of transmitted packets for
3412  * timestamping via their phy_driver.txtstamp method. These drivers
3413  * must call this function to return the skb back to the stack with a
3414  * timestamp.
3415  *
3416  * @skb: clone of the the original outgoing packet
3417  * @hwtstamps: hardware time stamps
3418  *
3419  */
3420 void skb_complete_tx_timestamp(struct sk_buff *skb,
3421 			       struct skb_shared_hwtstamps *hwtstamps);
3422 
3423 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3424 		     struct skb_shared_hwtstamps *hwtstamps,
3425 		     struct sock *sk, int tstype);
3426 
3427 /**
3428  * skb_tstamp_tx - queue clone of skb with send time stamps
3429  * @orig_skb:	the original outgoing packet
3430  * @hwtstamps:	hardware time stamps, may be NULL if not available
3431  *
3432  * If the skb has a socket associated, then this function clones the
3433  * skb (thus sharing the actual data and optional structures), stores
3434  * the optional hardware time stamping information (if non NULL) or
3435  * generates a software time stamp (otherwise), then queues the clone
3436  * to the error queue of the socket.  Errors are silently ignored.
3437  */
3438 void skb_tstamp_tx(struct sk_buff *orig_skb,
3439 		   struct skb_shared_hwtstamps *hwtstamps);
3440 
3441 /**
3442  * skb_tx_timestamp() - Driver hook for transmit timestamping
3443  *
3444  * Ethernet MAC Drivers should call this function in their hard_xmit()
3445  * function immediately before giving the sk_buff to the MAC hardware.
3446  *
3447  * Specifically, one should make absolutely sure that this function is
3448  * called before TX completion of this packet can trigger.  Otherwise
3449  * the packet could potentially already be freed.
3450  *
3451  * @skb: A socket buffer.
3452  */
3453 static inline void skb_tx_timestamp(struct sk_buff *skb)
3454 {
3455 	skb_clone_tx_timestamp(skb);
3456 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3457 		skb_tstamp_tx(skb, NULL);
3458 }
3459 
3460 /**
3461  * skb_complete_wifi_ack - deliver skb with wifi status
3462  *
3463  * @skb: the original outgoing packet
3464  * @acked: ack status
3465  *
3466  */
3467 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3468 
3469 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3470 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3471 
3472 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3473 {
3474 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3475 		skb->csum_valid ||
3476 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3477 		 skb_checksum_start_offset(skb) >= 0));
3478 }
3479 
3480 /**
3481  *	skb_checksum_complete - Calculate checksum of an entire packet
3482  *	@skb: packet to process
3483  *
3484  *	This function calculates the checksum over the entire packet plus
3485  *	the value of skb->csum.  The latter can be used to supply the
3486  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3487  *	checksum.
3488  *
3489  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3490  *	this function can be used to verify that checksum on received
3491  *	packets.  In that case the function should return zero if the
3492  *	checksum is correct.  In particular, this function will return zero
3493  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3494  *	hardware has already verified the correctness of the checksum.
3495  */
3496 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3497 {
3498 	return skb_csum_unnecessary(skb) ?
3499 	       0 : __skb_checksum_complete(skb);
3500 }
3501 
3502 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3503 {
3504 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3505 		if (skb->csum_level == 0)
3506 			skb->ip_summed = CHECKSUM_NONE;
3507 		else
3508 			skb->csum_level--;
3509 	}
3510 }
3511 
3512 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3513 {
3514 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3515 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3516 			skb->csum_level++;
3517 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3518 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3519 		skb->csum_level = 0;
3520 	}
3521 }
3522 
3523 /* Check if we need to perform checksum complete validation.
3524  *
3525  * Returns true if checksum complete is needed, false otherwise
3526  * (either checksum is unnecessary or zero checksum is allowed).
3527  */
3528 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3529 						  bool zero_okay,
3530 						  __sum16 check)
3531 {
3532 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3533 		skb->csum_valid = 1;
3534 		__skb_decr_checksum_unnecessary(skb);
3535 		return false;
3536 	}
3537 
3538 	return true;
3539 }
3540 
3541 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3542  * in checksum_init.
3543  */
3544 #define CHECKSUM_BREAK 76
3545 
3546 /* Unset checksum-complete
3547  *
3548  * Unset checksum complete can be done when packet is being modified
3549  * (uncompressed for instance) and checksum-complete value is
3550  * invalidated.
