1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <linux/page_frag_cache.h> 35 #include <net/flow.h> 36 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 37 #include <linux/netfilter/nf_conntrack_common.h> 38 #endif 39 #include <net/net_debug.h> 40 #include <net/dropreason-core.h> 41 #include <net/netmem.h> 42 43 /** 44 * DOC: skb checksums 45 * 46 * The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * IP checksum related features 50 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 * 52 * Drivers advertise checksum offload capabilities in the features of a device. 53 * From the stack's point of view these are capabilities offered by the driver. 54 * A driver typically only advertises features that it is capable of offloading 55 * to its device. 56 * 57 * .. flat-table:: Checksum related device features 58 * :widths: 1 10 59 * 60 * * - %NETIF_F_HW_CSUM 61 * - The driver (or its device) is able to compute one 62 * IP (one's complement) checksum for any combination 63 * of protocols or protocol layering. The checksum is 64 * computed and set in a packet per the CHECKSUM_PARTIAL 65 * interface (see below). 66 * 67 * * - %NETIF_F_IP_CSUM 68 * - Driver (device) is only able to checksum plain 69 * TCP or UDP packets over IPv4. These are specifically 70 * unencapsulated packets of the form IPv4|TCP or 71 * IPv4|UDP where the Protocol field in the IPv4 header 72 * is TCP or UDP. The IPv4 header may contain IP options. 73 * This feature cannot be set in features for a device 74 * with NETIF_F_HW_CSUM also set. This feature is being 75 * DEPRECATED (see below). 76 * 77 * * - %NETIF_F_IPV6_CSUM 78 * - Driver (device) is only able to checksum plain 79 * TCP or UDP packets over IPv6. These are specifically 80 * unencapsulated packets of the form IPv6|TCP or 81 * IPv6|UDP where the Next Header field in the IPv6 82 * header is either TCP or UDP. IPv6 extension headers 83 * are not supported with this feature. This feature 84 * cannot be set in features for a device with 85 * NETIF_F_HW_CSUM also set. This feature is being 86 * DEPRECATED (see below). 87 * 88 * * - %NETIF_F_RXCSUM 89 * - Driver (device) performs receive checksum offload. 90 * This flag is only used to disable the RX checksum 91 * feature for a device. The stack will accept receive 92 * checksum indication in packets received on a device 93 * regardless of whether NETIF_F_RXCSUM is set. 94 * 95 * Checksumming of received packets by device 96 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 97 * 98 * Indication of checksum verification is set in &sk_buff.ip_summed. 99 * Possible values are: 100 * 101 * - %CHECKSUM_NONE 102 * 103 * Device did not checksum this packet e.g. due to lack of capabilities. 104 * The packet contains full (though not verified) checksum in packet but 105 * not in skb->csum. Thus, skb->csum is undefined in this case. 106 * 107 * - %CHECKSUM_UNNECESSARY 108 * 109 * The hardware you're dealing with doesn't calculate the full checksum 110 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 111 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 112 * if their checksums are okay. &sk_buff.csum is still undefined in this case 113 * though. A driver or device must never modify the checksum field in the 114 * packet even if checksum is verified. 115 * 116 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 117 * 118 * - TCP: IPv6 and IPv4. 119 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 120 * zero UDP checksum for either IPv4 or IPv6, the networking stack 121 * may perform further validation in this case. 122 * - GRE: only if the checksum is present in the header. 123 * - SCTP: indicates the CRC in SCTP header has been validated. 124 * - FCOE: indicates the CRC in FC frame has been validated. 125 * 126 * &sk_buff.csum_level indicates the number of consecutive checksums found in 127 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 128 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 129 * and a device is able to verify the checksums for UDP (possibly zero), 130 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 131 * two. If the device were only able to verify the UDP checksum and not 132 * GRE, either because it doesn't support GRE checksum or because GRE 133 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 134 * not considered in this case). 135 * 136 * - %CHECKSUM_COMPLETE 137 * 138 * This is the most generic way. The device supplied checksum of the _whole_ 139 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 140 * hardware doesn't need to parse L3/L4 headers to implement this. 141 * 142 * Notes: 143 * 144 * - Even if device supports only some protocols, but is able to produce 145 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 146 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 147 * 148 * - %CHECKSUM_PARTIAL 149 * 150 * A checksum is set up to be offloaded to a device as described in the 151 * output description for CHECKSUM_PARTIAL. This may occur on a packet 152 * received directly from another Linux OS, e.g., a virtualized Linux kernel 153 * on the same host, or it may be set in the input path in GRO or remote 154 * checksum offload. For the purposes of checksum verification, the checksum 155 * referred to by skb->csum_start + skb->csum_offset and any preceding 156 * checksums in the packet are considered verified. Any checksums in the 157 * packet that are after the checksum being offloaded are not considered to 158 * be verified. 159 * 160 * Checksumming on transmit for non-GSO 161 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 162 * 163 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 164 * Values are: 165 * 166 * - %CHECKSUM_PARTIAL 167 * 168 * The driver is required to checksum the packet as seen by hard_start_xmit() 169 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 170 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 171 * A driver may verify that the 172 * csum_start and csum_offset values are valid values given the length and 173 * offset of the packet, but it should not attempt to validate that the 174 * checksum refers to a legitimate transport layer checksum -- it is the 175 * purview of the stack to validate that csum_start and csum_offset are set 176 * correctly. 177 * 178 * When the stack requests checksum offload for a packet, the driver MUST 179 * ensure that the checksum is set correctly. A driver can either offload the 180 * checksum calculation to the device, or call skb_checksum_help (in the case 181 * that the device does not support offload for a particular checksum). 182 * 183 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 184 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 185 * checksum offload capability. 186 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 187 * on network device checksumming capabilities: if a packet does not match 188 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 189 * &sk_buff.csum_not_inet, see :ref:`crc`) 190 * is called to resolve the checksum. 191 * 192 * - %CHECKSUM_NONE 193 * 194 * The skb was already checksummed by the protocol, or a checksum is not 195 * required. 196 * 197 * - %CHECKSUM_UNNECESSARY 198 * 199 * This has the same meaning as CHECKSUM_NONE for checksum offload on 200 * output. 201 * 202 * - %CHECKSUM_COMPLETE 203 * 204 * Not used in checksum output. If a driver observes a packet with this value 205 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 206 * 207 * .. _crc: 208 * 209 * Non-IP checksum (CRC) offloads 210 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 211 * 212 * .. flat-table:: 213 * :widths: 1 10 214 * 215 * * - %NETIF_F_SCTP_CRC 216 * - This feature indicates that a device is capable of 217 * offloading the SCTP CRC in a packet. To perform this offload the stack 218 * will set csum_start and csum_offset accordingly, set ip_summed to 219 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 220 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 221 * A driver that supports both IP checksum offload and SCTP CRC32c offload 222 * must verify which offload is configured for a packet by testing the 223 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 224 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 225 * 226 * * - %NETIF_F_FCOE_CRC 227 * - This feature indicates that a device is capable of offloading the FCOE 228 * CRC in a packet. To perform this offload the stack will set ip_summed 229 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 230 * accordingly. Note that there is no indication in the skbuff that the 231 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 232 * both IP checksum offload and FCOE CRC offload must verify which offload 233 * is configured for a packet, presumably by inspecting packet headers. 234 * 235 * Checksumming on output with GSO 236 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 237 * 238 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 239 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 240 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 241 * part of the GSO operation is implied. If a checksum is being offloaded 242 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 243 * csum_offset are set to refer to the outermost checksum being offloaded 244 * (two offloaded checksums are possible with UDP encapsulation). 245 */ 246 247 /* Don't change this without changing skb_csum_unnecessary! */ 248 #define CHECKSUM_NONE 0 249 #define CHECKSUM_UNNECESSARY 1 250 #define CHECKSUM_COMPLETE 2 251 #define CHECKSUM_PARTIAL 3 252 253 /* Maximum value in skb->csum_level */ 254 #define SKB_MAX_CSUM_LEVEL 3 255 256 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 257 #define SKB_WITH_OVERHEAD(X) \ 258 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 259 260 /* For X bytes available in skb->head, what is the minimal 261 * allocation needed, knowing struct skb_shared_info needs 262 * to be aligned. 263 */ 264 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 265 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 266 267 #define SKB_MAX_ORDER(X, ORDER) \ 268 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 269 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 270 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 271 272 /* return minimum truesize of one skb containing X bytes of data */ 273 #define SKB_TRUESIZE(X) ((X) + \ 274 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 275 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 276 277 struct ahash_request; 278 struct net_device; 279 struct scatterlist; 280 struct pipe_inode_info; 281 struct iov_iter; 282 struct napi_struct; 283 struct bpf_prog; 284 union bpf_attr; 285 struct skb_ext; 286 struct ts_config; 287 288 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 289 struct nf_bridge_info { 290 enum { 291 BRNF_PROTO_UNCHANGED, 292 BRNF_PROTO_8021Q, 293 BRNF_PROTO_PPPOE 294 } orig_proto:8; 295 u8 pkt_otherhost:1; 296 u8 in_prerouting:1; 297 u8 bridged_dnat:1; 298 u8 sabotage_in_done:1; 299 __u16 frag_max_size; 300 int physinif; 301 302 /* always valid & non-NULL from FORWARD on, for physdev match */ 303 struct net_device *physoutdev; 304 union { 305 /* prerouting: detect dnat in orig/reply direction */ 306 __be32 ipv4_daddr; 307 struct in6_addr ipv6_daddr; 308 309 /* after prerouting + nat detected: store original source 310 * mac since neigh resolution overwrites it, only used while 311 * skb is out in neigh layer. 312 */ 313 char neigh_header[8]; 314 }; 315 }; 316 #endif 317 318 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 319 /* Chain in tc_skb_ext will be used to share the tc chain with 320 * ovs recirc_id. It will be set to the current chain by tc 321 * and read by ovs to recirc_id. 322 */ 323 struct tc_skb_ext { 324 union { 325 u64 act_miss_cookie; 326 __u32 chain; 327 }; 328 __u16 mru; 329 __u16 zone; 330 u8 post_ct:1; 331 u8 post_ct_snat:1; 332 u8 post_ct_dnat:1; 333 u8 act_miss:1; /* Set if act_miss_cookie is used */ 334 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 335 }; 336 #endif 337 338 struct sk_buff_head { 339 /* These two members must be first to match sk_buff. */ 340 struct_group_tagged(sk_buff_list, list, 341 struct sk_buff *next; 342 struct sk_buff *prev; 343 ); 344 345 __u32 qlen; 346 spinlock_t lock; 347 }; 348 349 struct sk_buff; 350 351 #ifndef CONFIG_MAX_SKB_FRAGS 352 # define CONFIG_MAX_SKB_FRAGS 17 353 #endif 354 355 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 356 357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 358 * segment using its current segmentation instead. 359 */ 360 #define GSO_BY_FRAGS 0xFFFF 361 362 typedef struct skb_frag { 363 netmem_ref netmem; 364 unsigned int len; 365 unsigned int offset; 366 } skb_frag_t; 367 368 /** 369 * skb_frag_size() - Returns the size of a skb fragment 370 * @frag: skb fragment 371 */ 372 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 373 { 374 return frag->len; 375 } 376 377 /** 378 * skb_frag_size_set() - Sets the size of a skb fragment 379 * @frag: skb fragment 380 * @size: size of fragment 381 */ 382 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 383 { 384 frag->len = size; 385 } 386 387 /** 388 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 389 * @frag: skb fragment 390 * @delta: value to add 391 */ 392 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 393 { 394 frag->len += delta; 395 } 396 397 /** 398 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 399 * @frag: skb fragment 400 * @delta: value to subtract 401 */ 402 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 403 { 404 frag->len -= delta; 405 } 406 407 /** 408 * skb_frag_must_loop - Test if %p is a high memory page 409 * @p: fragment's page 410 */ 411 static inline bool skb_frag_must_loop(struct page *p) 412 { 413 #if defined(CONFIG_HIGHMEM) 414 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 415 return true; 416 #endif 417 return false; 418 } 419 420 /** 421 * skb_frag_foreach_page - loop over pages in a fragment 422 * 423 * @f: skb frag to operate on 424 * @f_off: offset from start of f->netmem 425 * @f_len: length from f_off to loop over 426 * @p: (temp var) current page 427 * @p_off: (temp var) offset from start of current page, 428 * non-zero only on first page. 429 * @p_len: (temp var) length in current page, 430 * < PAGE_SIZE only on first and last page. 431 * @copied: (temp var) length so far, excluding current p_len. 432 * 433 * A fragment can hold a compound page, in which case per-page 434 * operations, notably kmap_atomic, must be called for each 435 * regular page. 436 */ 437 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 438 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 439 p_off = (f_off) & (PAGE_SIZE - 1), \ 440 p_len = skb_frag_must_loop(p) ? \ 441 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 442 copied = 0; \ 443 copied < f_len; \ 444 copied += p_len, p++, p_off = 0, \ 445 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 446 447 /** 448 * struct skb_shared_hwtstamps - hardware time stamps 449 * @hwtstamp: hardware time stamp transformed into duration 450 * since arbitrary point in time 451 * @netdev_data: address/cookie of network device driver used as 452 * reference to actual hardware time stamp 453 * 454 * Software time stamps generated by ktime_get_real() are stored in 455 * skb->tstamp. 456 * 457 * hwtstamps can only be compared against other hwtstamps from 458 * the same device. 459 * 460 * This structure is attached to packets as part of the 461 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 462 */ 463 struct skb_shared_hwtstamps { 464 union { 465 ktime_t hwtstamp; 466 void *netdev_data; 467 }; 468 }; 469 470 /* Definitions for tx_flags in struct skb_shared_info */ 471 enum { 472 /* generate hardware time stamp */ 473 SKBTX_HW_TSTAMP = 1 << 0, 474 475 /* generate software time stamp when queueing packet to NIC */ 476 SKBTX_SW_TSTAMP = 1 << 1, 477 478 /* device driver is going to provide hardware time stamp */ 479 SKBTX_IN_PROGRESS = 1 << 2, 480 481 /* generate hardware time stamp based on cycles if supported */ 482 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 483 484 /* generate wifi status information (where possible) */ 485 SKBTX_WIFI_STATUS = 1 << 4, 486 487 /* determine hardware time stamp based on time or cycles */ 488 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 489 490 /* generate software time stamp when entering packet scheduling */ 491 SKBTX_SCHED_TSTAMP = 1 << 6, 492 493 /* used for bpf extension when a bpf program is loaded */ 494 SKBTX_BPF = 1 << 7, 495 }; 496 497 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 498 SKBTX_SCHED_TSTAMP | \ 499 SKBTX_BPF) 500 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 501 SKBTX_HW_TSTAMP_USE_CYCLES | \ 502 SKBTX_ANY_SW_TSTAMP) 503 504 /* Definitions for flags in struct skb_shared_info */ 505 enum { 506 /* use zcopy routines */ 507 SKBFL_ZEROCOPY_ENABLE = BIT(0), 508 509 /* This indicates at least one fragment might be overwritten 510 * (as in vmsplice(), sendfile() ...) 511 * If we need to compute a TX checksum, we'll need to copy 512 * all frags to avoid possible bad checksum 513 */ 514 SKBFL_SHARED_FRAG = BIT(1), 515 516 /* segment contains only zerocopy data and should not be 517 * charged to the kernel memory. 518 */ 519 SKBFL_PURE_ZEROCOPY = BIT(2), 520 521 SKBFL_DONT_ORPHAN = BIT(3), 522 523 /* page references are managed by the ubuf_info, so it's safe to 524 * use frags only up until ubuf_info is released 525 */ 526 SKBFL_MANAGED_FRAG_REFS = BIT(4), 527 }; 528 529 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 530 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 531 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 532 533 struct ubuf_info_ops { 534 void (*complete)(struct sk_buff *, struct ubuf_info *, 535 bool zerocopy_success); 536 /* has to be compatible with skb_zcopy_set() */ 537 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); 538 }; 539 540 /* 541 * The callback notifies userspace to release buffers when skb DMA is done in 542 * lower device, the skb last reference should be 0 when calling this. 543 * The zerocopy_success argument is true if zero copy transmit occurred, 544 * false on data copy or out of memory error caused by data copy attempt. 545 * The ctx field is used to track device context. 546 * The desc field is used to track userspace buffer index. 547 */ 548 struct ubuf_info { 549 const struct ubuf_info_ops *ops; 550 refcount_t refcnt; 551 u8 flags; 552 }; 553 554 struct ubuf_info_msgzc { 555 struct ubuf_info ubuf; 556 557 union { 558 struct { 559 unsigned long desc; 560 void *ctx; 561 }; 562 struct { 563 u32 id; 564 u16 len; 565 u16 zerocopy:1; 566 u32 bytelen; 567 }; 568 }; 569 570 struct mmpin { 571 struct user_struct *user; 572 unsigned int num_pg; 573 } mmp; 574 }; 575 576 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 577 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 578 ubuf) 579 580 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 581 void mm_unaccount_pinned_pages(struct mmpin *mmp); 582 583 /* Preserve some data across TX submission and completion. 584 * 585 * Note, this state is stored in the driver. Extending the layout 586 * might need some special care. 587 */ 588 struct xsk_tx_metadata_compl { 589 __u64 *tx_timestamp; 590 }; 591 592 /* This data is invariant across clones and lives at 593 * the end of the header data, ie. at skb->end. 594 */ 595 struct skb_shared_info { 596 __u8 flags; 597 __u8 meta_len; 598 __u8 nr_frags; 599 __u8 tx_flags; 600 unsigned short gso_size; 601 /* Warning: this field is not always filled in (UFO)! */ 602 unsigned short gso_segs; 603 struct sk_buff *frag_list; 604 union { 605 struct skb_shared_hwtstamps hwtstamps; 606 struct xsk_tx_metadata_compl xsk_meta; 607 }; 608 unsigned int gso_type; 609 u32 tskey; 610 611 /* 612 * Warning : all fields before dataref are cleared in __alloc_skb() 613 */ 614 atomic_t dataref; 615 616 union { 617 struct { 618 u32 xdp_frags_size; 619 u32 xdp_frags_truesize; 620 }; 621 622 /* 623 * Intermediate layers must ensure that destructor_arg 624 * remains valid until skb destructor. 