xref: /linux-6.15/include/linux/skbuff.h (revision eef8abda)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver.
51  * A driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options.
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv6|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is set in skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250 
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 	enum {
254 		BRNF_PROTO_UNCHANGED,
255 		BRNF_PROTO_8021Q,
256 		BRNF_PROTO_PPPOE
257 	} orig_proto:8;
258 	u8			pkt_otherhost:1;
259 	u8			in_prerouting:1;
260 	u8			bridged_dnat:1;
261 	__u16			frag_max_size;
262 	struct net_device	*physindev;
263 
264 	/* always valid & non-NULL from FORWARD on, for physdev match */
265 	struct net_device	*physoutdev;
266 	union {
267 		/* prerouting: detect dnat in orig/reply direction */
268 		__be32          ipv4_daddr;
269 		struct in6_addr ipv6_daddr;
270 
271 		/* after prerouting + nat detected: store original source
272 		 * mac since neigh resolution overwrites it, only used while
273 		 * skb is out in neigh layer.
274 		 */
275 		char neigh_header[8];
276 	};
277 };
278 #endif
279 
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282  * ovs recirc_id. It will be set to the current chain by tc
283  * and read by ovs to recirc_id.
284  */
285 struct tc_skb_ext {
286 	__u32 chain;
287 	__u16 mru;
288 };
289 #endif
290 
291 struct sk_buff_head {
292 	/* These two members must be first. */
293 	struct sk_buff	*next;
294 	struct sk_buff	*prev;
295 
296 	__u32		qlen;
297 	spinlock_t	lock;
298 };
299 
300 struct sk_buff;
301 
302 /* To allow 64K frame to be packed as single skb without frag_list we
303  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304  * buffers which do not start on a page boundary.
305  *
306  * Since GRO uses frags we allocate at least 16 regardless of page
307  * size.
308  */
309 #if (65536/PAGE_SIZE + 1) < 16
310 #define MAX_SKB_FRAGS 16UL
311 #else
312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313 #endif
314 extern int sysctl_max_skb_frags;
315 
316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317  * segment using its current segmentation instead.
318  */
319 #define GSO_BY_FRAGS	0xFFFF
320 
321 typedef struct bio_vec skb_frag_t;
322 
323 /**
324  * skb_frag_size() - Returns the size of a skb fragment
325  * @frag: skb fragment
326  */
327 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328 {
329 	return frag->bv_len;
330 }
331 
332 /**
333  * skb_frag_size_set() - Sets the size of a skb fragment
334  * @frag: skb fragment
335  * @size: size of fragment
336  */
337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 {
339 	frag->bv_len = size;
340 }
341 
342 /**
343  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344  * @frag: skb fragment
345  * @delta: value to add
346  */
347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348 {
349 	frag->bv_len += delta;
350 }
351 
352 /**
353  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354  * @frag: skb fragment
355  * @delta: value to subtract
356  */
357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358 {
359 	frag->bv_len -= delta;
360 }
361 
362 /**
363  * skb_frag_must_loop - Test if %p is a high memory page
364  * @p: fragment's page
365  */
366 static inline bool skb_frag_must_loop(struct page *p)
367 {
368 #if defined(CONFIG_HIGHMEM)
369 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
370 		return true;
371 #endif
372 	return false;
373 }
374 
375 /**
376  *	skb_frag_foreach_page - loop over pages in a fragment
377  *
378  *	@f:		skb frag to operate on
379  *	@f_off:		offset from start of f->bv_page
380  *	@f_len:		length from f_off to loop over
381  *	@p:		(temp var) current page
382  *	@p_off:		(temp var) offset from start of current page,
383  *	                           non-zero only on first page.
384  *	@p_len:		(temp var) length in current page,
385  *				   < PAGE_SIZE only on first and last page.
386  *	@copied:	(temp var) length so far, excluding current p_len.
387  *
388  *	A fragment can hold a compound page, in which case per-page
389  *	operations, notably kmap_atomic, must be called for each
390  *	regular page.
391  */
392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
393 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
394 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
395 	     p_len = skb_frag_must_loop(p) ?				\
396 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
397 	     copied = 0;						\
398 	     copied < f_len;						\
399 	     copied += p_len, p++, p_off = 0,				\
400 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
401 
402 #define HAVE_HW_TIME_STAMP
403 
404 /**
405  * struct skb_shared_hwtstamps - hardware time stamps
406  * @hwtstamp:	hardware time stamp transformed into duration
407  *		since arbitrary point in time
408  *
409  * Software time stamps generated by ktime_get_real() are stored in
410  * skb->tstamp.
411  *
412  * hwtstamps can only be compared against other hwtstamps from
413  * the same device.
414  *
415  * This structure is attached to packets as part of the
416  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417  */
418 struct skb_shared_hwtstamps {
419 	ktime_t	hwtstamp;
420 };
421 
422 /* Definitions for tx_flags in struct skb_shared_info */
423 enum {
424 	/* generate hardware time stamp */
425 	SKBTX_HW_TSTAMP = 1 << 0,
426 
427 	/* generate software time stamp when queueing packet to NIC */
428 	SKBTX_SW_TSTAMP = 1 << 1,
429 
430 	/* device driver is going to provide hardware time stamp */
431 	SKBTX_IN_PROGRESS = 1 << 2,
432 
433 	/* generate wifi status information (where possible) */
434 	SKBTX_WIFI_STATUS = 1 << 4,
435 
436 	/* generate software time stamp when entering packet scheduling */
437 	SKBTX_SCHED_TSTAMP = 1 << 6,
438 };
439 
440 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
441 				 SKBTX_SCHED_TSTAMP)
442 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
443 
444 /* Definitions for flags in struct skb_shared_info */
445 enum {
446 	/* use zcopy routines */
447 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
448 
449 	/* This indicates at least one fragment might be overwritten
450 	 * (as in vmsplice(), sendfile() ...)
451 	 * If we need to compute a TX checksum, we'll need to copy
452 	 * all frags to avoid possible bad checksum
453 	 */
454 	SKBFL_SHARED_FRAG = BIT(1),
455 };
456 
457 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
458 
459 /*
460  * The callback notifies userspace to release buffers when skb DMA is done in
461  * lower device, the skb last reference should be 0 when calling this.
462  * The zerocopy_success argument is true if zero copy transmit occurred,
463  * false on data copy or out of memory error caused by data copy attempt.
464  * The ctx field is used to track device context.
465  * The desc field is used to track userspace buffer index.
466  */
467 struct ubuf_info {
468 	void (*callback)(struct sk_buff *, struct ubuf_info *,
469 			 bool zerocopy_success);
470 	union {
471 		struct {
472 			unsigned long desc;
473 			void *ctx;
474 		};
475 		struct {
476 			u32 id;
477 			u16 len;
478 			u16 zerocopy:1;
479 			u32 bytelen;
480 		};
481 	};
482 	refcount_t refcnt;
483 	u8 flags;
484 
485 	struct mmpin {
486 		struct user_struct *user;
487 		unsigned int num_pg;
488 	} mmp;
489 };
490 
491 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
492 
493 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
494 void mm_unaccount_pinned_pages(struct mmpin *mmp);
495 
496 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
497 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
498 				       struct ubuf_info *uarg);
499 
500 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501 
502 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
503 			   bool success);
504 
505 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
506 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
507 			     struct msghdr *msg, int len,
508 			     struct ubuf_info *uarg);
509 
510 /* This data is invariant across clones and lives at
511  * the end of the header data, ie. at skb->end.
512  */
513 struct skb_shared_info {
514 	__u8		flags;
515 	__u8		meta_len;
516 	__u8		nr_frags;
517 	__u8		tx_flags;
518 	unsigned short	gso_size;
519 	/* Warning: this field is not always filled in (UFO)! */
520 	unsigned short	gso_segs;
521 	struct sk_buff	*frag_list;
522 	struct skb_shared_hwtstamps hwtstamps;
523 	unsigned int	gso_type;
524 	u32		tskey;
525 
526 	/*
527 	 * Warning : all fields before dataref are cleared in __alloc_skb()
528 	 */
529 	atomic_t	dataref;
530 
531 	/* Intermediate layers must ensure that destructor_arg
532 	 * remains valid until skb destructor */
533 	void *		destructor_arg;
534 
535 	/* must be last field, see pskb_expand_head() */
536 	skb_frag_t	frags[MAX_SKB_FRAGS];
537 };
538 
539 /* We divide dataref into two halves.  The higher 16 bits hold references
540  * to the payload part of skb->data.  The lower 16 bits hold references to
541  * the entire skb->data.  A clone of a headerless skb holds the length of
542  * the header in skb->hdr_len.
543  *
544  * All users must obey the rule that the skb->data reference count must be
545  * greater than or equal to the payload reference count.
546  *
547  * Holding a reference to the payload part means that the user does not
548  * care about modifications to the header part of skb->data.
549  */
550 #define SKB_DATAREF_SHIFT 16
551 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
552 
553 
554 enum {
555 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
556 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
557 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
558 };
559 
560 enum {
561 	SKB_GSO_TCPV4 = 1 << 0,
562 
563 	/* This indicates the skb is from an untrusted source. */
564 	SKB_GSO_DODGY = 1 << 1,
565 
566 	/* This indicates the tcp segment has CWR set. */
567 	SKB_GSO_TCP_ECN = 1 << 2,
568 
569 	SKB_GSO_TCP_FIXEDID = 1 << 3,
570 
571 	SKB_GSO_TCPV6 = 1 << 4,
572 
573 	SKB_GSO_FCOE = 1 << 5,
574 
575 	SKB_GSO_GRE = 1 << 6,
576 
577 	SKB_GSO_GRE_CSUM = 1 << 7,
578 
579 	SKB_GSO_IPXIP4 = 1 << 8,
580 
581 	SKB_GSO_IPXIP6 = 1 << 9,
582 
583 	SKB_GSO_UDP_TUNNEL = 1 << 10,
584 
585 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
586 
587 	SKB_GSO_PARTIAL = 1 << 12,
588 
589 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
590 
591 	SKB_GSO_SCTP = 1 << 14,
592 
593 	SKB_GSO_ESP = 1 << 15,
594 
595 	SKB_GSO_UDP = 1 << 16,
596 
597 	SKB_GSO_UDP_L4 = 1 << 17,
598 
599 	SKB_GSO_FRAGLIST = 1 << 18,
600 };
601 
602 #if BITS_PER_LONG > 32
603 #define NET_SKBUFF_DATA_USES_OFFSET 1
604 #endif
605 
606 #ifdef NET_SKBUFF_DATA_USES_OFFSET
607 typedef unsigned int sk_buff_data_t;
608 #else
609 typedef unsigned char *sk_buff_data_t;
610 #endif
611 
612 /**
613  *	struct sk_buff - socket buffer
614  *	@next: Next buffer in list
615  *	@prev: Previous buffer in list
616  *	@tstamp: Time we arrived/left
617  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
618  *		for retransmit timer
619  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
620  *	@list: queue head
621  *	@sk: Socket we are owned by
622  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
623  *		fragmentation management
624  *	@dev: Device we arrived on/are leaving by
625  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
626  *	@cb: Control buffer. Free for use by every layer. Put private vars here
627  *	@_skb_refdst: destination entry (with norefcount bit)
628  *	@sp: the security path, used for xfrm
629  *	@len: Length of actual data
630  *	@data_len: Data length
631  *	@mac_len: Length of link layer header
632  *	@hdr_len: writable header length of cloned skb
633  *	@csum: Checksum (must include start/offset pair)
634  *	@csum_start: Offset from skb->head where checksumming should start
635  *	@csum_offset: Offset from csum_start where checksum should be stored
636  *	@priority: Packet queueing priority
637  *	@ignore_df: allow local fragmentation
638  *	@cloned: Head may be cloned (check refcnt to be sure)
639  *	@ip_summed: Driver fed us an IP checksum
640  *	@nohdr: Payload reference only, must not modify header
641  *	@pkt_type: Packet class
642  *	@fclone: skbuff clone status
643  *	@ipvs_property: skbuff is owned by ipvs
644  *	@inner_protocol_type: whether the inner protocol is
645  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
646  *	@remcsum_offload: remote checksum offload is enabled
647  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
648  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
649  *	@tc_skip_classify: do not classify packet. set by IFB device
650  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
651  *	@redirected: packet was redirected by packet classifier
652  *	@from_ingress: packet was redirected from the ingress path
653  *	@peeked: this packet has been seen already, so stats have been
654  *		done for it, don't do them again
655  *	@nf_trace: netfilter packet trace flag
656  *	@protocol: Packet protocol from driver
657  *	@destructor: Destruct function
658  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
659  *	@_nfct: Associated connection, if any (with nfctinfo bits)
660  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
661  *	@skb_iif: ifindex of device we arrived on
662  *	@tc_index: Traffic control index
663  *	@hash: the packet hash
664  *	@queue_mapping: Queue mapping for multiqueue devices
665  *	@head_frag: skb was allocated from page fragments,
666  *		not allocated by kmalloc() or vmalloc().
667  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
668  *	@active_extensions: active extensions (skb_ext_id types)
669  *	@ndisc_nodetype: router type (from link layer)
670  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
671  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
672  *		ports.
673  *	@sw_hash: indicates hash was computed in software stack
674  *	@wifi_acked_valid: wifi_acked was set
675  *	@wifi_acked: whether frame was acked on wifi or not
676  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
677  *	@encapsulation: indicates the inner headers in the skbuff are valid
678  *	@encap_hdr_csum: software checksum is needed
679  *	@csum_valid: checksum is already valid
680  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
681  *	@csum_complete_sw: checksum was completed by software
682  *	@csum_level: indicates the number of consecutive checksums found in
683  *		the packet minus one that have been verified as
684  *		CHECKSUM_UNNECESSARY (max 3)
685  *	@dst_pending_confirm: need to confirm neighbour
686  *	@decrypted: Decrypted SKB
687  *	@napi_id: id of the NAPI struct this skb came from
688  *	@sender_cpu: (aka @napi_id) source CPU in XPS
689  *	@secmark: security marking
690  *	@mark: Generic packet mark
691  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
692  *		at the tail of an sk_buff
693  *	@vlan_present: VLAN tag is present
694  *	@vlan_proto: vlan encapsulation protocol
695  *	@vlan_tci: vlan tag control information
696  *	@inner_protocol: Protocol (encapsulation)
697  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
698  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
699  *	@inner_transport_header: Inner transport layer header (encapsulation)
700  *	@inner_network_header: Network layer header (encapsulation)
701  *	@inner_mac_header: Link layer header (encapsulation)
702  *	@transport_header: Transport layer header
703  *	@network_header: Network layer header
704  *	@mac_header: Link layer header
705  *	@kcov_handle: KCOV remote handle for remote coverage collection
706  *	@tail: Tail pointer
707  *	@end: End pointer
708  *	@head: Head of buffer
709  *	@data: Data head pointer
710  *	@truesize: Buffer size
711  *	@users: User count - see {datagram,tcp}.c
712  *	@extensions: allocated extensions, valid if active_extensions is nonzero
713  */
714 
715 struct sk_buff {
716 	union {
717 		struct {
718 			/* These two members must be first. */
719 			struct sk_buff		*next;
720 			struct sk_buff		*prev;
721 
722 			union {
723 				struct net_device	*dev;
724 				/* Some protocols might use this space to store information,
725 				 * while device pointer would be NULL.
726 				 * UDP receive path is one user.
727 				 */
728 				unsigned long		dev_scratch;
729 			};
730 		};
731 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
732 		struct list_head	list;
733 	};
734 
735 	union {
736 		struct sock		*sk;
737 		int			ip_defrag_offset;
738 	};
739 
740 	union {
741 		ktime_t		tstamp;
742 		u64		skb_mstamp_ns; /* earliest departure time */
743 	};
744 	/*
745 	 * This is the control buffer. It is free to use for every
746 	 * layer. Please put your private variables there. If you
747 	 * want to keep them across layers you have to do a skb_clone()
748 	 * first. This is owned by whoever has the skb queued ATM.