3551  */
3552 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3553 {
3554 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3555 		skb->ip_summed = CHECKSUM_NONE;
3556 }
3557 
3558 /* Validate (init) checksum based on checksum complete.
3559  *
3560  * Return values:
3561  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3562  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3563  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3564  *   non-zero: value of invalid checksum
3565  *
3566  */
3567 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3568 						       bool complete,
3569 						       __wsum psum)
3570 {
3571 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3572 		if (!csum_fold(csum_add(psum, skb->csum))) {
3573 			skb->csum_valid = 1;
3574 			return 0;
3575 		}
3576 	}
3577 
3578 	skb->csum = psum;
3579 
3580 	if (complete || skb->len <= CHECKSUM_BREAK) {
3581 		__sum16 csum;
3582 
3583 		csum = __skb_checksum_complete(skb);
3584 		skb->csum_valid = !csum;
3585 		return csum;
3586 	}
3587 
3588 	return 0;
3589 }
3590 
3591 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3592 {
3593 	return 0;
3594 }
3595 
3596 /* Perform checksum validate (init). Note that this is a macro since we only
3597  * want to calculate the pseudo header which is an input function if necessary.
3598  * First we try to validate without any computation (checksum unnecessary) and
3599  * then calculate based on checksum complete calling the function to compute
3600  * pseudo header.
3601  *
3602  * Return values:
3603  *   0: checksum is validated or try to in skb_checksum_complete
3604  *   non-zero: value of invalid checksum
3605  */
3606 #define __skb_checksum_validate(skb, proto, complete,			\
3607 				zero_okay, check, compute_pseudo)	\
3608 ({									\
3609 	__sum16 __ret = 0;						\
3610 	skb->csum_valid = 0;						\
3611 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3612 		__ret = __skb_checksum_validate_complete(skb,		\
3613 				complete, compute_pseudo(skb, proto));	\
3614 	__ret;								\
3615 })
3616 
3617 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3618 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3619 
3620 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3621 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3622 
3623 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3624 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3625 
3626 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3627 					 compute_pseudo)		\
3628 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3629 
3630 #define skb_checksum_simple_validate(skb)				\
3631 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3632 
3633 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3634 {
3635 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3636 }
3637 
3638 static inline void __skb_checksum_convert(struct sk_buff *skb,
3639 					  __sum16 check, __wsum pseudo)
3640 {
3641 	skb->csum = ~pseudo;
3642 	skb->ip_summed = CHECKSUM_COMPLETE;
3643 }
3644 
3645 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3646 do {									\
3647 	if (__skb_checksum_convert_check(skb))				\
3648 		__skb_checksum_convert(skb, check,			\
3649 				       compute_pseudo(skb, proto));	\
3650 } while (0)
3651 
3652 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3653 					      u16 start, u16 offset)
3654 {
3655 	skb->ip_summed = CHECKSUM_PARTIAL;
3656 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3657 	skb->csum_offset = offset - start;
3658 }
3659 
3660 /* Update skbuf and packet to reflect the remote checksum offload operation.
3661  * When called, ptr indicates the starting point for skb->csum when
3662  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3663  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3664  */
3665 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3666 				       int start, int offset, bool nopartial)
3667 {
3668 	__wsum delta;
3669 
3670 	if (!nopartial) {
3671 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3672 		return;
3673 	}
3674 
3675 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3676 		__skb_checksum_complete(skb);
3677 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3678 	}
3679 
3680 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3681 
3682 	/* Adjust skb->csum since we changed the packet */
3683 	skb->csum = csum_add(skb->csum, delta);
3684 }
3685 
3686 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3687 {
3688 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3689 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3690 #else
3691 	return NULL;
3692 #endif
3693 }
3694 
3695 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3696 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3697 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3698 {
3699 	if (nfct && atomic_dec_and_test(&nfct->use))
3700 		nf_conntrack_destroy(nfct);
3701 }
3702 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3703 {
3704 	if (nfct)
3705 		atomic_inc(&nfct->use);
3706 }
3707 #endif
3708 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3709 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3710 {
