1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <net/checksum.h> 27 #include <linux/rcupdate.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/netdev_features.h> 30 #include <net/flow_dissector.h> 31 #include <linux/in6.h> 32 #include <linux/if_packet.h> 33 #include <linux/llist.h> 34 #include <net/flow.h> 35 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 36 #include <linux/netfilter/nf_conntrack_common.h> 37 #endif 38 #include <net/net_debug.h> 39 #include <net/dropreason-core.h> 40 #include <net/netmem.h> 41 42 /** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246 /* Don't change this without changing skb_csum_unnecessary! */ 247 #define CHECKSUM_NONE 0 248 #define CHECKSUM_UNNECESSARY 1 249 #define CHECKSUM_COMPLETE 2 250 #define CHECKSUM_PARTIAL 3 251 252 /* Maximum value in skb->csum_level */ 253 #define SKB_MAX_CSUM_LEVEL 3 254 255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256 #define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259 /* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266 #define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271 /* return minimum truesize of one skb containing X bytes of data */ 272 #define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276 struct ahash_request; 277 struct net_device; 278 struct scatterlist; 279 struct pipe_inode_info; 280 struct iov_iter; 281 struct napi_struct; 282 struct bpf_prog; 283 union bpf_attr; 284 struct skb_ext; 285 struct ts_config; 286 287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288 struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 u8 sabotage_in_done:1; 298 __u16 frag_max_size; 299 int physinif; 300 301 /* always valid & non-NULL from FORWARD on, for physdev match */ 302 struct net_device *physoutdev; 303 union { 304 /* prerouting: detect dnat in orig/reply direction */ 305 __be32 ipv4_daddr; 306 struct in6_addr ipv6_daddr; 307 308 /* after prerouting + nat detected: store original source 309 * mac since neigh resolution overwrites it, only used while 310 * skb is out in neigh layer. 311 */ 312 char neigh_header[8]; 313 }; 314 }; 315 #endif 316 317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 318 /* Chain in tc_skb_ext will be used to share the tc chain with 319 * ovs recirc_id. It will be set to the current chain by tc 320 * and read by ovs to recirc_id. 321 */ 322 struct tc_skb_ext { 323 union { 324 u64 act_miss_cookie; 325 __u32 chain; 326 }; 327 __u16 mru; 328 __u16 zone; 329 u8 post_ct:1; 330 u8 post_ct_snat:1; 331 u8 post_ct_dnat:1; 332 u8 act_miss:1; /* Set if act_miss_cookie is used */ 333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 334 }; 335 #endif 336 337 struct sk_buff_head { 338 /* These two members must be first to match sk_buff. */ 339 struct_group_tagged(sk_buff_list, list, 340 struct sk_buff *next; 341 struct sk_buff *prev; 342 ); 343 344 __u32 qlen; 345 spinlock_t lock; 346 }; 347 348 struct sk_buff; 349 350 #ifndef CONFIG_MAX_SKB_FRAGS 351 # define CONFIG_MAX_SKB_FRAGS 17 352 #endif 353 354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 355 356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 357 * segment using its current segmentation instead. 358 */ 359 #define GSO_BY_FRAGS 0xFFFF 360 361 typedef struct skb_frag { 362 netmem_ref netmem; 363 unsigned int len; 364 unsigned int offset; 365 } skb_frag_t; 366 367 /** 368 * skb_frag_size() - Returns the size of a skb fragment 369 * @frag: skb fragment 370 */ 371 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 372 { 373 return frag->len; 374 } 375 376 /** 377 * skb_frag_size_set() - Sets the size of a skb fragment 378 * @frag: skb fragment 379 * @size: size of fragment 380 */ 381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 382 { 383 frag->len = size; 384 } 385 386 /** 387 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 388 * @frag: skb fragment 389 * @delta: value to add 390 */ 391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 392 { 393 frag->len += delta; 394 } 395 396 /** 397 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 398 * @frag: skb fragment 399 * @delta: value to subtract 400 */ 401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 402 { 403 frag->len -= delta; 404 } 405 406 /** 407 * skb_frag_must_loop - Test if %p is a high memory page 408 * @p: fragment's page 409 */ 410 static inline bool skb_frag_must_loop(struct page *p) 411 { 412 #if defined(CONFIG_HIGHMEM) 413 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 414 return true; 415 #endif 416 return false; 417 } 418 419 /** 420 * skb_frag_foreach_page - loop over pages in a fragment 421 * 422 * @f: skb frag to operate on 423 * @f_off: offset from start of f->netmem 424 * @f_len: length from f_off to loop over 425 * @p: (temp var) current page 426 * @p_off: (temp var) offset from start of current page, 427 * non-zero only on first page. 428 * @p_len: (temp var) length in current page, 429 * < PAGE_SIZE only on first and last page. 430 * @copied: (temp var) length so far, excluding current p_len. 431 * 432 * A fragment can hold a compound page, in which case per-page 433 * operations, notably kmap_atomic, must be called for each 434 * regular page. 435 */ 436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 437 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 438 p_off = (f_off) & (PAGE_SIZE - 1), \ 439 p_len = skb_frag_must_loop(p) ? \ 440 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 441 copied = 0; \ 442 copied < f_len; \ 443 copied += p_len, p++, p_off = 0, \ 444 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 445 446 /** 447 * struct skb_shared_hwtstamps - hardware time stamps 448 * @hwtstamp: hardware time stamp transformed into duration 449 * since arbitrary point in time 450 * @netdev_data: address/cookie of network device driver used as 451 * reference to actual hardware time stamp 452 * 453 * Software time stamps generated by ktime_get_real() are stored in 454 * skb->tstamp. 455 * 456 * hwtstamps can only be compared against other hwtstamps from 457 * the same device. 458 * 459 * This structure is attached to packets as part of the 460 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 461 */ 462 struct skb_shared_hwtstamps { 463 union { 464 ktime_t hwtstamp; 465 void *netdev_data; 466 }; 467 }; 468 469 /* Definitions for tx_flags in struct skb_shared_info */ 470 enum { 471 /* generate hardware time stamp */ 472 SKBTX_HW_TSTAMP = 1 << 0, 473 474 /* generate software time stamp when queueing packet to NIC */ 475 SKBTX_SW_TSTAMP = 1 << 1, 476 477 /* device driver is going to provide hardware time stamp */ 478 SKBTX_IN_PROGRESS = 1 << 2, 479 480 /* generate hardware time stamp based on cycles if supported */ 481 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 482 483 /* generate wifi status information (where possible) */ 484 SKBTX_WIFI_STATUS = 1 << 4, 485 486 /* determine hardware time stamp based on time or cycles */ 487 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 488 489 /* generate software time stamp when entering packet scheduling */ 490 SKBTX_SCHED_TSTAMP = 1 << 6, 491 }; 492 493 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 494 SKBTX_SCHED_TSTAMP) 495 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 496 SKBTX_HW_TSTAMP_USE_CYCLES | \ 497 SKBTX_ANY_SW_TSTAMP) 498 499 /* Definitions for flags in struct skb_shared_info */ 500 enum { 501 /* use zcopy routines */ 502 SKBFL_ZEROCOPY_ENABLE = BIT(0), 503 504 /* This indicates at least one fragment might be overwritten 505 * (as in vmsplice(), sendfile() ...) 506 * If we need to compute a TX checksum, we'll need to copy 507 * all frags to avoid possible bad checksum 508 */ 509 SKBFL_SHARED_FRAG = BIT(1), 510 511 /* segment contains only zerocopy data and should not be 512 * charged to the kernel memory. 513 */ 514 SKBFL_PURE_ZEROCOPY = BIT(2), 515 516 SKBFL_DONT_ORPHAN = BIT(3), 517 518 /* page references are managed by the ubuf_info, so it's safe to 519 * use frags only up until ubuf_info is released 520 */ 521 SKBFL_MANAGED_FRAG_REFS = BIT(4), 522 }; 523 524 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 525 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 526 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 527 528 struct ubuf_info_ops { 529 void (*complete)(struct sk_buff *, struct ubuf_info *, 530 bool zerocopy_success); 531 /* has to be compatible with skb_zcopy_set() */ 532 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg); 533 }; 534 535 /* 536 * The callback notifies userspace to release buffers when skb DMA is done in 537 * lower device, the skb last reference should be 0 when calling this. 538 * The zerocopy_success argument is true if zero copy transmit occurred, 539 * false on data copy or out of memory error caused by data copy attempt. 540 * The ctx field is used to track device context. 541 * The desc field is used to track userspace buffer index. 542 */ 543 struct ubuf_info { 544 const struct ubuf_info_ops *ops; 545 refcount_t refcnt; 546 u8 flags; 547 }; 548 549 struct ubuf_info_msgzc { 550 struct ubuf_info ubuf; 551 552 union { 553 struct { 554 unsigned long desc; 555 void *ctx; 556 }; 557 struct { 558 u32 id; 559 u16 len; 560 u16 zerocopy:1; 561 u32 bytelen; 562 }; 563 }; 564 565 struct mmpin { 566 struct user_struct *user; 567 unsigned int num_pg; 568 } mmp; 569 }; 570 571 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 572 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 573 ubuf) 574 575 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 576 void mm_unaccount_pinned_pages(struct mmpin *mmp); 577 578 /* Preserve some data across TX submission and completion. 579 * 580 * Note, this state is stored in the driver. Extending the layout 581 * might need some special care. 582 */ 583 struct xsk_tx_metadata_compl { 584 __u64 *tx_timestamp; 585 }; 586 587 /* This data is invariant across clones and lives at 588 * the end of the header data, ie. at skb->end. 589 */ 590 struct skb_shared_info { 591 __u8 flags; 592 __u8 meta_len; 593 __u8 nr_frags; 594 __u8 tx_flags; 595 unsigned short gso_size; 596 /* Warning: this field is not always filled in (UFO)! */ 597 unsigned short gso_segs; 598 struct sk_buff *frag_list; 599 union { 600 struct skb_shared_hwtstamps hwtstamps; 601 struct xsk_tx_metadata_compl xsk_meta; 602 }; 603 unsigned int gso_type; 604 u32 tskey; 605 606 /* 607 * Warning : all fields before dataref are cleared in __alloc_skb() 608 */ 609 atomic_t dataref; 610 unsigned int xdp_frags_size; 611 612 /* Intermediate layers must ensure that destructor_arg 613 * remains valid until skb destructor */ 614 void * destructor_arg; 615 616 /* must be last field, see pskb_expand_head() */ 617 skb_frag_t frags[MAX_SKB_FRAGS]; 618 }; 619 620 /** 621 * DOC: dataref and headerless skbs 622 * 623 * Transport layers send out clones of payload skbs they hold for 624 * retransmissions. To allow lower layers of the stack to prepend their headers 625 * we split &skb_shared_info.dataref into two halves. 626 * The lower 16 bits count the overall number of references. 627 * The higher 16 bits indicate how many of the references are payload-only. 628 * skb_header_cloned() checks if skb is allowed to add / write the headers. 629 * 630 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 631 * (via __skb_header_release()). Any clone created from marked skb will get 632 * &sk_buff.hdr_len populated with the available headroom. 633 * If there's the only clone in existence it's able to modify the headroom 634 * at will. The sequence of calls inside the transport layer is:: 635 * 636 * <alloc skb> 637 * skb_reserve() 638 * __skb_header_release() 639 * skb_clone() 640 * // send the clone down the stack 641 * 642 * This is not a very generic construct and it depends on the transport layers 643 * doing the right thing. In practice there's usually only one payload-only skb. 644 * Having multiple payload-only skbs with different lengths of hdr_len is not 645 * possible. The payload-only skbs should never leave their owner. 646 */ 647 #define SKB_DATAREF_SHIFT 16 648 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 649 650 651 enum { 652 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 653 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 654 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 655 }; 656 657 enum { 658 SKB_GSO_TCPV4 = 1 << 0, 659 660 /* This indicates the skb is from an untrusted source. */ 661 SKB_GSO_DODGY = 1 << 1, 662 663 /* This indicates the tcp segment has CWR set. */ 664 SKB_GSO_TCP_ECN = 1 << 2, 665 666 SKB_GSO_TCP_FIXEDID = 1 << 3, 667 668 SKB_GSO_TCPV6 = 1 << 4, 669 670 SKB_GSO_FCOE = 1 << 5, 671 672 SKB_GSO_GRE = 1 << 6, 673 674 SKB_GSO_GRE_CSUM = 1 << 7, 675 676 SKB_GSO_IPXIP4 = 1 << 8, 677 678 SKB_GSO_IPXIP6 = 1 << 9, 679 680 SKB_GSO_UDP_TUNNEL = 1 << 10, 681 682 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 683 684 SKB_GSO_PARTIAL = 1 << 12, 685 686 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 687 688 SKB_GSO_SCTP = 1 << 14, 689 690 SKB_GSO_ESP = 1 << 15, 691 692 SKB_GSO_UDP = 1 << 16, 693 694 SKB_GSO_UDP_L4 = 1 << 17, 695 696 SKB_GSO_FRAGLIST = 1 << 18, 697 }; 698 699 #if BITS_PER_LONG > 32 700 #define NET_SKBUFF_DATA_USES_OFFSET 1 701 #endif 702 703 #ifdef NET_SKBUFF_DATA_USES_OFFSET 704 typedef unsigned int sk_buff_data_t; 705 #else 706 typedef unsigned char *sk_buff_data_t; 707 #endif 708 709 enum skb_tstamp_type { 710 SKB_CLOCK_REALTIME, 711 SKB_CLOCK_MONOTONIC, 712 SKB_CLOCK_TAI, 713 __SKB_CLOCK_MAX = SKB_CLOCK_TAI, 714 }; 715 716 /** 717 * DOC: Basic sk_buff geometry 718 * 719 * struct sk_buff itself is a metadata structure and does not hold any packet 720 * data. All the data is held in associated buffers. 721 * 722 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 723 * into two parts: 724 * 725 * - data buffer, containing headers and sometimes payload; 726 * this is the part of the skb operated on by the common helpers 727 * such as skb_put() or skb_pull(); 728 * - shared info (struct skb_shared_info) which holds an array of pointers 729 * to read-only data in the (page, offset, length) format. 730 * 731 * Optionally &skb_shared_info.frag_list may point to another skb. 732 * 733 * Basic diagram may look like this:: 734 * 735 * --------------- 736 * | sk_buff | 737 * --------------- 738 * ,--------------------------- + head 739 * / ,----------------- + data 740 * / / ,----------- + tail 741 * | | | , + end 742 * | | | | 743 * v v v v 744 * ----------------------------------------------- 745 * | headroom | data | tailroom | skb_shared_info | 746 * ----------------------------------------------- 747 * + [page frag] 748 * + [page frag] 749 * + [page frag] 750 * + [page frag] --------- 751 * + frag_list --> | sk_buff | 752 * --------- 753 * 754 */ 755 756 /** 757 * struct sk_buff - socket buffer 758 * @next: Next buffer in list 759 * @prev: Previous buffer in list 760 * @tstamp: Time we arrived/left 761 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 762 * for retransmit timer 763 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 764 * @list: queue head 765 * @ll_node: anchor in an llist (eg socket defer_list) 766 * @sk: Socket we are owned by 767 * @dev: Device we arrived on/are leaving by 768 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 769 * @cb: Control buffer. Free for use by every layer. Put private vars here 770 * @_skb_refdst: destination entry (with norefcount bit) 771 * @len: Length of actual data 772 * @data_len: Data length 773 * @mac_len: Length of link layer header 774 * @hdr_len: writable header length of cloned skb 775 * @csum: Checksum (must include start/offset pair) 776 * @csum_start: Offset from skb->head where checksumming should start 777 * @csum_offset: Offset from csum_start where checksum should be stored 778 * @priority: Packet queueing priority 779 * @ignore_df: allow local fragmentation 780 * @cloned: Head may be cloned (check refcnt to be sure) 781 * @ip_summed: Driver fed us an IP checksum 782 * @nohdr: Payload reference only, must not modify header 783 * @pkt_type: Packet class 784 * @fclone: skbuff clone status 785 * @ipvs_property: skbuff is owned by ipvs 786 * @inner_protocol_type: whether the inner protocol is 787 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 788 * @remcsum_offload: remote checksum offload is enabled 789 * @offload_fwd_mark: Packet was L2-forwarded in hardware 790 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 791 * @tc_skip_classify: do not classify packet. set by IFB device 792 * @tc_at_ingress: used within tc_classify to distinguish in/egress 793 * @redirected: packet was redirected by packet classifier 794 * @from_ingress: packet was redirected from the ingress path 795 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 796 * @peeked: this packet has been seen already, so stats have been 797 * done for it, don't do them again 798 * @nf_trace: netfilter packet trace flag 799 * @protocol: Packet protocol from driver 800 * @destructor: Destruct function 801 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 802 * @_sk_redir: socket redirection information for skmsg 803 * @_nfct: Associated connection, if any (with nfctinfo bits) 804 * @skb_iif: ifindex of device we arrived on 805 * @tc_index: Traffic control index 806 * @hash: the packet hash 807 * @queue_mapping: Queue mapping for multiqueue devices 808 * @head_frag: skb was allocated from page fragments, 809 * not allocated by kmalloc() or vmalloc(). 810 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 811 * @pp_recycle: mark the packet for recycling instead of freeing (implies 812 * page_pool support on driver) 813 * @active_extensions: active extensions (skb_ext_id types) 814 * @ndisc_nodetype: router type (from link layer) 815 * @ooo_okay: allow the mapping of a socket to a queue to be changed 816 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 817 * ports. 