749 	 */
750 	char			cb[48] __aligned(8);
751 
752 	union {
753 		struct {
754 			unsigned long	_skb_refdst;
755 			void		(*destructor)(struct sk_buff *skb);
756 		};
757 		struct list_head	tcp_tsorted_anchor;
758 	};
759 
760 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
761 	unsigned long		 _nfct;
762 #endif
763 	unsigned int		len,
764 				data_len;
765 	__u16			mac_len,
766 				hdr_len;
767 
768 	/* Following fields are _not_ copied in __copy_skb_header()
769 	 * Note that queue_mapping is here mostly to fill a hole.
770 	 */
771 	__u16			queue_mapping;
772 
773 /* if you move cloned around you also must adapt those constants */
774 #ifdef __BIG_ENDIAN_BITFIELD
775 #define CLONED_MASK	(1 << 7)
776 #else
777 #define CLONED_MASK	1
778 #endif
779 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
780 
781 	/* private: */
782 	__u8			__cloned_offset[0];
783 	/* public: */
784 	__u8			cloned:1,
785 				nohdr:1,
786 				fclone:2,
787 				peeked:1,
788 				head_frag:1,
789 				pfmemalloc:1;
790 #ifdef CONFIG_SKB_EXTENSIONS
791 	__u8			active_extensions;
792 #endif
793 	/* fields enclosed in headers_start/headers_end are copied
794 	 * using a single memcpy() in __copy_skb_header()
795 	 */
796 	/* private: */
797 	__u32			headers_start[0];
798 	/* public: */
799 
800 /* if you move pkt_type around you also must adapt those constants */
801 #ifdef __BIG_ENDIAN_BITFIELD
802 #define PKT_TYPE_MAX	(7 << 5)
803 #else
804 #define PKT_TYPE_MAX	7
805 #endif
806 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
807 
808 	/* private: */
809 	__u8			__pkt_type_offset[0];
810 	/* public: */
811 	__u8			pkt_type:3;
812 	__u8			ignore_df:1;
813 	__u8			nf_trace:1;
814 	__u8			ip_summed:2;
815 	__u8			ooo_okay:1;
816 
817 	__u8			l4_hash:1;
818 	__u8			sw_hash:1;
819 	__u8			wifi_acked_valid:1;
820 	__u8			wifi_acked:1;
821 	__u8			no_fcs:1;
822 	/* Indicates the inner headers are valid in the skbuff. */
823 	__u8			encapsulation:1;
824 	__u8			encap_hdr_csum:1;
825 	__u8			csum_valid:1;
826 
827 #ifdef __BIG_ENDIAN_BITFIELD
828 #define PKT_VLAN_PRESENT_BIT	7
829 #else
830 #define PKT_VLAN_PRESENT_BIT	0
831 #endif
832 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
833 	/* private: */
834 	__u8			__pkt_vlan_present_offset[0];
835 	/* public: */
836 	__u8			vlan_present:1;
837 	__u8			csum_complete_sw:1;
838 	__u8			csum_level:2;
839 	__u8			csum_not_inet:1;
840 	__u8			dst_pending_confirm:1;
841 #ifdef CONFIG_IPV6_NDISC_NODETYPE
842 	__u8			ndisc_nodetype:2;
843 #endif
844 
845 	__u8			ipvs_property:1;
846 	__u8			inner_protocol_type:1;
847 	__u8			remcsum_offload:1;
848 #ifdef CONFIG_NET_SWITCHDEV
849 	__u8			offload_fwd_mark:1;
850 	__u8			offload_l3_fwd_mark:1;
851 #endif
852 #ifdef CONFIG_NET_CLS_ACT
853 	__u8			tc_skip_classify:1;
854 	__u8			tc_at_ingress:1;
855 #endif
856 #ifdef CONFIG_NET_REDIRECT
857 	__u8			redirected:1;
858 	__u8			from_ingress:1;
859 #endif
860 #ifdef CONFIG_TLS_DEVICE
861 	__u8			decrypted:1;
862 #endif
863 
864 #ifdef CONFIG_NET_SCHED
865 	__u16			tc_index;	/* traffic control index */
866 #endif
867 
868 	union {
869 		__wsum		csum;
870 		struct {
871 			__u16	csum_start;
872 			__u16	csum_offset;
873 		};
874 	};
875 	__u32			priority;
876 	int			skb_iif;
877 	__u32			hash;
878 	__be16			vlan_proto;
879 	__u16			vlan_tci;
880 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
881 	union {
882 		unsigned int	napi_id;
883 		unsigned int	sender_cpu;
884 	};
885 #endif
886 #ifdef CONFIG_NETWORK_SECMARK
887 	__u32		secmark;
888 #endif
889 
890 	union {
891 		__u32		mark;
892 		__u32		reserved_tailroom;
893 	};
894 
895 	union {
896 		__be16		inner_protocol;
897 		__u8		inner_ipproto;
898 	};
899 
900 	__u16			inner_transport_header;
901 	__u16			inner_network_header;
902 	__u16			inner_mac_header;
903 
904 	__be16			protocol;
905 	__u16			transport_header;
906 	__u16			network_header;
907 	__u16			mac_header;
908 
909 #ifdef CONFIG_KCOV
910 	u64			kcov_handle;
911 #endif
912 
913 	/* private: */
914 	__u32			headers_end[0];
915 	/* public: */
916 
917 	/* These elements must be at the end, see alloc_skb() for details.  */
918 	sk_buff_data_t		tail;
919 	sk_buff_data_t		end;
920 	unsigned char		*head,
921 				*data;
922 	unsigned int		truesize;
923 	refcount_t		users;
924 
925 #ifdef CONFIG_SKB_EXTENSIONS
926 	/* only useable after checking ->active_extensions != 0 */
927 	struct skb_ext		*extensions;
928 #endif
929 };
930 
931 #ifdef __KERNEL__
932 /*
933  *	Handling routines are only of interest to the kernel
934  */
935 
936 #define SKB_ALLOC_FCLONE	0x01
937 #define SKB_ALLOC_RX		0x02
938 #define SKB_ALLOC_NAPI		0x04
939 
940 /**
941  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
942  * @skb: buffer
943  */
944 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
945 {
946 	return unlikely(skb->pfmemalloc);
947 }
948 
949 /*
950  * skb might have a dst pointer attached, refcounted or not.
951  * _skb_refdst low order bit is set if refcount was _not_ taken
952  */
953 #define SKB_DST_NOREF	1UL
954 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
955 
956 /**
957  * skb_dst - returns skb dst_entry
958  * @skb: buffer
959  *
960  * Returns skb dst_entry, regardless of reference taken or not.
961  */
962 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
963 {
964 	/* If refdst was not refcounted, check we still are in a
965 	 * rcu_read_lock section
966 	 */
967 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
968 		!rcu_read_lock_held() &&
969 		!rcu_read_lock_bh_held());
970 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
971 }
972 
973 /**
974  * skb_dst_set - sets skb dst
975  * @skb: buffer
976  * @dst: dst entry
977  *
978  * Sets skb dst, assuming a reference was taken on dst and should
979  * be released by skb_dst_drop()
980  */
981 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
982 {
983 	skb->_skb_refdst = (unsigned long)dst;
984 }
985 
986 /**
987  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
988  * @skb: buffer
989  * @dst: dst entry
990  *
991  * Sets skb dst, assuming a reference was not taken on dst.
992  * If dst entry is cached, we do not take reference and dst_release
993  * will be avoided by refdst_drop. If dst entry is not cached, we take
994  * reference, so that last dst_release can destroy the dst immediately.
995  */
996 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
997 {
998 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
999 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1000 }
1001 
1002 /**
1003  * skb_dst_is_noref - Test if skb dst isn't refcounted
1004  * @skb: buffer
1005  */
1006 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1007 {
1008 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1009 }
1010 
1011 /**
1012  * skb_rtable - Returns the skb &rtable
1013  * @skb: buffer
1014  */
1015 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1016 {
1017 	return (struct rtable *)skb_dst(skb);
1018 }
1019 
1020 /* For mangling skb->pkt_type from user space side from applications
1021  * such as nft, tc, etc, we only allow a conservative subset of
1022  * possible pkt_types to be set.
1023 */
1024 static inline bool skb_pkt_type_ok(u32 ptype)
1025 {
1026 	return ptype <= PACKET_OTHERHOST;
1027 }
1028 
1029 /**
1030  * skb_napi_id - Returns the skb's NAPI id
1031  * @skb: buffer
1032  */
1033 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1034 {
1035 #ifdef CONFIG_NET_RX_BUSY_POLL
1036 	return skb->napi_id;
1037 #else
1038 	return 0;
1039 #endif
1040 }
1041 
1042 /**
1043  * skb_unref - decrement the skb's reference count
1044  * @skb: buffer
1045  *
1046  * Returns true if we can free the skb.
1047  */
1048 static inline bool skb_unref(struct sk_buff *skb)
1049 {
1050 	if (unlikely(!skb))
1051 		return false;
1052 	if (likely(refcount_read(&skb->users) == 1))
1053 		smp_rmb();
1054 	else if (likely(!refcount_dec_and_test(&skb->users)))
1055 		return false;
1056 
1057 	return true;
1058 }
1059 
1060 void skb_release_head_state(struct sk_buff *skb);
1061 void kfree_skb(struct sk_buff *skb);
1062 void kfree_skb_list(struct sk_buff *segs);
1063 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1064 void skb_tx_error(struct sk_buff *skb);
1065 
1066 #ifdef CONFIG_TRACEPOINTS
1067 void consume_skb(struct sk_buff *skb);
1068 #else
1069 static inline void consume_skb(struct sk_buff *skb)
1070 {
1071 	return kfree_skb(skb);
1072 }
1073 #endif
1074 
1075 void __consume_stateless_skb(struct sk_buff *skb);
1076 void  __kfree_skb(struct sk_buff *skb);
1077 extern struct kmem_cache *skbuff_head_cache;
1078 
1079 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1080 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1081 		      bool *fragstolen, int *delta_truesize);
1082 
1083 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1084 			    int node);
1085 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1086 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1087 struct sk_buff *build_skb_around(struct sk_buff *skb,
1088 				 void *data, unsigned int frag_size);
1089 
1090 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1091 
1092 /**
1093  * alloc_skb - allocate a network buffer
1094  * @size: size to allocate
1095  * @priority: allocation mask
1096  *
1097  * This function is a convenient wrapper around __alloc_skb().
1098  */
1099 static inline struct sk_buff *alloc_skb(unsigned int size,
1100 					gfp_t priority)
1101 {
1102 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1103 }
1104 
1105 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1106 				     unsigned long data_len,
1107 				     int max_page_order,
1108 				     int *errcode,
1109 				     gfp_t gfp_mask);
1110 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1111 
1112 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1113 struct sk_buff_fclones {
1114 	struct sk_buff	skb1;
1115 
1116 	struct sk_buff	skb2;
1117 
1118 	refcount_t	fclone_ref;
1119 };
1120 
1121 /**
1122  *	skb_fclone_busy - check if fclone is busy
1123  *	@sk: socket
1124  *	@skb: buffer
1125  *
1126  * Returns true if skb is a fast clone, and its clone is not freed.
1127  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1128  * so we also check that this didnt happen.
1129  */
1130 static inline bool skb_fclone_busy(const struct sock *sk,
1131 				   const struct sk_buff *skb)
1132 {
1133 	const struct sk_buff_fclones *fclones;
1134 
1135 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1136 
1137 	return skb->fclone == SKB_FCLONE_ORIG &&
1138 	       refcount_read(&fclones->fclone_ref) > 1 &&
1139 	       fclones->skb2.sk == sk;
1140 }
1141 
1142 /**
1143  * alloc_skb_fclone - allocate a network buffer from fclone cache
1144  * @size: size to allocate
1145  * @priority: allocation mask
1146  *
1147  * This function is a convenient wrapper around __alloc_skb().
1148  */
1149 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1150 					       gfp_t priority)
1151 {
1152 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1153 }
1154 
1155 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1156 void skb_headers_offset_update(struct sk_buff *skb, int off);
1157 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1158 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1159 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1160 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1161 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1162 				   gfp_t gfp_mask, bool fclone);
1163 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1164 					  gfp_t gfp_mask)
1165 {
1166 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1167 }
1168 
1169 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1170 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1171 				     unsigned int headroom);
1172 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1173 				int newtailroom, gfp_t priority);
1174 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1175 				     int offset, int len);
1176 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1177 			      int offset, int len);
1178 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1179 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1180 
1181 /**
1182  *	skb_pad			-	zero pad the tail of an skb
1183  *	@skb: buffer to pad
1184  *	@pad: space to pad
1185  *
1186  *	Ensure that a buffer is followed by a padding area that is zero
1187  *	filled. Used by network drivers which may DMA or transfer data
1188  *	beyond the buffer end onto the wire.
1189  *
1190  *	May return error in out of memory cases. The skb is freed on error.
1191  */
1192 static inline int skb_pad(struct sk_buff *skb, int pad)
1193 {
1194 	return __skb_pad(skb, pad, true);
1195 }
1196 #define dev_kfree_skb(a)	consume_skb(a)
1197 
1198 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1199 			 int offset, size_t size);
1200 
1201 struct skb_seq_state {
1202 	__u32		lower_offset;
1203 	__u32		upper_offset;
1204 	__u32		frag_idx;
1205 	__u32		stepped_offset;
1206 	struct sk_buff	*root_skb;
1207 	struct sk_buff	*cur_skb;
1208 	__u8		*frag_data;
1209 	__u32		frag_off;
1210 };
1211 
1212 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1213 			  unsigned int to, struct skb_seq_state *st);
1214 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1215 			  struct skb_seq_state *st);
1216 void skb_abort_seq_read(struct skb_seq_state *st);
1217 
1218 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1219 			   unsigned int to, struct ts_config *config);
1220 
1221 /*
1222  * Packet hash types specify the type of hash in skb_set_hash.
1223  *
1224  * Hash types refer to the protocol layer addresses which are used to
1225  * construct a packet's hash. The hashes are used to differentiate or identify
1226  * flows of the protocol layer for the hash type. Hash types are either
1227  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1228  *
1229  * Properties of hashes:
1230  *
1231  * 1) Two packets in different flows have different hash values
1232  * 2) Two packets in the same flow should have the same hash value
1233  *
1234  * A hash at a higher layer is considered to be more specific. A driver should
1235  * set the most specific hash possible.
1236  *
1237  * A driver cannot indicate a more specific hash than the layer at which a hash
1238  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1239  *
1240  * A driver may indicate a hash level which is less specific than the
1241  * actual layer the hash was computed on. For instance, a hash computed
1242  * at L4 may be considered an L3 hash. This should only be done if the
1243  * driver can't unambiguously determine that the HW computed the hash at
1244  * the higher layer. Note that the "should" in the second property above
1245  * permits this.