625 */ 626 void *destructor_arg; 627 }; 628 629 /* must be last field, see pskb_expand_head() */ 630 skb_frag_t frags[MAX_SKB_FRAGS]; 631 }; 632 633 /** 634 * DOC: dataref and headerless skbs 635 * 636 * Transport layers send out clones of payload skbs they hold for 637 * retransmissions. To allow lower layers of the stack to prepend their headers 638 * we split &skb_shared_info.dataref into two halves. 639 * The lower 16 bits count the overall number of references. 640 * The higher 16 bits indicate how many of the references are payload-only. 641 * skb_header_cloned() checks if skb is allowed to add / write the headers. 642 * 643 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 644 * (via __skb_header_release()). Any clone created from marked skb will get 645 * &sk_buff.hdr_len populated with the available headroom. 646 * If there's the only clone in existence it's able to modify the headroom 647 * at will. The sequence of calls inside the transport layer is:: 648 * 649 * <alloc skb> 650 * skb_reserve() 651 * __skb_header_release() 652 * skb_clone() 653 * // send the clone down the stack 654 * 655 * This is not a very generic construct and it depends on the transport layers 656 * doing the right thing. In practice there's usually only one payload-only skb. 657 * Having multiple payload-only skbs with different lengths of hdr_len is not 658 * possible. The payload-only skbs should never leave their owner. 659 */ 660 #define SKB_DATAREF_SHIFT 16 661 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 662 663 664 enum { 665 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 666 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 667 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 668 }; 669 670 enum { 671 SKB_GSO_TCPV4 = 1 << 0, 672 673 /* This indicates the skb is from an untrusted source. */ 674 SKB_GSO_DODGY = 1 << 1, 675 676 /* This indicates the tcp segment has CWR set. */ 677 SKB_GSO_TCP_ECN = 1 << 2, 678 679 SKB_GSO_TCP_FIXEDID = 1 << 3, 680 681 SKB_GSO_TCPV6 = 1 << 4, 682 683 SKB_GSO_FCOE = 1 << 5, 684 685 SKB_GSO_GRE = 1 << 6, 686 687 SKB_GSO_GRE_CSUM = 1 << 7, 688 689 SKB_GSO_IPXIP4 = 1 << 8, 690 691 SKB_GSO_IPXIP6 = 1 << 9, 692 693 SKB_GSO_UDP_TUNNEL = 1 << 10, 694 695 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 696 697 SKB_GSO_PARTIAL = 1 << 12, 698 699 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 700 701 SKB_GSO_SCTP = 1 << 14, 702 703 SKB_GSO_ESP = 1 << 15, 704 705 SKB_GSO_UDP = 1 << 16, 706 707 SKB_GSO_UDP_L4 = 1 << 17, 708 709 SKB_GSO_FRAGLIST = 1 << 18, 710 }; 711 712 #if BITS_PER_LONG > 32 713 #define NET_SKBUFF_DATA_USES_OFFSET 1 714 #endif 715 716 #ifdef NET_SKBUFF_DATA_USES_OFFSET 717 typedef unsigned int sk_buff_data_t; 718 #else 719 typedef unsigned char *sk_buff_data_t; 720 #endif 721 722 enum skb_tstamp_type { 723 SKB_CLOCK_REALTIME, 724 SKB_CLOCK_MONOTONIC, 725 SKB_CLOCK_TAI, 726 __SKB_CLOCK_MAX = SKB_CLOCK_TAI, 727 }; 728 729 /** 730 * DOC: Basic sk_buff geometry 731 * 732 * struct sk_buff itself is a metadata structure and does not hold any packet 733 * data. All the data is held in associated buffers. 734 * 735 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 736 * into two parts: 737 * 738 * - data buffer, containing headers and sometimes payload; 739 * this is the part of the skb operated on by the common helpers 740 * such as skb_put() or skb_pull(); 741 * - shared info (struct skb_shared_info) which holds an array of pointers 742 * to read-only data in the (page, offset, length) format. 743 * 744 * Optionally &skb_shared_info.frag_list may point to another skb. 745 * 746 * Basic diagram may look like this:: 747 * 748 * --------------- 749 * | sk_buff | 750 * --------------- 751 * ,--------------------------- + head 752 * / ,----------------- + data 753 * / / ,----------- + tail 754 * | | | , + end 755 * | | | | 756 * v v v v 757 * ----------------------------------------------- 758 * | headroom | data | tailroom | skb_shared_info | 759 * ----------------------------------------------- 760 * + [page frag] 761 * + [page frag] 762 * + [page frag] 763 * + [page frag] --------- 764 * + frag_list --> | sk_buff | 765 * --------- 766 * 767 */ 768 769 /** 770 * struct sk_buff - socket buffer 771 * @next: Next buffer in list 772 * @prev: Previous buffer in list 773 * @tstamp: Time we arrived/left 774 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 775 * for retransmit timer 776 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 777 * @list: queue head 778 * @ll_node: anchor in an llist (eg socket defer_list) 779 * @sk: Socket we are owned by 780 * @dev: Device we arrived on/are leaving by 781 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 782 * @cb: Control buffer. Free for use by every layer. Put private vars here 783 * @_skb_refdst: destination entry (with norefcount bit) 784 * @len: Length of actual data 785 * @data_len: Data length 786 * @mac_len: Length of link layer header 787 * @hdr_len: writable header length of cloned skb 788 * @csum: Checksum (must include start/offset pair) 789 * @csum_start: Offset from skb->head where checksumming should start 790 * @csum_offset: Offset from csum_start where checksum should be stored 791 * @priority: Packet queueing priority 792 * @ignore_df: allow local fragmentation 793 * @cloned: Head may be cloned (check refcnt to be sure) 794 * @ip_summed: Driver fed us an IP checksum 795 * @nohdr: Payload reference only, must not modify header 796 * @pkt_type: Packet class 797 * @fclone: skbuff clone status 798 * @ipvs_property: skbuff is owned by ipvs 799 * @inner_protocol_type: whether the inner protocol is 800 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 801 * @remcsum_offload: remote checksum offload is enabled 802 * @offload_fwd_mark: Packet was L2-forwarded in hardware 803 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 804 * @tc_skip_classify: do not classify packet. set by IFB device 805 * @tc_at_ingress: used within tc_classify to distinguish in/egress 806 * @redirected: packet was redirected by packet classifier 807 * @from_ingress: packet was redirected from the ingress path 808 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 809 * @peeked: this packet has been seen already, so stats have been 810 * done for it, don't do them again 811 * @nf_trace: netfilter packet trace flag 812 * @protocol: Packet protocol from driver 813 * @destructor: Destruct function 814 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 815 * @_sk_redir: socket redirection information for skmsg 816 * @_nfct: Associated connection, if any (with nfctinfo bits) 817 * @skb_iif: ifindex of device we arrived on 818 * @tc_index: Traffic control index 819 * @hash: the packet hash 820 * @queue_mapping: Queue mapping for multiqueue devices 821 * @head_frag: skb was allocated from page fragments, 822 * not allocated by kmalloc() or vmalloc(). 823 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 824 * @pp_recycle: mark the packet for recycling instead of freeing (implies 825 * page_pool support on driver) 826 * @active_extensions: active extensions (skb_ext_id types) 827 * @ndisc_nodetype: router type (from link layer) 828 * @ooo_okay: allow the mapping of a socket to a queue to be changed 829 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 830 * ports. 831 * @sw_hash: indicates hash was computed in software stack 832 * @wifi_acked_valid: wifi_acked was set 833 * @wifi_acked: whether frame was acked on wifi or not 834 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 835 * @encapsulation: indicates the inner headers in the skbuff are valid 836 * @encap_hdr_csum: software checksum is needed 837 * @csum_valid: checksum is already valid 838 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 839 * @csum_complete_sw: checksum was completed by software 840 * @csum_level: indicates the number of consecutive checksums found in 841 * the packet minus one that have been verified as 842 * CHECKSUM_UNNECESSARY (max 3) 843 * @unreadable: indicates that at least 1 of the fragments in this skb is 844 * unreadable. 845 * @dst_pending_confirm: need to confirm neighbour 846 * @decrypted: Decrypted SKB 847 * @slow_gro: state present at GRO time, slower prepare step required 848 * @tstamp_type: When set, skb->tstamp has the 849 * delivery_time clock base of skb->tstamp. 850 * @napi_id: id of the NAPI struct this skb came from 851 * @sender_cpu: (aka @napi_id) source CPU in XPS 852 * @alloc_cpu: CPU which did the skb allocation. 853 * @secmark: security marking 854 * @mark: Generic packet mark 855 * @reserved_tailroom: (aka @mark) number of bytes of free space available 856 * at the tail of an sk_buff 857 * @vlan_all: vlan fields (proto & tci) 858 * @vlan_proto: vlan encapsulation protocol 859 * @vlan_tci: vlan tag control information 860 * @inner_protocol: Protocol (encapsulation) 861 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 862 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 863 * @inner_transport_header: Inner transport layer header (encapsulation) 864 * @inner_network_header: Network layer header (encapsulation) 865 * @inner_mac_header: Link layer header (encapsulation) 866 * @transport_header: Transport layer header 867 * @network_header: Network layer header 868 * @mac_header: Link layer header 869 * @kcov_handle: KCOV remote handle for remote coverage collection 870 * @tail: Tail pointer 871 * @end: End pointer 872 * @head: Head of buffer 873 * @data: Data head pointer 874 * @truesize: Buffer size 875 * @users: User count - see {datagram,tcp}.c 876 * @extensions: allocated extensions, valid if active_extensions is nonzero 877 */ 878 879 struct sk_buff { 880 union { 881 struct { 882 /* These two members must be first to match sk_buff_head. */ 883 struct sk_buff *next; 884 struct sk_buff *prev; 885 886 union { 887 struct net_device *dev; 888 /* Some protocols might use this space to store information, 889 * while device pointer would be NULL. 890 * UDP receive path is one user. 891 */ 892 unsigned long dev_scratch; 893 }; 894 }; 895 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 896 struct list_head list; 897 struct llist_node ll_node; 898 }; 899 900 struct sock *sk; 901 902 union { 903 ktime_t tstamp; 904 u64 skb_mstamp_ns; /* earliest departure time */ 905 }; 906 /* 907 * This is the control buffer. It is free to use for every 908 * layer. Please put your private variables there. If you 909 * want to keep them across layers you have to do a skb_clone() 910 * first. This is owned by whoever has the skb queued ATM. 911 */ 912 char cb[48] __aligned(8); 913 914 union { 915 struct { 916 unsigned long _skb_refdst; 917 void (*destructor)(struct sk_buff *skb); 918 }; 919 struct list_head tcp_tsorted_anchor; 920 #ifdef CONFIG_NET_SOCK_MSG 921 unsigned long _sk_redir; 922 #endif 923 }; 924 925 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 926 unsigned long _nfct; 927 #endif 928 unsigned int len, 929 data_len; 930 __u16 mac_len, 931 hdr_len; 932 933 /* Following fields are _not_ copied in __copy_skb_header() 934 * Note that queue_mapping is here mostly to fill a hole. 935 */ 936 __u16 queue_mapping; 937 938 /* if you move cloned around you also must adapt those constants */ 939 #ifdef __BIG_ENDIAN_BITFIELD 940 #define CLONED_MASK (1 << 7) 941 #else 942 #define CLONED_MASK 1 943 #endif 944 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 945 946 /* private: */ 947 __u8 __cloned_offset[0]; 948 /* public: */ 949 __u8 cloned:1, 950 nohdr:1, 951 fclone:2, 952 peeked:1, 953 head_frag:1, 954 pfmemalloc:1, 955 pp_recycle:1; /* page_pool recycle indicator */ 956 #ifdef CONFIG_SKB_EXTENSIONS 957 __u8 active_extensions; 958 #endif 959 960 /* Fields enclosed in headers group are copied 961 * using a single memcpy() in __copy_skb_header() 962 */ 963 struct_group(headers, 964 965 /* private: */ 966 __u8 __pkt_type_offset[0]; 967 /* public: */ 968 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 969 __u8 ignore_df:1; 970 __u8 dst_pending_confirm:1; 971 __u8 ip_summed:2; 972 __u8 ooo_okay:1; 973 974 /* private: */ 975 __u8 __mono_tc_offset[0]; 976 /* public: */ 977 __u8 tstamp_type:2; /* See skb_tstamp_type */ 978 #ifdef CONFIG_NET_XGRESS 979 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 980 __u8 tc_skip_classify:1; 981 #endif 982 __u8 remcsum_offload:1; 983 __u8 csum_complete_sw:1; 984 __u8 csum_level:2; 985 __u8 inner_protocol_type:1; 986 987 __u8 l4_hash:1; 988 __u8 sw_hash:1; 989 #ifdef CONFIG_WIRELESS 990 __u8 wifi_acked_valid:1; 991 __u8 wifi_acked:1; 992 #endif 993 __u8 no_fcs:1; 994 /* Indicates the inner headers are valid in the skbuff. */ 995 __u8 encapsulation:1; 996 __u8 encap_hdr_csum:1; 997 __u8 csum_valid:1; 998 #ifdef CONFIG_IPV6_NDISC_NODETYPE 999 __u8 ndisc_nodetype:2; 1000 #endif 1001 1002 #if IS_ENABLED(CONFIG_IP_VS) 1003 __u8 ipvs_property:1; 1004 #endif 1005 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 1006 __u8 nf_trace:1; 1007 #endif 1008 #ifdef CONFIG_NET_SWITCHDEV 1009 __u8 offload_fwd_mark:1; 1010 __u8 offload_l3_fwd_mark:1; 1011 #endif 1012 __u8 redirected:1; 1013 #ifdef CONFIG_NET_REDIRECT 1014 __u8 from_ingress:1; 1015 #endif 1016 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 1017 __u8 nf_skip_egress:1; 1018 #endif 1019 #ifdef CONFIG_SKB_DECRYPTED 1020 __u8 decrypted:1; 1021 #endif 1022 __u8 slow_gro:1; 1023 #if IS_ENABLED(CONFIG_IP_SCTP) 1024 __u8 csum_not_inet:1; 1025 #endif 1026 __u8 unreadable:1; 1027 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1028 __u16 tc_index; /* traffic control index */ 1029 #endif 1030 1031 u16 alloc_cpu; 1032 1033 union { 1034 __wsum csum; 1035 struct { 1036 __u16 csum_start; 1037 __u16 csum_offset; 1038 }; 1039 }; 1040 __u32 priority; 1041 int skb_iif; 1042 __u32 hash; 1043 union { 1044 u32 vlan_all; 1045 struct { 1046 __be16 vlan_proto; 1047 __u16 vlan_tci; 1048 }; 1049 }; 1050 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1051 union { 1052 unsigned int napi_id; 1053 unsigned int sender_cpu; 1054 }; 1055 #endif 1056 #ifdef CONFIG_NETWORK_SECMARK 1057 __u32 secmark; 1058 #endif 1059 1060 union { 1061 __u32 mark; 1062 __u32 reserved_tailroom; 1063 }; 1064 1065 union { 1066 __be16 inner_protocol; 1067 __u8 inner_ipproto; 1068 }; 1069 1070 __u16 inner_transport_header; 1071 __u16 inner_network_header; 1072 __u16 inner_mac_header; 1073 1074 __be16 protocol; 1075 __u16 transport_header; 1076 __u16 network_header; 1077 __u16 mac_header; 1078 1079 #ifdef CONFIG_KCOV 1080 u64 kcov_handle; 1081 #endif 1082 1083 ); /* end headers group */ 1084 1085 /* These elements must be at the end, see alloc_skb() for details. */ 1086 sk_buff_data_t tail; 1087 sk_buff_data_t end; 1088 unsigned char *head, 1089 *data; 1090 unsigned int truesize; 1091 refcount_t users; 1092 1093 #ifdef CONFIG_SKB_EXTENSIONS 1094 /* only usable after checking ->active_extensions != 0 */ 1095 struct skb_ext *extensions; 1096 #endif 1097 }; 1098 1099 /* if you move pkt_type around you also must adapt those constants */ 1100 #ifdef __BIG_ENDIAN_BITFIELD 1101 #define PKT_TYPE_MAX (7 << 5) 1102 #else 1103 #define PKT_TYPE_MAX 7 1104 #endif 1105 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1106 1107 /* if you move tc_at_ingress or tstamp_type 1108 * around, you also must adapt these constants. 1109 */ 1110 #ifdef __BIG_ENDIAN_BITFIELD 1111 #define SKB_TSTAMP_TYPE_MASK (3 << 6) 1112 #define SKB_TSTAMP_TYPE_RSHIFT (6) 1113 #define TC_AT_INGRESS_MASK (1 << 5) 1114 #else 1115 #define SKB_TSTAMP_TYPE_MASK (3) 1116 #define TC_AT_INGRESS_MASK (1 << 2) 1117 #endif 1118 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1119 1120 #ifdef __KERNEL__ 1121 /* 1122 * Handling routines are only of interest to the kernel 1123 */ 1124 1125 #define SKB_ALLOC_FCLONE 0x01 1126 #define SKB_ALLOC_RX 0x02 1127 #define SKB_ALLOC_NAPI 0x04 1128 1129 /** 1130 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1131 * @skb: buffer 1132 */ 1133 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1134 { 1135 return unlikely(skb->pfmemalloc); 1136 } 1137 1138 /* 1139 * skb might have a dst pointer attached, refcounted or not. 1140 * _skb_refdst low order bit is set if refcount was _not_ taken 1141 */ 1142 #define SKB_DST_NOREF 1UL 1143 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1144 1145 /** 1146 * skb_dst - returns skb dst_entry 1147 * @skb: buffer 1148 * 1149 * Returns: skb dst_entry, regardless of reference taken or not. 1150 */ 1151 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1152 { 1153 /* If refdst was not refcounted, check we still are in a 1154 * rcu_read_lock section 1155 */ 1156 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1157 !rcu_read_lock_held() && 1158 !rcu_read_lock_bh_held()); 1159 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1160 } 1161 1162 /** 1163 * skb_dst_set - sets skb dst 1164 * @skb: buffer 1165 * @dst: dst entry 1166 * 1167 * Sets skb dst, assuming a reference was taken on dst and should 1168 * be released by skb_dst_drop() 1169 */ 1170 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1171 { 1172 skb->slow_gro |= !!dst; 1173 skb->_skb_refdst = (unsigned long)dst; 1174 } 1175 1176 /** 1177 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1178 * @skb: buffer 1179 * @dst: dst entry 1180 * 1181 * Sets skb dst, assuming a reference was not taken on dst. 1182 * If dst entry is cached, we do not take reference and dst_release 1183 * will be avoided by refdst_drop. If dst entry is not cached, we take 1184 * reference, so that last dst_release can destroy the dst immediately. 1185 */ 1186 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1187 { 1188 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1189 skb->slow_gro |= !!dst; 1190 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1191 } 1192 1193 /** 1194 * skb_dst_is_noref - Test if skb dst isn't refcounted 1195 * @skb: buffer 1196 */ 1197 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1198 { 1199 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1200 } 1201 1202 /* For mangling skb->pkt_type from user space side from applications 1203 * such as nft, tc, etc, we only allow a conservative subset of 1204 * possible pkt_types to be set. 1205 */ 1206 static inline bool skb_pkt_type_ok(u32 ptype) 1207 { 1208 return ptype <= PACKET_OTHERHOST; 1209 } 1210 1211 /** 1212 * skb_napi_id - Returns the skb's NAPI id 1213 * @skb: buffer 1214 */ 1215 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1216 { 1217 #ifdef CONFIG_NET_RX_BUSY_POLL 1218 return skb->napi_id; 1219 #else 1220 return 0; 1221 #endif 1222 } 1223 1224 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1225 { 1226 #ifdef CONFIG_WIRELESS 1227 return skb->wifi_acked_valid; 1228 #else 1229 return 0; 1230 #endif 1231 } 1232 1233 /** 1234 * skb_unref - decrement the skb's reference count 1235 * @skb: buffer 1236 * 1237 * Returns: true if we can free the skb. 1238 */ 1239 static inline bool skb_unref(struct sk_buff *skb) 1240 { 1241 if (unlikely(!skb)) 1242 return false; 1243 if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1)) 1244 smp_rmb(); 1245 else if (likely(!refcount_dec_and_test(&skb->users))) 1246 return false; 1247 1248 return true; 1249 } 1250 1251 static inline bool skb_data_unref(const struct sk_buff *skb, 1252 struct skb_shared_info *shinfo) 1253 { 1254 int bias; 1255 1256 if (!skb->cloned) 1257 return true; 1258 1259 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1260 1261 if (atomic_read(&shinfo->dataref) == bias) 1262 smp_rmb(); 1263 else if (atomic_sub_return(bias, &shinfo->dataref)) 1264 return false; 1265 1266 return true; 1267 } 1268 1269 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1270 enum skb_drop_reason reason); 1271 1272 static inline void 1273 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1274 { 1275 sk_skb_reason_drop(NULL, skb, reason); 1276 } 1277 1278 /** 1279 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1280 * @skb: buffer to free 1281 */ 1282 static inline void kfree_skb(struct sk_buff *skb) 1283 { 1284 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1285 } 1286 1287 void skb_release_head_state(struct sk_buff *skb); 1288 void kfree_skb_list_reason(struct sk_buff *segs, 1289 enum skb_drop_reason reason); 1290 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1291 void skb_tx_error(struct sk_buff *skb); 1292 1293 static inline void kfree_skb_list(struct sk_buff *segs) 1294 { 1295 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1296 } 1297 1298 #ifdef CONFIG_TRACEPOINTS 1299 void consume_skb(struct sk_buff *skb); 1300 #else 1301 static inline void consume_skb(struct sk_buff *skb) 1302 { 1303 return kfree_skb(skb); 1304 } 1305 #endif 1306 1307 void __consume_stateless_skb(struct sk_buff *skb); 1308 void __kfree_skb(struct sk_buff *skb); 1309 1310 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1311 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1312 bool *fragstolen, int *delta_truesize); 1313 1314 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1315 int node); 1316 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1317 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1318 struct sk_buff *build_skb_around(struct sk_buff *skb, 1319 void *data, unsigned int frag_size); 1320 void skb_attempt_defer_free(struct sk_buff *skb); 1321 1322 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1323 struct sk_buff *slab_build_skb(void *data); 1324 1325 /** 1326 * alloc_skb - allocate a network buffer 1327 * @size: size to allocate 1328 * @priority: allocation mask 1329 * 1330 * This function is a convenient wrapper around __alloc_skb(). 