xref: /linux-6.15/include/linux/skbuff.h (revision ef6243ac)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
251 struct nf_conntrack {
252 	atomic_t use;
253 };
254 #endif
255 
256 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
257 struct nf_bridge_info {
258 	enum {
259 		BRNF_PROTO_UNCHANGED,
260 		BRNF_PROTO_8021Q,
261 		BRNF_PROTO_PPPOE
262 	} orig_proto:8;
263 	u8			pkt_otherhost:1;
264 	u8			in_prerouting:1;
265 	u8			bridged_dnat:1;
266 	__u16			frag_max_size;
267 	struct net_device	*physindev;
268 
269 	/* always valid & non-NULL from FORWARD on, for physdev match */
270 	struct net_device	*physoutdev;
271 	union {
272 		/* prerouting: detect dnat in orig/reply direction */
273 		__be32          ipv4_daddr;
274 		struct in6_addr ipv6_daddr;
275 
276 		/* after prerouting + nat detected: store original source
277 		 * mac since neigh resolution overwrites it, only used while
278 		 * skb is out in neigh layer.
279 		 */
280 		char neigh_header[8];
281 	};
282 };
283 #endif
284 
285 struct sk_buff_head {
286 	/* These two members must be first. */
287 	struct sk_buff	*next;
288 	struct sk_buff	*prev;
289 
290 	__u32		qlen;
291 	spinlock_t	lock;
292 };
293 
294 struct sk_buff;
295 
296 /* To allow 64K frame to be packed as single skb without frag_list we
297  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298  * buffers which do not start on a page boundary.
299  *
300  * Since GRO uses frags we allocate at least 16 regardless of page
301  * size.
302  */
303 #if (65536/PAGE_SIZE + 1) < 16
304 #define MAX_SKB_FRAGS 16UL
305 #else
306 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307 #endif
308 extern int sysctl_max_skb_frags;
309 
310 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311  * segment using its current segmentation instead.
312  */
313 #define GSO_BY_FRAGS	0xFFFF
314 
315 typedef struct skb_frag_struct skb_frag_t;
316 
317 struct skb_frag_struct {
318 	struct {
319 		struct page *p;
320 	} page;
321 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 	__u32 page_offset;
323 	__u32 size;
324 #else
325 	__u16 page_offset;
326 	__u16 size;
327 #endif
328 };
329 
330 /**
331  * skb_frag_size - Returns the size of a skb fragment
332  * @frag: skb fragment
333  */
334 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
335 {
336 	return frag->size;
337 }
338 
339 /**
340  * skb_frag_size_set - Sets the size of a skb fragment
341  * @frag: skb fragment
342  * @size: size of fragment
343  */
344 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
345 {
346 	frag->size = size;
347 }
348 
349 /**
350  * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
351  * @frag: skb fragment
352  * @delta: value to add
353  */
354 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
355 {
356 	frag->size += delta;
357 }
358 
359 /**
360  * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
361  * @frag: skb fragment
362  * @delta: value to subtract
363  */
364 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
365 {
366 	frag->size -= delta;
367 }
368 
369 /**
370  * skb_frag_must_loop - Test if %p is a high memory page
371  * @p: fragment's page
372  */
373 static inline bool skb_frag_must_loop(struct page *p)
374 {
375 #if defined(CONFIG_HIGHMEM)
376 	if (PageHighMem(p))
377 		return true;
378 #endif
379 	return false;
380 }
381 
382 /**
383  *	skb_frag_foreach_page - loop over pages in a fragment
384  *
385  *	@f:		skb frag to operate on
386  *	@f_off:		offset from start of f->page.p
387  *	@f_len:		length from f_off to loop over
388  *	@p:		(temp var) current page
389  *	@p_off:		(temp var) offset from start of current page,
390  *	                           non-zero only on first page.
391  *	@p_len:		(temp var) length in current page,
392  *				   < PAGE_SIZE only on first and last page.
393  *	@copied:	(temp var) length so far, excluding current p_len.
394  *
395  *	A fragment can hold a compound page, in which case per-page
396  *	operations, notably kmap_atomic, must be called for each
397  *	regular page.
398  */
399 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
400 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
401 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
402 	     p_len = skb_frag_must_loop(p) ?				\
403 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
404 	     copied = 0;						\
405 	     copied < f_len;						\
406 	     copied += p_len, p++, p_off = 0,				\
407 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
408 
409 #define HAVE_HW_TIME_STAMP
410 
411 /**
412  * struct skb_shared_hwtstamps - hardware time stamps
413  * @hwtstamp:	hardware time stamp transformed into duration
414  *		since arbitrary point in time
415  *
416  * Software time stamps generated by ktime_get_real() are stored in
417  * skb->tstamp.
418  *
419  * hwtstamps can only be compared against other hwtstamps from
420  * the same device.
421  *
422  * This structure is attached to packets as part of the
423  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
424  */
425 struct skb_shared_hwtstamps {
426 	ktime_t	hwtstamp;
427 };
428 
429 /* Definitions for tx_flags in struct skb_shared_info */
430 enum {
431 	/* generate hardware time stamp */
432 	SKBTX_HW_TSTAMP = 1 << 0,
433 
434 	/* generate software time stamp when queueing packet to NIC */
435 	SKBTX_SW_TSTAMP = 1 << 1,
436 
437 	/* device driver is going to provide hardware time stamp */
438 	SKBTX_IN_PROGRESS = 1 << 2,
439 
440 	/* device driver supports TX zero-copy buffers */
441 	SKBTX_DEV_ZEROCOPY = 1 << 3,
442 
443 	/* generate wifi status information (where possible) */
444 	SKBTX_WIFI_STATUS = 1 << 4,
445 
446 	/* This indicates at least one fragment might be overwritten
447 	 * (as in vmsplice(), sendfile() ...)
448 	 * If we need to compute a TX checksum, we'll need to copy
449 	 * all frags to avoid possible bad checksum
450 	 */
451 	SKBTX_SHARED_FRAG = 1 << 5,
452 
453 	/* generate software time stamp when entering packet scheduling */
454 	SKBTX_SCHED_TSTAMP = 1 << 6,
455 };
456 
457 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
458 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
459 				 SKBTX_SCHED_TSTAMP)
460 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
461 
462 /*
463  * The callback notifies userspace to release buffers when skb DMA is done in
464  * lower device, the skb last reference should be 0 when calling this.
465  * The zerocopy_success argument is true if zero copy transmit occurred,
466  * false on data copy or out of memory error caused by data copy attempt.
467  * The ctx field is used to track device context.
468  * The desc field is used to track userspace buffer index.
469  */
470 struct ubuf_info {
471 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
472 	union {
473 		struct {
474 			unsigned long desc;
475 			void *ctx;
476 		};
477 		struct {
478 			u32 id;
479 			u16 len;
480 			u16 zerocopy:1;
481 			u32 bytelen;
482 		};
483 	};
484 	refcount_t refcnt;
485 
486 	struct mmpin {
487 		struct user_struct *user;
488 		unsigned int num_pg;
489 	} mmp;
490 };
491 
492 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
493 
494 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
495 void mm_unaccount_pinned_pages(struct mmpin *mmp);
496 
497 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
498 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
499 					struct ubuf_info *uarg);
500 
501 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
502 {
503 	refcount_inc(&uarg->refcnt);
504 }
505 
506 void sock_zerocopy_put(struct ubuf_info *uarg);
507 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
508 
509 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
510 
511 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
512 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
513 			     struct msghdr *msg, int len,
514 			     struct ubuf_info *uarg);
515 
516 /* This data is invariant across clones and lives at
517  * the end of the header data, ie. at skb->end.
518  */
519 struct skb_shared_info {
520 	__u8		__unused;
521 	__u8		meta_len;
522 	__u8		nr_frags;
523 	__u8		tx_flags;
524 	unsigned short	gso_size;
525 	/* Warning: this field is not always filled in (UFO)! */
526 	unsigned short	gso_segs;
527 	struct sk_buff	*frag_list;
528 	struct skb_shared_hwtstamps hwtstamps;
529 	unsigned int	gso_type;
530 	u32		tskey;
531 
532 	/*
533 	 * Warning : all fields before dataref are cleared in __alloc_skb()
534 	 */
535 	atomic_t	dataref;
536 
537 	/* Intermediate layers must ensure that destructor_arg
538 	 * remains valid until skb destructor */
539 	void *		destructor_arg;
540 
541 	/* must be last field, see pskb_expand_head() */
542 	skb_frag_t	frags[MAX_SKB_FRAGS];
543 };
544 
545 /* We divide dataref into two halves.  The higher 16 bits hold references
546  * to the payload part of skb->data.  The lower 16 bits hold references to
547  * the entire skb->data.  A clone of a headerless skb holds the length of
548  * the header in skb->hdr_len.
549  *
550  * All users must obey the rule that the skb->data reference count must be
551  * greater than or equal to the payload reference count.
552  *
553  * Holding a reference to the payload part means that the user does not
554  * care about modifications to the header part of skb->data.
555  */
556 #define SKB_DATAREF_SHIFT 16
557 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
558 
559 
560 enum {
561 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
562 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
563 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
564 };
565 
566 enum {
567 	SKB_GSO_TCPV4 = 1 << 0,
568 
569 	/* This indicates the skb is from an untrusted source. */
570 	SKB_GSO_DODGY = 1 << 1,
571 
572 	/* This indicates the tcp segment has CWR set. */
573 	SKB_GSO_TCP_ECN = 1 << 2,
574 
575 	SKB_GSO_TCP_FIXEDID = 1 << 3,
576 
577 	SKB_GSO_TCPV6 = 1 << 4,
578 
579 	SKB_GSO_FCOE = 1 << 5,
580 
581 	SKB_GSO_GRE = 1 << 6,
582 
583 	SKB_GSO_GRE_CSUM = 1 << 7,
584 
585 	SKB_GSO_IPXIP4 = 1 << 8,
586 
587 	SKB_GSO_IPXIP6 = 1 << 9,
588 
589 	SKB_GSO_UDP_TUNNEL = 1 << 10,
590 
591 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
592 
593 	SKB_GSO_PARTIAL = 1 << 12,
594 
595 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
596 
597 	SKB_GSO_SCTP = 1 << 14,
598 
599 	SKB_GSO_ESP = 1 << 15,
600 
601 	SKB_GSO_UDP = 1 << 16,
602 
603 	SKB_GSO_UDP_L4 = 1 << 17,
604 };
605 
606 #if BITS_PER_LONG > 32
607 #define NET_SKBUFF_DATA_USES_OFFSET 1
608 #endif
609 
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 typedef unsigned int sk_buff_data_t;
612 #else
613 typedef unsigned char *sk_buff_data_t;
614 #endif
615 
616 /**
617  *	struct sk_buff - socket buffer
618  *	@next: Next buffer in list
619  *	@prev: Previous buffer in list
620  *	@tstamp: Time we arrived/left
621  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
622  *	@sk: Socket we are owned by
623  *	@dev: Device we arrived on/are leaving by
624  *	@cb: Control buffer. Free for use by every layer. Put private vars here
625  *	@_skb_refdst: destination entry (with norefcount bit)
626  *	@sp: the security path, used for xfrm
627  *	@len: Length of actual data
628  *	@data_len: Data length
629  *	@mac_len: Length of link layer header
630  *	@hdr_len: writable header length of cloned skb
631  *	@csum: Checksum (must include start/offset pair)
632  *	@csum_start: Offset from skb->head where checksumming should start
633  *	@csum_offset: Offset from csum_start where checksum should be stored
634  *	@priority: Packet queueing priority
635  *	@ignore_df: allow local fragmentation
636  *	@cloned: Head may be cloned (check refcnt to be sure)
637  *	@ip_summed: Driver fed us an IP checksum
638  *	@nohdr: Payload reference only, must not modify header
639  *	@pkt_type: Packet class
640  *	@fclone: skbuff clone status
641  *	@ipvs_property: skbuff is owned by ipvs
642  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
643  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
644  *	@tc_skip_classify: do not classify packet. set by IFB device
645  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
646  *	@tc_redirected: packet was redirected by a tc action
647  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
648  *	@peeked: this packet has been seen already, so stats have been
649  *		done for it, don't do them again
650  *	@nf_trace: netfilter packet trace flag
651  *	@protocol: Packet protocol from driver
652  *	@destructor: Destruct function
653  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
654  *	@_nfct: Associated connection, if any (with nfctinfo bits)
655  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
656  *	@skb_iif: ifindex of device we arrived on
657  *	@tc_index: Traffic control index
658  *	@hash: the packet hash
659  *	@queue_mapping: Queue mapping for multiqueue devices
660  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
661  *	@active_extensions: active extensions (skb_ext_id types)
662  *	@ndisc_nodetype: router type (from link layer)
663  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
664  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
665  *		ports.
666  *	@sw_hash: indicates hash was computed in software stack
667  *	@wifi_acked_valid: wifi_acked was set
668  *	@wifi_acked: whether frame was acked on wifi or not
669  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
670  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
671  *	@dst_pending_confirm: need to confirm neighbour
672  *	@decrypted: Decrypted SKB
673  *	@napi_id: id of the NAPI struct this skb came from
674  *	@secmark: security marking
675  *	@mark: Generic packet mark
676  *	@vlan_proto: vlan encapsulation protocol
677  *	@vlan_tci: vlan tag control information
678  *	@inner_protocol: Protocol (encapsulation)
679  *	@inner_transport_header: Inner transport layer header (encapsulation)
680  *	@inner_network_header: Network layer header (encapsulation)
681  *	@inner_mac_header: Link layer header (encapsulation)
682  *	@transport_header: Transport layer header
683  *	@network_header: Network layer header
684  *	@mac_header: Link layer header
685  *	@tail: Tail pointer
686  *	@end: End pointer
687  *	@head: Head of buffer
688  *	@data: Data head pointer
689  *	@truesize: Buffer size
690  *	@users: User count - see {datagram,tcp}.c
691  *	@extensions: allocated extensions, valid if active_extensions is nonzero
692  */
693 
694 struct sk_buff {
695 	union {
696 		struct {
697 			/* These two members must be first. */
698 			struct sk_buff		*next;
699 			struct sk_buff		*prev;
700 
701 			union {
702 				struct net_device	*dev;
703 				/* Some protocols might use this space to store information,
704 				 * while device pointer would be NULL.
705 				 * UDP receive path is one user.