1246  */
1247 enum pkt_hash_types {
1248 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1249 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1250 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1251 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1252 };
1253 
1254 static inline void skb_clear_hash(struct sk_buff *skb)
1255 {
1256 	skb->hash = 0;
1257 	skb->sw_hash = 0;
1258 	skb->l4_hash = 0;
1259 }
1260 
1261 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1262 {
1263 	if (!skb->l4_hash)
1264 		skb_clear_hash(skb);
1265 }
1266 
1267 static inline void
1268 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1269 {
1270 	skb->l4_hash = is_l4;
1271 	skb->sw_hash = is_sw;
1272 	skb->hash = hash;
1273 }
1274 
1275 static inline void
1276 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1277 {
1278 	/* Used by drivers to set hash from HW */
1279 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1280 }
1281 
1282 static inline void
1283 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1284 {
1285 	__skb_set_hash(skb, hash, true, is_l4);
1286 }
1287 
1288 void __skb_get_hash(struct sk_buff *skb);
1289 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1290 u32 skb_get_poff(const struct sk_buff *skb);
1291 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1292 		   const struct flow_keys_basic *keys, int hlen);
1293 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1294 			    void *data, int hlen_proto);
1295 
1296 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1297 					int thoff, u8 ip_proto)
1298 {
1299 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1300 }
1301 
1302 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1303 			     const struct flow_dissector_key *key,
1304 			     unsigned int key_count);
1305 
1306 struct bpf_flow_dissector;
1307 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1308 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1309 
1310 bool __skb_flow_dissect(const struct net *net,
1311 			const struct sk_buff *skb,
1312 			struct flow_dissector *flow_dissector,
1313 			void *target_container,
1314 			void *data, __be16 proto, int nhoff, int hlen,
1315 			unsigned int flags);
1316 
1317 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1318 				    struct flow_dissector *flow_dissector,
1319 				    void *target_container, unsigned int flags)
1320 {
1321 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1322 				  target_container, NULL, 0, 0, 0, flags);
1323 }
1324 
1325 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1326 					      struct flow_keys *flow,
1327 					      unsigned int flags)
1328 {
1329 	memset(flow, 0, sizeof(*flow));
1330 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1331 				  flow, NULL, 0, 0, 0, flags);
1332 }
1333 
1334 static inline bool
1335 skb_flow_dissect_flow_keys_basic(const struct net *net,
1336 				 const struct sk_buff *skb,
1337 				 struct flow_keys_basic *flow, void *data,
1338 				 __be16 proto, int nhoff, int hlen,
1339 				 unsigned int flags)
1340 {
1341 	memset(flow, 0, sizeof(*flow));
1342 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1343 				  data, proto, nhoff, hlen, flags);
1344 }
1345 
1346 void skb_flow_dissect_meta(const struct sk_buff *skb,
1347 			   struct flow_dissector *flow_dissector,
1348 			   void *target_container);
1349 
1350 /* Gets a skb connection tracking info, ctinfo map should be a
1351  * map of mapsize to translate enum ip_conntrack_info states
1352  * to user states.
1353  */
1354 void
1355 skb_flow_dissect_ct(const struct sk_buff *skb,
1356 		    struct flow_dissector *flow_dissector,
1357 		    void *target_container,
1358 		    u16 *ctinfo_map, size_t mapsize,
1359 		    bool post_ct);
1360 void
1361 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1362 			     struct flow_dissector *flow_dissector,
1363 			     void *target_container);
1364 
1365 void skb_flow_dissect_hash(const struct sk_buff *skb,
1366 			   struct flow_dissector *flow_dissector,
1367 			   void *target_container);
1368 
1369 static inline __u32 skb_get_hash(struct sk_buff *skb)
1370 {
1371 	if (!skb->l4_hash && !skb->sw_hash)
1372 		__skb_get_hash(skb);
1373 
1374 	return skb->hash;
1375 }
1376 
1377 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1378 {
1379 	if (!skb->l4_hash && !skb->sw_hash) {
1380 		struct flow_keys keys;
1381 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1382 
1383 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1384 	}
1385 
1386 	return skb->hash;
1387 }
1388 
1389 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1390 			   const siphash_key_t *perturb);
1391 
1392 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1393 {
1394 	return skb->hash;
1395 }
1396 
1397 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1398 {
1399 	to->hash = from->hash;
1400 	to->sw_hash = from->sw_hash;
1401 	to->l4_hash = from->l4_hash;
1402 };
1403 
1404 static inline void skb_copy_decrypted(struct sk_buff *to,
1405 				      const struct sk_buff *from)
1406 {
1407 #ifdef CONFIG_TLS_DEVICE
1408 	to->decrypted = from->decrypted;
1409 #endif
1410 }
1411 
1412 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1413 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1414 {
1415 	return skb->head + skb->end;
1416 }
1417 
1418 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1419 {
1420 	return skb->end;
1421 }
1422 #else
1423 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1424 {
1425 	return skb->end;
1426 }
1427 
1428 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1429 {
1430 	return skb->end - skb->head;
1431 }
1432 #endif
1433 
1434 /* Internal */
1435 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1436 
1437 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1438 {
1439 	return &skb_shinfo(skb)->hwtstamps;
1440 }
1441 
1442 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1443 {
1444 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1445 
1446 	return is_zcopy ? skb_uarg(skb) : NULL;
1447 }
1448 
1449 static inline void net_zcopy_get(struct ubuf_info *uarg)
1450 {
1451 	refcount_inc(&uarg->refcnt);
1452 }
1453 
1454 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1455 {
1456 	skb_shinfo(skb)->destructor_arg = uarg;
1457 	skb_shinfo(skb)->flags |= uarg->flags;
1458 }
1459 
1460 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1461 				 bool *have_ref)
1462 {
1463 	if (skb && uarg && !skb_zcopy(skb)) {
1464 		if (unlikely(have_ref && *have_ref))
1465 			*have_ref = false;
1466 		else
1467 			net_zcopy_get(uarg);
1468 		skb_zcopy_init(skb, uarg);
1469 	}
1470 }
1471 
1472 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1473 {
1474 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1475 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1476 }
1477 
1478 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1479 {
1480 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1481 }
1482 
1483 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1484 {
1485 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1486 }
1487 
1488 static inline void net_zcopy_put(struct ubuf_info *uarg)
1489 {
1490 	if (uarg)
1491 		uarg->callback(NULL, uarg, true);
1492 }
1493 
1494 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1495 {
1496 	if (uarg) {
1497 		if (uarg->callback == msg_zerocopy_callback)
1498 			msg_zerocopy_put_abort(uarg, have_uref);
1499 		else if (have_uref)
1500 			net_zcopy_put(uarg);
1501 	}
1502 }
1503 
1504 /* Release a reference on a zerocopy structure */
1505 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1506 {
1507 	struct ubuf_info *uarg = skb_zcopy(skb);
1508 
1509 	if (uarg) {
1510 		if (!skb_zcopy_is_nouarg(skb))
1511 			uarg->callback(skb, uarg, zerocopy_success);
1512 
1513 		skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
1514 	}
1515 }
1516 
1517 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1518 {
1519 	skb->next = NULL;
1520 }
1521 
1522 /* Iterate through singly-linked GSO fragments of an skb. */
1523 #define skb_list_walk_safe(first, skb, next_skb)                               \
1524 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1525 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1526 
1527 static inline void skb_list_del_init(struct sk_buff *skb)
1528 {
1529 	__list_del_entry(&skb->list);
1530 	skb_mark_not_on_list(skb);
1531 }
1532 
1533 /**
1534  *	skb_queue_empty - check if a queue is empty
1535  *	@list: queue head
1536  *
1537  *	Returns true if the queue is empty, false otherwise.
1538  */
1539 static inline int skb_queue_empty(const struct sk_buff_head *list)
1540 {
1541 	return list->next == (const struct sk_buff *) list;
1542 }
1543 
1544 /**
1545  *	skb_queue_empty_lockless - check if a queue is empty
1546  *	@list: queue head
1547  *
1548  *	Returns true if the queue is empty, false otherwise.
1549  *	This variant can be used in lockless contexts.
1550  */
1551 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1552 {
1553 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1554 }
1555 
1556 
1557 /**
1558  *	skb_queue_is_last - check if skb is the last entry in the queue
1559  *	@list: queue head
1560  *	@skb: buffer
1561  *
1562  *	Returns true if @skb is the last buffer on the list.
1563  */
1564 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1565 				     const struct sk_buff *skb)
1566 {
1567 	return skb->next == (const struct sk_buff *) list;
1568 }
1569 
1570 /**
1571  *	skb_queue_is_first - check if skb is the first entry in the queue
1572  *	@list: queue head
1573  *	@skb: buffer
1574  *
1575  *	Returns true if @skb is the first buffer on the list.
1576  */
1577 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1578 				      const struct sk_buff *skb)
1579 {
1580 	return skb->prev == (const struct sk_buff *) list;
1581 }
1582 
1583 /**
1584  *	skb_queue_next - return the next packet in the queue
1585  *	@list: queue head
1586  *	@skb: current buffer
1587  *
1588  *	Return the next packet in @list after @skb.  It is only valid to
1589  *	call this if skb_queue_is_last() evaluates to false.
1590  */
1591 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1592 					     const struct sk_buff *skb)
1593 {
1594 	/* This BUG_ON may seem severe, but if we just return then we
1595 	 * are going to dereference garbage.
1596 	 */
1597 	BUG_ON(skb_queue_is_last(list, skb));
1598 	return skb->next;
1599 }
1600 
1601 /**
1602  *	skb_queue_prev - return the prev packet in the queue
1603  *	@list: queue head
1604  *	@skb: current buffer
1605  *
1606  *	Return the prev packet in @list before @skb.  It is only valid to
1607  *	call this if skb_queue_is_first() evaluates to false.
1608  */
1609 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1610 					     const struct sk_buff *skb)
1611 {
1612 	/* This BUG_ON may seem severe, but if we just return then we
1613 	 * are going to dereference garbage.
1614 	 */
1615 	BUG_ON(skb_queue_is_first(list, skb));
1616 	return skb->prev;
1617 }
1618 
1619 /**
1620  *	skb_get - reference buffer
1621  *	@skb: buffer to reference
1622  *
1623  *	Makes another reference to a socket buffer and returns a pointer
1624  *	to the buffer.
1625  */
1626 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1627 {
1628 	refcount_inc(&skb->users);
1629 	return skb;
1630 }
1631 
1632 /*
1633  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1634  */
1635 
1636 /**
1637  *	skb_cloned - is the buffer a clone
1638  *	@skb: buffer to check
1639  *
1640  *	Returns true if the buffer was generated with skb_clone() and is
1641  *	one of multiple shared copies of the buffer. Cloned buffers are
1642  *	shared data so must not be written to under normal circumstances.
1643  */
1644 static inline int skb_cloned(const struct sk_buff *skb)
1645 {
1646 	return skb->cloned &&
1647 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1648 }
1649 
1650 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1651 {
1652 	might_sleep_if(gfpflags_allow_blocking(pri));
1653 
1654 	if (skb_cloned(skb))
1655 		return pskb_expand_head(skb, 0, 0, pri);
1656 
1657 	return 0;
1658 }
1659 
1660 /**
1661  *	skb_header_cloned - is the header a clone
1662  *	@skb: buffer to check
1663  *
1664  *	Returns true if modifying the header part of the buffer requires
1665  *	the data to be copied.
1666  */
1667 static inline int skb_header_cloned(const struct sk_buff *skb)
1668 {
1669 	int dataref;
1670 
1671 	if (!skb->cloned)
1672 		return 0;
1673 
1674 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1675 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1676 	return dataref != 1;
1677 }
1678 
1679 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1680 {
1681 	might_sleep_if(gfpflags_allow_blocking(pri));
1682 
1683 	if (skb_header_cloned(skb))
1684 		return pskb_expand_head(skb, 0, 0, pri);
1685 
1686 	return 0;
1687 }
1688 
1689 /**
1690  *	__skb_header_release - release reference to header
1691  *	@skb: buffer to operate on
1692  */
1693 static inline void __skb_header_release(struct sk_buff *skb)
1694 {
1695 	skb->nohdr = 1;
1696 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1697 }
1698 
1699 
1700 /**
1701  *	skb_shared - is the buffer shared
1702  *	@skb: buffer to check
1703  *
1704  *	Returns true if more than one person has a reference to this
1705  *	buffer.
1706  */
1707 static inline int skb_shared(const struct sk_buff *skb)
1708 {
1709 	return refcount_read(&skb->users) != 1;
1710 }
1711 
1712 /**
1713  *	skb_share_check - check if buffer is shared and if so clone it
1714  *	@skb: buffer to check
1715  *	@pri: priority for memory allocation
1716  *
1717  *	If the buffer is shared the buffer is cloned and the old copy
1718  *	drops a reference. A new clone with a single reference is returned.
1719  *	If the buffer is not shared the original buffer is returned. When
1720  *	being called from interrupt status or with spinlocks held pri must
1721  *	be GFP_ATOMIC.
1722  *
1723  *	NULL is returned on a memory allocation failure.
1724  */
1725 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1726 {
1727 	might_sleep_if(gfpflags_allow_blocking(pri));
1728 	if (skb_shared(skb)) {
1729 		struct sk_buff *nskb = skb_clone(skb, pri);
1730 
1731 		if (likely(nskb))
1732 			consume_skb(skb);
1733 		else
1734 			kfree_skb(skb);
1735 		skb = nskb;
1736 	}
1737 	return skb;
1738 }
1739 
1740 /*
1741  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1742  *	packets to handle cases where we have a local reader and forward
1743  *	and a couple of other messy ones. The normal one is tcpdumping
1744  *	a packet thats being forwarded.
1745  */
1746 
1747 /**
1748  *	skb_unshare - make a copy of a shared buffer
1749  *	@skb: buffer to check
1750  *	@pri: priority for memory allocation
1751  *
1752  *	If the socket buffer is a clone then this function creates a new
1753  *	copy of the data, drops a reference count on the old copy and returns
1754  *	the new copy with the reference count at 1. If the buffer is not a clone
1755  *	the original buffer is returned. When called with a spinlock held or
1756  *	from interrupt state @pri must be %GFP_ATOMIC
1757  *
1758  *	%NULL is returned on a memory allocation failure.
1759  */
1760 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1761 					  gfp_t pri)
1762 {
1763 	might_sleep_if(gfpflags_allow_blocking(pri));
1764 	if (skb_cloned(skb)) {
1765 		struct sk_buff *nskb = skb_copy(skb, pri);
1766 
1767 		/* Free our shared copy */
1768 		if (likely(nskb))
1769 			consume_skb(skb);
1770 		else
1771 			kfree_skb(skb);
1772 		skb = nskb;
1773 	}
1774 	return skb;
1775 }
1776 
1777 /**
1778  *	skb_peek - peek at the head of an &sk_buff_head
1779  *	@list_: list to peek at
1780  *
1781  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1782  *	be careful with this one. A peek leaves the buffer on the
1783  *	list and someone else may run off with it. You must hold
1784  *	the appropriate locks or have a private queue to do this.
1785  *
1786  *	Returns %NULL for an empty list or a pointer to the head element.
1787  *	The reference count is not incremented and the reference is therefore
1788  *	volatile. Use with caution.
1789  */
1790 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1791 {
1792 	struct sk_buff *skb = list_->next;
1793 
1794 	if (skb == (struct sk_buff *)list_)
1795 		skb = NULL;
1796 	return skb;
1797 }
1798 
1799 /**
1800  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1801  *	@list_: list to peek at
1802  *
1803  *	Like skb_peek(), but the caller knows that the list is not empty.
1804  */
1805 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1806 {
1807 	return list_->next;
1808 }
1809 
1810 /**
1811  *	skb_peek_next - peek skb following the given one from a queue
1812  *	@skb: skb to start from
1813  *	@list_: list to peek at
1814  *
1815  *	Returns %NULL when the end of the list is met or a pointer to the
1816  *	next element. The reference count is not incremented and the
1817  *	reference is therefore volatile. Use with caution.
1818  */
1819 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1820 		const struct sk_buff_head *list_)
1821 {
1822 	struct sk_buff *next = skb->next;
1823 
1824 	if (next == (struct sk_buff *)list_)
1825 		next = NULL;
1826 	return next;
1827 }
1828 
1829 /**
1830  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1831  *	@list_: list to peek at
1832  *
1833  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1834  *	be careful with this one. A peek leaves the buffer on the
1835  *	list and someone else may run off with it. You must hold
1836  *	the appropriate locks or have a private queue to do this.
