xref: /linux-6.15/include/linux/skbuff.h (revision eb4e7726)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <[email protected]>
7  *		Florian La Roche, <[email protected]>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <net/netmem.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
357  * segment using its current segmentation instead.
358  */
359 #define GSO_BY_FRAGS	0xFFFF
360 
361 typedef struct skb_frag {
362 	netmem_ref netmem;
363 	unsigned int len;
364 	unsigned int offset;
365 } skb_frag_t;
366 
367 /**
368  * skb_frag_size() - Returns the size of a skb fragment
369  * @frag: skb fragment
370  */
371 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
372 {
373 	return frag->len;
374 }
375 
376 /**
377  * skb_frag_size_set() - Sets the size of a skb fragment
378  * @frag: skb fragment
379  * @size: size of fragment
380  */
381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
382 {
383 	frag->len = size;
384 }
385 
386 /**
387  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
388  * @frag: skb fragment
389  * @delta: value to add
390  */
391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
392 {
393 	frag->len += delta;
394 }
395 
396 /**
397  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
398  * @frag: skb fragment
399  * @delta: value to subtract
400  */
401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
402 {
403 	frag->len -= delta;
404 }
405 
406 /**
407  * skb_frag_must_loop - Test if %p is a high memory page
408  * @p: fragment's page
409  */
410 static inline bool skb_frag_must_loop(struct page *p)
411 {
412 #if defined(CONFIG_HIGHMEM)
413 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
414 		return true;
415 #endif
416 	return false;
417 }
418 
419 /**
420  *	skb_frag_foreach_page - loop over pages in a fragment
421  *
422  *	@f:		skb frag to operate on
423  *	@f_off:		offset from start of f->netmem
424  *	@f_len:		length from f_off to loop over
425  *	@p:		(temp var) current page
426  *	@p_off:		(temp var) offset from start of current page,
427  *	                           non-zero only on first page.
428  *	@p_len:		(temp var) length in current page,
429  *				   < PAGE_SIZE only on first and last page.
430  *	@copied:	(temp var) length so far, excluding current p_len.
431  *
432  *	A fragment can hold a compound page, in which case per-page
433  *	operations, notably kmap_atomic, must be called for each
434  *	regular page.
435  */
436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
437 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
438 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
439 	     p_len = skb_frag_must_loop(p) ?				\
440 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
441 	     copied = 0;						\
442 	     copied < f_len;						\
443 	     copied += p_len, p++, p_off = 0,				\
444 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
445 
446 /**
447  * struct skb_shared_hwtstamps - hardware time stamps
448  * @hwtstamp:		hardware time stamp transformed into duration
449  *			since arbitrary point in time
450  * @netdev_data:	address/cookie of network device driver used as
451  *			reference to actual hardware time stamp
452  *
453  * Software time stamps generated by ktime_get_real() are stored in
454  * skb->tstamp.
455  *
456  * hwtstamps can only be compared against other hwtstamps from
457  * the same device.
458  *
459  * This structure is attached to packets as part of the
460  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
461  */
462 struct skb_shared_hwtstamps {
463 	union {
464 		ktime_t	hwtstamp;
465 		void *netdev_data;
466 	};
467 };
468 
469 /* Definitions for tx_flags in struct skb_shared_info */
470 enum {
471 	/* generate hardware time stamp */
472 	SKBTX_HW_TSTAMP = 1 << 0,
473 
474 	/* generate software time stamp when queueing packet to NIC */
475 	SKBTX_SW_TSTAMP = 1 << 1,
476 
477 	/* device driver is going to provide hardware time stamp */
478 	SKBTX_IN_PROGRESS = 1 << 2,
479 
480 	/* generate hardware time stamp based on cycles if supported */
481 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
482 
483 	/* generate wifi status information (where possible) */
484 	SKBTX_WIFI_STATUS = 1 << 4,
485 
486 	/* determine hardware time stamp based on time or cycles */
487 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
488 
489 	/* generate software time stamp when entering packet scheduling */
490 	SKBTX_SCHED_TSTAMP = 1 << 6,
491 };
492 
493 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
494 				 SKBTX_SCHED_TSTAMP)
495 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
496 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
497 				 SKBTX_ANY_SW_TSTAMP)
498 
499 /* Definitions for flags in struct skb_shared_info */
500 enum {
501 	/* use zcopy routines */
502 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
503 
504 	/* This indicates at least one fragment might be overwritten
505 	 * (as in vmsplice(), sendfile() ...)
506 	 * If we need to compute a TX checksum, we'll need to copy
507 	 * all frags to avoid possible bad checksum
508 	 */
509 	SKBFL_SHARED_FRAG = BIT(1),
510 
511 	/* segment contains only zerocopy data and should not be
512 	 * charged to the kernel memory.
513 	 */
514 	SKBFL_PURE_ZEROCOPY = BIT(2),
515 
516 	SKBFL_DONT_ORPHAN = BIT(3),
517 
518 	/* page references are managed by the ubuf_info, so it's safe to
519 	 * use frags only up until ubuf_info is released
520 	 */
521 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
522 };
523 
524 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
525 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
526 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
527 
528 struct ubuf_info_ops {
529 	void (*complete)(struct sk_buff *, struct ubuf_info *,
530 			 bool zerocopy_success);
531 	/* has to be compatible with skb_zcopy_set() */
532 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
533 };
534 
535 /*
536  * The callback notifies userspace to release buffers when skb DMA is done in
537  * lower device, the skb last reference should be 0 when calling this.
538  * The zerocopy_success argument is true if zero copy transmit occurred,
539  * false on data copy or out of memory error caused by data copy attempt.
540  * The ctx field is used to track device context.
541  * The desc field is used to track userspace buffer index.
542  */
543 struct ubuf_info {
544 	const struct ubuf_info_ops *ops;
545 	refcount_t refcnt;
546 	u8 flags;
547 };
548 
549 struct ubuf_info_msgzc {
550 	struct ubuf_info ubuf;
551 
552 	union {
553 		struct {
554 			unsigned long desc;
555 			void *ctx;
556 		};
557 		struct {
558 			u32 id;
559 			u16 len;
560 			u16 zerocopy:1;
561 			u32 bytelen;
562 		};
563 	};
564 
565 	struct mmpin {
566 		struct user_struct *user;
567 		unsigned int num_pg;
568 	} mmp;
569 };
570 
571 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
572 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
573 					     ubuf)
574 
575 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
576 void mm_unaccount_pinned_pages(struct mmpin *mmp);
577 
578 /* Preserve some data across TX submission and completion.
579  *
580  * Note, this state is stored in the driver. Extending the layout
581  * might need some special care.
582  */
583 struct xsk_tx_metadata_compl {
584 	__u64 *tx_timestamp;
585 };
586 
587 /* This data is invariant across clones and lives at
588  * the end of the header data, ie. at skb->end.
589  */
590 struct skb_shared_info {
591 	__u8		flags;
592 	__u8		meta_len;
593 	__u8		nr_frags;
594 	__u8		tx_flags;
595 	unsigned short	gso_size;
596 	/* Warning: this field is not always filled in (UFO)! */
597 	unsigned short	gso_segs;
598 	struct sk_buff	*frag_list;
599 	union {
600 		struct skb_shared_hwtstamps hwtstamps;
601 		struct xsk_tx_metadata_compl xsk_meta;
602 	};
603 	unsigned int	gso_type;
604 	u32		tskey;
605 
606 	/*
607 	 * Warning : all fields before dataref are cleared in __alloc_skb()
608 	 */
609 	atomic_t	dataref;
610 	unsigned int	xdp_frags_size;
611 
612 	/* Intermediate layers must ensure that destructor_arg
613 	 * remains valid until skb destructor */
614 	void *		destructor_arg;
615 
616 	/* must be last field, see pskb_expand_head() */
617 	skb_frag_t	frags[MAX_SKB_FRAGS];
618 };
619 
620 /**
621  * DOC: dataref and headerless skbs
622  *
623  * Transport layers send out clones of payload skbs they hold for
624  * retransmissions. To allow lower layers of the stack to prepend their headers
625  * we split &skb_shared_info.dataref into two halves.
626  * The lower 16 bits count the overall number of references.
627  * The higher 16 bits indicate how many of the references are payload-only.
628  * skb_header_cloned() checks if skb is allowed to add / write the headers.
629  *
630  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
631  * (via __skb_header_release()). Any clone created from marked skb will get
632  * &sk_buff.hdr_len populated with the available headroom.
633  * If there's the only clone in existence it's able to modify the headroom
634  * at will. The sequence of calls inside the transport layer is::
635  *
636  *  <alloc skb>
637  *  skb_reserve()
638  *  __skb_header_release()
639  *  skb_clone()
640  *  // send the clone down the stack
641  *
642  * This is not a very generic construct and it depends on the transport layers
643  * doing the right thing. In practice there's usually only one payload-only skb.
644  * Having multiple payload-only skbs with different lengths of hdr_len is not
645  * possible. The payload-only skbs should never leave their owner.
646  */
647 #define SKB_DATAREF_SHIFT 16
648 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
649 
650 
651 enum {
652 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
653 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
654 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
655 };
656 
657 enum {
658 	SKB_GSO_TCPV4 = 1 << 0,
659 
660 	/* This indicates the skb is from an untrusted source. */
661 	SKB_GSO_DODGY = 1 << 1,
662 
663 	/* This indicates the tcp segment has CWR set. */
664 	SKB_GSO_TCP_ECN = 1 << 2,
665 
666 	SKB_GSO_TCP_FIXEDID = 1 << 3,
667 
668 	SKB_GSO_TCPV6 = 1 << 4,
669 
670 	SKB_GSO_FCOE = 1 << 5,
671 
672 	SKB_GSO_GRE = 1 << 6,
673 
674 	SKB_GSO_GRE_CSUM = 1 << 7,
675 
676 	SKB_GSO_IPXIP4 = 1 << 8,
677 
678 	SKB_GSO_IPXIP6 = 1 << 9,
679 
680 	SKB_GSO_UDP_TUNNEL = 1 << 10,
681 
682 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
683 
684 	SKB_GSO_PARTIAL = 1 << 12,
685 
686 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
687 
688 	SKB_GSO_SCTP = 1 << 14,
689 
690 	SKB_GSO_ESP = 1 << 15,
691 
692 	SKB_GSO_UDP = 1 << 16,
693 
694 	SKB_GSO_UDP_L4 = 1 << 17,
695 
696 	SKB_GSO_FRAGLIST = 1 << 18,
697 };
698 
699 #if BITS_PER_LONG > 32
700 #define NET_SKBUFF_DATA_USES_OFFSET 1
701 #endif
702 
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 typedef unsigned int sk_buff_data_t;
705 #else
706 typedef unsigned char *sk_buff_data_t;
707 #endif
708 
709 enum skb_tstamp_type {
710 	SKB_CLOCK_REALTIME,
711 	SKB_CLOCK_MONOTONIC,
712 	SKB_CLOCK_TAI,
713 	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
714 };
715 
716 /**
717  * DOC: Basic sk_buff geometry
718  *
719  * struct sk_buff itself is a metadata structure and does not hold any packet
720  * data. All the data is held in associated buffers.
721  *
722  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
723  * into two parts:
724  *
725  *  - data buffer, containing headers and sometimes payload;
726  *    this is the part of the skb operated on by the common helpers
727  *    such as skb_put() or skb_pull();
728  *  - shared info (struct skb_shared_info) which holds an array of pointers
729  *    to read-only data in the (page, offset, length) format.
730  *
731  * Optionally &skb_shared_info.frag_list may point to another skb.
732  *
733  * Basic diagram may look like this::
734  *
735  *                                  ---------------
736  *                                 | sk_buff       |
737  *                                  ---------------
738  *     ,---------------------------  + head
739  *    /          ,-----------------  + data
740  *   /          /      ,-----------  + tail
741  *  |          |      |            , + end
742  *  |          |      |           |
743  *  v          v      v           v
744  *   -----------------------------------------------
745  *  | headroom | data |  tailroom | skb_shared_info |
746  *   -----------------------------------------------
747  *                                 + [page frag]
748  *                                 + [page frag]
749  *                                 + [page frag]
750  *                                 + [page frag]       ---------
751  *                                 + frag_list    --> | sk_buff |
752  *                                                     ---------
753  *
754  */
755 
756 /**
757  *	struct sk_buff - socket buffer
758  *	@next: Next buffer in list
759  *	@prev: Previous buffer in list
760  *	@tstamp: Time we arrived/left
761  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
762  *		for retransmit timer
763  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
764  *	@list: queue head
765  *	@ll_node: anchor in an llist (eg socket defer_list)
766  *	@sk: Socket we are owned by
767  *	@dev: Device we arrived on/are leaving by
768  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
769  *	@cb: Control buffer. Free for use by every layer. Put private vars here
770  *	@_skb_refdst: destination entry (with norefcount bit)
771  *	@len: Length of actual data
772  *	@data_len: Data length
773  *	@mac_len: Length of link layer header
774  *	@hdr_len: writable header length of cloned skb
775  *	@csum: Checksum (must include start/offset pair)
776  *	@csum_start: Offset from skb->head where checksumming should start
777  *	@csum_offset: Offset from csum_start where checksum should be stored
778  *	@priority: Packet queueing priority
779  *	@ignore_df: allow local fragmentation
780  *	@cloned: Head may be cloned (check refcnt to be sure)
781  *	@ip_summed: Driver fed us an IP checksum
782  *	@nohdr: Payload reference only, must not modify header
783  *	@pkt_type: Packet class
784  *	@fclone: skbuff clone status
785  *	@ipvs_property: skbuff is owned by ipvs
786  *	@inner_protocol_type: whether the inner protocol is
787  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
788  *	@remcsum_offload: remote checksum offload is enabled
789  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
790  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
791  *	@tc_skip_classify: do not classify packet. set by IFB device
792  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
793  *	@redirected: packet was redirected by packet classifier
794  *	@from_ingress: packet was redirected from the ingress path
795  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
796  *	@peeked: this packet has been seen already, so stats have been
797  *		done for it, don't do them again
798  *	@nf_trace: netfilter packet trace flag
799  *	@protocol: Packet protocol from driver
800  *	@destructor: Destruct function
801  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
802  *	@_sk_redir: socket redirection information for skmsg
803  *	@_nfct: Associated connection, if any (with nfctinfo bits)
804  *	@skb_iif: ifindex of device we arrived on
805  *	@tc_index: Traffic control index
806  *	@hash: the packet hash
807  *	@queue_mapping: Queue mapping for multiqueue devices
808  *	@head_frag: skb was allocated from page fragments,
809  *		not allocated by kmalloc() or vmalloc().
810  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
811  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
812  *		page_pool support on driver)
813  *	@active_extensions: active extensions (skb_ext_id types)
814  *	@ndisc_nodetype: router type (from link layer)
815  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
816  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
817  *		ports.
818  *	@sw_hash: indicates hash was computed in software stack
819  *	@wifi_acked_valid: wifi_acked was set
820  *	@wifi_acked: whether frame was acked on wifi or not
821  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
822  *	@encapsulation: indicates the inner headers in the skbuff are valid
823  *	@encap_hdr_csum: software checksum is needed
824  *	@csum_valid: checksum is already valid
825  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
826  *	@csum_complete_sw: checksum was completed by software
827  *	@csum_level: indicates the number of consecutive checksums found in
828  *		the packet minus one that have been verified as
829  *		CHECKSUM_UNNECESSARY (max 3)
830  *	@dst_pending_confirm: need to confirm neighbour
831  *	@decrypted: Decrypted SKB
832  *	@slow_gro: state present at GRO time, slower prepare step required
833  *	@tstamp_type: When set, skb->tstamp has the
834  *		delivery_time clock base of skb->tstamp.
835  *	@napi_id: id of the NAPI struct this skb came from
836  *	@sender_cpu: (aka @napi_id) source CPU in XPS
837  *	@alloc_cpu: CPU which did the skb allocation.