706 				 */
707 				unsigned long		dev_scratch;
708 			};
709 		};
710 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
711 		struct list_head	list;
712 	};
713 
714 	union {
715 		struct sock		*sk;
716 		int			ip_defrag_offset;
717 	};
718 
719 	union {
720 		ktime_t		tstamp;
721 		u64		skb_mstamp_ns; /* earliest departure time */
722 	};
723 	/*
724 	 * This is the control buffer. It is free to use for every
725 	 * layer. Please put your private variables there. If you
726 	 * want to keep them across layers you have to do a skb_clone()
727 	 * first. This is owned by whoever has the skb queued ATM.
728 	 */
729 	char			cb[48] __aligned(8);
730 
731 	union {
732 		struct {
733 			unsigned long	_skb_refdst;
734 			void		(*destructor)(struct sk_buff *skb);
735 		};
736 		struct list_head	tcp_tsorted_anchor;
737 	};
738 
739 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
740 	unsigned long		 _nfct;
741 #endif
742 	unsigned int		len,
743 				data_len;
744 	__u16			mac_len,
745 				hdr_len;
746 
747 	/* Following fields are _not_ copied in __copy_skb_header()
748 	 * Note that queue_mapping is here mostly to fill a hole.
749 	 */
750 	__u16			queue_mapping;
751 
752 /* if you move cloned around you also must adapt those constants */
753 #ifdef __BIG_ENDIAN_BITFIELD
754 #define CLONED_MASK	(1 << 7)
755 #else
756 #define CLONED_MASK	1
757 #endif
758 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
759 
760 	__u8			__cloned_offset[0];
761 	__u8			cloned:1,
762 				nohdr:1,
763 				fclone:2,
764 				peeked:1,
765 				head_frag:1,
766 				pfmemalloc:1;
767 #ifdef CONFIG_SKB_EXTENSIONS
768 	__u8			active_extensions;
769 #endif
770 	/* fields enclosed in headers_start/headers_end are copied
771 	 * using a single memcpy() in __copy_skb_header()
772 	 */
773 	/* private: */
774 	__u32			headers_start[0];
775 	/* public: */
776 
777 /* if you move pkt_type around you also must adapt those constants */
778 #ifdef __BIG_ENDIAN_BITFIELD
779 #define PKT_TYPE_MAX	(7 << 5)
780 #else
781 #define PKT_TYPE_MAX	7
782 #endif
783 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
784 
785 	__u8			__pkt_type_offset[0];
786 	__u8			pkt_type:3;
787 	__u8			ignore_df:1;
788 	__u8			nf_trace:1;
789 	__u8			ip_summed:2;
790 	__u8			ooo_okay:1;
791 
792 	__u8			l4_hash:1;
793 	__u8			sw_hash:1;
794 	__u8			wifi_acked_valid:1;
795 	__u8			wifi_acked:1;
796 	__u8			no_fcs:1;
797 	/* Indicates the inner headers are valid in the skbuff. */
798 	__u8			encapsulation:1;
799 	__u8			encap_hdr_csum:1;
800 	__u8			csum_valid:1;
801 
802 #ifdef __BIG_ENDIAN_BITFIELD
803 #define PKT_VLAN_PRESENT_BIT	7
804 #else
805 #define PKT_VLAN_PRESENT_BIT	0
806 #endif
807 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
808 	__u8			__pkt_vlan_present_offset[0];
809 	__u8			vlan_present:1;
810 	__u8			csum_complete_sw:1;
811 	__u8			csum_level:2;
812 	__u8			csum_not_inet:1;
813 	__u8			dst_pending_confirm:1;
814 #ifdef CONFIG_IPV6_NDISC_NODETYPE
815 	__u8			ndisc_nodetype:2;
816 #endif
817 
818 	__u8			ipvs_property:1;
819 	__u8			inner_protocol_type:1;
820 	__u8			remcsum_offload:1;
821 #ifdef CONFIG_NET_SWITCHDEV
822 	__u8			offload_fwd_mark:1;
823 	__u8			offload_l3_fwd_mark:1;
824 #endif
825 #ifdef CONFIG_NET_CLS_ACT
826 	__u8			tc_skip_classify:1;
827 	__u8			tc_at_ingress:1;
828 	__u8			tc_redirected:1;
829 	__u8			tc_from_ingress:1;
830 #endif
831 #ifdef CONFIG_TLS_DEVICE
832 	__u8			decrypted:1;
833 #endif
834 
835 #ifdef CONFIG_NET_SCHED
836 	__u16			tc_index;	/* traffic control index */
837 #endif
838 
839 	union {
840 		__wsum		csum;
841 		struct {
842 			__u16	csum_start;
843 			__u16	csum_offset;
844 		};
845 	};
846 	__u32			priority;
847 	int			skb_iif;
848 	__u32			hash;
849 	__be16			vlan_proto;
850 	__u16			vlan_tci;
851 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
852 	union {
853 		unsigned int	napi_id;
854 		unsigned int	sender_cpu;
855 	};
856 #endif
857 #ifdef CONFIG_NETWORK_SECMARK
858 	__u32		secmark;
859 #endif
860 
861 	union {
862 		__u32		mark;
863 		__u32		reserved_tailroom;
864 	};
865 
866 	union {
867 		__be16		inner_protocol;
868 		__u8		inner_ipproto;
869 	};
870 
871 	__u16			inner_transport_header;
872 	__u16			inner_network_header;
873 	__u16			inner_mac_header;
874 
875 	__be16			protocol;
876 	__u16			transport_header;
877 	__u16			network_header;
878 	__u16			mac_header;
879 
880 	/* private: */
881 	__u32			headers_end[0];
882 	/* public: */
883 
884 	/* These elements must be at the end, see alloc_skb() for details.  */
885 	sk_buff_data_t		tail;
886 	sk_buff_data_t		end;
887 	unsigned char		*head,
888 				*data;
889 	unsigned int		truesize;
890 	refcount_t		users;
891 
892 #ifdef CONFIG_SKB_EXTENSIONS
893 	/* only useable after checking ->active_extensions != 0 */
894 	struct skb_ext		*extensions;
895 #endif
896 };
897 
898 #ifdef __KERNEL__
899 /*
900  *	Handling routines are only of interest to the kernel
901  */
902 
903 #define SKB_ALLOC_FCLONE	0x01
904 #define SKB_ALLOC_RX		0x02
905 #define SKB_ALLOC_NAPI		0x04
906 
907 /**
908  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
909  * @skb: buffer
910  */
911 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
912 {
913 	return unlikely(skb->pfmemalloc);
914 }
915 
916 /*
917  * skb might have a dst pointer attached, refcounted or not.
918  * _skb_refdst low order bit is set if refcount was _not_ taken
919  */
920 #define SKB_DST_NOREF	1UL
921 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
922 
923 #define SKB_NFCT_PTRMASK	~(7UL)
924 /**
925  * skb_dst - returns skb dst_entry
926  * @skb: buffer
927  *
928  * Returns skb dst_entry, regardless of reference taken or not.
929  */
930 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
931 {
932 	/* If refdst was not refcounted, check we still are in a
933 	 * rcu_read_lock section
934 	 */
935 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
936 		!rcu_read_lock_held() &&
937 		!rcu_read_lock_bh_held());
938 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
939 }
940 
941 /**
942  * skb_dst_set - sets skb dst
943  * @skb: buffer
944  * @dst: dst entry
945  *
946  * Sets skb dst, assuming a reference was taken on dst and should
947  * be released by skb_dst_drop()
948  */
949 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
950 {
951 	skb->_skb_refdst = (unsigned long)dst;
952 }
953 
954 /**
955  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
956  * @skb: buffer
957  * @dst: dst entry
958  *
959  * Sets skb dst, assuming a reference was not taken on dst.
960  * If dst entry is cached, we do not take reference and dst_release
961  * will be avoided by refdst_drop. If dst entry is not cached, we take
962  * reference, so that last dst_release can destroy the dst immediately.
963  */
964 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
965 {
966 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
967 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
968 }
969 
970 /**
971  * skb_dst_is_noref - Test if skb dst isn't refcounted
972  * @skb: buffer
973  */
974 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
975 {
976 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
977 }
978 
979 /**
980  * skb_rtable - Returns the skb &rtable
981  * @skb: buffer
982  */
983 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
984 {
985 	return (struct rtable *)skb_dst(skb);
986 }
987 
988 /* For mangling skb->pkt_type from user space side from applications
989  * such as nft, tc, etc, we only allow a conservative subset of
990  * possible pkt_types to be set.
991 */
992 static inline bool skb_pkt_type_ok(u32 ptype)
993 {
994 	return ptype <= PACKET_OTHERHOST;
995 }
996 
997 /**
998  * skb_napi_id - Returns the skb's NAPI id
999  * @skb: buffer
1000  */
1001 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1002 {
1003 #ifdef CONFIG_NET_RX_BUSY_POLL
1004 	return skb->napi_id;
1005 #else
1006 	return 0;
1007 #endif
1008 }
1009 
1010 /**
1011  * skb_unref - decrement the skb's reference count
1012  * @skb: buffer
1013  *
1014  * Returns true if we can free the skb.
1015  */
1016 static inline bool skb_unref(struct sk_buff *skb)
1017 {
1018 	if (unlikely(!skb))
1019 		return false;
1020 	if (likely(refcount_read(&skb->users) == 1))
1021 		smp_rmb();
1022 	else if (likely(!refcount_dec_and_test(&skb->users)))
1023 		return false;
1024 
1025 	return true;
1026 }
1027 
1028 void skb_release_head_state(struct sk_buff *skb);
1029 void kfree_skb(struct sk_buff *skb);
1030 void kfree_skb_list(struct sk_buff *segs);
1031 void skb_tx_error(struct sk_buff *skb);
1032 void consume_skb(struct sk_buff *skb);
1033 void __consume_stateless_skb(struct sk_buff *skb);
1034 void  __kfree_skb(struct sk_buff *skb);
1035 extern struct kmem_cache *skbuff_head_cache;
1036 
1037 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1038 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1039 		      bool *fragstolen, int *delta_truesize);
1040 
1041 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1042 			    int node);
1043 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1044 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1045 struct sk_buff *build_skb_around(struct sk_buff *skb,
1046 				 void *data, unsigned int frag_size);
1047 
1048 /**
1049  * alloc_skb - allocate a network buffer
1050  * @size: size to allocate
1051  * @priority: allocation mask
1052  *
1053  * This function is a convenient wrapper around __alloc_skb().
1054  */
1055 static inline struct sk_buff *alloc_skb(unsigned int size,
1056 					gfp_t priority)
1057 {
1058 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1059 }
1060 
1061 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1062 				     unsigned long data_len,
1063 				     int max_page_order,
1064 				     int *errcode,
1065 				     gfp_t gfp_mask);
1066 
1067 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1068 struct sk_buff_fclones {
1069 	struct sk_buff	skb1;
1070 
1071 	struct sk_buff	skb2;
1072 
1073 	refcount_t	fclone_ref;
1074 };
1075 
1076 /**
1077  *	skb_fclone_busy - check if fclone is busy
1078  *	@sk: socket
1079  *	@skb: buffer
1080  *
1081  * Returns true if skb is a fast clone, and its clone is not freed.
1082  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1083  * so we also check that this didnt happen.
1084  */
1085 static inline bool skb_fclone_busy(const struct sock *sk,
1086 				   const struct sk_buff *skb)
1087 {
1088 	const struct sk_buff_fclones *fclones;
1089 
1090 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1091 
1092 	return skb->fclone == SKB_FCLONE_ORIG &&
1093 	       refcount_read(&fclones->fclone_ref) > 1 &&
1094 	       fclones->skb2.sk == sk;
1095 }
1096 
1097 /**
1098  * alloc_skb_fclone - allocate a network buffer from fclone cache
1099  * @size: size to allocate
1100  * @priority: allocation mask
1101  *
1102  * This function is a convenient wrapper around __alloc_skb().
1103  */
1104 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1105 					       gfp_t priority)
1106 {
1107 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1108 }
1109 
1110 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1111 void skb_headers_offset_update(struct sk_buff *skb, int off);
1112 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1113 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1114 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1115 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1116 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1117 				   gfp_t gfp_mask, bool fclone);
1118 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1119 					  gfp_t gfp_mask)
1120 {
1121 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1122 }
1123 
1124 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1125 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1126 				     unsigned int headroom);
1127 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1128 				int newtailroom, gfp_t priority);
1129 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1130 				     int offset, int len);
1131 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1132 			      int offset, int len);
1133 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1134 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1135 
1136 /**
1137  *	skb_pad			-	zero pad the tail of an skb
1138  *	@skb: buffer to pad
1139  *	@pad: space to pad
1140  *
1141  *	Ensure that a buffer is followed by a padding area that is zero
1142  *	filled. Used by network drivers which may DMA or transfer data
1143  *	beyond the buffer end onto the wire.
1144  *
1145  *	May return error in out of memory cases. The skb is freed on error.
1146  */
1147 static inline int skb_pad(struct sk_buff *skb, int pad)
1148 {
1149 	return __skb_pad(skb, pad, true);
1150 }
1151 #define dev_kfree_skb(a)	consume_skb(a)
1152 
1153 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1154 			 int offset, size_t size);
1155 
1156 struct skb_seq_state {
1157 	__u32		lower_offset;
1158 	__u32		upper_offset;
1159 	__u32		frag_idx;
1160 	__u32		stepped_offset;
1161 	struct sk_buff	*root_skb;
1162 	struct sk_buff	*cur_skb;
1163 	__u8		*frag_data;
1164 };
1165 
1166 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1167 			  unsigned int to, struct skb_seq_state *st);
1168 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1169 			  struct skb_seq_state *st);
1170 void skb_abort_seq_read(struct skb_seq_state *st);
1171 
1172 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1173 			   unsigned int to, struct ts_config *config);
1174 
1175 /*
1176  * Packet hash types specify the type of hash in skb_set_hash.
1177  *
1178  * Hash types refer to the protocol layer addresses which are used to
1179  * construct a packet's hash. The hashes are used to differentiate or identify
1180  * flows of the protocol layer for the hash type. Hash types are either
1181  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1182  *
1183  * Properties of hashes:
1184  *
1185  * 1) Two packets in different flows have different hash values
1186  * 2) Two packets in the same flow should have the same hash value
1187  *
1188  * A hash at a higher layer is considered to be more specific. A driver should
1189  * set the most specific hash possible.
1190  *
1191  * A driver cannot indicate a more specific hash than the layer at which a hash
1192  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1193  *
1194  * A driver may indicate a hash level which is less specific than the
1195  * actual layer the hash was computed on. For instance, a hash computed
1196  * at L4 may be considered an L3 hash. This should only be done if the
1197  * driver can't unambiguously determine that the HW computed the hash at
1198  * the higher layer. Note that the "should" in the second property above
1199  * permits this.