1331 */ 1332 static inline struct sk_buff *alloc_skb(unsigned int size, 1333 gfp_t priority) 1334 { 1335 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1336 } 1337 1338 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1339 unsigned long data_len, 1340 int max_page_order, 1341 int *errcode, 1342 gfp_t gfp_mask); 1343 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1344 1345 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1346 struct sk_buff_fclones { 1347 struct sk_buff skb1; 1348 1349 struct sk_buff skb2; 1350 1351 refcount_t fclone_ref; 1352 }; 1353 1354 /** 1355 * skb_fclone_busy - check if fclone is busy 1356 * @sk: socket 1357 * @skb: buffer 1358 * 1359 * Returns: true if skb is a fast clone, and its clone is not freed. 1360 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1361 * so we also check that didn't happen. 1362 */ 1363 static inline bool skb_fclone_busy(const struct sock *sk, 1364 const struct sk_buff *skb) 1365 { 1366 const struct sk_buff_fclones *fclones; 1367 1368 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1369 1370 return skb->fclone == SKB_FCLONE_ORIG && 1371 refcount_read(&fclones->fclone_ref) > 1 && 1372 READ_ONCE(fclones->skb2.sk) == sk; 1373 } 1374 1375 /** 1376 * alloc_skb_fclone - allocate a network buffer from fclone cache 1377 * @size: size to allocate 1378 * @priority: allocation mask 1379 * 1380 * This function is a convenient wrapper around __alloc_skb(). 1381 */ 1382 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1383 gfp_t priority) 1384 { 1385 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1386 } 1387 1388 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1389 void skb_headers_offset_update(struct sk_buff *skb, int off); 1390 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1391 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1392 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1393 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1394 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1395 gfp_t gfp_mask, bool fclone); 1396 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1397 gfp_t gfp_mask) 1398 { 1399 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1400 } 1401 1402 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1403 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1404 unsigned int headroom); 1405 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1406 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1407 int newtailroom, gfp_t priority); 1408 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1409 int offset, int len); 1410 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1411 int offset, int len); 1412 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1413 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1414 1415 /** 1416 * skb_pad - zero pad the tail of an skb 1417 * @skb: buffer to pad 1418 * @pad: space to pad 1419 * 1420 * Ensure that a buffer is followed by a padding area that is zero 1421 * filled. Used by network drivers which may DMA or transfer data 1422 * beyond the buffer end onto the wire. 1423 * 1424 * May return error in out of memory cases. The skb is freed on error. 1425 */ 1426 static inline int skb_pad(struct sk_buff *skb, int pad) 1427 { 1428 return __skb_pad(skb, pad, true); 1429 } 1430 #define dev_kfree_skb(a) consume_skb(a) 1431 1432 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1433 int offset, size_t size, size_t max_frags); 1434 1435 struct skb_seq_state { 1436 __u32 lower_offset; 1437 __u32 upper_offset; 1438 __u32 frag_idx; 1439 __u32 stepped_offset; 1440 struct sk_buff *root_skb; 1441 struct sk_buff *cur_skb; 1442 __u8 *frag_data; 1443 __u32 frag_off; 1444 }; 1445 1446 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1447 unsigned int to, struct skb_seq_state *st); 1448 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1449 struct skb_seq_state *st); 1450 void skb_abort_seq_read(struct skb_seq_state *st); 1451 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len); 1452 1453 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1454 unsigned int to, struct ts_config *config); 1455 1456 /* 1457 * Packet hash types specify the type of hash in skb_set_hash. 1458 * 1459 * Hash types refer to the protocol layer addresses which are used to 1460 * construct a packet's hash. The hashes are used to differentiate or identify 1461 * flows of the protocol layer for the hash type. Hash types are either 1462 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1463 * 1464 * Properties of hashes: 1465 * 1466 * 1) Two packets in different flows have different hash values 1467 * 2) Two packets in the same flow should have the same hash value 1468 * 1469 * A hash at a higher layer is considered to be more specific. A driver should 1470 * set the most specific hash possible. 1471 * 1472 * A driver cannot indicate a more specific hash than the layer at which a hash 1473 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1474 * 1475 * A driver may indicate a hash level which is less specific than the 1476 * actual layer the hash was computed on. For instance, a hash computed 1477 * at L4 may be considered an L3 hash. This should only be done if the 1478 * driver can't unambiguously determine that the HW computed the hash at 1479 * the higher layer. Note that the "should" in the second property above 1480 * permits this. 1481 */ 1482 enum pkt_hash_types { 1483 PKT_HASH_TYPE_NONE, /* Undefined type */ 1484 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1485 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1486 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1487 }; 1488 1489 static inline void skb_clear_hash(struct sk_buff *skb) 1490 { 1491 skb->hash = 0; 1492 skb->sw_hash = 0; 1493 skb->l4_hash = 0; 1494 } 1495 1496 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1497 { 1498 if (!skb->l4_hash) 1499 skb_clear_hash(skb); 1500 } 1501 1502 static inline void 1503 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1504 { 1505 skb->l4_hash = is_l4; 1506 skb->sw_hash = is_sw; 1507 skb->hash = hash; 1508 } 1509 1510 static inline void 1511 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1512 { 1513 /* Used by drivers to set hash from HW */ 1514 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1515 } 1516 1517 static inline void 1518 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1519 { 1520 __skb_set_hash(skb, hash, true, is_l4); 1521 } 1522 1523 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb); 1524 1525 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1526 { 1527 return __skb_get_hash_symmetric_net(NULL, skb); 1528 } 1529 1530 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb); 1531 u32 skb_get_poff(const struct sk_buff *skb); 1532 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1533 const struct flow_keys_basic *keys, int hlen); 1534 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1535 const void *data, int hlen_proto); 1536 1537 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1538 int thoff, u8 ip_proto) 1539 { 1540 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1541 } 1542 1543 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1544 const struct flow_dissector_key *key, 1545 unsigned int key_count); 1546 1547 struct bpf_flow_dissector; 1548 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1549 __be16 proto, int nhoff, int hlen, unsigned int flags); 1550 1551 bool __skb_flow_dissect(const struct net *net, 1552 const struct sk_buff *skb, 1553 struct flow_dissector *flow_dissector, 1554 void *target_container, const void *data, 1555 __be16 proto, int nhoff, int hlen, unsigned int flags); 1556 1557 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1558 struct flow_dissector *flow_dissector, 1559 void *target_container, unsigned int flags) 1560 { 1561 return __skb_flow_dissect(NULL, skb, flow_dissector, 1562 target_container, NULL, 0, 0, 0, flags); 1563 } 1564 1565 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1566 struct flow_keys *flow, 1567 unsigned int flags) 1568 { 1569 memset(flow, 0, sizeof(*flow)); 1570 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1571 flow, NULL, 0, 0, 0, flags); 1572 } 1573 1574 static inline bool 1575 skb_flow_dissect_flow_keys_basic(const struct net *net, 1576 const struct sk_buff *skb, 1577 struct flow_keys_basic *flow, 1578 const void *data, __be16 proto, 1579 int nhoff, int hlen, unsigned int flags) 1580 { 1581 memset(flow, 0, sizeof(*flow)); 1582 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1583 data, proto, nhoff, hlen, flags); 1584 } 1585 1586 void skb_flow_dissect_meta(const struct sk_buff *skb, 1587 struct flow_dissector *flow_dissector, 1588 void *target_container); 1589 1590 /* Gets a skb connection tracking info, ctinfo map should be a 1591 * map of mapsize to translate enum ip_conntrack_info states 1592 * to user states. 1593 */ 1594 void 1595 skb_flow_dissect_ct(const struct sk_buff *skb, 1596 struct flow_dissector *flow_dissector, 1597 void *target_container, 1598 u16 *ctinfo_map, size_t mapsize, 1599 bool post_ct, u16 zone); 1600 void 1601 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1602 struct flow_dissector *flow_dissector, 1603 void *target_container); 1604 1605 void skb_flow_dissect_hash(const struct sk_buff *skb, 1606 struct flow_dissector *flow_dissector, 1607 void *target_container); 1608 1609 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb) 1610 { 1611 if (!skb->l4_hash && !skb->sw_hash) 1612 __skb_get_hash_net(net, skb); 1613 1614 return skb->hash; 1615 } 1616 1617 static inline __u32 skb_get_hash(struct sk_buff *skb) 1618 { 1619 if (!skb->l4_hash && !skb->sw_hash) 1620 __skb_get_hash_net(NULL, skb); 1621 1622 return skb->hash; 1623 } 1624 1625 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1626 { 1627 if (!skb->l4_hash && !skb->sw_hash) { 1628 struct flow_keys keys; 1629 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1630 1631 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1632 } 1633 1634 return skb->hash; 1635 } 1636 1637 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1638 const siphash_key_t *perturb); 1639 1640 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1641 { 1642 return skb->hash; 1643 } 1644 1645 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1646 { 1647 to->hash = from->hash; 1648 to->sw_hash = from->sw_hash; 1649 to->l4_hash = from->l4_hash; 1650 }; 1651 1652 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1653 const struct sk_buff *skb2) 1654 { 1655 #ifdef CONFIG_SKB_DECRYPTED 1656 return skb2->decrypted - skb1->decrypted; 1657 #else 1658 return 0; 1659 #endif 1660 } 1661 1662 static inline bool skb_is_decrypted(const struct sk_buff *skb) 1663 { 1664 #ifdef CONFIG_SKB_DECRYPTED 1665 return skb->decrypted; 1666 #else 1667 return false; 1668 #endif 1669 } 1670 1671 static inline void skb_copy_decrypted(struct sk_buff *to, 1672 const struct sk_buff *from) 1673 { 1674 #ifdef CONFIG_SKB_DECRYPTED 1675 to->decrypted = from->decrypted; 1676 #endif 1677 } 1678 1679 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1680 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1681 { 1682 return skb->head + skb->end; 1683 } 1684 1685 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1686 { 1687 return skb->end; 1688 } 1689 1690 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1691 { 1692 skb->end = offset; 1693 } 1694 #else 1695 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1696 { 1697 return skb->end; 1698 } 1699 1700 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1701 { 1702 return skb->end - skb->head; 1703 } 1704 1705 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1706 { 1707 skb->end = skb->head + offset; 1708 } 1709 #endif 1710 1711 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; 1712 1713 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1714 struct ubuf_info *uarg); 1715 1716 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1717 1718 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1719 struct sk_buff *skb, struct iov_iter *from, 1720 size_t length); 1721 1722 int zerocopy_fill_skb_from_iter(struct sk_buff *skb, 1723 struct iov_iter *from, size_t length); 1724 1725 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1726 struct msghdr *msg, int len) 1727 { 1728 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1729 } 1730 1731 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1732 struct msghdr *msg, int len, 1733 struct ubuf_info *uarg); 1734 1735 /* Internal */ 1736 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1737 1738 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1739 { 1740 return &skb_shinfo(skb)->hwtstamps; 1741 } 1742 1743 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1744 { 1745 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1746 1747 return is_zcopy ? skb_uarg(skb) : NULL; 1748 } 1749 1750 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1751 { 1752 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1753 } 1754 1755 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1756 { 1757 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1758 } 1759 1760 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1761 const struct sk_buff *skb2) 1762 { 1763 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1764 } 1765 1766 static inline void net_zcopy_get(struct ubuf_info *uarg) 1767 { 1768 refcount_inc(&uarg->refcnt); 1769 } 1770 1771 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1772 { 1773 skb_shinfo(skb)->destructor_arg = uarg; 1774 skb_shinfo(skb)->flags |= uarg->flags; 1775 } 1776 1777 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1778 bool *have_ref) 1779 { 1780 if (skb && uarg && !skb_zcopy(skb)) { 1781 if (unlikely(have_ref && *have_ref)) 1782 *have_ref = false; 1783 else 1784 net_zcopy_get(uarg); 1785 skb_zcopy_init(skb, uarg); 1786 } 1787 } 1788 1789 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1790 { 1791 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1792 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1793 } 1794 1795 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1796 { 1797 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1798 } 1799 1800 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1801 { 1802 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1803 } 1804 1805 static inline void net_zcopy_put(struct ubuf_info *uarg) 1806 { 1807 if (uarg) 1808 uarg->ops->complete(NULL, uarg, true); 1809 } 1810 1811 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1812 { 1813 if (uarg) { 1814 if (uarg->ops == &msg_zerocopy_ubuf_ops) 1815 msg_zerocopy_put_abort(uarg, have_uref); 1816 else if (have_uref) 1817 net_zcopy_put(uarg); 1818 } 1819 } 1820 1821 /* Release a reference on a zerocopy structure */ 1822 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1823 { 1824 struct ubuf_info *uarg = skb_zcopy(skb); 1825 1826 if (uarg) { 1827 if (!skb_zcopy_is_nouarg(skb)) 1828 uarg->ops->complete(skb, uarg, zerocopy_success); 1829 1830 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1831 } 1832 } 1833 1834 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1835 1836 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1837 { 1838 if (unlikely(skb_zcopy_managed(skb))) 1839 __skb_zcopy_downgrade_managed(skb); 1840 } 1841 1842 /* Return true if frags in this skb are readable by the host. */ 1843 static inline bool skb_frags_readable(const struct sk_buff *skb) 1844 { 1845 return !skb->unreadable; 1846 } 1847 1848 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1849 { 1850 skb->next = NULL; 1851 } 1852 1853 static inline void skb_poison_list(struct sk_buff *skb) 1854 { 1855 #ifdef CONFIG_DEBUG_NET 1856 skb->next = SKB_LIST_POISON_NEXT; 1857 #endif 1858 } 1859 1860 /* Iterate through singly-linked GSO fragments of an skb. */ 1861 #define skb_list_walk_safe(first, skb, next_skb) \ 1862 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1863 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1864 1865 static inline void skb_list_del_init(struct sk_buff *skb) 1866 { 1867 __list_del_entry(&skb->list); 1868 skb_mark_not_on_list(skb); 1869 } 1870 1871 /** 1872 * skb_queue_empty - check if a queue is empty 1873 * @list: queue head 1874 * 1875 * Returns true if the queue is empty, false otherwise. 1876 */ 1877 static inline int skb_queue_empty(const struct sk_buff_head *list) 1878 { 1879 return list->next == (const struct sk_buff *) list; 1880 } 1881 1882 /** 1883 * skb_queue_empty_lockless - check if a queue is empty 1884 * @list: queue head 1885 * 1886 * Returns true if the queue is empty, false otherwise. 1887 * This variant can be used in lockless contexts. 1888 */ 1889 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1890 { 1891 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1892 } 1893 1894 1895 /** 1896 * skb_queue_is_last - check if skb is the last entry in the queue 1897 * @list: queue head 1898 * @skb: buffer 1899 * 1900 * Returns true if @skb is the last buffer on the list. 1901 */ 1902 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1903 const struct sk_buff *skb) 1904 { 1905 return skb->next == (const struct sk_buff *) list; 1906 } 1907 1908 /** 1909 * skb_queue_is_first - check if skb is the first entry in the queue 1910 * @list: queue head 1911 * @skb: buffer 1912 * 1913 * Returns true if @skb is the first buffer on the list. 1914 */ 1915 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1916 const struct sk_buff *skb) 1917 { 1918 return skb->prev == (const struct sk_buff *) list; 1919 } 1920 1921 /** 1922 * skb_queue_next - return the next packet in the queue 1923 * @list: queue head 1924 * @skb: current buffer 1925 * 1926 * Return the next packet in @list after @skb. It is only valid to 1927 * call this if skb_queue_is_last() evaluates to false. 1928 */ 1929 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1930 const struct sk_buff *skb) 1931 { 1932 /* This BUG_ON may seem severe, but if we just return then we 1933 * are going to dereference garbage. 1934 */ 1935 BUG_ON(skb_queue_is_last(list, skb)); 1936 return skb->next; 1937 } 1938 1939 /** 1940 * skb_queue_prev - return the prev packet in the queue 1941 * @list: queue head 1942 * @skb: current buffer 1943 * 1944 * Return the prev packet in @list before @skb. It is only valid to 1945 * call this if skb_queue_is_first() evaluates to false. 