xref: /linux-6.15/include/linux/skbuff.h (revision ec2da07c)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/cache.h>
18 #include <linux/rbtree.h>
19 #include <linux/socket.h>
20 #include <linux/refcount.h>
21 
22 #include <linux/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/hrtimer.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdev_features.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <net/flow_dissector.h>
35 #include <linux/splice.h>
36 #include <linux/in6.h>
37 #include <linux/if_packet.h>
38 #include <net/flow.h>
39 
40 /* The interface for checksum offload between the stack and networking drivers
41  * is as follows...
42  *
43  * A. IP checksum related features
44  *
45  * Drivers advertise checksum offload capabilities in the features of a device.
46  * From the stack's point of view these are capabilities offered by the driver,
47  * a driver typically only advertises features that it is capable of offloading
48  * to its device.
49  *
50  * The checksum related features are:
51  *
52  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
53  *			  IP (one's complement) checksum for any combination
54  *			  of protocols or protocol layering. The checksum is
55  *			  computed and set in a packet per the CHECKSUM_PARTIAL
56  *			  interface (see below).
57  *
58  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
59  *			  TCP or UDP packets over IPv4. These are specifically
60  *			  unencapsulated packets of the form IPv4|TCP or
61  *			  IPv4|UDP where the Protocol field in the IPv4 header
62  *			  is TCP or UDP. The IPv4 header may contain IP options
63  *			  This feature cannot be set in features for a device
64  *			  with NETIF_F_HW_CSUM also set. This feature is being
65  *			  DEPRECATED (see below).
66  *
67  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
68  *			  TCP or UDP packets over IPv6. These are specifically
69  *			  unencapsulated packets of the form IPv6|TCP or
70  *			  IPv4|UDP where the Next Header field in the IPv6
71  *			  header is either TCP or UDP. IPv6 extension headers
72  *			  are not supported with this feature. This feature
73  *			  cannot be set in features for a device with
74  *			  NETIF_F_HW_CSUM also set. This feature is being
75  *			  DEPRECATED (see below).
76  *
77  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
78  *			 This flag is used only used to disable the RX checksum
79  *			 feature for a device. The stack will accept receive
80  *			 checksum indication in packets received on a device
81  *			 regardless of whether NETIF_F_RXCSUM is set.
82  *
83  * B. Checksumming of received packets by device. Indication of checksum
84  *    verification is in set skb->ip_summed. Possible values are:
85  *
86  * CHECKSUM_NONE:
87  *
88  *   Device did not checksum this packet e.g. due to lack of capabilities.
89  *   The packet contains full (though not verified) checksum in packet but
90  *   not in skb->csum. Thus, skb->csum is undefined in this case.
91  *
92  * CHECKSUM_UNNECESSARY:
93  *
94  *   The hardware you're dealing with doesn't calculate the full checksum
95  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
96  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
97  *   if their checksums are okay. skb->csum is still undefined in this case
98  *   though. A driver or device must never modify the checksum field in the
99  *   packet even if checksum is verified.
100  *
101  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
102  *     TCP: IPv6 and IPv4.
103  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
104  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
105  *       may perform further validation in this case.
106  *     GRE: only if the checksum is present in the header.
107  *     SCTP: indicates the CRC in SCTP header has been validated.
108  *     FCOE: indicates the CRC in FC frame has been validated.
109  *
110  *   skb->csum_level indicates the number of consecutive checksums found in
111  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
112  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
113  *   and a device is able to verify the checksums for UDP (possibly zero),
114  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
115  *   two. If the device were only able to verify the UDP checksum and not
116  *   GRE, either because it doesn't support GRE checksum of because GRE
117  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
118  *   not considered in this case).
119  *
120  * CHECKSUM_COMPLETE:
121  *
122  *   This is the most generic way. The device supplied checksum of the _whole_
123  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
124  *   hardware doesn't need to parse L3/L4 headers to implement this.
125  *
126  *   Notes:
127  *   - Even if device supports only some protocols, but is able to produce
128  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
130  *
131  * CHECKSUM_PARTIAL:
132  *
133  *   A checksum is set up to be offloaded to a device as described in the
134  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
135  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
136  *   on the same host, or it may be set in the input path in GRO or remote
137  *   checksum offload. For the purposes of checksum verification, the checksum
138  *   referred to by skb->csum_start + skb->csum_offset and any preceding
139  *   checksums in the packet are considered verified. Any checksums in the
140  *   packet that are after the checksum being offloaded are not considered to
141  *   be verified.
142  *
143  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144  *    in the skb->ip_summed for a packet. Values are:
145  *
146  * CHECKSUM_PARTIAL:
147  *
148  *   The driver is required to checksum the packet as seen by hard_start_xmit()
149  *   from skb->csum_start up to the end, and to record/write the checksum at
150  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
151  *   csum_start and csum_offset values are valid values given the length and
152  *   offset of the packet, however they should not attempt to validate that the
153  *   checksum refers to a legitimate transport layer checksum-- it is the
154  *   purview of the stack to validate that csum_start and csum_offset are set
155  *   correctly.
156  *
157  *   When the stack requests checksum offload for a packet, the driver MUST
158  *   ensure that the checksum is set correctly. A driver can either offload the
159  *   checksum calculation to the device, or call skb_checksum_help (in the case
160  *   that the device does not support offload for a particular checksum).
161  *
162  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164  *   checksum offload capability.
165  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
166  *   on network device checksumming capabilities: if a packet does not match
167  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
168  *   csum_not_inet, see item D.) is called to resolve the checksum.
169  *
170  * CHECKSUM_NONE:
171  *
172  *   The skb was already checksummed by the protocol, or a checksum is not
173  *   required.
174  *
175  * CHECKSUM_UNNECESSARY:
176  *
177  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
178  *   output.
179  *
180  * CHECKSUM_COMPLETE:
181  *   Not used in checksum output. If a driver observes a packet with this value
182  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
183  *
184  * D. Non-IP checksum (CRC) offloads
185  *
186  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
187  *     offloading the SCTP CRC in a packet. To perform this offload the stack
188  *     will set set csum_start and csum_offset accordingly, set ip_summed to
189  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
190  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
191  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
192  *     must verify which offload is configured for a packet by testing the
193  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
194  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
195  *
196  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197  *     offloading the FCOE CRC in a packet. To perform this offload the stack
198  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199  *     accordingly. Note the there is no indication in the skbuff that the
200  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201  *     both IP checksum offload and FCOE CRC offload must verify which offload
202  *     is configured for a packet presumably by inspecting packet headers.
203  *
204  * E. Checksumming on output with GSO.
205  *
206  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209  * part of the GSO operation is implied. If a checksum is being offloaded
210  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211  * are set to refer to the outermost checksum being offload (two offloaded
212  * checksums are possible with UDP encapsulation).
213  */
214 
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE		0
217 #define CHECKSUM_UNNECESSARY	1
218 #define CHECKSUM_COMPLETE	2
219 #define CHECKSUM_PARTIAL	3
220 
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL	3
223 
224 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X)	\
226 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
231 
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) +						\
234 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
235 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236 
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242 struct bpf_prog;
243 union bpf_attr;
244 struct skb_ext;
245 
246 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
247 struct nf_conntrack {
248 	atomic_t use;
249 };
250 #endif
251 
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254 	enum {
255 		BRNF_PROTO_UNCHANGED,
256 		BRNF_PROTO_8021Q,
257 		BRNF_PROTO_PPPOE
258 	} orig_proto:8;
259 	u8			pkt_otherhost:1;
260 	u8			in_prerouting:1;
261 	u8			bridged_dnat:1;
262 	__u16			frag_max_size;
263 	struct net_device	*physindev;
264 
265 	/* always valid & non-NULL from FORWARD on, for physdev match */
266 	struct net_device	*physoutdev;
267 	union {
268 		/* prerouting: detect dnat in orig/reply direction */
269 		__be32          ipv4_daddr;
270 		struct in6_addr ipv6_daddr;
271 
272 		/* after prerouting + nat detected: store original source
273 		 * mac since neigh resolution overwrites it, only used while
274 		 * skb is out in neigh layer.
275 		 */
276 		char neigh_header[8];
277 	};
278 };
279 #endif
280 
281 struct sk_buff_head {
282 	/* These two members must be first. */
283 	struct sk_buff	*next;
284 	struct sk_buff	*prev;
285 
286 	__u32		qlen;
287 	spinlock_t	lock;
288 };
289 
290 struct sk_buff;
291 
292 /* To allow 64K frame to be packed as single skb without frag_list we
293  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
294  * buffers which do not start on a page boundary.
295  *
296  * Since GRO uses frags we allocate at least 16 regardless of page
297  * size.
298  */
299 #if (65536/PAGE_SIZE + 1) < 16
300 #define MAX_SKB_FRAGS 16UL
301 #else
302 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
303 #endif
304 extern int sysctl_max_skb_frags;
305 
306 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
307  * segment using its current segmentation instead.
308  */
309 #define GSO_BY_FRAGS	0xFFFF
310 
311 typedef struct skb_frag_struct skb_frag_t;
312 
313 struct skb_frag_struct {
314 	struct {
315 		struct page *p;
316 	} page;
317 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
318 	__u32 page_offset;
319 	__u32 size;
320 #else
321 	__u16 page_offset;
322 	__u16 size;
323 #endif
324 };
325 
326 /**
327  * skb_frag_size - Returns the size of a skb fragment
328  * @frag: skb fragment
329  */
330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 	return frag->size;
333 }
334 
335 /**
336  * skb_frag_size_set - Sets the size of a skb fragment
337  * @frag: skb fragment
338  * @size: size of fragment
339  */
340 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341 {
342 	frag->size = size;
343 }
344 
345 /**
346  * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
347  * @frag: skb fragment
348  * @delta: value to add
349  */
350 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351 {
352 	frag->size += delta;
353 }
354 
355 /**
356  * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
357  * @frag: skb fragment
358  * @delta: value to subtract
359  */
360 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361 {
362 	frag->size -= delta;
363 }
364 
365 /**
366  * skb_frag_must_loop - Test if %p is a high memory page
367  * @p: fragment's page
368  */
369 static inline bool skb_frag_must_loop(struct page *p)
370 {
371 #if defined(CONFIG_HIGHMEM)
372 	if (PageHighMem(p))
373 		return true;
374 #endif
375 	return false;
376 }
377 
378 /**
379  *	skb_frag_foreach_page - loop over pages in a fragment
380  *
381  *	@f:		skb frag to operate on
382  *	@f_off:		offset from start of f->page.p
383  *	@f_len:		length from f_off to loop over
384  *	@p:		(temp var) current page
385  *	@p_off:		(temp var) offset from start of current page,
386  *	                           non-zero only on first page.
387  *	@p_len:		(temp var) length in current page,
388  *				   < PAGE_SIZE only on first and last page.
389  *	@copied:	(temp var) length so far, excluding current p_len.
390  *
391  *	A fragment can hold a compound page, in which case per-page
392  *	operations, notably kmap_atomic, must be called for each
393  *	regular page.
394  */
395 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
396 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
397 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
398 	     p_len = skb_frag_must_loop(p) ?				\
399 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
400 	     copied = 0;						\
401 	     copied < f_len;						\
402 	     copied += p_len, p++, p_off = 0,				\
403 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
404 
405 #define HAVE_HW_TIME_STAMP
406 
407 /**
408  * struct skb_shared_hwtstamps - hardware time stamps
409  * @hwtstamp:	hardware time stamp transformed into duration
410  *		since arbitrary point in time
411  *
412  * Software time stamps generated by ktime_get_real() are stored in
413  * skb->tstamp.
414  *
415  * hwtstamps can only be compared against other hwtstamps from
416  * the same device.
417  *
418  * This structure is attached to packets as part of the
419  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420  */
421 struct skb_shared_hwtstamps {
422 	ktime_t	hwtstamp;
423 };
424 
425 /* Definitions for tx_flags in struct skb_shared_info */
426 enum {
427 	/* generate hardware time stamp */
428 	SKBTX_HW_TSTAMP = 1 << 0,
429 
430 	/* generate software time stamp when queueing packet to NIC */
431 	SKBTX_SW_TSTAMP = 1 << 1,
432 
433 	/* device driver is going to provide hardware time stamp */
434 	SKBTX_IN_PROGRESS = 1 << 2,
435 
436 	/* device driver supports TX zero-copy buffers */
437 	SKBTX_DEV_ZEROCOPY = 1 << 3,
438 
439 	/* generate wifi status information (where possible) */
440 	SKBTX_WIFI_STATUS = 1 << 4,
441 
442 	/* This indicates at least one fragment might be overwritten
443 	 * (as in vmsplice(), sendfile() ...)
444 	 * If we need to compute a TX checksum, we'll need to copy
445 	 * all frags to avoid possible bad checksum
446 	 */
447 	SKBTX_SHARED_FRAG = 1 << 5,
448 
449 	/* generate software time stamp when entering packet scheduling */
450 	SKBTX_SCHED_TSTAMP = 1 << 6,
451 };
452 
453 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
454 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
455 				 SKBTX_SCHED_TSTAMP)
456 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
457 
458 /*
459  * The callback notifies userspace to release buffers when skb DMA is done in
460  * lower device, the skb last reference should be 0 when calling this.
461  * The zerocopy_success argument is true if zero copy transmit occurred,
462  * false on data copy or out of memory error caused by data copy attempt.
463  * The ctx field is used to track device context.
464  * The desc field is used to track userspace buffer index.
465  */
466 struct ubuf_info {
467 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
468 	union {
469 		struct {
470 			unsigned long desc;
471 			void *ctx;
472 		};
473 		struct {
474 			u32 id;
475 			u16 len;
476 			u16 zerocopy:1;
477 			u32 bytelen;
478 		};
479 	};
480 	refcount_t refcnt;
481 
482 	struct mmpin {
483 		struct user_struct *user;
484 		unsigned int num_pg;
485 	} mmp;
486 };
487 
488 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
489 
490 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
491 void mm_unaccount_pinned_pages(struct mmpin *mmp);
492 
493 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
494 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
495 					struct ubuf_info *uarg);
496 
497 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
498 {
499 	refcount_inc(&uarg->refcnt);
500 }
501 
502 void sock_zerocopy_put(struct ubuf_info *uarg);
503 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
504 
505 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
506 
507 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
508 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 			     struct msghdr *msg, int len,
510 			     struct ubuf_info *uarg);
511 
512 /* This data is invariant across clones and lives at
513  * the end of the header data, ie. at skb->end.
514  */
515 struct skb_shared_info {
516 	__u8		__unused;
517 	__u8		meta_len;
518 	__u8		nr_frags;
519 	__u8		tx_flags;
520 	unsigned short	gso_size;
521 	/* Warning: this field is not always filled in (UFO)! */
522 	unsigned short	gso_segs;
523 	struct sk_buff	*frag_list;
524 	struct skb_shared_hwtstamps hwtstamps;
525 	unsigned int	gso_type;
526 	u32		tskey;
527 
528 	/*
529 	 * Warning : all fields before dataref are cleared in __alloc_skb()
530 	 */
531 	atomic_t	dataref;
532 
533 	/* Intermediate layers must ensure that destructor_arg
534 	 * remains valid until skb destructor */
535 	void *		destructor_arg;
536 
537 	/* must be last field, see pskb_expand_head() */
538 	skb_frag_t	frags[MAX_SKB_FRAGS];
539 };
540 
541 /* We divide dataref into two halves.  The higher 16 bits hold references
542  * to the payload part of skb->data.  The lower 16 bits hold references to
543  * the entire skb->data.  A clone of a headerless skb holds the length of
544  * the header in skb->hdr_len.