1200  */
1201 enum pkt_hash_types {
1202 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1203 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1204 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1205 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1206 };
1207 
1208 static inline void skb_clear_hash(struct sk_buff *skb)
1209 {
1210 	skb->hash = 0;
1211 	skb->sw_hash = 0;
1212 	skb->l4_hash = 0;
1213 }
1214 
1215 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1216 {
1217 	if (!skb->l4_hash)
1218 		skb_clear_hash(skb);
1219 }
1220 
1221 static inline void
1222 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1223 {
1224 	skb->l4_hash = is_l4;
1225 	skb->sw_hash = is_sw;
1226 	skb->hash = hash;
1227 }
1228 
1229 static inline void
1230 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1231 {
1232 	/* Used by drivers to set hash from HW */
1233 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1234 }
1235 
1236 static inline void
1237 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1238 {
1239 	__skb_set_hash(skb, hash, true, is_l4);
1240 }
1241 
1242 void __skb_get_hash(struct sk_buff *skb);
1243 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1244 u32 skb_get_poff(const struct sk_buff *skb);
1245 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1246 		   const struct flow_keys_basic *keys, int hlen);
1247 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1248 			    void *data, int hlen_proto);
1249 
1250 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1251 					int thoff, u8 ip_proto)
1252 {
1253 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1254 }
1255 
1256 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1257 			     const struct flow_dissector_key *key,
1258 			     unsigned int key_count);
1259 
1260 #ifdef CONFIG_NET
1261 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1262 				       struct bpf_prog *prog);
1263 
1264 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1265 #else
1266 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1267 						     struct bpf_prog *prog)
1268 {
1269 	return -EOPNOTSUPP;
1270 }
1271 
1272 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1273 {
1274 	return -EOPNOTSUPP;
1275 }
1276 #endif
1277 
1278 struct bpf_flow_keys;
1279 bool __skb_flow_bpf_dissect(struct bpf_prog *prog,
1280 			    const struct sk_buff *skb,
1281 			    struct flow_dissector *flow_dissector,
1282 			    struct bpf_flow_keys *flow_keys);
1283 bool __skb_flow_dissect(const struct sk_buff *skb,
1284 			struct flow_dissector *flow_dissector,
1285 			void *target_container,
1286 			void *data, __be16 proto, int nhoff, int hlen,
1287 			unsigned int flags);
1288 
1289 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1290 				    struct flow_dissector *flow_dissector,
1291 				    void *target_container, unsigned int flags)
1292 {
1293 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1294 				  NULL, 0, 0, 0, flags);
1295 }
1296 
1297 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1298 					      struct flow_keys *flow,
1299 					      unsigned int flags)
1300 {
1301 	memset(flow, 0, sizeof(*flow));
1302 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1303 				  NULL, 0, 0, 0, flags);
1304 }
1305 
1306 static inline bool
1307 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1308 				 struct flow_keys_basic *flow, void *data,
1309 				 __be16 proto, int nhoff, int hlen,
1310 				 unsigned int flags)
1311 {
1312 	memset(flow, 0, sizeof(*flow));
1313 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1314 				  data, proto, nhoff, hlen, flags);
1315 }
1316 
1317 void
1318 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1319 			     struct flow_dissector *flow_dissector,
1320 			     void *target_container);
1321 
1322 static inline __u32 skb_get_hash(struct sk_buff *skb)
1323 {
1324 	if (!skb->l4_hash && !skb->sw_hash)
1325 		__skb_get_hash(skb);
1326 
1327 	return skb->hash;
1328 }
1329 
1330 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1331 {
1332 	if (!skb->l4_hash && !skb->sw_hash) {
1333 		struct flow_keys keys;
1334 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1335 
1336 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1337 	}
1338 
1339 	return skb->hash;
1340 }
1341 
1342 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1343 
1344 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1345 {
1346 	return skb->hash;
1347 }
1348 
1349 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1350 {
1351 	to->hash = from->hash;
1352 	to->sw_hash = from->sw_hash;
1353 	to->l4_hash = from->l4_hash;
1354 };
1355 
1356 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1357 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1358 {
1359 	return skb->head + skb->end;
1360 }
1361 
1362 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1363 {
1364 	return skb->end;
1365 }
1366 #else
1367 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1368 {
1369 	return skb->end;
1370 }
1371 
1372 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1373 {
1374 	return skb->end - skb->head;
1375 }
1376 #endif
1377 
1378 /* Internal */
1379 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1380 
1381 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1382 {
1383 	return &skb_shinfo(skb)->hwtstamps;
1384 }
1385 
1386 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1387 {
1388 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1389 
1390 	return is_zcopy ? skb_uarg(skb) : NULL;
1391 }
1392 
1393 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1394 				 bool *have_ref)
1395 {
1396 	if (skb && uarg && !skb_zcopy(skb)) {
1397 		if (unlikely(have_ref && *have_ref))
1398 			*have_ref = false;
1399 		else
1400 			sock_zerocopy_get(uarg);
1401 		skb_shinfo(skb)->destructor_arg = uarg;
1402 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1403 	}
1404 }
1405 
1406 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1407 {
1408 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1409 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1410 }
1411 
1412 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1413 {
1414 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1415 }
1416 
1417 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1418 {
1419 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1420 }
1421 
1422 /* Release a reference on a zerocopy structure */
1423 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1424 {
1425 	struct ubuf_info *uarg = skb_zcopy(skb);
1426 
1427 	if (uarg) {
1428 		if (uarg->callback == sock_zerocopy_callback) {
1429 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1430 			sock_zerocopy_put(uarg);
1431 		} else if (!skb_zcopy_is_nouarg(skb)) {
1432 			uarg->callback(uarg, zerocopy);
1433 		}
1434 
1435 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1436 	}
1437 }
1438 
1439 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1440 static inline void skb_zcopy_abort(struct sk_buff *skb)
1441 {
1442 	struct ubuf_info *uarg = skb_zcopy(skb);
1443 
1444 	if (uarg) {
1445 		sock_zerocopy_put_abort(uarg, false);
1446 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1447 	}
1448 }
1449 
1450 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1451 {
1452 	skb->next = NULL;
1453 }
1454 
1455 static inline void skb_list_del_init(struct sk_buff *skb)
1456 {
1457 	__list_del_entry(&skb->list);
1458 	skb_mark_not_on_list(skb);
1459 }
1460 
1461 /**
1462  *	skb_queue_empty - check if a queue is empty
1463  *	@list: queue head
1464  *
1465  *	Returns true if the queue is empty, false otherwise.
1466  */
1467 static inline int skb_queue_empty(const struct sk_buff_head *list)
1468 {
1469 	return list->next == (const struct sk_buff *) list;
1470 }
1471 
1472 /**
1473  *	skb_queue_is_last - check if skb is the last entry in the queue
1474  *	@list: queue head
1475  *	@skb: buffer
1476  *
1477  *	Returns true if @skb is the last buffer on the list.
1478  */
1479 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1480 				     const struct sk_buff *skb)
1481 {
1482 	return skb->next == (const struct sk_buff *) list;
1483 }
1484 
1485 /**
1486  *	skb_queue_is_first - check if skb is the first entry in the queue
1487  *	@list: queue head
1488  *	@skb: buffer
1489  *
1490  *	Returns true if @skb is the first buffer on the list.
1491  */
1492 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1493 				      const struct sk_buff *skb)
1494 {
1495 	return skb->prev == (const struct sk_buff *) list;
1496 }
1497 
1498 /**
1499  *	skb_queue_next - return the next packet in the queue
1500  *	@list: queue head
1501  *	@skb: current buffer
1502  *
1503  *	Return the next packet in @list after @skb.  It is only valid to
1504  *	call this if skb_queue_is_last() evaluates to false.
1505  */
1506 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1507 					     const struct sk_buff *skb)
1508 {
1509 	/* This BUG_ON may seem severe, but if we just return then we
1510 	 * are going to dereference garbage.
1511 	 */
1512 	BUG_ON(skb_queue_is_last(list, skb));
1513 	return skb->next;
1514 }
1515 
1516 /**
1517  *	skb_queue_prev - return the prev packet in the queue
1518  *	@list: queue head
1519  *	@skb: current buffer
1520  *
1521  *	Return the prev packet in @list before @skb.  It is only valid to
1522  *	call this if skb_queue_is_first() evaluates to false.
1523  */
1524 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1525 					     const struct sk_buff *skb)
1526 {
1527 	/* This BUG_ON may seem severe, but if we just return then we
1528 	 * are going to dereference garbage.
1529 	 */
1530 	BUG_ON(skb_queue_is_first(list, skb));
1531 	return skb->prev;
1532 }
1533 
1534 /**
1535  *	skb_get - reference buffer
1536  *	@skb: buffer to reference
1537  *
1538  *	Makes another reference to a socket buffer and returns a pointer
1539  *	to the buffer.
1540  */
1541 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1542 {
1543 	refcount_inc(&skb->users);
1544 	return skb;
1545 }
1546 
1547 /*
1548  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1549  */
1550 
1551 /**
1552  *	skb_cloned - is the buffer a clone
1553  *	@skb: buffer to check
1554  *
1555  *	Returns true if the buffer was generated with skb_clone() and is
1556  *	one of multiple shared copies of the buffer. Cloned buffers are
1557  *	shared data so must not be written to under normal circumstances.
1558  */
1559 static inline int skb_cloned(const struct sk_buff *skb)
1560 {
1561 	return skb->cloned &&
1562 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1563 }
1564 
1565 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1566 {
1567 	might_sleep_if(gfpflags_allow_blocking(pri));
1568 
1569 	if (skb_cloned(skb))
1570 		return pskb_expand_head(skb, 0, 0, pri);
1571 
1572 	return 0;
1573 }
1574 
1575 /**
1576  *	skb_header_cloned - is the header a clone
1577  *	@skb: buffer to check
1578  *
1579  *	Returns true if modifying the header part of the buffer requires
1580  *	the data to be copied.
1581  */
1582 static inline int skb_header_cloned(const struct sk_buff *skb)
1583 {
1584 	int dataref;
1585 
1586 	if (!skb->cloned)
1587 		return 0;
1588 
1589 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1590 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1591 	return dataref != 1;
1592 }
1593 
1594 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1595 {
1596 	might_sleep_if(gfpflags_allow_blocking(pri));
1597 
1598 	if (skb_header_cloned(skb))
1599 		return pskb_expand_head(skb, 0, 0, pri);
1600 
1601 	return 0;
1602 }
1603 
1604 /**
1605  *	__skb_header_release - release reference to header
1606  *	@skb: buffer to operate on
1607  */
1608 static inline void __skb_header_release(struct sk_buff *skb)
1609 {
1610 	skb->nohdr = 1;
1611 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1612 }
1613 
1614 
1615 /**
1616  *	skb_shared - is the buffer shared
1617  *	@skb: buffer to check
1618  *
1619  *	Returns true if more than one person has a reference to this
1620  *	buffer.
1621  */
1622 static inline int skb_shared(const struct sk_buff *skb)
1623 {
1624 	return refcount_read(&skb->users) != 1;
1625 }
1626 
1627 /**
1628  *	skb_share_check - check if buffer is shared and if so clone it
1629  *	@skb: buffer to check
1630  *	@pri: priority for memory allocation
1631  *
1632  *	If the buffer is shared the buffer is cloned and the old copy
1633  *	drops a reference. A new clone with a single reference is returned.
1634  *	If the buffer is not shared the original buffer is returned. When
1635  *	being called from interrupt status or with spinlocks held pri must
1636  *	be GFP_ATOMIC.
1637  *
1638  *	NULL is returned on a memory allocation failure.
1639  */
1640 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1641 {
1642 	might_sleep_if(gfpflags_allow_blocking(pri));
1643 	if (skb_shared(skb)) {
1644 		struct sk_buff *nskb = skb_clone(skb, pri);
1645 
1646 		if (likely(nskb))
1647 			consume_skb(skb);
1648 		else
1649 			kfree_skb(skb);
1650 		skb = nskb;
1651 	}
1652 	return skb;
1653 }
1654 
1655 /*
1656  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1657  *	packets to handle cases where we have a local reader and forward
1658  *	and a couple of other messy ones. The normal one is tcpdumping
1659  *	a packet thats being forwarded.
1660  */
1661 
1662 /**
1663  *	skb_unshare - make a copy of a shared buffer
1664  *	@skb: buffer to check
1665  *	@pri: priority for memory allocation
1666  *
1667  *	If the socket buffer is a clone then this function creates a new
1668  *	copy of the data, drops a reference count on the old copy and returns
1669  *	the new copy with the reference count at 1. If the buffer is not a clone
1670  *	the original buffer is returned. When called with a spinlock held or
1671  *	from interrupt state @pri must be %GFP_ATOMIC
1672  *
1673  *	%NULL is returned on a memory allocation failure.
1674  */
1675 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1676 					  gfp_t pri)
1677 {
1678 	might_sleep_if(gfpflags_allow_blocking(pri));
1679 	if (skb_cloned(skb)) {
1680 		struct sk_buff *nskb = skb_copy(skb, pri);
1681 
1682 		/* Free our shared copy */
1683 		if (likely(nskb))
1684 			consume_skb(skb);
1685 		else
1686 			kfree_skb(skb);
1687 		skb = nskb;
1688 	}
1689 	return skb;
1690 }
1691 
1692 /**
1693  *	skb_peek - peek at the head of an &sk_buff_head
1694  *	@list_: list to peek at
1695  *
1696  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1697  *	be careful with this one. A peek leaves the buffer on the
1698  *	list and someone else may run off with it. You must hold
1699  *	the appropriate locks or have a private queue to do this.
1700  *
1701  *	Returns %NULL for an empty list or a pointer to the head element.
1702  *	The reference count is not incremented and the reference is therefore
1703  *	volatile. Use with caution.
1704  */
1705 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1706 {
1707 	struct sk_buff *skb = list_->next;
1708 
1709 	if (skb == (struct sk_buff *)list_)
1710 		skb = NULL;
1711 	return skb;
1712 }
1713 
1714 /**
1715  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1716  *	@list_: list to peek at
1717  *
1718  *	Like skb_peek(), but the caller knows that the list is not empty.
1719  */
1720 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1721 {
1722 	return list_->next;
1723 }
1724 
1725 /**
1726  *	skb_peek_next - peek skb following the given one from a queue
1727  *	@skb: skb to start from
1728  *	@list_: list to peek at
1729  *
1730  *	Returns %NULL when the end of the list is met or a pointer to the
1731  *	next element. The reference count is not incremented and the
1732  *	reference is therefore volatile. Use with caution.