1837  *
1838  *	Returns %NULL for an empty list or a pointer to the tail element.
1839  *	The reference count is not incremented and the reference is therefore
1840  *	volatile. Use with caution.
1841  */
1842 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1843 {
1844 	struct sk_buff *skb = READ_ONCE(list_->prev);
1845 
1846 	if (skb == (struct sk_buff *)list_)
1847 		skb = NULL;
1848 	return skb;
1849 
1850 }
1851 
1852 /**
1853  *	skb_queue_len	- get queue length
1854  *	@list_: list to measure
1855  *
1856  *	Return the length of an &sk_buff queue.
1857  */
1858 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1859 {
1860 	return list_->qlen;
1861 }
1862 
1863 /**
1864  *	skb_queue_len_lockless	- get queue length
1865  *	@list_: list to measure
1866  *
1867  *	Return the length of an &sk_buff queue.
1868  *	This variant can be used in lockless contexts.
1869  */
1870 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1871 {
1872 	return READ_ONCE(list_->qlen);
1873 }
1874 
1875 /**
1876  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1877  *	@list: queue to initialize
1878  *
1879  *	This initializes only the list and queue length aspects of
1880  *	an sk_buff_head object.  This allows to initialize the list
1881  *	aspects of an sk_buff_head without reinitializing things like
1882  *	the spinlock.  It can also be used for on-stack sk_buff_head
1883  *	objects where the spinlock is known to not be used.
1884  */
1885 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1886 {
1887 	list->prev = list->next = (struct sk_buff *)list;
1888 	list->qlen = 0;
1889 }
1890 
1891 /*
1892  * This function creates a split out lock class for each invocation;
1893  * this is needed for now since a whole lot of users of the skb-queue
1894  * infrastructure in drivers have different locking usage (in hardirq)
1895  * than the networking core (in softirq only). In the long run either the
1896  * network layer or drivers should need annotation to consolidate the
1897  * main types of usage into 3 classes.
1898  */
1899 static inline void skb_queue_head_init(struct sk_buff_head *list)
1900 {
1901 	spin_lock_init(&list->lock);
1902 	__skb_queue_head_init(list);
1903 }
1904 
1905 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1906 		struct lock_class_key *class)
1907 {
1908 	skb_queue_head_init(list);
1909 	lockdep_set_class(&list->lock, class);
1910 }
1911 
1912 /*
1913  *	Insert an sk_buff on a list.
1914  *
1915  *	The "__skb_xxxx()" functions are the non-atomic ones that
1916  *	can only be called with interrupts disabled.
1917  */
1918 static inline void __skb_insert(struct sk_buff *newsk,
1919 				struct sk_buff *prev, struct sk_buff *next,
1920 				struct sk_buff_head *list)
1921 {
1922 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1923 	 * for the opposite READ_ONCE()
1924 	 */
1925 	WRITE_ONCE(newsk->next, next);
1926 	WRITE_ONCE(newsk->prev, prev);
1927 	WRITE_ONCE(next->prev, newsk);
1928 	WRITE_ONCE(prev->next, newsk);
1929 	list->qlen++;
1930 }
1931 
1932 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1933 				      struct sk_buff *prev,
1934 				      struct sk_buff *next)
1935 {
1936 	struct sk_buff *first = list->next;
1937 	struct sk_buff *last = list->prev;
1938 
1939 	WRITE_ONCE(first->prev, prev);
1940 	WRITE_ONCE(prev->next, first);
1941 
1942 	WRITE_ONCE(last->next, next);
1943 	WRITE_ONCE(next->prev, last);
1944 }
1945 
1946 /**
1947  *	skb_queue_splice - join two skb lists, this is designed for stacks
1948  *	@list: the new list to add
1949  *	@head: the place to add it in the first list
1950  */
1951 static inline void skb_queue_splice(const struct sk_buff_head *list,
1952 				    struct sk_buff_head *head)
1953 {
1954 	if (!skb_queue_empty(list)) {
1955 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1956 		head->qlen += list->qlen;
1957 	}
1958 }
1959 
1960 /**
1961  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1962  *	@list: the new list to add
1963  *	@head: the place to add it in the first list
1964  *
1965  *	The list at @list is reinitialised
1966  */
1967 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1968 					 struct sk_buff_head *head)
1969 {
1970 	if (!skb_queue_empty(list)) {
1971 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1972 		head->qlen += list->qlen;
1973 		__skb_queue_head_init(list);
1974 	}
1975 }
1976 
1977 /**
1978  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1979  *	@list: the new list to add
1980  *	@head: the place to add it in the first list
1981  */
1982 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1983 					 struct sk_buff_head *head)
1984 {
1985 	if (!skb_queue_empty(list)) {
1986 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1987 		head->qlen += list->qlen;
1988 	}
1989 }
1990 
1991 /**
1992  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1993  *	@list: the new list to add
1994  *	@head: the place to add it in the first list
1995  *
1996  *	Each of the lists is a queue.
1997  *	The list at @list is reinitialised
1998  */
1999 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2000 					      struct sk_buff_head *head)
2001 {
2002 	if (!skb_queue_empty(list)) {
2003 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2004 		head->qlen += list->qlen;
2005 		__skb_queue_head_init(list);
2006 	}
2007 }
2008 
2009 /**
2010  *	__skb_queue_after - queue a buffer at the list head
2011  *	@list: list to use
2012  *	@prev: place after this buffer
2013  *	@newsk: buffer to queue
2014  *
2015  *	Queue a buffer int the middle of a list. This function takes no locks
2016  *	and you must therefore hold required locks before calling it.
2017  *
2018  *	A buffer cannot be placed on two lists at the same time.
2019  */
2020 static inline void __skb_queue_after(struct sk_buff_head *list,
2021 				     struct sk_buff *prev,
2022 				     struct sk_buff *newsk)
2023 {
2024 	__skb_insert(newsk, prev, prev->next, list);
2025 }
2026 
2027 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2028 		struct sk_buff_head *list);
2029 
2030 static inline void __skb_queue_before(struct sk_buff_head *list,
2031 				      struct sk_buff *next,
2032 				      struct sk_buff *newsk)
2033 {
2034 	__skb_insert(newsk, next->prev, next, list);
2035 }
2036 
2037 /**
2038  *	__skb_queue_head - queue a buffer at the list head
2039  *	@list: list to use
2040  *	@newsk: buffer to queue
2041  *
2042  *	Queue a buffer at the start of a list. This function takes no locks
2043  *	and you must therefore hold required locks before calling it.
2044  *
2045  *	A buffer cannot be placed on two lists at the same time.
2046  */
2047 static inline void __skb_queue_head(struct sk_buff_head *list,
2048 				    struct sk_buff *newsk)
2049 {
2050 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2051 }
2052 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2053 
2054 /**
2055  *	__skb_queue_tail - queue a buffer at the list tail
2056  *	@list: list to use
2057  *	@newsk: buffer to queue
2058  *
2059  *	Queue a buffer at the end of a list. This function takes no locks
2060  *	and you must therefore hold required locks before calling it.
2061  *
2062  *	A buffer cannot be placed on two lists at the same time.
2063  */
2064 static inline void __skb_queue_tail(struct sk_buff_head *list,
2065 				   struct sk_buff *newsk)
2066 {
2067 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2068 }
2069 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2070 
2071 /*
2072  * remove sk_buff from list. _Must_ be called atomically, and with
2073  * the list known..
2074  */
2075 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2076 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2077 {
2078 	struct sk_buff *next, *prev;
2079 
2080 	WRITE_ONCE(list->qlen, list->qlen - 1);
2081 	next	   = skb->next;
2082 	prev	   = skb->prev;
2083 	skb->next  = skb->prev = NULL;
2084 	WRITE_ONCE(next->prev, prev);
2085 	WRITE_ONCE(prev->next, next);
2086 }
2087 
2088 /**
2089  *	__skb_dequeue - remove from the head of the queue
2090  *	@list: list to dequeue from
2091  *
2092  *	Remove the head of the list. This function does not take any locks
2093  *	so must be used with appropriate locks held only. The head item is
2094  *	returned or %NULL if the list is empty.
2095  */
2096 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2097 {
2098 	struct sk_buff *skb = skb_peek(list);
2099 	if (skb)
2100 		__skb_unlink(skb, list);
2101 	return skb;
2102 }
2103 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2104 
2105 /**
2106  *	__skb_dequeue_tail - remove from the tail of the queue
2107  *	@list: list to dequeue from
2108  *
2109  *	Remove the tail of the list. This function does not take any locks
2110  *	so must be used with appropriate locks held only. The tail item is
2111  *	returned or %NULL if the list is empty.
2112  */
2113 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2114 {
2115 	struct sk_buff *skb = skb_peek_tail(list);
2116 	if (skb)
2117 		__skb_unlink(skb, list);
2118 	return skb;
2119 }
2120 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2121 
2122 
2123 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2124 {
2125 	return skb->data_len;
2126 }
2127 
2128 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2129 {
2130 	return skb->len - skb->data_len;
2131 }
2132 
2133 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2134 {
2135 	unsigned int i, len = 0;
2136 
2137 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2138 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2139 	return len;
2140 }
2141 
2142 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2143 {
2144 	return skb_headlen(skb) + __skb_pagelen(skb);
2145 }
2146 
2147 /**
2148  * __skb_fill_page_desc - initialise a paged fragment in an skb
2149  * @skb: buffer containing fragment to be initialised
2150  * @i: paged fragment index to initialise
2151  * @page: the page to use for this fragment
2152  * @off: the offset to the data with @page
2153  * @size: the length of the data
2154  *
2155  * Initialises the @i'th fragment of @skb to point to &size bytes at
2156  * offset @off within @page.
2157  *
2158  * Does not take any additional reference on the fragment.
2159  */
2160 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2161 					struct page *page, int off, int size)
2162 {
2163 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2164 
2165 	/*
2166 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2167 	 * that not all callers have unique ownership of the page but rely
2168 	 * on page_is_pfmemalloc doing the right thing(tm).
2169 	 */
2170 	frag->bv_page		  = page;
2171 	frag->bv_offset		  = off;
2172 	skb_frag_size_set(frag, size);
2173 
2174 	page = compound_head(page);
2175 	if (page_is_pfmemalloc(page))
2176 		skb->pfmemalloc	= true;
2177 }
2178 
2179 /**
2180  * skb_fill_page_desc - initialise a paged fragment in an skb
2181  * @skb: buffer containing fragment to be initialised
2182  * @i: paged fragment index to initialise
2183  * @page: the page to use for this fragment
2184  * @off: the offset to the data with @page
2185  * @size: the length of the data
2186  *
2187  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2188  * @skb to point to @size bytes at offset @off within @page. In
2189  * addition updates @skb such that @i is the last fragment.
2190  *
2191  * Does not take any additional reference on the fragment.
2192  */
2193 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2194 				      struct page *page, int off, int size)
2195 {
2196 	__skb_fill_page_desc(skb, i, page, off, size);
2197 	skb_shinfo(skb)->nr_frags = i + 1;
2198 }
2199 
2200 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2201 		     int size, unsigned int truesize);
2202 
2203 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2204 			  unsigned int truesize);
2205 
2206 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2207 
2208 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2209 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2210 {
2211 	return skb->head + skb->tail;
2212 }
2213 
2214 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2215 {
2216 	skb->tail = skb->data - skb->head;
2217 }
2218 
2219 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2220 {
2221 	skb_reset_tail_pointer(skb);
2222 	skb->tail += offset;
2223 }
2224 
2225 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2226 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2227 {
2228 	return skb->tail;
2229 }
2230 
2231 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2232 {
2233 	skb->tail = skb->data;
2234 }
2235 
2236 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2237 {
2238 	skb->tail = skb->data + offset;
2239 }
2240 
2241 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2242 
2243 /*
2244  *	Add data to an sk_buff
2245  */
2246 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2247 void *skb_put(struct sk_buff *skb, unsigned int len);
2248 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2249 {
2250 	void *tmp = skb_tail_pointer(skb);
2251 	SKB_LINEAR_ASSERT(skb);
2252 	skb->tail += len;
2253 	skb->len  += len;
2254 	return tmp;
2255 }
2256 
2257 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2258 {
2259 	void *tmp = __skb_put(skb, len);
2260 
2261 	memset(tmp, 0, len);
2262 	return tmp;
2263 }
2264 
2265 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2266 				   unsigned int len)
2267 {
2268 	void *tmp = __skb_put(skb, len);
2269 
2270 	memcpy(tmp, data, len);
2271 	return tmp;
2272 }
2273 
2274 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2275 {
2276 	*(u8 *)__skb_put(skb, 1) = val;
2277 }
2278 
2279 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2280 {
2281 	void *tmp = skb_put(skb, len);
2282 
2283 	memset(tmp, 0, len);
2284 
2285 	return tmp;
2286 }
2287 
2288 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2289 				 unsigned int len)
2290 {
2291 	void *tmp = skb_put(skb, len);
2292 
2293 	memcpy(tmp, data, len);
2294 
2295 	return tmp;
2296 }
2297 
2298 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2299 {
2300 	*(u8 *)skb_put(skb, 1) = val;
2301 }
2302 
2303 void *skb_push(struct sk_buff *skb, unsigned int len);
2304 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2305 {
2306 	skb->data -= len;
2307 	skb->len  += len;
2308 	return skb->data;
2309 }
2310 
2311 void *skb_pull(struct sk_buff *skb, unsigned int len);
2312 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2313 {
2314 	skb->len -= len;
2315 	BUG_ON(skb->len < skb->data_len);
2316 	return skb->data += len;
2317 }
2318 
2319 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2320 {
2321 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2322 }
2323 
2324 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2325 
2326 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2327 {
2328 	if (len > skb_headlen(skb) &&
2329 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2330 		return NULL;
2331 	skb->len -= len;
2332 	return skb->data += len;
2333 }
2334 
2335 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2336 {
2337 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2338 }
2339 
2340 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2341 {
2342 	if (likely(len <= skb_headlen(skb)))
2343 		return true;
2344 	if (unlikely(len > skb->len))
2345 		return false;
2346 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2347 }
2348 
2349 void skb_condense(struct sk_buff *skb);
2350 
2351 /**
2352  *	skb_headroom - bytes at buffer head
2353  *	@skb: buffer to check
2354  *
2355  *	Return the number of bytes of free space at the head of an &sk_buff.
2356  */
2357 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2358 {
2359 	return skb->data - skb->head;
2360 }
2361 
2362 /**
2363  *	skb_tailroom - bytes at buffer end
2364  *	@skb: buffer to check
2365  *
2366  *	Return the number of bytes of free space at the tail of an sk_buff
2367  */
2368 static inline int skb_tailroom(const struct sk_buff *skb)
2369 {
2370 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2371 }
2372 
2373 /**
2374  *	skb_availroom - bytes at buffer end
2375  *	@skb: buffer to check
2376  *
2377  *	Return the number of bytes of free space at the tail of an sk_buff
2378  *	allocated by sk_stream_alloc()
2379  */
2380 static inline int skb_availroom(const struct sk_buff *skb)
2381 {
2382 	if (skb_is_nonlinear(skb))
2383 		return 0;
2384 
2385 	return skb->end - skb->tail - skb->reserved_tailroom;
2386 }
2387 
2388 /**
2389  *	skb_reserve - adjust headroom
2390  *	@skb: buffer to alter
2391  *	@len: bytes to move
2392  *
2393  *	Increase the headroom of an empty &sk_buff by reducing the tail
2394  *	room. This is only allowed for an empty buffer.