838  *	@secmark: security marking
839  *	@mark: Generic packet mark
840  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
841  *		at the tail of an sk_buff
842  *	@vlan_all: vlan fields (proto & tci)
843  *	@vlan_proto: vlan encapsulation protocol
844  *	@vlan_tci: vlan tag control information
845  *	@inner_protocol: Protocol (encapsulation)
846  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
847  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
848  *	@inner_transport_header: Inner transport layer header (encapsulation)
849  *	@inner_network_header: Network layer header (encapsulation)
850  *	@inner_mac_header: Link layer header (encapsulation)
851  *	@transport_header: Transport layer header
852  *	@network_header: Network layer header
853  *	@mac_header: Link layer header
854  *	@kcov_handle: KCOV remote handle for remote coverage collection
855  *	@tail: Tail pointer
856  *	@end: End pointer
857  *	@head: Head of buffer
858  *	@data: Data head pointer
859  *	@truesize: Buffer size
860  *	@users: User count - see {datagram,tcp}.c
861  *	@extensions: allocated extensions, valid if active_extensions is nonzero
862  */
863 
864 struct sk_buff {
865 	union {
866 		struct {
867 			/* These two members must be first to match sk_buff_head. */
868 			struct sk_buff		*next;
869 			struct sk_buff		*prev;
870 
871 			union {
872 				struct net_device	*dev;
873 				/* Some protocols might use this space to store information,
874 				 * while device pointer would be NULL.
875 				 * UDP receive path is one user.
876 				 */
877 				unsigned long		dev_scratch;
878 			};
879 		};
880 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
881 		struct list_head	list;
882 		struct llist_node	ll_node;
883 	};
884 
885 	struct sock		*sk;
886 
887 	union {
888 		ktime_t		tstamp;
889 		u64		skb_mstamp_ns; /* earliest departure time */
890 	};
891 	/*
892 	 * This is the control buffer. It is free to use for every
893 	 * layer. Please put your private variables there. If you
894 	 * want to keep them across layers you have to do a skb_clone()
895 	 * first. This is owned by whoever has the skb queued ATM.
896 	 */
897 	char			cb[48] __aligned(8);
898 
899 	union {
900 		struct {
901 			unsigned long	_skb_refdst;
902 			void		(*destructor)(struct sk_buff *skb);
903 		};
904 		struct list_head	tcp_tsorted_anchor;
905 #ifdef CONFIG_NET_SOCK_MSG
906 		unsigned long		_sk_redir;
907 #endif
908 	};
909 
910 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
911 	unsigned long		 _nfct;
912 #endif
913 	unsigned int		len,
914 				data_len;
915 	__u16			mac_len,
916 				hdr_len;
917 
918 	/* Following fields are _not_ copied in __copy_skb_header()
919 	 * Note that queue_mapping is here mostly to fill a hole.
920 	 */
921 	__u16			queue_mapping;
922 
923 /* if you move cloned around you also must adapt those constants */
924 #ifdef __BIG_ENDIAN_BITFIELD
925 #define CLONED_MASK	(1 << 7)
926 #else
927 #define CLONED_MASK	1
928 #endif
929 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
930 
931 	/* private: */
932 	__u8			__cloned_offset[0];
933 	/* public: */
934 	__u8			cloned:1,
935 				nohdr:1,
936 				fclone:2,
937 				peeked:1,
938 				head_frag:1,
939 				pfmemalloc:1,
940 				pp_recycle:1; /* page_pool recycle indicator */
941 #ifdef CONFIG_SKB_EXTENSIONS
942 	__u8			active_extensions;
943 #endif
944 
945 	/* Fields enclosed in headers group are copied
946 	 * using a single memcpy() in __copy_skb_header()
947 	 */
948 	struct_group(headers,
949 
950 	/* private: */
951 	__u8			__pkt_type_offset[0];
952 	/* public: */
953 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
954 	__u8			ignore_df:1;
955 	__u8			dst_pending_confirm:1;
956 	__u8			ip_summed:2;
957 	__u8			ooo_okay:1;
958 
959 	/* private: */
960 	__u8			__mono_tc_offset[0];
961 	/* public: */
962 	__u8			tstamp_type:2;	/* See skb_tstamp_type */
963 #ifdef CONFIG_NET_XGRESS
964 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
965 	__u8			tc_skip_classify:1;
966 #endif
967 	__u8			remcsum_offload:1;
968 	__u8			csum_complete_sw:1;
969 	__u8			csum_level:2;
970 	__u8			inner_protocol_type:1;
971 
972 	__u8			l4_hash:1;
973 	__u8			sw_hash:1;
974 #ifdef CONFIG_WIRELESS
975 	__u8			wifi_acked_valid:1;
976 	__u8			wifi_acked:1;
977 #endif
978 	__u8			no_fcs:1;
979 	/* Indicates the inner headers are valid in the skbuff. */
980 	__u8			encapsulation:1;
981 	__u8			encap_hdr_csum:1;
982 	__u8			csum_valid:1;
983 #ifdef CONFIG_IPV6_NDISC_NODETYPE
984 	__u8			ndisc_nodetype:2;
985 #endif
986 
987 #if IS_ENABLED(CONFIG_IP_VS)
988 	__u8			ipvs_property:1;
989 #endif
990 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
991 	__u8			nf_trace:1;
992 #endif
993 #ifdef CONFIG_NET_SWITCHDEV
994 	__u8			offload_fwd_mark:1;
995 	__u8			offload_l3_fwd_mark:1;
996 #endif
997 	__u8			redirected:1;
998 #ifdef CONFIG_NET_REDIRECT
999 	__u8			from_ingress:1;
1000 #endif
1001 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1002 	__u8			nf_skip_egress:1;
1003 #endif
1004 #ifdef CONFIG_SKB_DECRYPTED
1005 	__u8			decrypted:1;
1006 #endif
1007 	__u8			slow_gro:1;
1008 #if IS_ENABLED(CONFIG_IP_SCTP)
1009 	__u8			csum_not_inet:1;
1010 #endif
1011 
1012 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1013 	__u16			tc_index;	/* traffic control index */
1014 #endif
1015 
1016 	u16			alloc_cpu;
1017 
1018 	union {
1019 		__wsum		csum;
1020 		struct {
1021 			__u16	csum_start;
1022 			__u16	csum_offset;
1023 		};
1024 	};
1025 	__u32			priority;
1026 	int			skb_iif;
1027 	__u32			hash;
1028 	union {
1029 		u32		vlan_all;
1030 		struct {
1031 			__be16	vlan_proto;
1032 			__u16	vlan_tci;
1033 		};
1034 	};
1035 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1036 	union {
1037 		unsigned int	napi_id;
1038 		unsigned int	sender_cpu;
1039 	};
1040 #endif
1041 #ifdef CONFIG_NETWORK_SECMARK
1042 	__u32		secmark;
1043 #endif
1044 
1045 	union {
1046 		__u32		mark;
1047 		__u32		reserved_tailroom;
1048 	};
1049 
1050 	union {
1051 		__be16		inner_protocol;
1052 		__u8		inner_ipproto;
1053 	};
1054 
1055 	__u16			inner_transport_header;
1056 	__u16			inner_network_header;
1057 	__u16			inner_mac_header;
1058 
1059 	__be16			protocol;
1060 	__u16			transport_header;
1061 	__u16			network_header;
1062 	__u16			mac_header;
1063 
1064 #ifdef CONFIG_KCOV
1065 	u64			kcov_handle;
1066 #endif
1067 
1068 	); /* end headers group */
1069 
1070 	/* These elements must be at the end, see alloc_skb() for details.  */
1071 	sk_buff_data_t		tail;
1072 	sk_buff_data_t		end;
1073 	unsigned char		*head,
1074 				*data;
1075 	unsigned int		truesize;
1076 	refcount_t		users;
1077 
1078 #ifdef CONFIG_SKB_EXTENSIONS
1079 	/* only usable after checking ->active_extensions != 0 */
1080 	struct skb_ext		*extensions;
1081 #endif
1082 };
1083 
1084 /* if you move pkt_type around you also must adapt those constants */
1085 #ifdef __BIG_ENDIAN_BITFIELD
1086 #define PKT_TYPE_MAX	(7 << 5)
1087 #else
1088 #define PKT_TYPE_MAX	7
1089 #endif
1090 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1091 
1092 /* if you move tc_at_ingress or tstamp_type
1093  * around, you also must adapt these constants.
1094  */
1095 #ifdef __BIG_ENDIAN_BITFIELD
1096 #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1097 #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1098 #define TC_AT_INGRESS_MASK		(1 << 5)
1099 #else
1100 #define SKB_TSTAMP_TYPE_MASK		(3)
1101 #define TC_AT_INGRESS_MASK		(1 << 2)
1102 #endif
1103 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1104 
1105 #ifdef __KERNEL__
1106 /*
1107  *	Handling routines are only of interest to the kernel
1108  */
1109 
1110 #define SKB_ALLOC_FCLONE	0x01
1111 #define SKB_ALLOC_RX		0x02
1112 #define SKB_ALLOC_NAPI		0x04
1113 
1114 /**
1115  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1116  * @skb: buffer
1117  */
1118 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1119 {
1120 	return unlikely(skb->pfmemalloc);
1121 }
1122 
1123 /*
1124  * skb might have a dst pointer attached, refcounted or not.
1125  * _skb_refdst low order bit is set if refcount was _not_ taken
1126  */
1127 #define SKB_DST_NOREF	1UL
1128 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1129 
1130 /**
1131  * skb_dst - returns skb dst_entry
1132  * @skb: buffer
1133  *
1134  * Returns skb dst_entry, regardless of reference taken or not.
1135  */
1136 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1137 {
1138 	/* If refdst was not refcounted, check we still are in a
1139 	 * rcu_read_lock section
1140 	 */
1141 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1142 		!rcu_read_lock_held() &&
1143 		!rcu_read_lock_bh_held());
1144 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1145 }
1146 
1147 /**
1148  * skb_dst_set - sets skb dst
1149  * @skb: buffer
1150  * @dst: dst entry
1151  *
1152  * Sets skb dst, assuming a reference was taken on dst and should
1153  * be released by skb_dst_drop()
1154  */
1155 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1156 {
1157 	skb->slow_gro |= !!dst;
1158 	skb->_skb_refdst = (unsigned long)dst;
1159 }
1160 
1161 /**
1162  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1163  * @skb: buffer
1164  * @dst: dst entry
1165  *
1166  * Sets skb dst, assuming a reference was not taken on dst.
1167  * If dst entry is cached, we do not take reference and dst_release
1168  * will be avoided by refdst_drop. If dst entry is not cached, we take
1169  * reference, so that last dst_release can destroy the dst immediately.
1170  */
1171 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1172 {
1173 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1174 	skb->slow_gro |= !!dst;
1175 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1176 }
1177 
1178 /**
1179  * skb_dst_is_noref - Test if skb dst isn't refcounted
1180  * @skb: buffer
1181  */
1182 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1183 {
1184 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1185 }
1186 
1187 /* For mangling skb->pkt_type from user space side from applications
1188  * such as nft, tc, etc, we only allow a conservative subset of
1189  * possible pkt_types to be set.
1190 */
1191 static inline bool skb_pkt_type_ok(u32 ptype)
1192 {
1193 	return ptype <= PACKET_OTHERHOST;
1194 }
1195 
1196 /**
1197  * skb_napi_id - Returns the skb's NAPI id
1198  * @skb: buffer
1199  */
1200 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1201 {
1202 #ifdef CONFIG_NET_RX_BUSY_POLL
1203 	return skb->napi_id;
1204 #else
1205 	return 0;
1206 #endif
1207 }
1208 
1209 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1210 {
1211 #ifdef CONFIG_WIRELESS
1212 	return skb->wifi_acked_valid;
1213 #else
1214 	return 0;
1215 #endif
1216 }
1217 
1218 /**
1219  * skb_unref - decrement the skb's reference count
1220  * @skb: buffer
1221  *
1222  * Returns true if we can free the skb.
1223  */
1224 static inline bool skb_unref(struct sk_buff *skb)
1225 {
1226 	if (unlikely(!skb))
1227 		return false;
1228 	if (likely(refcount_read(&skb->users) == 1))
1229 		smp_rmb();
1230 	else if (likely(!refcount_dec_and_test(&skb->users)))
1231 		return false;
1232 
1233 	return true;
1234 }
1235 
1236 static inline bool skb_data_unref(const struct sk_buff *skb,
1237 				  struct skb_shared_info *shinfo)
1238 {
1239 	int bias;
1240 
1241 	if (!skb->cloned)
1242 		return true;
1243 
1244 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1245 
1246 	if (atomic_read(&shinfo->dataref) == bias)
1247 		smp_rmb();
1248 	else if (atomic_sub_return(bias, &shinfo->dataref))
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 void __fix_address
1255 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1256 
1257 /**
1258  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1259  *	@skb: buffer to free
1260  */
1261 static inline void kfree_skb(struct sk_buff *skb)
1262 {
1263 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1264 }
1265 
1266 void skb_release_head_state(struct sk_buff *skb);
1267 void kfree_skb_list_reason(struct sk_buff *segs,
1268 			   enum skb_drop_reason reason);
1269 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1270 void skb_tx_error(struct sk_buff *skb);
1271 
1272 static inline void kfree_skb_list(struct sk_buff *segs)
1273 {
1274 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1275 }
1276 
1277 #ifdef CONFIG_TRACEPOINTS
1278 void consume_skb(struct sk_buff *skb);
1279 #else
1280 static inline void consume_skb(struct sk_buff *skb)
1281 {
1282 	return kfree_skb(skb);
1283 }
1284 #endif
1285 
1286 void __consume_stateless_skb(struct sk_buff *skb);
1287 void  __kfree_skb(struct sk_buff *skb);
1288 
1289 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1290 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1291 		      bool *fragstolen, int *delta_truesize);
1292 
1293 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1294 			    int node);
1295 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1296 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1297 struct sk_buff *build_skb_around(struct sk_buff *skb,
1298 				 void *data, unsigned int frag_size);
1299 void skb_attempt_defer_free(struct sk_buff *skb);
1300 
1301 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1302 struct sk_buff *slab_build_skb(void *data);
1303 
1304 /**
1305  * alloc_skb - allocate a network buffer
1306  * @size: size to allocate
1307  * @priority: allocation mask
1308  *
1309  * This function is a convenient wrapper around __alloc_skb().
1310  */
1311 static inline struct sk_buff *alloc_skb(unsigned int size,
1312 					gfp_t priority)
1313 {
1314 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1315 }
1316 
1317 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1318 				     unsigned long data_len,
1319 				     int max_page_order,
1320 				     int *errcode,
1321 				     gfp_t gfp_mask);
1322 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1323 
1324 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1325 struct sk_buff_fclones {
1326 	struct sk_buff	skb1;
1327 
1328 	struct sk_buff	skb2;
1329 
1330 	refcount_t	fclone_ref;
1331 };
1332 
1333 /**
1334  *	skb_fclone_busy - check if fclone is busy
1335  *	@sk: socket
1336  *	@skb: buffer
1337  *
1338  * Returns true if skb is a fast clone, and its clone is not freed.
1339  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1340  * so we also check that didn't happen.
1341  */
1342 static inline bool skb_fclone_busy(const struct sock *sk,
1343 				   const struct sk_buff *skb)
1344 {
1345 	const struct sk_buff_fclones *fclones;
1346 
1347 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1348 
1349 	return skb->fclone == SKB_FCLONE_ORIG &&
1350 	       refcount_read(&fclones->fclone_ref) > 1 &&
1351 	       READ_ONCE(fclones->skb2.sk) == sk;
1352 }
1353 
1354 /**
1355  * alloc_skb_fclone - allocate a network buffer from fclone cache
1356  * @size: size to allocate
1357  * @priority: allocation mask
1358  *
1359  * This function is a convenient wrapper around __alloc_skb().