1946 */ 1947 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1948 const struct sk_buff *skb) 1949 { 1950 /* This BUG_ON may seem severe, but if we just return then we 1951 * are going to dereference garbage. 1952 */ 1953 BUG_ON(skb_queue_is_first(list, skb)); 1954 return skb->prev; 1955 } 1956 1957 /** 1958 * skb_get - reference buffer 1959 * @skb: buffer to reference 1960 * 1961 * Makes another reference to a socket buffer and returns a pointer 1962 * to the buffer. 1963 */ 1964 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1965 { 1966 refcount_inc(&skb->users); 1967 return skb; 1968 } 1969 1970 /* 1971 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1972 */ 1973 1974 /** 1975 * skb_cloned - is the buffer a clone 1976 * @skb: buffer to check 1977 * 1978 * Returns true if the buffer was generated with skb_clone() and is 1979 * one of multiple shared copies of the buffer. Cloned buffers are 1980 * shared data so must not be written to under normal circumstances. 1981 */ 1982 static inline int skb_cloned(const struct sk_buff *skb) 1983 { 1984 return skb->cloned && 1985 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1986 } 1987 1988 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1989 { 1990 might_sleep_if(gfpflags_allow_blocking(pri)); 1991 1992 if (skb_cloned(skb)) 1993 return pskb_expand_head(skb, 0, 0, pri); 1994 1995 return 0; 1996 } 1997 1998 /* This variant of skb_unclone() makes sure skb->truesize 1999 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 2000 * 2001 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 2002 * when various debugging features are in place. 2003 */ 2004 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 2005 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2006 { 2007 might_sleep_if(gfpflags_allow_blocking(pri)); 2008 2009 if (skb_cloned(skb)) 2010 return __skb_unclone_keeptruesize(skb, pri); 2011 return 0; 2012 } 2013 2014 /** 2015 * skb_header_cloned - is the header a clone 2016 * @skb: buffer to check 2017 * 2018 * Returns true if modifying the header part of the buffer requires 2019 * the data to be copied. 2020 */ 2021 static inline int skb_header_cloned(const struct sk_buff *skb) 2022 { 2023 int dataref; 2024 2025 if (!skb->cloned) 2026 return 0; 2027 2028 dataref = atomic_read(&skb_shinfo(skb)->dataref); 2029 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 2030 return dataref != 1; 2031 } 2032 2033 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 2034 { 2035 might_sleep_if(gfpflags_allow_blocking(pri)); 2036 2037 if (skb_header_cloned(skb)) 2038 return pskb_expand_head(skb, 0, 0, pri); 2039 2040 return 0; 2041 } 2042 2043 /** 2044 * __skb_header_release() - allow clones to use the headroom 2045 * @skb: buffer to operate on 2046 * 2047 * See "DOC: dataref and headerless skbs". 2048 */ 2049 static inline void __skb_header_release(struct sk_buff *skb) 2050 { 2051 skb->nohdr = 1; 2052 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2053 } 2054 2055 2056 /** 2057 * skb_shared - is the buffer shared 2058 * @skb: buffer to check 2059 * 2060 * Returns true if more than one person has a reference to this 2061 * buffer. 2062 */ 2063 static inline int skb_shared(const struct sk_buff *skb) 2064 { 2065 return refcount_read(&skb->users) != 1; 2066 } 2067 2068 /** 2069 * skb_share_check - check if buffer is shared and if so clone it 2070 * @skb: buffer to check 2071 * @pri: priority for memory allocation 2072 * 2073 * If the buffer is shared the buffer is cloned and the old copy 2074 * drops a reference. A new clone with a single reference is returned. 2075 * If the buffer is not shared the original buffer is returned. When 2076 * being called from interrupt status or with spinlocks held pri must 2077 * be GFP_ATOMIC. 2078 * 2079 * NULL is returned on a memory allocation failure. 2080 */ 2081 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2082 { 2083 might_sleep_if(gfpflags_allow_blocking(pri)); 2084 if (skb_shared(skb)) { 2085 struct sk_buff *nskb = skb_clone(skb, pri); 2086 2087 if (likely(nskb)) 2088 consume_skb(skb); 2089 else 2090 kfree_skb(skb); 2091 skb = nskb; 2092 } 2093 return skb; 2094 } 2095 2096 /* 2097 * Copy shared buffers into a new sk_buff. We effectively do COW on 2098 * packets to handle cases where we have a local reader and forward 2099 * and a couple of other messy ones. The normal one is tcpdumping 2100 * a packet that's being forwarded. 2101 */ 2102 2103 /** 2104 * skb_unshare - make a copy of a shared buffer 2105 * @skb: buffer to check 2106 * @pri: priority for memory allocation 2107 * 2108 * If the socket buffer is a clone then this function creates a new 2109 * copy of the data, drops a reference count on the old copy and returns 2110 * the new copy with the reference count at 1. If the buffer is not a clone 2111 * the original buffer is returned. When called with a spinlock held or 2112 * from interrupt state @pri must be %GFP_ATOMIC 2113 * 2114 * %NULL is returned on a memory allocation failure. 2115 */ 2116 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2117 gfp_t pri) 2118 { 2119 might_sleep_if(gfpflags_allow_blocking(pri)); 2120 if (skb_cloned(skb)) { 2121 struct sk_buff *nskb = skb_copy(skb, pri); 2122 2123 /* Free our shared copy */ 2124 if (likely(nskb)) 2125 consume_skb(skb); 2126 else 2127 kfree_skb(skb); 2128 skb = nskb; 2129 } 2130 return skb; 2131 } 2132 2133 /** 2134 * skb_peek - peek at the head of an &sk_buff_head 2135 * @list_: list to peek at 2136 * 2137 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2138 * be careful with this one. A peek leaves the buffer on the 2139 * list and someone else may run off with it. You must hold 2140 * the appropriate locks or have a private queue to do this. 2141 * 2142 * Returns %NULL for an empty list or a pointer to the head element. 2143 * The reference count is not incremented and the reference is therefore 2144 * volatile. Use with caution. 2145 */ 2146 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2147 { 2148 struct sk_buff *skb = list_->next; 2149 2150 if (skb == (struct sk_buff *)list_) 2151 skb = NULL; 2152 return skb; 2153 } 2154 2155 /** 2156 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2157 * @list_: list to peek at 2158 * 2159 * Like skb_peek(), but the caller knows that the list is not empty. 2160 */ 2161 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2162 { 2163 return list_->next; 2164 } 2165 2166 /** 2167 * skb_peek_next - peek skb following the given one from a queue 2168 * @skb: skb to start from 2169 * @list_: list to peek at 2170 * 2171 * Returns %NULL when the end of the list is met or a pointer to the 2172 * next element. The reference count is not incremented and the 2173 * reference is therefore volatile. Use with caution. 2174 */ 2175 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2176 const struct sk_buff_head *list_) 2177 { 2178 struct sk_buff *next = skb->next; 2179 2180 if (next == (struct sk_buff *)list_) 2181 next = NULL; 2182 return next; 2183 } 2184 2185 /** 2186 * skb_peek_tail - peek at the tail of an &sk_buff_head 2187 * @list_: list to peek at 2188 * 2189 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2190 * be careful with this one. A peek leaves the buffer on the 2191 * list and someone else may run off with it. You must hold 2192 * the appropriate locks or have a private queue to do this. 2193 * 2194 * Returns %NULL for an empty list or a pointer to the tail element. 2195 * The reference count is not incremented and the reference is therefore 2196 * volatile. Use with caution. 2197 */ 2198 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2199 { 2200 struct sk_buff *skb = READ_ONCE(list_->prev); 2201 2202 if (skb == (struct sk_buff *)list_) 2203 skb = NULL; 2204 return skb; 2205 2206 } 2207 2208 /** 2209 * skb_queue_len - get queue length 2210 * @list_: list to measure 2211 * 2212 * Return the length of an &sk_buff queue. 2213 */ 2214 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2215 { 2216 return list_->qlen; 2217 } 2218 2219 /** 2220 * skb_queue_len_lockless - get queue length 2221 * @list_: list to measure 2222 * 2223 * Return the length of an &sk_buff queue. 2224 * This variant can be used in lockless contexts. 2225 */ 2226 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2227 { 2228 return READ_ONCE(list_->qlen); 2229 } 2230 2231 /** 2232 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2233 * @list: queue to initialize 2234 * 2235 * This initializes only the list and queue length aspects of 2236 * an sk_buff_head object. This allows to initialize the list 2237 * aspects of an sk_buff_head without reinitializing things like 2238 * the spinlock. It can also be used for on-stack sk_buff_head 2239 * objects where the spinlock is known to not be used. 2240 */ 2241 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2242 { 2243 list->prev = list->next = (struct sk_buff *)list; 2244 list->qlen = 0; 2245 } 2246 2247 /* 2248 * This function creates a split out lock class for each invocation; 2249 * this is needed for now since a whole lot of users of the skb-queue 2250 * infrastructure in drivers have different locking usage (in hardirq) 2251 * than the networking core (in softirq only). In the long run either the 2252 * network layer or drivers should need annotation to consolidate the 2253 * main types of usage into 3 classes. 2254 */ 2255 static inline void skb_queue_head_init(struct sk_buff_head *list) 2256 { 2257 spin_lock_init(&list->lock); 2258 __skb_queue_head_init(list); 2259 } 2260 2261 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2262 struct lock_class_key *class) 2263 { 2264 skb_queue_head_init(list); 2265 lockdep_set_class(&list->lock, class); 2266 } 2267 2268 /* 2269 * Insert an sk_buff on a list. 2270 * 2271 * The "__skb_xxxx()" functions are the non-atomic ones that 2272 * can only be called with interrupts disabled. 2273 */ 2274 static inline void __skb_insert(struct sk_buff *newsk, 2275 struct sk_buff *prev, struct sk_buff *next, 2276 struct sk_buff_head *list) 2277 { 2278 /* See skb_queue_empty_lockless() and skb_peek_tail() 2279 * for the opposite READ_ONCE() 2280 */ 2281 WRITE_ONCE(newsk->next, next); 2282 WRITE_ONCE(newsk->prev, prev); 2283 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2284 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2285 WRITE_ONCE(list->qlen, list->qlen + 1); 2286 } 2287 2288 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2289 struct sk_buff *prev, 2290 struct sk_buff *next) 2291 { 2292 struct sk_buff *first = list->next; 2293 struct sk_buff *last = list->prev; 2294 2295 WRITE_ONCE(first->prev, prev); 2296 WRITE_ONCE(prev->next, first); 2297 2298 WRITE_ONCE(last->next, next); 2299 WRITE_ONCE(next->prev, last); 2300 } 2301 2302 /** 2303 * skb_queue_splice - join two skb lists, this is designed for stacks 2304 * @list: the new list to add 2305 * @head: the place to add it in the first list 2306 */ 2307 static inline void skb_queue_splice(const struct sk_buff_head *list, 2308 struct sk_buff_head *head) 2309 { 2310 if (!skb_queue_empty(list)) { 2311 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2312 head->qlen += list->qlen; 2313 } 2314 } 2315 2316 /** 2317 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2318 * @list: the new list to add 2319 * @head: the place to add it in the first list 2320 * 2321 * The list at @list is reinitialised 2322 */ 2323 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2324 struct sk_buff_head *head) 2325 { 2326 if (!skb_queue_empty(list)) { 2327 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2328 head->qlen += list->qlen; 2329 __skb_queue_head_init(list); 2330 } 2331 } 2332 2333 /** 2334 * skb_queue_splice_tail - join two skb lists, each list being a queue 2335 * @list: the new list to add 2336 * @head: the place to add it in the first list 2337 */ 2338 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2339 struct sk_buff_head *head) 2340 { 2341 if (!skb_queue_empty(list)) { 2342 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2343 head->qlen += list->qlen; 2344 } 2345 } 2346 2347 /** 2348 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2349 * @list: the new list to add 2350 * @head: the place to add it in the first list 2351 * 2352 * Each of the lists is a queue. 2353 * The list at @list is reinitialised 2354 */ 2355 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2356 struct sk_buff_head *head) 2357 { 2358 if (!skb_queue_empty(list)) { 2359 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2360 head->qlen += list->qlen; 2361 __skb_queue_head_init(list); 2362 } 2363 } 2364 2365 /** 2366 * __skb_queue_after - queue a buffer at the list head 2367 * @list: list to use 2368 * @prev: place after this buffer 2369 * @newsk: buffer to queue 2370 * 2371 * Queue a buffer int the middle of a list. This function takes no locks 2372 * and you must therefore hold required locks before calling it. 2373 * 2374 * A buffer cannot be placed on two lists at the same time. 2375 */ 2376 static inline void __skb_queue_after(struct sk_buff_head *list, 2377 struct sk_buff *prev, 2378 struct sk_buff *newsk) 2379 { 2380 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2381 } 2382 2383 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2384 struct sk_buff_head *list); 2385 2386 static inline void __skb_queue_before(struct sk_buff_head *list, 2387 struct sk_buff *next, 2388 struct sk_buff *newsk) 2389 { 2390 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2391 } 2392 2393 /** 2394 * __skb_queue_head - queue a buffer at the list head 2395 * @list: list to use 2396 * @newsk: buffer to queue 2397 * 2398 * Queue a buffer at the start of a list. This function takes no locks 2399 * and you must therefore hold required locks before calling it. 2400 * 2401 * A buffer cannot be placed on two lists at the same time. 2402 */ 2403 static inline void __skb_queue_head(struct sk_buff_head *list, 2404 struct sk_buff *newsk) 2405 { 2406 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2407 } 2408 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2409 2410 /** 2411 * __skb_queue_tail - queue a buffer at the list tail 2412 * @list: list to use 2413 * @newsk: buffer to queue 2414 * 2415 * Queue a buffer at the end of a list. This function takes no locks 2416 * and you must therefore hold required locks before calling it. 2417 * 2418 * A buffer cannot be placed on two lists at the same time. 2419 */ 2420 static inline void __skb_queue_tail(struct sk_buff_head *list, 2421 struct sk_buff *newsk) 2422 { 2423 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2424 } 2425 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2426 2427 /* 2428 * remove sk_buff from list. _Must_ be called atomically, and with 2429 * the list known.. 2430 */ 2431 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2432 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2433 { 2434 struct sk_buff *next, *prev; 2435 2436 WRITE_ONCE(list->qlen, list->qlen - 1); 2437 next = skb->next; 2438 prev = skb->prev; 2439 skb->next = skb->prev = NULL; 2440 WRITE_ONCE(next->prev, prev); 2441 WRITE_ONCE(prev->next, next); 2442 } 2443 2444 /** 2445 * __skb_dequeue - remove from the head of the queue 2446 * @list: list to dequeue from 2447 * 2448 * Remove the head of the list. This function does not take any locks 2449 * so must be used with appropriate locks held only. The head item is 2450 * returned or %NULL if the list is empty. 2451 */ 2452 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2453 { 2454 struct sk_buff *skb = skb_peek(list); 2455 if (skb) 2456 __skb_unlink(skb, list); 2457 return skb; 2458 } 2459 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2460 2461 /** 2462 * __skb_dequeue_tail - remove from the tail of the queue 2463 * @list: list to dequeue from 2464 * 2465 * Remove the tail of the list. This function does not take any locks 2466 * so must be used with appropriate locks held only. The tail item is 2467 * returned or %NULL if the list is empty. 2468 */ 2469 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2470 { 2471 struct sk_buff *skb = skb_peek_tail(list); 2472 if (skb) 2473 __skb_unlink(skb, list); 2474 return skb; 2475 } 2476 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2477 2478 2479 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2480 { 2481 return skb->data_len; 2482 } 2483 2484 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2485 { 2486 return skb->len - skb->data_len; 2487 } 2488 2489 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2490 { 2491 unsigned int i, len = 0; 2492 2493 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2494 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2495 return len; 2496 } 2497 2498 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2499 { 2500 return skb_headlen(skb) + __skb_pagelen(skb); 2501 } 2502 2503 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2504 netmem_ref netmem, int off, 2505 int size) 2506 { 2507 frag->netmem = netmem; 2508 frag->offset = off; 2509 skb_frag_size_set(frag, size); 2510 } 2511 2512 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2513 struct page *page, 2514 int off, int size) 2515 { 2516 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2517 } 2518 2519 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2520 int i, netmem_ref netmem, 2521 int off, int size) 2522 { 2523 skb_frag_t *frag = &shinfo->frags[i]; 2524 2525 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2526 } 2527 2528 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2529 int i, struct page *page, 2530 int off, int size) 2531 { 2532 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2533 size); 2534 } 2535 2536 /** 2537 * skb_len_add - adds a number to len fields of skb 2538 * @skb: buffer to add len to 2539 * @delta: number of bytes to add 2540 */ 2541 static inline void skb_len_add(struct sk_buff *skb, int delta) 2542 { 2543 skb->len += delta; 2544 skb->data_len += delta; 2545 skb->truesize += delta; 2546 } 2547 2548 /** 2549 * __skb_fill_netmem_desc - initialise a fragment in an skb 2550 * @skb: buffer containing fragment to be initialised 2551 * @i: fragment index to initialise 2552 * @netmem: the netmem to use for this fragment 2553 * @off: the offset to the data with @page 2554 * @size: the length of the data 2555 * 2556 * Initialises the @i'th fragment of @skb to point to &size bytes at 2557 * offset @off within @page. 2558 * 2559 * Does not take any additional reference on the fragment. 2560 */ 2561 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2562 netmem_ref netmem, int off, int size) 2563 { 2564 struct page *page; 2565 2566 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2567 2568 if (netmem_is_net_iov(netmem)) { 2569 skb->unreadable = true; 2570 return; 2571 } 2572 2573 page = netmem_to_page(netmem); 2574 2575 /* Propagate page pfmemalloc to the skb if we can. The problem is 2576 * that not all callers have unique ownership of the page but rely 2577 * on page_is_pfmemalloc doing the right thing(tm). 2578 */ 2579 page = compound_head(page); 2580 if (page_is_pfmemalloc(page)) 2581 skb->pfmemalloc = true; 2582 } 2583 2584 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2585 struct page *page, int off, int size) 2586 { 2587 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2588 } 2589 2590 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2591 netmem_ref netmem, int off, int size) 2592 { 2593 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2594 skb_shinfo(skb)->nr_frags = i + 1; 2595 } 2596 2597 /** 2598 * skb_fill_page_desc - initialise a paged fragment in an skb 2599 * @skb: buffer containing fragment to be initialised 2600 * @i: paged fragment index to initialise 2601 * @page: the page to use for this fragment 2602 * @off: the offset to the data with @page 2603 * @size: the length of the data 2604 * 2605 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2606 * @skb to point to @size bytes at offset @off within @page. In 2607 * addition updates @skb such that @i is the last fragment. 