2395  */
2396 static inline void skb_reserve(struct sk_buff *skb, int len)
2397 {
2398 	skb->data += len;
2399 	skb->tail += len;
2400 }
2401 
2402 /**
2403  *	skb_tailroom_reserve - adjust reserved_tailroom
2404  *	@skb: buffer to alter
2405  *	@mtu: maximum amount of headlen permitted
2406  *	@needed_tailroom: minimum amount of reserved_tailroom
2407  *
2408  *	Set reserved_tailroom so that headlen can be as large as possible but
2409  *	not larger than mtu and tailroom cannot be smaller than
2410  *	needed_tailroom.
2411  *	The required headroom should already have been reserved before using
2412  *	this function.
2413  */
2414 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2415 					unsigned int needed_tailroom)
2416 {
2417 	SKB_LINEAR_ASSERT(skb);
2418 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2419 		/* use at most mtu */
2420 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2421 	else
2422 		/* use up to all available space */
2423 		skb->reserved_tailroom = needed_tailroom;
2424 }
2425 
2426 #define ENCAP_TYPE_ETHER	0
2427 #define ENCAP_TYPE_IPPROTO	1
2428 
2429 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2430 					  __be16 protocol)
2431 {
2432 	skb->inner_protocol = protocol;
2433 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2434 }
2435 
2436 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2437 					 __u8 ipproto)
2438 {
2439 	skb->inner_ipproto = ipproto;
2440 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2441 }
2442 
2443 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2444 {
2445 	skb->inner_mac_header = skb->mac_header;
2446 	skb->inner_network_header = skb->network_header;
2447 	skb->inner_transport_header = skb->transport_header;
2448 }
2449 
2450 static inline void skb_reset_mac_len(struct sk_buff *skb)
2451 {
2452 	skb->mac_len = skb->network_header - skb->mac_header;
2453 }
2454 
2455 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2456 							*skb)
2457 {
2458 	return skb->head + skb->inner_transport_header;
2459 }
2460 
2461 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2462 {
2463 	return skb_inner_transport_header(skb) - skb->data;
2464 }
2465 
2466 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2467 {
2468 	skb->inner_transport_header = skb->data - skb->head;
2469 }
2470 
2471 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2472 						   const int offset)
2473 {
2474 	skb_reset_inner_transport_header(skb);
2475 	skb->inner_transport_header += offset;
2476 }
2477 
2478 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2479 {
2480 	return skb->head + skb->inner_network_header;
2481 }
2482 
2483 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2484 {
2485 	skb->inner_network_header = skb->data - skb->head;
2486 }
2487 
2488 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2489 						const int offset)
2490 {
2491 	skb_reset_inner_network_header(skb);
2492 	skb->inner_network_header += offset;
2493 }
2494 
2495 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2496 {
2497 	return skb->head + skb->inner_mac_header;
2498 }
2499 
2500 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2501 {
2502 	skb->inner_mac_header = skb->data - skb->head;
2503 }
2504 
2505 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2506 					    const int offset)
2507 {
2508 	skb_reset_inner_mac_header(skb);
2509 	skb->inner_mac_header += offset;
2510 }
2511 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2512 {
2513 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2514 }
2515 
2516 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2517 {
2518 	return skb->head + skb->transport_header;
2519 }
2520 
2521 static inline void skb_reset_transport_header(struct sk_buff *skb)
2522 {
2523 	skb->transport_header = skb->data - skb->head;
2524 }
2525 
2526 static inline void skb_set_transport_header(struct sk_buff *skb,
2527 					    const int offset)
2528 {
2529 	skb_reset_transport_header(skb);
2530 	skb->transport_header += offset;
2531 }
2532 
2533 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2534 {
2535 	return skb->head + skb->network_header;
2536 }
2537 
2538 static inline void skb_reset_network_header(struct sk_buff *skb)
2539 {
2540 	skb->network_header = skb->data - skb->head;
2541 }
2542 
2543 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2544 {
2545 	skb_reset_network_header(skb);
2546 	skb->network_header += offset;
2547 }
2548 
2549 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2550 {
2551 	return skb->head + skb->mac_header;
2552 }
2553 
2554 static inline int skb_mac_offset(const struct sk_buff *skb)
2555 {
2556 	return skb_mac_header(skb) - skb->data;
2557 }
2558 
2559 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2560 {
2561 	return skb->network_header - skb->mac_header;
2562 }
2563 
2564 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2565 {
2566 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2567 }
2568 
2569 static inline void skb_unset_mac_header(struct sk_buff *skb)
2570 {
2571 	skb->mac_header = (typeof(skb->mac_header))~0U;
2572 }
2573 
2574 static inline void skb_reset_mac_header(struct sk_buff *skb)
2575 {
2576 	skb->mac_header = skb->data - skb->head;
2577 }
2578 
2579 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2580 {
2581 	skb_reset_mac_header(skb);
2582 	skb->mac_header += offset;
2583 }
2584 
2585 static inline void skb_pop_mac_header(struct sk_buff *skb)
2586 {
2587 	skb->mac_header = skb->network_header;
2588 }
2589 
2590 static inline void skb_probe_transport_header(struct sk_buff *skb)
2591 {
2592 	struct flow_keys_basic keys;
2593 
2594 	if (skb_transport_header_was_set(skb))
2595 		return;
2596 
2597 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2598 					     NULL, 0, 0, 0, 0))
2599 		skb_set_transport_header(skb, keys.control.thoff);
2600 }
2601 
2602 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2603 {
2604 	if (skb_mac_header_was_set(skb)) {
2605 		const unsigned char *old_mac = skb_mac_header(skb);
2606 
2607 		skb_set_mac_header(skb, -skb->mac_len);
2608 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2609 	}
2610 }
2611 
2612 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2613 {
2614 	return skb->csum_start - skb_headroom(skb);
2615 }
2616 
2617 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2618 {
2619 	return skb->head + skb->csum_start;
2620 }
2621 
2622 static inline int skb_transport_offset(const struct sk_buff *skb)
2623 {
2624 	return skb_transport_header(skb) - skb->data;
2625 }
2626 
2627 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2628 {
2629 	return skb->transport_header - skb->network_header;
2630 }
2631 
2632 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2633 {
2634 	return skb->inner_transport_header - skb->inner_network_header;
2635 }
2636 
2637 static inline int skb_network_offset(const struct sk_buff *skb)
2638 {
2639 	return skb_network_header(skb) - skb->data;
2640 }
2641 
2642 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2643 {
2644 	return skb_inner_network_header(skb) - skb->data;
2645 }
2646 
2647 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2648 {
2649 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2650 }
2651 
2652 /*
2653  * CPUs often take a performance hit when accessing unaligned memory
2654  * locations. The actual performance hit varies, it can be small if the
2655  * hardware handles it or large if we have to take an exception and fix it
2656  * in software.
2657  *
2658  * Since an ethernet header is 14 bytes network drivers often end up with
2659  * the IP header at an unaligned offset. The IP header can be aligned by
2660  * shifting the start of the packet by 2 bytes. Drivers should do this
2661  * with:
2662  *
2663  * skb_reserve(skb, NET_IP_ALIGN);
2664  *
2665  * The downside to this alignment of the IP header is that the DMA is now
2666  * unaligned. On some architectures the cost of an unaligned DMA is high
2667  * and this cost outweighs the gains made by aligning the IP header.
2668  *
2669  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2670  * to be overridden.
2671  */
2672 #ifndef NET_IP_ALIGN
2673 #define NET_IP_ALIGN	2
2674 #endif
2675 
2676 /*
2677  * The networking layer reserves some headroom in skb data (via
2678  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2679  * the header has to grow. In the default case, if the header has to grow
2680  * 32 bytes or less we avoid the reallocation.
2681  *
2682  * Unfortunately this headroom changes the DMA alignment of the resulting
2683  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2684  * on some architectures. An architecture can override this value,
2685  * perhaps setting it to a cacheline in size (since that will maintain
2686  * cacheline alignment of the DMA). It must be a power of 2.
2687  *
2688  * Various parts of the networking layer expect at least 32 bytes of
2689  * headroom, you should not reduce this.
2690  *
2691  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2692  * to reduce average number of cache lines per packet.
2693  * get_rps_cpu() for example only access one 64 bytes aligned block :
2694  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2695  */
2696 #ifndef NET_SKB_PAD
2697 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2698 #endif
2699 
2700 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2701 
2702 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2703 {
2704 	if (WARN_ON(skb_is_nonlinear(skb)))
2705 		return;
2706 	skb->len = len;
2707 	skb_set_tail_pointer(skb, len);
2708 }
2709 
2710 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2711 {
2712 	__skb_set_length(skb, len);
2713 }
2714 
2715 void skb_trim(struct sk_buff *skb, unsigned int len);
2716 
2717 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2718 {
2719 	if (skb->data_len)
2720 		return ___pskb_trim(skb, len);
2721 	__skb_trim(skb, len);
2722 	return 0;
2723 }
2724 
2725 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2726 {
2727 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2728 }
2729 
2730 /**
2731  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2732  *	@skb: buffer to alter
2733  *	@len: new length
2734  *
2735  *	This is identical to pskb_trim except that the caller knows that
2736  *	the skb is not cloned so we should never get an error due to out-
2737  *	of-memory.
2738  */
2739 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2740 {
2741 	int err = pskb_trim(skb, len);
2742 	BUG_ON(err);
2743 }
2744 
2745 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2746 {
2747 	unsigned int diff = len - skb->len;
2748 
2749 	if (skb_tailroom(skb) < diff) {
2750 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2751 					   GFP_ATOMIC);
2752 		if (ret)
2753 			return ret;
2754 	}
2755 	__skb_set_length(skb, len);
2756 	return 0;
2757 }
2758 
2759 /**
2760  *	skb_orphan - orphan a buffer
2761  *	@skb: buffer to orphan
2762  *
2763  *	If a buffer currently has an owner then we call the owner's
2764  *	destructor function and make the @skb unowned. The buffer continues
2765  *	to exist but is no longer charged to its former owner.
2766  */
2767 static inline void skb_orphan(struct sk_buff *skb)
2768 {
2769 	if (skb->destructor) {
2770 		skb->destructor(skb);
2771 		skb->destructor = NULL;
2772 		skb->sk		= NULL;
2773 	} else {
2774 		BUG_ON(skb->sk);
2775 	}
2776 }
2777 
2778 /**
2779  *	skb_orphan_frags - orphan the frags contained in a buffer
2780  *	@skb: buffer to orphan frags from
2781  *	@gfp_mask: allocation mask for replacement pages
2782  *
2783  *	For each frag in the SKB which needs a destructor (i.e. has an
2784  *	owner) create a copy of that frag and release the original
2785  *	page by calling the destructor.
2786  */
2787 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2788 {
2789 	if (likely(!skb_zcopy(skb)))
2790 		return 0;
2791 	if (!skb_zcopy_is_nouarg(skb) &&
2792 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2793 		return 0;
2794 	return skb_copy_ubufs(skb, gfp_mask);
2795 }
2796 
2797 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2798 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2799 {
2800 	if (likely(!skb_zcopy(skb)))
2801 		return 0;
2802 	return skb_copy_ubufs(skb, gfp_mask);
2803 }
2804 
2805 /**
2806  *	__skb_queue_purge - empty a list
2807  *	@list: list to empty
2808  *
2809  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2810  *	the list and one reference dropped. This function does not take the
2811  *	list lock and the caller must hold the relevant locks to use it.
2812  */
2813 static inline void __skb_queue_purge(struct sk_buff_head *list)
2814 {
2815 	struct sk_buff *skb;
2816 	while ((skb = __skb_dequeue(list)) != NULL)
2817 		kfree_skb(skb);
2818 }
2819 void skb_queue_purge(struct sk_buff_head *list);
2820 
2821 unsigned int skb_rbtree_purge(struct rb_root *root);
2822 
2823 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2824 
2825 /**
2826  * netdev_alloc_frag - allocate a page fragment
2827  * @fragsz: fragment size
2828  *
2829  * Allocates a frag from a page for receive buffer.
2830  * Uses GFP_ATOMIC allocations.
2831  */
2832 static inline void *netdev_alloc_frag(unsigned int fragsz)
2833 {
2834 	return __netdev_alloc_frag_align(fragsz, ~0u);
2835 }
2836 
2837 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2838 					    unsigned int align)
2839 {
2840 	WARN_ON_ONCE(!is_power_of_2(align));
2841 	return __netdev_alloc_frag_align(fragsz, -align);
2842 }
2843 
2844 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2845 				   gfp_t gfp_mask);
2846 
2847 /**
2848  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2849  *	@dev: network device to receive on
2850  *	@length: length to allocate
2851  *
2852  *	Allocate a new &sk_buff and assign it a usage count of one. The
2853  *	buffer has unspecified headroom built in. Users should allocate
2854  *	the headroom they think they need without accounting for the
2855  *	built in space. The built in space is used for optimisations.
2856  *
2857  *	%NULL is returned if there is no free memory. Although this function
2858  *	allocates memory it can be called from an interrupt.
2859  */
2860 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2861 					       unsigned int length)
2862 {
2863 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2864 }
2865 
2866 /* legacy helper around __netdev_alloc_skb() */
2867 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2868 					      gfp_t gfp_mask)
2869 {
2870 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2871 }
2872 
2873 /* legacy helper around netdev_alloc_skb() */
2874 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2875 {
2876 	return netdev_alloc_skb(NULL, length);
2877 }
2878 
2879 
2880 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2881 		unsigned int length, gfp_t gfp)
2882 {
2883 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2884 
2885 	if (NET_IP_ALIGN && skb)
2886 		skb_reserve(skb, NET_IP_ALIGN);
2887 	return skb;
2888 }
2889 
2890 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2891 		unsigned int length)
2892 {
2893 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2894 }
2895 
2896 static inline void skb_free_frag(void *addr)
2897 {
2898 	page_frag_free(addr);
2899 }
2900 
2901 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2902 
2903 static inline void *napi_alloc_frag(unsigned int fragsz)
2904 {
2905 	return __napi_alloc_frag_align(fragsz, ~0u);
2906 }
2907 
2908 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2909 					  unsigned int align)
2910 {
2911 	WARN_ON_ONCE(!is_power_of_2(align));
2912 	return __napi_alloc_frag_align(fragsz, -align);
2913 }
2914 
2915 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2916 				 unsigned int length, gfp_t gfp_mask);
2917 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2918 					     unsigned int length)
2919 {
2920 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2921 }
2922 void napi_consume_skb(struct sk_buff *skb, int budget);
2923 
2924 void napi_skb_free_stolen_head(struct sk_buff *skb);
2925 void __kfree_skb_defer(struct sk_buff *skb);
2926 
2927 /**
2928  * __dev_alloc_pages - allocate page for network Rx
2929  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2930  * @order: size of the allocation
2931  *
2932  * Allocate a new page.
2933  *
2934  * %NULL is returned if there is no free memory.
2935 */
2936 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2937 					     unsigned int order)
2938 {
2939 	/* This piece of code contains several assumptions.
2940 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2941 	 * 2.  The expectation is the user wants a compound page.
2942 	 * 3.  If requesting a order 0 page it will not be compound
2943 	 *     due to the check to see if order has a value in prep_new_page
2944 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2945 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2946 	 */
2947 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2948 
2949 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2950 }
2951 
2952 static inline struct page *dev_alloc_pages(unsigned int order)
2953 {
2954 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2955 }
2956 
2957 /**
2958  * __dev_alloc_page - allocate a page for network Rx
2959  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2960  *
2961  * Allocate a new page.
2962  *
2963  * %NULL is returned if there is no free memory.