545  *
546  * All users must obey the rule that the skb->data reference count must be
547  * greater than or equal to the payload reference count.
548  *
549  * Holding a reference to the payload part means that the user does not
550  * care about modifications to the header part of skb->data.
551  */
552 #define SKB_DATAREF_SHIFT 16
553 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
554 
555 
556 enum {
557 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
558 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
559 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
560 };
561 
562 enum {
563 	SKB_GSO_TCPV4 = 1 << 0,
564 
565 	/* This indicates the skb is from an untrusted source. */
566 	SKB_GSO_DODGY = 1 << 1,
567 
568 	/* This indicates the tcp segment has CWR set. */
569 	SKB_GSO_TCP_ECN = 1 << 2,
570 
571 	SKB_GSO_TCP_FIXEDID = 1 << 3,
572 
573 	SKB_GSO_TCPV6 = 1 << 4,
574 
575 	SKB_GSO_FCOE = 1 << 5,
576 
577 	SKB_GSO_GRE = 1 << 6,
578 
579 	SKB_GSO_GRE_CSUM = 1 << 7,
580 
581 	SKB_GSO_IPXIP4 = 1 << 8,
582 
583 	SKB_GSO_IPXIP6 = 1 << 9,
584 
585 	SKB_GSO_UDP_TUNNEL = 1 << 10,
586 
587 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
588 
589 	SKB_GSO_PARTIAL = 1 << 12,
590 
591 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
592 
593 	SKB_GSO_SCTP = 1 << 14,
594 
595 	SKB_GSO_ESP = 1 << 15,
596 
597 	SKB_GSO_UDP = 1 << 16,
598 
599 	SKB_GSO_UDP_L4 = 1 << 17,
600 };
601 
602 #if BITS_PER_LONG > 32
603 #define NET_SKBUFF_DATA_USES_OFFSET 1
604 #endif
605 
606 #ifdef NET_SKBUFF_DATA_USES_OFFSET
607 typedef unsigned int sk_buff_data_t;
608 #else
609 typedef unsigned char *sk_buff_data_t;
610 #endif
611 
612 /**
613  *	struct sk_buff - socket buffer
614  *	@next: Next buffer in list
615  *	@prev: Previous buffer in list
616  *	@tstamp: Time we arrived/left
617  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
618  *	@sk: Socket we are owned by
619  *	@dev: Device we arrived on/are leaving by
620  *	@cb: Control buffer. Free for use by every layer. Put private vars here
621  *	@_skb_refdst: destination entry (with norefcount bit)
622  *	@sp: the security path, used for xfrm
623  *	@len: Length of actual data
624  *	@data_len: Data length
625  *	@mac_len: Length of link layer header
626  *	@hdr_len: writable header length of cloned skb
627  *	@csum: Checksum (must include start/offset pair)
628  *	@csum_start: Offset from skb->head where checksumming should start
629  *	@csum_offset: Offset from csum_start where checksum should be stored
630  *	@priority: Packet queueing priority
631  *	@ignore_df: allow local fragmentation
632  *	@cloned: Head may be cloned (check refcnt to be sure)
633  *	@ip_summed: Driver fed us an IP checksum
634  *	@nohdr: Payload reference only, must not modify header
635  *	@pkt_type: Packet class
636  *	@fclone: skbuff clone status
637  *	@ipvs_property: skbuff is owned by ipvs
638  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
639  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
640  *	@tc_skip_classify: do not classify packet. set by IFB device
641  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
642  *	@tc_redirected: packet was redirected by a tc action
643  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
644  *	@peeked: this packet has been seen already, so stats have been
645  *		done for it, don't do them again
646  *	@nf_trace: netfilter packet trace flag
647  *	@protocol: Packet protocol from driver
648  *	@destructor: Destruct function
649  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
650  *	@_nfct: Associated connection, if any (with nfctinfo bits)
651  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
652  *	@skb_iif: ifindex of device we arrived on
653  *	@tc_index: Traffic control index
654  *	@hash: the packet hash
655  *	@queue_mapping: Queue mapping for multiqueue devices
656  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
657  *	@active_extensions: active extensions (skb_ext_id types)
658  *	@ndisc_nodetype: router type (from link layer)
659  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
660  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
661  *		ports.
662  *	@sw_hash: indicates hash was computed in software stack
663  *	@wifi_acked_valid: wifi_acked was set
664  *	@wifi_acked: whether frame was acked on wifi or not
665  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
666  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
667  *	@dst_pending_confirm: need to confirm neighbour
668  *	@decrypted: Decrypted SKB
669  *	@napi_id: id of the NAPI struct this skb came from
670  *	@secmark: security marking
671  *	@mark: Generic packet mark
672  *	@vlan_proto: vlan encapsulation protocol
673  *	@vlan_tci: vlan tag control information
674  *	@inner_protocol: Protocol (encapsulation)
675  *	@inner_transport_header: Inner transport layer header (encapsulation)
676  *	@inner_network_header: Network layer header (encapsulation)
677  *	@inner_mac_header: Link layer header (encapsulation)
678  *	@transport_header: Transport layer header
679  *	@network_header: Network layer header
680  *	@mac_header: Link layer header
681  *	@tail: Tail pointer
682  *	@end: End pointer
683  *	@head: Head of buffer
684  *	@data: Data head pointer
685  *	@truesize: Buffer size
686  *	@users: User count - see {datagram,tcp}.c
687  *	@extensions: allocated extensions, valid if active_extensions is nonzero
688  */
689 
690 struct sk_buff {
691 	union {
692 		struct {
693 			/* These two members must be first. */
694 			struct sk_buff		*next;
695 			struct sk_buff		*prev;
696 
697 			union {
698 				struct net_device	*dev;
699 				/* Some protocols might use this space to store information,
700 				 * while device pointer would be NULL.
701 				 * UDP receive path is one user.
702 				 */
703 				unsigned long		dev_scratch;
704 			};
705 		};
706 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
707 		struct list_head	list;
708 	};
709 
710 	union {
711 		struct sock		*sk;
712 		int			ip_defrag_offset;
713 	};
714 
715 	union {
716 		ktime_t		tstamp;
717 		u64		skb_mstamp_ns; /* earliest departure time */
718 	};
719 	/*
720 	 * This is the control buffer. It is free to use for every
721 	 * layer. Please put your private variables there. If you
722 	 * want to keep them across layers you have to do a skb_clone()
723 	 * first. This is owned by whoever has the skb queued ATM.
724 	 */
725 	char			cb[48] __aligned(8);
726 
727 	union {
728 		struct {
729 			unsigned long	_skb_refdst;
730 			void		(*destructor)(struct sk_buff *skb);
731 		};
732 		struct list_head	tcp_tsorted_anchor;
733 	};
734 
735 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
736 	unsigned long		 _nfct;
737 #endif
738 	unsigned int		len,
739 				data_len;
740 	__u16			mac_len,
741 				hdr_len;
742 
743 	/* Following fields are _not_ copied in __copy_skb_header()
744 	 * Note that queue_mapping is here mostly to fill a hole.
745 	 */
746 	__u16			queue_mapping;
747 
748 /* if you move cloned around you also must adapt those constants */
749 #ifdef __BIG_ENDIAN_BITFIELD
750 #define CLONED_MASK	(1 << 7)
751 #else
752 #define CLONED_MASK	1
753 #endif
754 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
755 
756 	__u8			__cloned_offset[0];
757 	__u8			cloned:1,
758 				nohdr:1,
759 				fclone:2,
760 				peeked:1,
761 				head_frag:1,
762 				pfmemalloc:1;
763 #ifdef CONFIG_SKB_EXTENSIONS
764 	__u8			active_extensions;
765 #endif
766 	/* fields enclosed in headers_start/headers_end are copied
767 	 * using a single memcpy() in __copy_skb_header()
768 	 */
769 	/* private: */
770 	__u32			headers_start[0];
771 	/* public: */
772 
773 /* if you move pkt_type around you also must adapt those constants */
774 #ifdef __BIG_ENDIAN_BITFIELD
775 #define PKT_TYPE_MAX	(7 << 5)
776 #else
777 #define PKT_TYPE_MAX	7
778 #endif
779 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
780 
781 	__u8			__pkt_type_offset[0];
782 	__u8			pkt_type:3;
783 	__u8			ignore_df:1;
784 	__u8			nf_trace:1;
785 	__u8			ip_summed:2;
786 	__u8			ooo_okay:1;
787 
788 	__u8			l4_hash:1;
789 	__u8			sw_hash:1;
790 	__u8			wifi_acked_valid:1;
791 	__u8			wifi_acked:1;
792 	__u8			no_fcs:1;
793 	/* Indicates the inner headers are valid in the skbuff. */
794 	__u8			encapsulation:1;
795 	__u8			encap_hdr_csum:1;
796 	__u8			csum_valid:1;
797 
798 #ifdef __BIG_ENDIAN_BITFIELD
799 #define PKT_VLAN_PRESENT_BIT	7
800 #else
801 #define PKT_VLAN_PRESENT_BIT	0
802 #endif
803 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
804 	__u8			__pkt_vlan_present_offset[0];
805 	__u8			vlan_present:1;
806 	__u8			csum_complete_sw:1;
807 	__u8			csum_level:2;
808 	__u8			csum_not_inet:1;
809 	__u8			dst_pending_confirm:1;
810 #ifdef CONFIG_IPV6_NDISC_NODETYPE
811 	__u8			ndisc_nodetype:2;
812 #endif
813 
814 	__u8			ipvs_property:1;
815 	__u8			inner_protocol_type:1;
816 	__u8			remcsum_offload:1;
817 #ifdef CONFIG_NET_SWITCHDEV
818 	__u8			offload_fwd_mark:1;
819 	__u8			offload_l3_fwd_mark:1;
820 #endif
821 #ifdef CONFIG_NET_CLS_ACT
822 	__u8			tc_skip_classify:1;
823 	__u8			tc_at_ingress:1;
824 	__u8			tc_redirected:1;
825 	__u8			tc_from_ingress:1;
826 #endif
827 #ifdef CONFIG_TLS_DEVICE
828 	__u8			decrypted:1;
829 #endif
830 
831 #ifdef CONFIG_NET_SCHED
832 	__u16			tc_index;	/* traffic control index */
833 #endif
834 
835 	union {
836 		__wsum		csum;
837 		struct {
838 			__u16	csum_start;
839 			__u16	csum_offset;
840 		};
841 	};
842 	__u32			priority;
843 	int			skb_iif;
844 	__u32			hash;
845 	__be16			vlan_proto;
846 	__u16			vlan_tci;
847 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
848 	union {
849 		unsigned int	napi_id;
850 		unsigned int	sender_cpu;
851 	};
852 #endif
853 #ifdef CONFIG_NETWORK_SECMARK
854 	__u32		secmark;
855 #endif
856 
857 	union {
858 		__u32		mark;
859 		__u32		reserved_tailroom;
860 	};
861 
862 	union {
863 		__be16		inner_protocol;
864 		__u8		inner_ipproto;
865 	};
866 
867 	__u16			inner_transport_header;
868 	__u16			inner_network_header;
869 	__u16			inner_mac_header;
870 
871 	__be16			protocol;
872 	__u16			transport_header;
873 	__u16			network_header;
874 	__u16			mac_header;
875 
876 	/* private: */
877 	__u32			headers_end[0];
878 	/* public: */
879 
880 	/* These elements must be at the end, see alloc_skb() for details.  */
881 	sk_buff_data_t		tail;
882 	sk_buff_data_t		end;
883 	unsigned char		*head,
884 				*data;
885 	unsigned int		truesize;
886 	refcount_t		users;
887 
888 #ifdef CONFIG_SKB_EXTENSIONS
889 	/* only useable after checking ->active_extensions != 0 */
890 	struct skb_ext		*extensions;
891 #endif
892 };
893 
894 #ifdef __KERNEL__
895 /*
896  *	Handling routines are only of interest to the kernel
897  */
898 
899 #define SKB_ALLOC_FCLONE	0x01
900 #define SKB_ALLOC_RX		0x02
901 #define SKB_ALLOC_NAPI		0x04
902 
903 /**
904  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
905  * @skb: buffer
906  */
907 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
908 {
909 	return unlikely(skb->pfmemalloc);
910 }
911 
912 /*
913  * skb might have a dst pointer attached, refcounted or not.
914  * _skb_refdst low order bit is set if refcount was _not_ taken
915  */
916 #define SKB_DST_NOREF	1UL
917 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
918 
919 #define SKB_NFCT_PTRMASK	~(7UL)
920 /**
921  * skb_dst - returns skb dst_entry
922  * @skb: buffer
923  *
924  * Returns skb dst_entry, regardless of reference taken or not.
925  */
926 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
927 {
928 	/* If refdst was not refcounted, check we still are in a
929 	 * rcu_read_lock section
930 	 */
931 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
932 		!rcu_read_lock_held() &&
933 		!rcu_read_lock_bh_held());
934 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
935 }
936 
937 /**
938  * skb_dst_set - sets skb dst
939  * @skb: buffer
940  * @dst: dst entry
941  *
942  * Sets skb dst, assuming a reference was taken on dst and should
943  * be released by skb_dst_drop()
944  */
945 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
946 {
947 	skb->_skb_refdst = (unsigned long)dst;
948 }
949 
950 /**
951  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
952  * @skb: buffer
953  * @dst: dst entry
954  *
955  * Sets skb dst, assuming a reference was not taken on dst.
956  * If dst entry is cached, we do not take reference and dst_release
957  * will be avoided by refdst_drop. If dst entry is not cached, we take
958  * reference, so that last dst_release can destroy the dst immediately.
959  */
960 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
961 {
962 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
963 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
964 }
965 
966 /**
967  * skb_dst_is_noref - Test if skb dst isn't refcounted
968  * @skb: buffer
969  */
970 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
971 {
972 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
973 }
974 
975 /**
976  * skb_rtable - Returns the skb &rtable
977  * @skb: buffer
978  */
979 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
980 {
981 	return (struct rtable *)skb_dst(skb);
982 }
983 
984 /* For mangling skb->pkt_type from user space side from applications
985  * such as nft, tc, etc, we only allow a conservative subset of
986  * possible pkt_types to be set.
987 */
988 static inline bool skb_pkt_type_ok(u32 ptype)
989 {
990 	return ptype <= PACKET_OTHERHOST;
991 }
992 
993 /**
994  * skb_napi_id - Returns the skb's NAPI id
995  * @skb: buffer
996  */
997 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
998 {
999 #ifdef CONFIG_NET_RX_BUSY_POLL
1000 	return skb->napi_id;
1001 #else
1002 	return 0;
1003 #endif
1004 }
1005 
1006 /**
1007  * skb_unref - decrement the skb's reference count
1008  * @skb: buffer
1009  *
1010  * Returns true if we can free the skb.
1011  */
1012 static inline bool skb_unref(struct sk_buff *skb)
1013 {
1014 	if (unlikely(!skb))
1015 		return false;
1016 	if (likely(refcount_read(&skb->users) == 1))
1017 		smp_rmb();
1018 	else if (likely(!refcount_dec_and_test(&skb->users)))
1019 		return false;
1020 
1021 	return true;
1022 }
1023 
1024 void skb_release_head_state(struct sk_buff *skb);
1025 void kfree_skb(struct sk_buff *skb);
1026 void kfree_skb_list(struct sk_buff *segs);
1027 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1028 void skb_tx_error(struct sk_buff *skb);
1029 void consume_skb(struct sk_buff *skb);
1030 void __consume_stateless_skb(struct sk_buff *skb);
1031 void  __kfree_skb(struct sk_buff *skb);
1032 extern struct kmem_cache *skbuff_head_cache;
1033 
1034 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1035 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1036 		      bool *fragstolen, int *delta_truesize);
1037 
1038 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1039 			    int node);
1040 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1041 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1042 struct sk_buff *build_skb_around(struct sk_buff *skb,
1043 				 void *data, unsigned int frag_size);
1044 
1045 /**
1046  * alloc_skb - allocate a network buffer
1047  * @size: size to allocate
1048  * @priority: allocation mask
1049  *
1050  * This function is a convenient wrapper around __alloc_skb().