3711 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3712 		kfree(nf_bridge);
3713 }
3714 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3715 {
3716 	if (nf_bridge)
3717 		refcount_inc(&nf_bridge->use);
3718 }
3719 #endif /* CONFIG_BRIDGE_NETFILTER */
3720 static inline void nf_reset(struct sk_buff *skb)
3721 {
3722 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3723 	nf_conntrack_put(skb_nfct(skb));
3724 	skb->_nfct = 0;
3725 #endif
3726 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3727 	nf_bridge_put(skb->nf_bridge);
3728 	skb->nf_bridge = NULL;
3729 #endif
3730 }
3731 
3732 static inline void nf_reset_trace(struct sk_buff *skb)
3733 {
3734 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3735 	skb->nf_trace = 0;
3736 #endif
3737 }
3738 
3739 /* Note: This doesn't put any conntrack and bridge info in dst. */
3740 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3741 			     bool copy)
3742 {
3743 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3744 	dst->_nfct = src->_nfct;
3745 	nf_conntrack_get(skb_nfct(src));
3746 #endif
3747 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3748 	dst->nf_bridge  = src->nf_bridge;
3749 	nf_bridge_get(src->nf_bridge);
3750 #endif
3751 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3752 	if (copy)
3753 		dst->nf_trace = src->nf_trace;
3754 #endif
3755 }
3756 
3757 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3758 {
3759 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3760 	nf_conntrack_put(skb_nfct(dst));
3761 #endif
3762 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3763 	nf_bridge_put(dst->nf_bridge);
3764 #endif
3765 	__nf_copy(dst, src, true);
3766 }
3767 
3768 #ifdef CONFIG_NETWORK_SECMARK
3769 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3770 {
3771 	to->secmark = from->secmark;
3772 }
3773 
3774 static inline void skb_init_secmark(struct sk_buff *skb)
3775 {
3776 	skb->secmark = 0;
3777 }
3778 #else
3779 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3780 { }
3781 
3782 static inline void skb_init_secmark(struct sk_buff *skb)
3783 { }
3784 #endif
3785 
3786 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3787 {
3788 	return !skb->destructor &&
3789 #if IS_ENABLED(CONFIG_XFRM)
3790 		!skb->sp &&
3791 #endif
3792 		!skb_nfct(skb) &&
3793 		!skb->_skb_refdst &&
3794 		!skb_has_frag_list(skb);
3795 }
3796 
3797 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3798 {
3799 	skb->queue_mapping = queue_mapping;
3800 }
3801 
3802 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3803 {
3804 	return skb->queue_mapping;
3805 }
3806 
3807 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3808 {
3809 	to->queue_mapping = from->queue_mapping;
3810 }
3811 
3812 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3813 {
3814 	skb->queue_mapping = rx_queue + 1;
3815 }
3816 
3817 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3818 {
3819 	return skb->queue_mapping - 1;
3820 }
3821 
3822 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3823 {
3824 	return skb->queue_mapping != 0;
3825 }
3826 
3827 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3828 {
3829 	skb->dst_pending_confirm = val;
3830 }
3831 
3832 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3833 {
3834 	return skb->dst_pending_confirm != 0;
3835 }
3836 
3837 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3838 {
3839 #ifdef CONFIG_XFRM
3840 	return skb->sp;
3841 #else
3842 	return NULL;
3843 #endif
3844 }
3845 
3846 /* Keeps track of mac header offset relative to skb->head.
3847  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3848  * For non-tunnel skb it points to skb_mac_header() and for
3849  * tunnel skb it points to outer mac header.
3850  * Keeps track of level of encapsulation of network headers.
3851  */
3852 struct skb_gso_cb {
3853 	union {
3854 		int	mac_offset;
3855 		int	data_offset;
3856 	};
3857 	int	encap_level;
3858 	__wsum	csum;
3859 	__u16	csum_start;
3860 };
3861 #define SKB_SGO_CB_OFFSET	32
3862 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3863 
3864 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3865 {
3866 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3867 		SKB_GSO_CB(inner_skb)->mac_offset;
3868 }
3869 
3870 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3871 {
3872 	int new_headroom, headroom;
3873 	int ret;
3874 
3875 	headroom = skb_headroom(skb);
3876 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3877 	if (ret)
3878 		return ret;
3879 
3880 	new_headroom = skb_headroom(skb);
3881 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3882 	return 0;
3883 }
3884 
3885 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3886 {
3887 	/* Do not update partial checksums if remote checksum is enabled. */
3888 	if (skb->remcsum_offload)
3889 		return;
3890 
3891 	SKB_GSO_CB(skb)->csum = res;
3892 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3893 }
3894 
3895 /* Compute the checksum for a gso segment. First compute the checksum value
3896  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3897  * then add in skb->csum (checksum from csum_start to end of packet).