1360  */
1361 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1362 					       gfp_t priority)
1363 {
1364 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1365 }
1366 
1367 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1368 void skb_headers_offset_update(struct sk_buff *skb, int off);
1369 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1370 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1371 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1372 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1373 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1374 				   gfp_t gfp_mask, bool fclone);
1375 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1376 					  gfp_t gfp_mask)
1377 {
1378 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1379 }
1380 
1381 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1382 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1383 				     unsigned int headroom);
1384 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1385 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1386 				int newtailroom, gfp_t priority);
1387 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1388 				     int offset, int len);
1389 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1390 			      int offset, int len);
1391 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1392 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1393 
1394 /**
1395  *	skb_pad			-	zero pad the tail of an skb
1396  *	@skb: buffer to pad
1397  *	@pad: space to pad
1398  *
1399  *	Ensure that a buffer is followed by a padding area that is zero
1400  *	filled. Used by network drivers which may DMA or transfer data
1401  *	beyond the buffer end onto the wire.
1402  *
1403  *	May return error in out of memory cases. The skb is freed on error.
1404  */
1405 static inline int skb_pad(struct sk_buff *skb, int pad)
1406 {
1407 	return __skb_pad(skb, pad, true);
1408 }
1409 #define dev_kfree_skb(a)	consume_skb(a)
1410 
1411 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1412 			 int offset, size_t size, size_t max_frags);
1413 
1414 struct skb_seq_state {
1415 	__u32		lower_offset;
1416 	__u32		upper_offset;
1417 	__u32		frag_idx;
1418 	__u32		stepped_offset;
1419 	struct sk_buff	*root_skb;
1420 	struct sk_buff	*cur_skb;
1421 	__u8		*frag_data;
1422 	__u32		frag_off;
1423 };
1424 
1425 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1426 			  unsigned int to, struct skb_seq_state *st);
1427 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1428 			  struct skb_seq_state *st);
1429 void skb_abort_seq_read(struct skb_seq_state *st);
1430 
1431 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1432 			   unsigned int to, struct ts_config *config);
1433 
1434 /*
1435  * Packet hash types specify the type of hash in skb_set_hash.
1436  *
1437  * Hash types refer to the protocol layer addresses which are used to
1438  * construct a packet's hash. The hashes are used to differentiate or identify
1439  * flows of the protocol layer for the hash type. Hash types are either
1440  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1441  *
1442  * Properties of hashes:
1443  *
1444  * 1) Two packets in different flows have different hash values
1445  * 2) Two packets in the same flow should have the same hash value
1446  *
1447  * A hash at a higher layer is considered to be more specific. A driver should
1448  * set the most specific hash possible.
1449  *
1450  * A driver cannot indicate a more specific hash than the layer at which a hash
1451  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1452  *
1453  * A driver may indicate a hash level which is less specific than the
1454  * actual layer the hash was computed on. For instance, a hash computed
1455  * at L4 may be considered an L3 hash. This should only be done if the
1456  * driver can't unambiguously determine that the HW computed the hash at
1457  * the higher layer. Note that the "should" in the second property above
1458  * permits this.
1459  */
1460 enum pkt_hash_types {
1461 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1462 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1463 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1464 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1465 };
1466 
1467 static inline void skb_clear_hash(struct sk_buff *skb)
1468 {
1469 	skb->hash = 0;
1470 	skb->sw_hash = 0;
1471 	skb->l4_hash = 0;
1472 }
1473 
1474 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1475 {
1476 	if (!skb->l4_hash)
1477 		skb_clear_hash(skb);
1478 }
1479 
1480 static inline void
1481 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1482 {
1483 	skb->l4_hash = is_l4;
1484 	skb->sw_hash = is_sw;
1485 	skb->hash = hash;
1486 }
1487 
1488 static inline void
1489 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1490 {
1491 	/* Used by drivers to set hash from HW */
1492 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1493 }
1494 
1495 static inline void
1496 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1497 {
1498 	__skb_set_hash(skb, hash, true, is_l4);
1499 }
1500 
1501 void __skb_get_hash(struct sk_buff *skb);
1502 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1503 u32 skb_get_poff(const struct sk_buff *skb);
1504 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1505 		   const struct flow_keys_basic *keys, int hlen);
1506 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1507 			    const void *data, int hlen_proto);
1508 
1509 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1510 					int thoff, u8 ip_proto)
1511 {
1512 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1513 }
1514 
1515 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1516 			     const struct flow_dissector_key *key,
1517 			     unsigned int key_count);
1518 
1519 struct bpf_flow_dissector;
1520 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1521 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1522 
1523 bool __skb_flow_dissect(const struct net *net,
1524 			const struct sk_buff *skb,
1525 			struct flow_dissector *flow_dissector,
1526 			void *target_container, const void *data,
1527 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1528 
1529 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1530 				    struct flow_dissector *flow_dissector,
1531 				    void *target_container, unsigned int flags)
1532 {
1533 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1534 				  target_container, NULL, 0, 0, 0, flags);
1535 }
1536 
1537 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1538 					      struct flow_keys *flow,
1539 					      unsigned int flags)
1540 {
1541 	memset(flow, 0, sizeof(*flow));
1542 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1543 				  flow, NULL, 0, 0, 0, flags);
1544 }
1545 
1546 static inline bool
1547 skb_flow_dissect_flow_keys_basic(const struct net *net,
1548 				 const struct sk_buff *skb,
1549 				 struct flow_keys_basic *flow,
1550 				 const void *data, __be16 proto,
1551 				 int nhoff, int hlen, unsigned int flags)
1552 {
1553 	memset(flow, 0, sizeof(*flow));
1554 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1555 				  data, proto, nhoff, hlen, flags);
1556 }
1557 
1558 void skb_flow_dissect_meta(const struct sk_buff *skb,
1559 			   struct flow_dissector *flow_dissector,
1560 			   void *target_container);
1561 
1562 /* Gets a skb connection tracking info, ctinfo map should be a
1563  * map of mapsize to translate enum ip_conntrack_info states
1564  * to user states.
1565  */
1566 void
1567 skb_flow_dissect_ct(const struct sk_buff *skb,
1568 		    struct flow_dissector *flow_dissector,
1569 		    void *target_container,
1570 		    u16 *ctinfo_map, size_t mapsize,
1571 		    bool post_ct, u16 zone);
1572 void
1573 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1574 			     struct flow_dissector *flow_dissector,
1575 			     void *target_container);
1576 
1577 void skb_flow_dissect_hash(const struct sk_buff *skb,
1578 			   struct flow_dissector *flow_dissector,
1579 			   void *target_container);
1580 
1581 static inline __u32 skb_get_hash(struct sk_buff *skb)
1582 {
1583 	if (!skb->l4_hash && !skb->sw_hash)
1584 		__skb_get_hash(skb);
1585 
1586 	return skb->hash;
1587 }
1588 
1589 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1590 {
1591 	if (!skb->l4_hash && !skb->sw_hash) {
1592 		struct flow_keys keys;
1593 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1594 
1595 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1596 	}
1597 
1598 	return skb->hash;
1599 }
1600 
1601 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1602 			   const siphash_key_t *perturb);
1603 
1604 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1605 {
1606 	return skb->hash;
1607 }
1608 
1609 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1610 {
1611 	to->hash = from->hash;
1612 	to->sw_hash = from->sw_hash;
1613 	to->l4_hash = from->l4_hash;
1614 };
1615 
1616 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1617 				    const struct sk_buff *skb2)
1618 {
1619 #ifdef CONFIG_SKB_DECRYPTED
1620 	return skb2->decrypted - skb1->decrypted;
1621 #else
1622 	return 0;
1623 #endif
1624 }
1625 
1626 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1627 {
1628 #ifdef CONFIG_SKB_DECRYPTED
1629 	return skb->decrypted;
1630 #else
1631 	return false;
1632 #endif
1633 }
1634 
1635 static inline void skb_copy_decrypted(struct sk_buff *to,
1636 				      const struct sk_buff *from)
1637 {
1638 #ifdef CONFIG_SKB_DECRYPTED
1639 	to->decrypted = from->decrypted;
1640 #endif
1641 }
1642 
1643 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1644 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1645 {
1646 	return skb->head + skb->end;
1647 }
1648 
1649 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1650 {
1651 	return skb->end;
1652 }
1653 
1654 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1655 {
1656 	skb->end = offset;
1657 }
1658 #else
1659 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1660 {
1661 	return skb->end;
1662 }
1663 
1664 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1665 {
1666 	return skb->end - skb->head;
1667 }
1668 
1669 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1670 {
1671 	skb->end = skb->head + offset;
1672 }
1673 #endif
1674 
1675 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1676 
1677 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1678 				       struct ubuf_info *uarg);
1679 
1680 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1681 
1682 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1683 			    struct sk_buff *skb, struct iov_iter *from,
1684 			    size_t length);
1685 
1686 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1687 					  struct msghdr *msg, int len)
1688 {
1689 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1690 }
1691 
1692 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1693 			     struct msghdr *msg, int len,
1694 			     struct ubuf_info *uarg);
1695 
1696 /* Internal */
1697 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1698 
1699 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1700 {
1701 	return &skb_shinfo(skb)->hwtstamps;
1702 }
1703 
1704 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1705 {
1706 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1707 
1708 	return is_zcopy ? skb_uarg(skb) : NULL;
1709 }
1710 
1711 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1712 {
1713 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1714 }
1715 
1716 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1717 {
1718 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1719 }
1720 
1721 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1722 				       const struct sk_buff *skb2)
1723 {
1724 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1725 }
1726 
1727 static inline void net_zcopy_get(struct ubuf_info *uarg)
1728 {
1729 	refcount_inc(&uarg->refcnt);
1730 }
1731 
1732 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1733 {
1734 	skb_shinfo(skb)->destructor_arg = uarg;
1735 	skb_shinfo(skb)->flags |= uarg->flags;
1736 }
1737 
1738 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1739 				 bool *have_ref)
1740 {
1741 	if (skb && uarg && !skb_zcopy(skb)) {
1742 		if (unlikely(have_ref && *have_ref))
1743 			*have_ref = false;
1744 		else
1745 			net_zcopy_get(uarg);
1746 		skb_zcopy_init(skb, uarg);
1747 	}
1748 }
1749 
1750 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1751 {
1752 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1753 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1754 }
1755 
1756 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1757 {
1758 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1759 }
1760 
1761 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1762 {
1763 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1764 }
1765 
1766 static inline void net_zcopy_put(struct ubuf_info *uarg)
1767 {
1768 	if (uarg)
1769 		uarg->ops->complete(NULL, uarg, true);
1770 }
1771 
1772 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1773 {
1774 	if (uarg) {
1775 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1776 			msg_zerocopy_put_abort(uarg, have_uref);
1777 		else if (have_uref)
1778 			net_zcopy_put(uarg);
1779 	}
1780 }
1781 
1782 /* Release a reference on a zerocopy structure */
1783 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1784 {
1785 	struct ubuf_info *uarg = skb_zcopy(skb);
1786 
1787 	if (uarg) {
1788 		if (!skb_zcopy_is_nouarg(skb))
1789 			uarg->ops->complete(skb, uarg, zerocopy_success);
1790 
1791 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1792 	}
1793 }
1794 
1795 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1796 
1797 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1798 {
1799 	if (unlikely(skb_zcopy_managed(skb)))
1800 		__skb_zcopy_downgrade_managed(skb);
1801 }
1802 
1803 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1804 {
1805 	skb->next = NULL;
1806 }
1807 
1808 static inline void skb_poison_list(struct sk_buff *skb)
1809 {
1810 #ifdef CONFIG_DEBUG_NET
1811 	skb->next = SKB_LIST_POISON_NEXT;
1812 #endif
1813 }
1814 
1815 /* Iterate through singly-linked GSO fragments of an skb. */
1816 #define skb_list_walk_safe(first, skb, next_skb)                               \
1817 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1818 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1819 
1820 static inline void skb_list_del_init(struct sk_buff *skb)
1821 {
1822 	__list_del_entry(&skb->list);
1823 	skb_mark_not_on_list(skb);
1824 }
1825 
1826 /**
1827  *	skb_queue_empty - check if a queue is empty
1828  *	@list: queue head
1829  *
1830  *	Returns true if the queue is empty, false otherwise.
1831  */
1832 static inline int skb_queue_empty(const struct sk_buff_head *list)
1833 {
1834 	return list->next == (const struct sk_buff *) list;
1835 }
1836 
1837 /**
1838  *	skb_queue_empty_lockless - check if a queue is empty
1839  *	@list: queue head
1840  *
1841  *	Returns true if the queue is empty, false otherwise.
1842  *	This variant can be used in lockless contexts.
1843  */
1844 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1845 {
1846 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1847 }
1848 
1849 
1850 /**
1851  *	skb_queue_is_last - check if skb is the last entry in the queue
1852  *	@list: queue head
1853  *	@skb: buffer
1854  *
1855  *	Returns true if @skb is the last buffer on the list.
1856  */
1857 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1858 				     const struct sk_buff *skb)
1859 {
1860 	return skb->next == (const struct sk_buff *) list;
1861 }
1862 
1863 /**
1864  *	skb_queue_is_first - check if skb is the first entry in the queue
1865  *	@list: queue head
1866  *	@skb: buffer
1867  *
1868  *	Returns true if @skb is the first buffer on the list.
1869  */
1870 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1871 				      const struct sk_buff *skb)
1872 {
1873 	return skb->prev == (const struct sk_buff *) list;
1874 }
1875 
1876 /**
1877  *	skb_queue_next - return the next packet in the queue
1878  *	@list: queue head
1879  *	@skb: current buffer
1880  *
1881  *	Return the next packet in @list after @skb.  It is only valid to
1882  *	call this if skb_queue_is_last() evaluates to false.
1883  */
1884 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1885 					     const struct sk_buff *skb)
1886 {
1887 	/* This BUG_ON may seem severe, but if we just return then we
1888 	 * are going to dereference garbage.
1889 	 */
1890 	BUG_ON(skb_queue_is_last(list, skb));
1891 	return skb->next;
1892 }
1893 
1894 /**
1895  *	skb_queue_prev - return the prev packet in the queue
1896  *	@list: queue head
1897  *	@skb: current buffer
1898  *
1899  *	Return the prev packet in @list before @skb.  It is only valid to
1900  *	call this if skb_queue_is_first() evaluates to false.
1901  */
1902 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1903 					     const struct sk_buff *skb)
1904 {
1905 	/* This BUG_ON may seem severe, but if we just return then we
1906 	 * are going to dereference garbage.
1907 	 */
1908 	BUG_ON(skb_queue_is_first(list, skb));
1909 	return skb->prev;
1910 }
1911 
1912 /**
1913  *	skb_get - reference buffer
1914  *	@skb: buffer to reference
1915  *
1916  *	Makes another reference to a socket buffer and returns a pointer
1917  *	to the buffer.
1918  */
1919 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1920 {
1921 	refcount_inc(&skb->users);
1922 	return skb;
1923 }
1924 
1925 /*
1926  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1927  */
1928 
1929 /**
1930  *	skb_cloned - is the buffer a clone
1931  *	@skb: buffer to check
1932  *
1933  *	Returns true if the buffer was generated with skb_clone() and is
1934  *	one of multiple shared copies of the buffer. Cloned buffers are
1935  *	shared data so must not be written to under normal circumstances.
1936  */
1937 static inline int skb_cloned(const struct sk_buff *skb)
1938 {
1939 	return skb->cloned &&
1940 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1941 }
1942 
1943 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1944 {
1945 	might_sleep_if(gfpflags_allow_blocking(pri));
1946 
1947 	if (skb_cloned(skb))
1948 		return pskb_expand_head(skb, 0, 0, pri);
1949 
1950 	return 0;
1951 }
1952 
1953 /* This variant of skb_unclone() makes sure skb->truesize
1954  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1955  *
1956  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1957  * when various debugging features are in place.
1958  */
1959 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1960 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1961 {
1962 	might_sleep_if(gfpflags_allow_blocking(pri));
1963 
1964 	if (skb_cloned(skb))
1965 		return __skb_unclone_keeptruesize(skb, pri);
1966 	return 0;
1967 }
1968 
1969 /**
1970  *	skb_header_cloned - is the header a clone
1971  *	@skb: buffer to check
1972  *
1973  *	Returns true if modifying the header part of the buffer requires
1974  *	the data to be copied.