818 * @sw_hash: indicates hash was computed in software stack 819 * @wifi_acked_valid: wifi_acked was set 820 * @wifi_acked: whether frame was acked on wifi or not 821 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 822 * @encapsulation: indicates the inner headers in the skbuff are valid 823 * @encap_hdr_csum: software checksum is needed 824 * @csum_valid: checksum is already valid 825 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 826 * @csum_complete_sw: checksum was completed by software 827 * @csum_level: indicates the number of consecutive checksums found in 828 * the packet minus one that have been verified as 829 * CHECKSUM_UNNECESSARY (max 3) 830 * @dst_pending_confirm: need to confirm neighbour 831 * @decrypted: Decrypted SKB 832 * @slow_gro: state present at GRO time, slower prepare step required 833 * @tstamp_type: When set, skb->tstamp has the 834 * delivery_time clock base of skb->tstamp. 835 * @napi_id: id of the NAPI struct this skb came from 836 * @sender_cpu: (aka @napi_id) source CPU in XPS 837 * @alloc_cpu: CPU which did the skb allocation. 838 * @secmark: security marking 839 * @mark: Generic packet mark 840 * @reserved_tailroom: (aka @mark) number of bytes of free space available 841 * at the tail of an sk_buff 842 * @vlan_all: vlan fields (proto & tci) 843 * @vlan_proto: vlan encapsulation protocol 844 * @vlan_tci: vlan tag control information 845 * @inner_protocol: Protocol (encapsulation) 846 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 847 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 848 * @inner_transport_header: Inner transport layer header (encapsulation) 849 * @inner_network_header: Network layer header (encapsulation) 850 * @inner_mac_header: Link layer header (encapsulation) 851 * @transport_header: Transport layer header 852 * @network_header: Network layer header 853 * @mac_header: Link layer header 854 * @kcov_handle: KCOV remote handle for remote coverage collection 855 * @tail: Tail pointer 856 * @end: End pointer 857 * @head: Head of buffer 858 * @data: Data head pointer 859 * @truesize: Buffer size 860 * @users: User count - see {datagram,tcp}.c 861 * @extensions: allocated extensions, valid if active_extensions is nonzero 862 */ 863 864 struct sk_buff { 865 union { 866 struct { 867 /* These two members must be first to match sk_buff_head. */ 868 struct sk_buff *next; 869 struct sk_buff *prev; 870 871 union { 872 struct net_device *dev; 873 /* Some protocols might use this space to store information, 874 * while device pointer would be NULL. 875 * UDP receive path is one user. 876 */ 877 unsigned long dev_scratch; 878 }; 879 }; 880 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 881 struct list_head list; 882 struct llist_node ll_node; 883 }; 884 885 struct sock *sk; 886 887 union { 888 ktime_t tstamp; 889 u64 skb_mstamp_ns; /* earliest departure time */ 890 }; 891 /* 892 * This is the control buffer. It is free to use for every 893 * layer. Please put your private variables there. If you 894 * want to keep them across layers you have to do a skb_clone() 895 * first. This is owned by whoever has the skb queued ATM. 896 */ 897 char cb[48] __aligned(8); 898 899 union { 900 struct { 901 unsigned long _skb_refdst; 902 void (*destructor)(struct sk_buff *skb); 903 }; 904 struct list_head tcp_tsorted_anchor; 905 #ifdef CONFIG_NET_SOCK_MSG 906 unsigned long _sk_redir; 907 #endif 908 }; 909 910 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 911 unsigned long _nfct; 912 #endif 913 unsigned int len, 914 data_len; 915 __u16 mac_len, 916 hdr_len; 917 918 /* Following fields are _not_ copied in __copy_skb_header() 919 * Note that queue_mapping is here mostly to fill a hole. 920 */ 921 __u16 queue_mapping; 922 923 /* if you move cloned around you also must adapt those constants */ 924 #ifdef __BIG_ENDIAN_BITFIELD 925 #define CLONED_MASK (1 << 7) 926 #else 927 #define CLONED_MASK 1 928 #endif 929 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 930 931 /* private: */ 932 __u8 __cloned_offset[0]; 933 /* public: */ 934 __u8 cloned:1, 935 nohdr:1, 936 fclone:2, 937 peeked:1, 938 head_frag:1, 939 pfmemalloc:1, 940 pp_recycle:1; /* page_pool recycle indicator */ 941 #ifdef CONFIG_SKB_EXTENSIONS 942 __u8 active_extensions; 943 #endif 944 945 /* Fields enclosed in headers group are copied 946 * using a single memcpy() in __copy_skb_header() 947 */ 948 struct_group(headers, 949 950 /* private: */ 951 __u8 __pkt_type_offset[0]; 952 /* public: */ 953 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 954 __u8 ignore_df:1; 955 __u8 dst_pending_confirm:1; 956 __u8 ip_summed:2; 957 __u8 ooo_okay:1; 958 959 /* private: */ 960 __u8 __mono_tc_offset[0]; 961 /* public: */ 962 __u8 tstamp_type:2; /* See skb_tstamp_type */ 963 #ifdef CONFIG_NET_XGRESS 964 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 965 __u8 tc_skip_classify:1; 966 #endif 967 __u8 remcsum_offload:1; 968 __u8 csum_complete_sw:1; 969 __u8 csum_level:2; 970 __u8 inner_protocol_type:1; 971 972 __u8 l4_hash:1; 973 __u8 sw_hash:1; 974 #ifdef CONFIG_WIRELESS 975 __u8 wifi_acked_valid:1; 976 __u8 wifi_acked:1; 977 #endif 978 __u8 no_fcs:1; 979 /* Indicates the inner headers are valid in the skbuff. */ 980 __u8 encapsulation:1; 981 __u8 encap_hdr_csum:1; 982 __u8 csum_valid:1; 983 #ifdef CONFIG_IPV6_NDISC_NODETYPE 984 __u8 ndisc_nodetype:2; 985 #endif 986 987 #if IS_ENABLED(CONFIG_IP_VS) 988 __u8 ipvs_property:1; 989 #endif 990 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 991 __u8 nf_trace:1; 992 #endif 993 #ifdef CONFIG_NET_SWITCHDEV 994 __u8 offload_fwd_mark:1; 995 __u8 offload_l3_fwd_mark:1; 996 #endif 997 __u8 redirected:1; 998 #ifdef CONFIG_NET_REDIRECT 999 __u8 from_ingress:1; 1000 #endif 1001 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 1002 __u8 nf_skip_egress:1; 1003 #endif 1004 #ifdef CONFIG_SKB_DECRYPTED 1005 __u8 decrypted:1; 1006 #endif 1007 __u8 slow_gro:1; 1008 #if IS_ENABLED(CONFIG_IP_SCTP) 1009 __u8 csum_not_inet:1; 1010 #endif 1011 1012 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 1013 __u16 tc_index; /* traffic control index */ 1014 #endif 1015 1016 u16 alloc_cpu; 1017 1018 union { 1019 __wsum csum; 1020 struct { 1021 __u16 csum_start; 1022 __u16 csum_offset; 1023 }; 1024 }; 1025 __u32 priority; 1026 int skb_iif; 1027 __u32 hash; 1028 union { 1029 u32 vlan_all; 1030 struct { 1031 __be16 vlan_proto; 1032 __u16 vlan_tci; 1033 }; 1034 }; 1035 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1036 union { 1037 unsigned int napi_id; 1038 unsigned int sender_cpu; 1039 }; 1040 #endif 1041 #ifdef CONFIG_NETWORK_SECMARK 1042 __u32 secmark; 1043 #endif 1044 1045 union { 1046 __u32 mark; 1047 __u32 reserved_tailroom; 1048 }; 1049 1050 union { 1051 __be16 inner_protocol; 1052 __u8 inner_ipproto; 1053 }; 1054 1055 __u16 inner_transport_header; 1056 __u16 inner_network_header; 1057 __u16 inner_mac_header; 1058 1059 __be16 protocol; 1060 __u16 transport_header; 1061 __u16 network_header; 1062 __u16 mac_header; 1063 1064 #ifdef CONFIG_KCOV 1065 u64 kcov_handle; 1066 #endif 1067 1068 ); /* end headers group */ 1069 1070 /* These elements must be at the end, see alloc_skb() for details. */ 1071 sk_buff_data_t tail; 1072 sk_buff_data_t end; 1073 unsigned char *head, 1074 *data; 1075 unsigned int truesize; 1076 refcount_t users; 1077 1078 #ifdef CONFIG_SKB_EXTENSIONS 1079 /* only usable after checking ->active_extensions != 0 */ 1080 struct skb_ext *extensions; 1081 #endif 1082 }; 1083 1084 /* if you move pkt_type around you also must adapt those constants */ 1085 #ifdef __BIG_ENDIAN_BITFIELD 1086 #define PKT_TYPE_MAX (7 << 5) 1087 #else 1088 #define PKT_TYPE_MAX 7 1089 #endif 1090 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1091 1092 /* if you move tc_at_ingress or tstamp_type 1093 * around, you also must adapt these constants. 1094 */ 1095 #ifdef __BIG_ENDIAN_BITFIELD 1096 #define SKB_TSTAMP_TYPE_MASK (3 << 6) 1097 #define SKB_TSTAMP_TYPE_RSHIFT (6) 1098 #define TC_AT_INGRESS_MASK (1 << 5) 1099 #else 1100 #define SKB_TSTAMP_TYPE_MASK (3) 1101 #define TC_AT_INGRESS_MASK (1 << 2) 1102 #endif 1103 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1104 1105 #ifdef __KERNEL__ 1106 /* 1107 * Handling routines are only of interest to the kernel 1108 */ 1109 1110 #define SKB_ALLOC_FCLONE 0x01 1111 #define SKB_ALLOC_RX 0x02 1112 #define SKB_ALLOC_NAPI 0x04 1113 1114 /** 1115 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1116 * @skb: buffer 1117 */ 1118 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1119 { 1120 return unlikely(skb->pfmemalloc); 1121 } 1122 1123 /* 1124 * skb might have a dst pointer attached, refcounted or not. 1125 * _skb_refdst low order bit is set if refcount was _not_ taken 1126 */ 1127 #define SKB_DST_NOREF 1UL 1128 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1129 1130 /** 1131 * skb_dst - returns skb dst_entry 1132 * @skb: buffer 1133 * 1134 * Returns skb dst_entry, regardless of reference taken or not. 1135 */ 1136 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1137 { 1138 /* If refdst was not refcounted, check we still are in a 1139 * rcu_read_lock section 1140 */ 1141 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1142 !rcu_read_lock_held() && 1143 !rcu_read_lock_bh_held()); 1144 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1145 } 1146 1147 /** 1148 * skb_dst_set - sets skb dst 1149 * @skb: buffer 1150 * @dst: dst entry 1151 * 1152 * Sets skb dst, assuming a reference was taken on dst and should 1153 * be released by skb_dst_drop() 1154 */ 1155 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1156 { 1157 skb->slow_gro |= !!dst; 1158 skb->_skb_refdst = (unsigned long)dst; 1159 } 1160 1161 /** 1162 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1163 * @skb: buffer 1164 * @dst: dst entry 1165 * 1166 * Sets skb dst, assuming a reference was not taken on dst. 1167 * If dst entry is cached, we do not take reference and dst_release 1168 * will be avoided by refdst_drop. If dst entry is not cached, we take 1169 * reference, so that last dst_release can destroy the dst immediately. 1170 */ 1171 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1172 { 1173 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1174 skb->slow_gro |= !!dst; 1175 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1176 } 1177 1178 /** 1179 * skb_dst_is_noref - Test if skb dst isn't refcounted 1180 * @skb: buffer 1181 */ 1182 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1183 { 1184 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1185 } 1186 1187 /* For mangling skb->pkt_type from user space side from applications 1188 * such as nft, tc, etc, we only allow a conservative subset of 1189 * possible pkt_types to be set. 1190 */ 1191 static inline bool skb_pkt_type_ok(u32 ptype) 1192 { 1193 return ptype <= PACKET_OTHERHOST; 1194 } 1195 1196 /** 1197 * skb_napi_id - Returns the skb's NAPI id 1198 * @skb: buffer 1199 */ 1200 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1201 { 1202 #ifdef CONFIG_NET_RX_BUSY_POLL 1203 return skb->napi_id; 1204 #else 1205 return 0; 1206 #endif 1207 } 1208 1209 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1210 { 1211 #ifdef CONFIG_WIRELESS 1212 return skb->wifi_acked_valid; 1213 #else 1214 return 0; 1215 #endif 1216 } 1217 1218 /** 1219 * skb_unref - decrement the skb's reference count 1220 * @skb: buffer 1221 * 1222 * Returns true if we can free the skb. 1223 */ 1224 static inline bool skb_unref(struct sk_buff *skb) 1225 { 1226 if (unlikely(!skb)) 1227 return false; 1228 if (likely(refcount_read(&skb->users) == 1)) 1229 smp_rmb(); 1230 else if (likely(!refcount_dec_and_test(&skb->users))) 1231 return false; 1232 1233 return true; 1234 } 1235 1236 static inline bool skb_data_unref(const struct sk_buff *skb, 1237 struct skb_shared_info *shinfo) 1238 { 1239 int bias; 1240 1241 if (!skb->cloned) 1242 return true; 1243 1244 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1; 1245 1246 if (atomic_read(&shinfo->dataref) == bias) 1247 smp_rmb(); 1248 else if (atomic_sub_return(bias, &shinfo->dataref)) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 void __fix_address 1255 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1256 1257 /** 1258 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1259 * @skb: buffer to free 1260 */ 1261 static inline void kfree_skb(struct sk_buff *skb) 1262 { 1263 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1264 } 1265 1266 void skb_release_head_state(struct sk_buff *skb); 1267 void kfree_skb_list_reason(struct sk_buff *segs, 1268 enum skb_drop_reason reason); 1269 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1270 void skb_tx_error(struct sk_buff *skb); 1271 1272 static inline void kfree_skb_list(struct sk_buff *segs) 1273 { 1274 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1275 } 1276 1277 #ifdef CONFIG_TRACEPOINTS 1278 void consume_skb(struct sk_buff *skb); 1279 #else 1280 static inline void consume_skb(struct sk_buff *skb) 1281 { 1282 return kfree_skb(skb); 1283 } 1284 #endif 1285 1286 void __consume_stateless_skb(struct sk_buff *skb); 1287 void __kfree_skb(struct sk_buff *skb); 1288 1289 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1290 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1291 bool *fragstolen, int *delta_truesize); 1292 1293 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1294 int node); 1295 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1296 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1297 struct sk_buff *build_skb_around(struct sk_buff *skb, 1298 void *data, unsigned int frag_size); 1299 void skb_attempt_defer_free(struct sk_buff *skb); 1300 1301 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1302 struct sk_buff *slab_build_skb(void *data); 1303 1304 /** 1305 * alloc_skb - allocate a network buffer 1306 * @size: size to allocate 1307 * @priority: allocation mask 1308 * 1309 * This function is a convenient wrapper around __alloc_skb(). 1310 */ 1311 static inline struct sk_buff *alloc_skb(unsigned int size, 1312 gfp_t priority) 1313 { 1314 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1315 } 1316 1317 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1318 unsigned long data_len, 1319 int max_page_order, 1320 int *errcode, 1321 gfp_t gfp_mask); 1322 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1323 1324 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1325 struct sk_buff_fclones { 1326 struct sk_buff skb1; 1327 1328 struct sk_buff skb2; 1329 1330 refcount_t fclone_ref; 1331 }; 1332 1333 /** 1334 * skb_fclone_busy - check if fclone is busy 1335 * @sk: socket 1336 * @skb: buffer 1337 * 1338 * Returns true if skb is a fast clone, and its clone is not freed. 1339 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1340 * so we also check that didn't happen. 1341 */ 1342 static inline bool skb_fclone_busy(const struct sock *sk, 1343 const struct sk_buff *skb) 1344 { 1345 const struct sk_buff_fclones *fclones; 1346 1347 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1348 1349 return skb->fclone == SKB_FCLONE_ORIG && 1350 refcount_read(&fclones->fclone_ref) > 1 && 1351 READ_ONCE(fclones->skb2.sk) == sk; 1352 } 1353 1354 /** 1355 * alloc_skb_fclone - allocate a network buffer from fclone cache 1356 * @size: size to allocate 1357 * @priority: allocation mask 1358 * 1359 * This function is a convenient wrapper around __alloc_skb(). 1360 */ 1361 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1362 gfp_t priority) 1363 { 1364 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1365 } 1366 1367 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1368 void skb_headers_offset_update(struct sk_buff *skb, int off); 1369 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1370 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1371 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1372 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1373 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1374 gfp_t gfp_mask, bool fclone); 1375 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1376 gfp_t gfp_mask) 1377 { 1378 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1379 } 1380 1381 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1382 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1383 unsigned int headroom); 1384 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1385 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1386 int newtailroom, gfp_t priority); 1387 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1388 int offset, int len); 1389 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1390 int offset, int len); 1391 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1392 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1393 1394 /** 1395 * skb_pad - zero pad the tail of an skb 1396 * @skb: buffer to pad 1397 * @pad: space to pad 1398 * 1399 * Ensure that a buffer is followed by a padding area that is zero 1400 * filled. Used by network drivers which may DMA or transfer data 1401 * beyond the buffer end onto the wire. 1402 * 1403 * May return error in out of memory cases. The skb is freed on error. 1404 */ 1405 static inline int skb_pad(struct sk_buff *skb, int pad) 1406 { 1407 return __skb_pad(skb, pad, true); 1408 } 1409 #define dev_kfree_skb(a) consume_skb(a) 1410 1411 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1412 int offset, size_t size, size_t max_frags); 1413 1414 struct skb_seq_state { 1415 __u32 lower_offset; 1416 __u32 upper_offset; 1417 __u32 frag_idx; 1418 __u32 stepped_offset; 1419 struct sk_buff *root_skb; 1420 struct sk_buff *cur_skb; 1421 __u8 *frag_data; 1422 __u32 frag_off; 1423 }; 1424 1425 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1426 unsigned int to, struct skb_seq_state *st); 1427 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1428 struct skb_seq_state *st); 1429 void skb_abort_seq_read(struct skb_seq_state *st); 1430 1431 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1432 unsigned int to, struct ts_config *config); 1433 1434 /* 1435 * Packet hash types specify the type of hash in skb_set_hash. 1436 * 1437 * Hash types refer to the protocol layer addresses which are used to 1438 * construct a packet's hash. The hashes are used to differentiate or identify 1439 * flows of the protocol layer for the hash type. Hash types are either 1440 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1441 * 1442 * Properties of hashes: 1443 * 1444 * 1) Two packets in different flows have different hash values 1445 * 2) Two packets in the same flow should have the same hash value 1446 * 1447 * A hash at a higher layer is considered to be more specific. A driver should 1448 * set the most specific hash possible. 