2608 * 2609 * Does not take any additional reference on the fragment. 2610 */ 2611 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2612 struct page *page, int off, int size) 2613 { 2614 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2615 } 2616 2617 /** 2618 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2619 * @skb: buffer containing fragment to be initialised 2620 * @i: paged fragment index to initialise 2621 * @page: the page to use for this fragment 2622 * @off: the offset to the data with @page 2623 * @size: the length of the data 2624 * 2625 * Variant of skb_fill_page_desc() which does not deal with 2626 * pfmemalloc, if page is not owned by us. 2627 */ 2628 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2629 struct page *page, int off, 2630 int size) 2631 { 2632 struct skb_shared_info *shinfo = skb_shinfo(skb); 2633 2634 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2635 shinfo->nr_frags = i + 1; 2636 } 2637 2638 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2639 int off, int size, unsigned int truesize); 2640 2641 static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2642 struct page *page, int off, int size, 2643 unsigned int truesize) 2644 { 2645 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2646 truesize); 2647 } 2648 2649 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2650 unsigned int truesize); 2651 2652 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2653 2654 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2655 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2656 { 2657 return skb->head + skb->tail; 2658 } 2659 2660 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2661 { 2662 skb->tail = skb->data - skb->head; 2663 } 2664 2665 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2666 { 2667 skb_reset_tail_pointer(skb); 2668 skb->tail += offset; 2669 } 2670 2671 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2672 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2673 { 2674 return skb->tail; 2675 } 2676 2677 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2678 { 2679 skb->tail = skb->data; 2680 } 2681 2682 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2683 { 2684 skb->tail = skb->data + offset; 2685 } 2686 2687 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2688 2689 static inline void skb_assert_len(struct sk_buff *skb) 2690 { 2691 #ifdef CONFIG_DEBUG_NET 2692 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2693 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2694 #endif /* CONFIG_DEBUG_NET */ 2695 } 2696 2697 #if defined(CONFIG_FAIL_SKB_REALLOC) 2698 void skb_might_realloc(struct sk_buff *skb); 2699 #else 2700 static inline void skb_might_realloc(struct sk_buff *skb) {} 2701 #endif 2702 2703 /* 2704 * Add data to an sk_buff 2705 */ 2706 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2707 void *skb_put(struct sk_buff *skb, unsigned int len); 2708 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2709 { 2710 void *tmp = skb_tail_pointer(skb); 2711 SKB_LINEAR_ASSERT(skb); 2712 skb->tail += len; 2713 skb->len += len; 2714 return tmp; 2715 } 2716 2717 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2718 { 2719 void *tmp = __skb_put(skb, len); 2720 2721 memset(tmp, 0, len); 2722 return tmp; 2723 } 2724 2725 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2726 unsigned int len) 2727 { 2728 void *tmp = __skb_put(skb, len); 2729 2730 memcpy(tmp, data, len); 2731 return tmp; 2732 } 2733 2734 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2735 { 2736 *(u8 *)__skb_put(skb, 1) = val; 2737 } 2738 2739 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2740 { 2741 void *tmp = skb_put(skb, len); 2742 2743 memset(tmp, 0, len); 2744 2745 return tmp; 2746 } 2747 2748 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2749 unsigned int len) 2750 { 2751 void *tmp = skb_put(skb, len); 2752 2753 memcpy(tmp, data, len); 2754 2755 return tmp; 2756 } 2757 2758 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2759 { 2760 *(u8 *)skb_put(skb, 1) = val; 2761 } 2762 2763 void *skb_push(struct sk_buff *skb, unsigned int len); 2764 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2765 { 2766 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2767 2768 skb->data -= len; 2769 skb->len += len; 2770 return skb->data; 2771 } 2772 2773 void *skb_pull(struct sk_buff *skb, unsigned int len); 2774 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2775 { 2776 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2777 2778 skb->len -= len; 2779 if (unlikely(skb->len < skb->data_len)) { 2780 #if defined(CONFIG_DEBUG_NET) 2781 skb->len += len; 2782 pr_err("__skb_pull(len=%u)\n", len); 2783 skb_dump(KERN_ERR, skb, false); 2784 #endif 2785 BUG(); 2786 } 2787 return skb->data += len; 2788 } 2789 2790 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2791 { 2792 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2793 } 2794 2795 void *skb_pull_data(struct sk_buff *skb, size_t len); 2796 2797 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2798 2799 static inline enum skb_drop_reason 2800 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2801 { 2802 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2803 skb_might_realloc(skb); 2804 2805 if (likely(len <= skb_headlen(skb))) 2806 return SKB_NOT_DROPPED_YET; 2807 2808 if (unlikely(len > skb->len)) 2809 return SKB_DROP_REASON_PKT_TOO_SMALL; 2810 2811 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2812 return SKB_DROP_REASON_NOMEM; 2813 2814 return SKB_NOT_DROPPED_YET; 2815 } 2816 2817 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2818 { 2819 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2820 } 2821 2822 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2823 { 2824 if (!pskb_may_pull(skb, len)) 2825 return NULL; 2826 2827 skb->len -= len; 2828 return skb->data += len; 2829 } 2830 2831 void skb_condense(struct sk_buff *skb); 2832 2833 /** 2834 * skb_headroom - bytes at buffer head 2835 * @skb: buffer to check 2836 * 2837 * Return the number of bytes of free space at the head of an &sk_buff. 2838 */ 2839 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2840 { 2841 return skb->data - skb->head; 2842 } 2843 2844 /** 2845 * skb_tailroom - bytes at buffer end 2846 * @skb: buffer to check 2847 * 2848 * Return the number of bytes of free space at the tail of an sk_buff 2849 */ 2850 static inline int skb_tailroom(const struct sk_buff *skb) 2851 { 2852 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2853 } 2854 2855 /** 2856 * skb_availroom - bytes at buffer end 2857 * @skb: buffer to check 2858 * 2859 * Return the number of bytes of free space at the tail of an sk_buff 2860 * allocated by sk_stream_alloc() 2861 */ 2862 static inline int skb_availroom(const struct sk_buff *skb) 2863 { 2864 if (skb_is_nonlinear(skb)) 2865 return 0; 2866 2867 return skb->end - skb->tail - skb->reserved_tailroom; 2868 } 2869 2870 /** 2871 * skb_reserve - adjust headroom 2872 * @skb: buffer to alter 2873 * @len: bytes to move 2874 * 2875 * Increase the headroom of an empty &sk_buff by reducing the tail 2876 * room. This is only allowed for an empty buffer. 2877 */ 2878 static inline void skb_reserve(struct sk_buff *skb, int len) 2879 { 2880 skb->data += len; 2881 skb->tail += len; 2882 } 2883 2884 /** 2885 * skb_tailroom_reserve - adjust reserved_tailroom 2886 * @skb: buffer to alter 2887 * @mtu: maximum amount of headlen permitted 2888 * @needed_tailroom: minimum amount of reserved_tailroom 2889 * 2890 * Set reserved_tailroom so that headlen can be as large as possible but 2891 * not larger than mtu and tailroom cannot be smaller than 2892 * needed_tailroom. 2893 * The required headroom should already have been reserved before using 2894 * this function. 2895 */ 2896 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2897 unsigned int needed_tailroom) 2898 { 2899 SKB_LINEAR_ASSERT(skb); 2900 if (mtu < skb_tailroom(skb) - needed_tailroom) 2901 /* use at most mtu */ 2902 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2903 else 2904 /* use up to all available space */ 2905 skb->reserved_tailroom = needed_tailroom; 2906 } 2907 2908 #define ENCAP_TYPE_ETHER 0 2909 #define ENCAP_TYPE_IPPROTO 1 2910 2911 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2912 __be16 protocol) 2913 { 2914 skb->inner_protocol = protocol; 2915 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2916 } 2917 2918 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2919 __u8 ipproto) 2920 { 2921 skb->inner_ipproto = ipproto; 2922 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2923 } 2924 2925 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2926 { 2927 skb->inner_mac_header = skb->mac_header; 2928 skb->inner_network_header = skb->network_header; 2929 skb->inner_transport_header = skb->transport_header; 2930 } 2931 2932 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2933 { 2934 return skb->mac_header != (typeof(skb->mac_header))~0U; 2935 } 2936 2937 static inline void skb_reset_mac_len(struct sk_buff *skb) 2938 { 2939 if (!skb_mac_header_was_set(skb)) { 2940 DEBUG_NET_WARN_ON_ONCE(1); 2941 skb->mac_len = 0; 2942 } else { 2943 skb->mac_len = skb->network_header - skb->mac_header; 2944 } 2945 } 2946 2947 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2948 *skb) 2949 { 2950 return skb->head + skb->inner_transport_header; 2951 } 2952 2953 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2954 { 2955 return skb_inner_transport_header(skb) - skb->data; 2956 } 2957 2958 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2959 { 2960 long offset = skb->data - skb->head; 2961 2962 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset); 2963 skb->inner_transport_header = offset; 2964 } 2965 2966 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2967 const int offset) 2968 { 2969 skb_reset_inner_transport_header(skb); 2970 skb->inner_transport_header += offset; 2971 } 2972 2973 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2974 { 2975 return skb->head + skb->inner_network_header; 2976 } 2977 2978 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2979 { 2980 long offset = skb->data - skb->head; 2981 2982 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset); 2983 skb->inner_network_header = offset; 2984 } 2985 2986 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2987 const int offset) 2988 { 2989 skb_reset_inner_network_header(skb); 2990 skb->inner_network_header += offset; 2991 } 2992 2993 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2994 { 2995 return skb->inner_network_header > 0; 2996 } 2997 2998 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2999 { 3000 return skb->head + skb->inner_mac_header; 3001 } 3002 3003 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 3004 { 3005 long offset = skb->data - skb->head; 3006 3007 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset); 3008 skb->inner_mac_header = offset; 3009 } 3010 3011 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 3012 const int offset) 3013 { 3014 skb_reset_inner_mac_header(skb); 3015 skb->inner_mac_header += offset; 3016 } 3017 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 3018 { 3019 return skb->transport_header != (typeof(skb->transport_header))~0U; 3020 } 3021 3022 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 3023 { 3024 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3025 return skb->head + skb->transport_header; 3026 } 3027 3028 static inline void skb_reset_transport_header(struct sk_buff *skb) 3029 { 3030 long offset = skb->data - skb->head; 3031 3032 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset); 3033 skb->transport_header = offset; 3034 } 3035 3036 static inline void skb_set_transport_header(struct sk_buff *skb, 3037 const int offset) 3038 { 3039 skb_reset_transport_header(skb); 3040 skb->transport_header += offset; 3041 } 3042 3043 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 3044 { 3045 return skb->head + skb->network_header; 3046 } 3047 3048 static inline void skb_reset_network_header(struct sk_buff *skb) 3049 { 3050 long offset = skb->data - skb->head; 3051 3052 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset); 3053 skb->network_header = offset; 3054 } 3055 3056 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 3057 { 3058 skb_reset_network_header(skb); 3059 skb->network_header += offset; 3060 } 3061 3062 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 3063 { 3064 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3065 return skb->head + skb->mac_header; 3066 } 3067 3068 static inline int skb_mac_offset(const struct sk_buff *skb) 3069 { 3070 return skb_mac_header(skb) - skb->data; 3071 } 3072 3073 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 3074 { 3075 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 3076 return skb->network_header - skb->mac_header; 3077 } 3078 3079 static inline void skb_unset_mac_header(struct sk_buff *skb) 3080 { 3081 skb->mac_header = (typeof(skb->mac_header))~0U; 3082 } 3083 3084 static inline void skb_reset_mac_header(struct sk_buff *skb) 3085 { 3086 long offset = skb->data - skb->head; 3087 3088 DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset); 3089 skb->mac_header = offset; 3090 } 3091 3092 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3093 { 3094 skb_reset_mac_header(skb); 3095 skb->mac_header += offset; 3096 } 3097 3098 static inline void skb_pop_mac_header(struct sk_buff *skb) 3099 { 3100 skb->mac_header = skb->network_header; 3101 } 3102 3103 static inline void skb_probe_transport_header(struct sk_buff *skb) 3104 { 3105 struct flow_keys_basic keys; 3106 3107 if (skb_transport_header_was_set(skb)) 3108 return; 3109 3110 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3111 NULL, 0, 0, 0, 0)) 3112 skb_set_transport_header(skb, keys.control.thoff); 3113 } 3114 3115 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3116 { 3117 if (skb_mac_header_was_set(skb)) { 3118 const unsigned char *old_mac = skb_mac_header(skb); 3119 3120 skb_set_mac_header(skb, -skb->mac_len); 3121 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3122 } 3123 } 3124 3125 /* Move the full mac header up to current network_header. 3126 * Leaves skb->data pointing at offset skb->mac_len into the mac_header. 3127 * Must be provided the complete mac header length. 3128 */ 3129 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) 3130 { 3131 if (skb_mac_header_was_set(skb)) { 3132 const unsigned char *old_mac = skb_mac_header(skb); 3133 3134 skb_set_mac_header(skb, -full_mac_len); 3135 memmove(skb_mac_header(skb), old_mac, full_mac_len); 3136 __skb_push(skb, full_mac_len - skb->mac_len); 3137 } 3138 } 3139 3140 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3141 { 3142 return skb->csum_start - skb_headroom(skb); 3143 } 3144 3145 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3146 { 3147 return skb->head + skb->csum_start; 3148 } 3149 3150 static inline int skb_transport_offset(const struct sk_buff *skb) 3151 { 3152 return skb_transport_header(skb) - skb->data; 3153 } 3154 3155 static inline u32 skb_network_header_len(const struct sk_buff *skb) 3156 { 3157 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3158 return skb->transport_header - skb->network_header; 3159 } 3160 3161 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3162 { 3163 return skb->inner_transport_header - skb->inner_network_header; 3164 } 3165 3166 static inline int skb_network_offset(const struct sk_buff *skb) 3167 { 3168 return skb_network_header(skb) - skb->data; 3169 } 3170 3171 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3172 { 3173 return skb_inner_network_header(skb) - skb->data; 3174 } 3175 3176 static inline enum skb_drop_reason 3177 pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len) 3178 { 3179 return pskb_may_pull_reason(skb, skb_network_offset(skb) + len); 3180 } 3181 3182 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3183 { 3184 return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 3185 } 3186 3187 /* 3188 * CPUs often take a performance hit when accessing unaligned memory 3189 * locations. The actual performance hit varies, it can be small if the 3190 * hardware handles it or large if we have to take an exception and fix it 3191 * in software. 3192 * 3193 * Since an ethernet header is 14 bytes network drivers often end up with 3194 * the IP header at an unaligned offset. The IP header can be aligned by 3195 * shifting the start of the packet by 2 bytes. Drivers should do this 3196 * with: 3197 * 3198 * skb_reserve(skb, NET_IP_ALIGN); 3199 * 3200 * The downside to this alignment of the IP header is that the DMA is now 3201 * unaligned. On some architectures the cost of an unaligned DMA is high 3202 * and this cost outweighs the gains made by aligning the IP header. 3203 * 3204 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3205 * to be overridden. 3206 */ 3207 #ifndef NET_IP_ALIGN 3208 #define NET_IP_ALIGN 2 3209 #endif 3210 3211 /* 3212 * The networking layer reserves some headroom in skb data (via 3213 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3214 * the header has to grow. In the default case, if the header has to grow 3215 * 32 bytes or less we avoid the reallocation. 3216 * 3217 * Unfortunately this headroom changes the DMA alignment of the resulting 3218 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3219 * on some architectures. An architecture can override this value, 3220 * perhaps setting it to a cacheline in size (since that will maintain 3221 * cacheline alignment of the DMA). It must be a power of 2. 3222 * 3223 * Various parts of the networking layer expect at least 32 bytes of 3224 * headroom, you should not reduce this. 3225 * 3226 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3227 * to reduce average number of cache lines per packet. 3228 * get_rps_cpu() for example only access one 64 bytes aligned block : 3229 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3230 */ 3231 #ifndef NET_SKB_PAD 3232 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3233 #endif 3234 3235 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3236 3237 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3238 { 3239 if (WARN_ON(skb_is_nonlinear(skb))) 3240 return; 3241 skb->len = len; 3242 skb_set_tail_pointer(skb, len); 3243 } 3244 3245 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3246 { 3247 __skb_set_length(skb, len); 3248 } 3249 3250 void skb_trim(struct sk_buff *skb, unsigned int len); 3251 3252 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3253 { 3254 if (skb->data_len) 3255 return ___pskb_trim(skb, len); 3256 __skb_trim(skb, len); 3257 return 0; 3258 } 3259 3260 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3261 { 3262 skb_might_realloc(skb); 3263 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3264 } 3265 3266 /** 3267 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3268 * @skb: buffer to alter 3269 * @len: new length 3270 * 3271 * This is identical to pskb_trim except that the caller knows that 3272 * the skb is not cloned so we should never get an error due to out- 3273 * of-memory. 3274 */ 3275 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3276 { 3277 int err = pskb_trim(skb, len); 3278 BUG_ON(err); 3279 } 3280 3281 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3282 { 3283 unsigned int diff = len - skb->len; 3284 3285 if (skb_tailroom(skb) < diff) { 3286 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3287 GFP_ATOMIC); 3288 if (ret) 3289 return ret; 3290 } 3291 __skb_set_length(skb, len); 3292 return 0; 3293 } 3294 3295 /** 3296 * skb_orphan - orphan a buffer 3297 * @skb: buffer to orphan 3298 * 3299 * If a buffer currently has an owner then we call the owner's 3300 * destructor function and make the @skb unowned. The buffer continues 3301 * to exist but is no longer charged to its former owner. 