1975  */
1976 static inline int skb_header_cloned(const struct sk_buff *skb)
1977 {
1978 	int dataref;
1979 
1980 	if (!skb->cloned)
1981 		return 0;
1982 
1983 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1984 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1985 	return dataref != 1;
1986 }
1987 
1988 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1989 {
1990 	might_sleep_if(gfpflags_allow_blocking(pri));
1991 
1992 	if (skb_header_cloned(skb))
1993 		return pskb_expand_head(skb, 0, 0, pri);
1994 
1995 	return 0;
1996 }
1997 
1998 /**
1999  * __skb_header_release() - allow clones to use the headroom
2000  * @skb: buffer to operate on
2001  *
2002  * See "DOC: dataref and headerless skbs".
2003  */
2004 static inline void __skb_header_release(struct sk_buff *skb)
2005 {
2006 	skb->nohdr = 1;
2007 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2008 }
2009 
2010 
2011 /**
2012  *	skb_shared - is the buffer shared
2013  *	@skb: buffer to check
2014  *
2015  *	Returns true if more than one person has a reference to this
2016  *	buffer.
2017  */
2018 static inline int skb_shared(const struct sk_buff *skb)
2019 {
2020 	return refcount_read(&skb->users) != 1;
2021 }
2022 
2023 /**
2024  *	skb_share_check - check if buffer is shared and if so clone it
2025  *	@skb: buffer to check
2026  *	@pri: priority for memory allocation
2027  *
2028  *	If the buffer is shared the buffer is cloned and the old copy
2029  *	drops a reference. A new clone with a single reference is returned.
2030  *	If the buffer is not shared the original buffer is returned. When
2031  *	being called from interrupt status or with spinlocks held pri must
2032  *	be GFP_ATOMIC.
2033  *
2034  *	NULL is returned on a memory allocation failure.
2035  */
2036 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2037 {
2038 	might_sleep_if(gfpflags_allow_blocking(pri));
2039 	if (skb_shared(skb)) {
2040 		struct sk_buff *nskb = skb_clone(skb, pri);
2041 
2042 		if (likely(nskb))
2043 			consume_skb(skb);
2044 		else
2045 			kfree_skb(skb);
2046 		skb = nskb;
2047 	}
2048 	return skb;
2049 }
2050 
2051 /*
2052  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2053  *	packets to handle cases where we have a local reader and forward
2054  *	and a couple of other messy ones. The normal one is tcpdumping
2055  *	a packet that's being forwarded.
2056  */
2057 
2058 /**
2059  *	skb_unshare - make a copy of a shared buffer
2060  *	@skb: buffer to check
2061  *	@pri: priority for memory allocation
2062  *
2063  *	If the socket buffer is a clone then this function creates a new
2064  *	copy of the data, drops a reference count on the old copy and returns
2065  *	the new copy with the reference count at 1. If the buffer is not a clone
2066  *	the original buffer is returned. When called with a spinlock held or
2067  *	from interrupt state @pri must be %GFP_ATOMIC
2068  *
2069  *	%NULL is returned on a memory allocation failure.
2070  */
2071 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2072 					  gfp_t pri)
2073 {
2074 	might_sleep_if(gfpflags_allow_blocking(pri));
2075 	if (skb_cloned(skb)) {
2076 		struct sk_buff *nskb = skb_copy(skb, pri);
2077 
2078 		/* Free our shared copy */
2079 		if (likely(nskb))
2080 			consume_skb(skb);
2081 		else
2082 			kfree_skb(skb);
2083 		skb = nskb;
2084 	}
2085 	return skb;
2086 }
2087 
2088 /**
2089  *	skb_peek - peek at the head of an &sk_buff_head
2090  *	@list_: list to peek at
2091  *
2092  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2093  *	be careful with this one. A peek leaves the buffer on the
2094  *	list and someone else may run off with it. You must hold
2095  *	the appropriate locks or have a private queue to do this.
2096  *
2097  *	Returns %NULL for an empty list or a pointer to the head element.
2098  *	The reference count is not incremented and the reference is therefore
2099  *	volatile. Use with caution.
2100  */
2101 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2102 {
2103 	struct sk_buff *skb = list_->next;
2104 
2105 	if (skb == (struct sk_buff *)list_)
2106 		skb = NULL;
2107 	return skb;
2108 }
2109 
2110 /**
2111  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2112  *	@list_: list to peek at
2113  *
2114  *	Like skb_peek(), but the caller knows that the list is not empty.
2115  */
2116 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2117 {
2118 	return list_->next;
2119 }
2120 
2121 /**
2122  *	skb_peek_next - peek skb following the given one from a queue
2123  *	@skb: skb to start from
2124  *	@list_: list to peek at
2125  *
2126  *	Returns %NULL when the end of the list is met or a pointer to the
2127  *	next element. The reference count is not incremented and the
2128  *	reference is therefore volatile. Use with caution.
2129  */
2130 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2131 		const struct sk_buff_head *list_)
2132 {
2133 	struct sk_buff *next = skb->next;
2134 
2135 	if (next == (struct sk_buff *)list_)
2136 		next = NULL;
2137 	return next;
2138 }
2139 
2140 /**
2141  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2142  *	@list_: list to peek at
2143  *
2144  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2145  *	be careful with this one. A peek leaves the buffer on the
2146  *	list and someone else may run off with it. You must hold
2147  *	the appropriate locks or have a private queue to do this.
2148  *
2149  *	Returns %NULL for an empty list or a pointer to the tail element.
2150  *	The reference count is not incremented and the reference is therefore
2151  *	volatile. Use with caution.
2152  */
2153 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2154 {
2155 	struct sk_buff *skb = READ_ONCE(list_->prev);
2156 
2157 	if (skb == (struct sk_buff *)list_)
2158 		skb = NULL;
2159 	return skb;
2160 
2161 }
2162 
2163 /**
2164  *	skb_queue_len	- get queue length
2165  *	@list_: list to measure
2166  *
2167  *	Return the length of an &sk_buff queue.
2168  */
2169 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2170 {
2171 	return list_->qlen;
2172 }
2173 
2174 /**
2175  *	skb_queue_len_lockless	- get queue length
2176  *	@list_: list to measure
2177  *
2178  *	Return the length of an &sk_buff queue.
2179  *	This variant can be used in lockless contexts.
2180  */
2181 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2182 {
2183 	return READ_ONCE(list_->qlen);
2184 }
2185 
2186 /**
2187  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2188  *	@list: queue to initialize
2189  *
2190  *	This initializes only the list and queue length aspects of
2191  *	an sk_buff_head object.  This allows to initialize the list
2192  *	aspects of an sk_buff_head without reinitializing things like
2193  *	the spinlock.  It can also be used for on-stack sk_buff_head
2194  *	objects where the spinlock is known to not be used.
2195  */
2196 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2197 {
2198 	list->prev = list->next = (struct sk_buff *)list;
2199 	list->qlen = 0;
2200 }
2201 
2202 /*
2203  * This function creates a split out lock class for each invocation;
2204  * this is needed for now since a whole lot of users of the skb-queue
2205  * infrastructure in drivers have different locking usage (in hardirq)
2206  * than the networking core (in softirq only). In the long run either the
2207  * network layer or drivers should need annotation to consolidate the
2208  * main types of usage into 3 classes.
2209  */
2210 static inline void skb_queue_head_init(struct sk_buff_head *list)
2211 {
2212 	spin_lock_init(&list->lock);
2213 	__skb_queue_head_init(list);
2214 }
2215 
2216 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2217 		struct lock_class_key *class)
2218 {
2219 	skb_queue_head_init(list);
2220 	lockdep_set_class(&list->lock, class);
2221 }
2222 
2223 /*
2224  *	Insert an sk_buff on a list.
2225  *
2226  *	The "__skb_xxxx()" functions are the non-atomic ones that
2227  *	can only be called with interrupts disabled.
2228  */
2229 static inline void __skb_insert(struct sk_buff *newsk,
2230 				struct sk_buff *prev, struct sk_buff *next,
2231 				struct sk_buff_head *list)
2232 {
2233 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2234 	 * for the opposite READ_ONCE()
2235 	 */
2236 	WRITE_ONCE(newsk->next, next);
2237 	WRITE_ONCE(newsk->prev, prev);
2238 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2239 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2240 	WRITE_ONCE(list->qlen, list->qlen + 1);
2241 }
2242 
2243 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2244 				      struct sk_buff *prev,
2245 				      struct sk_buff *next)
2246 {
2247 	struct sk_buff *first = list->next;
2248 	struct sk_buff *last = list->prev;
2249 
2250 	WRITE_ONCE(first->prev, prev);
2251 	WRITE_ONCE(prev->next, first);
2252 
2253 	WRITE_ONCE(last->next, next);
2254 	WRITE_ONCE(next->prev, last);
2255 }
2256 
2257 /**
2258  *	skb_queue_splice - join two skb lists, this is designed for stacks
2259  *	@list: the new list to add
2260  *	@head: the place to add it in the first list
2261  */
2262 static inline void skb_queue_splice(const struct sk_buff_head *list,
2263 				    struct sk_buff_head *head)
2264 {
2265 	if (!skb_queue_empty(list)) {
2266 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2267 		head->qlen += list->qlen;
2268 	}
2269 }
2270 
2271 /**
2272  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2273  *	@list: the new list to add
2274  *	@head: the place to add it in the first list
2275  *
2276  *	The list at @list is reinitialised
2277  */
2278 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2279 					 struct sk_buff_head *head)
2280 {
2281 	if (!skb_queue_empty(list)) {
2282 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2283 		head->qlen += list->qlen;
2284 		__skb_queue_head_init(list);
2285 	}
2286 }
2287 
2288 /**
2289  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2290  *	@list: the new list to add
2291  *	@head: the place to add it in the first list
2292  */
2293 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2294 					 struct sk_buff_head *head)
2295 {
2296 	if (!skb_queue_empty(list)) {
2297 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2298 		head->qlen += list->qlen;
2299 	}
2300 }
2301 
2302 /**
2303  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2304  *	@list: the new list to add
2305  *	@head: the place to add it in the first list
2306  *
2307  *	Each of the lists is a queue.
2308  *	The list at @list is reinitialised
2309  */
2310 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2311 					      struct sk_buff_head *head)
2312 {
2313 	if (!skb_queue_empty(list)) {
2314 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2315 		head->qlen += list->qlen;
2316 		__skb_queue_head_init(list);
2317 	}
2318 }
2319 
2320 /**
2321  *	__skb_queue_after - queue a buffer at the list head
2322  *	@list: list to use
2323  *	@prev: place after this buffer
2324  *	@newsk: buffer to queue
2325  *
2326  *	Queue a buffer int the middle of a list. This function takes no locks
2327  *	and you must therefore hold required locks before calling it.
2328  *
2329  *	A buffer cannot be placed on two lists at the same time.
2330  */
2331 static inline void __skb_queue_after(struct sk_buff_head *list,
2332 				     struct sk_buff *prev,
2333 				     struct sk_buff *newsk)
2334 {
2335 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2336 }
2337 
2338 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2339 		struct sk_buff_head *list);
2340 
2341 static inline void __skb_queue_before(struct sk_buff_head *list,
2342 				      struct sk_buff *next,
2343 				      struct sk_buff *newsk)
2344 {
2345 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2346 }
2347 
2348 /**
2349  *	__skb_queue_head - queue a buffer at the list head
2350  *	@list: list to use
2351  *	@newsk: buffer to queue
2352  *
2353  *	Queue a buffer at the start of a list. This function takes no locks
2354  *	and you must therefore hold required locks before calling it.
2355  *
2356  *	A buffer cannot be placed on two lists at the same time.
2357  */
2358 static inline void __skb_queue_head(struct sk_buff_head *list,
2359 				    struct sk_buff *newsk)
2360 {
2361 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2362 }
2363 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2364 
2365 /**
2366  *	__skb_queue_tail - queue a buffer at the list tail
2367  *	@list: list to use
2368  *	@newsk: buffer to queue
2369  *
2370  *	Queue a buffer at the end of a list. This function takes no locks
2371  *	and you must therefore hold required locks before calling it.
2372  *
2373  *	A buffer cannot be placed on two lists at the same time.
2374  */
2375 static inline void __skb_queue_tail(struct sk_buff_head *list,
2376 				   struct sk_buff *newsk)
2377 {
2378 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2379 }
2380 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2381 
2382 /*
2383  * remove sk_buff from list. _Must_ be called atomically, and with
2384  * the list known..
2385  */
2386 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2387 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2388 {
2389 	struct sk_buff *next, *prev;
2390 
2391 	WRITE_ONCE(list->qlen, list->qlen - 1);
2392 	next	   = skb->next;
2393 	prev	   = skb->prev;
2394 	skb->next  = skb->prev = NULL;
2395 	WRITE_ONCE(next->prev, prev);
2396 	WRITE_ONCE(prev->next, next);
2397 }
2398 
2399 /**
2400  *	__skb_dequeue - remove from the head of the queue
2401  *	@list: list to dequeue from
2402  *
2403  *	Remove the head of the list. This function does not take any locks
2404  *	so must be used with appropriate locks held only. The head item is
2405  *	returned or %NULL if the list is empty.
2406  */
2407 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2408 {
2409 	struct sk_buff *skb = skb_peek(list);
2410 	if (skb)
2411 		__skb_unlink(skb, list);
2412 	return skb;
2413 }
2414 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2415 
2416 /**
2417  *	__skb_dequeue_tail - remove from the tail of the queue
2418  *	@list: list to dequeue from
2419  *
2420  *	Remove the tail of the list. This function does not take any locks
2421  *	so must be used with appropriate locks held only. The tail item is
2422  *	returned or %NULL if the list is empty.
2423  */
2424 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2425 {
2426 	struct sk_buff *skb = skb_peek_tail(list);
2427 	if (skb)
2428 		__skb_unlink(skb, list);
2429 	return skb;
2430 }
2431 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2432 
2433 
2434 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2435 {
2436 	return skb->data_len;
2437 }
2438 
2439 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2440 {
2441 	return skb->len - skb->data_len;
2442 }
2443 
2444 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2445 {
2446 	unsigned int i, len = 0;
2447 
2448 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2449 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2450 	return len;
2451 }
2452 
2453 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2454 {
2455 	return skb_headlen(skb) + __skb_pagelen(skb);
2456 }
2457 
2458 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2459 					     netmem_ref netmem, int off,
2460 					     int size)
2461 {
2462 	frag->netmem = netmem;
2463 	frag->offset = off;
2464 	skb_frag_size_set(frag, size);
2465 }
2466 
2467 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2468 					   struct page *page,
2469 					   int off, int size)
2470 {
2471 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2472 }
2473 
2474 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2475 						int i, netmem_ref netmem,
2476 						int off, int size)
2477 {
2478 	skb_frag_t *frag = &shinfo->frags[i];
2479 
2480 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2481 }
2482 
2483 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2484 					      int i, struct page *page,
2485 					      int off, int size)
2486 {
2487 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2488 				     size);
2489 }
2490 
2491 /**
2492  * skb_len_add - adds a number to len fields of skb
2493  * @skb: buffer to add len to
2494  * @delta: number of bytes to add
2495  */
2496 static inline void skb_len_add(struct sk_buff *skb, int delta)
2497 {
2498 	skb->len += delta;
2499 	skb->data_len += delta;
2500 	skb->truesize += delta;
2501 }
2502 
2503 /**
2504  * __skb_fill_netmem_desc - initialise a fragment in an skb
2505  * @skb: buffer containing fragment to be initialised
2506  * @i: fragment index to initialise
2507  * @netmem: the netmem to use for this fragment
2508  * @off: the offset to the data with @page
2509  * @size: the length of the data
2510  *
2511  * Initialises the @i'th fragment of @skb to point to &size bytes at
2512  * offset @off within @page.
2513  *
2514  * Does not take any additional reference on the fragment.
2515  */
2516 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2517 					  netmem_ref netmem, int off, int size)
2518 {
2519 	struct page *page = netmem_to_page(netmem);
2520 
2521 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2522 
2523 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2524 	 * that not all callers have unique ownership of the page but rely
2525 	 * on page_is_pfmemalloc doing the right thing(tm).