1449 * 1450 * A driver cannot indicate a more specific hash than the layer at which a hash 1451 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1452 * 1453 * A driver may indicate a hash level which is less specific than the 1454 * actual layer the hash was computed on. For instance, a hash computed 1455 * at L4 may be considered an L3 hash. This should only be done if the 1456 * driver can't unambiguously determine that the HW computed the hash at 1457 * the higher layer. Note that the "should" in the second property above 1458 * permits this. 1459 */ 1460 enum pkt_hash_types { 1461 PKT_HASH_TYPE_NONE, /* Undefined type */ 1462 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1463 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1464 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1465 }; 1466 1467 static inline void skb_clear_hash(struct sk_buff *skb) 1468 { 1469 skb->hash = 0; 1470 skb->sw_hash = 0; 1471 skb->l4_hash = 0; 1472 } 1473 1474 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1475 { 1476 if (!skb->l4_hash) 1477 skb_clear_hash(skb); 1478 } 1479 1480 static inline void 1481 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1482 { 1483 skb->l4_hash = is_l4; 1484 skb->sw_hash = is_sw; 1485 skb->hash = hash; 1486 } 1487 1488 static inline void 1489 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1490 { 1491 /* Used by drivers to set hash from HW */ 1492 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1493 } 1494 1495 static inline void 1496 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1497 { 1498 __skb_set_hash(skb, hash, true, is_l4); 1499 } 1500 1501 void __skb_get_hash(struct sk_buff *skb); 1502 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1503 u32 skb_get_poff(const struct sk_buff *skb); 1504 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1505 const struct flow_keys_basic *keys, int hlen); 1506 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1507 const void *data, int hlen_proto); 1508 1509 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1510 int thoff, u8 ip_proto) 1511 { 1512 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1513 } 1514 1515 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1516 const struct flow_dissector_key *key, 1517 unsigned int key_count); 1518 1519 struct bpf_flow_dissector; 1520 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1521 __be16 proto, int nhoff, int hlen, unsigned int flags); 1522 1523 bool __skb_flow_dissect(const struct net *net, 1524 const struct sk_buff *skb, 1525 struct flow_dissector *flow_dissector, 1526 void *target_container, const void *data, 1527 __be16 proto, int nhoff, int hlen, unsigned int flags); 1528 1529 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1530 struct flow_dissector *flow_dissector, 1531 void *target_container, unsigned int flags) 1532 { 1533 return __skb_flow_dissect(NULL, skb, flow_dissector, 1534 target_container, NULL, 0, 0, 0, flags); 1535 } 1536 1537 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1538 struct flow_keys *flow, 1539 unsigned int flags) 1540 { 1541 memset(flow, 0, sizeof(*flow)); 1542 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1543 flow, NULL, 0, 0, 0, flags); 1544 } 1545 1546 static inline bool 1547 skb_flow_dissect_flow_keys_basic(const struct net *net, 1548 const struct sk_buff *skb, 1549 struct flow_keys_basic *flow, 1550 const void *data, __be16 proto, 1551 int nhoff, int hlen, unsigned int flags) 1552 { 1553 memset(flow, 0, sizeof(*flow)); 1554 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1555 data, proto, nhoff, hlen, flags); 1556 } 1557 1558 void skb_flow_dissect_meta(const struct sk_buff *skb, 1559 struct flow_dissector *flow_dissector, 1560 void *target_container); 1561 1562 /* Gets a skb connection tracking info, ctinfo map should be a 1563 * map of mapsize to translate enum ip_conntrack_info states 1564 * to user states. 1565 */ 1566 void 1567 skb_flow_dissect_ct(const struct sk_buff *skb, 1568 struct flow_dissector *flow_dissector, 1569 void *target_container, 1570 u16 *ctinfo_map, size_t mapsize, 1571 bool post_ct, u16 zone); 1572 void 1573 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1574 struct flow_dissector *flow_dissector, 1575 void *target_container); 1576 1577 void skb_flow_dissect_hash(const struct sk_buff *skb, 1578 struct flow_dissector *flow_dissector, 1579 void *target_container); 1580 1581 static inline __u32 skb_get_hash(struct sk_buff *skb) 1582 { 1583 if (!skb->l4_hash && !skb->sw_hash) 1584 __skb_get_hash(skb); 1585 1586 return skb->hash; 1587 } 1588 1589 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1590 { 1591 if (!skb->l4_hash && !skb->sw_hash) { 1592 struct flow_keys keys; 1593 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1594 1595 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1596 } 1597 1598 return skb->hash; 1599 } 1600 1601 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1602 const siphash_key_t *perturb); 1603 1604 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1605 { 1606 return skb->hash; 1607 } 1608 1609 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1610 { 1611 to->hash = from->hash; 1612 to->sw_hash = from->sw_hash; 1613 to->l4_hash = from->l4_hash; 1614 }; 1615 1616 static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1617 const struct sk_buff *skb2) 1618 { 1619 #ifdef CONFIG_SKB_DECRYPTED 1620 return skb2->decrypted - skb1->decrypted; 1621 #else 1622 return 0; 1623 #endif 1624 } 1625 1626 static inline bool skb_is_decrypted(const struct sk_buff *skb) 1627 { 1628 #ifdef CONFIG_SKB_DECRYPTED 1629 return skb->decrypted; 1630 #else 1631 return false; 1632 #endif 1633 } 1634 1635 static inline void skb_copy_decrypted(struct sk_buff *to, 1636 const struct sk_buff *from) 1637 { 1638 #ifdef CONFIG_SKB_DECRYPTED 1639 to->decrypted = from->decrypted; 1640 #endif 1641 } 1642 1643 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1644 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1645 { 1646 return skb->head + skb->end; 1647 } 1648 1649 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1650 { 1651 return skb->end; 1652 } 1653 1654 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1655 { 1656 skb->end = offset; 1657 } 1658 #else 1659 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1660 { 1661 return skb->end; 1662 } 1663 1664 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1665 { 1666 return skb->end - skb->head; 1667 } 1668 1669 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1670 { 1671 skb->end = skb->head + offset; 1672 } 1673 #endif 1674 1675 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops; 1676 1677 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1678 struct ubuf_info *uarg); 1679 1680 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1681 1682 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1683 struct sk_buff *skb, struct iov_iter *from, 1684 size_t length); 1685 1686 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1687 struct msghdr *msg, int len) 1688 { 1689 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1690 } 1691 1692 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1693 struct msghdr *msg, int len, 1694 struct ubuf_info *uarg); 1695 1696 /* Internal */ 1697 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1698 1699 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1700 { 1701 return &skb_shinfo(skb)->hwtstamps; 1702 } 1703 1704 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1705 { 1706 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1707 1708 return is_zcopy ? skb_uarg(skb) : NULL; 1709 } 1710 1711 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1712 { 1713 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1714 } 1715 1716 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1717 { 1718 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1719 } 1720 1721 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1722 const struct sk_buff *skb2) 1723 { 1724 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1725 } 1726 1727 static inline void net_zcopy_get(struct ubuf_info *uarg) 1728 { 1729 refcount_inc(&uarg->refcnt); 1730 } 1731 1732 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1733 { 1734 skb_shinfo(skb)->destructor_arg = uarg; 1735 skb_shinfo(skb)->flags |= uarg->flags; 1736 } 1737 1738 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1739 bool *have_ref) 1740 { 1741 if (skb && uarg && !skb_zcopy(skb)) { 1742 if (unlikely(have_ref && *have_ref)) 1743 *have_ref = false; 1744 else 1745 net_zcopy_get(uarg); 1746 skb_zcopy_init(skb, uarg); 1747 } 1748 } 1749 1750 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1751 { 1752 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1753 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1754 } 1755 1756 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1757 { 1758 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1759 } 1760 1761 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1762 { 1763 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1764 } 1765 1766 static inline void net_zcopy_put(struct ubuf_info *uarg) 1767 { 1768 if (uarg) 1769 uarg->ops->complete(NULL, uarg, true); 1770 } 1771 1772 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1773 { 1774 if (uarg) { 1775 if (uarg->ops == &msg_zerocopy_ubuf_ops) 1776 msg_zerocopy_put_abort(uarg, have_uref); 1777 else if (have_uref) 1778 net_zcopy_put(uarg); 1779 } 1780 } 1781 1782 /* Release a reference on a zerocopy structure */ 1783 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1784 { 1785 struct ubuf_info *uarg = skb_zcopy(skb); 1786 1787 if (uarg) { 1788 if (!skb_zcopy_is_nouarg(skb)) 1789 uarg->ops->complete(skb, uarg, zerocopy_success); 1790 1791 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1792 } 1793 } 1794 1795 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1796 1797 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1798 { 1799 if (unlikely(skb_zcopy_managed(skb))) 1800 __skb_zcopy_downgrade_managed(skb); 1801 } 1802 1803 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1804 { 1805 skb->next = NULL; 1806 } 1807 1808 static inline void skb_poison_list(struct sk_buff *skb) 1809 { 1810 #ifdef CONFIG_DEBUG_NET 1811 skb->next = SKB_LIST_POISON_NEXT; 1812 #endif 1813 } 1814 1815 /* Iterate through singly-linked GSO fragments of an skb. */ 1816 #define skb_list_walk_safe(first, skb, next_skb) \ 1817 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1818 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1819 1820 static inline void skb_list_del_init(struct sk_buff *skb) 1821 { 1822 __list_del_entry(&skb->list); 1823 skb_mark_not_on_list(skb); 1824 } 1825 1826 /** 1827 * skb_queue_empty - check if a queue is empty 1828 * @list: queue head 1829 * 1830 * Returns true if the queue is empty, false otherwise. 1831 */ 1832 static inline int skb_queue_empty(const struct sk_buff_head *list) 1833 { 1834 return list->next == (const struct sk_buff *) list; 1835 } 1836 1837 /** 1838 * skb_queue_empty_lockless - check if a queue is empty 1839 * @list: queue head 1840 * 1841 * Returns true if the queue is empty, false otherwise. 1842 * This variant can be used in lockless contexts. 1843 */ 1844 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1845 { 1846 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1847 } 1848 1849 1850 /** 1851 * skb_queue_is_last - check if skb is the last entry in the queue 1852 * @list: queue head 1853 * @skb: buffer 1854 * 1855 * Returns true if @skb is the last buffer on the list. 1856 */ 1857 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1858 const struct sk_buff *skb) 1859 { 1860 return skb->next == (const struct sk_buff *) list; 1861 } 1862 1863 /** 1864 * skb_queue_is_first - check if skb is the first entry in the queue 1865 * @list: queue head 1866 * @skb: buffer 1867 * 1868 * Returns true if @skb is the first buffer on the list. 1869 */ 1870 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1871 const struct sk_buff *skb) 1872 { 1873 return skb->prev == (const struct sk_buff *) list; 1874 } 1875 1876 /** 1877 * skb_queue_next - return the next packet in the queue 1878 * @list: queue head 1879 * @skb: current buffer 1880 * 1881 * Return the next packet in @list after @skb. It is only valid to 1882 * call this if skb_queue_is_last() evaluates to false. 1883 */ 1884 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1885 const struct sk_buff *skb) 1886 { 1887 /* This BUG_ON may seem severe, but if we just return then we 1888 * are going to dereference garbage. 1889 */ 1890 BUG_ON(skb_queue_is_last(list, skb)); 1891 return skb->next; 1892 } 1893 1894 /** 1895 * skb_queue_prev - return the prev packet in the queue 1896 * @list: queue head 1897 * @skb: current buffer 1898 * 1899 * Return the prev packet in @list before @skb. It is only valid to 1900 * call this if skb_queue_is_first() evaluates to false. 1901 */ 1902 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1903 const struct sk_buff *skb) 1904 { 1905 /* This BUG_ON may seem severe, but if we just return then we 1906 * are going to dereference garbage. 1907 */ 1908 BUG_ON(skb_queue_is_first(list, skb)); 1909 return skb->prev; 1910 } 1911 1912 /** 1913 * skb_get - reference buffer 1914 * @skb: buffer to reference 1915 * 1916 * Makes another reference to a socket buffer and returns a pointer 1917 * to the buffer. 1918 */ 1919 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1920 { 1921 refcount_inc(&skb->users); 1922 return skb; 1923 } 1924 1925 /* 1926 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1927 */ 1928 1929 /** 1930 * skb_cloned - is the buffer a clone 1931 * @skb: buffer to check 1932 * 1933 * Returns true if the buffer was generated with skb_clone() and is 1934 * one of multiple shared copies of the buffer. Cloned buffers are 1935 * shared data so must not be written to under normal circumstances. 1936 */ 1937 static inline int skb_cloned(const struct sk_buff *skb) 1938 { 1939 return skb->cloned && 1940 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1941 } 1942 1943 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1944 { 1945 might_sleep_if(gfpflags_allow_blocking(pri)); 1946 1947 if (skb_cloned(skb)) 1948 return pskb_expand_head(skb, 0, 0, pri); 1949 1950 return 0; 1951 } 1952 1953 /* This variant of skb_unclone() makes sure skb->truesize 1954 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1955 * 1956 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1957 * when various debugging features are in place. 1958 */ 1959 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1960 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1961 { 1962 might_sleep_if(gfpflags_allow_blocking(pri)); 1963 1964 if (skb_cloned(skb)) 1965 return __skb_unclone_keeptruesize(skb, pri); 1966 return 0; 1967 } 1968 1969 /** 1970 * skb_header_cloned - is the header a clone 1971 * @skb: buffer to check 1972 * 1973 * Returns true if modifying the header part of the buffer requires 1974 * the data to be copied. 1975 */ 1976 static inline int skb_header_cloned(const struct sk_buff *skb) 1977 { 1978 int dataref; 1979 1980 if (!skb->cloned) 1981 return 0; 1982 1983 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1984 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1985 return dataref != 1; 1986 } 1987 1988 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1989 { 1990 might_sleep_if(gfpflags_allow_blocking(pri)); 1991 1992 if (skb_header_cloned(skb)) 1993 return pskb_expand_head(skb, 0, 0, pri); 1994 1995 return 0; 1996 } 1997 1998 /** 1999 * __skb_header_release() - allow clones to use the headroom 2000 * @skb: buffer to operate on 2001 * 2002 * See "DOC: dataref and headerless skbs". 2003 */ 2004 static inline void __skb_header_release(struct sk_buff *skb) 2005 { 2006 skb->nohdr = 1; 2007 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 2008 } 2009 2010 2011 /** 2012 * skb_shared - is the buffer shared 2013 * @skb: buffer to check 2014 * 2015 * Returns true if more than one person has a reference to this 2016 * buffer. 2017 */ 2018 static inline int skb_shared(const struct sk_buff *skb) 2019 { 2020 return refcount_read(&skb->users) != 1; 2021 } 2022 2023 /** 2024 * skb_share_check - check if buffer is shared and if so clone it 2025 * @skb: buffer to check 2026 * @pri: priority for memory allocation 2027 * 2028 * If the buffer is shared the buffer is cloned and the old copy 2029 * drops a reference. A new clone with a single reference is returned. 2030 * If the buffer is not shared the original buffer is returned. When 2031 * being called from interrupt status or with spinlocks held pri must 2032 * be GFP_ATOMIC. 2033 * 2034 * NULL is returned on a memory allocation failure. 2035 */ 2036 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2037 { 2038 might_sleep_if(gfpflags_allow_blocking(pri)); 2039 if (skb_shared(skb)) { 2040 struct sk_buff *nskb = skb_clone(skb, pri); 2041 2042 if (likely(nskb)) 2043 consume_skb(skb); 2044 else 2045 kfree_skb(skb); 2046 skb = nskb; 2047 } 2048 return skb; 2049 } 2050 2051 /* 2052 * Copy shared buffers into a new sk_buff. We effectively do COW on 2053 * packets to handle cases where we have a local reader and forward 2054 * and a couple of other messy ones. The normal one is tcpdumping 2055 * a packet that's being forwarded. 2056 */ 2057 2058 /** 2059 * skb_unshare - make a copy of a shared buffer 2060 * @skb: buffer to check 2061 * @pri: priority for memory allocation 2062 * 2063 * If the socket buffer is a clone then this function creates a new 2064 * copy of the data, drops a reference count on the old copy and returns 2065 * the new copy with the reference count at 1. If the buffer is not a clone 2066 * the original buffer is returned. When called with a spinlock held or 2067 * from interrupt state @pri must be %GFP_ATOMIC 2068 * 2069 * %NULL is returned on a memory allocation failure. 