3302 */ 3303 static inline void skb_orphan(struct sk_buff *skb) 3304 { 3305 if (skb->destructor) { 3306 skb->destructor(skb); 3307 skb->destructor = NULL; 3308 skb->sk = NULL; 3309 } else { 3310 BUG_ON(skb->sk); 3311 } 3312 } 3313 3314 /** 3315 * skb_orphan_frags - orphan the frags contained in a buffer 3316 * @skb: buffer to orphan frags from 3317 * @gfp_mask: allocation mask for replacement pages 3318 * 3319 * For each frag in the SKB which needs a destructor (i.e. has an 3320 * owner) create a copy of that frag and release the original 3321 * page by calling the destructor. 3322 */ 3323 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3324 { 3325 if (likely(!skb_zcopy(skb))) 3326 return 0; 3327 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3328 return 0; 3329 return skb_copy_ubufs(skb, gfp_mask); 3330 } 3331 3332 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3333 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3334 { 3335 if (likely(!skb_zcopy(skb))) 3336 return 0; 3337 return skb_copy_ubufs(skb, gfp_mask); 3338 } 3339 3340 /** 3341 * __skb_queue_purge_reason - empty a list 3342 * @list: list to empty 3343 * @reason: drop reason 3344 * 3345 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3346 * the list and one reference dropped. This function does not take the 3347 * list lock and the caller must hold the relevant locks to use it. 3348 */ 3349 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3350 enum skb_drop_reason reason) 3351 { 3352 struct sk_buff *skb; 3353 3354 while ((skb = __skb_dequeue(list)) != NULL) 3355 kfree_skb_reason(skb, reason); 3356 } 3357 3358 static inline void __skb_queue_purge(struct sk_buff_head *list) 3359 { 3360 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3361 } 3362 3363 void skb_queue_purge_reason(struct sk_buff_head *list, 3364 enum skb_drop_reason reason); 3365 3366 static inline void skb_queue_purge(struct sk_buff_head *list) 3367 { 3368 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3369 } 3370 3371 unsigned int skb_rbtree_purge(struct rb_root *root); 3372 void skb_errqueue_purge(struct sk_buff_head *list); 3373 3374 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3375 3376 /** 3377 * netdev_alloc_frag - allocate a page fragment 3378 * @fragsz: fragment size 3379 * 3380 * Allocates a frag from a page for receive buffer. 3381 * Uses GFP_ATOMIC allocations. 3382 */ 3383 static inline void *netdev_alloc_frag(unsigned int fragsz) 3384 { 3385 return __netdev_alloc_frag_align(fragsz, ~0u); 3386 } 3387 3388 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3389 unsigned int align) 3390 { 3391 WARN_ON_ONCE(!is_power_of_2(align)); 3392 return __netdev_alloc_frag_align(fragsz, -align); 3393 } 3394 3395 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3396 gfp_t gfp_mask); 3397 3398 /** 3399 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3400 * @dev: network device to receive on 3401 * @length: length to allocate 3402 * 3403 * Allocate a new &sk_buff and assign it a usage count of one. The 3404 * buffer has unspecified headroom built in. Users should allocate 3405 * the headroom they think they need without accounting for the 3406 * built in space. The built in space is used for optimisations. 3407 * 3408 * %NULL is returned if there is no free memory. Although this function 3409 * allocates memory it can be called from an interrupt. 3410 */ 3411 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3412 unsigned int length) 3413 { 3414 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3415 } 3416 3417 /* legacy helper around __netdev_alloc_skb() */ 3418 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3419 gfp_t gfp_mask) 3420 { 3421 return __netdev_alloc_skb(NULL, length, gfp_mask); 3422 } 3423 3424 /* legacy helper around netdev_alloc_skb() */ 3425 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3426 { 3427 return netdev_alloc_skb(NULL, length); 3428 } 3429 3430 3431 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3432 unsigned int length, gfp_t gfp) 3433 { 3434 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3435 3436 if (NET_IP_ALIGN && skb) 3437 skb_reserve(skb, NET_IP_ALIGN); 3438 return skb; 3439 } 3440 3441 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3442 unsigned int length) 3443 { 3444 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3445 } 3446 3447 static inline void skb_free_frag(void *addr) 3448 { 3449 page_frag_free(addr); 3450 } 3451 3452 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3453 3454 static inline void *napi_alloc_frag(unsigned int fragsz) 3455 { 3456 return __napi_alloc_frag_align(fragsz, ~0u); 3457 } 3458 3459 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3460 unsigned int align) 3461 { 3462 WARN_ON_ONCE(!is_power_of_2(align)); 3463 return __napi_alloc_frag_align(fragsz, -align); 3464 } 3465 3466 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3467 void napi_consume_skb(struct sk_buff *skb, int budget); 3468 3469 void napi_skb_free_stolen_head(struct sk_buff *skb); 3470 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3471 3472 /** 3473 * __dev_alloc_pages - allocate page for network Rx 3474 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3475 * @order: size of the allocation 3476 * 3477 * Allocate a new page. 3478 * 3479 * %NULL is returned if there is no free memory. 3480 */ 3481 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, 3482 unsigned int order) 3483 { 3484 /* This piece of code contains several assumptions. 3485 * 1. This is for device Rx, therefore a cold page is preferred. 3486 * 2. The expectation is the user wants a compound page. 3487 * 3. If requesting a order 0 page it will not be compound 3488 * due to the check to see if order has a value in prep_new_page 3489 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3490 * code in gfp_to_alloc_flags that should be enforcing this. 3491 */ 3492 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3493 3494 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); 3495 } 3496 #define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) 3497 3498 /* 3499 * This specialized allocator has to be a macro for its allocations to be 3500 * accounted separately (to have a separate alloc_tag). 3501 */ 3502 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) 3503 3504 /** 3505 * __dev_alloc_page - allocate a page for network Rx 3506 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3507 * 3508 * Allocate a new page. 3509 * 3510 * %NULL is returned if there is no free memory. 3511 */ 3512 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) 3513 { 3514 return __dev_alloc_pages_noprof(gfp_mask, 0); 3515 } 3516 #define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) 3517 3518 /* 3519 * This specialized allocator has to be a macro for its allocations to be 3520 * accounted separately (to have a separate alloc_tag). 3521 */ 3522 #define dev_alloc_page() dev_alloc_pages(0) 3523 3524 /** 3525 * dev_page_is_reusable - check whether a page can be reused for network Rx 3526 * @page: the page to test 3527 * 3528 * A page shouldn't be considered for reusing/recycling if it was allocated 3529 * under memory pressure or at a distant memory node. 3530 * 3531 * Returns: false if this page should be returned to page allocator, true 3532 * otherwise. 3533 */ 3534 static inline bool dev_page_is_reusable(const struct page *page) 3535 { 3536 return likely(page_to_nid(page) == numa_mem_id() && 3537 !page_is_pfmemalloc(page)); 3538 } 3539 3540 /** 3541 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3542 * @page: The page that was allocated from skb_alloc_page 3543 * @skb: The skb that may need pfmemalloc set 3544 */ 3545 static inline void skb_propagate_pfmemalloc(const struct page *page, 3546 struct sk_buff *skb) 3547 { 3548 if (page_is_pfmemalloc(page)) 3549 skb->pfmemalloc = true; 3550 } 3551 3552 /** 3553 * skb_frag_off() - Returns the offset of a skb fragment 3554 * @frag: the paged fragment 3555 */ 3556 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3557 { 3558 return frag->offset; 3559 } 3560 3561 /** 3562 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3563 * @frag: skb fragment 3564 * @delta: value to add 3565 */ 3566 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3567 { 3568 frag->offset += delta; 3569 } 3570 3571 /** 3572 * skb_frag_off_set() - Sets the offset of a skb fragment 3573 * @frag: skb fragment 3574 * @offset: offset of fragment 3575 */ 3576 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3577 { 3578 frag->offset = offset; 3579 } 3580 3581 /** 3582 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3583 * @fragto: skb fragment where offset is set 3584 * @fragfrom: skb fragment offset is copied from 3585 */ 3586 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3587 const skb_frag_t *fragfrom) 3588 { 3589 fragto->offset = fragfrom->offset; 3590 } 3591 3592 /* Return: true if the skb_frag contains a net_iov. */ 3593 static inline bool skb_frag_is_net_iov(const skb_frag_t *frag) 3594 { 3595 return netmem_is_net_iov(frag->netmem); 3596 } 3597 3598 /** 3599 * skb_frag_net_iov - retrieve the net_iov referred to by fragment 3600 * @frag: the fragment 3601 * 3602 * Return: the &struct net_iov associated with @frag. Returns NULL if this 3603 * frag has no associated net_iov. 3604 */ 3605 static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag) 3606 { 3607 if (!skb_frag_is_net_iov(frag)) 3608 return NULL; 3609 3610 return netmem_to_net_iov(frag->netmem); 3611 } 3612 3613 /** 3614 * skb_frag_page - retrieve the page referred to by a paged fragment 3615 * @frag: the paged fragment 3616 * 3617 * Return: the &struct page associated with @frag. Returns NULL if this frag 3618 * has no associated page. 3619 */ 3620 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3621 { 3622 if (skb_frag_is_net_iov(frag)) 3623 return NULL; 3624 3625 return netmem_to_page(frag->netmem); 3626 } 3627 3628 /** 3629 * skb_frag_netmem - retrieve the netmem referred to by a fragment 3630 * @frag: the fragment 3631 * 3632 * Return: the &netmem_ref associated with @frag. 3633 */ 3634 static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag) 3635 { 3636 return frag->netmem; 3637 } 3638 3639 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3640 unsigned int headroom); 3641 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3642 const struct bpf_prog *prog); 3643 3644 /** 3645 * skb_frag_address - gets the address of the data contained in a paged fragment 3646 * @frag: the paged fragment buffer 3647 * 3648 * Returns: the address of the data within @frag. The page must already 3649 * be mapped. 3650 */ 3651 static inline void *skb_frag_address(const skb_frag_t *frag) 3652 { 3653 if (!skb_frag_page(frag)) 3654 return NULL; 3655 3656 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3657 } 3658 3659 /** 3660 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3661 * @frag: the paged fragment buffer 3662 * 3663 * Returns: the address of the data within @frag. Checks that the page 3664 * is mapped and returns %NULL otherwise. 3665 */ 3666 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3667 { 3668 void *ptr = page_address(skb_frag_page(frag)); 3669 if (unlikely(!ptr)) 3670 return NULL; 3671 3672 return ptr + skb_frag_off(frag); 3673 } 3674 3675 /** 3676 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3677 * @fragto: skb fragment where page is set 3678 * @fragfrom: skb fragment page is copied from 3679 */ 3680 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3681 const skb_frag_t *fragfrom) 3682 { 3683 fragto->netmem = fragfrom->netmem; 3684 } 3685 3686 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3687 3688 /** 3689 * __skb_frag_dma_map - maps a paged fragment via the DMA API 3690 * @dev: the device to map the fragment to 3691 * @frag: the paged fragment to map 3692 * @offset: the offset within the fragment (starting at the 3693 * fragment's own offset) 3694 * @size: the number of bytes to map 3695 * @dir: the direction of the mapping (``PCI_DMA_*``) 3696 * 3697 * Maps the page associated with @frag to @device. 3698 */ 3699 static inline dma_addr_t __skb_frag_dma_map(struct device *dev, 3700 const skb_frag_t *frag, 3701 size_t offset, size_t size, 3702 enum dma_data_direction dir) 3703 { 3704 return dma_map_page(dev, skb_frag_page(frag), 3705 skb_frag_off(frag) + offset, size, dir); 3706 } 3707 3708 #define skb_frag_dma_map(dev, frag, ...) \ 3709 CONCATENATE(_skb_frag_dma_map, \ 3710 COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__) 3711 3712 #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({ \ 3713 const skb_frag_t *uf = (frag); \ 3714 size_t uo = (offset); \ 3715 \ 3716 __skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo, \ 3717 DMA_TO_DEVICE); \ 3718 }) 3719 #define _skb_frag_dma_map1(dev, frag, offset) \ 3720 __skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_), \ 3721 __UNIQUE_ID(offset_)) 3722 #define _skb_frag_dma_map0(dev, frag) \ 3723 _skb_frag_dma_map1(dev, frag, 0) 3724 #define _skb_frag_dma_map2(dev, frag, offset, size) \ 3725 __skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE) 3726 #define _skb_frag_dma_map3(dev, frag, offset, size, dir) \ 3727 __skb_frag_dma_map(dev, frag, offset, size, dir) 3728 3729 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3730 gfp_t gfp_mask) 3731 { 3732 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3733 } 3734 3735 3736 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3737 gfp_t gfp_mask) 3738 { 3739 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3740 } 3741 3742 3743 /** 3744 * skb_clone_writable - is the header of a clone writable 3745 * @skb: buffer to check 3746 * @len: length up to which to write 3747 * 3748 * Returns true if modifying the header part of the cloned buffer 3749 * does not requires the data to be copied. 3750 */ 3751 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3752 { 3753 return !skb_header_cloned(skb) && 3754 skb_headroom(skb) + len <= skb->hdr_len; 3755 } 3756 3757 static inline int skb_try_make_writable(struct sk_buff *skb, 3758 unsigned int write_len) 3759 { 3760 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3761 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3762 } 3763 3764 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3765 int cloned) 3766 { 3767 int delta = 0; 3768 3769 if (headroom > skb_headroom(skb)) 3770 delta = headroom - skb_headroom(skb); 3771 3772 if (delta || cloned) 3773 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3774 GFP_ATOMIC); 3775 return 0; 3776 } 3777 3778 /** 3779 * skb_cow - copy header of skb when it is required 3780 * @skb: buffer to cow 3781 * @headroom: needed headroom 3782 * 3783 * If the skb passed lacks sufficient headroom or its data part 3784 * is shared, data is reallocated. If reallocation fails, an error 3785 * is returned and original skb is not changed. 3786 * 3787 * The result is skb with writable area skb->head...skb->tail 3788 * and at least @headroom of space at head. 3789 */ 3790 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3791 { 3792 return __skb_cow(skb, headroom, skb_cloned(skb)); 3793 } 3794 3795 /** 3796 * skb_cow_head - skb_cow but only making the head writable 3797 * @skb: buffer to cow 3798 * @headroom: needed headroom 3799 * 3800 * This function is identical to skb_cow except that we replace the 3801 * skb_cloned check by skb_header_cloned. It should be used when 3802 * you only need to push on some header and do not need to modify 3803 * the data. 3804 */ 3805 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3806 { 3807 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3808 } 3809 3810 /** 3811 * skb_padto - pad an skbuff up to a minimal size 3812 * @skb: buffer to pad 3813 * @len: minimal length 3814 * 3815 * Pads up a buffer to ensure the trailing bytes exist and are 3816 * blanked. If the buffer already contains sufficient data it 3817 * is untouched. Otherwise it is extended. Returns zero on 3818 * success. The skb is freed on error. 3819 */ 3820 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3821 { 3822 unsigned int size = skb->len; 3823 if (likely(size >= len)) 3824 return 0; 3825 return skb_pad(skb, len - size); 3826 } 3827 3828 /** 3829 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3830 * @skb: buffer to pad 3831 * @len: minimal length 3832 * @free_on_error: free buffer on error 3833 * 3834 * Pads up a buffer to ensure the trailing bytes exist and are 3835 * blanked. If the buffer already contains sufficient data it 3836 * is untouched. Otherwise it is extended. Returns zero on 3837 * success. The skb is freed on error if @free_on_error is true. 3838 */ 3839 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3840 unsigned int len, 3841 bool free_on_error) 3842 { 3843 unsigned int size = skb->len; 3844 3845 if (unlikely(size < len)) { 3846 len -= size; 3847 if (__skb_pad(skb, len, free_on_error)) 3848 return -ENOMEM; 3849 __skb_put(skb, len); 3850 } 3851 return 0; 3852 } 3853 3854 /** 3855 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3856 * @skb: buffer to pad 3857 * @len: minimal length 3858 * 3859 * Pads up a buffer to ensure the trailing bytes exist and are 3860 * blanked. If the buffer already contains sufficient data it 3861 * is untouched. Otherwise it is extended. Returns zero on 3862 * success. The skb is freed on error. 3863 */ 3864 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3865 { 3866 return __skb_put_padto(skb, len, true); 3867 } 3868 3869 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3870 __must_check; 3871 3872 static inline int skb_add_data(struct sk_buff *skb, 3873 struct iov_iter *from, int copy) 3874 { 3875 const int off = skb->len; 3876 3877 if (skb->ip_summed == CHECKSUM_NONE) { 3878 __wsum csum = 0; 3879 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3880 &csum, from)) { 3881 skb->csum = csum_block_add(skb->csum, csum, off); 3882 return 0; 3883 } 3884 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3885 return 0; 3886 3887 __skb_trim(skb, off); 3888 return -EFAULT; 3889 } 3890 3891 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3892 const struct page *page, int off) 3893 { 3894 if (skb_zcopy(skb)) 3895 return false; 3896 if (i) { 3897 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3898 3899 return page == skb_frag_page(frag) && 3900 off == skb_frag_off(frag) + skb_frag_size(frag); 3901 } 3902 return false; 3903 } 3904 3905 static inline int __skb_linearize(struct sk_buff *skb) 3906 { 3907 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3908 } 3909 3910 /** 3911 * skb_linearize - convert paged skb to linear one 3912 * @skb: buffer to linarize 3913 * 3914 * If there is no free memory -ENOMEM is returned, otherwise zero 3915 * is returned and the old skb data released. 3916 */ 3917 static inline int skb_linearize(struct sk_buff *skb) 3918 { 3919 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3920 } 3921 3922 /** 3923 * skb_has_shared_frag - can any frag be overwritten 3924 * @skb: buffer to test 3925 * 3926 * Return: true if the skb has at least one frag that might be modified 3927 * by an external entity (as in vmsplice()/sendfile()) 3928 */ 3929 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3930 { 3931 return skb_is_nonlinear(skb) && 3932 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3933 } 3934 3935 /** 3936 * skb_linearize_cow - make sure skb is linear and writable 3937 * @skb: buffer to process 3938 * 3939 * If there is no free memory -ENOMEM is returned, otherwise zero 3940 * is returned and the old skb data released. 