2964  */
2965 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2966 {
2967 	return __dev_alloc_pages(gfp_mask, 0);
2968 }
2969 
2970 static inline struct page *dev_alloc_page(void)
2971 {
2972 	return dev_alloc_pages(0);
2973 }
2974 
2975 /**
2976  * dev_page_is_reusable - check whether a page can be reused for network Rx
2977  * @page: the page to test
2978  *
2979  * A page shouldn't be considered for reusing/recycling if it was allocated
2980  * under memory pressure or at a distant memory node.
2981  *
2982  * Returns false if this page should be returned to page allocator, true
2983  * otherwise.
2984  */
2985 static inline bool dev_page_is_reusable(const struct page *page)
2986 {
2987 	return likely(page_to_nid(page) == numa_mem_id() &&
2988 		      !page_is_pfmemalloc(page));
2989 }
2990 
2991 /**
2992  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2993  *	@page: The page that was allocated from skb_alloc_page
2994  *	@skb: The skb that may need pfmemalloc set
2995  */
2996 static inline void skb_propagate_pfmemalloc(const struct page *page,
2997 					    struct sk_buff *skb)
2998 {
2999 	if (page_is_pfmemalloc(page))
3000 		skb->pfmemalloc = true;
3001 }
3002 
3003 /**
3004  * skb_frag_off() - Returns the offset of a skb fragment
3005  * @frag: the paged fragment
3006  */
3007 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3008 {
3009 	return frag->bv_offset;
3010 }
3011 
3012 /**
3013  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3014  * @frag: skb fragment
3015  * @delta: value to add
3016  */
3017 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3018 {
3019 	frag->bv_offset += delta;
3020 }
3021 
3022 /**
3023  * skb_frag_off_set() - Sets the offset of a skb fragment
3024  * @frag: skb fragment
3025  * @offset: offset of fragment
3026  */
3027 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3028 {
3029 	frag->bv_offset = offset;
3030 }
3031 
3032 /**
3033  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3034  * @fragto: skb fragment where offset is set
3035  * @fragfrom: skb fragment offset is copied from
3036  */
3037 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3038 				     const skb_frag_t *fragfrom)
3039 {
3040 	fragto->bv_offset = fragfrom->bv_offset;
3041 }
3042 
3043 /**
3044  * skb_frag_page - retrieve the page referred to by a paged fragment
3045  * @frag: the paged fragment
3046  *
3047  * Returns the &struct page associated with @frag.
3048  */
3049 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3050 {
3051 	return frag->bv_page;
3052 }
3053 
3054 /**
3055  * __skb_frag_ref - take an addition reference on a paged fragment.
3056  * @frag: the paged fragment
3057  *
3058  * Takes an additional reference on the paged fragment @frag.
3059  */
3060 static inline void __skb_frag_ref(skb_frag_t *frag)
3061 {
3062 	get_page(skb_frag_page(frag));
3063 }
3064 
3065 /**
3066  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3067  * @skb: the buffer
3068  * @f: the fragment offset.
3069  *
3070  * Takes an additional reference on the @f'th paged fragment of @skb.
3071  */
3072 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3073 {
3074 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3075 }
3076 
3077 /**
3078  * __skb_frag_unref - release a reference on a paged fragment.
3079  * @frag: the paged fragment
3080  *
3081  * Releases a reference on the paged fragment @frag.
3082  */
3083 static inline void __skb_frag_unref(skb_frag_t *frag)
3084 {
3085 	put_page(skb_frag_page(frag));
3086 }
3087 
3088 /**
3089  * skb_frag_unref - release a reference on a paged fragment of an skb.
3090  * @skb: the buffer
3091  * @f: the fragment offset
3092  *
3093  * Releases a reference on the @f'th paged fragment of @skb.
3094  */
3095 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3096 {
3097 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3098 }
3099 
3100 /**
3101  * skb_frag_address - gets the address of the data contained in a paged fragment
3102  * @frag: the paged fragment buffer
3103  *
3104  * Returns the address of the data within @frag. The page must already
3105  * be mapped.
3106  */
3107 static inline void *skb_frag_address(const skb_frag_t *frag)
3108 {
3109 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3110 }
3111 
3112 /**
3113  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3114  * @frag: the paged fragment buffer
3115  *
3116  * Returns the address of the data within @frag. Checks that the page
3117  * is mapped and returns %NULL otherwise.
3118  */
3119 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3120 {
3121 	void *ptr = page_address(skb_frag_page(frag));
3122 	if (unlikely(!ptr))
3123 		return NULL;
3124 
3125 	return ptr + skb_frag_off(frag);
3126 }
3127 
3128 /**
3129  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3130  * @fragto: skb fragment where page is set
3131  * @fragfrom: skb fragment page is copied from
3132  */
3133 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3134 				      const skb_frag_t *fragfrom)
3135 {
3136 	fragto->bv_page = fragfrom->bv_page;
3137 }
3138 
3139 /**
3140  * __skb_frag_set_page - sets the page contained in a paged fragment
3141  * @frag: the paged fragment
3142  * @page: the page to set
3143  *
3144  * Sets the fragment @frag to contain @page.
3145  */
3146 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3147 {
3148 	frag->bv_page = page;
3149 }
3150 
3151 /**
3152  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3153  * @skb: the buffer
3154  * @f: the fragment offset
3155  * @page: the page to set
3156  *
3157  * Sets the @f'th fragment of @skb to contain @page.
3158  */
3159 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3160 				     struct page *page)
3161 {
3162 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3163 }
3164 
3165 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3166 
3167 /**
3168  * skb_frag_dma_map - maps a paged fragment via the DMA API
3169  * @dev: the device to map the fragment to
3170  * @frag: the paged fragment to map
3171  * @offset: the offset within the fragment (starting at the
3172  *          fragment's own offset)
3173  * @size: the number of bytes to map
3174  * @dir: the direction of the mapping (``PCI_DMA_*``)
3175  *
3176  * Maps the page associated with @frag to @device.
3177  */
3178 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3179 					  const skb_frag_t *frag,
3180 					  size_t offset, size_t size,
3181 					  enum dma_data_direction dir)
3182 {
3183 	return dma_map_page(dev, skb_frag_page(frag),
3184 			    skb_frag_off(frag) + offset, size, dir);
3185 }
3186 
3187 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3188 					gfp_t gfp_mask)
3189 {
3190 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3191 }
3192 
3193 
3194 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3195 						  gfp_t gfp_mask)
3196 {
3197 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3198 }
3199 
3200 
3201 /**
3202  *	skb_clone_writable - is the header of a clone writable
3203  *	@skb: buffer to check
3204  *	@len: length up to which to write
3205  *
3206  *	Returns true if modifying the header part of the cloned buffer
3207  *	does not requires the data to be copied.
3208  */
3209 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3210 {
3211 	return !skb_header_cloned(skb) &&
3212 	       skb_headroom(skb) + len <= skb->hdr_len;
3213 }
3214 
3215 static inline int skb_try_make_writable(struct sk_buff *skb,
3216 					unsigned int write_len)
3217 {
3218 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3219 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3220 }
3221 
3222 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3223 			    int cloned)
3224 {
3225 	int delta = 0;
3226 
3227 	if (headroom > skb_headroom(skb))
3228 		delta = headroom - skb_headroom(skb);
3229 
3230 	if (delta || cloned)
3231 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3232 					GFP_ATOMIC);
3233 	return 0;
3234 }
3235 
3236 /**
3237  *	skb_cow - copy header of skb when it is required
3238  *	@skb: buffer to cow
3239  *	@headroom: needed headroom
3240  *
3241  *	If the skb passed lacks sufficient headroom or its data part
3242  *	is shared, data is reallocated. If reallocation fails, an error
3243  *	is returned and original skb is not changed.
3244  *
3245  *	The result is skb with writable area skb->head...skb->tail
3246  *	and at least @headroom of space at head.
3247  */
3248 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3249 {
3250 	return __skb_cow(skb, headroom, skb_cloned(skb));
3251 }
3252 
3253 /**
3254  *	skb_cow_head - skb_cow but only making the head writable
3255  *	@skb: buffer to cow
3256  *	@headroom: needed headroom
3257  *
3258  *	This function is identical to skb_cow except that we replace the
3259  *	skb_cloned check by skb_header_cloned.  It should be used when
3260  *	you only need to push on some header and do not need to modify
3261  *	the data.
3262  */
3263 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3264 {
3265 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3266 }
3267 
3268 /**
3269  *	skb_padto	- pad an skbuff up to a minimal size
3270  *	@skb: buffer to pad
3271  *	@len: minimal length
3272  *
3273  *	Pads up a buffer to ensure the trailing bytes exist and are
3274  *	blanked. If the buffer already contains sufficient data it
3275  *	is untouched. Otherwise it is extended. Returns zero on
3276  *	success. The skb is freed on error.
3277  */
3278 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3279 {
3280 	unsigned int size = skb->len;
3281 	if (likely(size >= len))
3282 		return 0;
3283 	return skb_pad(skb, len - size);
3284 }
3285 
3286 /**
3287  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3288  *	@skb: buffer to pad
3289  *	@len: minimal length
3290  *	@free_on_error: free buffer on error
3291  *
3292  *	Pads up a buffer to ensure the trailing bytes exist and are
3293  *	blanked. If the buffer already contains sufficient data it
3294  *	is untouched. Otherwise it is extended. Returns zero on
3295  *	success. The skb is freed on error if @free_on_error is true.
3296  */
3297 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3298 					       unsigned int len,
3299 					       bool free_on_error)
3300 {
3301 	unsigned int size = skb->len;
3302 
3303 	if (unlikely(size < len)) {
3304 		len -= size;
3305 		if (__skb_pad(skb, len, free_on_error))
3306 			return -ENOMEM;
3307 		__skb_put(skb, len);
3308 	}
3309 	return 0;
3310 }
3311 
3312 /**
3313  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3314  *	@skb: buffer to pad
3315  *	@len: minimal length
3316  *
3317  *	Pads up a buffer to ensure the trailing bytes exist and are
3318  *	blanked. If the buffer already contains sufficient data it
3319  *	is untouched. Otherwise it is extended. Returns zero on
3320  *	success. The skb is freed on error.
3321  */
3322 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3323 {
3324 	return __skb_put_padto(skb, len, true);
3325 }
3326 
3327 static inline int skb_add_data(struct sk_buff *skb,
3328 			       struct iov_iter *from, int copy)
3329 {
3330 	const int off = skb->len;
3331 
3332 	if (skb->ip_summed == CHECKSUM_NONE) {
3333 		__wsum csum = 0;
3334 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3335 					         &csum, from)) {
3336 			skb->csum = csum_block_add(skb->csum, csum, off);
3337 			return 0;
3338 		}
3339 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3340 		return 0;
3341 
3342 	__skb_trim(skb, off);
3343 	return -EFAULT;
3344 }
3345 
3346 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3347 				    const struct page *page, int off)
3348 {
3349 	if (skb_zcopy(skb))
3350 		return false;
3351 	if (i) {
3352 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3353 
3354 		return page == skb_frag_page(frag) &&
3355 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3356 	}
3357 	return false;
3358 }
3359 
3360 static inline int __skb_linearize(struct sk_buff *skb)
3361 {
3362 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3363 }
3364 
3365 /**
3366  *	skb_linearize - convert paged skb to linear one
3367  *	@skb: buffer to linarize
3368  *
3369  *	If there is no free memory -ENOMEM is returned, otherwise zero
3370  *	is returned and the old skb data released.
3371  */
3372 static inline int skb_linearize(struct sk_buff *skb)
3373 {
3374 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3375 }
3376 
3377 /**
3378  * skb_has_shared_frag - can any frag be overwritten
3379  * @skb: buffer to test
3380  *
3381  * Return true if the skb has at least one frag that might be modified
3382  * by an external entity (as in vmsplice()/sendfile())
3383  */
3384 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3385 {
3386 	return skb_is_nonlinear(skb) &&
3387 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3388 }
3389 
3390 /**
3391  *	skb_linearize_cow - make sure skb is linear and writable
3392  *	@skb: buffer to process
3393  *
3394  *	If there is no free memory -ENOMEM is returned, otherwise zero
3395  *	is returned and the old skb data released.
3396  */
3397 static inline int skb_linearize_cow(struct sk_buff *skb)
3398 {
3399 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3400 	       __skb_linearize(skb) : 0;
3401 }
3402 
3403 static __always_inline void
3404 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3405 		     unsigned int off)
3406 {
3407 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3408 		skb->csum = csum_block_sub(skb->csum,
3409 					   csum_partial(start, len, 0), off);
3410 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3411 		 skb_checksum_start_offset(skb) < 0)
3412 		skb->ip_summed = CHECKSUM_NONE;
3413 }
3414 
3415 /**
3416  *	skb_postpull_rcsum - update checksum for received skb after pull
3417  *	@skb: buffer to update
3418  *	@start: start of data before pull
3419  *	@len: length of data pulled
3420  *
3421  *	After doing a pull on a received packet, you need to call this to
3422  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3423  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3424  */
3425 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3426 				      const void *start, unsigned int len)
3427 {
3428 	__skb_postpull_rcsum(skb, start, len, 0);
3429 }
3430 
3431 static __always_inline void
3432 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3433 		     unsigned int off)
3434 {
3435 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3436 		skb->csum = csum_block_add(skb->csum,
3437 					   csum_partial(start, len, 0), off);
3438 }
3439 
3440 /**
3441  *	skb_postpush_rcsum - update checksum for received skb after push
3442  *	@skb: buffer to update
3443  *	@start: start of data after push
3444  *	@len: length of data pushed
3445  *
3446  *	After doing a push on a received packet, you need to call this to
3447  *	update the CHECKSUM_COMPLETE checksum.
3448  */
3449 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3450 				      const void *start, unsigned int len)
3451 {
3452 	__skb_postpush_rcsum(skb, start, len, 0);
3453 }
3454 
3455 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3456 
3457 /**
3458  *	skb_push_rcsum - push skb and update receive checksum
3459  *	@skb: buffer to update
3460  *	@len: length of data pulled
3461  *
3462  *	This function performs an skb_push on the packet and updates
3463  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3464  *	receive path processing instead of skb_push unless you know
3465  *	that the checksum difference is zero (e.g., a valid IP header)
3466  *	or you are setting ip_summed to CHECKSUM_NONE.
3467  */
3468 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3469 {
3470 	skb_push(skb, len);
3471 	skb_postpush_rcsum(skb, skb->data, len);
3472 	return skb->data;
3473 }
3474 
3475 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3476 /**
3477  *	pskb_trim_rcsum - trim received skb and update checksum
3478  *	@skb: buffer to trim
3479  *	@len: new length
3480  *
3481  *	This is exactly the same as pskb_trim except that it ensures the
3482  *	checksum of received packets are still valid after the operation.
3483  *	It can change skb pointers.