2070 */ 2071 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2072 gfp_t pri) 2073 { 2074 might_sleep_if(gfpflags_allow_blocking(pri)); 2075 if (skb_cloned(skb)) { 2076 struct sk_buff *nskb = skb_copy(skb, pri); 2077 2078 /* Free our shared copy */ 2079 if (likely(nskb)) 2080 consume_skb(skb); 2081 else 2082 kfree_skb(skb); 2083 skb = nskb; 2084 } 2085 return skb; 2086 } 2087 2088 /** 2089 * skb_peek - peek at the head of an &sk_buff_head 2090 * @list_: list to peek at 2091 * 2092 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2093 * be careful with this one. A peek leaves the buffer on the 2094 * list and someone else may run off with it. You must hold 2095 * the appropriate locks or have a private queue to do this. 2096 * 2097 * Returns %NULL for an empty list or a pointer to the head element. 2098 * The reference count is not incremented and the reference is therefore 2099 * volatile. Use with caution. 2100 */ 2101 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2102 { 2103 struct sk_buff *skb = list_->next; 2104 2105 if (skb == (struct sk_buff *)list_) 2106 skb = NULL; 2107 return skb; 2108 } 2109 2110 /** 2111 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2112 * @list_: list to peek at 2113 * 2114 * Like skb_peek(), but the caller knows that the list is not empty. 2115 */ 2116 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2117 { 2118 return list_->next; 2119 } 2120 2121 /** 2122 * skb_peek_next - peek skb following the given one from a queue 2123 * @skb: skb to start from 2124 * @list_: list to peek at 2125 * 2126 * Returns %NULL when the end of the list is met or a pointer to the 2127 * next element. The reference count is not incremented and the 2128 * reference is therefore volatile. Use with caution. 2129 */ 2130 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2131 const struct sk_buff_head *list_) 2132 { 2133 struct sk_buff *next = skb->next; 2134 2135 if (next == (struct sk_buff *)list_) 2136 next = NULL; 2137 return next; 2138 } 2139 2140 /** 2141 * skb_peek_tail - peek at the tail of an &sk_buff_head 2142 * @list_: list to peek at 2143 * 2144 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2145 * be careful with this one. A peek leaves the buffer on the 2146 * list and someone else may run off with it. You must hold 2147 * the appropriate locks or have a private queue to do this. 2148 * 2149 * Returns %NULL for an empty list or a pointer to the tail element. 2150 * The reference count is not incremented and the reference is therefore 2151 * volatile. Use with caution. 2152 */ 2153 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2154 { 2155 struct sk_buff *skb = READ_ONCE(list_->prev); 2156 2157 if (skb == (struct sk_buff *)list_) 2158 skb = NULL; 2159 return skb; 2160 2161 } 2162 2163 /** 2164 * skb_queue_len - get queue length 2165 * @list_: list to measure 2166 * 2167 * Return the length of an &sk_buff queue. 2168 */ 2169 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2170 { 2171 return list_->qlen; 2172 } 2173 2174 /** 2175 * skb_queue_len_lockless - get queue length 2176 * @list_: list to measure 2177 * 2178 * Return the length of an &sk_buff queue. 2179 * This variant can be used in lockless contexts. 2180 */ 2181 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2182 { 2183 return READ_ONCE(list_->qlen); 2184 } 2185 2186 /** 2187 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2188 * @list: queue to initialize 2189 * 2190 * This initializes only the list and queue length aspects of 2191 * an sk_buff_head object. This allows to initialize the list 2192 * aspects of an sk_buff_head without reinitializing things like 2193 * the spinlock. It can also be used for on-stack sk_buff_head 2194 * objects where the spinlock is known to not be used. 2195 */ 2196 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2197 { 2198 list->prev = list->next = (struct sk_buff *)list; 2199 list->qlen = 0; 2200 } 2201 2202 /* 2203 * This function creates a split out lock class for each invocation; 2204 * this is needed for now since a whole lot of users of the skb-queue 2205 * infrastructure in drivers have different locking usage (in hardirq) 2206 * than the networking core (in softirq only). In the long run either the 2207 * network layer or drivers should need annotation to consolidate the 2208 * main types of usage into 3 classes. 2209 */ 2210 static inline void skb_queue_head_init(struct sk_buff_head *list) 2211 { 2212 spin_lock_init(&list->lock); 2213 __skb_queue_head_init(list); 2214 } 2215 2216 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2217 struct lock_class_key *class) 2218 { 2219 skb_queue_head_init(list); 2220 lockdep_set_class(&list->lock, class); 2221 } 2222 2223 /* 2224 * Insert an sk_buff on a list. 2225 * 2226 * The "__skb_xxxx()" functions are the non-atomic ones that 2227 * can only be called with interrupts disabled. 2228 */ 2229 static inline void __skb_insert(struct sk_buff *newsk, 2230 struct sk_buff *prev, struct sk_buff *next, 2231 struct sk_buff_head *list) 2232 { 2233 /* See skb_queue_empty_lockless() and skb_peek_tail() 2234 * for the opposite READ_ONCE() 2235 */ 2236 WRITE_ONCE(newsk->next, next); 2237 WRITE_ONCE(newsk->prev, prev); 2238 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2239 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2240 WRITE_ONCE(list->qlen, list->qlen + 1); 2241 } 2242 2243 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2244 struct sk_buff *prev, 2245 struct sk_buff *next) 2246 { 2247 struct sk_buff *first = list->next; 2248 struct sk_buff *last = list->prev; 2249 2250 WRITE_ONCE(first->prev, prev); 2251 WRITE_ONCE(prev->next, first); 2252 2253 WRITE_ONCE(last->next, next); 2254 WRITE_ONCE(next->prev, last); 2255 } 2256 2257 /** 2258 * skb_queue_splice - join two skb lists, this is designed for stacks 2259 * @list: the new list to add 2260 * @head: the place to add it in the first list 2261 */ 2262 static inline void skb_queue_splice(const struct sk_buff_head *list, 2263 struct sk_buff_head *head) 2264 { 2265 if (!skb_queue_empty(list)) { 2266 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2267 head->qlen += list->qlen; 2268 } 2269 } 2270 2271 /** 2272 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2273 * @list: the new list to add 2274 * @head: the place to add it in the first list 2275 * 2276 * The list at @list is reinitialised 2277 */ 2278 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2279 struct sk_buff_head *head) 2280 { 2281 if (!skb_queue_empty(list)) { 2282 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2283 head->qlen += list->qlen; 2284 __skb_queue_head_init(list); 2285 } 2286 } 2287 2288 /** 2289 * skb_queue_splice_tail - join two skb lists, each list being a queue 2290 * @list: the new list to add 2291 * @head: the place to add it in the first list 2292 */ 2293 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2294 struct sk_buff_head *head) 2295 { 2296 if (!skb_queue_empty(list)) { 2297 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2298 head->qlen += list->qlen; 2299 } 2300 } 2301 2302 /** 2303 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2304 * @list: the new list to add 2305 * @head: the place to add it in the first list 2306 * 2307 * Each of the lists is a queue. 2308 * The list at @list is reinitialised 2309 */ 2310 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2311 struct sk_buff_head *head) 2312 { 2313 if (!skb_queue_empty(list)) { 2314 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2315 head->qlen += list->qlen; 2316 __skb_queue_head_init(list); 2317 } 2318 } 2319 2320 /** 2321 * __skb_queue_after - queue a buffer at the list head 2322 * @list: list to use 2323 * @prev: place after this buffer 2324 * @newsk: buffer to queue 2325 * 2326 * Queue a buffer int the middle of a list. This function takes no locks 2327 * and you must therefore hold required locks before calling it. 2328 * 2329 * A buffer cannot be placed on two lists at the same time. 2330 */ 2331 static inline void __skb_queue_after(struct sk_buff_head *list, 2332 struct sk_buff *prev, 2333 struct sk_buff *newsk) 2334 { 2335 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2336 } 2337 2338 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2339 struct sk_buff_head *list); 2340 2341 static inline void __skb_queue_before(struct sk_buff_head *list, 2342 struct sk_buff *next, 2343 struct sk_buff *newsk) 2344 { 2345 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2346 } 2347 2348 /** 2349 * __skb_queue_head - queue a buffer at the list head 2350 * @list: list to use 2351 * @newsk: buffer to queue 2352 * 2353 * Queue a buffer at the start of a list. This function takes no locks 2354 * and you must therefore hold required locks before calling it. 2355 * 2356 * A buffer cannot be placed on two lists at the same time. 2357 */ 2358 static inline void __skb_queue_head(struct sk_buff_head *list, 2359 struct sk_buff *newsk) 2360 { 2361 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2362 } 2363 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2364 2365 /** 2366 * __skb_queue_tail - queue a buffer at the list tail 2367 * @list: list to use 2368 * @newsk: buffer to queue 2369 * 2370 * Queue a buffer at the end of a list. This function takes no locks 2371 * and you must therefore hold required locks before calling it. 2372 * 2373 * A buffer cannot be placed on two lists at the same time. 2374 */ 2375 static inline void __skb_queue_tail(struct sk_buff_head *list, 2376 struct sk_buff *newsk) 2377 { 2378 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2379 } 2380 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2381 2382 /* 2383 * remove sk_buff from list. _Must_ be called atomically, and with 2384 * the list known.. 2385 */ 2386 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2387 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2388 { 2389 struct sk_buff *next, *prev; 2390 2391 WRITE_ONCE(list->qlen, list->qlen - 1); 2392 next = skb->next; 2393 prev = skb->prev; 2394 skb->next = skb->prev = NULL; 2395 WRITE_ONCE(next->prev, prev); 2396 WRITE_ONCE(prev->next, next); 2397 } 2398 2399 /** 2400 * __skb_dequeue - remove from the head of the queue 2401 * @list: list to dequeue from 2402 * 2403 * Remove the head of the list. This function does not take any locks 2404 * so must be used with appropriate locks held only. The head item is 2405 * returned or %NULL if the list is empty. 2406 */ 2407 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2408 { 2409 struct sk_buff *skb = skb_peek(list); 2410 if (skb) 2411 __skb_unlink(skb, list); 2412 return skb; 2413 } 2414 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2415 2416 /** 2417 * __skb_dequeue_tail - remove from the tail of the queue 2418 * @list: list to dequeue from 2419 * 2420 * Remove the tail of the list. This function does not take any locks 2421 * so must be used with appropriate locks held only. The tail item is 2422 * returned or %NULL if the list is empty. 2423 */ 2424 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2425 { 2426 struct sk_buff *skb = skb_peek_tail(list); 2427 if (skb) 2428 __skb_unlink(skb, list); 2429 return skb; 2430 } 2431 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2432 2433 2434 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2435 { 2436 return skb->data_len; 2437 } 2438 2439 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2440 { 2441 return skb->len - skb->data_len; 2442 } 2443 2444 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2445 { 2446 unsigned int i, len = 0; 2447 2448 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2449 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2450 return len; 2451 } 2452 2453 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2454 { 2455 return skb_headlen(skb) + __skb_pagelen(skb); 2456 } 2457 2458 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag, 2459 netmem_ref netmem, int off, 2460 int size) 2461 { 2462 frag->netmem = netmem; 2463 frag->offset = off; 2464 skb_frag_size_set(frag, size); 2465 } 2466 2467 static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2468 struct page *page, 2469 int off, int size) 2470 { 2471 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size); 2472 } 2473 2474 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo, 2475 int i, netmem_ref netmem, 2476 int off, int size) 2477 { 2478 skb_frag_t *frag = &shinfo->frags[i]; 2479 2480 skb_frag_fill_netmem_desc(frag, netmem, off, size); 2481 } 2482 2483 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2484 int i, struct page *page, 2485 int off, int size) 2486 { 2487 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off, 2488 size); 2489 } 2490 2491 /** 2492 * skb_len_add - adds a number to len fields of skb 2493 * @skb: buffer to add len to 2494 * @delta: number of bytes to add 2495 */ 2496 static inline void skb_len_add(struct sk_buff *skb, int delta) 2497 { 2498 skb->len += delta; 2499 skb->data_len += delta; 2500 skb->truesize += delta; 2501 } 2502 2503 /** 2504 * __skb_fill_netmem_desc - initialise a fragment in an skb 2505 * @skb: buffer containing fragment to be initialised 2506 * @i: fragment index to initialise 2507 * @netmem: the netmem to use for this fragment 2508 * @off: the offset to the data with @page 2509 * @size: the length of the data 2510 * 2511 * Initialises the @i'th fragment of @skb to point to &size bytes at 2512 * offset @off within @page. 2513 * 2514 * Does not take any additional reference on the fragment. 2515 */ 2516 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i, 2517 netmem_ref netmem, int off, int size) 2518 { 2519 struct page *page = netmem_to_page(netmem); 2520 2521 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size); 2522 2523 /* Propagate page pfmemalloc to the skb if we can. The problem is 2524 * that not all callers have unique ownership of the page but rely 2525 * on page_is_pfmemalloc doing the right thing(tm). 2526 */ 2527 page = compound_head(page); 2528 if (page_is_pfmemalloc(page)) 2529 skb->pfmemalloc = true; 2530 } 2531 2532 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2533 struct page *page, int off, int size) 2534 { 2535 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2536 } 2537 2538 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i, 2539 netmem_ref netmem, int off, int size) 2540 { 2541 __skb_fill_netmem_desc(skb, i, netmem, off, size); 2542 skb_shinfo(skb)->nr_frags = i + 1; 2543 } 2544 2545 /** 2546 * skb_fill_page_desc - initialise a paged fragment in an skb 2547 * @skb: buffer containing fragment to be initialised 2548 * @i: paged fragment index to initialise 2549 * @page: the page to use for this fragment 2550 * @off: the offset to the data with @page 2551 * @size: the length of the data 2552 * 2553 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2554 * @skb to point to @size bytes at offset @off within @page. In 2555 * addition updates @skb such that @i is the last fragment. 2556 * 2557 * Does not take any additional reference on the fragment. 2558 */ 2559 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2560 struct page *page, int off, int size) 2561 { 2562 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size); 2563 } 2564 2565 /** 2566 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2567 * @skb: buffer containing fragment to be initialised 2568 * @i: paged fragment index to initialise 2569 * @page: the page to use for this fragment 2570 * @off: the offset to the data with @page 2571 * @size: the length of the data 2572 * 2573 * Variant of skb_fill_page_desc() which does not deal with 2574 * pfmemalloc, if page is not owned by us. 2575 */ 2576 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2577 struct page *page, int off, 2578 int size) 2579 { 2580 struct skb_shared_info *shinfo = skb_shinfo(skb); 2581 2582 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2583 shinfo->nr_frags = i + 1; 2584 } 2585 2586 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 2587 int off, int size, unsigned int truesize); 2588 2589 static inline void skb_add_rx_frag(struct sk_buff *skb, int i, 2590 struct page *page, int off, int size, 2591 unsigned int truesize) 2592 { 2593 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size, 2594 truesize); 2595 } 2596 2597 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2598 unsigned int truesize); 2599 2600 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2601 2602 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2603 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2604 { 2605 return skb->head + skb->tail; 2606 } 2607 2608 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2609 { 2610 skb->tail = skb->data - skb->head; 2611 } 2612 2613 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2614 { 2615 skb_reset_tail_pointer(skb); 2616 skb->tail += offset; 2617 } 2618 2619 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2620 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2621 { 2622 return skb->tail; 2623 } 2624 2625 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2626 { 2627 skb->tail = skb->data; 2628 } 2629 2630 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2631 { 2632 skb->tail = skb->data + offset; 2633 } 2634 2635 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2636 2637 static inline void skb_assert_len(struct sk_buff *skb) 2638 { 2639 #ifdef CONFIG_DEBUG_NET 2640 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2641 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2642 #endif /* CONFIG_DEBUG_NET */ 2643 } 2644 2645 /* 2646 * Add data to an sk_buff 2647 */ 2648 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2649 void *skb_put(struct sk_buff *skb, unsigned int len); 2650 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2651 { 2652 void *tmp = skb_tail_pointer(skb); 2653 SKB_LINEAR_ASSERT(skb); 2654 skb->tail += len; 2655 skb->len += len; 2656 return tmp; 2657 } 2658 2659 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2660 { 2661 void *tmp = __skb_put(skb, len); 2662 2663 memset(tmp, 0, len); 2664 return tmp; 2665 } 2666 2667 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2668 unsigned int len) 2669 { 2670 void *tmp = __skb_put(skb, len); 2671 2672 memcpy(tmp, data, len); 2673 return tmp; 2674 } 2675 2676 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2677 { 2678 *(u8 *)__skb_put(skb, 1) = val; 2679 } 2680 2681 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2682 { 2683 void *tmp = skb_put(skb, len); 2684 2685 memset(tmp, 0, len); 2686 2687 return tmp; 2688 } 2689 2690 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2691 unsigned int len) 2692 { 2693 void *tmp = skb_put(skb, len); 2694 2695 memcpy(tmp, data, len); 2696 2697 return tmp; 2698 } 2699 2700 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2701 { 2702 *(u8 *)skb_put(skb, 1) = val; 2703 } 2704 2705 void *skb_push(struct sk_buff *skb, unsigned int len); 2706 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2707 { 2708 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2709 2710 skb->data -= len; 2711 skb->len += len; 2712 return skb->data; 2713 } 2714 2715 void *skb_pull(struct sk_buff *skb, unsigned int len); 2716 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2717 { 2718 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2719 2720 skb->len -= len; 2721 if (unlikely(skb->len < skb->data_len)) { 2722 #if defined(CONFIG_DEBUG_NET) 2723 skb->len += len; 2724 pr_err("__skb_pull(len=%u)\n", len); 2725 skb_dump(KERN_ERR, skb, false); 2726 #endif 2727 BUG(); 2728 } 2729 return skb->data += len; 2730 } 2731 2732 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2733 { 2734 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2735 } 2736 2737 void *skb_pull_data(struct sk_buff *skb, size_t len); 2738 2739 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2740 2741 static inline enum skb_drop_reason 2742 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2743 { 2744 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); 2745 2746 if (likely(len <= skb_headlen(skb))) 2747 return SKB_NOT_DROPPED_YET; 2748 2749 if (unlikely(len > skb->len)) 2750 return SKB_DROP_REASON_PKT_TOO_SMALL; 2751 2752 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2753 return SKB_DROP_REASON_NOMEM; 2754 2755 return SKB_NOT_DROPPED_YET; 2756 } 2757 2758 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2759 { 2760 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2761 } 2762 2763 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2764 { 2765 if (!pskb_may_pull(skb, len)) 2766 return NULL; 2767 2768 skb->len -= len; 2769 return skb->data += len; 2770 } 2771 2772 void skb_condense(struct sk_buff *skb); 2773 2774 /** 2775 * skb_headroom - bytes at buffer head 2776 * @skb: buffer to check 2777 * 2778 * Return the number of bytes of free space at the head of an &sk_buff. 2779 */ 2780 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2781 { 2782 return skb->data - skb->head; 2783 } 2784 2785 /** 2786 * skb_tailroom - bytes at buffer end 2787 * @skb: buffer to check 2788 * 2789 * Return the number of bytes of free space at the tail of an sk_buff 2790 */ 2791 static inline int skb_tailroom(const struct sk_buff *skb) 2792 { 2793 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2794 } 2795 2796 /** 2797 * skb_availroom - bytes at buffer end 2798 * @skb: buffer to check 2799 * 2800 * Return the number of bytes of free space at the tail of an sk_buff 2801 * allocated by sk_stream_alloc() 2802 */ 2803 static inline int skb_availroom(const struct sk_buff *skb) 2804 { 2805 if (skb_is_nonlinear(skb)) 2806 return 0; 2807 2808 return skb->end - skb->tail - skb->reserved_tailroom; 2809 } 2810 2811 /** 2812 * skb_reserve - adjust headroom 2813 * @skb: buffer to alter 2814 * @len: bytes to move 2815 * 2816 * Increase the headroom of an empty &sk_buff by reducing the tail 2817 * room. This is only allowed for an empty buffer. 2818 */ 2819 static inline void skb_reserve(struct sk_buff *skb, int len) 2820 { 2821 skb->data += len; 2822 skb->tail += len; 2823 } 2824 2825 /** 2826 * skb_tailroom_reserve - adjust reserved_tailroom 2827 * @skb: buffer to alter 2828 * @mtu: maximum amount of headlen permitted 2829 * @needed_tailroom: minimum amount of reserved_tailroom 2830 * 2831 * Set reserved_tailroom so that headlen can be as large as possible but 2832 * not larger than mtu and tailroom cannot be smaller than 2833 * needed_tailroom. 2834 * The required headroom should already have been reserved before using 2835 * this function. 2836 */ 2837 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2838 unsigned int needed_tailroom) 2839 { 2840 SKB_LINEAR_ASSERT(skb); 2841 if (mtu < skb_tailroom(skb) - needed_tailroom) 2842 /* use at most mtu */ 2843 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2844 else 2845 /* use up to all available space */ 2846 skb->reserved_tailroom = needed_tailroom; 2847 } 2848 2849 #define ENCAP_TYPE_ETHER 0 2850 #define ENCAP_TYPE_IPPROTO 1 2851 2852 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2853 __be16 protocol) 2854 { 2855 skb->inner_protocol = protocol; 2856 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2857 } 2858 2859 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2860 __u8 ipproto) 2861 { 2862 skb->inner_ipproto = ipproto; 2863 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2864 } 2865 2866 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2867 { 2868 skb->inner_mac_header = skb->mac_header; 2869 skb->inner_network_header = skb->network_header; 2870 skb->inner_transport_header = skb->transport_header; 2871 } 2872 2873 static inline void skb_reset_mac_len(struct sk_buff *skb) 2874 { 2875 skb->mac_len = skb->network_header - skb->mac_header; 2876 } 2877 2878 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2879 *skb) 2880 { 2881 return skb->head + skb->inner_transport_header; 2882 } 2883 2884 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2885 { 2886 return skb_inner_transport_header(skb) - skb->data; 2887 } 2888 2889 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2890 { 2891 skb->inner_transport_header = skb->data - skb->head; 2892 } 2893 2894 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2895 const int offset) 2896 { 2897 skb_reset_inner_transport_header(skb); 2898 skb->inner_transport_header += offset; 2899 } 2900 2901 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2902 { 2903 return skb->head + skb->inner_network_header; 2904 } 2905 2906 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2907 { 2908 skb->inner_network_header = skb->data - skb->head; 2909 } 2910 2911 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2912 const int offset) 2913 { 2914 skb_reset_inner_network_header(skb); 2915 skb->inner_network_header += offset; 2916 } 2917 2918 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) 2919 { 2920 return skb->inner_network_header > 0; 2921 } 2922 2923 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2924 { 2925 return skb->head + skb->inner_mac_header; 2926 } 2927 2928 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2929 { 2930 skb->inner_mac_header = skb->data - skb->head; 2931 } 2932 2933 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2934 const int offset) 2935 { 2936 skb_reset_inner_mac_header(skb); 2937 skb->inner_mac_header += offset; 2938 } 2939 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2940 { 2941 return skb->transport_header != (typeof(skb->transport_header))~0U; 2942 } 2943 2944 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2945 { 2946 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2947 return skb->head + skb->transport_header; 2948 } 2949 2950 static inline void skb_reset_transport_header(struct sk_buff *skb) 2951 { 2952 skb->transport_header = skb->data - skb->head; 2953 } 2954 2955 static inline void skb_set_transport_header(struct sk_buff *skb, 2956 const int offset) 2957 { 2958 skb_reset_transport_header(skb); 2959 skb->transport_header += offset; 2960 } 2961 2962 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2963 { 2964 return skb->head + skb->network_header; 2965 } 2966 2967 static inline void skb_reset_network_header(struct sk_buff *skb) 2968 { 2969 skb->network_header = skb->data - skb->head; 2970 } 2971 2972 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2973 { 2974 skb_reset_network_header(skb); 2975 skb->network_header += offset; 2976 } 2977 2978 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2979 { 2980 return skb->mac_header != (typeof(skb->mac_header))~0U; 2981 } 2982 2983 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2984 { 2985 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2986 return skb->head + skb->mac_header; 2987 } 2988 2989 static inline int skb_mac_offset(const struct sk_buff *skb) 2990 { 2991 return skb_mac_header(skb) - skb->data; 2992 } 2993 2994 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2995 { 2996 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2997 return skb->network_header - skb->mac_header; 2998 } 2999 3000 static inline void skb_unset_mac_header(struct sk_buff *skb) 3001 { 3002 skb->mac_header = (typeof(skb->mac_header))~0U; 3003 } 3004 3005 static inline void skb_reset_mac_header(struct sk_buff *skb) 3006 { 3007 skb->mac_header = skb->data - skb->head; 3008 } 3009 3010 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 3011 { 3012 skb_reset_mac_header(skb); 3013 skb->mac_header += offset; 3014 } 3015 3016 static inline void skb_pop_mac_header(struct sk_buff *skb) 3017 { 3018 skb->mac_header = skb->network_header; 3019 } 3020 3021 static inline void skb_probe_transport_header(struct sk_buff *skb) 3022 { 3023 struct flow_keys_basic keys; 3024 3025 if (skb_transport_header_was_set(skb)) 3026 return; 3027 3028 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 3029 NULL, 0, 0, 0, 0)) 3030 skb_set_transport_header(skb, keys.control.thoff); 3031 } 3032 3033 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 3034 { 3035 if (skb_mac_header_was_set(skb)) { 3036 const unsigned char *old_mac = skb_mac_header(skb); 3037 3038 skb_set_mac_header(skb, -skb->mac_len); 3039 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 3040 } 3041 } 3042 3043 /* Move the full mac header up to current network_header. 3044 * Leaves skb->data pointing at offset skb->mac_len into the mac_header. 3045 * Must be provided the complete mac header length. 3046 */ 3047 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) 3048 { 3049 if (skb_mac_header_was_set(skb)) { 3050 const unsigned char *old_mac = skb_mac_header(skb); 3051 3052 skb_set_mac_header(skb, -full_mac_len); 3053 memmove(skb_mac_header(skb), old_mac, full_mac_len); 3054 __skb_push(skb, full_mac_len - skb->mac_len); 3055 } 3056 } 3057 3058 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 3059 { 3060 return skb->csum_start - skb_headroom(skb); 3061 } 3062 3063 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 3064 { 3065 return skb->head + skb->csum_start; 3066 } 3067 3068 static inline int skb_transport_offset(const struct sk_buff *skb) 3069 { 3070 return skb_transport_header(skb) - skb->data; 3071 } 3072 3073 static inline u32 skb_network_header_len(const struct sk_buff *skb) 3074 { 3075 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 3076 return skb->transport_header - skb->network_header; 3077 } 3078 3079 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 3080 { 3081 return skb->inner_transport_header - skb->inner_network_header; 3082 } 3083 3084 static inline int skb_network_offset(const struct sk_buff *skb) 3085 { 3086 return skb_network_header(skb) - skb->data; 3087 } 3088 3089 static inline int skb_inner_network_offset(const struct sk_buff *skb) 3090 { 3091 return skb_inner_network_header(skb) - skb->data; 3092 } 3093 3094 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 3095 { 3096 return pskb_may_pull(skb, skb_network_offset(skb) + len); 3097 } 3098 3099 /* 3100 * CPUs often take a performance hit when accessing unaligned memory 3101 * locations. The actual performance hit varies, it can be small if the 3102 * hardware handles it or large if we have to take an exception and fix it 3103 * in software. 3104 * 3105 * Since an ethernet header is 14 bytes network drivers often end up with 3106 * the IP header at an unaligned offset. The IP header can be aligned by 3107 * shifting the start of the packet by 2 bytes. Drivers should do this 3108 * with: 3109 * 3110 * skb_reserve(skb, NET_IP_ALIGN); 3111 * 3112 * The downside to this alignment of the IP header is that the DMA is now 3113 * unaligned. On some architectures the cost of an unaligned DMA is high 3114 * and this cost outweighs the gains made by aligning the IP header. 3115 * 3116 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3117 * to be overridden. 3118 */ 3119 #ifndef NET_IP_ALIGN 3120 #define NET_IP_ALIGN 2 3121 #endif 3122 3123 /* 3124 * The networking layer reserves some headroom in skb data (via 3125 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3126 * the header has to grow. In the default case, if the header has to grow 3127 * 32 bytes or less we avoid the reallocation. 3128 * 3129 * Unfortunately this headroom changes the DMA alignment of the resulting 3130 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3131 * on some architectures. An architecture can override this value, 3132 * perhaps setting it to a cacheline in size (since that will maintain 3133 * cacheline alignment of the DMA). It must be a power of 2. 3134 * 3135 * Various parts of the networking layer expect at least 32 bytes of 3136 * headroom, you should not reduce this. 3137 * 3138 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3139 * to reduce average number of cache lines per packet. 3140 * get_rps_cpu() for example only access one 64 bytes aligned block : 3141 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3142 */ 3143 #ifndef NET_SKB_PAD 3144 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3145 #endif 3146 3147 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3148 3149 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3150 { 3151 if (WARN_ON(skb_is_nonlinear(skb))) 3152 return; 3153 skb->len = len; 3154 skb_set_tail_pointer(skb, len); 3155 } 3156 3157 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3158 { 3159 __skb_set_length(skb, len); 3160 } 3161 3162 void skb_trim(struct sk_buff *skb, unsigned int len); 3163 3164 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3165 { 3166 if (skb->data_len) 3167 return ___pskb_trim(skb, len); 3168 __skb_trim(skb, len); 3169 return 0; 3170 } 3171 3172 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3173 { 3174 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3175 } 3176 3177 /** 3178 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3179 * @skb: buffer to alter 3180 * @len: new length 3181 * 3182 * This is identical to pskb_trim except that the caller knows that 3183 * the skb is not cloned so we should never get an error due to out- 3184 * of-memory. 3185 */ 3186 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3187 { 3188 int err = pskb_trim(skb, len); 3189 BUG_ON(err); 3190 } 3191 3192 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3193 { 3194 unsigned int diff = len - skb->len; 3195 3196 if (skb_tailroom(skb) < diff) { 3197 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3198 GFP_ATOMIC); 3199 if (ret) 3200 return ret; 3201 } 3202 __skb_set_length(skb, len); 3203 return 0; 3204 } 3205 3206 /** 3207 * skb_orphan - orphan a buffer 3208 * @skb: buffer to orphan 3209 * 3210 * If a buffer currently has an owner then we call the owner's 3211 * destructor function and make the @skb unowned. The buffer continues 3212 * to exist but is no longer charged to its former owner. 3213 */ 3214 static inline void skb_orphan(struct sk_buff *skb) 3215 { 3216 if (skb->destructor) { 3217 skb->destructor(skb); 3218 skb->destructor = NULL; 3219 skb->sk = NULL; 3220 } else { 3221 BUG_ON(skb->sk); 3222 } 3223 } 3224 3225 /** 3226 * skb_orphan_frags - orphan the frags contained in a buffer 3227 * @skb: buffer to orphan frags from 3228 * @gfp_mask: allocation mask for replacement pages 3229 * 3230 * For each frag in the SKB which needs a destructor (i.e. has an 3231 * owner) create a copy of that frag and release the original 3232 * page by calling the destructor. 3233 */ 3234 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3235 { 3236 if (likely(!skb_zcopy(skb))) 3237 return 0; 3238 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3239 return 0; 3240 return skb_copy_ubufs(skb, gfp_mask); 3241 } 3242 3243 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3244 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3245 { 3246 if (likely(!skb_zcopy(skb))) 3247 return 0; 3248 return skb_copy_ubufs(skb, gfp_mask); 3249 } 3250 3251 /** 3252 * __skb_queue_purge_reason - empty a list 3253 * @list: list to empty 3254 * @reason: drop reason 3255 * 3256 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3257 * the list and one reference dropped. This function does not take the 3258 * list lock and the caller must hold the relevant locks to use it. 3259 */ 3260 static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3261 enum skb_drop_reason reason) 3262 { 3263 struct sk_buff *skb; 3264 3265 while ((skb = __skb_dequeue(list)) != NULL) 3266 kfree_skb_reason(skb, reason); 3267 } 3268 3269 static inline void __skb_queue_purge(struct sk_buff_head *list) 3270 { 3271 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3272 } 3273 3274 void skb_queue_purge_reason(struct sk_buff_head *list, 3275 enum skb_drop_reason reason); 3276 3277 static inline void skb_queue_purge(struct sk_buff_head *list) 3278 { 3279 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3280 } 3281 3282 unsigned int skb_rbtree_purge(struct rb_root *root); 3283 void skb_errqueue_purge(struct sk_buff_head *list); 3284 3285 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3286 3287 /** 3288 * netdev_alloc_frag - allocate a page fragment 3289 * @fragsz: fragment size 3290 * 3291 * Allocates a frag from a page for receive buffer. 3292 * Uses GFP_ATOMIC allocations. 3293 */ 3294 static inline void *netdev_alloc_frag(unsigned int fragsz) 3295 { 3296 return __netdev_alloc_frag_align(fragsz, ~0u); 3297 } 3298 3299 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3300 unsigned int align) 3301 { 3302 WARN_ON_ONCE(!is_power_of_2(align)); 3303 return __netdev_alloc_frag_align(fragsz, -align); 3304 } 3305 3306 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3307 gfp_t gfp_mask); 3308 3309 /** 3310 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3311 * @dev: network device to receive on 3312 * @length: length to allocate 3313 * 3314 * Allocate a new &sk_buff and assign it a usage count of one. The 3315 * buffer has unspecified headroom built in. Users should allocate 3316 * the headroom they think they need without accounting for the 3317 * built in space. The built in space is used for optimisations. 