3941 */ 3942 static inline int skb_linearize_cow(struct sk_buff *skb) 3943 { 3944 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3945 __skb_linearize(skb) : 0; 3946 } 3947 3948 static __always_inline void 3949 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3950 unsigned int off) 3951 { 3952 if (skb->ip_summed == CHECKSUM_COMPLETE) 3953 skb->csum = csum_block_sub(skb->csum, 3954 csum_partial(start, len, 0), off); 3955 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3956 skb_checksum_start_offset(skb) < 0) 3957 skb->ip_summed = CHECKSUM_NONE; 3958 } 3959 3960 /** 3961 * skb_postpull_rcsum - update checksum for received skb after pull 3962 * @skb: buffer to update 3963 * @start: start of data before pull 3964 * @len: length of data pulled 3965 * 3966 * After doing a pull on a received packet, you need to call this to 3967 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3968 * CHECKSUM_NONE so that it can be recomputed from scratch. 3969 */ 3970 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3971 const void *start, unsigned int len) 3972 { 3973 if (skb->ip_summed == CHECKSUM_COMPLETE) 3974 skb->csum = wsum_negate(csum_partial(start, len, 3975 wsum_negate(skb->csum))); 3976 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3977 skb_checksum_start_offset(skb) < 0) 3978 skb->ip_summed = CHECKSUM_NONE; 3979 } 3980 3981 static __always_inline void 3982 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3983 unsigned int off) 3984 { 3985 if (skb->ip_summed == CHECKSUM_COMPLETE) 3986 skb->csum = csum_block_add(skb->csum, 3987 csum_partial(start, len, 0), off); 3988 } 3989 3990 /** 3991 * skb_postpush_rcsum - update checksum for received skb after push 3992 * @skb: buffer to update 3993 * @start: start of data after push 3994 * @len: length of data pushed 3995 * 3996 * After doing a push on a received packet, you need to call this to 3997 * update the CHECKSUM_COMPLETE checksum. 3998 */ 3999 static inline void skb_postpush_rcsum(struct sk_buff *skb, 4000 const void *start, unsigned int len) 4001 { 4002 __skb_postpush_rcsum(skb, start, len, 0); 4003 } 4004 4005 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 4006 4007 /** 4008 * skb_push_rcsum - push skb and update receive checksum 4009 * @skb: buffer to update 4010 * @len: length of data pulled 4011 * 4012 * This function performs an skb_push on the packet and updates 4013 * the CHECKSUM_COMPLETE checksum. It should be used on 4014 * receive path processing instead of skb_push unless you know 4015 * that the checksum difference is zero (e.g., a valid IP header) 4016 * or you are setting ip_summed to CHECKSUM_NONE. 4017 */ 4018 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 4019 { 4020 skb_push(skb, len); 4021 skb_postpush_rcsum(skb, skb->data, len); 4022 return skb->data; 4023 } 4024 4025 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 4026 /** 4027 * pskb_trim_rcsum - trim received skb and update checksum 4028 * @skb: buffer to trim 4029 * @len: new length 4030 * 4031 * This is exactly the same as pskb_trim except that it ensures the 4032 * checksum of received packets are still valid after the operation. 4033 * It can change skb pointers. 4034 */ 4035 4036 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4037 { 4038 skb_might_realloc(skb); 4039 if (likely(len >= skb->len)) 4040 return 0; 4041 return pskb_trim_rcsum_slow(skb, len); 4042 } 4043 4044 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 4045 { 4046 if (skb->ip_summed == CHECKSUM_COMPLETE) 4047 skb->ip_summed = CHECKSUM_NONE; 4048 __skb_trim(skb, len); 4049 return 0; 4050 } 4051 4052 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 4053 { 4054 if (skb->ip_summed == CHECKSUM_COMPLETE) 4055 skb->ip_summed = CHECKSUM_NONE; 4056 return __skb_grow(skb, len); 4057 } 4058 4059 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 4060 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 4061 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 4062 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 4063 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 4064 4065 #define skb_queue_walk(queue, skb) \ 4066 for (skb = (queue)->next; \ 4067 skb != (struct sk_buff *)(queue); \ 4068 skb = skb->next) 4069 4070 #define skb_queue_walk_safe(queue, skb, tmp) \ 4071 for (skb = (queue)->next, tmp = skb->next; \ 4072 skb != (struct sk_buff *)(queue); \ 4073 skb = tmp, tmp = skb->next) 4074 4075 #define skb_queue_walk_from(queue, skb) \ 4076 for (; skb != (struct sk_buff *)(queue); \ 4077 skb = skb->next) 4078 4079 #define skb_rbtree_walk(skb, root) \ 4080 for (skb = skb_rb_first(root); skb != NULL; \ 4081 skb = skb_rb_next(skb)) 4082 4083 #define skb_rbtree_walk_from(skb) \ 4084 for (; skb != NULL; \ 4085 skb = skb_rb_next(skb)) 4086 4087 #define skb_rbtree_walk_from_safe(skb, tmp) \ 4088 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 4089 skb = tmp) 4090 4091 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 4092 for (tmp = skb->next; \ 4093 skb != (struct sk_buff *)(queue); \ 4094 skb = tmp, tmp = skb->next) 4095 4096 #define skb_queue_reverse_walk(queue, skb) \ 4097 for (skb = (queue)->prev; \ 4098 skb != (struct sk_buff *)(queue); \ 4099 skb = skb->prev) 4100 4101 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 4102 for (skb = (queue)->prev, tmp = skb->prev; \ 4103 skb != (struct sk_buff *)(queue); \ 4104 skb = tmp, tmp = skb->prev) 4105 4106 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 4107 for (tmp = skb->prev; \ 4108 skb != (struct sk_buff *)(queue); \ 4109 skb = tmp, tmp = skb->prev) 4110 4111 static inline bool skb_has_frag_list(const struct sk_buff *skb) 4112 { 4113 return skb_shinfo(skb)->frag_list != NULL; 4114 } 4115 4116 static inline void skb_frag_list_init(struct sk_buff *skb) 4117 { 4118 skb_shinfo(skb)->frag_list = NULL; 4119 } 4120 4121 #define skb_walk_frags(skb, iter) \ 4122 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 4123 4124 4125 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 4126 int *err, long *timeo_p, 4127 const struct sk_buff *skb); 4128 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 4129 struct sk_buff_head *queue, 4130 unsigned int flags, 4131 int *off, int *err, 4132 struct sk_buff **last); 4133 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 4134 struct sk_buff_head *queue, 4135 unsigned int flags, int *off, int *err, 4136 struct sk_buff **last); 4137 struct sk_buff *__skb_recv_datagram(struct sock *sk, 4138 struct sk_buff_head *sk_queue, 4139 unsigned int flags, int *off, int *err); 4140 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 4141 __poll_t datagram_poll(struct file *file, struct socket *sock, 4142 struct poll_table_struct *wait); 4143 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 4144 struct iov_iter *to, int size); 4145 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 4146 struct msghdr *msg, int size) 4147 { 4148 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 4149 } 4150 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 4151 struct msghdr *msg); 4152 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 4153 struct iov_iter *to, int len, 4154 struct ahash_request *hash); 4155 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 4156 struct iov_iter *from, int len); 4157 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 4158 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4159 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4160 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4161 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4162 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4163 int len); 4164 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4165 struct pipe_inode_info *pipe, unsigned int len, 4166 unsigned int flags); 4167 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4168 int len); 4169 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4170 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4171 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4172 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4173 int len, int hlen); 4174 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4175 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4176 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4177 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4178 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4179 unsigned int offset); 4180 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4181 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4182 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4183 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4184 int skb_vlan_pop(struct sk_buff *skb); 4185 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4186 int skb_eth_pop(struct sk_buff *skb); 4187 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4188 const unsigned char *src); 4189 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4190 int mac_len, bool ethernet); 4191 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4192 bool ethernet); 4193 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4194 int skb_mpls_dec_ttl(struct sk_buff *skb); 4195 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4196 gfp_t gfp); 4197 4198 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4199 { 4200 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4201 } 4202 4203 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4204 { 4205 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4206 } 4207 4208 struct skb_checksum_ops { 4209 __wsum (*update)(const void *mem, int len, __wsum wsum); 4210 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4211 }; 4212 4213 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4214 4215 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4216 __wsum csum, const struct skb_checksum_ops *ops); 4217 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4218 __wsum csum); 4219 4220 static inline void * __must_check 4221 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4222 const void *data, int hlen, void *buffer) 4223 { 4224 if (likely(hlen - offset >= len)) 4225 return (void *)data + offset; 4226 4227 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4228 return NULL; 4229 4230 return buffer; 4231 } 4232 4233 static inline void * __must_check 4234 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4235 { 4236 return __skb_header_pointer(skb, offset, len, skb->data, 4237 skb_headlen(skb), buffer); 4238 } 4239 4240 static inline void * __must_check 4241 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4242 { 4243 if (likely(skb_headlen(skb) - offset >= len)) 4244 return skb->data + offset; 4245 return NULL; 4246 } 4247 4248 /** 4249 * skb_needs_linearize - check if we need to linearize a given skb 4250 * depending on the given device features. 4251 * @skb: socket buffer to check 4252 * @features: net device features 4253 * 4254 * Returns true if either: 4255 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4256 * 2. skb is fragmented and the device does not support SG. 4257 */ 4258 static inline bool skb_needs_linearize(struct sk_buff *skb, 4259 netdev_features_t features) 4260 { 4261 return skb_is_nonlinear(skb) && 4262 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4263 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4264 } 4265 4266 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4267 void *to, 4268 const unsigned int len) 4269 { 4270 memcpy(to, skb->data, len); 4271 } 4272 4273 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4274 const int offset, void *to, 4275 const unsigned int len) 4276 { 4277 memcpy(to, skb->data + offset, len); 4278 } 4279 4280 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4281 const void *from, 4282 const unsigned int len) 4283 { 4284 memcpy(skb->data, from, len); 4285 } 4286 4287 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4288 const int offset, 4289 const void *from, 4290 const unsigned int len) 4291 { 4292 memcpy(skb->data + offset, from, len); 4293 } 4294 4295 void skb_init(void); 4296 4297 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4298 { 4299 return skb->tstamp; 4300 } 4301 4302 /** 4303 * skb_get_timestamp - get timestamp from a skb 4304 * @skb: skb to get stamp from 4305 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4306 * 4307 * Timestamps are stored in the skb as offsets to a base timestamp. 4308 * This function converts the offset back to a struct timeval and stores 4309 * it in stamp. 4310 */ 4311 static inline void skb_get_timestamp(const struct sk_buff *skb, 4312 struct __kernel_old_timeval *stamp) 4313 { 4314 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4315 } 4316 4317 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4318 struct __kernel_sock_timeval *stamp) 4319 { 4320 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4321 4322 stamp->tv_sec = ts.tv_sec; 4323 stamp->tv_usec = ts.tv_nsec / 1000; 4324 } 4325 4326 static inline void skb_get_timestampns(const struct sk_buff *skb, 4327 struct __kernel_old_timespec *stamp) 4328 { 4329 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4330 4331 stamp->tv_sec = ts.tv_sec; 4332 stamp->tv_nsec = ts.tv_nsec; 4333 } 4334 4335 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4336 struct __kernel_timespec *stamp) 4337 { 4338 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4339 4340 stamp->tv_sec = ts.tv_sec; 4341 stamp->tv_nsec = ts.tv_nsec; 4342 } 4343 4344 static inline void __net_timestamp(struct sk_buff *skb) 4345 { 4346 skb->tstamp = ktime_get_real(); 4347 skb->tstamp_type = SKB_CLOCK_REALTIME; 4348 } 4349 4350 static inline ktime_t net_timedelta(ktime_t t) 4351 { 4352 return ktime_sub(ktime_get_real(), t); 4353 } 4354 4355 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4356 u8 tstamp_type) 4357 { 4358 skb->tstamp = kt; 4359 4360 if (kt) 4361 skb->tstamp_type = tstamp_type; 4362 else 4363 skb->tstamp_type = SKB_CLOCK_REALTIME; 4364 } 4365 4366 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, 4367 ktime_t kt, clockid_t clockid) 4368 { 4369 u8 tstamp_type = SKB_CLOCK_REALTIME; 4370 4371 switch (clockid) { 4372 case CLOCK_REALTIME: 4373 break; 4374 case CLOCK_MONOTONIC: 4375 tstamp_type = SKB_CLOCK_MONOTONIC; 4376 break; 4377 case CLOCK_TAI: 4378 tstamp_type = SKB_CLOCK_TAI; 4379 break; 4380 default: 4381 WARN_ON_ONCE(1); 4382 kt = 0; 4383 } 4384 4385 skb_set_delivery_time(skb, kt, tstamp_type); 4386 } 4387 4388 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4389 4390 /* It is used in the ingress path to clear the delivery_time. 4391 * If needed, set the skb->tstamp to the (rcv) timestamp. 4392 */ 4393 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4394 { 4395 if (skb->tstamp_type) { 4396 skb->tstamp_type = SKB_CLOCK_REALTIME; 4397 if (static_branch_unlikely(&netstamp_needed_key)) 4398 skb->tstamp = ktime_get_real(); 4399 else 4400 skb->tstamp = 0; 4401 } 4402 } 4403 4404 static inline void skb_clear_tstamp(struct sk_buff *skb) 4405 { 4406 if (skb->tstamp_type) 4407 return; 4408 4409 skb->tstamp = 0; 4410 } 4411 4412 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4413 { 4414 if (skb->tstamp_type) 4415 return 0; 4416 4417 return skb->tstamp; 4418 } 4419 4420 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4421 { 4422 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) 4423 return skb->tstamp; 4424 4425 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4426 return ktime_get_real(); 4427 4428 return 0; 4429 } 4430 4431 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4432 { 4433 return skb_shinfo(skb)->meta_len; 4434 } 4435 4436 static inline void *skb_metadata_end(const struct sk_buff *skb) 4437 { 4438 return skb_mac_header(skb); 4439 } 4440 4441 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4442 const struct sk_buff *skb_b, 4443 u8 meta_len) 4444 { 4445 const void *a = skb_metadata_end(skb_a); 4446 const void *b = skb_metadata_end(skb_b); 4447 u64 diffs = 0; 4448 4449 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4450 BITS_PER_LONG != 64) 4451 goto slow; 4452 4453 /* Using more efficient variant than plain call to memcmp(). */ 4454 switch (meta_len) { 4455 #define __it(x, op) (x -= sizeof(u##op)) 4456 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4457 case 32: diffs |= __it_diff(a, b, 64); 4458 fallthrough; 4459 case 24: diffs |= __it_diff(a, b, 64); 4460 fallthrough; 4461 case 16: diffs |= __it_diff(a, b, 64); 4462 fallthrough; 4463 case 8: diffs |= __it_diff(a, b, 64); 4464 break; 4465 case 28: diffs |= __it_diff(a, b, 64); 4466 fallthrough; 4467 case 20: diffs |= __it_diff(a, b, 64); 4468 fallthrough; 4469 case 12: diffs |= __it_diff(a, b, 64); 4470 fallthrough; 4471 case 4: diffs |= __it_diff(a, b, 32); 4472 break; 4473 default: 4474 slow: 4475 return memcmp(a - meta_len, b - meta_len, meta_len); 4476 } 4477 return diffs; 4478 } 4479 4480 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4481 const struct sk_buff *skb_b) 4482 { 4483 u8 len_a = skb_metadata_len(skb_a); 4484 u8 len_b = skb_metadata_len(skb_b); 4485 4486 if (!(len_a | len_b)) 4487 return false; 4488 4489 return len_a != len_b ? 4490 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4491 } 4492 4493 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4494 { 4495 skb_shinfo(skb)->meta_len = meta_len; 4496 } 4497 4498 static inline void skb_metadata_clear(struct sk_buff *skb) 4499 { 4500 skb_metadata_set(skb, 0); 4501 } 4502 4503 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4504 4505 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4506 4507 void skb_clone_tx_timestamp(struct sk_buff *skb); 4508 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4509 4510 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4511 4512 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4513 { 4514 } 4515 4516 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4517 { 4518 return false; 4519 } 4520 4521 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4522 4523 /** 4524 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4525 * 4526 * PHY drivers may accept clones of transmitted packets for 4527 * timestamping via their phy_driver.txtstamp method. These drivers 4528 * must call this function to return the skb back to the stack with a 4529 * timestamp. 4530 * 4531 * @skb: clone of the original outgoing packet 4532 * @hwtstamps: hardware time stamps 4533 * 4534 */ 4535 void skb_complete_tx_timestamp(struct sk_buff *skb, 4536 struct skb_shared_hwtstamps *hwtstamps); 4537 4538 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4539 struct skb_shared_hwtstamps *hwtstamps, 4540 struct sock *sk, int tstype); 4541 4542 /** 4543 * skb_tstamp_tx - queue clone of skb with send time stamps 4544 * @orig_skb: the original outgoing packet 4545 * @hwtstamps: hardware time stamps, may be NULL if not available 4546 * 4547 * If the skb has a socket associated, then this function clones the 4548 * skb (thus sharing the actual data and optional structures), stores 4549 * the optional hardware time stamping information (if non NULL) or 4550 * generates a software time stamp (otherwise), then queues the clone 4551 * to the error queue of the socket. Errors are silently ignored. 4552 */ 4553 void skb_tstamp_tx(struct sk_buff *orig_skb, 4554 struct skb_shared_hwtstamps *hwtstamps); 4555 4556 /** 4557 * skb_tx_timestamp() - Driver hook for transmit timestamping 4558 * 4559 * Ethernet MAC Drivers should call this function in their hard_xmit() 4560 * function immediately before giving the sk_buff to the MAC hardware. 4561 * 4562 * Specifically, one should make absolutely sure that this function is 4563 * called before TX completion of this packet can trigger. Otherwise 4564 * the packet could potentially already be freed. 4565 * 4566 * @skb: A socket buffer. 4567 */ 4568 static inline void skb_tx_timestamp(struct sk_buff *skb) 4569 { 4570 skb_clone_tx_timestamp(skb); 4571 if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF)) 4572 skb_tstamp_tx(skb, NULL); 4573 } 4574 4575 /** 4576 * skb_complete_wifi_ack - deliver skb with wifi status 4577 * 4578 * @skb: the original outgoing packet 4579 * @acked: ack status 4580 * 4581 */ 4582 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4583 4584 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4585 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4586 4587 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4588 { 4589 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4590 skb->csum_valid || 4591 (skb->ip_summed == CHECKSUM_PARTIAL && 4592 skb_checksum_start_offset(skb) >= 0)); 4593 } 4594 4595 /** 4596 * skb_checksum_complete - Calculate checksum of an entire packet 4597 * @skb: packet to process 4598 * 4599 * This function calculates the checksum over the entire packet plus 4600 * the value of skb->csum. The latter can be used to supply the 4601 * checksum of a pseudo header as used by TCP/UDP. It returns the 4602 * checksum. 