1733  */
1734 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1735 		const struct sk_buff_head *list_)
1736 {
1737 	struct sk_buff *next = skb->next;
1738 
1739 	if (next == (struct sk_buff *)list_)
1740 		next = NULL;
1741 	return next;
1742 }
1743 
1744 /**
1745  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1746  *	@list_: list to peek at
1747  *
1748  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1749  *	be careful with this one. A peek leaves the buffer on the
1750  *	list and someone else may run off with it. You must hold
1751  *	the appropriate locks or have a private queue to do this.
1752  *
1753  *	Returns %NULL for an empty list or a pointer to the tail element.
1754  *	The reference count is not incremented and the reference is therefore
1755  *	volatile. Use with caution.
1756  */
1757 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1758 {
1759 	struct sk_buff *skb = list_->prev;
1760 
1761 	if (skb == (struct sk_buff *)list_)
1762 		skb = NULL;
1763 	return skb;
1764 
1765 }
1766 
1767 /**
1768  *	skb_queue_len	- get queue length
1769  *	@list_: list to measure
1770  *
1771  *	Return the length of an &sk_buff queue.
1772  */
1773 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1774 {
1775 	return list_->qlen;
1776 }
1777 
1778 /**
1779  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1780  *	@list: queue to initialize
1781  *
1782  *	This initializes only the list and queue length aspects of
1783  *	an sk_buff_head object.  This allows to initialize the list
1784  *	aspects of an sk_buff_head without reinitializing things like
1785  *	the spinlock.  It can also be used for on-stack sk_buff_head
1786  *	objects where the spinlock is known to not be used.
1787  */
1788 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1789 {
1790 	list->prev = list->next = (struct sk_buff *)list;
1791 	list->qlen = 0;
1792 }
1793 
1794 /*
1795  * This function creates a split out lock class for each invocation;
1796  * this is needed for now since a whole lot of users of the skb-queue
1797  * infrastructure in drivers have different locking usage (in hardirq)
1798  * than the networking core (in softirq only). In the long run either the
1799  * network layer or drivers should need annotation to consolidate the
1800  * main types of usage into 3 classes.
1801  */
1802 static inline void skb_queue_head_init(struct sk_buff_head *list)
1803 {
1804 	spin_lock_init(&list->lock);
1805 	__skb_queue_head_init(list);
1806 }
1807 
1808 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1809 		struct lock_class_key *class)
1810 {
1811 	skb_queue_head_init(list);
1812 	lockdep_set_class(&list->lock, class);
1813 }
1814 
1815 /*
1816  *	Insert an sk_buff on a list.
1817  *
1818  *	The "__skb_xxxx()" functions are the non-atomic ones that
1819  *	can only be called with interrupts disabled.
1820  */
1821 static inline void __skb_insert(struct sk_buff *newsk,
1822 				struct sk_buff *prev, struct sk_buff *next,
1823 				struct sk_buff_head *list)
1824 {
1825 	newsk->next = next;
1826 	newsk->prev = prev;
1827 	next->prev  = prev->next = newsk;
1828 	list->qlen++;
1829 }
1830 
1831 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1832 				      struct sk_buff *prev,
1833 				      struct sk_buff *next)
1834 {
1835 	struct sk_buff *first = list->next;
1836 	struct sk_buff *last = list->prev;
1837 
1838 	first->prev = prev;
1839 	prev->next = first;
1840 
1841 	last->next = next;
1842 	next->prev = last;
1843 }
1844 
1845 /**
1846  *	skb_queue_splice - join two skb lists, this is designed for stacks
1847  *	@list: the new list to add
1848  *	@head: the place to add it in the first list
1849  */
1850 static inline void skb_queue_splice(const struct sk_buff_head *list,
1851 				    struct sk_buff_head *head)
1852 {
1853 	if (!skb_queue_empty(list)) {
1854 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1855 		head->qlen += list->qlen;
1856 	}
1857 }
1858 
1859 /**
1860  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1861  *	@list: the new list to add
1862  *	@head: the place to add it in the first list
1863  *
1864  *	The list at @list is reinitialised
1865  */
1866 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1867 					 struct sk_buff_head *head)
1868 {
1869 	if (!skb_queue_empty(list)) {
1870 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1871 		head->qlen += list->qlen;
1872 		__skb_queue_head_init(list);
1873 	}
1874 }
1875 
1876 /**
1877  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1878  *	@list: the new list to add
1879  *	@head: the place to add it in the first list
1880  */
1881 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1882 					 struct sk_buff_head *head)
1883 {
1884 	if (!skb_queue_empty(list)) {
1885 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1886 		head->qlen += list->qlen;
1887 	}
1888 }
1889 
1890 /**
1891  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1892  *	@list: the new list to add
1893  *	@head: the place to add it in the first list
1894  *
1895  *	Each of the lists is a queue.
1896  *	The list at @list is reinitialised
1897  */
1898 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1899 					      struct sk_buff_head *head)
1900 {
1901 	if (!skb_queue_empty(list)) {
1902 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1903 		head->qlen += list->qlen;
1904 		__skb_queue_head_init(list);
1905 	}
1906 }
1907 
1908 /**
1909  *	__skb_queue_after - queue a buffer at the list head
1910  *	@list: list to use
1911  *	@prev: place after this buffer
1912  *	@newsk: buffer to queue
1913  *
1914  *	Queue a buffer int the middle of a list. This function takes no locks
1915  *	and you must therefore hold required locks before calling it.
1916  *
1917  *	A buffer cannot be placed on two lists at the same time.
1918  */
1919 static inline void __skb_queue_after(struct sk_buff_head *list,
1920 				     struct sk_buff *prev,
1921 				     struct sk_buff *newsk)
1922 {
1923 	__skb_insert(newsk, prev, prev->next, list);
1924 }
1925 
1926 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1927 		struct sk_buff_head *list);
1928 
1929 static inline void __skb_queue_before(struct sk_buff_head *list,
1930 				      struct sk_buff *next,
1931 				      struct sk_buff *newsk)
1932 {
1933 	__skb_insert(newsk, next->prev, next, list);
1934 }
1935 
1936 /**
1937  *	__skb_queue_head - queue a buffer at the list head
1938  *	@list: list to use
1939  *	@newsk: buffer to queue
1940  *
1941  *	Queue a buffer at the start of a list. This function takes no locks
1942  *	and you must therefore hold required locks before calling it.
1943  *
1944  *	A buffer cannot be placed on two lists at the same time.
1945  */
1946 static inline void __skb_queue_head(struct sk_buff_head *list,
1947 				    struct sk_buff *newsk)
1948 {
1949 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1950 }
1951 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1952 
1953 /**
1954  *	__skb_queue_tail - queue a buffer at the list tail
1955  *	@list: list to use
1956  *	@newsk: buffer to queue
1957  *
1958  *	Queue a buffer at the end of a list. This function takes no locks
1959  *	and you must therefore hold required locks before calling it.
1960  *
1961  *	A buffer cannot be placed on two lists at the same time.
1962  */
1963 static inline void __skb_queue_tail(struct sk_buff_head *list,
1964 				   struct sk_buff *newsk)
1965 {
1966 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1967 }
1968 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1969 
1970 /*
1971  * remove sk_buff from list. _Must_ be called atomically, and with
1972  * the list known..
1973  */
1974 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1975 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1976 {
1977 	struct sk_buff *next, *prev;
1978 
1979 	list->qlen--;
1980 	next	   = skb->next;
1981 	prev	   = skb->prev;
1982 	skb->next  = skb->prev = NULL;
1983 	next->prev = prev;
1984 	prev->next = next;
1985 }
1986 
1987 /**
1988  *	__skb_dequeue - remove from the head of the queue
1989  *	@list: list to dequeue from
1990  *
1991  *	Remove the head of the list. This function does not take any locks
1992  *	so must be used with appropriate locks held only. The head item is
1993  *	returned or %NULL if the list is empty.
1994  */
1995 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1996 {
1997 	struct sk_buff *skb = skb_peek(list);
1998 	if (skb)
1999 		__skb_unlink(skb, list);
2000 	return skb;
2001 }
2002 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2003 
2004 /**
2005  *	__skb_dequeue_tail - remove from the tail of the queue
2006  *	@list: list to dequeue from
2007  *
2008  *	Remove the tail of the list. This function does not take any locks
2009  *	so must be used with appropriate locks held only. The tail item is
2010  *	returned or %NULL if the list is empty.
2011  */
2012 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2013 {
2014 	struct sk_buff *skb = skb_peek_tail(list);
2015 	if (skb)
2016 		__skb_unlink(skb, list);
2017 	return skb;
2018 }
2019 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2020 
2021 
2022 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2023 {
2024 	return skb->data_len;
2025 }
2026 
2027 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2028 {
2029 	return skb->len - skb->data_len;
2030 }
2031 
2032 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2033 {
2034 	unsigned int i, len = 0;
2035 
2036 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2037 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2038 	return len;
2039 }
2040 
2041 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2042 {
2043 	return skb_headlen(skb) + __skb_pagelen(skb);
2044 }
2045 
2046 /**
2047  * __skb_fill_page_desc - initialise a paged fragment in an skb
2048  * @skb: buffer containing fragment to be initialised
2049  * @i: paged fragment index to initialise
2050  * @page: the page to use for this fragment
2051  * @off: the offset to the data with @page
2052  * @size: the length of the data
2053  *
2054  * Initialises the @i'th fragment of @skb to point to &size bytes at
2055  * offset @off within @page.
2056  *
2057  * Does not take any additional reference on the fragment.
2058  */
2059 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2060 					struct page *page, int off, int size)
2061 {
2062 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2063 
2064 	/*
2065 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2066 	 * that not all callers have unique ownership of the page but rely
2067 	 * on page_is_pfmemalloc doing the right thing(tm).
2068 	 */
2069 	frag->page.p		  = page;
2070 	frag->page_offset	  = off;
2071 	skb_frag_size_set(frag, size);
2072 
2073 	page = compound_head(page);
2074 	if (page_is_pfmemalloc(page))
2075 		skb->pfmemalloc	= true;
2076 }
2077 
2078 /**
2079  * skb_fill_page_desc - initialise a paged fragment in an skb
2080  * @skb: buffer containing fragment to be initialised
2081  * @i: paged fragment index to initialise
2082  * @page: the page to use for this fragment
2083  * @off: the offset to the data with @page
2084  * @size: the length of the data
2085  *
2086  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2087  * @skb to point to @size bytes at offset @off within @page. In
2088  * addition updates @skb such that @i is the last fragment.
2089  *
2090  * Does not take any additional reference on the fragment.
2091  */
2092 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2093 				      struct page *page, int off, int size)
2094 {
2095 	__skb_fill_page_desc(skb, i, page, off, size);
2096 	skb_shinfo(skb)->nr_frags = i + 1;
2097 }
2098 
2099 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2100 		     int size, unsigned int truesize);
2101 
2102 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2103 			  unsigned int truesize);
2104 
2105 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2106 
2107 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2108 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2109 {
2110 	return skb->head + skb->tail;
2111 }
2112 
2113 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2114 {
2115 	skb->tail = skb->data - skb->head;
2116 }
2117 
2118 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2119 {
2120 	skb_reset_tail_pointer(skb);
2121 	skb->tail += offset;
2122 }
2123 
2124 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2125 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2126 {
2127 	return skb->tail;
2128 }
2129 
2130 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2131 {
2132 	skb->tail = skb->data;
2133 }
2134 
2135 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2136 {
2137 	skb->tail = skb->data + offset;
2138 }
2139 
2140 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2141 
2142 /*
2143  *	Add data to an sk_buff
2144  */
2145 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2146 void *skb_put(struct sk_buff *skb, unsigned int len);
2147 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2148 {
2149 	void *tmp = skb_tail_pointer(skb);
2150 	SKB_LINEAR_ASSERT(skb);
2151 	skb->tail += len;
2152 	skb->len  += len;
2153 	return tmp;
2154 }
2155 
2156 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2157 {
2158 	void *tmp = __skb_put(skb, len);
2159 
2160 	memset(tmp, 0, len);
2161 	return tmp;
2162 }
2163 
2164 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2165 				   unsigned int len)
2166 {
2167 	void *tmp = __skb_put(skb, len);
2168 
2169 	memcpy(tmp, data, len);
2170 	return tmp;
2171 }
2172 
2173 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2174 {
2175 	*(u8 *)__skb_put(skb, 1) = val;
2176 }
2177 
2178 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2179 {
2180 	void *tmp = skb_put(skb, len);
2181 
2182 	memset(tmp, 0, len);
2183 
2184 	return tmp;
2185 }
2186 
2187 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2188 				 unsigned int len)
2189 {
2190 	void *tmp = skb_put(skb, len);
2191 
2192 	memcpy(tmp, data, len);
2193 
2194 	return tmp;
2195 }
2196 
2197 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2198 {
2199 	*(u8 *)skb_put(skb, 1) = val;
2200 }
2201 
2202 void *skb_push(struct sk_buff *skb, unsigned int len);
2203 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2204 {
2205 	skb->data -= len;
2206 	skb->len  += len;
2207 	return skb->data;
2208 }
2209 
2210 void *skb_pull(struct sk_buff *skb, unsigned int len);
2211 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2212 {
2213 	skb->len -= len;
2214 	BUG_ON(skb->len < skb->data_len);
2215 	return skb->data += len;
2216 }
2217 
2218 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2219 {
2220 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2221 }
2222 
2223 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2224 
2225 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2226 {
2227 	if (len > skb_headlen(skb) &&
2228 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2229 		return NULL;
2230 	skb->len -= len;
2231 	return skb->data += len;
2232 }
2233 
2234 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2235 {
2236 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2237 }
2238 
2239 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2240 {
2241 	if (likely(len <= skb_headlen(skb)))
2242 		return 1;
2243 	if (unlikely(len > skb->len))
2244 		return 0;
2245 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2246 }
2247 
2248 void skb_condense(struct sk_buff *skb);
2249 
2250 /**
2251  *	skb_headroom - bytes at buffer head
2252  *	@skb: buffer to check
2253  *
2254  *	Return the number of bytes of free space at the head of an &sk_buff.