1051  */
1052 static inline struct sk_buff *alloc_skb(unsigned int size,
1053 					gfp_t priority)
1054 {
1055 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1056 }
1057 
1058 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1059 				     unsigned long data_len,
1060 				     int max_page_order,
1061 				     int *errcode,
1062 				     gfp_t gfp_mask);
1063 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1064 
1065 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1066 struct sk_buff_fclones {
1067 	struct sk_buff	skb1;
1068 
1069 	struct sk_buff	skb2;
1070 
1071 	refcount_t	fclone_ref;
1072 };
1073 
1074 /**
1075  *	skb_fclone_busy - check if fclone is busy
1076  *	@sk: socket
1077  *	@skb: buffer
1078  *
1079  * Returns true if skb is a fast clone, and its clone is not freed.
1080  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1081  * so we also check that this didnt happen.
1082  */
1083 static inline bool skb_fclone_busy(const struct sock *sk,
1084 				   const struct sk_buff *skb)
1085 {
1086 	const struct sk_buff_fclones *fclones;
1087 
1088 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1089 
1090 	return skb->fclone == SKB_FCLONE_ORIG &&
1091 	       refcount_read(&fclones->fclone_ref) > 1 &&
1092 	       fclones->skb2.sk == sk;
1093 }
1094 
1095 /**
1096  * alloc_skb_fclone - allocate a network buffer from fclone cache
1097  * @size: size to allocate
1098  * @priority: allocation mask
1099  *
1100  * This function is a convenient wrapper around __alloc_skb().
1101  */
1102 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1103 					       gfp_t priority)
1104 {
1105 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1106 }
1107 
1108 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1109 void skb_headers_offset_update(struct sk_buff *skb, int off);
1110 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1111 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1112 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1113 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1114 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1115 				   gfp_t gfp_mask, bool fclone);
1116 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1117 					  gfp_t gfp_mask)
1118 {
1119 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1120 }
1121 
1122 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1123 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1124 				     unsigned int headroom);
1125 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1126 				int newtailroom, gfp_t priority);
1127 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1128 				     int offset, int len);
1129 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1130 			      int offset, int len);
1131 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1132 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1133 
1134 /**
1135  *	skb_pad			-	zero pad the tail of an skb
1136  *	@skb: buffer to pad
1137  *	@pad: space to pad
1138  *
1139  *	Ensure that a buffer is followed by a padding area that is zero
1140  *	filled. Used by network drivers which may DMA or transfer data
1141  *	beyond the buffer end onto the wire.
1142  *
1143  *	May return error in out of memory cases. The skb is freed on error.
1144  */
1145 static inline int skb_pad(struct sk_buff *skb, int pad)
1146 {
1147 	return __skb_pad(skb, pad, true);
1148 }
1149 #define dev_kfree_skb(a)	consume_skb(a)
1150 
1151 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1152 			 int offset, size_t size);
1153 
1154 struct skb_seq_state {
1155 	__u32		lower_offset;
1156 	__u32		upper_offset;
1157 	__u32		frag_idx;
1158 	__u32		stepped_offset;
1159 	struct sk_buff	*root_skb;
1160 	struct sk_buff	*cur_skb;
1161 	__u8		*frag_data;
1162 };
1163 
1164 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1165 			  unsigned int to, struct skb_seq_state *st);
1166 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1167 			  struct skb_seq_state *st);
1168 void skb_abort_seq_read(struct skb_seq_state *st);
1169 
1170 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1171 			   unsigned int to, struct ts_config *config);
1172 
1173 /*
1174  * Packet hash types specify the type of hash in skb_set_hash.
1175  *
1176  * Hash types refer to the protocol layer addresses which are used to
1177  * construct a packet's hash. The hashes are used to differentiate or identify
1178  * flows of the protocol layer for the hash type. Hash types are either
1179  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1180  *
1181  * Properties of hashes:
1182  *
1183  * 1) Two packets in different flows have different hash values
1184  * 2) Two packets in the same flow should have the same hash value
1185  *
1186  * A hash at a higher layer is considered to be more specific. A driver should
1187  * set the most specific hash possible.
1188  *
1189  * A driver cannot indicate a more specific hash than the layer at which a hash
1190  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1191  *
1192  * A driver may indicate a hash level which is less specific than the
1193  * actual layer the hash was computed on. For instance, a hash computed
1194  * at L4 may be considered an L3 hash. This should only be done if the
1195  * driver can't unambiguously determine that the HW computed the hash at
1196  * the higher layer. Note that the "should" in the second property above
1197  * permits this.
1198  */
1199 enum pkt_hash_types {
1200 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1201 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1202 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1203 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1204 };
1205 
1206 static inline void skb_clear_hash(struct sk_buff *skb)
1207 {
1208 	skb->hash = 0;
1209 	skb->sw_hash = 0;
1210 	skb->l4_hash = 0;
1211 }
1212 
1213 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1214 {
1215 	if (!skb->l4_hash)
1216 		skb_clear_hash(skb);
1217 }
1218 
1219 static inline void
1220 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1221 {
1222 	skb->l4_hash = is_l4;
1223 	skb->sw_hash = is_sw;
1224 	skb->hash = hash;
1225 }
1226 
1227 static inline void
1228 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1229 {
1230 	/* Used by drivers to set hash from HW */
1231 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1232 }
1233 
1234 static inline void
1235 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1236 {
1237 	__skb_set_hash(skb, hash, true, is_l4);
1238 }
1239 
1240 void __skb_get_hash(struct sk_buff *skb);
1241 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1242 u32 skb_get_poff(const struct sk_buff *skb);
1243 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1244 		   const struct flow_keys_basic *keys, int hlen);
1245 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1246 			    void *data, int hlen_proto);
1247 
1248 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1249 					int thoff, u8 ip_proto)
1250 {
1251 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1252 }
1253 
1254 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1255 			     const struct flow_dissector_key *key,
1256 			     unsigned int key_count);
1257 
1258 #ifdef CONFIG_NET
1259 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1260 				  union bpf_attr __user *uattr);
1261 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1262 				       struct bpf_prog *prog);
1263 
1264 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1265 #else
1266 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1267 						union bpf_attr __user *uattr)
1268 {
1269 	return -EOPNOTSUPP;
1270 }
1271 
1272 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1273 						     struct bpf_prog *prog)
1274 {
1275 	return -EOPNOTSUPP;
1276 }
1277 
1278 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1279 {
1280 	return -EOPNOTSUPP;
1281 }
1282 #endif
1283 
1284 struct bpf_flow_dissector;
1285 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1286 		      __be16 proto, int nhoff, int hlen);
1287 
1288 bool __skb_flow_dissect(const struct net *net,
1289 			const struct sk_buff *skb,
1290 			struct flow_dissector *flow_dissector,
1291 			void *target_container,
1292 			void *data, __be16 proto, int nhoff, int hlen,
1293 			unsigned int flags);
1294 
1295 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1296 				    struct flow_dissector *flow_dissector,
1297 				    void *target_container, unsigned int flags)
1298 {
1299 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1300 				  target_container, NULL, 0, 0, 0, flags);
1301 }
1302 
1303 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1304 					      struct flow_keys *flow,
1305 					      unsigned int flags)
1306 {
1307 	memset(flow, 0, sizeof(*flow));
1308 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1309 				  flow, NULL, 0, 0, 0, flags);
1310 }
1311 
1312 static inline bool
1313 skb_flow_dissect_flow_keys_basic(const struct net *net,
1314 				 const struct sk_buff *skb,
1315 				 struct flow_keys_basic *flow, void *data,
1316 				 __be16 proto, int nhoff, int hlen,
1317 				 unsigned int flags)
1318 {
1319 	memset(flow, 0, sizeof(*flow));
1320 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1321 				  data, proto, nhoff, hlen, flags);
1322 }
1323 
1324 void skb_flow_dissect_meta(const struct sk_buff *skb,
1325 			   struct flow_dissector *flow_dissector,
1326 			   void *target_container);
1327 
1328 /* Gets a skb connection tracking info, ctinfo map should be a
1329  * a map of mapsize to translate enum ip_conntrack_info states
1330  * to user states.
1331  */
1332 void
1333 skb_flow_dissect_ct(const struct sk_buff *skb,
1334 		    struct flow_dissector *flow_dissector,
1335 		    void *target_container,
1336 		    u16 *ctinfo_map,
1337 		    size_t mapsize);
1338 void
1339 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1340 			     struct flow_dissector *flow_dissector,
1341 			     void *target_container);
1342 
1343 static inline __u32 skb_get_hash(struct sk_buff *skb)
1344 {
1345 	if (!skb->l4_hash && !skb->sw_hash)
1346 		__skb_get_hash(skb);
1347 
1348 	return skb->hash;
1349 }
1350 
1351 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1352 {
1353 	if (!skb->l4_hash && !skb->sw_hash) {
1354 		struct flow_keys keys;
1355 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1356 
1357 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1358 	}
1359 
1360 	return skb->hash;
1361 }
1362 
1363 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1364 
1365 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1366 {
1367 	return skb->hash;
1368 }
1369 
1370 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1371 {
1372 	to->hash = from->hash;
1373 	to->sw_hash = from->sw_hash;
1374 	to->l4_hash = from->l4_hash;
1375 };
1376 
1377 static inline void skb_copy_decrypted(struct sk_buff *to,
1378 				      const struct sk_buff *from)
1379 {
1380 #ifdef CONFIG_TLS_DEVICE
1381 	to->decrypted = from->decrypted;
1382 #endif
1383 }
1384 
1385 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1386 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1387 {
1388 	return skb->head + skb->end;
1389 }
1390 
1391 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1392 {
1393 	return skb->end;
1394 }
1395 #else
1396 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1397 {
1398 	return skb->end;
1399 }
1400 
1401 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1402 {
1403 	return skb->end - skb->head;
1404 }
1405 #endif
1406 
1407 /* Internal */
1408 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1409 
1410 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1411 {
1412 	return &skb_shinfo(skb)->hwtstamps;
1413 }
1414 
1415 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1416 {
1417 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1418 
1419 	return is_zcopy ? skb_uarg(skb) : NULL;
1420 }
1421 
1422 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1423 				 bool *have_ref)
1424 {
1425 	if (skb && uarg && !skb_zcopy(skb)) {
1426 		if (unlikely(have_ref && *have_ref))
1427 			*have_ref = false;
1428 		else
1429 			sock_zerocopy_get(uarg);
1430 		skb_shinfo(skb)->destructor_arg = uarg;
1431 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1432 	}
1433 }
1434 
1435 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1436 {
1437 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1438 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1439 }
1440 
1441 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1442 {
1443 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1444 }
1445 
1446 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1447 {
1448 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1449 }
1450 
1451 /* Release a reference on a zerocopy structure */
1452 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1453 {
1454 	struct ubuf_info *uarg = skb_zcopy(skb);
1455 
1456 	if (uarg) {
1457 		if (skb_zcopy_is_nouarg(skb)) {
1458 			/* no notification callback */
1459 		} else if (uarg->callback == sock_zerocopy_callback) {
1460 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1461 			sock_zerocopy_put(uarg);
1462 		} else {
1463 			uarg->callback(uarg, zerocopy);
1464 		}
1465 
1466 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1467 	}
1468 }
1469 
1470 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1471 static inline void skb_zcopy_abort(struct sk_buff *skb)
1472 {
1473 	struct ubuf_info *uarg = skb_zcopy(skb);
1474 
1475 	if (uarg) {
1476 		sock_zerocopy_put_abort(uarg, false);
1477 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1478 	}
1479 }
1480 
1481 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1482 {
1483 	skb->next = NULL;
1484 }
1485 
1486 static inline void skb_list_del_init(struct sk_buff *skb)
1487 {
1488 	__list_del_entry(&skb->list);
1489 	skb_mark_not_on_list(skb);
1490 }
1491 
1492 /**
1493  *	skb_queue_empty - check if a queue is empty
1494  *	@list: queue head
1495  *
1496  *	Returns true if the queue is empty, false otherwise.
1497  */
1498 static inline int skb_queue_empty(const struct sk_buff_head *list)
1499 {
1500 	return list->next == (const struct sk_buff *) list;
1501 }
1502 
1503 /**
1504  *	skb_queue_is_last - check if skb is the last entry in the queue
1505  *	@list: queue head
1506  *	@skb: buffer
1507  *
1508  *	Returns true if @skb is the last buffer on the list.
1509  */
1510 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1511 				     const struct sk_buff *skb)
1512 {
1513 	return skb->next == (const struct sk_buff *) list;
1514 }
1515 
1516 /**
1517  *	skb_queue_is_first - check if skb is the first entry in the queue
1518  *	@list: queue head
1519  *	@skb: buffer
1520  *
1521  *	Returns true if @skb is the first buffer on the list.
1522  */
1523 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1524 				      const struct sk_buff *skb)
1525 {
1526 	return skb->prev == (const struct sk_buff *) list;
1527 }
1528 
1529 /**
1530  *	skb_queue_next - return the next packet in the queue
1531  *	@list: queue head
1532  *	@skb: current buffer
1533  *
1534  *	Return the next packet in @list after @skb.  It is only valid to
1535  *	call this if skb_queue_is_last() evaluates to false.
1536  */
1537 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1538 					     const struct sk_buff *skb)
1539 {
1540 	/* This BUG_ON may seem severe, but if we just return then we
1541 	 * are going to dereference garbage.
1542 	 */
1543 	BUG_ON(skb_queue_is_last(list, skb));
1544 	return skb->next;
1545 }
1546 
1547 /**
1548  *	skb_queue_prev - return the prev packet in the queue
1549  *	@list: queue head
1550  *	@skb: current buffer
1551  *
1552  *	Return the prev packet in @list before @skb.  It is only valid to
1553  *	call this if skb_queue_is_first() evaluates to false.
1554  */
1555 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1556 					     const struct sk_buff *skb)
1557 {
1558 	/* This BUG_ON may seem severe, but if we just return then we
1559 	 * are going to dereference garbage.
1560 	 */
1561 	BUG_ON(skb_queue_is_first(list, skb));
1562 	return skb->prev;
1563 }
1564 
1565 /**
1566  *	skb_get - reference buffer
1567  *	@skb: buffer to reference
1568  *
1569  *	Makes another reference to a socket buffer and returns a pointer
1570  *	to the buffer.
1571  */
1572 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1573 {
1574 	refcount_inc(&skb->users);
1575 	return skb;
1576 }
1577 
1578 /*
1579  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1580  */
1581 
1582 /**
1583  *	skb_cloned - is the buffer a clone
1584  *	@skb: buffer to check
1585  *
1586  *	Returns true if the buffer was generated with skb_clone() and is
1587  *	one of multiple shared copies of the buffer. Cloned buffers are
1588  *	shared data so must not be written to under normal circumstances.
1589  */
1590 static inline int skb_cloned(const struct sk_buff *skb)
1591 {
1592 	return skb->cloned &&
1593 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1594 }
1595 
1596 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1597 {
1598 	might_sleep_if(gfpflags_allow_blocking(pri));
1599 
1600 	if (skb_cloned(skb))
1601 		return pskb_expand_head(skb, 0, 0, pri);
1602 
1603 	return 0;
1604 }
1605 
1606 /**
1607  *	skb_header_cloned - is the header a clone
1608  *	@skb: buffer to check
1609  *
1610  *	Returns true if modifying the header part of the buffer requires
1611  *	the data to be copied.