3484  */
3485 
3486 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3487 {
3488 	if (likely(len >= skb->len))
3489 		return 0;
3490 	return pskb_trim_rcsum_slow(skb, len);
3491 }
3492 
3493 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3494 {
3495 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3496 		skb->ip_summed = CHECKSUM_NONE;
3497 	__skb_trim(skb, len);
3498 	return 0;
3499 }
3500 
3501 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3502 {
3503 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3504 		skb->ip_summed = CHECKSUM_NONE;
3505 	return __skb_grow(skb, len);
3506 }
3507 
3508 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3509 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3510 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3511 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3512 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3513 
3514 #define skb_queue_walk(queue, skb) \
3515 		for (skb = (queue)->next;					\
3516 		     skb != (struct sk_buff *)(queue);				\
3517 		     skb = skb->next)
3518 
3519 #define skb_queue_walk_safe(queue, skb, tmp)					\
3520 		for (skb = (queue)->next, tmp = skb->next;			\
3521 		     skb != (struct sk_buff *)(queue);				\
3522 		     skb = tmp, tmp = skb->next)
3523 
3524 #define skb_queue_walk_from(queue, skb)						\
3525 		for (; skb != (struct sk_buff *)(queue);			\
3526 		     skb = skb->next)
3527 
3528 #define skb_rbtree_walk(skb, root)						\
3529 		for (skb = skb_rb_first(root); skb != NULL;			\
3530 		     skb = skb_rb_next(skb))
3531 
3532 #define skb_rbtree_walk_from(skb)						\
3533 		for (; skb != NULL;						\
3534 		     skb = skb_rb_next(skb))
3535 
3536 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3537 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3538 		     skb = tmp)
3539 
3540 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3541 		for (tmp = skb->next;						\
3542 		     skb != (struct sk_buff *)(queue);				\
3543 		     skb = tmp, tmp = skb->next)
3544 
3545 #define skb_queue_reverse_walk(queue, skb) \
3546 		for (skb = (queue)->prev;					\
3547 		     skb != (struct sk_buff *)(queue);				\
3548 		     skb = skb->prev)
3549 
3550 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3551 		for (skb = (queue)->prev, tmp = skb->prev;			\
3552 		     skb != (struct sk_buff *)(queue);				\
3553 		     skb = tmp, tmp = skb->prev)
3554 
3555 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3556 		for (tmp = skb->prev;						\
3557 		     skb != (struct sk_buff *)(queue);				\
3558 		     skb = tmp, tmp = skb->prev)
3559 
3560 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3561 {
3562 	return skb_shinfo(skb)->frag_list != NULL;
3563 }
3564 
3565 static inline void skb_frag_list_init(struct sk_buff *skb)
3566 {
3567 	skb_shinfo(skb)->frag_list = NULL;
3568 }
3569 
3570 #define skb_walk_frags(skb, iter)	\
3571 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3572 
3573 
3574 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3575 				int *err, long *timeo_p,
3576 				const struct sk_buff *skb);
3577 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3578 					  struct sk_buff_head *queue,
3579 					  unsigned int flags,
3580 					  int *off, int *err,
3581 					  struct sk_buff **last);
3582 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3583 					struct sk_buff_head *queue,
3584 					unsigned int flags, int *off, int *err,
3585 					struct sk_buff **last);
3586 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3587 				    struct sk_buff_head *sk_queue,
3588 				    unsigned int flags, int *off, int *err);
3589 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3590 				  int *err);
3591 __poll_t datagram_poll(struct file *file, struct socket *sock,
3592 			   struct poll_table_struct *wait);
3593 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3594 			   struct iov_iter *to, int size);
3595 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3596 					struct msghdr *msg, int size)
3597 {
3598 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3599 }
3600 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3601 				   struct msghdr *msg);
3602 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3603 			   struct iov_iter *to, int len,
3604 			   struct ahash_request *hash);
3605 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3606 				 struct iov_iter *from, int len);
3607 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3608 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3609 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3610 static inline void skb_free_datagram_locked(struct sock *sk,
3611 					    struct sk_buff *skb)
3612 {
3613 	__skb_free_datagram_locked(sk, skb, 0);
3614 }
3615 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3616 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3617 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3618 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3619 			      int len);
3620 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3621 		    struct pipe_inode_info *pipe, unsigned int len,
3622 		    unsigned int flags);
3623 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3624 			 int len);
3625 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3626 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3627 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3628 		 int len, int hlen);
3629 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3630 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3631 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3632 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3633 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3634 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3635 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3636 				 unsigned int offset);
3637 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3638 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3639 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3640 int skb_vlan_pop(struct sk_buff *skb);
3641 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3642 int skb_eth_pop(struct sk_buff *skb);
3643 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3644 		 const unsigned char *src);
3645 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3646 		  int mac_len, bool ethernet);
3647 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3648 		 bool ethernet);
3649 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3650 int skb_mpls_dec_ttl(struct sk_buff *skb);
3651 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3652 			     gfp_t gfp);
3653 
3654 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3655 {
3656 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3657 }
3658 
3659 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3660 {
3661 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3662 }
3663 
3664 struct skb_checksum_ops {
3665 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3666 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3667 };
3668 
3669 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3670 
3671 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3672 		      __wsum csum, const struct skb_checksum_ops *ops);
3673 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3674 		    __wsum csum);
3675 
3676 static inline void * __must_check
3677 __skb_header_pointer(const struct sk_buff *skb, int offset,
3678 		     int len, void *data, int hlen, void *buffer)
3679 {
3680 	if (hlen - offset >= len)
3681 		return data + offset;
3682 
3683 	if (!skb ||
3684 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3685 		return NULL;
3686 
3687 	return buffer;
3688 }
3689 
3690 static inline void * __must_check
3691 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3692 {
3693 	return __skb_header_pointer(skb, offset, len, skb->data,
3694 				    skb_headlen(skb), buffer);
3695 }
3696 
3697 /**
3698  *	skb_needs_linearize - check if we need to linearize a given skb
3699  *			      depending on the given device features.
3700  *	@skb: socket buffer to check
3701  *	@features: net device features
3702  *
3703  *	Returns true if either:
3704  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3705  *	2. skb is fragmented and the device does not support SG.
3706  */
3707 static inline bool skb_needs_linearize(struct sk_buff *skb,
3708 				       netdev_features_t features)
3709 {
3710 	return skb_is_nonlinear(skb) &&
3711 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3712 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3713 }
3714 
3715 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3716 					     void *to,
3717 					     const unsigned int len)
3718 {
3719 	memcpy(to, skb->data, len);
3720 }
3721 
3722 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3723 						    const int offset, void *to,
3724 						    const unsigned int len)
3725 {
3726 	memcpy(to, skb->data + offset, len);
3727 }
3728 
3729 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3730 					   const void *from,
3731 					   const unsigned int len)
3732 {
3733 	memcpy(skb->data, from, len);
3734 }
3735 
3736 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3737 						  const int offset,
3738 						  const void *from,
3739 						  const unsigned int len)
3740 {
3741 	memcpy(skb->data + offset, from, len);
3742 }
3743 
3744 void skb_init(void);
3745 
3746 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3747 {
3748 	return skb->tstamp;
3749 }
3750 
3751 /**
3752  *	skb_get_timestamp - get timestamp from a skb
3753  *	@skb: skb to get stamp from
3754  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3755  *
3756  *	Timestamps are stored in the skb as offsets to a base timestamp.
3757  *	This function converts the offset back to a struct timeval and stores
3758  *	it in stamp.
3759  */
3760 static inline void skb_get_timestamp(const struct sk_buff *skb,
3761 				     struct __kernel_old_timeval *stamp)
3762 {
3763 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3764 }
3765 
3766 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3767 					 struct __kernel_sock_timeval *stamp)
3768 {
3769 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3770 
3771 	stamp->tv_sec = ts.tv_sec;
3772 	stamp->tv_usec = ts.tv_nsec / 1000;
3773 }
3774 
3775 static inline void skb_get_timestampns(const struct sk_buff *skb,
3776 				       struct __kernel_old_timespec *stamp)
3777 {
3778 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3779 
3780 	stamp->tv_sec = ts.tv_sec;
3781 	stamp->tv_nsec = ts.tv_nsec;
3782 }
3783 
3784 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3785 					   struct __kernel_timespec *stamp)
3786 {
3787 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3788 
3789 	stamp->tv_sec = ts.tv_sec;
3790 	stamp->tv_nsec = ts.tv_nsec;
3791 }
3792 
3793 static inline void __net_timestamp(struct sk_buff *skb)
3794 {
3795 	skb->tstamp = ktime_get_real();
3796 }
3797 
3798 static inline ktime_t net_timedelta(ktime_t t)
3799 {
3800 	return ktime_sub(ktime_get_real(), t);
3801 }
3802 
3803 static inline ktime_t net_invalid_timestamp(void)
3804 {
3805 	return 0;
3806 }
3807 
3808 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3809 {
3810 	return skb_shinfo(skb)->meta_len;
3811 }
3812 
3813 static inline void *skb_metadata_end(const struct sk_buff *skb)
3814 {
3815 	return skb_mac_header(skb);
3816 }
3817 
3818 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3819 					  const struct sk_buff *skb_b,
3820 					  u8 meta_len)
3821 {
3822 	const void *a = skb_metadata_end(skb_a);
3823 	const void *b = skb_metadata_end(skb_b);
3824 	/* Using more efficient varaiant than plain call to memcmp(). */
3825 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3826 	u64 diffs = 0;
3827 
3828 	switch (meta_len) {
3829 #define __it(x, op) (x -= sizeof(u##op))
3830 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3831 	case 32: diffs |= __it_diff(a, b, 64);
3832 		fallthrough;
3833 	case 24: diffs |= __it_diff(a, b, 64);
3834 		fallthrough;
3835 	case 16: diffs |= __it_diff(a, b, 64);
3836 		fallthrough;
3837 	case  8: diffs |= __it_diff(a, b, 64);
3838 		break;
3839 	case 28: diffs |= __it_diff(a, b, 64);
3840 		fallthrough;
3841 	case 20: diffs |= __it_diff(a, b, 64);
3842 		fallthrough;
3843 	case 12: diffs |= __it_diff(a, b, 64);
3844 		fallthrough;
3845 	case  4: diffs |= __it_diff(a, b, 32);
3846 		break;
3847 	}
3848 	return diffs;
3849 #else
3850 	return memcmp(a - meta_len, b - meta_len, meta_len);
3851 #endif
3852 }
3853 
3854 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3855 					const struct sk_buff *skb_b)
3856 {
3857 	u8 len_a = skb_metadata_len(skb_a);
3858 	u8 len_b = skb_metadata_len(skb_b);
3859 
3860 	if (!(len_a | len_b))
3861 		return false;
3862 
3863 	return len_a != len_b ?
3864 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3865 }
3866 
3867 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3868 {
3869 	skb_shinfo(skb)->meta_len = meta_len;
3870 }
3871 
3872 static inline void skb_metadata_clear(struct sk_buff *skb)
3873 {
3874 	skb_metadata_set(skb, 0);
3875 }
3876 
3877 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3878 
3879 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3880 
3881 void skb_clone_tx_timestamp(struct sk_buff *skb);
3882 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3883 
3884 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3885 
3886 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3887 {
3888 }
3889 
3890 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3891 {
3892 	return false;
3893 }
3894 
3895 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3896 
3897 /**
3898  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3899  *
3900  * PHY drivers may accept clones of transmitted packets for
3901  * timestamping via their phy_driver.txtstamp method. These drivers
3902  * must call this function to return the skb back to the stack with a
3903  * timestamp.
3904  *
3905  * @skb: clone of the original outgoing packet
3906  * @hwtstamps: hardware time stamps
3907  *
3908  */
3909 void skb_complete_tx_timestamp(struct sk_buff *skb,
3910 			       struct skb_shared_hwtstamps *hwtstamps);
3911 
3912 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3913 		     struct skb_shared_hwtstamps *hwtstamps,
3914 		     struct sock *sk, int tstype);
3915 
3916 /**
3917  * skb_tstamp_tx - queue clone of skb with send time stamps
3918  * @orig_skb:	the original outgoing packet
3919  * @hwtstamps:	hardware time stamps, may be NULL if not available
3920  *
3921  * If the skb has a socket associated, then this function clones the
3922  * skb (thus sharing the actual data and optional structures), stores
3923  * the optional hardware time stamping information (if non NULL) or
3924  * generates a software time stamp (otherwise), then queues the clone
3925  * to the error queue of the socket.  Errors are silently ignored.
3926  */
3927 void skb_tstamp_tx(struct sk_buff *orig_skb,
3928 		   struct skb_shared_hwtstamps *hwtstamps);
3929 
3930 /**
3931  * skb_tx_timestamp() - Driver hook for transmit timestamping
3932  *
3933  * Ethernet MAC Drivers should call this function in their hard_xmit()
3934  * function immediately before giving the sk_buff to the MAC hardware.
3935  *
3936  * Specifically, one should make absolutely sure that this function is
3937  * called before TX completion of this packet can trigger.  Otherwise
3938  * the packet could potentially already be freed.
3939  *
3940  * @skb: A socket buffer.
3941  */
3942 static inline void skb_tx_timestamp(struct sk_buff *skb)
3943 {
3944 	skb_clone_tx_timestamp(skb);
3945 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3946 		skb_tstamp_tx(skb, NULL);
3947 }
3948 
3949 /**
3950  * skb_complete_wifi_ack - deliver skb with wifi status
3951  *
3952  * @skb: the original outgoing packet
3953  * @acked: ack status
3954  *
3955  */
3956 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3957 
3958 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3959 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3960 
3961 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3962 {
3963 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3964 		skb->csum_valid ||
3965 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3966 		 skb_checksum_start_offset(skb) >= 0));
3967 }
3968 
3969 /**
3970  *	skb_checksum_complete - Calculate checksum of an entire packet
3971  *	@skb: packet to process
3972  *
3973  *	This function calculates the checksum over the entire packet plus
3974  *	the value of skb->csum.  The latter can be used to supply the
3975  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3976  *	checksum.
3977  *
3978  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3979  *	this function can be used to verify that checksum on received
3980  *	packets.  In that case the function should return zero if the
3981  *	checksum is correct.  In particular, this function will return zero
3982  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3983  *	hardware has already verified the correctness of the checksum.
3984  */
3985 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3986 {
3987 	return skb_csum_unnecessary(skb) ?
3988 	       0 : __skb_checksum_complete(skb);
3989 }
3990 
3991 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3992 {
3993 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3994 		if (skb->csum_level == 0)
3995 			skb->ip_summed = CHECKSUM_NONE;
3996 		else
3997 			skb->csum_level--;
3998 	}
3999 }
4000 
4001 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4002 {
4003 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4004 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4005 			skb->csum_level++;
4006 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4007 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4008 		skb->csum_level = 0;
4009 	}
4010 }
4011 
4012 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4013 {
4014 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4015 		skb->ip_summed = CHECKSUM_NONE;
4016 		skb->csum_level = 0;
4017 	}
4018 }
4019 
4020 /* Check if we need to perform checksum complete validation.
4021  *
4022  * Returns true if checksum complete is needed, false otherwise
4023  * (either checksum is unnecessary or zero checksum is allowed).
4024  */
4025 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4026 						  bool zero_okay,
4027 						  __sum16 check)
4028 {
4029 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4030 		skb->csum_valid = 1;
4031 		__skb_decr_checksum_unnecessary(skb);
4032 		return false;
4033 	}
4034 
4035 	return true;
4036 }
4037 
4038 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4039  * in checksum_init.
4040  */
4041 #define CHECKSUM_BREAK 76
4042 
4043 /* Unset checksum-complete
4044  *
4045  * Unset checksum complete can be done when packet is being modified
4046  * (uncompressed for instance) and checksum-complete value is
4047  * invalidated.
4048  */
4049 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4050 {
4051 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4052 		skb->ip_summed = CHECKSUM_NONE;
4053 }
4054 
4055 /* Validate (init) checksum based on checksum complete.
4056  *
4057  * Return values:
4058  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4059  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4060  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4061  *   non-zero: value of invalid checksum
4062  *
4063  */
4064 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4065 						       bool complete,
4066 						       __wsum psum)
4067 {
4068 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4069 		if (!csum_fold(csum_add(psum, skb->csum))) {
4070 			skb->csum_valid = 1;
4071 			return 0;
4072 		}
4073 	}
4074 
4075 	skb->csum = psum;
4076 
4077 	if (complete || skb->len <= CHECKSUM_BREAK) {
4078 		__sum16 csum;
4079 
4080 		csum = __skb_checksum_complete(skb);
4081 		skb->csum_valid = !csum;
4082 		return csum;
4083 	}
4084 
4085 	return 0;
4086 }
4087 
4088 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4089 {
4090 	return 0;
4091 }
4092 
4093 /* Perform checksum validate (init). Note that this is a macro since we only
4094  * want to calculate the pseudo header which is an input function if necessary.