2255  */
2256 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2257 {
2258 	return skb->data - skb->head;
2259 }
2260 
2261 /**
2262  *	skb_tailroom - bytes at buffer end
2263  *	@skb: buffer to check
2264  *
2265  *	Return the number of bytes of free space at the tail of an sk_buff
2266  */
2267 static inline int skb_tailroom(const struct sk_buff *skb)
2268 {
2269 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2270 }
2271 
2272 /**
2273  *	skb_availroom - bytes at buffer end
2274  *	@skb: buffer to check
2275  *
2276  *	Return the number of bytes of free space at the tail of an sk_buff
2277  *	allocated by sk_stream_alloc()
2278  */
2279 static inline int skb_availroom(const struct sk_buff *skb)
2280 {
2281 	if (skb_is_nonlinear(skb))
2282 		return 0;
2283 
2284 	return skb->end - skb->tail - skb->reserved_tailroom;
2285 }
2286 
2287 /**
2288  *	skb_reserve - adjust headroom
2289  *	@skb: buffer to alter
2290  *	@len: bytes to move
2291  *
2292  *	Increase the headroom of an empty &sk_buff by reducing the tail
2293  *	room. This is only allowed for an empty buffer.
2294  */
2295 static inline void skb_reserve(struct sk_buff *skb, int len)
2296 {
2297 	skb->data += len;
2298 	skb->tail += len;
2299 }
2300 
2301 /**
2302  *	skb_tailroom_reserve - adjust reserved_tailroom
2303  *	@skb: buffer to alter
2304  *	@mtu: maximum amount of headlen permitted
2305  *	@needed_tailroom: minimum amount of reserved_tailroom
2306  *
2307  *	Set reserved_tailroom so that headlen can be as large as possible but
2308  *	not larger than mtu and tailroom cannot be smaller than
2309  *	needed_tailroom.
2310  *	The required headroom should already have been reserved before using
2311  *	this function.
2312  */
2313 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2314 					unsigned int needed_tailroom)
2315 {
2316 	SKB_LINEAR_ASSERT(skb);
2317 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2318 		/* use at most mtu */
2319 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2320 	else
2321 		/* use up to all available space */
2322 		skb->reserved_tailroom = needed_tailroom;
2323 }
2324 
2325 #define ENCAP_TYPE_ETHER	0
2326 #define ENCAP_TYPE_IPPROTO	1
2327 
2328 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2329 					  __be16 protocol)
2330 {
2331 	skb->inner_protocol = protocol;
2332 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2333 }
2334 
2335 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2336 					 __u8 ipproto)
2337 {
2338 	skb->inner_ipproto = ipproto;
2339 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2340 }
2341 
2342 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2343 {
2344 	skb->inner_mac_header = skb->mac_header;
2345 	skb->inner_network_header = skb->network_header;
2346 	skb->inner_transport_header = skb->transport_header;
2347 }
2348 
2349 static inline void skb_reset_mac_len(struct sk_buff *skb)
2350 {
2351 	skb->mac_len = skb->network_header - skb->mac_header;
2352 }
2353 
2354 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2355 							*skb)
2356 {
2357 	return skb->head + skb->inner_transport_header;
2358 }
2359 
2360 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2361 {
2362 	return skb_inner_transport_header(skb) - skb->data;
2363 }
2364 
2365 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2366 {
2367 	skb->inner_transport_header = skb->data - skb->head;
2368 }
2369 
2370 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2371 						   const int offset)
2372 {
2373 	skb_reset_inner_transport_header(skb);
2374 	skb->inner_transport_header += offset;
2375 }
2376 
2377 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2378 {
2379 	return skb->head + skb->inner_network_header;
2380 }
2381 
2382 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2383 {
2384 	skb->inner_network_header = skb->data - skb->head;
2385 }
2386 
2387 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2388 						const int offset)
2389 {
2390 	skb_reset_inner_network_header(skb);
2391 	skb->inner_network_header += offset;
2392 }
2393 
2394 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2395 {
2396 	return skb->head + skb->inner_mac_header;
2397 }
2398 
2399 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2400 {
2401 	skb->inner_mac_header = skb->data - skb->head;
2402 }
2403 
2404 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2405 					    const int offset)
2406 {
2407 	skb_reset_inner_mac_header(skb);
2408 	skb->inner_mac_header += offset;
2409 }
2410 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2411 {
2412 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2413 }
2414 
2415 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2416 {
2417 	return skb->head + skb->transport_header;
2418 }
2419 
2420 static inline void skb_reset_transport_header(struct sk_buff *skb)
2421 {
2422 	skb->transport_header = skb->data - skb->head;
2423 }
2424 
2425 static inline void skb_set_transport_header(struct sk_buff *skb,
2426 					    const int offset)
2427 {
2428 	skb_reset_transport_header(skb);
2429 	skb->transport_header += offset;
2430 }
2431 
2432 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2433 {
2434 	return skb->head + skb->network_header;
2435 }
2436 
2437 static inline void skb_reset_network_header(struct sk_buff *skb)
2438 {
2439 	skb->network_header = skb->data - skb->head;
2440 }
2441 
2442 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2443 {
2444 	skb_reset_network_header(skb);
2445 	skb->network_header += offset;
2446 }
2447 
2448 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2449 {
2450 	return skb->head + skb->mac_header;
2451 }
2452 
2453 static inline int skb_mac_offset(const struct sk_buff *skb)
2454 {
2455 	return skb_mac_header(skb) - skb->data;
2456 }
2457 
2458 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2459 {
2460 	return skb->network_header - skb->mac_header;
2461 }
2462 
2463 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2464 {
2465 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2466 }
2467 
2468 static inline void skb_reset_mac_header(struct sk_buff *skb)
2469 {
2470 	skb->mac_header = skb->data - skb->head;
2471 }
2472 
2473 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2474 {
2475 	skb_reset_mac_header(skb);
2476 	skb->mac_header += offset;
2477 }
2478 
2479 static inline void skb_pop_mac_header(struct sk_buff *skb)
2480 {
2481 	skb->mac_header = skb->network_header;
2482 }
2483 
2484 static inline void skb_probe_transport_header(struct sk_buff *skb)
2485 {
2486 	struct flow_keys_basic keys;
2487 
2488 	if (skb_transport_header_was_set(skb))
2489 		return;
2490 
2491 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2492 		skb_set_transport_header(skb, keys.control.thoff);
2493 }
2494 
2495 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2496 {
2497 	if (skb_mac_header_was_set(skb)) {
2498 		const unsigned char *old_mac = skb_mac_header(skb);
2499 
2500 		skb_set_mac_header(skb, -skb->mac_len);
2501 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2502 	}
2503 }
2504 
2505 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2506 {
2507 	return skb->csum_start - skb_headroom(skb);
2508 }
2509 
2510 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2511 {
2512 	return skb->head + skb->csum_start;
2513 }
2514 
2515 static inline int skb_transport_offset(const struct sk_buff *skb)
2516 {
2517 	return skb_transport_header(skb) - skb->data;
2518 }
2519 
2520 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2521 {
2522 	return skb->transport_header - skb->network_header;
2523 }
2524 
2525 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2526 {
2527 	return skb->inner_transport_header - skb->inner_network_header;
2528 }
2529 
2530 static inline int skb_network_offset(const struct sk_buff *skb)
2531 {
2532 	return skb_network_header(skb) - skb->data;
2533 }
2534 
2535 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2536 {
2537 	return skb_inner_network_header(skb) - skb->data;
2538 }
2539 
2540 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2541 {
2542 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2543 }
2544 
2545 /*
2546  * CPUs often take a performance hit when accessing unaligned memory
2547  * locations. The actual performance hit varies, it can be small if the
2548  * hardware handles it or large if we have to take an exception and fix it
2549  * in software.
2550  *
2551  * Since an ethernet header is 14 bytes network drivers often end up with
2552  * the IP header at an unaligned offset. The IP header can be aligned by
2553  * shifting the start of the packet by 2 bytes. Drivers should do this
2554  * with:
2555  *
2556  * skb_reserve(skb, NET_IP_ALIGN);
2557  *
2558  * The downside to this alignment of the IP header is that the DMA is now
2559  * unaligned. On some architectures the cost of an unaligned DMA is high
2560  * and this cost outweighs the gains made by aligning the IP header.
2561  *
2562  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2563  * to be overridden.
2564  */
2565 #ifndef NET_IP_ALIGN
2566 #define NET_IP_ALIGN	2
2567 #endif
2568 
2569 /*
2570  * The networking layer reserves some headroom in skb data (via
2571  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2572  * the header has to grow. In the default case, if the header has to grow
2573  * 32 bytes or less we avoid the reallocation.
2574  *
2575  * Unfortunately this headroom changes the DMA alignment of the resulting
2576  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2577  * on some architectures. An architecture can override this value,
2578  * perhaps setting it to a cacheline in size (since that will maintain
2579  * cacheline alignment of the DMA). It must be a power of 2.
2580  *
2581  * Various parts of the networking layer expect at least 32 bytes of
2582  * headroom, you should not reduce this.
2583  *
2584  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2585  * to reduce average number of cache lines per packet.
2586  * get_rps_cpus() for example only access one 64 bytes aligned block :
2587  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2588  */
2589 #ifndef NET_SKB_PAD
2590 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2591 #endif
2592 
2593 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2594 
2595 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2596 {
2597 	if (WARN_ON(skb_is_nonlinear(skb)))
2598 		return;
2599 	skb->len = len;
2600 	skb_set_tail_pointer(skb, len);
2601 }
2602 
2603 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2604 {
2605 	__skb_set_length(skb, len);
2606 }
2607 
2608 void skb_trim(struct sk_buff *skb, unsigned int len);
2609 
2610 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2611 {
2612 	if (skb->data_len)
2613 		return ___pskb_trim(skb, len);
2614 	__skb_trim(skb, len);
2615 	return 0;
2616 }
2617 
2618 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2619 {
2620 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2621 }
2622 
2623 /**
2624  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2625  *	@skb: buffer to alter
2626  *	@len: new length
2627  *
2628  *	This is identical to pskb_trim except that the caller knows that
2629  *	the skb is not cloned so we should never get an error due to out-
2630  *	of-memory.
2631  */
2632 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2633 {
2634 	int err = pskb_trim(skb, len);
2635 	BUG_ON(err);
2636 }
2637 
2638 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2639 {
2640 	unsigned int diff = len - skb->len;
2641 
2642 	if (skb_tailroom(skb) < diff) {
2643 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2644 					   GFP_ATOMIC);
2645 		if (ret)
2646 			return ret;
2647 	}
2648 	__skb_set_length(skb, len);
2649 	return 0;
2650 }
2651 
2652 /**
2653  *	skb_orphan - orphan a buffer
2654  *	@skb: buffer to orphan
2655  *
2656  *	If a buffer currently has an owner then we call the owner's
2657  *	destructor function and make the @skb unowned. The buffer continues
2658  *	to exist but is no longer charged to its former owner.
2659  */
2660 static inline void skb_orphan(struct sk_buff *skb)
2661 {
2662 	if (skb->destructor) {
2663 		skb->destructor(skb);
2664 		skb->destructor = NULL;
2665 		skb->sk		= NULL;
2666 	} else {
2667 		BUG_ON(skb->sk);
2668 	}
2669 }
2670 
2671 /**
2672  *	skb_orphan_frags - orphan the frags contained in a buffer
2673  *	@skb: buffer to orphan frags from
2674  *	@gfp_mask: allocation mask for replacement pages
2675  *
2676  *	For each frag in the SKB which needs a destructor (i.e. has an
2677  *	owner) create a copy of that frag and release the original
2678  *	page by calling the destructor.
2679  */
2680 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2681 {
2682 	if (likely(!skb_zcopy(skb)))
2683 		return 0;
2684 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2685 		return 0;
2686 	return skb_copy_ubufs(skb, gfp_mask);
2687 }
2688 
2689 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2690 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2691 {
2692 	if (likely(!skb_zcopy(skb)))
2693 		return 0;
2694 	return skb_copy_ubufs(skb, gfp_mask);
2695 }
2696 
2697 /**
2698  *	__skb_queue_purge - empty a list
2699  *	@list: list to empty
2700  *
2701  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2702  *	the list and one reference dropped. This function does not take the
2703  *	list lock and the caller must hold the relevant locks to use it.
2704  */
2705 static inline void __skb_queue_purge(struct sk_buff_head *list)
2706 {
2707 	struct sk_buff *skb;
2708 	while ((skb = __skb_dequeue(list)) != NULL)
2709 		kfree_skb(skb);
2710 }
2711 void skb_queue_purge(struct sk_buff_head *list);
2712 
2713 unsigned int skb_rbtree_purge(struct rb_root *root);
2714 
2715 void *netdev_alloc_frag(unsigned int fragsz);
2716 
2717 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2718 				   gfp_t gfp_mask);
2719 
2720 /**
2721  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2722  *	@dev: network device to receive on
2723  *	@length: length to allocate
2724  *
2725  *	Allocate a new &sk_buff and assign it a usage count of one. The
2726  *	buffer has unspecified headroom built in. Users should allocate
2727  *	the headroom they think they need without accounting for the
2728  *	built in space. The built in space is used for optimisations.
2729  *
2730  *	%NULL is returned if there is no free memory. Although this function
2731  *	allocates memory it can be called from an interrupt.
2732  */
2733 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2734 					       unsigned int length)
2735 {
2736 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2737 }
2738 
2739 /* legacy helper around __netdev_alloc_skb() */
2740 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2741 					      gfp_t gfp_mask)
2742 {
2743 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2744 }
2745 
2746 /* legacy helper around netdev_alloc_skb() */
2747 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2748 {
2749 	return netdev_alloc_skb(NULL, length);
2750 }
2751 
2752 
2753 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2754 		unsigned int length, gfp_t gfp)
2755 {
2756 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2757 
2758 	if (NET_IP_ALIGN && skb)
2759 		skb_reserve(skb, NET_IP_ALIGN);
2760 	return skb;
2761 }
2762 
2763 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2764 		unsigned int length)
2765 {
2766 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2767 }
2768 
2769 static inline void skb_free_frag(void *addr)
2770 {
2771 	page_frag_free(addr);
2772 }
2773 
2774 void *napi_alloc_frag(unsigned int fragsz);
2775 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2776 				 unsigned int length, gfp_t gfp_mask);
2777 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2778 					     unsigned int length)
2779 {
2780 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2781 }
2782 void napi_consume_skb(struct sk_buff *skb, int budget);
2783 
2784 void __kfree_skb_flush(void);
2785 void __kfree_skb_defer(struct sk_buff *skb);
2786 
2787 /**
2788  * __dev_alloc_pages - allocate page for network Rx
2789  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2790  * @order: size of the allocation
2791  *
2792  * Allocate a new page.
2793  *
2794  * %NULL is returned if there is no free memory.
2795 */
2796 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2797 					     unsigned int order)
2798 {
2799 	/* This piece of code contains several assumptions.
2800 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2801 	 * 2.  The expectation is the user wants a compound page.