1612  */
1613 static inline int skb_header_cloned(const struct sk_buff *skb)
1614 {
1615 	int dataref;
1616 
1617 	if (!skb->cloned)
1618 		return 0;
1619 
1620 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1621 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1622 	return dataref != 1;
1623 }
1624 
1625 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1626 {
1627 	might_sleep_if(gfpflags_allow_blocking(pri));
1628 
1629 	if (skb_header_cloned(skb))
1630 		return pskb_expand_head(skb, 0, 0, pri);
1631 
1632 	return 0;
1633 }
1634 
1635 /**
1636  *	__skb_header_release - release reference to header
1637  *	@skb: buffer to operate on
1638  */
1639 static inline void __skb_header_release(struct sk_buff *skb)
1640 {
1641 	skb->nohdr = 1;
1642 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1643 }
1644 
1645 
1646 /**
1647  *	skb_shared - is the buffer shared
1648  *	@skb: buffer to check
1649  *
1650  *	Returns true if more than one person has a reference to this
1651  *	buffer.
1652  */
1653 static inline int skb_shared(const struct sk_buff *skb)
1654 {
1655 	return refcount_read(&skb->users) != 1;
1656 }
1657 
1658 /**
1659  *	skb_share_check - check if buffer is shared and if so clone it
1660  *	@skb: buffer to check
1661  *	@pri: priority for memory allocation
1662  *
1663  *	If the buffer is shared the buffer is cloned and the old copy
1664  *	drops a reference. A new clone with a single reference is returned.
1665  *	If the buffer is not shared the original buffer is returned. When
1666  *	being called from interrupt status or with spinlocks held pri must
1667  *	be GFP_ATOMIC.
1668  *
1669  *	NULL is returned on a memory allocation failure.
1670  */
1671 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1672 {
1673 	might_sleep_if(gfpflags_allow_blocking(pri));
1674 	if (skb_shared(skb)) {
1675 		struct sk_buff *nskb = skb_clone(skb, pri);
1676 
1677 		if (likely(nskb))
1678 			consume_skb(skb);
1679 		else
1680 			kfree_skb(skb);
1681 		skb = nskb;
1682 	}
1683 	return skb;
1684 }
1685 
1686 /*
1687  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1688  *	packets to handle cases where we have a local reader and forward
1689  *	and a couple of other messy ones. The normal one is tcpdumping
1690  *	a packet thats being forwarded.
1691  */
1692 
1693 /**
1694  *	skb_unshare - make a copy of a shared buffer
1695  *	@skb: buffer to check
1696  *	@pri: priority for memory allocation
1697  *
1698  *	If the socket buffer is a clone then this function creates a new
1699  *	copy of the data, drops a reference count on the old copy and returns
1700  *	the new copy with the reference count at 1. If the buffer is not a clone
1701  *	the original buffer is returned. When called with a spinlock held or
1702  *	from interrupt state @pri must be %GFP_ATOMIC
1703  *
1704  *	%NULL is returned on a memory allocation failure.
1705  */
1706 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1707 					  gfp_t pri)
1708 {
1709 	might_sleep_if(gfpflags_allow_blocking(pri));
1710 	if (skb_cloned(skb)) {
1711 		struct sk_buff *nskb = skb_copy(skb, pri);
1712 
1713 		/* Free our shared copy */
1714 		if (likely(nskb))
1715 			consume_skb(skb);
1716 		else
1717 			kfree_skb(skb);
1718 		skb = nskb;
1719 	}
1720 	return skb;
1721 }
1722 
1723 /**
1724  *	skb_peek - peek at the head of an &sk_buff_head
1725  *	@list_: list to peek at
1726  *
1727  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1728  *	be careful with this one. A peek leaves the buffer on the
1729  *	list and someone else may run off with it. You must hold
1730  *	the appropriate locks or have a private queue to do this.
1731  *
1732  *	Returns %NULL for an empty list or a pointer to the head element.
1733  *	The reference count is not incremented and the reference is therefore
1734  *	volatile. Use with caution.
1735  */
1736 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1737 {
1738 	struct sk_buff *skb = list_->next;
1739 
1740 	if (skb == (struct sk_buff *)list_)
1741 		skb = NULL;
1742 	return skb;
1743 }
1744 
1745 /**
1746  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1747  *	@list_: list to peek at
1748  *
1749  *	Like skb_peek(), but the caller knows that the list is not empty.
1750  */
1751 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1752 {
1753 	return list_->next;
1754 }
1755 
1756 /**
1757  *	skb_peek_next - peek skb following the given one from a queue
1758  *	@skb: skb to start from
1759  *	@list_: list to peek at
1760  *
1761  *	Returns %NULL when the end of the list is met or a pointer to the
1762  *	next element. The reference count is not incremented and the
1763  *	reference is therefore volatile. Use with caution.
1764  */
1765 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1766 		const struct sk_buff_head *list_)
1767 {
1768 	struct sk_buff *next = skb->next;
1769 
1770 	if (next == (struct sk_buff *)list_)
1771 		next = NULL;
1772 	return next;
1773 }
1774 
1775 /**
1776  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1777  *	@list_: list to peek at
1778  *
1779  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1780  *	be careful with this one. A peek leaves the buffer on the
1781  *	list and someone else may run off with it. You must hold
1782  *	the appropriate locks or have a private queue to do this.
1783  *
1784  *	Returns %NULL for an empty list or a pointer to the tail element.
1785  *	The reference count is not incremented and the reference is therefore
1786  *	volatile. Use with caution.
1787  */
1788 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1789 {
1790 	struct sk_buff *skb = list_->prev;
1791 
1792 	if (skb == (struct sk_buff *)list_)
1793 		skb = NULL;
1794 	return skb;
1795 
1796 }
1797 
1798 /**
1799  *	skb_queue_len	- get queue length
1800  *	@list_: list to measure
1801  *
1802  *	Return the length of an &sk_buff queue.
1803  */
1804 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1805 {
1806 	return list_->qlen;
1807 }
1808 
1809 /**
1810  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1811  *	@list: queue to initialize
1812  *
1813  *	This initializes only the list and queue length aspects of
1814  *	an sk_buff_head object.  This allows to initialize the list
1815  *	aspects of an sk_buff_head without reinitializing things like
1816  *	the spinlock.  It can also be used for on-stack sk_buff_head
1817  *	objects where the spinlock is known to not be used.
1818  */
1819 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1820 {
1821 	list->prev = list->next = (struct sk_buff *)list;
1822 	list->qlen = 0;
1823 }
1824 
1825 /*
1826  * This function creates a split out lock class for each invocation;
1827  * this is needed for now since a whole lot of users of the skb-queue
1828  * infrastructure in drivers have different locking usage (in hardirq)
1829  * than the networking core (in softirq only). In the long run either the
1830  * network layer or drivers should need annotation to consolidate the
1831  * main types of usage into 3 classes.
1832  */
1833 static inline void skb_queue_head_init(struct sk_buff_head *list)
1834 {
1835 	spin_lock_init(&list->lock);
1836 	__skb_queue_head_init(list);
1837 }
1838 
1839 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1840 		struct lock_class_key *class)
1841 {
1842 	skb_queue_head_init(list);
1843 	lockdep_set_class(&list->lock, class);
1844 }
1845 
1846 /*
1847  *	Insert an sk_buff on a list.
1848  *
1849  *	The "__skb_xxxx()" functions are the non-atomic ones that
1850  *	can only be called with interrupts disabled.
1851  */
1852 static inline void __skb_insert(struct sk_buff *newsk,
1853 				struct sk_buff *prev, struct sk_buff *next,
1854 				struct sk_buff_head *list)
1855 {
1856 	newsk->next = next;
1857 	newsk->prev = prev;
1858 	next->prev  = prev->next = newsk;
1859 	list->qlen++;
1860 }
1861 
1862 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1863 				      struct sk_buff *prev,
1864 				      struct sk_buff *next)
1865 {
1866 	struct sk_buff *first = list->next;
1867 	struct sk_buff *last = list->prev;
1868 
1869 	first->prev = prev;
1870 	prev->next = first;
1871 
1872 	last->next = next;
1873 	next->prev = last;
1874 }
1875 
1876 /**
1877  *	skb_queue_splice - join two skb lists, this is designed for stacks
1878  *	@list: the new list to add
1879  *	@head: the place to add it in the first list
1880  */
1881 static inline void skb_queue_splice(const struct sk_buff_head *list,
1882 				    struct sk_buff_head *head)
1883 {
1884 	if (!skb_queue_empty(list)) {
1885 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1886 		head->qlen += list->qlen;
1887 	}
1888 }
1889 
1890 /**
1891  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1892  *	@list: the new list to add
1893  *	@head: the place to add it in the first list
1894  *
1895  *	The list at @list is reinitialised
1896  */
1897 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1898 					 struct sk_buff_head *head)
1899 {
1900 	if (!skb_queue_empty(list)) {
1901 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1902 		head->qlen += list->qlen;
1903 		__skb_queue_head_init(list);
1904 	}
1905 }
1906 
1907 /**
1908  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1909  *	@list: the new list to add
1910  *	@head: the place to add it in the first list
1911  */
1912 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1913 					 struct sk_buff_head *head)
1914 {
1915 	if (!skb_queue_empty(list)) {
1916 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1917 		head->qlen += list->qlen;
1918 	}
1919 }
1920 
1921 /**
1922  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1923  *	@list: the new list to add
1924  *	@head: the place to add it in the first list
1925  *
1926  *	Each of the lists is a queue.
1927  *	The list at @list is reinitialised
1928  */
1929 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1930 					      struct sk_buff_head *head)
1931 {
1932 	if (!skb_queue_empty(list)) {
1933 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1934 		head->qlen += list->qlen;
1935 		__skb_queue_head_init(list);
1936 	}
1937 }
1938 
1939 /**
1940  *	__skb_queue_after - queue a buffer at the list head
1941  *	@list: list to use
1942  *	@prev: place after this buffer
1943  *	@newsk: buffer to queue
1944  *
1945  *	Queue a buffer int the middle of a list. This function takes no locks
1946  *	and you must therefore hold required locks before calling it.
1947  *
1948  *	A buffer cannot be placed on two lists at the same time.
1949  */
1950 static inline void __skb_queue_after(struct sk_buff_head *list,
1951 				     struct sk_buff *prev,
1952 				     struct sk_buff *newsk)
1953 {
1954 	__skb_insert(newsk, prev, prev->next, list);
1955 }
1956 
1957 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1958 		struct sk_buff_head *list);
1959 
1960 static inline void __skb_queue_before(struct sk_buff_head *list,
1961 				      struct sk_buff *next,
1962 				      struct sk_buff *newsk)
1963 {
1964 	__skb_insert(newsk, next->prev, next, list);
1965 }
1966 
1967 /**
1968  *	__skb_queue_head - queue a buffer at the list head
1969  *	@list: list to use
1970  *	@newsk: buffer to queue
1971  *
1972  *	Queue a buffer at the start of a list. This function takes no locks
1973  *	and you must therefore hold required locks before calling it.
1974  *
1975  *	A buffer cannot be placed on two lists at the same time.
1976  */
1977 static inline void __skb_queue_head(struct sk_buff_head *list,
1978 				    struct sk_buff *newsk)
1979 {
1980 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1981 }
1982 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1983 
1984 /**
1985  *	__skb_queue_tail - queue a buffer at the list tail
1986  *	@list: list to use
1987  *	@newsk: buffer to queue
1988  *
1989  *	Queue a buffer at the end of a list. This function takes no locks
1990  *	and you must therefore hold required locks before calling it.
1991  *
1992  *	A buffer cannot be placed on two lists at the same time.
1993  */
1994 static inline void __skb_queue_tail(struct sk_buff_head *list,
1995 				   struct sk_buff *newsk)
1996 {
1997 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1998 }
1999 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2000 
2001 /*
2002  * remove sk_buff from list. _Must_ be called atomically, and with
2003  * the list known..
2004  */
2005 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2006 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2007 {
2008 	struct sk_buff *next, *prev;
2009 
2010 	list->qlen--;
2011 	next	   = skb->next;
2012 	prev	   = skb->prev;
2013 	skb->next  = skb->prev = NULL;
2014 	next->prev = prev;
2015 	prev->next = next;
2016 }
2017 
2018 /**
2019  *	__skb_dequeue - remove from the head of the queue
2020  *	@list: list to dequeue from
2021  *
2022  *	Remove the head of the list. This function does not take any locks
2023  *	so must be used with appropriate locks held only. The head item is
2024  *	returned or %NULL if the list is empty.
2025  */
2026 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2027 {
2028 	struct sk_buff *skb = skb_peek(list);
2029 	if (skb)
2030 		__skb_unlink(skb, list);
2031 	return skb;
2032 }
2033 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2034 
2035 /**
2036  *	__skb_dequeue_tail - remove from the tail of the queue
2037  *	@list: list to dequeue from
2038  *
2039  *	Remove the tail of the list. This function does not take any locks
2040  *	so must be used with appropriate locks held only. The tail item is
2041  *	returned or %NULL if the list is empty.
2042  */
2043 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2044 {
2045 	struct sk_buff *skb = skb_peek_tail(list);
2046 	if (skb)
2047 		__skb_unlink(skb, list);
2048 	return skb;
2049 }
2050 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2051 
2052 
2053 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2054 {
2055 	return skb->data_len;
2056 }
2057 
2058 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2059 {
2060 	return skb->len - skb->data_len;
2061 }
2062 
2063 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2064 {
2065 	unsigned int i, len = 0;
2066 
2067 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2068 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2069 	return len;
2070 }
2071 
2072 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2073 {
2074 	return skb_headlen(skb) + __skb_pagelen(skb);
2075 }
2076 
2077 /**
2078  * __skb_fill_page_desc - initialise a paged fragment in an skb
2079  * @skb: buffer containing fragment to be initialised
2080  * @i: paged fragment index to initialise
2081  * @page: the page to use for this fragment
2082  * @off: the offset to the data with @page
2083  * @size: the length of the data
2084  *
2085  * Initialises the @i'th fragment of @skb to point to &size bytes at
2086  * offset @off within @page.
2087  *
2088  * Does not take any additional reference on the fragment.
2089  */
2090 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2091 					struct page *page, int off, int size)
2092 {
2093 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2094 
2095 	/*
2096 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2097 	 * that not all callers have unique ownership of the page but rely
2098 	 * on page_is_pfmemalloc doing the right thing(tm).
2099 	 */
2100 	frag->page.p		  = page;
2101 	frag->page_offset	  = off;
2102 	skb_frag_size_set(frag, size);
2103 
2104 	page = compound_head(page);
2105 	if (page_is_pfmemalloc(page))
2106 		skb->pfmemalloc	= true;
2107 }
2108 
2109 /**
2110  * skb_fill_page_desc - initialise a paged fragment in an skb
2111  * @skb: buffer containing fragment to be initialised
2112  * @i: paged fragment index to initialise
2113  * @page: the page to use for this fragment
2114  * @off: the offset to the data with @page
2115  * @size: the length of the data
2116  *
2117  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2118  * @skb to point to @size bytes at offset @off within @page. In
2119  * addition updates @skb such that @i is the last fragment.
2120  *
2121  * Does not take any additional reference on the fragment.