2526 	 */
2527 	page = compound_head(page);
2528 	if (page_is_pfmemalloc(page))
2529 		skb->pfmemalloc = true;
2530 }
2531 
2532 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2533 					struct page *page, int off, int size)
2534 {
2535 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2536 }
2537 
2538 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2539 					netmem_ref netmem, int off, int size)
2540 {
2541 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2542 	skb_shinfo(skb)->nr_frags = i + 1;
2543 }
2544 
2545 /**
2546  * skb_fill_page_desc - initialise a paged fragment in an skb
2547  * @skb: buffer containing fragment to be initialised
2548  * @i: paged fragment index to initialise
2549  * @page: the page to use for this fragment
2550  * @off: the offset to the data with @page
2551  * @size: the length of the data
2552  *
2553  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2554  * @skb to point to @size bytes at offset @off within @page. In
2555  * addition updates @skb such that @i is the last fragment.
2556  *
2557  * Does not take any additional reference on the fragment.
2558  */
2559 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2560 				      struct page *page, int off, int size)
2561 {
2562 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2563 }
2564 
2565 /**
2566  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2567  * @skb: buffer containing fragment to be initialised
2568  * @i: paged fragment index to initialise
2569  * @page: the page to use for this fragment
2570  * @off: the offset to the data with @page
2571  * @size: the length of the data
2572  *
2573  * Variant of skb_fill_page_desc() which does not deal with
2574  * pfmemalloc, if page is not owned by us.
2575  */
2576 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2577 					    struct page *page, int off,
2578 					    int size)
2579 {
2580 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2581 
2582 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2583 	shinfo->nr_frags = i + 1;
2584 }
2585 
2586 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2587 			    int off, int size, unsigned int truesize);
2588 
2589 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2590 				   struct page *page, int off, int size,
2591 				   unsigned int truesize)
2592 {
2593 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2594 			       truesize);
2595 }
2596 
2597 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2598 			  unsigned int truesize);
2599 
2600 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2601 
2602 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2603 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2604 {
2605 	return skb->head + skb->tail;
2606 }
2607 
2608 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2609 {
2610 	skb->tail = skb->data - skb->head;
2611 }
2612 
2613 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2614 {
2615 	skb_reset_tail_pointer(skb);
2616 	skb->tail += offset;
2617 }
2618 
2619 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2620 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2621 {
2622 	return skb->tail;
2623 }
2624 
2625 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2626 {
2627 	skb->tail = skb->data;
2628 }
2629 
2630 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2631 {
2632 	skb->tail = skb->data + offset;
2633 }
2634 
2635 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2636 
2637 static inline void skb_assert_len(struct sk_buff *skb)
2638 {
2639 #ifdef CONFIG_DEBUG_NET
2640 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2641 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2642 #endif /* CONFIG_DEBUG_NET */
2643 }
2644 
2645 /*
2646  *	Add data to an sk_buff
2647  */
2648 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2649 void *skb_put(struct sk_buff *skb, unsigned int len);
2650 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2651 {
2652 	void *tmp = skb_tail_pointer(skb);
2653 	SKB_LINEAR_ASSERT(skb);
2654 	skb->tail += len;
2655 	skb->len  += len;
2656 	return tmp;
2657 }
2658 
2659 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2660 {
2661 	void *tmp = __skb_put(skb, len);
2662 
2663 	memset(tmp, 0, len);
2664 	return tmp;
2665 }
2666 
2667 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2668 				   unsigned int len)
2669 {
2670 	void *tmp = __skb_put(skb, len);
2671 
2672 	memcpy(tmp, data, len);
2673 	return tmp;
2674 }
2675 
2676 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2677 {
2678 	*(u8 *)__skb_put(skb, 1) = val;
2679 }
2680 
2681 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2682 {
2683 	void *tmp = skb_put(skb, len);
2684 
2685 	memset(tmp, 0, len);
2686 
2687 	return tmp;
2688 }
2689 
2690 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2691 				 unsigned int len)
2692 {
2693 	void *tmp = skb_put(skb, len);
2694 
2695 	memcpy(tmp, data, len);
2696 
2697 	return tmp;
2698 }
2699 
2700 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2701 {
2702 	*(u8 *)skb_put(skb, 1) = val;
2703 }
2704 
2705 void *skb_push(struct sk_buff *skb, unsigned int len);
2706 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2707 {
2708 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2709 
2710 	skb->data -= len;
2711 	skb->len  += len;
2712 	return skb->data;
2713 }
2714 
2715 void *skb_pull(struct sk_buff *skb, unsigned int len);
2716 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2717 {
2718 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2719 
2720 	skb->len -= len;
2721 	if (unlikely(skb->len < skb->data_len)) {
2722 #if defined(CONFIG_DEBUG_NET)
2723 		skb->len += len;
2724 		pr_err("__skb_pull(len=%u)\n", len);
2725 		skb_dump(KERN_ERR, skb, false);
2726 #endif
2727 		BUG();
2728 	}
2729 	return skb->data += len;
2730 }
2731 
2732 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2733 {
2734 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2735 }
2736 
2737 void *skb_pull_data(struct sk_buff *skb, size_t len);
2738 
2739 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2740 
2741 static inline enum skb_drop_reason
2742 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2743 {
2744 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2745 
2746 	if (likely(len <= skb_headlen(skb)))
2747 		return SKB_NOT_DROPPED_YET;
2748 
2749 	if (unlikely(len > skb->len))
2750 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2751 
2752 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2753 		return SKB_DROP_REASON_NOMEM;
2754 
2755 	return SKB_NOT_DROPPED_YET;
2756 }
2757 
2758 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2759 {
2760 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2761 }
2762 
2763 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2764 {
2765 	if (!pskb_may_pull(skb, len))
2766 		return NULL;
2767 
2768 	skb->len -= len;
2769 	return skb->data += len;
2770 }
2771 
2772 void skb_condense(struct sk_buff *skb);
2773 
2774 /**
2775  *	skb_headroom - bytes at buffer head
2776  *	@skb: buffer to check
2777  *
2778  *	Return the number of bytes of free space at the head of an &sk_buff.
2779  */
2780 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2781 {
2782 	return skb->data - skb->head;
2783 }
2784 
2785 /**
2786  *	skb_tailroom - bytes at buffer end
2787  *	@skb: buffer to check
2788  *
2789  *	Return the number of bytes of free space at the tail of an sk_buff
2790  */
2791 static inline int skb_tailroom(const struct sk_buff *skb)
2792 {
2793 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2794 }
2795 
2796 /**
2797  *	skb_availroom - bytes at buffer end
2798  *	@skb: buffer to check
2799  *
2800  *	Return the number of bytes of free space at the tail of an sk_buff
2801  *	allocated by sk_stream_alloc()
2802  */
2803 static inline int skb_availroom(const struct sk_buff *skb)
2804 {
2805 	if (skb_is_nonlinear(skb))
2806 		return 0;
2807 
2808 	return skb->end - skb->tail - skb->reserved_tailroom;
2809 }
2810 
2811 /**
2812  *	skb_reserve - adjust headroom
2813  *	@skb: buffer to alter
2814  *	@len: bytes to move
2815  *
2816  *	Increase the headroom of an empty &sk_buff by reducing the tail
2817  *	room. This is only allowed for an empty buffer.
2818  */
2819 static inline void skb_reserve(struct sk_buff *skb, int len)
2820 {
2821 	skb->data += len;
2822 	skb->tail += len;
2823 }
2824 
2825 /**
2826  *	skb_tailroom_reserve - adjust reserved_tailroom
2827  *	@skb: buffer to alter
2828  *	@mtu: maximum amount of headlen permitted
2829  *	@needed_tailroom: minimum amount of reserved_tailroom
2830  *
2831  *	Set reserved_tailroom so that headlen can be as large as possible but
2832  *	not larger than mtu and tailroom cannot be smaller than
2833  *	needed_tailroom.
2834  *	The required headroom should already have been reserved before using
2835  *	this function.
2836  */
2837 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2838 					unsigned int needed_tailroom)
2839 {
2840 	SKB_LINEAR_ASSERT(skb);
2841 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2842 		/* use at most mtu */
2843 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2844 	else
2845 		/* use up to all available space */
2846 		skb->reserved_tailroom = needed_tailroom;
2847 }
2848 
2849 #define ENCAP_TYPE_ETHER	0
2850 #define ENCAP_TYPE_IPPROTO	1
2851 
2852 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2853 					  __be16 protocol)
2854 {
2855 	skb->inner_protocol = protocol;
2856 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2857 }
2858 
2859 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2860 					 __u8 ipproto)
2861 {
2862 	skb->inner_ipproto = ipproto;
2863 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2864 }
2865 
2866 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2867 {
2868 	skb->inner_mac_header = skb->mac_header;
2869 	skb->inner_network_header = skb->network_header;
2870 	skb->inner_transport_header = skb->transport_header;
2871 }
2872 
2873 static inline void skb_reset_mac_len(struct sk_buff *skb)
2874 {
2875 	skb->mac_len = skb->network_header - skb->mac_header;
2876 }
2877 
2878 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2879 							*skb)
2880 {
2881 	return skb->head + skb->inner_transport_header;
2882 }
2883 
2884 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2885 {
2886 	return skb_inner_transport_header(skb) - skb->data;
2887 }
2888 
2889 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2890 {
2891 	skb->inner_transport_header = skb->data - skb->head;
2892 }
2893 
2894 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2895 						   const int offset)
2896 {
2897 	skb_reset_inner_transport_header(skb);
2898 	skb->inner_transport_header += offset;
2899 }
2900 
2901 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2902 {
2903 	return skb->head + skb->inner_network_header;
2904 }
2905 
2906 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2907 {
2908 	skb->inner_network_header = skb->data - skb->head;
2909 }
2910 
2911 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2912 						const int offset)
2913 {
2914 	skb_reset_inner_network_header(skb);
2915 	skb->inner_network_header += offset;
2916 }
2917 
2918 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2919 {
2920 	return skb->inner_network_header > 0;
2921 }
2922 
2923 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2924 {
2925 	return skb->head + skb->inner_mac_header;
2926 }
2927 
2928 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2929 {
2930 	skb->inner_mac_header = skb->data - skb->head;
2931 }
2932 
2933 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2934 					    const int offset)
2935 {
2936 	skb_reset_inner_mac_header(skb);
2937 	skb->inner_mac_header += offset;
2938 }
2939 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2940 {
2941 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2942 }
2943 
2944 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2945 {
2946 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2947 	return skb->head + skb->transport_header;
2948 }
2949 
2950 static inline void skb_reset_transport_header(struct sk_buff *skb)
2951 {
2952 	skb->transport_header = skb->data - skb->head;
2953 }
2954 
2955 static inline void skb_set_transport_header(struct sk_buff *skb,
2956 					    const int offset)
2957 {
2958 	skb_reset_transport_header(skb);
2959 	skb->transport_header += offset;
2960 }
2961 
2962 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2963 {
2964 	return skb->head + skb->network_header;
2965 }
2966 
2967 static inline void skb_reset_network_header(struct sk_buff *skb)
2968 {
2969 	skb->network_header = skb->data - skb->head;
2970 }
2971 
2972 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2973 {
2974 	skb_reset_network_header(skb);
2975 	skb->network_header += offset;
2976 }
2977 
2978 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2979 {
2980 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2981 }
2982 
2983 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2984 {
2985 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2986 	return skb->head + skb->mac_header;
2987 }
2988 
2989 static inline int skb_mac_offset(const struct sk_buff *skb)
2990 {
2991 	return skb_mac_header(skb) - skb->data;
2992 }
2993 
2994 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2995 {
2996 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2997 	return skb->network_header - skb->mac_header;
2998 }
2999 
3000 static inline void skb_unset_mac_header(struct sk_buff *skb)
3001 {
3002 	skb->mac_header = (typeof(skb->mac_header))~0U;
3003 }
3004 
3005 static inline void skb_reset_mac_header(struct sk_buff *skb)
3006 {
3007 	skb->mac_header = skb->data - skb->head;
3008 }
3009 
3010 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3011 {
3012 	skb_reset_mac_header(skb);
3013 	skb->mac_header += offset;
3014 }
3015 
3016 static inline void skb_pop_mac_header(struct sk_buff *skb)
3017 {
3018 	skb->mac_header = skb->network_header;
3019 }
3020 
3021 static inline void skb_probe_transport_header(struct sk_buff *skb)
3022 {
3023 	struct flow_keys_basic keys;
3024 
3025 	if (skb_transport_header_was_set(skb))
3026 		return;
3027 
3028 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3029 					     NULL, 0, 0, 0, 0))
3030 		skb_set_transport_header(skb, keys.control.thoff);
3031 }
3032 
3033 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3034 {
3035 	if (skb_mac_header_was_set(skb)) {
3036 		const unsigned char *old_mac = skb_mac_header(skb);
3037 
3038 		skb_set_mac_header(skb, -skb->mac_len);
3039 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3040 	}
3041 }
3042 
3043 /* Move the full mac header up to current network_header.
3044  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3045  * Must be provided the complete mac header length.
3046  */
3047 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3048 {
3049 	if (skb_mac_header_was_set(skb)) {
3050 		const unsigned char *old_mac = skb_mac_header(skb);
3051 
3052 		skb_set_mac_header(skb, -full_mac_len);
3053 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3054 		__skb_push(skb, full_mac_len - skb->mac_len);
3055 	}
3056 }
3057 
3058 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3059 {
3060 	return skb->csum_start - skb_headroom(skb);
3061 }
3062 
3063 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3064 {
3065 	return skb->head + skb->csum_start;
3066 }
3067 
3068 static inline int skb_transport_offset(const struct sk_buff *skb)
3069 {
3070 	return skb_transport_header(skb) - skb->data;
3071 }
3072 
3073 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3074 {
3075 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3076 	return skb->transport_header - skb->network_header;
3077 }
3078 
3079 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3080 {
3081 	return skb->inner_transport_header - skb->inner_network_header;
3082 }
3083 
3084 static inline int skb_network_offset(const struct sk_buff *skb)
3085 {
3086 	return skb_network_header(skb) - skb->data;
3087 }
3088 
3089 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3090 {
3091 	return skb_inner_network_header(skb) - skb->data;
3092 }
3093 
3094 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3095 {
3096 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3097 }
3098 
3099 /*
3100  * CPUs often take a performance hit when accessing unaligned memory
3101  * locations. The actual performance hit varies, it can be small if the
3102  * hardware handles it or large if we have to take an exception and fix it
3103  * in software.
3104  *
3105  * Since an ethernet header is 14 bytes network drivers often end up with
3106  * the IP header at an unaligned offset. The IP header can be aligned by
3107  * shifting the start of the packet by 2 bytes. Drivers should do this
3108  * with:
3109  *
3110  * skb_reserve(skb, NET_IP_ALIGN);
3111  *
3112  * The downside to this alignment of the IP header is that the DMA is now
3113  * unaligned. On some architectures the cost of an unaligned DMA is high
3114  * and this cost outweighs the gains made by aligning the IP header.
3115  *
3116  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3117  * to be overridden.
3118  */
3119 #ifndef NET_IP_ALIGN
3120 #define NET_IP_ALIGN	2
3121 #endif
3122 
3123 /*
3124  * The networking layer reserves some headroom in skb data (via
3125  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3126  * the header has to grow. In the default case, if the header has to grow
3127  * 32 bytes or less we avoid the reallocation.
3128  *
3129  * Unfortunately this headroom changes the DMA alignment of the resulting
3130  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3131  * on some architectures. An architecture can override this value,
3132  * perhaps setting it to a cacheline in size (since that will maintain
3133  * cacheline alignment of the DMA). It must be a power of 2.
3134  *
3135  * Various parts of the networking layer expect at least 32 bytes of
3136  * headroom, you should not reduce this.
3137  *
3138  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3139  * to reduce average number of cache lines per packet.