2802 	 * 3.  If requesting a order 0 page it will not be compound
2803 	 *     due to the check to see if order has a value in prep_new_page
2804 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2805 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2806 	 */
2807 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2808 
2809 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2810 }
2811 
2812 static inline struct page *dev_alloc_pages(unsigned int order)
2813 {
2814 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2815 }
2816 
2817 /**
2818  * __dev_alloc_page - allocate a page for network Rx
2819  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2820  *
2821  * Allocate a new page.
2822  *
2823  * %NULL is returned if there is no free memory.
2824  */
2825 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2826 {
2827 	return __dev_alloc_pages(gfp_mask, 0);
2828 }
2829 
2830 static inline struct page *dev_alloc_page(void)
2831 {
2832 	return dev_alloc_pages(0);
2833 }
2834 
2835 /**
2836  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2837  *	@page: The page that was allocated from skb_alloc_page
2838  *	@skb: The skb that may need pfmemalloc set
2839  */
2840 static inline void skb_propagate_pfmemalloc(struct page *page,
2841 					     struct sk_buff *skb)
2842 {
2843 	if (page_is_pfmemalloc(page))
2844 		skb->pfmemalloc = true;
2845 }
2846 
2847 /**
2848  * skb_frag_page - retrieve the page referred to by a paged fragment
2849  * @frag: the paged fragment
2850  *
2851  * Returns the &struct page associated with @frag.
2852  */
2853 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2854 {
2855 	return frag->page.p;
2856 }
2857 
2858 /**
2859  * __skb_frag_ref - take an addition reference on a paged fragment.
2860  * @frag: the paged fragment
2861  *
2862  * Takes an additional reference on the paged fragment @frag.
2863  */
2864 static inline void __skb_frag_ref(skb_frag_t *frag)
2865 {
2866 	get_page(skb_frag_page(frag));
2867 }
2868 
2869 /**
2870  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2871  * @skb: the buffer
2872  * @f: the fragment offset.
2873  *
2874  * Takes an additional reference on the @f'th paged fragment of @skb.
2875  */
2876 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2877 {
2878 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2879 }
2880 
2881 /**
2882  * __skb_frag_unref - release a reference on a paged fragment.
2883  * @frag: the paged fragment
2884  *
2885  * Releases a reference on the paged fragment @frag.
2886  */
2887 static inline void __skb_frag_unref(skb_frag_t *frag)
2888 {
2889 	put_page(skb_frag_page(frag));
2890 }
2891 
2892 /**
2893  * skb_frag_unref - release a reference on a paged fragment of an skb.
2894  * @skb: the buffer
2895  * @f: the fragment offset
2896  *
2897  * Releases a reference on the @f'th paged fragment of @skb.
2898  */
2899 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2900 {
2901 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2902 }
2903 
2904 /**
2905  * skb_frag_address - gets the address of the data contained in a paged fragment
2906  * @frag: the paged fragment buffer
2907  *
2908  * Returns the address of the data within @frag. The page must already
2909  * be mapped.
2910  */
2911 static inline void *skb_frag_address(const skb_frag_t *frag)
2912 {
2913 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2914 }
2915 
2916 /**
2917  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2918  * @frag: the paged fragment buffer
2919  *
2920  * Returns the address of the data within @frag. Checks that the page
2921  * is mapped and returns %NULL otherwise.
2922  */
2923 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2924 {
2925 	void *ptr = page_address(skb_frag_page(frag));
2926 	if (unlikely(!ptr))
2927 		return NULL;
2928 
2929 	return ptr + frag->page_offset;
2930 }
2931 
2932 /**
2933  * __skb_frag_set_page - sets the page contained in a paged fragment
2934  * @frag: the paged fragment
2935  * @page: the page to set
2936  *
2937  * Sets the fragment @frag to contain @page.
2938  */
2939 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2940 {
2941 	frag->page.p = page;
2942 }
2943 
2944 /**
2945  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2946  * @skb: the buffer
2947  * @f: the fragment offset
2948  * @page: the page to set
2949  *
2950  * Sets the @f'th fragment of @skb to contain @page.
2951  */
2952 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2953 				     struct page *page)
2954 {
2955 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2956 }
2957 
2958 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2959 
2960 /**
2961  * skb_frag_dma_map - maps a paged fragment via the DMA API
2962  * @dev: the device to map the fragment to
2963  * @frag: the paged fragment to map
2964  * @offset: the offset within the fragment (starting at the
2965  *          fragment's own offset)
2966  * @size: the number of bytes to map
2967  * @dir: the direction of the mapping (``PCI_DMA_*``)
2968  *
2969  * Maps the page associated with @frag to @device.
2970  */
2971 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2972 					  const skb_frag_t *frag,
2973 					  size_t offset, size_t size,
2974 					  enum dma_data_direction dir)
2975 {
2976 	return dma_map_page(dev, skb_frag_page(frag),
2977 			    frag->page_offset + offset, size, dir);
2978 }
2979 
2980 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2981 					gfp_t gfp_mask)
2982 {
2983 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2984 }
2985 
2986 
2987 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2988 						  gfp_t gfp_mask)
2989 {
2990 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2991 }
2992 
2993 
2994 /**
2995  *	skb_clone_writable - is the header of a clone writable
2996  *	@skb: buffer to check
2997  *	@len: length up to which to write
2998  *
2999  *	Returns true if modifying the header part of the cloned buffer
3000  *	does not requires the data to be copied.
3001  */
3002 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3003 {
3004 	return !skb_header_cloned(skb) &&
3005 	       skb_headroom(skb) + len <= skb->hdr_len;
3006 }
3007 
3008 static inline int skb_try_make_writable(struct sk_buff *skb,
3009 					unsigned int write_len)
3010 {
3011 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3012 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3013 }
3014 
3015 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3016 			    int cloned)
3017 {
3018 	int delta = 0;
3019 
3020 	if (headroom > skb_headroom(skb))
3021 		delta = headroom - skb_headroom(skb);
3022 
3023 	if (delta || cloned)
3024 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3025 					GFP_ATOMIC);
3026 	return 0;
3027 }
3028 
3029 /**
3030  *	skb_cow - copy header of skb when it is required
3031  *	@skb: buffer to cow
3032  *	@headroom: needed headroom
3033  *
3034  *	If the skb passed lacks sufficient headroom or its data part
3035  *	is shared, data is reallocated. If reallocation fails, an error
3036  *	is returned and original skb is not changed.
3037  *
3038  *	The result is skb with writable area skb->head...skb->tail
3039  *	and at least @headroom of space at head.
3040  */
3041 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3042 {
3043 	return __skb_cow(skb, headroom, skb_cloned(skb));
3044 }
3045 
3046 /**
3047  *	skb_cow_head - skb_cow but only making the head writable
3048  *	@skb: buffer to cow
3049  *	@headroom: needed headroom
3050  *
3051  *	This function is identical to skb_cow except that we replace the
3052  *	skb_cloned check by skb_header_cloned.  It should be used when
3053  *	you only need to push on some header and do not need to modify
3054  *	the data.
3055  */
3056 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3057 {
3058 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3059 }
3060 
3061 /**
3062  *	skb_padto	- pad an skbuff up to a minimal size
3063  *	@skb: buffer to pad
3064  *	@len: minimal length
3065  *
3066  *	Pads up a buffer to ensure the trailing bytes exist and are
3067  *	blanked. If the buffer already contains sufficient data it
3068  *	is untouched. Otherwise it is extended. Returns zero on
3069  *	success. The skb is freed on error.
3070  */
3071 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3072 {
3073 	unsigned int size = skb->len;
3074 	if (likely(size >= len))
3075 		return 0;
3076 	return skb_pad(skb, len - size);
3077 }
3078 
3079 /**
3080  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3081  *	@skb: buffer to pad
3082  *	@len: minimal length
3083  *	@free_on_error: free buffer on error
3084  *
3085  *	Pads up a buffer to ensure the trailing bytes exist and are
3086  *	blanked. If the buffer already contains sufficient data it
3087  *	is untouched. Otherwise it is extended. Returns zero on
3088  *	success. The skb is freed on error if @free_on_error is true.
3089  */
3090 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3091 				  bool free_on_error)
3092 {
3093 	unsigned int size = skb->len;
3094 
3095 	if (unlikely(size < len)) {
3096 		len -= size;
3097 		if (__skb_pad(skb, len, free_on_error))
3098 			return -ENOMEM;
3099 		__skb_put(skb, len);
3100 	}
3101 	return 0;
3102 }
3103 
3104 /**
3105  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3106  *	@skb: buffer to pad
3107  *	@len: minimal length
3108  *
3109  *	Pads up a buffer to ensure the trailing bytes exist and are
3110  *	blanked. If the buffer already contains sufficient data it
3111  *	is untouched. Otherwise it is extended. Returns zero on
3112  *	success. The skb is freed on error.
3113  */
3114 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3115 {
3116 	return __skb_put_padto(skb, len, true);
3117 }
3118 
3119 static inline int skb_add_data(struct sk_buff *skb,
3120 			       struct iov_iter *from, int copy)
3121 {
3122 	const int off = skb->len;
3123 
3124 	if (skb->ip_summed == CHECKSUM_NONE) {
3125 		__wsum csum = 0;
3126 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3127 					         &csum, from)) {
3128 			skb->csum = csum_block_add(skb->csum, csum, off);
3129 			return 0;
3130 		}
3131 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3132 		return 0;
3133 
3134 	__skb_trim(skb, off);
3135 	return -EFAULT;
3136 }
3137 
3138 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3139 				    const struct page *page, int off)
3140 {
3141 	if (skb_zcopy(skb))
3142 		return false;
3143 	if (i) {
3144 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3145 
3146 		return page == skb_frag_page(frag) &&
3147 		       off == frag->page_offset + skb_frag_size(frag);
3148 	}
3149 	return false;
3150 }
3151 
3152 static inline int __skb_linearize(struct sk_buff *skb)
3153 {
3154 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3155 }
3156 
3157 /**
3158  *	skb_linearize - convert paged skb to linear one
3159  *	@skb: buffer to linarize
3160  *
3161  *	If there is no free memory -ENOMEM is returned, otherwise zero
3162  *	is returned and the old skb data released.
3163  */
3164 static inline int skb_linearize(struct sk_buff *skb)
3165 {
3166 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3167 }
3168 
3169 /**
3170  * skb_has_shared_frag - can any frag be overwritten
3171  * @skb: buffer to test
3172  *
3173  * Return true if the skb has at least one frag that might be modified
3174  * by an external entity (as in vmsplice()/sendfile())
3175  */
3176 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3177 {
3178 	return skb_is_nonlinear(skb) &&
3179 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3180 }
3181 
3182 /**
3183  *	skb_linearize_cow - make sure skb is linear and writable
3184  *	@skb: buffer to process
3185  *
3186  *	If there is no free memory -ENOMEM is returned, otherwise zero
3187  *	is returned and the old skb data released.
3188  */
3189 static inline int skb_linearize_cow(struct sk_buff *skb)
3190 {
3191 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3192 	       __skb_linearize(skb) : 0;
3193 }
3194 
3195 static __always_inline void
3196 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3197 		     unsigned int off)
3198 {
3199 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3200 		skb->csum = csum_block_sub(skb->csum,
3201 					   csum_partial(start, len, 0), off);
3202 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3203 		 skb_checksum_start_offset(skb) < 0)
3204 		skb->ip_summed = CHECKSUM_NONE;
3205 }
3206 
3207 /**
3208  *	skb_postpull_rcsum - update checksum for received skb after pull
3209  *	@skb: buffer to update
3210  *	@start: start of data before pull
3211  *	@len: length of data pulled
3212  *
3213  *	After doing a pull on a received packet, you need to call this to
3214  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3215  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3216  */
3217 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3218 				      const void *start, unsigned int len)
3219 {
3220 	__skb_postpull_rcsum(skb, start, len, 0);
3221 }
3222 
3223 static __always_inline void
3224 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3225 		     unsigned int off)
3226 {
3227 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3228 		skb->csum = csum_block_add(skb->csum,
3229 					   csum_partial(start, len, 0), off);
3230 }
3231 
3232 /**
3233  *	skb_postpush_rcsum - update checksum for received skb after push
3234  *	@skb: buffer to update
3235  *	@start: start of data after push
3236  *	@len: length of data pushed
3237  *
3238  *	After doing a push on a received packet, you need to call this to
3239  *	update the CHECKSUM_COMPLETE checksum.
3240  */
3241 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3242 				      const void *start, unsigned int len)
3243 {
3244 	__skb_postpush_rcsum(skb, start, len, 0);
3245 }
3246 
3247 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3248 
3249 /**
3250  *	skb_push_rcsum - push skb and update receive checksum
3251  *	@skb: buffer to update
3252  *	@len: length of data pulled
3253  *
3254  *	This function performs an skb_push on the packet and updates
3255  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3256  *	receive path processing instead of skb_push unless you know
3257  *	that the checksum difference is zero (e.g., a valid IP header)
3258  *	or you are setting ip_summed to CHECKSUM_NONE.
3259  */
3260 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3261 {
3262 	skb_push(skb, len);
3263 	skb_postpush_rcsum(skb, skb->data, len);
3264 	return skb->data;
3265 }
3266 
3267 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3268 /**
3269  *	pskb_trim_rcsum - trim received skb and update checksum
3270  *	@skb: buffer to trim
3271  *	@len: new length
3272  *
3273  *	This is exactly the same as pskb_trim except that it ensures the
3274  *	checksum of received packets are still valid after the operation.
3275  *	It can change skb pointers.