2122  */
2123 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2124 				      struct page *page, int off, int size)
2125 {
2126 	__skb_fill_page_desc(skb, i, page, off, size);
2127 	skb_shinfo(skb)->nr_frags = i + 1;
2128 }
2129 
2130 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2131 		     int size, unsigned int truesize);
2132 
2133 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2134 			  unsigned int truesize);
2135 
2136 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2137 
2138 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2139 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2140 {
2141 	return skb->head + skb->tail;
2142 }
2143 
2144 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2145 {
2146 	skb->tail = skb->data - skb->head;
2147 }
2148 
2149 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2150 {
2151 	skb_reset_tail_pointer(skb);
2152 	skb->tail += offset;
2153 }
2154 
2155 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2156 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2157 {
2158 	return skb->tail;
2159 }
2160 
2161 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2162 {
2163 	skb->tail = skb->data;
2164 }
2165 
2166 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2167 {
2168 	skb->tail = skb->data + offset;
2169 }
2170 
2171 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2172 
2173 /*
2174  *	Add data to an sk_buff
2175  */
2176 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2177 void *skb_put(struct sk_buff *skb, unsigned int len);
2178 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2179 {
2180 	void *tmp = skb_tail_pointer(skb);
2181 	SKB_LINEAR_ASSERT(skb);
2182 	skb->tail += len;
2183 	skb->len  += len;
2184 	return tmp;
2185 }
2186 
2187 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2188 {
2189 	void *tmp = __skb_put(skb, len);
2190 
2191 	memset(tmp, 0, len);
2192 	return tmp;
2193 }
2194 
2195 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2196 				   unsigned int len)
2197 {
2198 	void *tmp = __skb_put(skb, len);
2199 
2200 	memcpy(tmp, data, len);
2201 	return tmp;
2202 }
2203 
2204 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2205 {
2206 	*(u8 *)__skb_put(skb, 1) = val;
2207 }
2208 
2209 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2210 {
2211 	void *tmp = skb_put(skb, len);
2212 
2213 	memset(tmp, 0, len);
2214 
2215 	return tmp;
2216 }
2217 
2218 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2219 				 unsigned int len)
2220 {
2221 	void *tmp = skb_put(skb, len);
2222 
2223 	memcpy(tmp, data, len);
2224 
2225 	return tmp;
2226 }
2227 
2228 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2229 {
2230 	*(u8 *)skb_put(skb, 1) = val;
2231 }
2232 
2233 void *skb_push(struct sk_buff *skb, unsigned int len);
2234 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2235 {
2236 	skb->data -= len;
2237 	skb->len  += len;
2238 	return skb->data;
2239 }
2240 
2241 void *skb_pull(struct sk_buff *skb, unsigned int len);
2242 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2243 {
2244 	skb->len -= len;
2245 	BUG_ON(skb->len < skb->data_len);
2246 	return skb->data += len;
2247 }
2248 
2249 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2250 {
2251 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2252 }
2253 
2254 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2255 
2256 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2257 {
2258 	if (len > skb_headlen(skb) &&
2259 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2260 		return NULL;
2261 	skb->len -= len;
2262 	return skb->data += len;
2263 }
2264 
2265 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2266 {
2267 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2268 }
2269 
2270 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2271 {
2272 	if (likely(len <= skb_headlen(skb)))
2273 		return 1;
2274 	if (unlikely(len > skb->len))
2275 		return 0;
2276 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2277 }
2278 
2279 void skb_condense(struct sk_buff *skb);
2280 
2281 /**
2282  *	skb_headroom - bytes at buffer head
2283  *	@skb: buffer to check
2284  *
2285  *	Return the number of bytes of free space at the head of an &sk_buff.
2286  */
2287 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2288 {
2289 	return skb->data - skb->head;
2290 }
2291 
2292 /**
2293  *	skb_tailroom - bytes at buffer end
2294  *	@skb: buffer to check
2295  *
2296  *	Return the number of bytes of free space at the tail of an sk_buff
2297  */
2298 static inline int skb_tailroom(const struct sk_buff *skb)
2299 {
2300 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2301 }
2302 
2303 /**
2304  *	skb_availroom - bytes at buffer end
2305  *	@skb: buffer to check
2306  *
2307  *	Return the number of bytes of free space at the tail of an sk_buff
2308  *	allocated by sk_stream_alloc()
2309  */
2310 static inline int skb_availroom(const struct sk_buff *skb)
2311 {
2312 	if (skb_is_nonlinear(skb))
2313 		return 0;
2314 
2315 	return skb->end - skb->tail - skb->reserved_tailroom;
2316 }
2317 
2318 /**
2319  *	skb_reserve - adjust headroom
2320  *	@skb: buffer to alter
2321  *	@len: bytes to move
2322  *
2323  *	Increase the headroom of an empty &sk_buff by reducing the tail
2324  *	room. This is only allowed for an empty buffer.
2325  */
2326 static inline void skb_reserve(struct sk_buff *skb, int len)
2327 {
2328 	skb->data += len;
2329 	skb->tail += len;
2330 }
2331 
2332 /**
2333  *	skb_tailroom_reserve - adjust reserved_tailroom
2334  *	@skb: buffer to alter
2335  *	@mtu: maximum amount of headlen permitted
2336  *	@needed_tailroom: minimum amount of reserved_tailroom
2337  *
2338  *	Set reserved_tailroom so that headlen can be as large as possible but
2339  *	not larger than mtu and tailroom cannot be smaller than
2340  *	needed_tailroom.
2341  *	The required headroom should already have been reserved before using
2342  *	this function.
2343  */
2344 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2345 					unsigned int needed_tailroom)
2346 {
2347 	SKB_LINEAR_ASSERT(skb);
2348 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2349 		/* use at most mtu */
2350 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2351 	else
2352 		/* use up to all available space */
2353 		skb->reserved_tailroom = needed_tailroom;
2354 }
2355 
2356 #define ENCAP_TYPE_ETHER	0
2357 #define ENCAP_TYPE_IPPROTO	1
2358 
2359 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2360 					  __be16 protocol)
2361 {
2362 	skb->inner_protocol = protocol;
2363 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2364 }
2365 
2366 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2367 					 __u8 ipproto)
2368 {
2369 	skb->inner_ipproto = ipproto;
2370 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2371 }
2372 
2373 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2374 {
2375 	skb->inner_mac_header = skb->mac_header;
2376 	skb->inner_network_header = skb->network_header;
2377 	skb->inner_transport_header = skb->transport_header;
2378 }
2379 
2380 static inline void skb_reset_mac_len(struct sk_buff *skb)
2381 {
2382 	skb->mac_len = skb->network_header - skb->mac_header;
2383 }
2384 
2385 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2386 							*skb)
2387 {
2388 	return skb->head + skb->inner_transport_header;
2389 }
2390 
2391 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2392 {
2393 	return skb_inner_transport_header(skb) - skb->data;
2394 }
2395 
2396 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2397 {
2398 	skb->inner_transport_header = skb->data - skb->head;
2399 }
2400 
2401 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2402 						   const int offset)
2403 {
2404 	skb_reset_inner_transport_header(skb);
2405 	skb->inner_transport_header += offset;
2406 }
2407 
2408 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2409 {
2410 	return skb->head + skb->inner_network_header;
2411 }
2412 
2413 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2414 {
2415 	skb->inner_network_header = skb->data - skb->head;
2416 }
2417 
2418 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2419 						const int offset)
2420 {
2421 	skb_reset_inner_network_header(skb);
2422 	skb->inner_network_header += offset;
2423 }
2424 
2425 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2426 {
2427 	return skb->head + skb->inner_mac_header;
2428 }
2429 
2430 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2431 {
2432 	skb->inner_mac_header = skb->data - skb->head;
2433 }
2434 
2435 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2436 					    const int offset)
2437 {
2438 	skb_reset_inner_mac_header(skb);
2439 	skb->inner_mac_header += offset;
2440 }
2441 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2442 {
2443 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2444 }
2445 
2446 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2447 {
2448 	return skb->head + skb->transport_header;
2449 }
2450 
2451 static inline void skb_reset_transport_header(struct sk_buff *skb)
2452 {
2453 	skb->transport_header = skb->data - skb->head;
2454 }
2455 
2456 static inline void skb_set_transport_header(struct sk_buff *skb,
2457 					    const int offset)
2458 {
2459 	skb_reset_transport_header(skb);
2460 	skb->transport_header += offset;
2461 }
2462 
2463 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2464 {
2465 	return skb->head + skb->network_header;
2466 }
2467 
2468 static inline void skb_reset_network_header(struct sk_buff *skb)
2469 {
2470 	skb->network_header = skb->data - skb->head;
2471 }
2472 
2473 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2474 {
2475 	skb_reset_network_header(skb);
2476 	skb->network_header += offset;
2477 }
2478 
2479 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2480 {
2481 	return skb->head + skb->mac_header;
2482 }
2483 
2484 static inline int skb_mac_offset(const struct sk_buff *skb)
2485 {
2486 	return skb_mac_header(skb) - skb->data;
2487 }
2488 
2489 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2490 {
2491 	return skb->network_header - skb->mac_header;
2492 }
2493 
2494 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2495 {
2496 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2497 }
2498 
2499 static inline void skb_reset_mac_header(struct sk_buff *skb)
2500 {
2501 	skb->mac_header = skb->data - skb->head;
2502 }
2503 
2504 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2505 {
2506 	skb_reset_mac_header(skb);
2507 	skb->mac_header += offset;
2508 }
2509 
2510 static inline void skb_pop_mac_header(struct sk_buff *skb)
2511 {
2512 	skb->mac_header = skb->network_header;
2513 }
2514 
2515 static inline void skb_probe_transport_header(struct sk_buff *skb)
2516 {
2517 	struct flow_keys_basic keys;
2518 
2519 	if (skb_transport_header_was_set(skb))
2520 		return;
2521 
2522 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2523 					     NULL, 0, 0, 0, 0))
2524 		skb_set_transport_header(skb, keys.control.thoff);
2525 }
2526 
2527 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2528 {
2529 	if (skb_mac_header_was_set(skb)) {
2530 		const unsigned char *old_mac = skb_mac_header(skb);
2531 
2532 		skb_set_mac_header(skb, -skb->mac_len);
2533 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2534 	}
2535 }
2536 
2537 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2538 {
2539 	return skb->csum_start - skb_headroom(skb);
2540 }
2541 
2542 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2543 {
2544 	return skb->head + skb->csum_start;
2545 }
2546 
2547 static inline int skb_transport_offset(const struct sk_buff *skb)
2548 {
2549 	return skb_transport_header(skb) - skb->data;
2550 }
2551 
2552 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2553 {
2554 	return skb->transport_header - skb->network_header;
2555 }
2556 
2557 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2558 {
2559 	return skb->inner_transport_header - skb->inner_network_header;
2560 }
2561 
2562 static inline int skb_network_offset(const struct sk_buff *skb)
2563 {
2564 	return skb_network_header(skb) - skb->data;
2565 }
2566 
2567 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2568 {
2569 	return skb_inner_network_header(skb) - skb->data;
2570 }
2571 
2572 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2573 {
2574 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2575 }
2576 
2577 /*
2578  * CPUs often take a performance hit when accessing unaligned memory
2579  * locations. The actual performance hit varies, it can be small if the
2580  * hardware handles it or large if we have to take an exception and fix it
2581  * in software.
2582  *
2583  * Since an ethernet header is 14 bytes network drivers often end up with
2584  * the IP header at an unaligned offset. The IP header can be aligned by
2585  * shifting the start of the packet by 2 bytes. Drivers should do this
2586  * with:
2587  *
2588  * skb_reserve(skb, NET_IP_ALIGN);
2589  *
2590  * The downside to this alignment of the IP header is that the DMA is now
2591  * unaligned. On some architectures the cost of an unaligned DMA is high
2592  * and this cost outweighs the gains made by aligning the IP header.
2593  *
2594  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2595  * to be overridden.
2596  */
2597 #ifndef NET_IP_ALIGN
2598 #define NET_IP_ALIGN	2
2599 #endif
2600 
2601 /*
2602  * The networking layer reserves some headroom in skb data (via
2603  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2604  * the header has to grow. In the default case, if the header has to grow
2605  * 32 bytes or less we avoid the reallocation.
2606  *
2607  * Unfortunately this headroom changes the DMA alignment of the resulting
2608  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2609  * on some architectures. An architecture can override this value,
2610  * perhaps setting it to a cacheline in size (since that will maintain
2611  * cacheline alignment of the DMA). It must be a power of 2.
2612  *
2613  * Various parts of the networking layer expect at least 32 bytes of
2614  * headroom, you should not reduce this.
2615  *
2616  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2617  * to reduce average number of cache lines per packet.
2618  * get_rps_cpus() for example only access one 64 bytes aligned block :
2619  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2620  */
2621 #ifndef NET_SKB_PAD
2622 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2623 #endif
2624 
2625 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2626 
2627 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2628 {
2629 	if (WARN_ON(skb_is_nonlinear(skb)))
2630 		return;
2631 	skb->len = len;
2632 	skb_set_tail_pointer(skb, len);
2633 }
2634 
2635 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2636 {
2637 	__skb_set_length(skb, len);
2638 }
2639 
2640 void skb_trim(struct sk_buff *skb, unsigned int len);
2641 
2642 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2643 {
2644 	if (skb->data_len)
2645 		return ___pskb_trim(skb, len);
2646 	__skb_trim(skb, len);
2647 	return 0;
2648 }
2649 
2650 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2651 {
2652 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2653 }
2654 
2655 /**
2656  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2657  *	@skb: buffer to alter
2658  *	@len: new length
2659  *
2660  *	This is identical to pskb_trim except that the caller knows that
2661  *	the skb is not cloned so we should never get an error due to out-
2662  *	of-memory.
2663  */
2664 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2665 {
2666 	int err = pskb_trim(skb, len);
2667 	BUG_ON(err);
2668 }
2669 
2670 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2671 {
2672 	unsigned int diff = len - skb->len;
2673 
2674 	if (skb_tailroom(skb) < diff) {
2675 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2676 					   GFP_ATOMIC);
2677 		if (ret)
2678 			return ret;
2679 	}
2680 	__skb_set_length(skb, len);
2681 	return 0;
2682 }
2683 
2684 /**
2685  *	skb_orphan - orphan a buffer
2686  *	@skb: buffer to orphan
2687  *
2688  *	If a buffer currently has an owner then we call the owner's
2689  *	destructor function and make the @skb unowned. The buffer continues
2690  *	to exist but is no longer charged to its former owner.
2691  */
2692 static inline void skb_orphan(struct sk_buff *skb)
2693 {
2694 	if (skb->destructor) {
2695 		skb->destructor(skb);
2696 		skb->destructor = NULL;
2697 		skb->sk		= NULL;
2698 	} else {
2699 		BUG_ON(skb->sk);
2700 	}
2701 }
2702 
2703 /**
2704  *	skb_orphan_frags - orphan the frags contained in a buffer
2705  *	@skb: buffer to orphan frags from
2706  *	@gfp_mask: allocation mask for replacement pages
2707  *
2708  *	For each frag in the SKB which needs a destructor (i.e. has an
2709  *	owner) create a copy of that frag and release the original
2710  *	page by calling the destructor.
2711  */
2712 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2713 {
2714 	if (likely(!skb_zcopy(skb)))
2715 		return 0;
2716 	if (!skb_zcopy_is_nouarg(skb) &&
2717 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2718 		return 0;
2719 	return skb_copy_ubufs(skb, gfp_mask);
2720 }
2721 
2722 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2723 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2724 {
2725 	if (likely(!skb_zcopy(skb)))
2726 		return 0;
2727 	return skb_copy_ubufs(skb, gfp_mask);
2728 }
2729 
2730 /**
2731  *	__skb_queue_purge - empty a list
2732  *	@list: list to empty
2733  *
2734  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2735  *	the list and one reference dropped. This function does not take the
2736  *	list lock and the caller must hold the relevant locks to use it.