4603 * 4604 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4605 * this function can be used to verify that checksum on received 4606 * packets. In that case the function should return zero if the 4607 * checksum is correct. In particular, this function will return zero 4608 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4609 * hardware has already verified the correctness of the checksum. 4610 */ 4611 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4612 { 4613 return skb_csum_unnecessary(skb) ? 4614 0 : __skb_checksum_complete(skb); 4615 } 4616 4617 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4618 { 4619 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4620 if (skb->csum_level == 0) 4621 skb->ip_summed = CHECKSUM_NONE; 4622 else 4623 skb->csum_level--; 4624 } 4625 } 4626 4627 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4628 { 4629 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4630 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4631 skb->csum_level++; 4632 } else if (skb->ip_summed == CHECKSUM_NONE) { 4633 skb->ip_summed = CHECKSUM_UNNECESSARY; 4634 skb->csum_level = 0; 4635 } 4636 } 4637 4638 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4639 { 4640 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4641 skb->ip_summed = CHECKSUM_NONE; 4642 skb->csum_level = 0; 4643 } 4644 } 4645 4646 /* Check if we need to perform checksum complete validation. 4647 * 4648 * Returns: true if checksum complete is needed, false otherwise 4649 * (either checksum is unnecessary or zero checksum is allowed). 4650 */ 4651 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4652 bool zero_okay, 4653 __sum16 check) 4654 { 4655 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4656 skb->csum_valid = 1; 4657 __skb_decr_checksum_unnecessary(skb); 4658 return false; 4659 } 4660 4661 return true; 4662 } 4663 4664 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4665 * in checksum_init. 4666 */ 4667 #define CHECKSUM_BREAK 76 4668 4669 /* Unset checksum-complete 4670 * 4671 * Unset checksum complete can be done when packet is being modified 4672 * (uncompressed for instance) and checksum-complete value is 4673 * invalidated. 4674 */ 4675 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4676 { 4677 if (skb->ip_summed == CHECKSUM_COMPLETE) 4678 skb->ip_summed = CHECKSUM_NONE; 4679 } 4680 4681 /* Validate (init) checksum based on checksum complete. 4682 * 4683 * Return values: 4684 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4685 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4686 * checksum is stored in skb->csum for use in __skb_checksum_complete 4687 * non-zero: value of invalid checksum 4688 * 4689 */ 4690 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4691 bool complete, 4692 __wsum psum) 4693 { 4694 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4695 if (!csum_fold(csum_add(psum, skb->csum))) { 4696 skb->csum_valid = 1; 4697 return 0; 4698 } 4699 } 4700 4701 skb->csum = psum; 4702 4703 if (complete || skb->len <= CHECKSUM_BREAK) { 4704 __sum16 csum; 4705 4706 csum = __skb_checksum_complete(skb); 4707 skb->csum_valid = !csum; 4708 return csum; 4709 } 4710 4711 return 0; 4712 } 4713 4714 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4715 { 4716 return 0; 4717 } 4718 4719 /* Perform checksum validate (init). Note that this is a macro since we only 4720 * want to calculate the pseudo header which is an input function if necessary. 4721 * First we try to validate without any computation (checksum unnecessary) and 4722 * then calculate based on checksum complete calling the function to compute 4723 * pseudo header. 4724 * 4725 * Return values: 4726 * 0: checksum is validated or try to in skb_checksum_complete 4727 * non-zero: value of invalid checksum 4728 */ 4729 #define __skb_checksum_validate(skb, proto, complete, \ 4730 zero_okay, check, compute_pseudo) \ 4731 ({ \ 4732 __sum16 __ret = 0; \ 4733 skb->csum_valid = 0; \ 4734 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4735 __ret = __skb_checksum_validate_complete(skb, \ 4736 complete, compute_pseudo(skb, proto)); \ 4737 __ret; \ 4738 }) 4739 4740 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4741 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4742 4743 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4744 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4745 4746 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4747 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4748 4749 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4750 compute_pseudo) \ 4751 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4752 4753 #define skb_checksum_simple_validate(skb) \ 4754 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4755 4756 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4757 { 4758 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4759 } 4760 4761 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4762 { 4763 skb->csum = ~pseudo; 4764 skb->ip_summed = CHECKSUM_COMPLETE; 4765 } 4766 4767 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4768 do { \ 4769 if (__skb_checksum_convert_check(skb)) \ 4770 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4771 } while (0) 4772 4773 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4774 u16 start, u16 offset) 4775 { 4776 skb->ip_summed = CHECKSUM_PARTIAL; 4777 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4778 skb->csum_offset = offset - start; 4779 } 4780 4781 /* Update skbuf and packet to reflect the remote checksum offload operation. 4782 * When called, ptr indicates the starting point for skb->csum when 4783 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4784 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4785 */ 4786 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4787 int start, int offset, bool nopartial) 4788 { 4789 __wsum delta; 4790 4791 if (!nopartial) { 4792 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4793 return; 4794 } 4795 4796 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4797 __skb_checksum_complete(skb); 4798 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4799 } 4800 4801 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4802 4803 /* Adjust skb->csum since we changed the packet */ 4804 skb->csum = csum_add(skb->csum, delta); 4805 } 4806 4807 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4808 { 4809 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4810 return (void *)(skb->_nfct & NFCT_PTRMASK); 4811 #else 4812 return NULL; 4813 #endif 4814 } 4815 4816 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4817 { 4818 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4819 return skb->_nfct; 4820 #else 4821 return 0UL; 4822 #endif 4823 } 4824 4825 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4826 { 4827 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4828 skb->slow_gro |= !!nfct; 4829 skb->_nfct = nfct; 4830 #endif 4831 } 4832 4833 #ifdef CONFIG_SKB_EXTENSIONS 4834 enum skb_ext_id { 4835 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4836 SKB_EXT_BRIDGE_NF, 4837 #endif 4838 #ifdef CONFIG_XFRM 4839 SKB_EXT_SEC_PATH, 4840 #endif 4841 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4842 TC_SKB_EXT, 4843 #endif 4844 #if IS_ENABLED(CONFIG_MPTCP) 4845 SKB_EXT_MPTCP, 4846 #endif 4847 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4848 SKB_EXT_MCTP, 4849 #endif 4850 SKB_EXT_NUM, /* must be last */ 4851 }; 4852 4853 /** 4854 * struct skb_ext - sk_buff extensions 4855 * @refcnt: 1 on allocation, deallocated on 0 4856 * @offset: offset to add to @data to obtain extension address 4857 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4858 * @data: start of extension data, variable sized 4859 * 4860 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4861 * to use 'u8' types while allowing up to 2kb worth of extension data. 4862 */ 4863 struct skb_ext { 4864 refcount_t refcnt; 4865 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4866 u8 chunks; /* same */ 4867 char data[] __aligned(8); 4868 }; 4869 4870 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4871 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4872 struct skb_ext *ext); 4873 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4874 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4875 void __skb_ext_put(struct skb_ext *ext); 4876 4877 static inline void skb_ext_put(struct sk_buff *skb) 4878 { 4879 if (skb->active_extensions) 4880 __skb_ext_put(skb->extensions); 4881 } 4882 4883 static inline void __skb_ext_copy(struct sk_buff *dst, 4884 const struct sk_buff *src) 4885 { 4886 dst->active_extensions = src->active_extensions; 4887 4888 if (src->active_extensions) { 4889 struct skb_ext *ext = src->extensions; 4890 4891 refcount_inc(&ext->refcnt); 4892 dst->extensions = ext; 4893 } 4894 } 4895 4896 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4897 { 4898 skb_ext_put(dst); 4899 __skb_ext_copy(dst, src); 4900 } 4901 4902 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4903 { 4904 return !!ext->offset[i]; 4905 } 4906 4907 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4908 { 4909 return skb->active_extensions & (1 << id); 4910 } 4911 4912 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4913 { 4914 if (skb_ext_exist(skb, id)) 4915 __skb_ext_del(skb, id); 4916 } 4917 4918 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4919 { 4920 if (skb_ext_exist(skb, id)) { 4921 struct skb_ext *ext = skb->extensions; 4922 4923 return (void *)ext + (ext->offset[id] << 3); 4924 } 4925 4926 return NULL; 4927 } 4928 4929 static inline void skb_ext_reset(struct sk_buff *skb) 4930 { 4931 if (unlikely(skb->active_extensions)) { 4932 __skb_ext_put(skb->extensions); 4933 skb->active_extensions = 0; 4934 } 4935 } 4936 4937 static inline bool skb_has_extensions(struct sk_buff *skb) 4938 { 4939 return unlikely(skb->active_extensions); 4940 } 4941 #else 4942 static inline void skb_ext_put(struct sk_buff *skb) {} 4943 static inline void skb_ext_reset(struct sk_buff *skb) {} 4944 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4945 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4946 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4947 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4948 #endif /* CONFIG_SKB_EXTENSIONS */ 4949 4950 static inline void nf_reset_ct(struct sk_buff *skb) 4951 { 4952 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4953 nf_conntrack_put(skb_nfct(skb)); 4954 skb->_nfct = 0; 4955 #endif 4956 } 4957 4958 static inline void nf_reset_trace(struct sk_buff *skb) 4959 { 4960 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4961 skb->nf_trace = 0; 4962 #endif 4963 } 4964 4965 static inline void ipvs_reset(struct sk_buff *skb) 4966 { 4967 #if IS_ENABLED(CONFIG_IP_VS) 4968 skb->ipvs_property = 0; 4969 #endif 4970 } 4971 4972 /* Note: This doesn't put any conntrack info in dst. */ 4973 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4974 bool copy) 4975 { 4976 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4977 dst->_nfct = src->_nfct; 4978 nf_conntrack_get(skb_nfct(src)); 4979 #endif 4980 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4981 if (copy) 4982 dst->nf_trace = src->nf_trace; 4983 #endif 4984 } 4985 4986 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4987 { 4988 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4989 nf_conntrack_put(skb_nfct(dst)); 4990 #endif 4991 dst->slow_gro = src->slow_gro; 4992 __nf_copy(dst, src, true); 4993 } 4994 4995 #ifdef CONFIG_NETWORK_SECMARK 4996 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4997 { 4998 to->secmark = from->secmark; 4999 } 5000 5001 static inline void skb_init_secmark(struct sk_buff *skb) 5002 { 5003 skb->secmark = 0; 5004 } 5005 #else 5006 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 5007 { } 5008 5009 static inline void skb_init_secmark(struct sk_buff *skb) 5010 { } 5011 #endif 5012 5013 static inline int secpath_exists(const struct sk_buff *skb) 5014 { 5015 #ifdef CONFIG_XFRM 5016 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 5017 #else 5018 return 0; 5019 #endif 5020 } 5021 5022 static inline bool skb_irq_freeable(const struct sk_buff *skb) 5023 { 5024 return !skb->destructor && 5025 !secpath_exists(skb) && 5026 !skb_nfct(skb) && 5027 !skb->_skb_refdst && 5028 !skb_has_frag_list(skb); 5029 } 5030 5031 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 5032 { 5033 skb->queue_mapping = queue_mapping; 5034 } 5035 5036 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 5037 { 5038 return skb->queue_mapping; 5039 } 5040 5041 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 5042 { 5043 to->queue_mapping = from->queue_mapping; 5044 } 5045 5046 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 5047 { 5048 skb->queue_mapping = rx_queue + 1; 5049 } 5050 5051 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 5052 { 5053 return skb->queue_mapping - 1; 5054 } 5055 5056 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 5057 { 5058 return skb->queue_mapping != 0; 5059 } 5060 5061 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 5062 { 5063 skb->dst_pending_confirm = val; 5064 } 5065 5066 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 5067 { 5068 return skb->dst_pending_confirm != 0; 5069 } 5070 5071 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 5072 { 5073 #ifdef CONFIG_XFRM 5074 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 5075 #else 5076 return NULL; 5077 #endif 5078 } 5079 5080 static inline bool skb_is_gso(const struct sk_buff *skb) 5081 { 5082 return skb_shinfo(skb)->gso_size; 5083 } 5084 5085 /* Note: Should be called only if skb_is_gso(skb) is true */ 5086 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 5087 { 5088 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 5089 } 5090 5091 /* Note: Should be called only if skb_is_gso(skb) is true */ 5092 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 5093 { 5094 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 5095 } 5096 5097 /* Note: Should be called only if skb_is_gso(skb) is true */ 5098 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 5099 { 5100 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 5101 } 5102 5103 static inline void skb_gso_reset(struct sk_buff *skb) 5104 { 5105 skb_shinfo(skb)->gso_size = 0; 5106 skb_shinfo(skb)->gso_segs = 0; 5107 skb_shinfo(skb)->gso_type = 0; 5108 } 5109 5110 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 5111 u16 increment) 5112 { 5113 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5114 return; 5115 shinfo->gso_size += increment; 5116 } 5117 5118 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 5119 u16 decrement) 5120 { 5121 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 5122 return; 5123 shinfo->gso_size -= decrement; 5124 } 5125 5126 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 5127 5128 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 5129 { 5130 /* LRO sets gso_size but not gso_type, whereas if GSO is really 5131 * wanted then gso_type will be set. */ 5132 const struct skb_shared_info *shinfo = skb_shinfo(skb); 5133 5134 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 5135 unlikely(shinfo->gso_type == 0)) { 5136 __skb_warn_lro_forwarding(skb); 5137 return true; 5138 } 5139 return false; 5140 } 5141 5142 static inline void skb_forward_csum(struct sk_buff *skb) 5143 { 5144 /* Unfortunately we don't support this one. Any brave souls? */ 5145 if (skb->ip_summed == CHECKSUM_COMPLETE) 5146 skb->ip_summed = CHECKSUM_NONE; 5147 } 5148 5149 /** 5150 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 5151 * @skb: skb to check 5152 * 5153 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 5154 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 5155 * use this helper, to document places where we make this assertion. 5156 */ 5157 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 5158 { 5159 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5160 } 5161 5162 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5163 5164 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5165 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5166 unsigned int transport_len, 5167 __sum16(*skb_chkf)(struct sk_buff *skb)); 5168 5169 /** 5170 * skb_head_is_locked - Determine if the skb->head is locked down 5171 * @skb: skb to check 5172 * 5173 * The head on skbs build around a head frag can be removed if they are 5174 * not cloned. This function returns true if the skb head is locked down 5175 * due to either being allocated via kmalloc, or by being a clone with 5176 * multiple references to the head. 5177 */ 5178 static inline bool skb_head_is_locked(const struct sk_buff *skb) 5179 { 5180 return !skb->head_frag || skb_cloned(skb); 5181 } 5182 5183 /* Local Checksum Offload. 5184 * Compute outer checksum based on the assumption that the 5185 * inner checksum will be offloaded later. 5186 * See Documentation/networking/checksum-offloads.rst for 5187 * explanation of how this works. 5188 * Fill in outer checksum adjustment (e.g. with sum of outer 5189 * pseudo-header) before calling. 5190 * Also ensure that inner checksum is in linear data area. 5191 */ 5192 static inline __wsum lco_csum(struct sk_buff *skb) 5193 { 5194 unsigned char *csum_start = skb_checksum_start(skb); 5195 unsigned char *l4_hdr = skb_transport_header(skb); 5196 __wsum partial; 5197 5198 /* Start with complement of inner checksum adjustment */ 5199 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5200 skb->csum_offset)); 5201 5202 /* Add in checksum of our headers (incl. outer checksum 5203 * adjustment filled in by caller) and return result. 5204 */ 5205 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5206 } 5207 5208 static inline bool skb_is_redirected(const struct sk_buff *skb) 5209 { 5210 return skb->redirected; 5211 } 5212 5213 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5214 { 5215 skb->redirected = 1; 5216 #ifdef CONFIG_NET_REDIRECT 5217 skb->from_ingress = from_ingress; 5218 if (skb->from_ingress) 5219 skb_clear_tstamp(skb); 5220 #endif 5221 } 5222 5223 static inline void skb_reset_redirect(struct sk_buff *skb) 5224 { 5225 skb->redirected = 0; 5226 } 5227 5228 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5229 bool from_ingress) 5230 { 5231 skb->redirected = 1; 5232 #ifdef CONFIG_NET_REDIRECT 5233 skb->from_ingress = from_ingress; 5234 #endif 5235 } 5236 5237 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5238 { 5239 #if IS_ENABLED(CONFIG_IP_SCTP) 5240 return skb->csum_not_inet; 5241 #else 5242 return 0; 5243 #endif 5244 } 5245 5246 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5247 { 5248 skb->ip_summed = CHECKSUM_NONE; 5249 #if IS_ENABLED(CONFIG_IP_SCTP) 5250 skb->csum_not_inet = 0; 5251 #endif 5252 } 5253 5254 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5255 const u64 kcov_handle) 5256 { 5257 #ifdef CONFIG_KCOV 5258 skb->kcov_handle = kcov_handle; 5259 #endif 5260 } 5261 5262 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5263 { 5264 #ifdef CONFIG_KCOV 5265 return skb->kcov_handle; 5266 #else 5267 return 0; 5268 #endif 5269 } 5270 5271 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5272 { 5273 #ifdef CONFIG_PAGE_POOL 5274 skb->pp_recycle = 1; 5275 #endif 5276 } 5277 5278 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5279 ssize_t maxsize, gfp_t gfp); 5280 5281 #endif /* __KERNEL__ */ 5282 #endif /* _LINUX_SKBUFF_H */ 5283