3318 * 3319 * %NULL is returned if there is no free memory. Although this function 3320 * allocates memory it can be called from an interrupt. 3321 */ 3322 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3323 unsigned int length) 3324 { 3325 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3326 } 3327 3328 /* legacy helper around __netdev_alloc_skb() */ 3329 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3330 gfp_t gfp_mask) 3331 { 3332 return __netdev_alloc_skb(NULL, length, gfp_mask); 3333 } 3334 3335 /* legacy helper around netdev_alloc_skb() */ 3336 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3337 { 3338 return netdev_alloc_skb(NULL, length); 3339 } 3340 3341 3342 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3343 unsigned int length, gfp_t gfp) 3344 { 3345 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3346 3347 if (NET_IP_ALIGN && skb) 3348 skb_reserve(skb, NET_IP_ALIGN); 3349 return skb; 3350 } 3351 3352 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3353 unsigned int length) 3354 { 3355 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3356 } 3357 3358 static inline void skb_free_frag(void *addr) 3359 { 3360 page_frag_free(addr); 3361 } 3362 3363 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3364 3365 static inline void *napi_alloc_frag(unsigned int fragsz) 3366 { 3367 return __napi_alloc_frag_align(fragsz, ~0u); 3368 } 3369 3370 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3371 unsigned int align) 3372 { 3373 WARN_ON_ONCE(!is_power_of_2(align)); 3374 return __napi_alloc_frag_align(fragsz, -align); 3375 } 3376 3377 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length); 3378 void napi_consume_skb(struct sk_buff *skb, int budget); 3379 3380 void napi_skb_free_stolen_head(struct sk_buff *skb); 3381 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3382 3383 /** 3384 * __dev_alloc_pages - allocate page for network Rx 3385 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3386 * @order: size of the allocation 3387 * 3388 * Allocate a new page. 3389 * 3390 * %NULL is returned if there is no free memory. 3391 */ 3392 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask, 3393 unsigned int order) 3394 { 3395 /* This piece of code contains several assumptions. 3396 * 1. This is for device Rx, therefore a cold page is preferred. 3397 * 2. The expectation is the user wants a compound page. 3398 * 3. If requesting a order 0 page it will not be compound 3399 * due to the check to see if order has a value in prep_new_page 3400 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3401 * code in gfp_to_alloc_flags that should be enforcing this. 3402 */ 3403 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3404 3405 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order); 3406 } 3407 #define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__)) 3408 3409 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order) 3410 3411 /** 3412 * __dev_alloc_page - allocate a page for network Rx 3413 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3414 * 3415 * Allocate a new page. 3416 * 3417 * %NULL is returned if there is no free memory. 3418 */ 3419 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask) 3420 { 3421 return __dev_alloc_pages_noprof(gfp_mask, 0); 3422 } 3423 #define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__)) 3424 3425 #define dev_alloc_page() dev_alloc_pages(0) 3426 3427 /** 3428 * dev_page_is_reusable - check whether a page can be reused for network Rx 3429 * @page: the page to test 3430 * 3431 * A page shouldn't be considered for reusing/recycling if it was allocated 3432 * under memory pressure or at a distant memory node. 3433 * 3434 * Returns false if this page should be returned to page allocator, true 3435 * otherwise. 3436 */ 3437 static inline bool dev_page_is_reusable(const struct page *page) 3438 { 3439 return likely(page_to_nid(page) == numa_mem_id() && 3440 !page_is_pfmemalloc(page)); 3441 } 3442 3443 /** 3444 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3445 * @page: The page that was allocated from skb_alloc_page 3446 * @skb: The skb that may need pfmemalloc set 3447 */ 3448 static inline void skb_propagate_pfmemalloc(const struct page *page, 3449 struct sk_buff *skb) 3450 { 3451 if (page_is_pfmemalloc(page)) 3452 skb->pfmemalloc = true; 3453 } 3454 3455 /** 3456 * skb_frag_off() - Returns the offset of a skb fragment 3457 * @frag: the paged fragment 3458 */ 3459 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3460 { 3461 return frag->offset; 3462 } 3463 3464 /** 3465 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3466 * @frag: skb fragment 3467 * @delta: value to add 3468 */ 3469 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3470 { 3471 frag->offset += delta; 3472 } 3473 3474 /** 3475 * skb_frag_off_set() - Sets the offset of a skb fragment 3476 * @frag: skb fragment 3477 * @offset: offset of fragment 3478 */ 3479 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3480 { 3481 frag->offset = offset; 3482 } 3483 3484 /** 3485 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3486 * @fragto: skb fragment where offset is set 3487 * @fragfrom: skb fragment offset is copied from 3488 */ 3489 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3490 const skb_frag_t *fragfrom) 3491 { 3492 fragto->offset = fragfrom->offset; 3493 } 3494 3495 /** 3496 * skb_frag_page - retrieve the page referred to by a paged fragment 3497 * @frag: the paged fragment 3498 * 3499 * Returns the &struct page associated with @frag. 3500 */ 3501 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3502 { 3503 return netmem_to_page(frag->netmem); 3504 } 3505 3506 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 3507 unsigned int headroom); 3508 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 3509 struct bpf_prog *prog); 3510 /** 3511 * skb_frag_address - gets the address of the data contained in a paged fragment 3512 * @frag: the paged fragment buffer 3513 * 3514 * Returns the address of the data within @frag. The page must already 3515 * be mapped. 3516 */ 3517 static inline void *skb_frag_address(const skb_frag_t *frag) 3518 { 3519 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3520 } 3521 3522 /** 3523 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3524 * @frag: the paged fragment buffer 3525 * 3526 * Returns the address of the data within @frag. Checks that the page 3527 * is mapped and returns %NULL otherwise. 3528 */ 3529 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3530 { 3531 void *ptr = page_address(skb_frag_page(frag)); 3532 if (unlikely(!ptr)) 3533 return NULL; 3534 3535 return ptr + skb_frag_off(frag); 3536 } 3537 3538 /** 3539 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3540 * @fragto: skb fragment where page is set 3541 * @fragfrom: skb fragment page is copied from 3542 */ 3543 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3544 const skb_frag_t *fragfrom) 3545 { 3546 fragto->netmem = fragfrom->netmem; 3547 } 3548 3549 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3550 3551 /** 3552 * skb_frag_dma_map - maps a paged fragment via the DMA API 3553 * @dev: the device to map the fragment to 3554 * @frag: the paged fragment to map 3555 * @offset: the offset within the fragment (starting at the 3556 * fragment's own offset) 3557 * @size: the number of bytes to map 3558 * @dir: the direction of the mapping (``PCI_DMA_*``) 3559 * 3560 * Maps the page associated with @frag to @device. 3561 */ 3562 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3563 const skb_frag_t *frag, 3564 size_t offset, size_t size, 3565 enum dma_data_direction dir) 3566 { 3567 return dma_map_page(dev, skb_frag_page(frag), 3568 skb_frag_off(frag) + offset, size, dir); 3569 } 3570 3571 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3572 gfp_t gfp_mask) 3573 { 3574 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3575 } 3576 3577 3578 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3579 gfp_t gfp_mask) 3580 { 3581 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3582 } 3583 3584 3585 /** 3586 * skb_clone_writable - is the header of a clone writable 3587 * @skb: buffer to check 3588 * @len: length up to which to write 3589 * 3590 * Returns true if modifying the header part of the cloned buffer 3591 * does not requires the data to be copied. 3592 */ 3593 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3594 { 3595 return !skb_header_cloned(skb) && 3596 skb_headroom(skb) + len <= skb->hdr_len; 3597 } 3598 3599 static inline int skb_try_make_writable(struct sk_buff *skb, 3600 unsigned int write_len) 3601 { 3602 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3603 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3604 } 3605 3606 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3607 int cloned) 3608 { 3609 int delta = 0; 3610 3611 if (headroom > skb_headroom(skb)) 3612 delta = headroom - skb_headroom(skb); 3613 3614 if (delta || cloned) 3615 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3616 GFP_ATOMIC); 3617 return 0; 3618 } 3619 3620 /** 3621 * skb_cow - copy header of skb when it is required 3622 * @skb: buffer to cow 3623 * @headroom: needed headroom 3624 * 3625 * If the skb passed lacks sufficient headroom or its data part 3626 * is shared, data is reallocated. If reallocation fails, an error 3627 * is returned and original skb is not changed. 3628 * 3629 * The result is skb with writable area skb->head...skb->tail 3630 * and at least @headroom of space at head. 3631 */ 3632 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3633 { 3634 return __skb_cow(skb, headroom, skb_cloned(skb)); 3635 } 3636 3637 /** 3638 * skb_cow_head - skb_cow but only making the head writable 3639 * @skb: buffer to cow 3640 * @headroom: needed headroom 3641 * 3642 * This function is identical to skb_cow except that we replace the 3643 * skb_cloned check by skb_header_cloned. It should be used when 3644 * you only need to push on some header and do not need to modify 3645 * the data. 3646 */ 3647 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3648 { 3649 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3650 } 3651 3652 /** 3653 * skb_padto - pad an skbuff up to a minimal size 3654 * @skb: buffer to pad 3655 * @len: minimal length 3656 * 3657 * Pads up a buffer to ensure the trailing bytes exist and are 3658 * blanked. If the buffer already contains sufficient data it 3659 * is untouched. Otherwise it is extended. Returns zero on 3660 * success. The skb is freed on error. 3661 */ 3662 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3663 { 3664 unsigned int size = skb->len; 3665 if (likely(size >= len)) 3666 return 0; 3667 return skb_pad(skb, len - size); 3668 } 3669 3670 /** 3671 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3672 * @skb: buffer to pad 3673 * @len: minimal length 3674 * @free_on_error: free buffer on error 3675 * 3676 * Pads up a buffer to ensure the trailing bytes exist and are 3677 * blanked. If the buffer already contains sufficient data it 3678 * is untouched. Otherwise it is extended. Returns zero on 3679 * success. The skb is freed on error if @free_on_error is true. 3680 */ 3681 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3682 unsigned int len, 3683 bool free_on_error) 3684 { 3685 unsigned int size = skb->len; 3686 3687 if (unlikely(size < len)) { 3688 len -= size; 3689 if (__skb_pad(skb, len, free_on_error)) 3690 return -ENOMEM; 3691 __skb_put(skb, len); 3692 } 3693 return 0; 3694 } 3695 3696 /** 3697 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3698 * @skb: buffer to pad 3699 * @len: minimal length 3700 * 3701 * Pads up a buffer to ensure the trailing bytes exist and are 3702 * blanked. If the buffer already contains sufficient data it 3703 * is untouched. Otherwise it is extended. Returns zero on 3704 * success. The skb is freed on error. 3705 */ 3706 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3707 { 3708 return __skb_put_padto(skb, len, true); 3709 } 3710 3711 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) 3712 __must_check; 3713 3714 static inline int skb_add_data(struct sk_buff *skb, 3715 struct iov_iter *from, int copy) 3716 { 3717 const int off = skb->len; 3718 3719 if (skb->ip_summed == CHECKSUM_NONE) { 3720 __wsum csum = 0; 3721 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3722 &csum, from)) { 3723 skb->csum = csum_block_add(skb->csum, csum, off); 3724 return 0; 3725 } 3726 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3727 return 0; 3728 3729 __skb_trim(skb, off); 3730 return -EFAULT; 3731 } 3732 3733 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3734 const struct page *page, int off) 3735 { 3736 if (skb_zcopy(skb)) 3737 return false; 3738 if (i) { 3739 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3740 3741 return page == skb_frag_page(frag) && 3742 off == skb_frag_off(frag) + skb_frag_size(frag); 3743 } 3744 return false; 3745 } 3746 3747 static inline int __skb_linearize(struct sk_buff *skb) 3748 { 3749 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3750 } 3751 3752 /** 3753 * skb_linearize - convert paged skb to linear one 3754 * @skb: buffer to linarize 3755 * 3756 * If there is no free memory -ENOMEM is returned, otherwise zero 3757 * is returned and the old skb data released. 3758 */ 3759 static inline int skb_linearize(struct sk_buff *skb) 3760 { 3761 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3762 } 3763 3764 /** 3765 * skb_has_shared_frag - can any frag be overwritten 3766 * @skb: buffer to test 3767 * 3768 * Return true if the skb has at least one frag that might be modified 3769 * by an external entity (as in vmsplice()/sendfile()) 3770 */ 3771 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3772 { 3773 return skb_is_nonlinear(skb) && 3774 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3775 } 3776 3777 /** 3778 * skb_linearize_cow - make sure skb is linear and writable 3779 * @skb: buffer to process 3780 * 3781 * If there is no free memory -ENOMEM is returned, otherwise zero 3782 * is returned and the old skb data released. 3783 */ 3784 static inline int skb_linearize_cow(struct sk_buff *skb) 3785 { 3786 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3787 __skb_linearize(skb) : 0; 3788 } 3789 3790 static __always_inline void 3791 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3792 unsigned int off) 3793 { 3794 if (skb->ip_summed == CHECKSUM_COMPLETE) 3795 skb->csum = csum_block_sub(skb->csum, 3796 csum_partial(start, len, 0), off); 3797 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3798 skb_checksum_start_offset(skb) < 0) 3799 skb->ip_summed = CHECKSUM_NONE; 3800 } 3801 3802 /** 3803 * skb_postpull_rcsum - update checksum for received skb after pull 3804 * @skb: buffer to update 3805 * @start: start of data before pull 3806 * @len: length of data pulled 3807 * 3808 * After doing a pull on a received packet, you need to call this to 3809 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3810 * CHECKSUM_NONE so that it can be recomputed from scratch. 3811 */ 3812 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3813 const void *start, unsigned int len) 3814 { 3815 if (skb->ip_summed == CHECKSUM_COMPLETE) 3816 skb->csum = wsum_negate(csum_partial(start, len, 3817 wsum_negate(skb->csum))); 3818 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3819 skb_checksum_start_offset(skb) < 0) 3820 skb->ip_summed = CHECKSUM_NONE; 3821 } 3822 3823 static __always_inline void 3824 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3825 unsigned int off) 3826 { 3827 if (skb->ip_summed == CHECKSUM_COMPLETE) 3828 skb->csum = csum_block_add(skb->csum, 3829 csum_partial(start, len, 0), off); 3830 } 3831 3832 /** 3833 * skb_postpush_rcsum - update checksum for received skb after push 3834 * @skb: buffer to update 3835 * @start: start of data after push 3836 * @len: length of data pushed 3837 * 3838 * After doing a push on a received packet, you need to call this to 3839 * update the CHECKSUM_COMPLETE checksum. 3840 */ 3841 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3842 const void *start, unsigned int len) 3843 { 3844 __skb_postpush_rcsum(skb, start, len, 0); 3845 } 3846 3847 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3848 3849 /** 3850 * skb_push_rcsum - push skb and update receive checksum 3851 * @skb: buffer to update 3852 * @len: length of data pulled 3853 * 3854 * This function performs an skb_push on the packet and updates 3855 * the CHECKSUM_COMPLETE checksum. It should be used on 3856 * receive path processing instead of skb_push unless you know 3857 * that the checksum difference is zero (e.g., a valid IP header) 3858 * or you are setting ip_summed to CHECKSUM_NONE. 3859 */ 3860 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3861 { 3862 skb_push(skb, len); 3863 skb_postpush_rcsum(skb, skb->data, len); 3864 return skb->data; 3865 } 3866 3867 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3868 /** 3869 * pskb_trim_rcsum - trim received skb and update checksum 3870 * @skb: buffer to trim 3871 * @len: new length 3872 * 3873 * This is exactly the same as pskb_trim except that it ensures the 3874 * checksum of received packets are still valid after the operation. 3875 * It can change skb pointers. 