2737  */
2738 static inline void __skb_queue_purge(struct sk_buff_head *list)
2739 {
2740 	struct sk_buff *skb;
2741 	while ((skb = __skb_dequeue(list)) != NULL)
2742 		kfree_skb(skb);
2743 }
2744 void skb_queue_purge(struct sk_buff_head *list);
2745 
2746 unsigned int skb_rbtree_purge(struct rb_root *root);
2747 
2748 void *netdev_alloc_frag(unsigned int fragsz);
2749 
2750 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2751 				   gfp_t gfp_mask);
2752 
2753 /**
2754  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2755  *	@dev: network device to receive on
2756  *	@length: length to allocate
2757  *
2758  *	Allocate a new &sk_buff and assign it a usage count of one. The
2759  *	buffer has unspecified headroom built in. Users should allocate
2760  *	the headroom they think they need without accounting for the
2761  *	built in space. The built in space is used for optimisations.
2762  *
2763  *	%NULL is returned if there is no free memory. Although this function
2764  *	allocates memory it can be called from an interrupt.
2765  */
2766 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2767 					       unsigned int length)
2768 {
2769 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2770 }
2771 
2772 /* legacy helper around __netdev_alloc_skb() */
2773 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2774 					      gfp_t gfp_mask)
2775 {
2776 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2777 }
2778 
2779 /* legacy helper around netdev_alloc_skb() */
2780 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2781 {
2782 	return netdev_alloc_skb(NULL, length);
2783 }
2784 
2785 
2786 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2787 		unsigned int length, gfp_t gfp)
2788 {
2789 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2790 
2791 	if (NET_IP_ALIGN && skb)
2792 		skb_reserve(skb, NET_IP_ALIGN);
2793 	return skb;
2794 }
2795 
2796 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2797 		unsigned int length)
2798 {
2799 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2800 }
2801 
2802 static inline void skb_free_frag(void *addr)
2803 {
2804 	page_frag_free(addr);
2805 }
2806 
2807 void *napi_alloc_frag(unsigned int fragsz);
2808 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2809 				 unsigned int length, gfp_t gfp_mask);
2810 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2811 					     unsigned int length)
2812 {
2813 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2814 }
2815 void napi_consume_skb(struct sk_buff *skb, int budget);
2816 
2817 void __kfree_skb_flush(void);
2818 void __kfree_skb_defer(struct sk_buff *skb);
2819 
2820 /**
2821  * __dev_alloc_pages - allocate page for network Rx
2822  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2823  * @order: size of the allocation
2824  *
2825  * Allocate a new page.
2826  *
2827  * %NULL is returned if there is no free memory.
2828 */
2829 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2830 					     unsigned int order)
2831 {
2832 	/* This piece of code contains several assumptions.
2833 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2834 	 * 2.  The expectation is the user wants a compound page.
2835 	 * 3.  If requesting a order 0 page it will not be compound
2836 	 *     due to the check to see if order has a value in prep_new_page
2837 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2838 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2839 	 */
2840 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2841 
2842 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2843 }
2844 
2845 static inline struct page *dev_alloc_pages(unsigned int order)
2846 {
2847 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2848 }
2849 
2850 /**
2851  * __dev_alloc_page - allocate a page for network Rx
2852  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2853  *
2854  * Allocate a new page.
2855  *
2856  * %NULL is returned if there is no free memory.
2857  */
2858 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2859 {
2860 	return __dev_alloc_pages(gfp_mask, 0);
2861 }
2862 
2863 static inline struct page *dev_alloc_page(void)
2864 {
2865 	return dev_alloc_pages(0);
2866 }
2867 
2868 /**
2869  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2870  *	@page: The page that was allocated from skb_alloc_page
2871  *	@skb: The skb that may need pfmemalloc set
2872  */
2873 static inline void skb_propagate_pfmemalloc(struct page *page,
2874 					     struct sk_buff *skb)
2875 {
2876 	if (page_is_pfmemalloc(page))
2877 		skb->pfmemalloc = true;
2878 }
2879 
2880 /**
2881  * skb_frag_page - retrieve the page referred to by a paged fragment
2882  * @frag: the paged fragment
2883  *
2884  * Returns the &struct page associated with @frag.
2885  */
2886 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2887 {
2888 	return frag->page.p;
2889 }
2890 
2891 /**
2892  * __skb_frag_ref - take an addition reference on a paged fragment.
2893  * @frag: the paged fragment
2894  *
2895  * Takes an additional reference on the paged fragment @frag.
2896  */
2897 static inline void __skb_frag_ref(skb_frag_t *frag)
2898 {
2899 	get_page(skb_frag_page(frag));
2900 }
2901 
2902 /**
2903  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2904  * @skb: the buffer
2905  * @f: the fragment offset.
2906  *
2907  * Takes an additional reference on the @f'th paged fragment of @skb.
2908  */
2909 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2910 {
2911 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2912 }
2913 
2914 /**
2915  * __skb_frag_unref - release a reference on a paged fragment.
2916  * @frag: the paged fragment
2917  *
2918  * Releases a reference on the paged fragment @frag.
2919  */
2920 static inline void __skb_frag_unref(skb_frag_t *frag)
2921 {
2922 	put_page(skb_frag_page(frag));
2923 }
2924 
2925 /**
2926  * skb_frag_unref - release a reference on a paged fragment of an skb.
2927  * @skb: the buffer
2928  * @f: the fragment offset
2929  *
2930  * Releases a reference on the @f'th paged fragment of @skb.
2931  */
2932 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2933 {
2934 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2935 }
2936 
2937 /**
2938  * skb_frag_address - gets the address of the data contained in a paged fragment
2939  * @frag: the paged fragment buffer
2940  *
2941  * Returns the address of the data within @frag. The page must already
2942  * be mapped.
2943  */
2944 static inline void *skb_frag_address(const skb_frag_t *frag)
2945 {
2946 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2947 }
2948 
2949 /**
2950  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2951  * @frag: the paged fragment buffer
2952  *
2953  * Returns the address of the data within @frag. Checks that the page
2954  * is mapped and returns %NULL otherwise.
2955  */
2956 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2957 {
2958 	void *ptr = page_address(skb_frag_page(frag));
2959 	if (unlikely(!ptr))
2960 		return NULL;
2961 
2962 	return ptr + frag->page_offset;
2963 }
2964 
2965 /**
2966  * __skb_frag_set_page - sets the page contained in a paged fragment
2967  * @frag: the paged fragment
2968  * @page: the page to set
2969  *
2970  * Sets the fragment @frag to contain @page.
2971  */
2972 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2973 {
2974 	frag->page.p = page;
2975 }
2976 
2977 /**
2978  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2979  * @skb: the buffer
2980  * @f: the fragment offset
2981  * @page: the page to set
2982  *
2983  * Sets the @f'th fragment of @skb to contain @page.
2984  */
2985 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2986 				     struct page *page)
2987 {
2988 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2989 }
2990 
2991 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2992 
2993 /**
2994  * skb_frag_dma_map - maps a paged fragment via the DMA API
2995  * @dev: the device to map the fragment to
2996  * @frag: the paged fragment to map
2997  * @offset: the offset within the fragment (starting at the
2998  *          fragment's own offset)
2999  * @size: the number of bytes to map
3000  * @dir: the direction of the mapping (``PCI_DMA_*``)
3001  *
3002  * Maps the page associated with @frag to @device.
3003  */
3004 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3005 					  const skb_frag_t *frag,
3006 					  size_t offset, size_t size,
3007 					  enum dma_data_direction dir)
3008 {
3009 	return dma_map_page(dev, skb_frag_page(frag),
3010 			    frag->page_offset + offset, size, dir);
3011 }
3012 
3013 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3014 					gfp_t gfp_mask)
3015 {
3016 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3017 }
3018 
3019 
3020 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3021 						  gfp_t gfp_mask)
3022 {
3023 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3024 }
3025 
3026 
3027 /**
3028  *	skb_clone_writable - is the header of a clone writable
3029  *	@skb: buffer to check
3030  *	@len: length up to which to write
3031  *
3032  *	Returns true if modifying the header part of the cloned buffer
3033  *	does not requires the data to be copied.
3034  */
3035 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3036 {
3037 	return !skb_header_cloned(skb) &&
3038 	       skb_headroom(skb) + len <= skb->hdr_len;
3039 }
3040 
3041 static inline int skb_try_make_writable(struct sk_buff *skb,
3042 					unsigned int write_len)
3043 {
3044 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3045 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3046 }
3047 
3048 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3049 			    int cloned)
3050 {
3051 	int delta = 0;
3052 
3053 	if (headroom > skb_headroom(skb))
3054 		delta = headroom - skb_headroom(skb);
3055 
3056 	if (delta || cloned)
3057 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3058 					GFP_ATOMIC);
3059 	return 0;
3060 }
3061 
3062 /**
3063  *	skb_cow - copy header of skb when it is required
3064  *	@skb: buffer to cow
3065  *	@headroom: needed headroom
3066  *
3067  *	If the skb passed lacks sufficient headroom or its data part
3068  *	is shared, data is reallocated. If reallocation fails, an error
3069  *	is returned and original skb is not changed.
3070  *
3071  *	The result is skb with writable area skb->head...skb->tail
3072  *	and at least @headroom of space at head.
3073  */
3074 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3075 {
3076 	return __skb_cow(skb, headroom, skb_cloned(skb));
3077 }
3078 
3079 /**
3080  *	skb_cow_head - skb_cow but only making the head writable
3081  *	@skb: buffer to cow
3082  *	@headroom: needed headroom
3083  *
3084  *	This function is identical to skb_cow except that we replace the
3085  *	skb_cloned check by skb_header_cloned.  It should be used when
3086  *	you only need to push on some header and do not need to modify
3087  *	the data.
3088  */
3089 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3090 {
3091 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3092 }
3093 
3094 /**
3095  *	skb_padto	- pad an skbuff up to a minimal size
3096  *	@skb: buffer to pad
3097  *	@len: minimal length
3098  *
3099  *	Pads up a buffer to ensure the trailing bytes exist and are
3100  *	blanked. If the buffer already contains sufficient data it
3101  *	is untouched. Otherwise it is extended. Returns zero on
3102  *	success. The skb is freed on error.
3103  */
3104 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3105 {
3106 	unsigned int size = skb->len;
3107 	if (likely(size >= len))
3108 		return 0;
3109 	return skb_pad(skb, len - size);
3110 }
3111 
3112 /**
3113  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3114  *	@skb: buffer to pad
3115  *	@len: minimal length
3116  *	@free_on_error: free buffer on error
3117  *
3118  *	Pads up a buffer to ensure the trailing bytes exist and are
3119  *	blanked. If the buffer already contains sufficient data it
3120  *	is untouched. Otherwise it is extended. Returns zero on
3121  *	success. The skb is freed on error if @free_on_error is true.
3122  */
3123 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3124 				  bool free_on_error)
3125 {
3126 	unsigned int size = skb->len;
3127 
3128 	if (unlikely(size < len)) {
3129 		len -= size;
3130 		if (__skb_pad(skb, len, free_on_error))
3131 			return -ENOMEM;
3132 		__skb_put(skb, len);
3133 	}
3134 	return 0;
3135 }
3136 
3137 /**
3138  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3139  *	@skb: buffer to pad
3140  *	@len: minimal length
3141  *
3142  *	Pads up a buffer to ensure the trailing bytes exist and are
3143  *	blanked. If the buffer already contains sufficient data it
3144  *	is untouched. Otherwise it is extended. Returns zero on
3145  *	success. The skb is freed on error.
3146  */
3147 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3148 {
3149 	return __skb_put_padto(skb, len, true);
3150 }
3151 
3152 static inline int skb_add_data(struct sk_buff *skb,
3153 			       struct iov_iter *from, int copy)
3154 {
3155 	const int off = skb->len;
3156 
3157 	if (skb->ip_summed == CHECKSUM_NONE) {
3158 		__wsum csum = 0;
3159 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3160 					         &csum, from)) {
3161 			skb->csum = csum_block_add(skb->csum, csum, off);
3162 			return 0;
3163 		}
3164 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3165 		return 0;
3166 
3167 	__skb_trim(skb, off);
3168 	return -EFAULT;
3169 }
3170 
3171 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3172 				    const struct page *page, int off)
3173 {
3174 	if (skb_zcopy(skb))
3175 		return false;
3176 	if (i) {
3177 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3178 
3179 		return page == skb_frag_page(frag) &&
3180 		       off == frag->page_offset + skb_frag_size(frag);
3181 	}
3182 	return false;
3183 }
3184 
3185 static inline int __skb_linearize(struct sk_buff *skb)
3186 {
3187 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3188 }
3189 
3190 /**
3191  *	skb_linearize - convert paged skb to linear one
3192  *	@skb: buffer to linarize
3193  *
3194  *	If there is no free memory -ENOMEM is returned, otherwise zero
3195  *	is returned and the old skb data released.
3196  */
3197 static inline int skb_linearize(struct sk_buff *skb)
3198 {
3199 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3200 }
3201 
3202 /**
3203  * skb_has_shared_frag - can any frag be overwritten
3204  * @skb: buffer to test
3205  *
3206  * Return true if the skb has at least one frag that might be modified
3207  * by an external entity (as in vmsplice()/sendfile())
3208  */
3209 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3210 {
3211 	return skb_is_nonlinear(skb) &&
3212 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3213 }
3214 
3215 /**
3216  *	skb_linearize_cow - make sure skb is linear and writable
3217  *	@skb: buffer to process
3218  *
3219  *	If there is no free memory -ENOMEM is returned, otherwise zero
3220  *	is returned and the old skb data released.
3221  */
3222 static inline int skb_linearize_cow(struct sk_buff *skb)
3223 {
3224 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3225 	       __skb_linearize(skb) : 0;
3226 }
3227 
3228 static __always_inline void
3229 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3230 		     unsigned int off)
3231 {
3232 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3233 		skb->csum = csum_block_sub(skb->csum,
3234 					   csum_partial(start, len, 0), off);
3235 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3236 		 skb_checksum_start_offset(skb) < 0)
3237 		skb->ip_summed = CHECKSUM_NONE;
3238 }
3239 
3240 /**
3241  *	skb_postpull_rcsum - update checksum for received skb after pull
3242  *	@skb: buffer to update
3243  *	@start: start of data before pull
3244  *	@len: length of data pulled
3245  *
3246  *	After doing a pull on a received packet, you need to call this to
3247  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3248  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3249  */
3250 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3251 				      const void *start, unsigned int len)
3252 {
3253 	__skb_postpull_rcsum(skb, start, len, 0);
3254 }
3255 
3256 static __always_inline void
3257 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3258 		     unsigned int off)
3259 {
3260 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3261 		skb->csum = csum_block_add(skb->csum,
3262 					   csum_partial(start, len, 0), off);
3263 }
3264 
3265 /**
3266  *	skb_postpush_rcsum - update checksum for received skb after push
3267  *	@skb: buffer to update
3268  *	@start: start of data after push
3269  *	@len: length of data pushed
3270  *
3271  *	After doing a push on a received packet, you need to call this to
3272  *	update the CHECKSUM_COMPLETE checksum.