3898  * skb->csum and csum_start are then updated to reflect the checksum of the
3899  * resultant packet starting from the transport header-- the resultant checksum
3900  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3901  * header.
3902  */
3903 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3904 {
3905 	unsigned char *csum_start = skb_transport_header(skb);
3906 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3907 	__wsum partial = SKB_GSO_CB(skb)->csum;
3908 
3909 	SKB_GSO_CB(skb)->csum = res;
3910 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3911 
3912 	return csum_fold(csum_partial(csum_start, plen, partial));
3913 }
3914 
3915 static inline bool skb_is_gso(const struct sk_buff *skb)
3916 {
3917 	return skb_shinfo(skb)->gso_size;
3918 }
3919 
3920 /* Note: Should be called only if skb_is_gso(skb) is true */
3921 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3922 {
3923 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3924 }
3925 
3926 static inline void skb_gso_reset(struct sk_buff *skb)
3927 {
3928 	skb_shinfo(skb)->gso_size = 0;
3929 	skb_shinfo(skb)->gso_segs = 0;
3930 	skb_shinfo(skb)->gso_type = 0;
3931 }
3932 
3933 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3934 
3935 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3936 {
3937 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
3938 	 * wanted then gso_type will be set. */
3939 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3940 
3941 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3942 	    unlikely(shinfo->gso_type == 0)) {
3943 		__skb_warn_lro_forwarding(skb);
3944 		return true;
3945 	}
3946 	return false;
3947 }
3948 
3949 static inline void skb_forward_csum(struct sk_buff *skb)
3950 {
3951 	/* Unfortunately we don't support this one.  Any brave souls? */
3952 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3953 		skb->ip_summed = CHECKSUM_NONE;
3954 }
3955 
3956 /**
3957  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3958  * @skb: skb to check
3959  *
3960  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3961  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3962  * use this helper, to document places where we make this assertion.
3963  */
3964 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3965 {
3966 #ifdef DEBUG
3967 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3968 #endif
3969 }
3970 
3971 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3972 
3973 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3974 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3975 				     unsigned int transport_len,
3976 				     __sum16(*skb_chkf)(struct sk_buff *skb));
3977 
3978 /**
3979  * skb_head_is_locked - Determine if the skb->head is locked down
3980  * @skb: skb to check
3981  *
3982  * The head on skbs build around a head frag can be removed if they are
3983  * not cloned.  This function returns true if the skb head is locked down
3984  * due to either being allocated via kmalloc, or by being a clone with
3985  * multiple references to the head.
3986  */
3987 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3988 {
3989 	return !skb->head_frag || skb_cloned(skb);
3990 }
3991 
3992 /**
3993  * skb_gso_network_seglen - Return length of individual segments of a gso packet
3994  *
3995  * @skb: GSO skb
3996  *
3997  * skb_gso_network_seglen is used to determine the real size of the
3998  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3999  *
4000  * The MAC/L2 header is not accounted for.
4001  */
4002 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4003 {
4004 	unsigned int hdr_len = skb_transport_header(skb) -
4005 			       skb_network_header(skb);
4006 	return hdr_len + skb_gso_transport_seglen(skb);
4007 }
4008 
4009 /* Local Checksum Offload.
4010  * Compute outer checksum based on the assumption that the
4011  * inner checksum will be offloaded later.
4012  * See Documentation/networking/checksum-offloads.txt for
4013  * explanation of how this works.
4014  * Fill in outer checksum adjustment (e.g. with sum of outer
4015  * pseudo-header) before calling.
4016  * Also ensure that inner checksum is in linear data area.
4017  */
4018 static inline __wsum lco_csum(struct sk_buff *skb)
4019 {
4020 	unsigned char *csum_start = skb_checksum_start(skb);
4021 	unsigned char *l4_hdr = skb_transport_header(skb);
4022 	__wsum partial;
4023 
4024 	/* Start with complement of inner checksum adjustment */
4025 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4026 						    skb->csum_offset));
4027 
4028 	/* Add in checksum of our headers (incl. outer checksum
4029 	 * adjustment filled in by caller) and return result.
4030 	 */
4031 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4032 }
4033 
4034 #endif	/* __KERNEL__ */
4035 #endif	/* _LINUX_SKBUFF_H */
4036