3876 */ 3877 3878 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3879 { 3880 if (likely(len >= skb->len)) 3881 return 0; 3882 return pskb_trim_rcsum_slow(skb, len); 3883 } 3884 3885 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3886 { 3887 if (skb->ip_summed == CHECKSUM_COMPLETE) 3888 skb->ip_summed = CHECKSUM_NONE; 3889 __skb_trim(skb, len); 3890 return 0; 3891 } 3892 3893 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3894 { 3895 if (skb->ip_summed == CHECKSUM_COMPLETE) 3896 skb->ip_summed = CHECKSUM_NONE; 3897 return __skb_grow(skb, len); 3898 } 3899 3900 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3901 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3902 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3903 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3904 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3905 3906 #define skb_queue_walk(queue, skb) \ 3907 for (skb = (queue)->next; \ 3908 skb != (struct sk_buff *)(queue); \ 3909 skb = skb->next) 3910 3911 #define skb_queue_walk_safe(queue, skb, tmp) \ 3912 for (skb = (queue)->next, tmp = skb->next; \ 3913 skb != (struct sk_buff *)(queue); \ 3914 skb = tmp, tmp = skb->next) 3915 3916 #define skb_queue_walk_from(queue, skb) \ 3917 for (; skb != (struct sk_buff *)(queue); \ 3918 skb = skb->next) 3919 3920 #define skb_rbtree_walk(skb, root) \ 3921 for (skb = skb_rb_first(root); skb != NULL; \ 3922 skb = skb_rb_next(skb)) 3923 3924 #define skb_rbtree_walk_from(skb) \ 3925 for (; skb != NULL; \ 3926 skb = skb_rb_next(skb)) 3927 3928 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3929 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3930 skb = tmp) 3931 3932 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3933 for (tmp = skb->next; \ 3934 skb != (struct sk_buff *)(queue); \ 3935 skb = tmp, tmp = skb->next) 3936 3937 #define skb_queue_reverse_walk(queue, skb) \ 3938 for (skb = (queue)->prev; \ 3939 skb != (struct sk_buff *)(queue); \ 3940 skb = skb->prev) 3941 3942 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3943 for (skb = (queue)->prev, tmp = skb->prev; \ 3944 skb != (struct sk_buff *)(queue); \ 3945 skb = tmp, tmp = skb->prev) 3946 3947 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3948 for (tmp = skb->prev; \ 3949 skb != (struct sk_buff *)(queue); \ 3950 skb = tmp, tmp = skb->prev) 3951 3952 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3953 { 3954 return skb_shinfo(skb)->frag_list != NULL; 3955 } 3956 3957 static inline void skb_frag_list_init(struct sk_buff *skb) 3958 { 3959 skb_shinfo(skb)->frag_list = NULL; 3960 } 3961 3962 #define skb_walk_frags(skb, iter) \ 3963 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3964 3965 3966 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3967 int *err, long *timeo_p, 3968 const struct sk_buff *skb); 3969 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3970 struct sk_buff_head *queue, 3971 unsigned int flags, 3972 int *off, int *err, 3973 struct sk_buff **last); 3974 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3975 struct sk_buff_head *queue, 3976 unsigned int flags, int *off, int *err, 3977 struct sk_buff **last); 3978 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3979 struct sk_buff_head *sk_queue, 3980 unsigned int flags, int *off, int *err); 3981 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3982 __poll_t datagram_poll(struct file *file, struct socket *sock, 3983 struct poll_table_struct *wait); 3984 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3985 struct iov_iter *to, int size); 3986 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3987 struct msghdr *msg, int size) 3988 { 3989 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3990 } 3991 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3992 struct msghdr *msg); 3993 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3994 struct iov_iter *to, int len, 3995 struct ahash_request *hash); 3996 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3997 struct iov_iter *from, int len); 3998 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3999 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 4000 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 4001 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 4002 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 4003 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 4004 int len); 4005 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 4006 struct pipe_inode_info *pipe, unsigned int len, 4007 unsigned int flags); 4008 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 4009 int len); 4010 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 4011 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 4012 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 4013 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 4014 int len, int hlen); 4015 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 4016 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 4017 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 4018 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 4019 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 4020 unsigned int offset); 4021 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 4022 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 4023 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); 4024 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 4025 int skb_vlan_pop(struct sk_buff *skb); 4026 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4027 int skb_eth_pop(struct sk_buff *skb); 4028 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4029 const unsigned char *src); 4030 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4031 int mac_len, bool ethernet); 4032 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4033 bool ethernet); 4034 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4035 int skb_mpls_dec_ttl(struct sk_buff *skb); 4036 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4037 gfp_t gfp); 4038 4039 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4040 { 4041 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4042 } 4043 4044 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4045 { 4046 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4047 } 4048 4049 struct skb_checksum_ops { 4050 __wsum (*update)(const void *mem, int len, __wsum wsum); 4051 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4052 }; 4053 4054 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4055 4056 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4057 __wsum csum, const struct skb_checksum_ops *ops); 4058 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4059 __wsum csum); 4060 4061 static inline void * __must_check 4062 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4063 const void *data, int hlen, void *buffer) 4064 { 4065 if (likely(hlen - offset >= len)) 4066 return (void *)data + offset; 4067 4068 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4069 return NULL; 4070 4071 return buffer; 4072 } 4073 4074 static inline void * __must_check 4075 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4076 { 4077 return __skb_header_pointer(skb, offset, len, skb->data, 4078 skb_headlen(skb), buffer); 4079 } 4080 4081 static inline void * __must_check 4082 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4083 { 4084 if (likely(skb_headlen(skb) - offset >= len)) 4085 return skb->data + offset; 4086 return NULL; 4087 } 4088 4089 /** 4090 * skb_needs_linearize - check if we need to linearize a given skb 4091 * depending on the given device features. 4092 * @skb: socket buffer to check 4093 * @features: net device features 4094 * 4095 * Returns true if either: 4096 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4097 * 2. skb is fragmented and the device does not support SG. 4098 */ 4099 static inline bool skb_needs_linearize(struct sk_buff *skb, 4100 netdev_features_t features) 4101 { 4102 return skb_is_nonlinear(skb) && 4103 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4104 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4105 } 4106 4107 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4108 void *to, 4109 const unsigned int len) 4110 { 4111 memcpy(to, skb->data, len); 4112 } 4113 4114 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4115 const int offset, void *to, 4116 const unsigned int len) 4117 { 4118 memcpy(to, skb->data + offset, len); 4119 } 4120 4121 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4122 const void *from, 4123 const unsigned int len) 4124 { 4125 memcpy(skb->data, from, len); 4126 } 4127 4128 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4129 const int offset, 4130 const void *from, 4131 const unsigned int len) 4132 { 4133 memcpy(skb->data + offset, from, len); 4134 } 4135 4136 void skb_init(void); 4137 4138 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4139 { 4140 return skb->tstamp; 4141 } 4142 4143 /** 4144 * skb_get_timestamp - get timestamp from a skb 4145 * @skb: skb to get stamp from 4146 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4147 * 4148 * Timestamps are stored in the skb as offsets to a base timestamp. 4149 * This function converts the offset back to a struct timeval and stores 4150 * it in stamp. 4151 */ 4152 static inline void skb_get_timestamp(const struct sk_buff *skb, 4153 struct __kernel_old_timeval *stamp) 4154 { 4155 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4156 } 4157 4158 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4159 struct __kernel_sock_timeval *stamp) 4160 { 4161 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4162 4163 stamp->tv_sec = ts.tv_sec; 4164 stamp->tv_usec = ts.tv_nsec / 1000; 4165 } 4166 4167 static inline void skb_get_timestampns(const struct sk_buff *skb, 4168 struct __kernel_old_timespec *stamp) 4169 { 4170 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4171 4172 stamp->tv_sec = ts.tv_sec; 4173 stamp->tv_nsec = ts.tv_nsec; 4174 } 4175 4176 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4177 struct __kernel_timespec *stamp) 4178 { 4179 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4180 4181 stamp->tv_sec = ts.tv_sec; 4182 stamp->tv_nsec = ts.tv_nsec; 4183 } 4184 4185 static inline void __net_timestamp(struct sk_buff *skb) 4186 { 4187 skb->tstamp = ktime_get_real(); 4188 skb->tstamp_type = SKB_CLOCK_REALTIME; 4189 } 4190 4191 static inline ktime_t net_timedelta(ktime_t t) 4192 { 4193 return ktime_sub(ktime_get_real(), t); 4194 } 4195 4196 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4197 u8 tstamp_type) 4198 { 4199 skb->tstamp = kt; 4200 4201 if (kt) 4202 skb->tstamp_type = tstamp_type; 4203 else 4204 skb->tstamp_type = SKB_CLOCK_REALTIME; 4205 } 4206 4207 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb, 4208 ktime_t kt, clockid_t clockid) 4209 { 4210 u8 tstamp_type = SKB_CLOCK_REALTIME; 4211 4212 switch (clockid) { 4213 case CLOCK_REALTIME: 4214 break; 4215 case CLOCK_MONOTONIC: 4216 tstamp_type = SKB_CLOCK_MONOTONIC; 4217 break; 4218 case CLOCK_TAI: 4219 tstamp_type = SKB_CLOCK_TAI; 4220 break; 4221 default: 4222 WARN_ON_ONCE(1); 4223 kt = 0; 4224 } 4225 4226 skb_set_delivery_time(skb, kt, tstamp_type); 4227 } 4228 4229 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4230 4231 /* It is used in the ingress path to clear the delivery_time. 4232 * If needed, set the skb->tstamp to the (rcv) timestamp. 4233 */ 4234 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4235 { 4236 if (skb->tstamp_type) { 4237 skb->tstamp_type = SKB_CLOCK_REALTIME; 4238 if (static_branch_unlikely(&netstamp_needed_key)) 4239 skb->tstamp = ktime_get_real(); 4240 else 4241 skb->tstamp = 0; 4242 } 4243 } 4244 4245 static inline void skb_clear_tstamp(struct sk_buff *skb) 4246 { 4247 if (skb->tstamp_type) 4248 return; 4249 4250 skb->tstamp = 0; 4251 } 4252 4253 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4254 { 4255 if (skb->tstamp_type) 4256 return 0; 4257 4258 return skb->tstamp; 4259 } 4260 4261 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4262 { 4263 if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp) 4264 return skb->tstamp; 4265 4266 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4267 return ktime_get_real(); 4268 4269 return 0; 4270 } 4271 4272 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4273 { 4274 return skb_shinfo(skb)->meta_len; 4275 } 4276 4277 static inline void *skb_metadata_end(const struct sk_buff *skb) 4278 { 4279 return skb_mac_header(skb); 4280 } 4281 4282 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4283 const struct sk_buff *skb_b, 4284 u8 meta_len) 4285 { 4286 const void *a = skb_metadata_end(skb_a); 4287 const void *b = skb_metadata_end(skb_b); 4288 u64 diffs = 0; 4289 4290 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || 4291 BITS_PER_LONG != 64) 4292 goto slow; 4293 4294 /* Using more efficient variant than plain call to memcmp(). */ 4295 switch (meta_len) { 4296 #define __it(x, op) (x -= sizeof(u##op)) 4297 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4298 case 32: diffs |= __it_diff(a, b, 64); 4299 fallthrough; 4300 case 24: diffs |= __it_diff(a, b, 64); 4301 fallthrough; 4302 case 16: diffs |= __it_diff(a, b, 64); 4303 fallthrough; 4304 case 8: diffs |= __it_diff(a, b, 64); 4305 break; 4306 case 28: diffs |= __it_diff(a, b, 64); 4307 fallthrough; 4308 case 20: diffs |= __it_diff(a, b, 64); 4309 fallthrough; 4310 case 12: diffs |= __it_diff(a, b, 64); 4311 fallthrough; 4312 case 4: diffs |= __it_diff(a, b, 32); 4313 break; 4314 default: 4315 slow: 4316 return memcmp(a - meta_len, b - meta_len, meta_len); 4317 } 4318 return diffs; 4319 } 4320 4321 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4322 const struct sk_buff *skb_b) 4323 { 4324 u8 len_a = skb_metadata_len(skb_a); 4325 u8 len_b = skb_metadata_len(skb_b); 4326 4327 if (!(len_a | len_b)) 4328 return false; 4329 4330 return len_a != len_b ? 4331 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4332 } 4333 4334 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4335 { 4336 skb_shinfo(skb)->meta_len = meta_len; 4337 } 4338 4339 static inline void skb_metadata_clear(struct sk_buff *skb) 4340 { 4341 skb_metadata_set(skb, 0); 4342 } 4343 4344 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4345 4346 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4347 4348 void skb_clone_tx_timestamp(struct sk_buff *skb); 4349 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4350 4351 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4352 4353 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4354 { 4355 } 4356 4357 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4358 { 4359 return false; 4360 } 4361 4362 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4363 4364 /** 4365 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4366 * 4367 * PHY drivers may accept clones of transmitted packets for 4368 * timestamping via their phy_driver.txtstamp method. These drivers 4369 * must call this function to return the skb back to the stack with a 4370 * timestamp. 4371 * 4372 * @skb: clone of the original outgoing packet 4373 * @hwtstamps: hardware time stamps 4374 * 4375 */ 4376 void skb_complete_tx_timestamp(struct sk_buff *skb, 4377 struct skb_shared_hwtstamps *hwtstamps); 4378 4379 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4380 struct skb_shared_hwtstamps *hwtstamps, 4381 struct sock *sk, int tstype); 4382 4383 /** 4384 * skb_tstamp_tx - queue clone of skb with send time stamps 4385 * @orig_skb: the original outgoing packet 4386 * @hwtstamps: hardware time stamps, may be NULL if not available 4387 * 4388 * If the skb has a socket associated, then this function clones the 4389 * skb (thus sharing the actual data and optional structures), stores 4390 * the optional hardware time stamping information (if non NULL) or 4391 * generates a software time stamp (otherwise), then queues the clone 4392 * to the error queue of the socket. Errors are silently ignored. 4393 */ 4394 void skb_tstamp_tx(struct sk_buff *orig_skb, 4395 struct skb_shared_hwtstamps *hwtstamps); 4396 4397 /** 4398 * skb_tx_timestamp() - Driver hook for transmit timestamping 4399 * 4400 * Ethernet MAC Drivers should call this function in their hard_xmit() 4401 * function immediately before giving the sk_buff to the MAC hardware. 4402 * 4403 * Specifically, one should make absolutely sure that this function is 4404 * called before TX completion of this packet can trigger. Otherwise 4405 * the packet could potentially already be freed. 4406 * 4407 * @skb: A socket buffer. 4408 */ 4409 static inline void skb_tx_timestamp(struct sk_buff *skb) 4410 { 4411 skb_clone_tx_timestamp(skb); 4412 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4413 skb_tstamp_tx(skb, NULL); 4414 } 4415 4416 /** 4417 * skb_complete_wifi_ack - deliver skb with wifi status 4418 * 4419 * @skb: the original outgoing packet 4420 * @acked: ack status 4421 * 4422 */ 4423 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4424 4425 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4426 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4427 4428 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4429 { 4430 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4431 skb->csum_valid || 4432 (skb->ip_summed == CHECKSUM_PARTIAL && 4433 skb_checksum_start_offset(skb) >= 0)); 4434 } 4435 4436 /** 4437 * skb_checksum_complete - Calculate checksum of an entire packet 4438 * @skb: packet to process 4439 * 4440 * This function calculates the checksum over the entire packet plus 4441 * the value of skb->csum. The latter can be used to supply the 4442 * checksum of a pseudo header as used by TCP/UDP. It returns the 4443 * checksum. 4444 * 4445 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4446 * this function can be used to verify that checksum on received 4447 * packets. In that case the function should return zero if the 4448 * checksum is correct. In particular, this function will return zero 4449 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4450 * hardware has already verified the correctness of the checksum. 4451 */ 4452 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4453 { 4454 return skb_csum_unnecessary(skb) ? 4455 0 : __skb_checksum_complete(skb); 4456 } 4457 4458 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4459 { 4460 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4461 if (skb->csum_level == 0) 4462 skb->ip_summed = CHECKSUM_NONE; 4463 else 4464 skb->csum_level--; 4465 } 4466 } 4467 4468 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4469 { 4470 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4471 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4472 skb->csum_level++; 4473 } else if (skb->ip_summed == CHECKSUM_NONE) { 4474 skb->ip_summed = CHECKSUM_UNNECESSARY; 4475 skb->csum_level = 0; 4476 } 4477 } 4478 4479 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4480 { 4481 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4482 skb->ip_summed = CHECKSUM_NONE; 4483 skb->csum_level = 0; 4484 } 4485 } 4486 4487 /* Check if we need to perform checksum complete validation. 