3273  */
3274 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3275 				      const void *start, unsigned int len)
3276 {
3277 	__skb_postpush_rcsum(skb, start, len, 0);
3278 }
3279 
3280 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3281 
3282 /**
3283  *	skb_push_rcsum - push skb and update receive checksum
3284  *	@skb: buffer to update
3285  *	@len: length of data pulled
3286  *
3287  *	This function performs an skb_push on the packet and updates
3288  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3289  *	receive path processing instead of skb_push unless you know
3290  *	that the checksum difference is zero (e.g., a valid IP header)
3291  *	or you are setting ip_summed to CHECKSUM_NONE.
3292  */
3293 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3294 {
3295 	skb_push(skb, len);
3296 	skb_postpush_rcsum(skb, skb->data, len);
3297 	return skb->data;
3298 }
3299 
3300 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3301 /**
3302  *	pskb_trim_rcsum - trim received skb and update checksum
3303  *	@skb: buffer to trim
3304  *	@len: new length
3305  *
3306  *	This is exactly the same as pskb_trim except that it ensures the
3307  *	checksum of received packets are still valid after the operation.
3308  *	It can change skb pointers.
3309  */
3310 
3311 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3312 {
3313 	if (likely(len >= skb->len))
3314 		return 0;
3315 	return pskb_trim_rcsum_slow(skb, len);
3316 }
3317 
3318 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3319 {
3320 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3321 		skb->ip_summed = CHECKSUM_NONE;
3322 	__skb_trim(skb, len);
3323 	return 0;
3324 }
3325 
3326 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3327 {
3328 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3329 		skb->ip_summed = CHECKSUM_NONE;
3330 	return __skb_grow(skb, len);
3331 }
3332 
3333 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3334 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3335 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3336 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3337 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3338 
3339 #define skb_queue_walk(queue, skb) \
3340 		for (skb = (queue)->next;					\
3341 		     skb != (struct sk_buff *)(queue);				\
3342 		     skb = skb->next)
3343 
3344 #define skb_queue_walk_safe(queue, skb, tmp)					\
3345 		for (skb = (queue)->next, tmp = skb->next;			\
3346 		     skb != (struct sk_buff *)(queue);				\
3347 		     skb = tmp, tmp = skb->next)
3348 
3349 #define skb_queue_walk_from(queue, skb)						\
3350 		for (; skb != (struct sk_buff *)(queue);			\
3351 		     skb = skb->next)
3352 
3353 #define skb_rbtree_walk(skb, root)						\
3354 		for (skb = skb_rb_first(root); skb != NULL;			\
3355 		     skb = skb_rb_next(skb))
3356 
3357 #define skb_rbtree_walk_from(skb)						\
3358 		for (; skb != NULL;						\
3359 		     skb = skb_rb_next(skb))
3360 
3361 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3362 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3363 		     skb = tmp)
3364 
3365 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3366 		for (tmp = skb->next;						\
3367 		     skb != (struct sk_buff *)(queue);				\
3368 		     skb = tmp, tmp = skb->next)
3369 
3370 #define skb_queue_reverse_walk(queue, skb) \
3371 		for (skb = (queue)->prev;					\
3372 		     skb != (struct sk_buff *)(queue);				\
3373 		     skb = skb->prev)
3374 
3375 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3376 		for (skb = (queue)->prev, tmp = skb->prev;			\
3377 		     skb != (struct sk_buff *)(queue);				\
3378 		     skb = tmp, tmp = skb->prev)
3379 
3380 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3381 		for (tmp = skb->prev;						\
3382 		     skb != (struct sk_buff *)(queue);				\
3383 		     skb = tmp, tmp = skb->prev)
3384 
3385 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3386 {
3387 	return skb_shinfo(skb)->frag_list != NULL;
3388 }
3389 
3390 static inline void skb_frag_list_init(struct sk_buff *skb)
3391 {
3392 	skb_shinfo(skb)->frag_list = NULL;
3393 }
3394 
3395 #define skb_walk_frags(skb, iter)	\
3396 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3397 
3398 
3399 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3400 				const struct sk_buff *skb);
3401 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3402 					  struct sk_buff_head *queue,
3403 					  unsigned int flags,
3404 					  void (*destructor)(struct sock *sk,
3405 							   struct sk_buff *skb),
3406 					  int *off, int *err,
3407 					  struct sk_buff **last);
3408 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3409 					void (*destructor)(struct sock *sk,
3410 							   struct sk_buff *skb),
3411 					int *off, int *err,
3412 					struct sk_buff **last);
3413 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3414 				    void (*destructor)(struct sock *sk,
3415 						       struct sk_buff *skb),
3416 				    int *off, int *err);
3417 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3418 				  int *err);
3419 __poll_t datagram_poll(struct file *file, struct socket *sock,
3420 			   struct poll_table_struct *wait);
3421 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3422 			   struct iov_iter *to, int size);
3423 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3424 					struct msghdr *msg, int size)
3425 {
3426 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3427 }
3428 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3429 				   struct msghdr *msg);
3430 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3431 			   struct iov_iter *to, int len,
3432 			   struct ahash_request *hash);
3433 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3434 				 struct iov_iter *from, int len);
3435 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3436 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3437 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3438 static inline void skb_free_datagram_locked(struct sock *sk,
3439 					    struct sk_buff *skb)
3440 {
3441 	__skb_free_datagram_locked(sk, skb, 0);
3442 }
3443 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3444 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3445 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3446 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3447 			      int len, __wsum csum);
3448 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3449 		    struct pipe_inode_info *pipe, unsigned int len,
3450 		    unsigned int flags);
3451 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3452 			 int len);
3453 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3454 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3455 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3456 		 int len, int hlen);
3457 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3458 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3459 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3460 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3461 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3462 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3463 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3464 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3465 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3466 int skb_vlan_pop(struct sk_buff *skb);
3467 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3468 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto);
3469 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto);
3470 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3471 int skb_mpls_dec_ttl(struct sk_buff *skb);
3472 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3473 			     gfp_t gfp);
3474 
3475 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3476 {
3477 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3478 }
3479 
3480 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3481 {
3482 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3483 }
3484 
3485 struct skb_checksum_ops {
3486 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3487 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3488 };
3489 
3490 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3491 
3492 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3493 		      __wsum csum, const struct skb_checksum_ops *ops);
3494 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3495 		    __wsum csum);
3496 
3497 static inline void * __must_check
3498 __skb_header_pointer(const struct sk_buff *skb, int offset,
3499 		     int len, void *data, int hlen, void *buffer)
3500 {
3501 	if (hlen - offset >= len)
3502 		return data + offset;
3503 
3504 	if (!skb ||
3505 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3506 		return NULL;
3507 
3508 	return buffer;
3509 }
3510 
3511 static inline void * __must_check
3512 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3513 {
3514 	return __skb_header_pointer(skb, offset, len, skb->data,
3515 				    skb_headlen(skb), buffer);
3516 }
3517 
3518 /**
3519  *	skb_needs_linearize - check if we need to linearize a given skb
3520  *			      depending on the given device features.
3521  *	@skb: socket buffer to check
3522  *	@features: net device features
3523  *
3524  *	Returns true if either:
3525  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3526  *	2. skb is fragmented and the device does not support SG.
3527  */
3528 static inline bool skb_needs_linearize(struct sk_buff *skb,
3529 				       netdev_features_t features)
3530 {
3531 	return skb_is_nonlinear(skb) &&
3532 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3533 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3534 }
3535 
3536 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3537 					     void *to,
3538 					     const unsigned int len)
3539 {
3540 	memcpy(to, skb->data, len);
3541 }
3542 
3543 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3544 						    const int offset, void *to,
3545 						    const unsigned int len)
3546 {
3547 	memcpy(to, skb->data + offset, len);
3548 }
3549 
3550 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3551 					   const void *from,
3552 					   const unsigned int len)
3553 {
3554 	memcpy(skb->data, from, len);
3555 }
3556 
3557 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3558 						  const int offset,
3559 						  const void *from,
3560 						  const unsigned int len)
3561 {
3562 	memcpy(skb->data + offset, from, len);
3563 }
3564 
3565 void skb_init(void);
3566 
3567 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3568 {
3569 	return skb->tstamp;
3570 }
3571 
3572 /**
3573  *	skb_get_timestamp - get timestamp from a skb
3574  *	@skb: skb to get stamp from
3575  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3576  *
3577  *	Timestamps are stored in the skb as offsets to a base timestamp.
3578  *	This function converts the offset back to a struct timeval and stores
3579  *	it in stamp.
3580  */
3581 static inline void skb_get_timestamp(const struct sk_buff *skb,
3582 				     struct __kernel_old_timeval *stamp)
3583 {
3584 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3585 }
3586 
3587 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3588 					 struct __kernel_sock_timeval *stamp)
3589 {
3590 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3591 
3592 	stamp->tv_sec = ts.tv_sec;
3593 	stamp->tv_usec = ts.tv_nsec / 1000;
3594 }
3595 
3596 static inline void skb_get_timestampns(const struct sk_buff *skb,
3597 				       struct timespec *stamp)
3598 {
3599 	*stamp = ktime_to_timespec(skb->tstamp);
3600 }
3601 
3602 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3603 					   struct __kernel_timespec *stamp)
3604 {
3605 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3606 
3607 	stamp->tv_sec = ts.tv_sec;
3608 	stamp->tv_nsec = ts.tv_nsec;
3609 }
3610 
3611 static inline void __net_timestamp(struct sk_buff *skb)
3612 {
3613 	skb->tstamp = ktime_get_real();
3614 }
3615 
3616 static inline ktime_t net_timedelta(ktime_t t)
3617 {
3618 	return ktime_sub(ktime_get_real(), t);
3619 }
3620 
3621 static inline ktime_t net_invalid_timestamp(void)
3622 {
3623 	return 0;
3624 }
3625 
3626 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3627 {
3628 	return skb_shinfo(skb)->meta_len;
3629 }
3630 
3631 static inline void *skb_metadata_end(const struct sk_buff *skb)
3632 {
3633 	return skb_mac_header(skb);
3634 }
3635 
3636 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3637 					  const struct sk_buff *skb_b,
3638 					  u8 meta_len)
3639 {
3640 	const void *a = skb_metadata_end(skb_a);
3641 	const void *b = skb_metadata_end(skb_b);
3642 	/* Using more efficient varaiant than plain call to memcmp(). */
3643 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3644 	u64 diffs = 0;
3645 
3646 	switch (meta_len) {
3647 #define __it(x, op) (x -= sizeof(u##op))
3648 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3649 	case 32: diffs |= __it_diff(a, b, 64);
3650 		 /* fall through */
3651 	case 24: diffs |= __it_diff(a, b, 64);
3652 		 /* fall through */
3653 	case 16: diffs |= __it_diff(a, b, 64);
3654 		 /* fall through */
3655 	case  8: diffs |= __it_diff(a, b, 64);
3656 		break;
3657 	case 28: diffs |= __it_diff(a, b, 64);
3658 		 /* fall through */
3659 	case 20: diffs |= __it_diff(a, b, 64);
3660 		 /* fall through */
3661 	case 12: diffs |= __it_diff(a, b, 64);
3662 		 /* fall through */
3663 	case  4: diffs |= __it_diff(a, b, 32);
3664 		break;
3665 	}
3666 	return diffs;
3667 #else
3668 	return memcmp(a - meta_len, b - meta_len, meta_len);
3669 #endif
3670 }
3671 
3672 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3673 					const struct sk_buff *skb_b)
3674 {
3675 	u8 len_a = skb_metadata_len(skb_a);
3676 	u8 len_b = skb_metadata_len(skb_b);
3677 
3678 	if (!(len_a | len_b))
3679 		return false;
3680 
3681 	return len_a != len_b ?
3682 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3683 }
3684 
3685 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3686 {
3687 	skb_shinfo(skb)->meta_len = meta_len;
3688 }
3689 
3690 static inline void skb_metadata_clear(struct sk_buff *skb)
3691 {
3692 	skb_metadata_set(skb, 0);
3693 }
3694 
3695 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3696 
3697 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3698 
3699 void skb_clone_tx_timestamp(struct sk_buff *skb);
3700 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3701 
3702 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3703 
3704 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3705 {
3706 }
3707 
3708 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3709 {
3710 	return false;
3711 }
3712 
3713 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3714 
3715 /**
3716  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3717  *
3718  * PHY drivers may accept clones of transmitted packets for
3719  * timestamping via their phy_driver.txtstamp method. These drivers
3720  * must call this function to return the skb back to the stack with a
3721  * timestamp.
3722  *
3723  * @skb: clone of the the original outgoing packet
3724  * @hwtstamps: hardware time stamps
3725  *
3726  */
3727 void skb_complete_tx_timestamp(struct sk_buff *skb,
3728 			       struct skb_shared_hwtstamps *hwtstamps);
3729 
3730 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3731 		     struct skb_shared_hwtstamps *hwtstamps,
3732 		     struct sock *sk, int tstype);
3733 
3734 /**
3735  * skb_tstamp_tx - queue clone of skb with send time stamps
3736  * @orig_skb:	the original outgoing packet
3737  * @hwtstamps:	hardware time stamps, may be NULL if not available
3738  *
3739  * If the skb has a socket associated, then this function clones the
3740  * skb (thus sharing the actual data and optional structures), stores
3741  * the optional hardware time stamping information (if non NULL) or
3742  * generates a software time stamp (otherwise), then queues the clone
3743  * to the error queue of the socket.  Errors are silently ignored.
3744  */
3745 void skb_tstamp_tx(struct sk_buff *orig_skb,
3746 		   struct skb_shared_hwtstamps *hwtstamps);
3747 
3748 /**
3749  * skb_tx_timestamp() - Driver hook for transmit timestamping
3750  *
3751  * Ethernet MAC Drivers should call this function in their hard_xmit()
3752  * function immediately before giving the sk_buff to the MAC hardware.
3753  *
3754  * Specifically, one should make absolutely sure that this function is
3755  * called before TX completion of this packet can trigger.  Otherwise
3756  * the packet could potentially already be freed.
3757  *
3758  * @skb: A socket buffer.
3759  */
3760 static inline void skb_tx_timestamp(struct sk_buff *skb)
3761 {
3762 	skb_clone_tx_timestamp(skb);
3763 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3764 		skb_tstamp_tx(skb, NULL);
3765 }
3766 
3767 /**
3768  * skb_complete_wifi_ack - deliver skb with wifi status
3769  *
3770  * @skb: the original outgoing packet
3771  * @acked: ack status
3772  *
3773  */
3774 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3775 
3776 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3777 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3778 
3779 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3780 {
3781 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3782 		skb->csum_valid ||
3783 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3784 		 skb_checksum_start_offset(skb) >= 0));
3785 }
3786 
3787 /**
3788  *	skb_checksum_complete - Calculate checksum of an entire packet
3789  *	@skb: packet to process
3790  *
3791  *	This function calculates the checksum over the entire packet plus
3792  *	the value of skb->csum.  The latter can be used to supply the
3793  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3794  *	checksum.
3795  *
3796  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3797  *	this function can be used to verify that checksum on received
3798  *	packets.  In that case the function should return zero if the
3799  *	checksum is correct.  In particular, this function will return zero
3800  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3801  *	hardware has already verified the correctness of the checksum.
3802  */
3803 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3804 {
3805 	return skb_csum_unnecessary(skb) ?
3806 	       0 : __skb_checksum_complete(skb);
3807 }
3808 
3809 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3810 {
3811 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3812 		if (skb->csum_level == 0)
3813 			skb->ip_summed = CHECKSUM_NONE;
3814 		else
3815 			skb->csum_level--;
3816 	}
3817 }
3818 
3819 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3820 {
3821 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3822 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3823 			skb->csum_level++;
3824 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3825 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3826 		skb->csum_level = 0;
3827 	}
3828 }
3829 
3830 /* Check if we need to perform checksum complete validation.