3140  * get_rps_cpu() for example only access one 64 bytes aligned block :
3141  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3142  */
3143 #ifndef NET_SKB_PAD
3144 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3145 #endif
3146 
3147 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3148 
3149 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3150 {
3151 	if (WARN_ON(skb_is_nonlinear(skb)))
3152 		return;
3153 	skb->len = len;
3154 	skb_set_tail_pointer(skb, len);
3155 }
3156 
3157 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3158 {
3159 	__skb_set_length(skb, len);
3160 }
3161 
3162 void skb_trim(struct sk_buff *skb, unsigned int len);
3163 
3164 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3165 {
3166 	if (skb->data_len)
3167 		return ___pskb_trim(skb, len);
3168 	__skb_trim(skb, len);
3169 	return 0;
3170 }
3171 
3172 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3173 {
3174 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3175 }
3176 
3177 /**
3178  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3179  *	@skb: buffer to alter
3180  *	@len: new length
3181  *
3182  *	This is identical to pskb_trim except that the caller knows that
3183  *	the skb is not cloned so we should never get an error due to out-
3184  *	of-memory.
3185  */
3186 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3187 {
3188 	int err = pskb_trim(skb, len);
3189 	BUG_ON(err);
3190 }
3191 
3192 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3193 {
3194 	unsigned int diff = len - skb->len;
3195 
3196 	if (skb_tailroom(skb) < diff) {
3197 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3198 					   GFP_ATOMIC);
3199 		if (ret)
3200 			return ret;
3201 	}
3202 	__skb_set_length(skb, len);
3203 	return 0;
3204 }
3205 
3206 /**
3207  *	skb_orphan - orphan a buffer
3208  *	@skb: buffer to orphan
3209  *
3210  *	If a buffer currently has an owner then we call the owner's
3211  *	destructor function and make the @skb unowned. The buffer continues
3212  *	to exist but is no longer charged to its former owner.
3213  */
3214 static inline void skb_orphan(struct sk_buff *skb)
3215 {
3216 	if (skb->destructor) {
3217 		skb->destructor(skb);
3218 		skb->destructor = NULL;
3219 		skb->sk		= NULL;
3220 	} else {
3221 		BUG_ON(skb->sk);
3222 	}
3223 }
3224 
3225 /**
3226  *	skb_orphan_frags - orphan the frags contained in a buffer
3227  *	@skb: buffer to orphan frags from
3228  *	@gfp_mask: allocation mask for replacement pages
3229  *
3230  *	For each frag in the SKB which needs a destructor (i.e. has an
3231  *	owner) create a copy of that frag and release the original
3232  *	page by calling the destructor.
3233  */
3234 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3235 {
3236 	if (likely(!skb_zcopy(skb)))
3237 		return 0;
3238 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3239 		return 0;
3240 	return skb_copy_ubufs(skb, gfp_mask);
3241 }
3242 
3243 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3244 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3245 {
3246 	if (likely(!skb_zcopy(skb)))
3247 		return 0;
3248 	return skb_copy_ubufs(skb, gfp_mask);
3249 }
3250 
3251 /**
3252  *	__skb_queue_purge_reason - empty a list
3253  *	@list: list to empty
3254  *	@reason: drop reason
3255  *
3256  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3257  *	the list and one reference dropped. This function does not take the
3258  *	list lock and the caller must hold the relevant locks to use it.
3259  */
3260 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3261 					    enum skb_drop_reason reason)
3262 {
3263 	struct sk_buff *skb;
3264 
3265 	while ((skb = __skb_dequeue(list)) != NULL)
3266 		kfree_skb_reason(skb, reason);
3267 }
3268 
3269 static inline void __skb_queue_purge(struct sk_buff_head *list)
3270 {
3271 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3272 }
3273 
3274 void skb_queue_purge_reason(struct sk_buff_head *list,
3275 			    enum skb_drop_reason reason);
3276 
3277 static inline void skb_queue_purge(struct sk_buff_head *list)
3278 {
3279 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3280 }
3281 
3282 unsigned int skb_rbtree_purge(struct rb_root *root);
3283 void skb_errqueue_purge(struct sk_buff_head *list);
3284 
3285 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3286 
3287 /**
3288  * netdev_alloc_frag - allocate a page fragment
3289  * @fragsz: fragment size
3290  *
3291  * Allocates a frag from a page for receive buffer.
3292  * Uses GFP_ATOMIC allocations.
3293  */
3294 static inline void *netdev_alloc_frag(unsigned int fragsz)
3295 {
3296 	return __netdev_alloc_frag_align(fragsz, ~0u);
3297 }
3298 
3299 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3300 					    unsigned int align)
3301 {
3302 	WARN_ON_ONCE(!is_power_of_2(align));
3303 	return __netdev_alloc_frag_align(fragsz, -align);
3304 }
3305 
3306 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3307 				   gfp_t gfp_mask);
3308 
3309 /**
3310  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3311  *	@dev: network device to receive on
3312  *	@length: length to allocate
3313  *
3314  *	Allocate a new &sk_buff and assign it a usage count of one. The
3315  *	buffer has unspecified headroom built in. Users should allocate
3316  *	the headroom they think they need without accounting for the
3317  *	built in space. The built in space is used for optimisations.
3318  *
3319  *	%NULL is returned if there is no free memory. Although this function
3320  *	allocates memory it can be called from an interrupt.
3321  */
3322 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3323 					       unsigned int length)
3324 {
3325 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3326 }
3327 
3328 /* legacy helper around __netdev_alloc_skb() */
3329 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3330 					      gfp_t gfp_mask)
3331 {
3332 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3333 }
3334 
3335 /* legacy helper around netdev_alloc_skb() */
3336 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3337 {
3338 	return netdev_alloc_skb(NULL, length);
3339 }
3340 
3341 
3342 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3343 		unsigned int length, gfp_t gfp)
3344 {
3345 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3346 
3347 	if (NET_IP_ALIGN && skb)
3348 		skb_reserve(skb, NET_IP_ALIGN);
3349 	return skb;
3350 }
3351 
3352 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3353 		unsigned int length)
3354 {
3355 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3356 }
3357 
3358 static inline void skb_free_frag(void *addr)
3359 {
3360 	page_frag_free(addr);
3361 }
3362 
3363 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3364 
3365 static inline void *napi_alloc_frag(unsigned int fragsz)
3366 {
3367 	return __napi_alloc_frag_align(fragsz, ~0u);
3368 }
3369 
3370 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3371 					  unsigned int align)
3372 {
3373 	WARN_ON_ONCE(!is_power_of_2(align));
3374 	return __napi_alloc_frag_align(fragsz, -align);
3375 }
3376 
3377 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3378 void napi_consume_skb(struct sk_buff *skb, int budget);
3379 
3380 void napi_skb_free_stolen_head(struct sk_buff *skb);
3381 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3382 
3383 /**
3384  * __dev_alloc_pages - allocate page for network Rx
3385  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3386  * @order: size of the allocation
3387  *
3388  * Allocate a new page.
3389  *
3390  * %NULL is returned if there is no free memory.
3391 */
3392 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3393 					     unsigned int order)
3394 {
3395 	/* This piece of code contains several assumptions.
3396 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3397 	 * 2.  The expectation is the user wants a compound page.
3398 	 * 3.  If requesting a order 0 page it will not be compound
3399 	 *     due to the check to see if order has a value in prep_new_page
3400 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3401 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3402 	 */
3403 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3404 
3405 	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3406 }
3407 #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3408 
3409 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3410 
3411 /**
3412  * __dev_alloc_page - allocate a page for network Rx
3413  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3414  *
3415  * Allocate a new page.
3416  *
3417  * %NULL is returned if there is no free memory.
3418  */
3419 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3420 {
3421 	return __dev_alloc_pages_noprof(gfp_mask, 0);
3422 }
3423 #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3424 
3425 #define dev_alloc_page()	dev_alloc_pages(0)
3426 
3427 /**
3428  * dev_page_is_reusable - check whether a page can be reused for network Rx
3429  * @page: the page to test
3430  *
3431  * A page shouldn't be considered for reusing/recycling if it was allocated
3432  * under memory pressure or at a distant memory node.
3433  *
3434  * Returns false if this page should be returned to page allocator, true
3435  * otherwise.
3436  */
3437 static inline bool dev_page_is_reusable(const struct page *page)
3438 {
3439 	return likely(page_to_nid(page) == numa_mem_id() &&
3440 		      !page_is_pfmemalloc(page));
3441 }
3442 
3443 /**
3444  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3445  *	@page: The page that was allocated from skb_alloc_page
3446  *	@skb: The skb that may need pfmemalloc set
3447  */
3448 static inline void skb_propagate_pfmemalloc(const struct page *page,
3449 					    struct sk_buff *skb)
3450 {
3451 	if (page_is_pfmemalloc(page))
3452 		skb->pfmemalloc = true;
3453 }
3454 
3455 /**
3456  * skb_frag_off() - Returns the offset of a skb fragment
3457  * @frag: the paged fragment
3458  */
3459 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3460 {
3461 	return frag->offset;
3462 }
3463 
3464 /**
3465  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3466  * @frag: skb fragment
3467  * @delta: value to add
3468  */
3469 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3470 {
3471 	frag->offset += delta;
3472 }
3473 
3474 /**
3475  * skb_frag_off_set() - Sets the offset of a skb fragment
3476  * @frag: skb fragment
3477  * @offset: offset of fragment
3478  */
3479 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3480 {
3481 	frag->offset = offset;
3482 }
3483 
3484 /**
3485  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3486  * @fragto: skb fragment where offset is set
3487  * @fragfrom: skb fragment offset is copied from
3488  */
3489 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3490 				     const skb_frag_t *fragfrom)
3491 {
3492 	fragto->offset = fragfrom->offset;
3493 }
3494 
3495 /**
3496  * skb_frag_page - retrieve the page referred to by a paged fragment
3497  * @frag: the paged fragment
3498  *
3499  * Returns the &struct page associated with @frag.
3500  */
3501 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3502 {
3503 	return netmem_to_page(frag->netmem);
3504 }
3505 
3506 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3507 		    unsigned int headroom);
3508 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3509 			 struct bpf_prog *prog);
3510 /**
3511  * skb_frag_address - gets the address of the data contained in a paged fragment
3512  * @frag: the paged fragment buffer
3513  *
3514  * Returns the address of the data within @frag. The page must already
3515  * be mapped.
3516  */
3517 static inline void *skb_frag_address(const skb_frag_t *frag)
3518 {
3519 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3520 }
3521 
3522 /**
3523  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3524  * @frag: the paged fragment buffer
3525  *
3526  * Returns the address of the data within @frag. Checks that the page
3527  * is mapped and returns %NULL otherwise.
3528  */
3529 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3530 {
3531 	void *ptr = page_address(skb_frag_page(frag));
3532 	if (unlikely(!ptr))
3533 		return NULL;
3534 
3535 	return ptr + skb_frag_off(frag);
3536 }
3537 
3538 /**
3539  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3540  * @fragto: skb fragment where page is set
3541  * @fragfrom: skb fragment page is copied from
3542  */
3543 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3544 				      const skb_frag_t *fragfrom)
3545 {
3546 	fragto->netmem = fragfrom->netmem;
3547 }
3548 
3549 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3550 
3551 /**
3552  * skb_frag_dma_map - maps a paged fragment via the DMA API
3553  * @dev: the device to map the fragment to
3554  * @frag: the paged fragment to map
3555  * @offset: the offset within the fragment (starting at the
3556  *          fragment's own offset)
3557  * @size: the number of bytes to map
3558  * @dir: the direction of the mapping (``PCI_DMA_*``)
3559  *
3560  * Maps the page associated with @frag to @device.
3561  */
3562 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3563 					  const skb_frag_t *frag,
3564 					  size_t offset, size_t size,
3565 					  enum dma_data_direction dir)
3566 {
3567 	return dma_map_page(dev, skb_frag_page(frag),
3568 			    skb_frag_off(frag) + offset, size, dir);
3569 }
3570 
3571 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3572 					gfp_t gfp_mask)
3573 {
3574 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3575 }
3576 
3577 
3578 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3579 						  gfp_t gfp_mask)
3580 {
3581 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3582 }
3583 
3584 
3585 /**
3586  *	skb_clone_writable - is the header of a clone writable
3587  *	@skb: buffer to check
3588  *	@len: length up to which to write
3589  *
3590  *	Returns true if modifying the header part of the cloned buffer
3591  *	does not requires the data to be copied.
3592  */
3593 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3594 {
3595 	return !skb_header_cloned(skb) &&
3596 	       skb_headroom(skb) + len <= skb->hdr_len;
3597 }
3598 
3599 static inline int skb_try_make_writable(struct sk_buff *skb,
3600 					unsigned int write_len)
3601 {
3602 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3603 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3604 }
3605 
3606 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3607 			    int cloned)
3608 {
3609 	int delta = 0;
3610 
3611 	if (headroom > skb_headroom(skb))
3612 		delta = headroom - skb_headroom(skb);
3613 
3614 	if (delta || cloned)
3615 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3616 					GFP_ATOMIC);
3617 	return 0;
3618 }
3619 
3620 /**
3621  *	skb_cow - copy header of skb when it is required
3622  *	@skb: buffer to cow
3623  *	@headroom: needed headroom
3624  *
3625  *	If the skb passed lacks sufficient headroom or its data part
3626  *	is shared, data is reallocated. If reallocation fails, an error
3627  *	is returned and original skb is not changed.
3628  *
3629  *	The result is skb with writable area skb->head...skb->tail
3630  *	and at least @headroom of space at head.
3631  */
3632 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3633 {
3634 	return __skb_cow(skb, headroom, skb_cloned(skb));
3635 }
3636 
3637 /**
3638  *	skb_cow_head - skb_cow but only making the head writable
3639  *	@skb: buffer to cow
3640  *	@headroom: needed headroom
3641  *
3642  *	This function is identical to skb_cow except that we replace the
3643  *	skb_cloned check by skb_header_cloned.  It should be used when
3644  *	you only need to push on some header and do not need to modify
3645  *	the data.
3646  */
3647 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3648 {
3649 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3650 }
3651 
3652 /**
3653  *	skb_padto	- pad an skbuff up to a minimal size
3654  *	@skb: buffer to pad
3655  *	@len: minimal length
3656  *
3657  *	Pads up a buffer to ensure the trailing bytes exist and are
3658  *	blanked. If the buffer already contains sufficient data it
3659  *	is untouched. Otherwise it is extended. Returns zero on
3660  *	success. The skb is freed on error.
3661  */
3662 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3663 {
3664 	unsigned int size = skb->len;
3665 	if (likely(size >= len))
3666 		return 0;
3667 	return skb_pad(skb, len - size);
3668 }
3669 
3670 /**
3671  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3672  *	@skb: buffer to pad
3673  *	@len: minimal length
3674  *	@free_on_error: free buffer on error
3675  *
3676  *	Pads up a buffer to ensure the trailing bytes exist and are
3677  *	blanked. If the buffer already contains sufficient data it
3678  *	is untouched. Otherwise it is extended. Returns zero on
3679  *	success. The skb is freed on error if @free_on_error is true.
3680  */
3681 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3682 					       unsigned int len,
3683 					       bool free_on_error)
3684 {
3685 	unsigned int size = skb->len;
3686 
3687 	if (unlikely(size < len)) {
3688 		len -= size;
3689 		if (__skb_pad(skb, len, free_on_error))
3690 			return -ENOMEM;
3691 		__skb_put(skb, len);
3692 	}
3693 	return 0;
3694 }
3695 
3696 /**
3697  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3698  *	@skb: buffer to pad
3699  *	@len: minimal length
3700  *
3701  *	Pads up a buffer to ensure the trailing bytes exist and are
3702  *	blanked. If the buffer already contains sufficient data it
3703  *	is untouched. Otherwise it is extended. Returns zero on
3704  *	success. The skb is freed on error.