4095  * First we try to validate without any computation (checksum unnecessary) and
4096  * then calculate based on checksum complete calling the function to compute
4097  * pseudo header.
4098  *
4099  * Return values:
4100  *   0: checksum is validated or try to in skb_checksum_complete
4101  *   non-zero: value of invalid checksum
4102  */
4103 #define __skb_checksum_validate(skb, proto, complete,			\
4104 				zero_okay, check, compute_pseudo)	\
4105 ({									\
4106 	__sum16 __ret = 0;						\
4107 	skb->csum_valid = 0;						\
4108 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4109 		__ret = __skb_checksum_validate_complete(skb,		\
4110 				complete, compute_pseudo(skb, proto));	\
4111 	__ret;								\
4112 })
4113 
4114 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4115 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4116 
4117 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4118 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4119 
4120 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4121 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4122 
4123 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4124 					 compute_pseudo)		\
4125 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4126 
4127 #define skb_checksum_simple_validate(skb)				\
4128 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4129 
4130 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4131 {
4132 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4133 }
4134 
4135 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4136 {
4137 	skb->csum = ~pseudo;
4138 	skb->ip_summed = CHECKSUM_COMPLETE;
4139 }
4140 
4141 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4142 do {									\
4143 	if (__skb_checksum_convert_check(skb))				\
4144 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4145 } while (0)
4146 
4147 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4148 					      u16 start, u16 offset)
4149 {
4150 	skb->ip_summed = CHECKSUM_PARTIAL;
4151 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4152 	skb->csum_offset = offset - start;
4153 }
4154 
4155 /* Update skbuf and packet to reflect the remote checksum offload operation.
4156  * When called, ptr indicates the starting point for skb->csum when
4157  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4158  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4159  */
4160 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4161 				       int start, int offset, bool nopartial)
4162 {
4163 	__wsum delta;
4164 
4165 	if (!nopartial) {
4166 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4167 		return;
4168 	}
4169 
4170 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4171 		__skb_checksum_complete(skb);
4172 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4173 	}
4174 
4175 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4176 
4177 	/* Adjust skb->csum since we changed the packet */
4178 	skb->csum = csum_add(skb->csum, delta);
4179 }
4180 
4181 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4182 {
4183 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4184 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4185 #else
4186 	return NULL;
4187 #endif
4188 }
4189 
4190 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4191 {
4192 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4193 	return skb->_nfct;
4194 #else
4195 	return 0UL;
4196 #endif
4197 }
4198 
4199 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4200 {
4201 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4202 	skb->_nfct = nfct;
4203 #endif
4204 }
4205 
4206 #ifdef CONFIG_SKB_EXTENSIONS
4207 enum skb_ext_id {
4208 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4209 	SKB_EXT_BRIDGE_NF,
4210 #endif
4211 #ifdef CONFIG_XFRM
4212 	SKB_EXT_SEC_PATH,
4213 #endif
4214 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4215 	TC_SKB_EXT,
4216 #endif
4217 #if IS_ENABLED(CONFIG_MPTCP)
4218 	SKB_EXT_MPTCP,
4219 #endif
4220 	SKB_EXT_NUM, /* must be last */
4221 };
4222 
4223 /**
4224  *	struct skb_ext - sk_buff extensions
4225  *	@refcnt: 1 on allocation, deallocated on 0
4226  *	@offset: offset to add to @data to obtain extension address
4227  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4228  *	@data: start of extension data, variable sized
4229  *
4230  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4231  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4232  */
4233 struct skb_ext {
4234 	refcount_t refcnt;
4235 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4236 	u8 chunks;		/* same */
4237 	char data[] __aligned(8);
4238 };
4239 
4240 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4241 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4242 		    struct skb_ext *ext);
4243 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4244 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4245 void __skb_ext_put(struct skb_ext *ext);
4246 
4247 static inline void skb_ext_put(struct sk_buff *skb)
4248 {
4249 	if (skb->active_extensions)
4250 		__skb_ext_put(skb->extensions);
4251 }
4252 
4253 static inline void __skb_ext_copy(struct sk_buff *dst,
4254 				  const struct sk_buff *src)
4255 {
4256 	dst->active_extensions = src->active_extensions;
4257 
4258 	if (src->active_extensions) {
4259 		struct skb_ext *ext = src->extensions;
4260 
4261 		refcount_inc(&ext->refcnt);
4262 		dst->extensions = ext;
4263 	}
4264 }
4265 
4266 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4267 {
4268 	skb_ext_put(dst);
4269 	__skb_ext_copy(dst, src);
4270 }
4271 
4272 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4273 {
4274 	return !!ext->offset[i];
4275 }
4276 
4277 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4278 {
4279 	return skb->active_extensions & (1 << id);
4280 }
4281 
4282 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4283 {
4284 	if (skb_ext_exist(skb, id))
4285 		__skb_ext_del(skb, id);
4286 }
4287 
4288 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4289 {
4290 	if (skb_ext_exist(skb, id)) {
4291 		struct skb_ext *ext = skb->extensions;
4292 
4293 		return (void *)ext + (ext->offset[id] << 3);
4294 	}
4295 
4296 	return NULL;
4297 }
4298 
4299 static inline void skb_ext_reset(struct sk_buff *skb)
4300 {
4301 	if (unlikely(skb->active_extensions)) {
4302 		__skb_ext_put(skb->extensions);
4303 		skb->active_extensions = 0;
4304 	}
4305 }
4306 
4307 static inline bool skb_has_extensions(struct sk_buff *skb)
4308 {
4309 	return unlikely(skb->active_extensions);
4310 }
4311 #else
4312 static inline void skb_ext_put(struct sk_buff *skb) {}
4313 static inline void skb_ext_reset(struct sk_buff *skb) {}
4314 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4315 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4316 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4317 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4318 #endif /* CONFIG_SKB_EXTENSIONS */
4319 
4320 static inline void nf_reset_ct(struct sk_buff *skb)
4321 {
4322 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4323 	nf_conntrack_put(skb_nfct(skb));
4324 	skb->_nfct = 0;
4325 #endif
4326 }
4327 
4328 static inline void nf_reset_trace(struct sk_buff *skb)
4329 {
4330 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4331 	skb->nf_trace = 0;
4332 #endif
4333 }
4334 
4335 static inline void ipvs_reset(struct sk_buff *skb)
4336 {
4337 #if IS_ENABLED(CONFIG_IP_VS)
4338 	skb->ipvs_property = 0;
4339 #endif
4340 }
4341 
4342 /* Note: This doesn't put any conntrack info in dst. */
4343 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4344 			     bool copy)
4345 {
4346 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4347 	dst->_nfct = src->_nfct;
4348 	nf_conntrack_get(skb_nfct(src));
4349 #endif
4350 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4351 	if (copy)
4352 		dst->nf_trace = src->nf_trace;
4353 #endif
4354 }
4355 
4356 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4357 {
4358 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4359 	nf_conntrack_put(skb_nfct(dst));
4360 #endif
4361 	__nf_copy(dst, src, true);
4362 }
4363 
4364 #ifdef CONFIG_NETWORK_SECMARK
4365 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4366 {
4367 	to->secmark = from->secmark;
4368 }
4369 
4370 static inline void skb_init_secmark(struct sk_buff *skb)
4371 {
4372 	skb->secmark = 0;
4373 }
4374 #else
4375 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4376 { }
4377 
4378 static inline void skb_init_secmark(struct sk_buff *skb)
4379 { }
4380 #endif
4381 
4382 static inline int secpath_exists(const struct sk_buff *skb)
4383 {
4384 #ifdef CONFIG_XFRM
4385 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4386 #else
4387 	return 0;
4388 #endif
4389 }
4390 
4391 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4392 {
4393 	return !skb->destructor &&
4394 		!secpath_exists(skb) &&
4395 		!skb_nfct(skb) &&
4396 		!skb->_skb_refdst &&
4397 		!skb_has_frag_list(skb);
4398 }
4399 
4400 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4401 {
4402 	skb->queue_mapping = queue_mapping;
4403 }
4404 
4405 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4406 {
4407 	return skb->queue_mapping;
4408 }
4409 
4410 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4411 {
4412 	to->queue_mapping = from->queue_mapping;
4413 }
4414 
4415 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4416 {
4417 	skb->queue_mapping = rx_queue + 1;
4418 }
4419 
4420 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4421 {
4422 	return skb->queue_mapping - 1;
4423 }
4424 
4425 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4426 {
4427 	return skb->queue_mapping != 0;
4428 }
4429 
4430 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4431 {
4432 	skb->dst_pending_confirm = val;
4433 }
4434 
4435 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4436 {
4437 	return skb->dst_pending_confirm != 0;
4438 }
4439 
4440 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4441 {
4442 #ifdef CONFIG_XFRM
4443 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4444 #else
4445 	return NULL;
4446 #endif
4447 }
4448 
4449 /* Keeps track of mac header offset relative to skb->head.
4450  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4451  * For non-tunnel skb it points to skb_mac_header() and for
4452  * tunnel skb it points to outer mac header.
4453  * Keeps track of level of encapsulation of network headers.
4454  */
4455 struct skb_gso_cb {
4456 	union {
4457 		int	mac_offset;
4458 		int	data_offset;
4459 	};
4460 	int	encap_level;
4461 	__wsum	csum;
4462 	__u16	csum_start;
4463 };
4464 #define SKB_GSO_CB_OFFSET	32
4465 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4466 
4467 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4468 {
4469 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4470 		SKB_GSO_CB(inner_skb)->mac_offset;
4471 }
4472 
4473 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4474 {
4475 	int new_headroom, headroom;
4476 	int ret;
4477 
4478 	headroom = skb_headroom(skb);
4479 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4480 	if (ret)
4481 		return ret;
4482 
4483 	new_headroom = skb_headroom(skb);
4484 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4485 	return 0;
4486 }
4487 
4488 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4489 {
4490 	/* Do not update partial checksums if remote checksum is enabled. */
4491 	if (skb->remcsum_offload)
4492 		return;
4493 
4494 	SKB_GSO_CB(skb)->csum = res;
4495 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4496 }
4497 
4498 /* Compute the checksum for a gso segment. First compute the checksum value
4499  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4500  * then add in skb->csum (checksum from csum_start to end of packet).
4501  * skb->csum and csum_start are then updated to reflect the checksum of the
4502  * resultant packet starting from the transport header-- the resultant checksum
4503  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4504  * header.
4505  */
4506 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4507 {
4508 	unsigned char *csum_start = skb_transport_header(skb);
4509 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4510 	__wsum partial = SKB_GSO_CB(skb)->csum;
4511 
4512 	SKB_GSO_CB(skb)->csum = res;
4513 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4514 
4515 	return csum_fold(csum_partial(csum_start, plen, partial));
4516 }
4517 
4518 static inline bool skb_is_gso(const struct sk_buff *skb)
4519 {
4520 	return skb_shinfo(skb)->gso_size;
4521 }
4522 
4523 /* Note: Should be called only if skb_is_gso(skb) is true */
4524 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4525 {
4526 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4527 }
4528 
4529 /* Note: Should be called only if skb_is_gso(skb) is true */
4530 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4531 {
4532 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4533 }
4534 
4535 /* Note: Should be called only if skb_is_gso(skb) is true */
4536 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4537 {
4538 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4539 }
4540 
4541 static inline void skb_gso_reset(struct sk_buff *skb)
4542 {
4543 	skb_shinfo(skb)->gso_size = 0;
4544 	skb_shinfo(skb)->gso_segs = 0;
4545 	skb_shinfo(skb)->gso_type = 0;
4546 }
4547 
4548 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4549 					 u16 increment)
4550 {
4551 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4552 		return;
4553 	shinfo->gso_size += increment;
4554 }
4555 
4556 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4557 					 u16 decrement)
4558 {
4559 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4560 		return;
4561 	shinfo->gso_size -= decrement;
4562 }
4563 
4564 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4565 
4566 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4567 {
4568 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4569 	 * wanted then gso_type will be set. */
4570 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4571 
4572 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4573 	    unlikely(shinfo->gso_type == 0)) {
4574 		__skb_warn_lro_forwarding(skb);
4575 		return true;
4576 	}
4577 	return false;
4578 }
4579 
4580 static inline void skb_forward_csum(struct sk_buff *skb)
4581 {
4582 	/* Unfortunately we don't support this one.  Any brave souls? */
4583 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4584 		skb->ip_summed = CHECKSUM_NONE;
4585 }
4586 
4587 /**
4588  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4589  * @skb: skb to check
4590  *
4591  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4592  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4593  * use this helper, to document places where we make this assertion.
4594  */
4595 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4596 {
4597 #ifdef DEBUG
4598 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4599 #endif
4600 }
4601 
4602 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4603 
4604 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4605 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4606 				     unsigned int transport_len,
4607 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4608 
4609 /**
4610  * skb_head_is_locked - Determine if the skb->head is locked down
4611  * @skb: skb to check
4612  *
4613  * The head on skbs build around a head frag can be removed if they are
4614  * not cloned.  This function returns true if the skb head is locked down
4615  * due to either being allocated via kmalloc, or by being a clone with
4616  * multiple references to the head.
4617  */
4618 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4619 {
4620 	return !skb->head_frag || skb_cloned(skb);
4621 }
4622 
4623 /* Local Checksum Offload.
4624  * Compute outer checksum based on the assumption that the
4625  * inner checksum will be offloaded later.
4626  * See Documentation/networking/checksum-offloads.rst for
4627  * explanation of how this works.
4628  * Fill in outer checksum adjustment (e.g. with sum of outer
4629  * pseudo-header) before calling.
4630  * Also ensure that inner checksum is in linear data area.
4631  */
4632 static inline __wsum lco_csum(struct sk_buff *skb)
4633 {
4634 	unsigned char *csum_start = skb_checksum_start(skb);
4635 	unsigned char *l4_hdr = skb_transport_header(skb);
4636 	__wsum partial;
4637 
4638 	/* Start with complement of inner checksum adjustment */
4639 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4640 						    skb->csum_offset));
4641 
4642 	/* Add in checksum of our headers (incl. outer checksum
4643 	 * adjustment filled in by caller) and return result.
4644 	 */
4645 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4646 }
4647 
4648 static inline bool skb_is_redirected(const struct sk_buff *skb)
4649 {
4650 #ifdef CONFIG_NET_REDIRECT
4651 	return skb->redirected;
4652 #else
4653 	return false;
4654 #endif
4655 }
4656 
4657 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4658 {
4659 #ifdef CONFIG_NET_REDIRECT
4660 	skb->redirected = 1;
4661 	skb->from_ingress = from_ingress;
4662 	if (skb->from_ingress)
4663 		skb->tstamp = 0;
4664 #endif
4665 }
4666 
4667 static inline void skb_reset_redirect(struct sk_buff *skb)
4668 {
4669 #ifdef CONFIG_NET_REDIRECT
4670 	skb->redirected = 0;
4671 #endif
4672 }
4673 
4674 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4675 {
4676 	return skb->csum_not_inet;
4677 }
4678 
4679 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4680 				       const u64 kcov_handle)
4681 {
4682 #ifdef CONFIG_KCOV
4683 	skb->kcov_handle = kcov_handle;
4684 #endif
4685 }
4686 
4687 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4688 {
4689 #ifdef CONFIG_KCOV
4690 	return skb->kcov_handle;
4691 #else
4692 	return 0;
4693 #endif
4694 }
4695 
4696 #endif	/* __KERNEL__ */
4697 #endif	/* _LINUX_SKBUFF_H */
4698