4488 * 4489 * Returns true if checksum complete is needed, false otherwise 4490 * (either checksum is unnecessary or zero checksum is allowed). 4491 */ 4492 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4493 bool zero_okay, 4494 __sum16 check) 4495 { 4496 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4497 skb->csum_valid = 1; 4498 __skb_decr_checksum_unnecessary(skb); 4499 return false; 4500 } 4501 4502 return true; 4503 } 4504 4505 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4506 * in checksum_init. 4507 */ 4508 #define CHECKSUM_BREAK 76 4509 4510 /* Unset checksum-complete 4511 * 4512 * Unset checksum complete can be done when packet is being modified 4513 * (uncompressed for instance) and checksum-complete value is 4514 * invalidated. 4515 */ 4516 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4517 { 4518 if (skb->ip_summed == CHECKSUM_COMPLETE) 4519 skb->ip_summed = CHECKSUM_NONE; 4520 } 4521 4522 /* Validate (init) checksum based on checksum complete. 4523 * 4524 * Return values: 4525 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4526 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4527 * checksum is stored in skb->csum for use in __skb_checksum_complete 4528 * non-zero: value of invalid checksum 4529 * 4530 */ 4531 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4532 bool complete, 4533 __wsum psum) 4534 { 4535 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4536 if (!csum_fold(csum_add(psum, skb->csum))) { 4537 skb->csum_valid = 1; 4538 return 0; 4539 } 4540 } 4541 4542 skb->csum = psum; 4543 4544 if (complete || skb->len <= CHECKSUM_BREAK) { 4545 __sum16 csum; 4546 4547 csum = __skb_checksum_complete(skb); 4548 skb->csum_valid = !csum; 4549 return csum; 4550 } 4551 4552 return 0; 4553 } 4554 4555 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4556 { 4557 return 0; 4558 } 4559 4560 /* Perform checksum validate (init). Note that this is a macro since we only 4561 * want to calculate the pseudo header which is an input function if necessary. 4562 * First we try to validate without any computation (checksum unnecessary) and 4563 * then calculate based on checksum complete calling the function to compute 4564 * pseudo header. 4565 * 4566 * Return values: 4567 * 0: checksum is validated or try to in skb_checksum_complete 4568 * non-zero: value of invalid checksum 4569 */ 4570 #define __skb_checksum_validate(skb, proto, complete, \ 4571 zero_okay, check, compute_pseudo) \ 4572 ({ \ 4573 __sum16 __ret = 0; \ 4574 skb->csum_valid = 0; \ 4575 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4576 __ret = __skb_checksum_validate_complete(skb, \ 4577 complete, compute_pseudo(skb, proto)); \ 4578 __ret; \ 4579 }) 4580 4581 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4582 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4583 4584 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4585 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4586 4587 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4588 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4589 4590 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4591 compute_pseudo) \ 4592 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4593 4594 #define skb_checksum_simple_validate(skb) \ 4595 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4596 4597 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4598 { 4599 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4600 } 4601 4602 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4603 { 4604 skb->csum = ~pseudo; 4605 skb->ip_summed = CHECKSUM_COMPLETE; 4606 } 4607 4608 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4609 do { \ 4610 if (__skb_checksum_convert_check(skb)) \ 4611 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4612 } while (0) 4613 4614 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4615 u16 start, u16 offset) 4616 { 4617 skb->ip_summed = CHECKSUM_PARTIAL; 4618 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4619 skb->csum_offset = offset - start; 4620 } 4621 4622 /* Update skbuf and packet to reflect the remote checksum offload operation. 4623 * When called, ptr indicates the starting point for skb->csum when 4624 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4625 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4626 */ 4627 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4628 int start, int offset, bool nopartial) 4629 { 4630 __wsum delta; 4631 4632 if (!nopartial) { 4633 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4634 return; 4635 } 4636 4637 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4638 __skb_checksum_complete(skb); 4639 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4640 } 4641 4642 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4643 4644 /* Adjust skb->csum since we changed the packet */ 4645 skb->csum = csum_add(skb->csum, delta); 4646 } 4647 4648 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4649 { 4650 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4651 return (void *)(skb->_nfct & NFCT_PTRMASK); 4652 #else 4653 return NULL; 4654 #endif 4655 } 4656 4657 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4658 { 4659 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4660 return skb->_nfct; 4661 #else 4662 return 0UL; 4663 #endif 4664 } 4665 4666 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4667 { 4668 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4669 skb->slow_gro |= !!nfct; 4670 skb->_nfct = nfct; 4671 #endif 4672 } 4673 4674 #ifdef CONFIG_SKB_EXTENSIONS 4675 enum skb_ext_id { 4676 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4677 SKB_EXT_BRIDGE_NF, 4678 #endif 4679 #ifdef CONFIG_XFRM 4680 SKB_EXT_SEC_PATH, 4681 #endif 4682 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4683 TC_SKB_EXT, 4684 #endif 4685 #if IS_ENABLED(CONFIG_MPTCP) 4686 SKB_EXT_MPTCP, 4687 #endif 4688 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4689 SKB_EXT_MCTP, 4690 #endif 4691 SKB_EXT_NUM, /* must be last */ 4692 }; 4693 4694 /** 4695 * struct skb_ext - sk_buff extensions 4696 * @refcnt: 1 on allocation, deallocated on 0 4697 * @offset: offset to add to @data to obtain extension address 4698 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4699 * @data: start of extension data, variable sized 4700 * 4701 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4702 * to use 'u8' types while allowing up to 2kb worth of extension data. 4703 */ 4704 struct skb_ext { 4705 refcount_t refcnt; 4706 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4707 u8 chunks; /* same */ 4708 char data[] __aligned(8); 4709 }; 4710 4711 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4712 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4713 struct skb_ext *ext); 4714 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4715 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4716 void __skb_ext_put(struct skb_ext *ext); 4717 4718 static inline void skb_ext_put(struct sk_buff *skb) 4719 { 4720 if (skb->active_extensions) 4721 __skb_ext_put(skb->extensions); 4722 } 4723 4724 static inline void __skb_ext_copy(struct sk_buff *dst, 4725 const struct sk_buff *src) 4726 { 4727 dst->active_extensions = src->active_extensions; 4728 4729 if (src->active_extensions) { 4730 struct skb_ext *ext = src->extensions; 4731 4732 refcount_inc(&ext->refcnt); 4733 dst->extensions = ext; 4734 } 4735 } 4736 4737 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4738 { 4739 skb_ext_put(dst); 4740 __skb_ext_copy(dst, src); 4741 } 4742 4743 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4744 { 4745 return !!ext->offset[i]; 4746 } 4747 4748 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4749 { 4750 return skb->active_extensions & (1 << id); 4751 } 4752 4753 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4754 { 4755 if (skb_ext_exist(skb, id)) 4756 __skb_ext_del(skb, id); 4757 } 4758 4759 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4760 { 4761 if (skb_ext_exist(skb, id)) { 4762 struct skb_ext *ext = skb->extensions; 4763 4764 return (void *)ext + (ext->offset[id] << 3); 4765 } 4766 4767 return NULL; 4768 } 4769 4770 static inline void skb_ext_reset(struct sk_buff *skb) 4771 { 4772 if (unlikely(skb->active_extensions)) { 4773 __skb_ext_put(skb->extensions); 4774 skb->active_extensions = 0; 4775 } 4776 } 4777 4778 static inline bool skb_has_extensions(struct sk_buff *skb) 4779 { 4780 return unlikely(skb->active_extensions); 4781 } 4782 #else 4783 static inline void skb_ext_put(struct sk_buff *skb) {} 4784 static inline void skb_ext_reset(struct sk_buff *skb) {} 4785 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4786 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4787 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4788 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4789 #endif /* CONFIG_SKB_EXTENSIONS */ 4790 4791 static inline void nf_reset_ct(struct sk_buff *skb) 4792 { 4793 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4794 nf_conntrack_put(skb_nfct(skb)); 4795 skb->_nfct = 0; 4796 #endif 4797 } 4798 4799 static inline void nf_reset_trace(struct sk_buff *skb) 4800 { 4801 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4802 skb->nf_trace = 0; 4803 #endif 4804 } 4805 4806 static inline void ipvs_reset(struct sk_buff *skb) 4807 { 4808 #if IS_ENABLED(CONFIG_IP_VS) 4809 skb->ipvs_property = 0; 4810 #endif 4811 } 4812 4813 /* Note: This doesn't put any conntrack info in dst. */ 4814 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4815 bool copy) 4816 { 4817 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4818 dst->_nfct = src->_nfct; 4819 nf_conntrack_get(skb_nfct(src)); 4820 #endif 4821 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4822 if (copy) 4823 dst->nf_trace = src->nf_trace; 4824 #endif 4825 } 4826 4827 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4828 { 4829 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4830 nf_conntrack_put(skb_nfct(dst)); 4831 #endif 4832 dst->slow_gro = src->slow_gro; 4833 __nf_copy(dst, src, true); 4834 } 4835 4836 #ifdef CONFIG_NETWORK_SECMARK 4837 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4838 { 4839 to->secmark = from->secmark; 4840 } 4841 4842 static inline void skb_init_secmark(struct sk_buff *skb) 4843 { 4844 skb->secmark = 0; 4845 } 4846 #else 4847 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4848 { } 4849 4850 static inline void skb_init_secmark(struct sk_buff *skb) 4851 { } 4852 #endif 4853 4854 static inline int secpath_exists(const struct sk_buff *skb) 4855 { 4856 #ifdef CONFIG_XFRM 4857 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4858 #else 4859 return 0; 4860 #endif 4861 } 4862 4863 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4864 { 4865 return !skb->destructor && 4866 !secpath_exists(skb) && 4867 !skb_nfct(skb) && 4868 !skb->_skb_refdst && 4869 !skb_has_frag_list(skb); 4870 } 4871 4872 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4873 { 4874 skb->queue_mapping = queue_mapping; 4875 } 4876 4877 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4878 { 4879 return skb->queue_mapping; 4880 } 4881 4882 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4883 { 4884 to->queue_mapping = from->queue_mapping; 4885 } 4886 4887 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4888 { 4889 skb->queue_mapping = rx_queue + 1; 4890 } 4891 4892 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4893 { 4894 return skb->queue_mapping - 1; 4895 } 4896 4897 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4898 { 4899 return skb->queue_mapping != 0; 4900 } 4901 4902 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4903 { 4904 skb->dst_pending_confirm = val; 4905 } 4906 4907 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4908 { 4909 return skb->dst_pending_confirm != 0; 4910 } 4911 4912 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4913 { 4914 #ifdef CONFIG_XFRM 4915 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4916 #else 4917 return NULL; 4918 #endif 4919 } 4920 4921 static inline bool skb_is_gso(const struct sk_buff *skb) 4922 { 4923 return skb_shinfo(skb)->gso_size; 4924 } 4925 4926 /* Note: Should be called only if skb_is_gso(skb) is true */ 4927 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4928 { 4929 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4930 } 4931 4932 /* Note: Should be called only if skb_is_gso(skb) is true */ 4933 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4934 { 4935 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4936 } 4937 4938 /* Note: Should be called only if skb_is_gso(skb) is true */ 4939 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4940 { 4941 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4942 } 4943 4944 static inline void skb_gso_reset(struct sk_buff *skb) 4945 { 4946 skb_shinfo(skb)->gso_size = 0; 4947 skb_shinfo(skb)->gso_segs = 0; 4948 skb_shinfo(skb)->gso_type = 0; 4949 } 4950 4951 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4952 u16 increment) 4953 { 4954 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4955 return; 4956 shinfo->gso_size += increment; 4957 } 4958 4959 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4960 u16 decrement) 4961 { 4962 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4963 return; 4964 shinfo->gso_size -= decrement; 4965 } 4966 4967 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4968 4969 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4970 { 4971 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4972 * wanted then gso_type will be set. */ 4973 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4974 4975 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4976 unlikely(shinfo->gso_type == 0)) { 4977 __skb_warn_lro_forwarding(skb); 4978 return true; 4979 } 4980 return false; 4981 } 4982 4983 static inline void skb_forward_csum(struct sk_buff *skb) 4984 { 4985 /* Unfortunately we don't support this one. Any brave souls? */ 4986 if (skb->ip_summed == CHECKSUM_COMPLETE) 4987 skb->ip_summed = CHECKSUM_NONE; 4988 } 4989 4990 /** 4991 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4992 * @skb: skb to check 4993 * 4994 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4995 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4996 * use this helper, to document places where we make this assertion. 4997 */ 4998 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4999 { 5000 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 5001 } 5002 5003 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 5004 5005 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 5006 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5007 unsigned int transport_len, 5008 __sum16(*skb_chkf)(struct sk_buff *skb)); 5009 5010 /** 5011 * skb_head_is_locked - Determine if the skb->head is locked down 5012 * @skb: skb to check 5013 * 5014 * The head on skbs build around a head frag can be removed if they are 5015 * not cloned. This function returns true if the skb head is locked down 5016 * due to either being allocated via kmalloc, or by being a clone with 5017 * multiple references to the head. 5018 */ 5019 static inline bool skb_head_is_locked(const struct sk_buff *skb) 5020 { 5021 return !skb->head_frag || skb_cloned(skb); 5022 } 5023 5024 /* Local Checksum Offload. 5025 * Compute outer checksum based on the assumption that the 5026 * inner checksum will be offloaded later. 5027 * See Documentation/networking/checksum-offloads.rst for 5028 * explanation of how this works. 5029 * Fill in outer checksum adjustment (e.g. with sum of outer 5030 * pseudo-header) before calling. 5031 * Also ensure that inner checksum is in linear data area. 5032 */ 5033 static inline __wsum lco_csum(struct sk_buff *skb) 5034 { 5035 unsigned char *csum_start = skb_checksum_start(skb); 5036 unsigned char *l4_hdr = skb_transport_header(skb); 5037 __wsum partial; 5038 5039 /* Start with complement of inner checksum adjustment */ 5040 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5041 skb->csum_offset)); 5042 5043 /* Add in checksum of our headers (incl. outer checksum 5044 * adjustment filled in by caller) and return result. 5045 */ 5046 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5047 } 5048 5049 static inline bool skb_is_redirected(const struct sk_buff *skb) 5050 { 5051 return skb->redirected; 5052 } 5053 5054 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5055 { 5056 skb->redirected = 1; 5057 #ifdef CONFIG_NET_REDIRECT 5058 skb->from_ingress = from_ingress; 5059 if (skb->from_ingress) 5060 skb_clear_tstamp(skb); 5061 #endif 5062 } 5063 5064 static inline void skb_reset_redirect(struct sk_buff *skb) 5065 { 5066 skb->redirected = 0; 5067 } 5068 5069 static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5070 bool from_ingress) 5071 { 5072 skb->redirected = 1; 5073 #ifdef CONFIG_NET_REDIRECT 5074 skb->from_ingress = from_ingress; 5075 #endif 5076 } 5077 5078 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5079 { 5080 #if IS_ENABLED(CONFIG_IP_SCTP) 5081 return skb->csum_not_inet; 5082 #else 5083 return 0; 5084 #endif 5085 } 5086 5087 static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5088 { 5089 skb->ip_summed = CHECKSUM_NONE; 5090 #if IS_ENABLED(CONFIG_IP_SCTP) 5091 skb->csum_not_inet = 0; 5092 #endif 5093 } 5094 5095 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5096 const u64 kcov_handle) 5097 { 5098 #ifdef CONFIG_KCOV 5099 skb->kcov_handle = kcov_handle; 5100 #endif 5101 } 5102 5103 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5104 { 5105 #ifdef CONFIG_KCOV 5106 return skb->kcov_handle; 5107 #else 5108 return 0; 5109 #endif 5110 } 5111 5112 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5113 { 5114 #ifdef CONFIG_PAGE_POOL 5115 skb->pp_recycle = 1; 5116 #endif 5117 } 5118 5119 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5120 ssize_t maxsize, gfp_t gfp); 5121 5122 #endif /* __KERNEL__ */ 5123 #endif /* _LINUX_SKBUFF_H */ 5124