3705  */
3706 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3707 {
3708 	return __skb_put_padto(skb, len, true);
3709 }
3710 
3711 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3712 	__must_check;
3713 
3714 static inline int skb_add_data(struct sk_buff *skb,
3715 			       struct iov_iter *from, int copy)
3716 {
3717 	const int off = skb->len;
3718 
3719 	if (skb->ip_summed == CHECKSUM_NONE) {
3720 		__wsum csum = 0;
3721 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3722 					         &csum, from)) {
3723 			skb->csum = csum_block_add(skb->csum, csum, off);
3724 			return 0;
3725 		}
3726 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3727 		return 0;
3728 
3729 	__skb_trim(skb, off);
3730 	return -EFAULT;
3731 }
3732 
3733 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3734 				    const struct page *page, int off)
3735 {
3736 	if (skb_zcopy(skb))
3737 		return false;
3738 	if (i) {
3739 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3740 
3741 		return page == skb_frag_page(frag) &&
3742 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3743 	}
3744 	return false;
3745 }
3746 
3747 static inline int __skb_linearize(struct sk_buff *skb)
3748 {
3749 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3750 }
3751 
3752 /**
3753  *	skb_linearize - convert paged skb to linear one
3754  *	@skb: buffer to linarize
3755  *
3756  *	If there is no free memory -ENOMEM is returned, otherwise zero
3757  *	is returned and the old skb data released.
3758  */
3759 static inline int skb_linearize(struct sk_buff *skb)
3760 {
3761 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3762 }
3763 
3764 /**
3765  * skb_has_shared_frag - can any frag be overwritten
3766  * @skb: buffer to test
3767  *
3768  * Return true if the skb has at least one frag that might be modified
3769  * by an external entity (as in vmsplice()/sendfile())
3770  */
3771 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3772 {
3773 	return skb_is_nonlinear(skb) &&
3774 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3775 }
3776 
3777 /**
3778  *	skb_linearize_cow - make sure skb is linear and writable
3779  *	@skb: buffer to process
3780  *
3781  *	If there is no free memory -ENOMEM is returned, otherwise zero
3782  *	is returned and the old skb data released.
3783  */
3784 static inline int skb_linearize_cow(struct sk_buff *skb)
3785 {
3786 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3787 	       __skb_linearize(skb) : 0;
3788 }
3789 
3790 static __always_inline void
3791 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3792 		     unsigned int off)
3793 {
3794 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3795 		skb->csum = csum_block_sub(skb->csum,
3796 					   csum_partial(start, len, 0), off);
3797 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3798 		 skb_checksum_start_offset(skb) < 0)
3799 		skb->ip_summed = CHECKSUM_NONE;
3800 }
3801 
3802 /**
3803  *	skb_postpull_rcsum - update checksum for received skb after pull
3804  *	@skb: buffer to update
3805  *	@start: start of data before pull
3806  *	@len: length of data pulled
3807  *
3808  *	After doing a pull on a received packet, you need to call this to
3809  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3810  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3811  */
3812 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3813 				      const void *start, unsigned int len)
3814 {
3815 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3816 		skb->csum = wsum_negate(csum_partial(start, len,
3817 						     wsum_negate(skb->csum)));
3818 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3819 		 skb_checksum_start_offset(skb) < 0)
3820 		skb->ip_summed = CHECKSUM_NONE;
3821 }
3822 
3823 static __always_inline void
3824 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3825 		     unsigned int off)
3826 {
3827 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3828 		skb->csum = csum_block_add(skb->csum,
3829 					   csum_partial(start, len, 0), off);
3830 }
3831 
3832 /**
3833  *	skb_postpush_rcsum - update checksum for received skb after push
3834  *	@skb: buffer to update
3835  *	@start: start of data after push
3836  *	@len: length of data pushed
3837  *
3838  *	After doing a push on a received packet, you need to call this to
3839  *	update the CHECKSUM_COMPLETE checksum.
3840  */
3841 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3842 				      const void *start, unsigned int len)
3843 {
3844 	__skb_postpush_rcsum(skb, start, len, 0);
3845 }
3846 
3847 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3848 
3849 /**
3850  *	skb_push_rcsum - push skb and update receive checksum
3851  *	@skb: buffer to update
3852  *	@len: length of data pulled
3853  *
3854  *	This function performs an skb_push on the packet and updates
3855  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3856  *	receive path processing instead of skb_push unless you know
3857  *	that the checksum difference is zero (e.g., a valid IP header)
3858  *	or you are setting ip_summed to CHECKSUM_NONE.
3859  */
3860 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3861 {
3862 	skb_push(skb, len);
3863 	skb_postpush_rcsum(skb, skb->data, len);
3864 	return skb->data;
3865 }
3866 
3867 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3868 /**
3869  *	pskb_trim_rcsum - trim received skb and update checksum
3870  *	@skb: buffer to trim
3871  *	@len: new length
3872  *
3873  *	This is exactly the same as pskb_trim except that it ensures the
3874  *	checksum of received packets are still valid after the operation.
3875  *	It can change skb pointers.
3876  */
3877 
3878 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3879 {
3880 	if (likely(len >= skb->len))
3881 		return 0;
3882 	return pskb_trim_rcsum_slow(skb, len);
3883 }
3884 
3885 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3886 {
3887 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3888 		skb->ip_summed = CHECKSUM_NONE;
3889 	__skb_trim(skb, len);
3890 	return 0;
3891 }
3892 
3893 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3894 {
3895 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3896 		skb->ip_summed = CHECKSUM_NONE;
3897 	return __skb_grow(skb, len);
3898 }
3899 
3900 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3901 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3902 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3903 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3904 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3905 
3906 #define skb_queue_walk(queue, skb) \
3907 		for (skb = (queue)->next;					\
3908 		     skb != (struct sk_buff *)(queue);				\
3909 		     skb = skb->next)
3910 
3911 #define skb_queue_walk_safe(queue, skb, tmp)					\
3912 		for (skb = (queue)->next, tmp = skb->next;			\
3913 		     skb != (struct sk_buff *)(queue);				\
3914 		     skb = tmp, tmp = skb->next)
3915 
3916 #define skb_queue_walk_from(queue, skb)						\
3917 		for (; skb != (struct sk_buff *)(queue);			\
3918 		     skb = skb->next)
3919 
3920 #define skb_rbtree_walk(skb, root)						\
3921 		for (skb = skb_rb_first(root); skb != NULL;			\
3922 		     skb = skb_rb_next(skb))
3923 
3924 #define skb_rbtree_walk_from(skb)						\
3925 		for (; skb != NULL;						\
3926 		     skb = skb_rb_next(skb))
3927 
3928 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3929 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3930 		     skb = tmp)
3931 
3932 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3933 		for (tmp = skb->next;						\
3934 		     skb != (struct sk_buff *)(queue);				\
3935 		     skb = tmp, tmp = skb->next)
3936 
3937 #define skb_queue_reverse_walk(queue, skb) \
3938 		for (skb = (queue)->prev;					\
3939 		     skb != (struct sk_buff *)(queue);				\
3940 		     skb = skb->prev)
3941 
3942 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3943 		for (skb = (queue)->prev, tmp = skb->prev;			\
3944 		     skb != (struct sk_buff *)(queue);				\
3945 		     skb = tmp, tmp = skb->prev)
3946 
3947 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3948 		for (tmp = skb->prev;						\
3949 		     skb != (struct sk_buff *)(queue);				\
3950 		     skb = tmp, tmp = skb->prev)
3951 
3952 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3953 {
3954 	return skb_shinfo(skb)->frag_list != NULL;
3955 }
3956 
3957 static inline void skb_frag_list_init(struct sk_buff *skb)
3958 {
3959 	skb_shinfo(skb)->frag_list = NULL;
3960 }
3961 
3962 #define skb_walk_frags(skb, iter)	\
3963 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3964 
3965 
3966 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3967 				int *err, long *timeo_p,
3968 				const struct sk_buff *skb);
3969 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3970 					  struct sk_buff_head *queue,
3971 					  unsigned int flags,
3972 					  int *off, int *err,
3973 					  struct sk_buff **last);
3974 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3975 					struct sk_buff_head *queue,
3976 					unsigned int flags, int *off, int *err,
3977 					struct sk_buff **last);
3978 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3979 				    struct sk_buff_head *sk_queue,
3980 				    unsigned int flags, int *off, int *err);
3981 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3982 __poll_t datagram_poll(struct file *file, struct socket *sock,
3983 			   struct poll_table_struct *wait);
3984 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3985 			   struct iov_iter *to, int size);
3986 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3987 					struct msghdr *msg, int size)
3988 {
3989 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3990 }
3991 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3992 				   struct msghdr *msg);
3993 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3994 			   struct iov_iter *to, int len,
3995 			   struct ahash_request *hash);
3996 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3997 				 struct iov_iter *from, int len);
3998 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3999 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4000 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4001 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4002 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4003 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4004 			      int len);
4005 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4006 		    struct pipe_inode_info *pipe, unsigned int len,
4007 		    unsigned int flags);
4008 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4009 			 int len);
4010 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4011 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4012 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4013 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4014 		 int len, int hlen);
4015 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4016 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4017 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4018 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4019 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4020 				 unsigned int offset);
4021 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4022 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4023 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4024 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4025 int skb_vlan_pop(struct sk_buff *skb);
4026 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4027 int skb_eth_pop(struct sk_buff *skb);
4028 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4029 		 const unsigned char *src);
4030 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4031 		  int mac_len, bool ethernet);
4032 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4033 		 bool ethernet);
4034 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4035 int skb_mpls_dec_ttl(struct sk_buff *skb);
4036 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4037 			     gfp_t gfp);
4038 
4039 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4040 {
4041 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4042 }
4043 
4044 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4045 {
4046 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4047 }
4048 
4049 struct skb_checksum_ops {
4050 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4051 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4052 };
4053 
4054 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4055 
4056 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4057 		      __wsum csum, const struct skb_checksum_ops *ops);
4058 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4059 		    __wsum csum);
4060 
4061 static inline void * __must_check
4062 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4063 		     const void *data, int hlen, void *buffer)
4064 {
4065 	if (likely(hlen - offset >= len))
4066 		return (void *)data + offset;
4067 
4068 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4069 		return NULL;
4070 
4071 	return buffer;
4072 }
4073 
4074 static inline void * __must_check
4075 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4076 {
4077 	return __skb_header_pointer(skb, offset, len, skb->data,
4078 				    skb_headlen(skb), buffer);
4079 }
4080 
4081 static inline void * __must_check
4082 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4083 {
4084 	if (likely(skb_headlen(skb) - offset >= len))
4085 		return skb->data + offset;
4086 	return NULL;
4087 }
4088 
4089 /**
4090  *	skb_needs_linearize - check if we need to linearize a given skb
4091  *			      depending on the given device features.
4092  *	@skb: socket buffer to check
4093  *	@features: net device features
4094  *
4095  *	Returns true if either:
4096  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4097  *	2. skb is fragmented and the device does not support SG.
4098  */
4099 static inline bool skb_needs_linearize(struct sk_buff *skb,
4100 				       netdev_features_t features)
4101 {
4102 	return skb_is_nonlinear(skb) &&
4103 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4104 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4105 }
4106 
4107 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4108 					     void *to,
4109 					     const unsigned int len)
4110 {
4111 	memcpy(to, skb->data, len);
4112 }
4113 
4114 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4115 						    const int offset, void *to,
4116 						    const unsigned int len)
4117 {
4118 	memcpy(to, skb->data + offset, len);
4119 }
4120 
4121 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4122 					   const void *from,
4123 					   const unsigned int len)
4124 {
4125 	memcpy(skb->data, from, len);
4126 }
4127 
4128 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4129 						  const int offset,
4130 						  const void *from,
4131 						  const unsigned int len)
4132 {
4133 	memcpy(skb->data + offset, from, len);
4134 }
4135 
4136 void skb_init(void);
4137 
4138 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4139 {
4140 	return skb->tstamp;
4141 }
4142 
4143 /**
4144  *	skb_get_timestamp - get timestamp from a skb
4145  *	@skb: skb to get stamp from
4146  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4147  *
4148  *	Timestamps are stored in the skb as offsets to a base timestamp.
4149  *	This function converts the offset back to a struct timeval and stores
4150  *	it in stamp.
4151  */
4152 static inline void skb_get_timestamp(const struct sk_buff *skb,
4153 				     struct __kernel_old_timeval *stamp)
4154 {
4155 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4156 }
4157 
4158 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4159 					 struct __kernel_sock_timeval *stamp)
4160 {
4161 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4162 
4163 	stamp->tv_sec = ts.tv_sec;
4164 	stamp->tv_usec = ts.tv_nsec / 1000;
4165 }
4166 
4167 static inline void skb_get_timestampns(const struct sk_buff *skb,
4168 				       struct __kernel_old_timespec *stamp)
4169 {
4170 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4171 
4172 	stamp->tv_sec = ts.tv_sec;
4173 	stamp->tv_nsec = ts.tv_nsec;
4174 }
4175 
4176 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4177 					   struct __kernel_timespec *stamp)
4178 {
4179 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4180 
4181 	stamp->tv_sec = ts.tv_sec;
4182 	stamp->tv_nsec = ts.tv_nsec;
4183 }
4184 
4185 static inline void __net_timestamp(struct sk_buff *skb)
4186 {
4187 	skb->tstamp = ktime_get_real();
4188 	skb->tstamp_type = SKB_CLOCK_REALTIME;
4189 }
4190 
4191 static inline ktime_t net_timedelta(ktime_t t)
4192 {
4193 	return ktime_sub(ktime_get_real(), t);
4194 }
4195 
4196 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4197 					 u8 tstamp_type)
4198 {
4199 	skb->tstamp = kt;
4200 
4201 	if (kt)
4202 		skb->tstamp_type = tstamp_type;
4203 	else
4204 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4205 }
4206 
4207 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4208 						    ktime_t kt, clockid_t clockid)
4209 {
4210 	u8 tstamp_type = SKB_CLOCK_REALTIME;
4211 
4212 	switch (clockid) {
4213 	case CLOCK_REALTIME:
4214 		break;
4215 	case CLOCK_MONOTONIC:
4216 		tstamp_type = SKB_CLOCK_MONOTONIC;
4217 		break;
4218 	case CLOCK_TAI:
4219 		tstamp_type = SKB_CLOCK_TAI;
4220 		break;
4221 	default:
4222 		WARN_ON_ONCE(1);
4223 		kt = 0;
4224 	}
4225 
4226 	skb_set_delivery_time(skb, kt, tstamp_type);
4227 }
4228 
4229 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4230 
4231 /* It is used in the ingress path to clear the delivery_time.
4232  * If needed, set the skb->tstamp to the (rcv) timestamp.
4233  */
4234 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4235 {
4236 	if (skb->tstamp_type) {
4237 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4238 		if (static_branch_unlikely(&netstamp_needed_key))
4239 			skb->tstamp = ktime_get_real();
4240 		else
4241 			skb->tstamp = 0;
4242 	}
4243 }
4244 
4245 static inline void skb_clear_tstamp(struct sk_buff *skb)
4246 {
4247 	if (skb->tstamp_type)
4248 		return;
4249 
4250 	skb->tstamp = 0;
4251 }
4252 
4253 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4254 {
4255 	if (skb->tstamp_type)
4256 		return 0;
4257 
4258 	return skb->tstamp;
4259 }
4260 
4261 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4262 {
4263 	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4264 		return skb->tstamp;
4265 
4266 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4267 		return ktime_get_real();
4268 
4269 	return 0;
4270 }
4271 
4272 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4273 {
4274 	return skb_shinfo(skb)->meta_len;
4275 }
4276 
4277 static inline void *skb_metadata_end(const struct sk_buff *skb)
4278 {
4279 	return skb_mac_header(skb);
4280 }
4281 
4282 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4283 					  const struct sk_buff *skb_b,
4284 					  u8 meta_len)
4285 {
4286 	const void *a = skb_metadata_end(skb_a);
4287 	const void *b = skb_metadata_end(skb_b);
4288 	u64 diffs = 0;
4289 
4290 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4291 	    BITS_PER_LONG != 64)
4292 		goto slow;
4293 
4294 	/* Using more efficient variant than plain call to memcmp(). */
4295 	switch (meta_len) {
4296 #define __it(x, op) (x -= sizeof(u##op))
4297 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4298 	case 32: diffs |= __it_diff(a, b, 64);
4299 		fallthrough;
4300 	case 24: diffs |= __it_diff(a, b, 64);
4301 		fallthrough;
4302 	case 16: diffs |= __it_diff(a, b, 64);
4303 		fallthrough;
4304 	case  8: diffs |= __it_diff(a, b, 64);
4305 		break;
4306 	case 28: diffs |= __it_diff(a, b, 64);
4307 		fallthrough;
4308 	case 20: diffs |= __it_diff(a, b, 64);
4309 		fallthrough;
4310 	case 12: diffs |= __it_diff(a, b, 64);
4311 		fallthrough;
4312 	case  4: diffs |= __it_diff(a, b, 32);
4313 		break;
4314 	default:
4315 slow:
4316 		return memcmp(a - meta_len, b - meta_len, meta_len);
4317 	}
4318 	return diffs;
4319 }
4320 
4321 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4322 					const struct sk_buff *skb_b)
4323 {
4324 	u8 len_a = skb_metadata_len(skb_a);
4325 	u8 len_b = skb_metadata_len(skb_b);
4326 
4327 	if (!(len_a | len_b))
4328 		return false;
4329 
4330 	return len_a != len_b ?