3831  *
3832  * Returns true if checksum complete is needed, false otherwise
3833  * (either checksum is unnecessary or zero checksum is allowed).
3834  */
3835 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3836 						  bool zero_okay,
3837 						  __sum16 check)
3838 {
3839 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3840 		skb->csum_valid = 1;
3841 		__skb_decr_checksum_unnecessary(skb);
3842 		return false;
3843 	}
3844 
3845 	return true;
3846 }
3847 
3848 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3849  * in checksum_init.
3850  */
3851 #define CHECKSUM_BREAK 76
3852 
3853 /* Unset checksum-complete
3854  *
3855  * Unset checksum complete can be done when packet is being modified
3856  * (uncompressed for instance) and checksum-complete value is
3857  * invalidated.
3858  */
3859 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3860 {
3861 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3862 		skb->ip_summed = CHECKSUM_NONE;
3863 }
3864 
3865 /* Validate (init) checksum based on checksum complete.
3866  *
3867  * Return values:
3868  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3869  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3870  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3871  *   non-zero: value of invalid checksum
3872  *
3873  */
3874 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3875 						       bool complete,
3876 						       __wsum psum)
3877 {
3878 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3879 		if (!csum_fold(csum_add(psum, skb->csum))) {
3880 			skb->csum_valid = 1;
3881 			return 0;
3882 		}
3883 	}
3884 
3885 	skb->csum = psum;
3886 
3887 	if (complete || skb->len <= CHECKSUM_BREAK) {
3888 		__sum16 csum;
3889 
3890 		csum = __skb_checksum_complete(skb);
3891 		skb->csum_valid = !csum;
3892 		return csum;
3893 	}
3894 
3895 	return 0;
3896 }
3897 
3898 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3899 {
3900 	return 0;
3901 }
3902 
3903 /* Perform checksum validate (init). Note that this is a macro since we only
3904  * want to calculate the pseudo header which is an input function if necessary.
3905  * First we try to validate without any computation (checksum unnecessary) and
3906  * then calculate based on checksum complete calling the function to compute
3907  * pseudo header.
3908  *
3909  * Return values:
3910  *   0: checksum is validated or try to in skb_checksum_complete
3911  *   non-zero: value of invalid checksum
3912  */
3913 #define __skb_checksum_validate(skb, proto, complete,			\
3914 				zero_okay, check, compute_pseudo)	\
3915 ({									\
3916 	__sum16 __ret = 0;						\
3917 	skb->csum_valid = 0;						\
3918 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3919 		__ret = __skb_checksum_validate_complete(skb,		\
3920 				complete, compute_pseudo(skb, proto));	\
3921 	__ret;								\
3922 })
3923 
3924 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3925 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3926 
3927 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3928 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3929 
3930 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3931 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3932 
3933 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3934 					 compute_pseudo)		\
3935 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3936 
3937 #define skb_checksum_simple_validate(skb)				\
3938 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3939 
3940 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3941 {
3942 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3943 }
3944 
3945 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
3946 {
3947 	skb->csum = ~pseudo;
3948 	skb->ip_summed = CHECKSUM_COMPLETE;
3949 }
3950 
3951 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
3952 do {									\
3953 	if (__skb_checksum_convert_check(skb))				\
3954 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
3955 } while (0)
3956 
3957 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3958 					      u16 start, u16 offset)
3959 {
3960 	skb->ip_summed = CHECKSUM_PARTIAL;
3961 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3962 	skb->csum_offset = offset - start;
3963 }
3964 
3965 /* Update skbuf and packet to reflect the remote checksum offload operation.
3966  * When called, ptr indicates the starting point for skb->csum when
3967  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3968  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3969  */
3970 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3971 				       int start, int offset, bool nopartial)
3972 {
3973 	__wsum delta;
3974 
3975 	if (!nopartial) {
3976 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3977 		return;
3978 	}
3979 
3980 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3981 		__skb_checksum_complete(skb);
3982 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3983 	}
3984 
3985 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3986 
3987 	/* Adjust skb->csum since we changed the packet */
3988 	skb->csum = csum_add(skb->csum, delta);
3989 }
3990 
3991 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3992 {
3993 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3994 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3995 #else
3996 	return NULL;
3997 #endif
3998 }
3999 
4000 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4001 void nf_conntrack_destroy(struct nf_conntrack *nfct);
4002 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
4003 {
4004 	if (nfct && atomic_dec_and_test(&nfct->use))
4005 		nf_conntrack_destroy(nfct);
4006 }
4007 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
4008 {
4009 	if (nfct)
4010 		atomic_inc(&nfct->use);
4011 }
4012 #endif
4013 
4014 #ifdef CONFIG_SKB_EXTENSIONS
4015 enum skb_ext_id {
4016 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4017 	SKB_EXT_BRIDGE_NF,
4018 #endif
4019 #ifdef CONFIG_XFRM
4020 	SKB_EXT_SEC_PATH,
4021 #endif
4022 	SKB_EXT_NUM, /* must be last */
4023 };
4024 
4025 /**
4026  *	struct skb_ext - sk_buff extensions
4027  *	@refcnt: 1 on allocation, deallocated on 0
4028  *	@offset: offset to add to @data to obtain extension address
4029  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4030  *	@data: start of extension data, variable sized
4031  *
4032  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4033  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4034  */
4035 struct skb_ext {
4036 	refcount_t refcnt;
4037 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4038 	u8 chunks;		/* same */
4039 	char data[0] __aligned(8);
4040 };
4041 
4042 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4043 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4044 void __skb_ext_put(struct skb_ext *ext);
4045 
4046 static inline void skb_ext_put(struct sk_buff *skb)
4047 {
4048 	if (skb->active_extensions)
4049 		__skb_ext_put(skb->extensions);
4050 }
4051 
4052 static inline void __skb_ext_copy(struct sk_buff *dst,
4053 				  const struct sk_buff *src)
4054 {
4055 	dst->active_extensions = src->active_extensions;
4056 
4057 	if (src->active_extensions) {
4058 		struct skb_ext *ext = src->extensions;
4059 
4060 		refcount_inc(&ext->refcnt);
4061 		dst->extensions = ext;
4062 	}
4063 }
4064 
4065 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4066 {
4067 	skb_ext_put(dst);
4068 	__skb_ext_copy(dst, src);
4069 }
4070 
4071 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4072 {
4073 	return !!ext->offset[i];
4074 }
4075 
4076 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4077 {
4078 	return skb->active_extensions & (1 << id);
4079 }
4080 
4081 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4082 {
4083 	if (skb_ext_exist(skb, id))
4084 		__skb_ext_del(skb, id);
4085 }
4086 
4087 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4088 {
4089 	if (skb_ext_exist(skb, id)) {
4090 		struct skb_ext *ext = skb->extensions;
4091 
4092 		return (void *)ext + (ext->offset[id] << 3);
4093 	}
4094 
4095 	return NULL;
4096 }
4097 #else
4098 static inline void skb_ext_put(struct sk_buff *skb) {}
4099 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4100 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4101 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4102 #endif /* CONFIG_SKB_EXTENSIONS */
4103 
4104 static inline void nf_reset(struct sk_buff *skb)
4105 {
4106 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4107 	nf_conntrack_put(skb_nfct(skb));
4108 	skb->_nfct = 0;
4109 #endif
4110 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4111 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4112 #endif
4113 }
4114 
4115 static inline void nf_reset_trace(struct sk_buff *skb)
4116 {
4117 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4118 	skb->nf_trace = 0;
4119 #endif
4120 }
4121 
4122 static inline void ipvs_reset(struct sk_buff *skb)
4123 {
4124 #if IS_ENABLED(CONFIG_IP_VS)
4125 	skb->ipvs_property = 0;
4126 #endif
4127 }
4128 
4129 /* Note: This doesn't put any conntrack info in dst. */
4130 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4131 			     bool copy)
4132 {
4133 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4134 	dst->_nfct = src->_nfct;
4135 	nf_conntrack_get(skb_nfct(src));
4136 #endif
4137 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4138 	if (copy)
4139 		dst->nf_trace = src->nf_trace;
4140 #endif
4141 }
4142 
4143 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4144 {
4145 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4146 	nf_conntrack_put(skb_nfct(dst));
4147 #endif
4148 	__nf_copy(dst, src, true);
4149 }
4150 
4151 #ifdef CONFIG_NETWORK_SECMARK
4152 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4153 {
4154 	to->secmark = from->secmark;
4155 }
4156 
4157 static inline void skb_init_secmark(struct sk_buff *skb)
4158 {
4159 	skb->secmark = 0;
4160 }
4161 #else
4162 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4163 { }
4164 
4165 static inline void skb_init_secmark(struct sk_buff *skb)
4166 { }
4167 #endif
4168 
4169 static inline int secpath_exists(const struct sk_buff *skb)
4170 {
4171 #ifdef CONFIG_XFRM
4172 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4173 #else
4174 	return 0;
4175 #endif
4176 }
4177 
4178 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4179 {
4180 	return !skb->destructor &&
4181 		!secpath_exists(skb) &&
4182 		!skb_nfct(skb) &&
4183 		!skb->_skb_refdst &&
4184 		!skb_has_frag_list(skb);
4185 }
4186 
4187 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4188 {
4189 	skb->queue_mapping = queue_mapping;
4190 }
4191 
4192 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4193 {
4194 	return skb->queue_mapping;
4195 }
4196 
4197 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4198 {
4199 	to->queue_mapping = from->queue_mapping;
4200 }
4201 
4202 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4203 {
4204 	skb->queue_mapping = rx_queue + 1;
4205 }
4206 
4207 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4208 {
4209 	return skb->queue_mapping - 1;
4210 }
4211 
4212 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4213 {
4214 	return skb->queue_mapping != 0;
4215 }
4216 
4217 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4218 {
4219 	skb->dst_pending_confirm = val;
4220 }
4221 
4222 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4223 {
4224 	return skb->dst_pending_confirm != 0;
4225 }
4226 
4227 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4228 {
4229 #ifdef CONFIG_XFRM
4230 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4231 #else
4232 	return NULL;
4233 #endif
4234 }
4235 
4236 /* Keeps track of mac header offset relative to skb->head.
4237  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4238  * For non-tunnel skb it points to skb_mac_header() and for
4239  * tunnel skb it points to outer mac header.
4240  * Keeps track of level of encapsulation of network headers.
4241  */
4242 struct skb_gso_cb {
4243 	union {
4244 		int	mac_offset;
4245 		int	data_offset;
4246 	};
4247 	int	encap_level;
4248 	__wsum	csum;
4249 	__u16	csum_start;
4250 };
4251 #define SKB_SGO_CB_OFFSET	32
4252 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4253 
4254 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4255 {
4256 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4257 		SKB_GSO_CB(inner_skb)->mac_offset;
4258 }
4259 
4260 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4261 {
4262 	int new_headroom, headroom;
4263 	int ret;
4264 
4265 	headroom = skb_headroom(skb);
4266 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4267 	if (ret)
4268 		return ret;
4269 
4270 	new_headroom = skb_headroom(skb);
4271 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4272 	return 0;
4273 }
4274 
4275 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4276 {
4277 	/* Do not update partial checksums if remote checksum is enabled. */
4278 	if (skb->remcsum_offload)
4279 		return;
4280 
4281 	SKB_GSO_CB(skb)->csum = res;
4282 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4283 }
4284 
4285 /* Compute the checksum for a gso segment. First compute the checksum value
4286  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4287  * then add in skb->csum (checksum from csum_start to end of packet).
4288  * skb->csum and csum_start are then updated to reflect the checksum of the
4289  * resultant packet starting from the transport header-- the resultant checksum
4290  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4291  * header.
4292  */
4293 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4294 {
4295 	unsigned char *csum_start = skb_transport_header(skb);
4296 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4297 	__wsum partial = SKB_GSO_CB(skb)->csum;
4298 
4299 	SKB_GSO_CB(skb)->csum = res;
4300 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4301 
4302 	return csum_fold(csum_partial(csum_start, plen, partial));
4303 }
4304 
4305 static inline bool skb_is_gso(const struct sk_buff *skb)
4306 {
4307 	return skb_shinfo(skb)->gso_size;
4308 }
4309 
4310 /* Note: Should be called only if skb_is_gso(skb) is true */
4311 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4312 {
4313 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4314 }
4315 
4316 /* Note: Should be called only if skb_is_gso(skb) is true */
4317 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4318 {
4319 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4320 }
4321 
4322 /* Note: Should be called only if skb_is_gso(skb) is true */
4323 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4324 {
4325 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4326 }
4327 
4328 static inline void skb_gso_reset(struct sk_buff *skb)
4329 {
4330 	skb_shinfo(skb)->gso_size = 0;
4331 	skb_shinfo(skb)->gso_segs = 0;
4332 	skb_shinfo(skb)->gso_type = 0;
4333 }
4334 
4335 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4336 					 u16 increment)
4337 {
4338 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4339 		return;
4340 	shinfo->gso_size += increment;
4341 }
4342 
4343 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4344 					 u16 decrement)
4345 {
4346 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4347 		return;
4348 	shinfo->gso_size -= decrement;
4349 }
4350 
4351 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4352 
4353 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4354 {
4355 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4356 	 * wanted then gso_type will be set. */
4357 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4358 
4359 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4360 	    unlikely(shinfo->gso_type == 0)) {
4361 		__skb_warn_lro_forwarding(skb);
4362 		return true;
4363 	}
4364 	return false;
4365 }
4366 
4367 static inline void skb_forward_csum(struct sk_buff *skb)
4368 {
4369 	/* Unfortunately we don't support this one.  Any brave souls? */
4370 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4371 		skb->ip_summed = CHECKSUM_NONE;
4372 }
4373 
4374 /**
4375  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4376  * @skb: skb to check
4377  *
4378  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4379  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4380  * use this helper, to document places where we make this assertion.
4381  */
4382 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4383 {
4384 #ifdef DEBUG
4385 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4386 #endif
4387 }
4388 
4389 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4390 
4391 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4392 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4393 				     unsigned int transport_len,
4394 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4395 
4396 /**
4397  * skb_head_is_locked - Determine if the skb->head is locked down
4398  * @skb: skb to check
4399  *
4400  * The head on skbs build around a head frag can be removed if they are
4401  * not cloned.  This function returns true if the skb head is locked down
4402  * due to either being allocated via kmalloc, or by being a clone with
4403  * multiple references to the head.
4404  */
4405 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4406 {
4407 	return !skb->head_frag || skb_cloned(skb);
4408 }
4409 
4410 /* Local Checksum Offload.
4411  * Compute outer checksum based on the assumption that the
4412  * inner checksum will be offloaded later.
4413  * See Documentation/networking/checksum-offloads.rst for
4414  * explanation of how this works.
4415  * Fill in outer checksum adjustment (e.g. with sum of outer
4416  * pseudo-header) before calling.
4417  * Also ensure that inner checksum is in linear data area.
4418  */
4419 static inline __wsum lco_csum(struct sk_buff *skb)
4420 {
4421 	unsigned char *csum_start = skb_checksum_start(skb);
4422 	unsigned char *l4_hdr = skb_transport_header(skb);
4423 	__wsum partial;
4424 
4425 	/* Start with complement of inner checksum adjustment */
4426 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4427 						    skb->csum_offset));
4428 
4429 	/* Add in checksum of our headers (incl. outer checksum
4430 	 * adjustment filled in by caller) and return result.
4431 	 */
4432 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4433 }
4434 
4435 #endif	/* __KERNEL__ */
4436 #endif	/* _LINUX_SKBUFF_H */
4437