3276  */
3277 
3278 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3279 {
3280 	if (likely(len >= skb->len))
3281 		return 0;
3282 	return pskb_trim_rcsum_slow(skb, len);
3283 }
3284 
3285 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3286 {
3287 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3288 		skb->ip_summed = CHECKSUM_NONE;
3289 	__skb_trim(skb, len);
3290 	return 0;
3291 }
3292 
3293 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3294 {
3295 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3296 		skb->ip_summed = CHECKSUM_NONE;
3297 	return __skb_grow(skb, len);
3298 }
3299 
3300 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3301 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3302 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3303 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3304 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3305 
3306 #define skb_queue_walk(queue, skb) \
3307 		for (skb = (queue)->next;					\
3308 		     skb != (struct sk_buff *)(queue);				\
3309 		     skb = skb->next)
3310 
3311 #define skb_queue_walk_safe(queue, skb, tmp)					\
3312 		for (skb = (queue)->next, tmp = skb->next;			\
3313 		     skb != (struct sk_buff *)(queue);				\
3314 		     skb = tmp, tmp = skb->next)
3315 
3316 #define skb_queue_walk_from(queue, skb)						\
3317 		for (; skb != (struct sk_buff *)(queue);			\
3318 		     skb = skb->next)
3319 
3320 #define skb_rbtree_walk(skb, root)						\
3321 		for (skb = skb_rb_first(root); skb != NULL;			\
3322 		     skb = skb_rb_next(skb))
3323 
3324 #define skb_rbtree_walk_from(skb)						\
3325 		for (; skb != NULL;						\
3326 		     skb = skb_rb_next(skb))
3327 
3328 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3329 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3330 		     skb = tmp)
3331 
3332 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3333 		for (tmp = skb->next;						\
3334 		     skb != (struct sk_buff *)(queue);				\
3335 		     skb = tmp, tmp = skb->next)
3336 
3337 #define skb_queue_reverse_walk(queue, skb) \
3338 		for (skb = (queue)->prev;					\
3339 		     skb != (struct sk_buff *)(queue);				\
3340 		     skb = skb->prev)
3341 
3342 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3343 		for (skb = (queue)->prev, tmp = skb->prev;			\
3344 		     skb != (struct sk_buff *)(queue);				\
3345 		     skb = tmp, tmp = skb->prev)
3346 
3347 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3348 		for (tmp = skb->prev;						\
3349 		     skb != (struct sk_buff *)(queue);				\
3350 		     skb = tmp, tmp = skb->prev)
3351 
3352 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3353 {
3354 	return skb_shinfo(skb)->frag_list != NULL;
3355 }
3356 
3357 static inline void skb_frag_list_init(struct sk_buff *skb)
3358 {
3359 	skb_shinfo(skb)->frag_list = NULL;
3360 }
3361 
3362 #define skb_walk_frags(skb, iter)	\
3363 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3364 
3365 
3366 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3367 				const struct sk_buff *skb);
3368 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3369 					  struct sk_buff_head *queue,
3370 					  unsigned int flags,
3371 					  void (*destructor)(struct sock *sk,
3372 							   struct sk_buff *skb),
3373 					  int *off, int *err,
3374 					  struct sk_buff **last);
3375 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3376 					void (*destructor)(struct sock *sk,
3377 							   struct sk_buff *skb),
3378 					int *off, int *err,
3379 					struct sk_buff **last);
3380 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3381 				    void (*destructor)(struct sock *sk,
3382 						       struct sk_buff *skb),
3383 				    int *off, int *err);
3384 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3385 				  int *err);
3386 __poll_t datagram_poll(struct file *file, struct socket *sock,
3387 			   struct poll_table_struct *wait);
3388 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3389 			   struct iov_iter *to, int size);
3390 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3391 					struct msghdr *msg, int size)
3392 {
3393 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3394 }
3395 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3396 				   struct msghdr *msg);
3397 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3398 			   struct iov_iter *to, int len,
3399 			   struct ahash_request *hash);
3400 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3401 				 struct iov_iter *from, int len);
3402 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3403 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3404 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3405 static inline void skb_free_datagram_locked(struct sock *sk,
3406 					    struct sk_buff *skb)
3407 {
3408 	__skb_free_datagram_locked(sk, skb, 0);
3409 }
3410 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3411 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3412 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3413 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3414 			      int len, __wsum csum);
3415 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3416 		    struct pipe_inode_info *pipe, unsigned int len,
3417 		    unsigned int flags);
3418 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3419 			 int len);
3420 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3421 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3422 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3423 		 int len, int hlen);
3424 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3425 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3426 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3427 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3428 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3429 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3430 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3431 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3432 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3433 int skb_vlan_pop(struct sk_buff *skb);
3434 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3435 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3436 			     gfp_t gfp);
3437 
3438 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3439 {
3440 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3441 }
3442 
3443 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3444 {
3445 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3446 }
3447 
3448 struct skb_checksum_ops {
3449 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3450 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3451 };
3452 
3453 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3454 
3455 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3456 		      __wsum csum, const struct skb_checksum_ops *ops);
3457 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3458 		    __wsum csum);
3459 
3460 static inline void * __must_check
3461 __skb_header_pointer(const struct sk_buff *skb, int offset,
3462 		     int len, void *data, int hlen, void *buffer)
3463 {
3464 	if (hlen - offset >= len)
3465 		return data + offset;
3466 
3467 	if (!skb ||
3468 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3469 		return NULL;
3470 
3471 	return buffer;
3472 }
3473 
3474 static inline void * __must_check
3475 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3476 {
3477 	return __skb_header_pointer(skb, offset, len, skb->data,
3478 				    skb_headlen(skb), buffer);
3479 }
3480 
3481 /**
3482  *	skb_needs_linearize - check if we need to linearize a given skb
3483  *			      depending on the given device features.
3484  *	@skb: socket buffer to check
3485  *	@features: net device features
3486  *
3487  *	Returns true if either:
3488  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3489  *	2. skb is fragmented and the device does not support SG.
3490  */
3491 static inline bool skb_needs_linearize(struct sk_buff *skb,
3492 				       netdev_features_t features)
3493 {
3494 	return skb_is_nonlinear(skb) &&
3495 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3496 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3497 }
3498 
3499 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3500 					     void *to,
3501 					     const unsigned int len)
3502 {
3503 	memcpy(to, skb->data, len);
3504 }
3505 
3506 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3507 						    const int offset, void *to,
3508 						    const unsigned int len)
3509 {
3510 	memcpy(to, skb->data + offset, len);
3511 }
3512 
3513 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3514 					   const void *from,
3515 					   const unsigned int len)
3516 {
3517 	memcpy(skb->data, from, len);
3518 }
3519 
3520 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3521 						  const int offset,
3522 						  const void *from,
3523 						  const unsigned int len)
3524 {
3525 	memcpy(skb->data + offset, from, len);
3526 }
3527 
3528 void skb_init(void);
3529 
3530 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3531 {
3532 	return skb->tstamp;
3533 }
3534 
3535 /**
3536  *	skb_get_timestamp - get timestamp from a skb
3537  *	@skb: skb to get stamp from
3538  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3539  *
3540  *	Timestamps are stored in the skb as offsets to a base timestamp.
3541  *	This function converts the offset back to a struct timeval and stores
3542  *	it in stamp.
3543  */
3544 static inline void skb_get_timestamp(const struct sk_buff *skb,
3545 				     struct __kernel_old_timeval *stamp)
3546 {
3547 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3548 }
3549 
3550 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3551 					 struct __kernel_sock_timeval *stamp)
3552 {
3553 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3554 
3555 	stamp->tv_sec = ts.tv_sec;
3556 	stamp->tv_usec = ts.tv_nsec / 1000;
3557 }
3558 
3559 static inline void skb_get_timestampns(const struct sk_buff *skb,
3560 				       struct timespec *stamp)
3561 {
3562 	*stamp = ktime_to_timespec(skb->tstamp);
3563 }
3564 
3565 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3566 					   struct __kernel_timespec *stamp)
3567 {
3568 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3569 
3570 	stamp->tv_sec = ts.tv_sec;
3571 	stamp->tv_nsec = ts.tv_nsec;
3572 }
3573 
3574 static inline void __net_timestamp(struct sk_buff *skb)
3575 {
3576 	skb->tstamp = ktime_get_real();
3577 }
3578 
3579 static inline ktime_t net_timedelta(ktime_t t)
3580 {
3581 	return ktime_sub(ktime_get_real(), t);
3582 }
3583 
3584 static inline ktime_t net_invalid_timestamp(void)
3585 {
3586 	return 0;
3587 }
3588 
3589 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3590 {
3591 	return skb_shinfo(skb)->meta_len;
3592 }
3593 
3594 static inline void *skb_metadata_end(const struct sk_buff *skb)
3595 {
3596 	return skb_mac_header(skb);
3597 }
3598 
3599 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3600 					  const struct sk_buff *skb_b,
3601 					  u8 meta_len)
3602 {
3603 	const void *a = skb_metadata_end(skb_a);
3604 	const void *b = skb_metadata_end(skb_b);
3605 	/* Using more efficient varaiant than plain call to memcmp(). */
3606 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3607 	u64 diffs = 0;
3608 
3609 	switch (meta_len) {
3610 #define __it(x, op) (x -= sizeof(u##op))
3611 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3612 	case 32: diffs |= __it_diff(a, b, 64);
3613 		 /* fall through */
3614 	case 24: diffs |= __it_diff(a, b, 64);
3615 		 /* fall through */
3616 	case 16: diffs |= __it_diff(a, b, 64);
3617 		 /* fall through */
3618 	case  8: diffs |= __it_diff(a, b, 64);
3619 		break;
3620 	case 28: diffs |= __it_diff(a, b, 64);
3621 		 /* fall through */
3622 	case 20: diffs |= __it_diff(a, b, 64);
3623 		 /* fall through */
3624 	case 12: diffs |= __it_diff(a, b, 64);
3625 		 /* fall through */
3626 	case  4: diffs |= __it_diff(a, b, 32);
3627 		break;
3628 	}
3629 	return diffs;
3630 #else
3631 	return memcmp(a - meta_len, b - meta_len, meta_len);
3632 #endif
3633 }
3634 
3635 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3636 					const struct sk_buff *skb_b)
3637 {
3638 	u8 len_a = skb_metadata_len(skb_a);
3639 	u8 len_b = skb_metadata_len(skb_b);
3640 
3641 	if (!(len_a | len_b))
3642 		return false;
3643 
3644 	return len_a != len_b ?
3645 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3646 }
3647 
3648 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3649 {
3650 	skb_shinfo(skb)->meta_len = meta_len;
3651 }
3652 
3653 static inline void skb_metadata_clear(struct sk_buff *skb)
3654 {
3655 	skb_metadata_set(skb, 0);
3656 }
3657 
3658 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3659 
3660 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3661 
3662 void skb_clone_tx_timestamp(struct sk_buff *skb);
3663 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3664 
3665 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3666 
3667 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3668 {
3669 }
3670 
3671 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3672 {
3673 	return false;
3674 }
3675 
3676 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3677 
3678 /**
3679  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3680  *
3681  * PHY drivers may accept clones of transmitted packets for
3682  * timestamping via their phy_driver.txtstamp method. These drivers
3683  * must call this function to return the skb back to the stack with a
3684  * timestamp.
3685  *
3686  * @skb: clone of the the original outgoing packet
3687  * @hwtstamps: hardware time stamps
3688  *
3689  */
3690 void skb_complete_tx_timestamp(struct sk_buff *skb,
3691 			       struct skb_shared_hwtstamps *hwtstamps);
3692 
3693 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3694 		     struct skb_shared_hwtstamps *hwtstamps,
3695 		     struct sock *sk, int tstype);
3696 
3697 /**
3698  * skb_tstamp_tx - queue clone of skb with send time stamps
3699  * @orig_skb:	the original outgoing packet
3700  * @hwtstamps:	hardware time stamps, may be NULL if not available
3701  *
3702  * If the skb has a socket associated, then this function clones the
3703  * skb (thus sharing the actual data and optional structures), stores
3704  * the optional hardware time stamping information (if non NULL) or
3705  * generates a software time stamp (otherwise), then queues the clone
3706  * to the error queue of the socket.  Errors are silently ignored.
3707  */
3708 void skb_tstamp_tx(struct sk_buff *orig_skb,
3709 		   struct skb_shared_hwtstamps *hwtstamps);
3710 
3711 /**
3712  * skb_tx_timestamp() - Driver hook for transmit timestamping
3713  *
3714  * Ethernet MAC Drivers should call this function in their hard_xmit()
3715  * function immediately before giving the sk_buff to the MAC hardware.
3716  *
3717  * Specifically, one should make absolutely sure that this function is
3718  * called before TX completion of this packet can trigger.  Otherwise
3719  * the packet could potentially already be freed.
3720  *
3721  * @skb: A socket buffer.
3722  */
3723 static inline void skb_tx_timestamp(struct sk_buff *skb)
3724 {
3725 	skb_clone_tx_timestamp(skb);
3726 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3727 		skb_tstamp_tx(skb, NULL);
3728 }
3729 
3730 /**
3731  * skb_complete_wifi_ack - deliver skb with wifi status
3732  *
3733  * @skb: the original outgoing packet
3734  * @acked: ack status
3735  *
3736  */
3737 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3738 
3739 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3740 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3741 
3742 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3743 {
3744 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3745 		skb->csum_valid ||
3746 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3747 		 skb_checksum_start_offset(skb) >= 0));
3748 }
3749 
3750 /**
3751  *	skb_checksum_complete - Calculate checksum of an entire packet
3752  *	@skb: packet to process
3753  *
3754  *	This function calculates the checksum over the entire packet plus
3755  *	the value of skb->csum.  The latter can be used to supply the
3756  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3757  *	checksum.
3758  *
3759  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3760  *	this function can be used to verify that checksum on received
3761  *	packets.  In that case the function should return zero if the
3762  *	checksum is correct.  In particular, this function will return zero
3763  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3764  *	hardware has already verified the correctness of the checksum.
3765  */
3766 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3767 {
3768 	return skb_csum_unnecessary(skb) ?
3769 	       0 : __skb_checksum_complete(skb);
3770 }
3771 
3772 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3773 {
3774 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3775 		if (skb->csum_level == 0)
3776 			skb->ip_summed = CHECKSUM_NONE;
3777 		else
3778 			skb->csum_level--;
3779 	}
3780 }
3781 
3782 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3783 {
3784 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3785 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3786 			skb->csum_level++;
3787 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3788 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3789 		skb->csum_level = 0;
3790 	}
3791 }
3792 
3793 /* Check if we need to perform checksum complete validation.
3794  *
3795  * Returns true if checksum complete is needed, false otherwise
3796  * (either checksum is unnecessary or zero checksum is allowed).
3797  */
3798 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3799 						  bool zero_okay,
3800 						  __sum16 check)
3801 {
3802 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3803 		skb->csum_valid = 1;
3804 		__skb_decr_checksum_unnecessary(skb);
3805 		return false;
3806 	}
3807 
3808 	return true;
3809 }
3810 
3811 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3812  * in checksum_init.
3813  */
3814 #define CHECKSUM_BREAK 76
3815 
3816 /* Unset checksum-complete
3817  *
3818  * Unset checksum complete can be done when packet is being modified
3819  * (uncompressed for instance) and checksum-complete value is
3820  * invalidated.
3821  */
3822 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3823 {
3824 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3825 		skb->ip_summed = CHECKSUM_NONE;
3826 }
3827 
3828 /* Validate (init) checksum based on checksum complete.
3829  *
3830  * Return values:
3831  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3832  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3833  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3834  *   non-zero: value of invalid checksum
3835  *
3836  */
3837 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3838 						       bool complete,
3839 						       __wsum psum)
3840 {
3841 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3842 		if (!csum_fold(csum_add(psum, skb->csum))) {
3843 			skb->csum_valid = 1;
3844 			return 0;
3845 		}
3846 	}
3847 
3848 	skb->csum = psum;
3849 
3850 	if (complete || skb->len <= CHECKSUM_BREAK) {
3851 		__sum16 csum;
3852 
3853 		csum = __skb_checksum_complete(skb);
3854 		skb->csum_valid = !csum;
3855 		return csum;
3856 	}
3857 
3858 	return 0;
3859 }
3860 
3861 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3862 {
3863 	return 0;
3864 }
3865 
3866 /* Perform checksum validate (init). Note that this is a macro since we only
3867  * want to calculate the pseudo header which is an input function if necessary.
3868  * First we try to validate without any computation (checksum unnecessary) and
3869  * then calculate based on checksum complete calling the function to compute
3870  * pseudo header.
3871  *
3872  * Return values:
3873  *   0: checksum is validated or try to in skb_checksum_complete
3874  *   non-zero: value of invalid checksum
3875  */
3876 #define __skb_checksum_validate(skb, proto, complete,			\
3877 				zero_okay, check, compute_pseudo)	\
3878 ({									\
3879 	__sum16 __ret = 0;						\
3880 	skb->csum_valid = 0;						\
3881 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3882 		__ret = __skb_checksum_validate_complete(skb,		\
3883 				complete, compute_pseudo(skb, proto));	\
3884 	__ret;								\
3885 })
3886 
3887 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3888 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3889 
3890 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3891 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3892 
3893 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3894 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3895 
3896 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3897 					 compute_pseudo)		\
3898 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3899 
3900 #define skb_checksum_simple_validate(skb)				\
3901 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3902 
3903 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3904 {
3905 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3906 }
3907 
3908 static inline void __skb_checksum_convert(struct sk_buff *skb,
3909 					  __sum16 check, __wsum pseudo)
3910 {
3911 	skb->csum = ~pseudo;
3912 	skb->ip_summed = CHECKSUM_COMPLETE;
3913 }
3914 
3915 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3916 do {									\
3917 	if (__skb_checksum_convert_check(skb))				\
3918 		__skb_checksum_convert(skb, check,			\
3919 				       compute_pseudo(skb, proto));	\
3920 } while (0)
3921 
3922 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3923 					      u16 start, u16 offset)
3924 {
3925 	skb->ip_summed = CHECKSUM_PARTIAL;
3926 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3927 	skb->csum_offset = offset - start;
3928 }
3929 
3930 /* Update skbuf and packet to reflect the remote checksum offload operation.
3931  * When called, ptr indicates the starting point for skb->csum when
3932  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3933  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3934  */
3935 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3936 				       int start, int offset, bool nopartial)
3937 {
3938 	__wsum delta;
3939 
3940 	if (!nopartial) {
3941 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3942 		return;
3943 	}
3944 
3945 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3946 		__skb_checksum_complete(skb);
3947 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3948 	}
3949 
3950 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3951 
3952 	/* Adjust skb->csum since we changed the packet */
3953 	skb->csum = csum_add(skb->csum, delta);
3954 }
3955 
3956 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3957 {
3958 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3959 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3960 #else
3961 	return NULL;
3962 #endif
3963 }
3964 
3965 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3966 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3967 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3968 {
3969 	if (nfct && atomic_dec_and_test(&nfct->use))
3970 		nf_conntrack_destroy(nfct);
3971 }
3972 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3973 {
3974 	if (nfct)
3975 		atomic_inc(&nfct->use);
3976 }
3977 #endif
3978 
3979 #ifdef CONFIG_SKB_EXTENSIONS
3980 enum skb_ext_id {
3981 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3982 	SKB_EXT_BRIDGE_NF,
3983 #endif
3984 #ifdef CONFIG_XFRM
3985 	SKB_EXT_SEC_PATH,
3986 #endif
3987 	SKB_EXT_NUM, /* must be last */
3988 };
3989 
3990 /**
3991  *	struct skb_ext - sk_buff extensions
3992  *	@refcnt: 1 on allocation, deallocated on 0
3993  *	@offset: offset to add to @data to obtain extension address
3994  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
3995  *	@data: start of extension data, variable sized
3996  *
3997  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
3998  *	to use 'u8' types while allowing up to 2kb worth of extension data.
3999  */
4000 struct skb_ext {
4001 	refcount_t refcnt;
4002 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4003 	u8 chunks;		/* same */
4004 	char data[0] __aligned(8);
4005 };
4006 
4007 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4008 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4009 void __skb_ext_put(struct skb_ext *ext);
4010 
4011 static inline void skb_ext_put(struct sk_buff *skb)
4012 {
4013 	if (skb->active_extensions)
4014 		__skb_ext_put(skb->extensions);
4015 }
4016 
4017 static inline void __skb_ext_copy(struct sk_buff *dst,
4018 				  const struct sk_buff *src)
4019 {
4020 	dst->active_extensions = src->active_extensions;
4021 
4022 	if (src->active_extensions) {
4023 		struct skb_ext *ext = src->extensions;
4024 
4025 		refcount_inc(&ext->refcnt);
4026 		dst->extensions = ext;
4027 	}
4028 }
4029 
4030 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4031 {
4032 	skb_ext_put(dst);
4033 	__skb_ext_copy(dst, src);
4034 }
4035 
4036 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4037 {
4038 	return !!ext->offset[i];
4039 }
4040 
4041 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4042 {
4043 	return skb->active_extensions & (1 << id);
4044 }
4045 
4046 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4047 {
4048 	if (skb_ext_exist(skb, id))
4049 		__skb_ext_del(skb, id);
4050 }
4051 
4052 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4053 {
4054 	if (skb_ext_exist(skb, id)) {
4055 		struct skb_ext *ext = skb->extensions;
4056 
4057 		return (void *)ext + (ext->offset[id] << 3);
4058 	}
4059 
4060 	return NULL;
4061 }
4062 #else
4063 static inline void skb_ext_put(struct sk_buff *skb) {}
4064 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4065 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4066 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4067 #endif /* CONFIG_SKB_EXTENSIONS */
4068 
4069 static inline void nf_reset(struct sk_buff *skb)
4070 {
4071 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4072 	nf_conntrack_put(skb_nfct(skb));
4073 	skb->_nfct = 0;
4074 #endif
4075 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4076 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4077 #endif
4078 }
4079 
4080 static inline void nf_reset_trace(struct sk_buff *skb)
4081 {
4082 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4083 	skb->nf_trace = 0;
4084 #endif
4085 }
4086 
4087 static inline void ipvs_reset(struct sk_buff *skb)
4088 {
4089 #if IS_ENABLED(CONFIG_IP_VS)
4090 	skb->ipvs_property = 0;
4091 #endif
4092 }
4093 
4094 /* Note: This doesn't put any conntrack info in dst. */
4095 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4096 			     bool copy)
4097 {
4098 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4099 	dst->_nfct = src->_nfct;
4100 	nf_conntrack_get(skb_nfct(src));
4101 #endif
4102 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4103 	if (copy)
4104 		dst->nf_trace = src->nf_trace;
4105 #endif
4106 }
4107 
4108 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4109 {
4110 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4111 	nf_conntrack_put(skb_nfct(dst));
4112 #endif
4113 	__nf_copy(dst, src, true);
4114 }
4115 
4116 #ifdef CONFIG_NETWORK_SECMARK
4117 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4118 {
4119 	to->secmark = from->secmark;
4120 }
4121 
4122 static inline void skb_init_secmark(struct sk_buff *skb)
4123 {
4124 	skb->secmark = 0;
4125 }
4126 #else
4127 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4128 { }
4129 
4130 static inline void skb_init_secmark(struct sk_buff *skb)
4131 { }
4132 #endif
4133 
4134 static inline int secpath_exists(const struct sk_buff *skb)
4135 {
4136 #ifdef CONFIG_XFRM
4137 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4138 #else
4139 	return 0;
4140 #endif
4141 }
4142 
4143 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4144 {
4145 	return !skb->destructor &&
4146 		!secpath_exists(skb) &&
4147 		!skb_nfct(skb) &&
4148 		!skb->_skb_refdst &&
4149 		!skb_has_frag_list(skb);
4150 }
4151 
4152 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4153 {
4154 	skb->queue_mapping = queue_mapping;
4155 }
4156 
4157 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4158 {
4159 	return skb->queue_mapping;
4160 }
4161 
4162 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4163 {
4164 	to->queue_mapping = from->queue_mapping;
4165 }
4166 
4167 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4168 {
4169 	skb->queue_mapping = rx_queue + 1;
4170 }
4171 
4172 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4173 {
4174 	return skb->queue_mapping - 1;
4175 }
4176 
4177 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4178 {
4179 	return skb->queue_mapping != 0;
4180 }
4181 
4182 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4183 {
4184 	skb->dst_pending_confirm = val;
4185 }
4186 
4187 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4188 {
4189 	return skb->dst_pending_confirm != 0;
4190 }
4191 
4192 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4193 {
4194 #ifdef CONFIG_XFRM
4195 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4196 #else
4197 	return NULL;
4198 #endif
4199 }
4200 
4201 /* Keeps track of mac header offset relative to skb->head.
4202  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4203  * For non-tunnel skb it points to skb_mac_header() and for
4204  * tunnel skb it points to outer mac header.
4205  * Keeps track of level of encapsulation of network headers.
4206  */
4207 struct skb_gso_cb {
4208 	union {
4209 		int	mac_offset;
4210 		int	data_offset;
4211 	};
4212 	int	encap_level;
4213 	__wsum	csum;
4214 	__u16	csum_start;
4215 };
4216 #define SKB_SGO_CB_OFFSET	32
4217 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4218 
4219 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4220 {
4221 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4222 		SKB_GSO_CB(inner_skb)->mac_offset;
4223 }
4224 
4225 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4226 {
4227 	int new_headroom, headroom;
4228 	int ret;
4229 
4230 	headroom = skb_headroom(skb);
4231 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4232 	if (ret)
4233 		return ret;
4234 
4235 	new_headroom = skb_headroom(skb);
4236 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4237 	return 0;
4238 }
4239 
4240 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4241 {
4242 	/* Do not update partial checksums if remote checksum is enabled. */
4243 	if (skb->remcsum_offload)
4244 		return;
4245 
4246 	SKB_GSO_CB(skb)->csum = res;
4247 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4248 }
4249 
4250 /* Compute the checksum for a gso segment. First compute the checksum value
4251  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4252  * then add in skb->csum (checksum from csum_start to end of packet).
4253  * skb->csum and csum_start are then updated to reflect the checksum of the
4254  * resultant packet starting from the transport header-- the resultant checksum
4255  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4256  * header.
4257  */
4258 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4259 {
4260 	unsigned char *csum_start = skb_transport_header(skb);
4261 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4262 	__wsum partial = SKB_GSO_CB(skb)->csum;
4263 
4264 	SKB_GSO_CB(skb)->csum = res;
4265 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4266 
4267 	return csum_fold(csum_partial(csum_start, plen, partial));
4268 }
4269 
4270 static inline bool skb_is_gso(const struct sk_buff *skb)
4271 {
4272 	return skb_shinfo(skb)->gso_size;
4273 }
4274 
4275 /* Note: Should be called only if skb_is_gso(skb) is true */
4276 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4277 {
4278 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4279 }
4280 
4281 /* Note: Should be called only if skb_is_gso(skb) is true */
4282 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4283 {
4284 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4285 }
4286 
4287 /* Note: Should be called only if skb_is_gso(skb) is true */
4288 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4289 {
4290 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4291 }
4292 
4293 static inline void skb_gso_reset(struct sk_buff *skb)
4294 {
4295 	skb_shinfo(skb)->gso_size = 0;
4296 	skb_shinfo(skb)->gso_segs = 0;
4297 	skb_shinfo(skb)->gso_type = 0;
4298 }
4299 
4300 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4301 					 u16 increment)
4302 {
4303 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4304 		return;
4305 	shinfo->gso_size += increment;
4306 }
4307 
4308 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4309 					 u16 decrement)
4310 {
4311 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4312 		return;
4313 	shinfo->gso_size -= decrement;
4314 }
4315 
4316 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4317 
4318 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4319 {
4320 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4321 	 * wanted then gso_type will be set. */
4322 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4323 
4324 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4325 	    unlikely(shinfo->gso_type == 0)) {
4326 		__skb_warn_lro_forwarding(skb);
4327 		return true;
4328 	}
4329 	return false;
4330 }
4331 
4332 static inline void skb_forward_csum(struct sk_buff *skb)
4333 {
4334 	/* Unfortunately we don't support this one.  Any brave souls? */
4335 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4336 		skb->ip_summed = CHECKSUM_NONE;
4337 }
4338 
4339 /**
4340  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4341  * @skb: skb to check
4342  *
4343  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4344  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4345  * use this helper, to document places where we make this assertion.
4346  */
4347 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4348 {
4349 #ifdef DEBUG
4350 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4351 #endif
4352 }
4353 
4354 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4355 
4356 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4357 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4358 				     unsigned int transport_len,
4359 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4360 
4361 /**
4362  * skb_head_is_locked - Determine if the skb->head is locked down
4363  * @skb: skb to check
4364  *
4365  * The head on skbs build around a head frag can be removed if they are
4366  * not cloned.  This function returns true if the skb head is locked down
4367  * due to either being allocated via kmalloc, or by being a clone with
4368  * multiple references to the head.
4369  */
4370 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4371 {
4372 	return !skb->head_frag || skb_cloned(skb);
4373 }
4374 
4375 /* Local Checksum Offload.
4376  * Compute outer checksum based on the assumption that the
4377  * inner checksum will be offloaded later.
4378  * See Documentation/networking/checksum-offloads.rst for
4379  * explanation of how this works.
4380  * Fill in outer checksum adjustment (e.g. with sum of outer
4381  * pseudo-header) before calling.
4382  * Also ensure that inner checksum is in linear data area.
4383  */
4384 static inline __wsum lco_csum(struct sk_buff *skb)
4385 {
4386 	unsigned char *csum_start = skb_checksum_start(skb);
4387 	unsigned char *l4_hdr = skb_transport_header(skb);
4388 	__wsum partial;
4389 
4390 	/* Start with complement of inner checksum adjustment */
4391 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4392 						    skb->csum_offset));
4393 
4394 	/* Add in checksum of our headers (incl. outer checksum
4395 	 * adjustment filled in by caller) and return result.
4396 	 */
4397 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4398 }
4399 
4400 #endif	/* __KERNEL__ */
4401 #endif	/* _LINUX_SKBUFF_H */
4402