4331 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4332 }
4333 
4334 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4335 {
4336 	skb_shinfo(skb)->meta_len = meta_len;
4337 }
4338 
4339 static inline void skb_metadata_clear(struct sk_buff *skb)
4340 {
4341 	skb_metadata_set(skb, 0);
4342 }
4343 
4344 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4345 
4346 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4347 
4348 void skb_clone_tx_timestamp(struct sk_buff *skb);
4349 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4350 
4351 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4352 
4353 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4354 {
4355 }
4356 
4357 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4358 {
4359 	return false;
4360 }
4361 
4362 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4363 
4364 /**
4365  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4366  *
4367  * PHY drivers may accept clones of transmitted packets for
4368  * timestamping via their phy_driver.txtstamp method. These drivers
4369  * must call this function to return the skb back to the stack with a
4370  * timestamp.
4371  *
4372  * @skb: clone of the original outgoing packet
4373  * @hwtstamps: hardware time stamps
4374  *
4375  */
4376 void skb_complete_tx_timestamp(struct sk_buff *skb,
4377 			       struct skb_shared_hwtstamps *hwtstamps);
4378 
4379 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4380 		     struct skb_shared_hwtstamps *hwtstamps,
4381 		     struct sock *sk, int tstype);
4382 
4383 /**
4384  * skb_tstamp_tx - queue clone of skb with send time stamps
4385  * @orig_skb:	the original outgoing packet
4386  * @hwtstamps:	hardware time stamps, may be NULL if not available
4387  *
4388  * If the skb has a socket associated, then this function clones the
4389  * skb (thus sharing the actual data and optional structures), stores
4390  * the optional hardware time stamping information (if non NULL) or
4391  * generates a software time stamp (otherwise), then queues the clone
4392  * to the error queue of the socket.  Errors are silently ignored.
4393  */
4394 void skb_tstamp_tx(struct sk_buff *orig_skb,
4395 		   struct skb_shared_hwtstamps *hwtstamps);
4396 
4397 /**
4398  * skb_tx_timestamp() - Driver hook for transmit timestamping
4399  *
4400  * Ethernet MAC Drivers should call this function in their hard_xmit()
4401  * function immediately before giving the sk_buff to the MAC hardware.
4402  *
4403  * Specifically, one should make absolutely sure that this function is
4404  * called before TX completion of this packet can trigger.  Otherwise
4405  * the packet could potentially already be freed.
4406  *
4407  * @skb: A socket buffer.
4408  */
4409 static inline void skb_tx_timestamp(struct sk_buff *skb)
4410 {
4411 	skb_clone_tx_timestamp(skb);
4412 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4413 		skb_tstamp_tx(skb, NULL);
4414 }
4415 
4416 /**
4417  * skb_complete_wifi_ack - deliver skb with wifi status
4418  *
4419  * @skb: the original outgoing packet
4420  * @acked: ack status
4421  *
4422  */
4423 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4424 
4425 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4426 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4427 
4428 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4429 {
4430 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4431 		skb->csum_valid ||
4432 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4433 		 skb_checksum_start_offset(skb) >= 0));
4434 }
4435 
4436 /**
4437  *	skb_checksum_complete - Calculate checksum of an entire packet
4438  *	@skb: packet to process
4439  *
4440  *	This function calculates the checksum over the entire packet plus
4441  *	the value of skb->csum.  The latter can be used to supply the
4442  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4443  *	checksum.
4444  *
4445  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4446  *	this function can be used to verify that checksum on received
4447  *	packets.  In that case the function should return zero if the
4448  *	checksum is correct.  In particular, this function will return zero
4449  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4450  *	hardware has already verified the correctness of the checksum.
4451  */
4452 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4453 {
4454 	return skb_csum_unnecessary(skb) ?
4455 	       0 : __skb_checksum_complete(skb);
4456 }
4457 
4458 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4459 {
4460 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4461 		if (skb->csum_level == 0)
4462 			skb->ip_summed = CHECKSUM_NONE;
4463 		else
4464 			skb->csum_level--;
4465 	}
4466 }
4467 
4468 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4469 {
4470 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4471 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4472 			skb->csum_level++;
4473 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4474 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4475 		skb->csum_level = 0;
4476 	}
4477 }
4478 
4479 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4480 {
4481 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4482 		skb->ip_summed = CHECKSUM_NONE;
4483 		skb->csum_level = 0;
4484 	}
4485 }
4486 
4487 /* Check if we need to perform checksum complete validation.
4488  *
4489  * Returns true if checksum complete is needed, false otherwise
4490  * (either checksum is unnecessary or zero checksum is allowed).
4491  */
4492 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4493 						  bool zero_okay,
4494 						  __sum16 check)
4495 {
4496 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4497 		skb->csum_valid = 1;
4498 		__skb_decr_checksum_unnecessary(skb);
4499 		return false;
4500 	}
4501 
4502 	return true;
4503 }
4504 
4505 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4506  * in checksum_init.
4507  */
4508 #define CHECKSUM_BREAK 76
4509 
4510 /* Unset checksum-complete
4511  *
4512  * Unset checksum complete can be done when packet is being modified
4513  * (uncompressed for instance) and checksum-complete value is
4514  * invalidated.
4515  */
4516 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4517 {
4518 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4519 		skb->ip_summed = CHECKSUM_NONE;
4520 }
4521 
4522 /* Validate (init) checksum based on checksum complete.
4523  *
4524  * Return values:
4525  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4526  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4527  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4528  *   non-zero: value of invalid checksum
4529  *
4530  */
4531 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4532 						       bool complete,
4533 						       __wsum psum)
4534 {
4535 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4536 		if (!csum_fold(csum_add(psum, skb->csum))) {
4537 			skb->csum_valid = 1;
4538 			return 0;
4539 		}
4540 	}
4541 
4542 	skb->csum = psum;
4543 
4544 	if (complete || skb->len <= CHECKSUM_BREAK) {
4545 		__sum16 csum;
4546 
4547 		csum = __skb_checksum_complete(skb);
4548 		skb->csum_valid = !csum;
4549 		return csum;
4550 	}
4551 
4552 	return 0;
4553 }
4554 
4555 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4556 {
4557 	return 0;
4558 }
4559 
4560 /* Perform checksum validate (init). Note that this is a macro since we only
4561  * want to calculate the pseudo header which is an input function if necessary.
4562  * First we try to validate without any computation (checksum unnecessary) and
4563  * then calculate based on checksum complete calling the function to compute
4564  * pseudo header.
4565  *
4566  * Return values:
4567  *   0: checksum is validated or try to in skb_checksum_complete
4568  *   non-zero: value of invalid checksum
4569  */
4570 #define __skb_checksum_validate(skb, proto, complete,			\
4571 				zero_okay, check, compute_pseudo)	\
4572 ({									\
4573 	__sum16 __ret = 0;						\
4574 	skb->csum_valid = 0;						\
4575 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4576 		__ret = __skb_checksum_validate_complete(skb,		\
4577 				complete, compute_pseudo(skb, proto));	\
4578 	__ret;								\
4579 })
4580 
4581 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4582 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4583 
4584 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4585 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4586 
4587 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4588 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4589 
4590 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4591 					 compute_pseudo)		\
4592 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4593 
4594 #define skb_checksum_simple_validate(skb)				\
4595 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4596 
4597 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4598 {
4599 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4600 }
4601 
4602 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4603 {
4604 	skb->csum = ~pseudo;
4605 	skb->ip_summed = CHECKSUM_COMPLETE;
4606 }
4607 
4608 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4609 do {									\
4610 	if (__skb_checksum_convert_check(skb))				\
4611 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4612 } while (0)
4613 
4614 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4615 					      u16 start, u16 offset)
4616 {
4617 	skb->ip_summed = CHECKSUM_PARTIAL;
4618 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4619 	skb->csum_offset = offset - start;
4620 }
4621 
4622 /* Update skbuf and packet to reflect the remote checksum offload operation.
4623  * When called, ptr indicates the starting point for skb->csum when
4624  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4625  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4626  */
4627 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4628 				       int start, int offset, bool nopartial)
4629 {
4630 	__wsum delta;
4631 
4632 	if (!nopartial) {
4633 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4634 		return;
4635 	}
4636 
4637 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4638 		__skb_checksum_complete(skb);
4639 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4640 	}
4641 
4642 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4643 
4644 	/* Adjust skb->csum since we changed the packet */
4645 	skb->csum = csum_add(skb->csum, delta);
4646 }
4647 
4648 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4649 {
4650 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4651 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4652 #else
4653 	return NULL;
4654 #endif
4655 }
4656 
4657 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4658 {
4659 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4660 	return skb->_nfct;
4661 #else
4662 	return 0UL;
4663 #endif
4664 }
4665 
4666 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4667 {
4668 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4669 	skb->slow_gro |= !!nfct;
4670 	skb->_nfct = nfct;
4671 #endif
4672 }
4673 
4674 #ifdef CONFIG_SKB_EXTENSIONS
4675 enum skb_ext_id {
4676 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4677 	SKB_EXT_BRIDGE_NF,
4678 #endif
4679 #ifdef CONFIG_XFRM
4680 	SKB_EXT_SEC_PATH,
4681 #endif
4682 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4683 	TC_SKB_EXT,
4684 #endif
4685 #if IS_ENABLED(CONFIG_MPTCP)
4686 	SKB_EXT_MPTCP,
4687 #endif
4688 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4689 	SKB_EXT_MCTP,
4690 #endif
4691 	SKB_EXT_NUM, /* must be last */
4692 };
4693 
4694 /**
4695  *	struct skb_ext - sk_buff extensions
4696  *	@refcnt: 1 on allocation, deallocated on 0
4697  *	@offset: offset to add to @data to obtain extension address
4698  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4699  *	@data: start of extension data, variable sized
4700  *
4701  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4702  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4703  */
4704 struct skb_ext {
4705 	refcount_t refcnt;
4706 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4707 	u8 chunks;		/* same */
4708 	char data[] __aligned(8);
4709 };
4710 
4711 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4712 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4713 		    struct skb_ext *ext);
4714 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4715 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4716 void __skb_ext_put(struct skb_ext *ext);
4717 
4718 static inline void skb_ext_put(struct sk_buff *skb)
4719 {
4720 	if (skb->active_extensions)
4721 		__skb_ext_put(skb->extensions);
4722 }
4723 
4724 static inline void __skb_ext_copy(struct sk_buff *dst,
4725 				  const struct sk_buff *src)
4726 {
4727 	dst->active_extensions = src->active_extensions;
4728 
4729 	if (src->active_extensions) {
4730 		struct skb_ext *ext = src->extensions;
4731 
4732 		refcount_inc(&ext->refcnt);
4733 		dst->extensions = ext;
4734 	}
4735 }
4736 
4737 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4738 {
4739 	skb_ext_put(dst);
4740 	__skb_ext_copy(dst, src);
4741 }
4742 
4743 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4744 {
4745 	return !!ext->offset[i];
4746 }
4747 
4748 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4749 {
4750 	return skb->active_extensions & (1 << id);
4751 }
4752 
4753 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4754 {
4755 	if (skb_ext_exist(skb, id))
4756 		__skb_ext_del(skb, id);
4757 }
4758 
4759 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4760 {
4761 	if (skb_ext_exist(skb, id)) {
4762 		struct skb_ext *ext = skb->extensions;
4763 
4764 		return (void *)ext + (ext->offset[id] << 3);
4765 	}
4766 
4767 	return NULL;
4768 }
4769 
4770 static inline void skb_ext_reset(struct sk_buff *skb)
4771 {
4772 	if (unlikely(skb->active_extensions)) {
4773 		__skb_ext_put(skb->extensions);
4774 		skb->active_extensions = 0;
4775 	}
4776 }
4777 
4778 static inline bool skb_has_extensions(struct sk_buff *skb)
4779 {
4780 	return unlikely(skb->active_extensions);
4781 }
4782 #else
4783 static inline void skb_ext_put(struct sk_buff *skb) {}
4784 static inline void skb_ext_reset(struct sk_buff *skb) {}
4785 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4786 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4787 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4788 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4789 #endif /* CONFIG_SKB_EXTENSIONS */
4790 
4791 static inline void nf_reset_ct(struct sk_buff *skb)
4792 {
4793 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4794 	nf_conntrack_put(skb_nfct(skb));
4795 	skb->_nfct = 0;
4796 #endif
4797 }
4798 
4799 static inline void nf_reset_trace(struct sk_buff *skb)
4800 {
4801 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4802 	skb->nf_trace = 0;
4803 #endif
4804 }
4805 
4806 static inline void ipvs_reset(struct sk_buff *skb)
4807 {
4808 #if IS_ENABLED(CONFIG_IP_VS)
4809 	skb->ipvs_property = 0;
4810 #endif
4811 }
4812 
4813 /* Note: This doesn't put any conntrack info in dst. */
4814 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4815 			     bool copy)
4816 {
4817 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4818 	dst->_nfct = src->_nfct;
4819 	nf_conntrack_get(skb_nfct(src));
4820 #endif
4821 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4822 	if (copy)
4823 		dst->nf_trace = src->nf_trace;
4824 #endif
4825 }
4826 
4827 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4828 {
4829 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4830 	nf_conntrack_put(skb_nfct(dst));
4831 #endif
4832 	dst->slow_gro = src->slow_gro;
4833 	__nf_copy(dst, src, true);
4834 }
4835 
4836 #ifdef CONFIG_NETWORK_SECMARK
4837 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4838 {
4839 	to->secmark = from->secmark;
4840 }
4841 
4842 static inline void skb_init_secmark(struct sk_buff *skb)
4843 {
4844 	skb->secmark = 0;
4845 }
4846 #else
4847 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4848 { }
4849 
4850 static inline void skb_init_secmark(struct sk_buff *skb)
4851 { }
4852 #endif
4853 
4854 static inline int secpath_exists(const struct sk_buff *skb)
4855 {
4856 #ifdef CONFIG_XFRM
4857 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4858 #else
4859 	return 0;
4860 #endif
4861 }
4862 
4863 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4864 {
4865 	return !skb->destructor &&
4866 		!secpath_exists(skb) &&
4867 		!skb_nfct(skb) &&
4868 		!skb->_skb_refdst &&
4869 		!skb_has_frag_list(skb);
4870 }
4871 
4872 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4873 {
4874 	skb->queue_mapping = queue_mapping;
4875 }
4876 
4877 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4878 {
4879 	return skb->queue_mapping;
4880 }
4881 
4882 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4883 {
4884 	to->queue_mapping = from->queue_mapping;
4885 }
4886 
4887 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4888 {
4889 	skb->queue_mapping = rx_queue + 1;
4890 }
4891 
4892 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4893 {
4894 	return skb->queue_mapping - 1;
4895 }
4896 
4897 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4898 {
4899 	return skb->queue_mapping != 0;
4900 }
4901 
4902 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4903 {
4904 	skb->dst_pending_confirm = val;
4905 }
4906 
4907 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4908 {
4909 	return skb->dst_pending_confirm != 0;
4910 }
4911 
4912 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4913 {
4914 #ifdef CONFIG_XFRM
4915 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4916 #else
4917 	return NULL;
4918 #endif
4919 }
4920 
4921 static inline bool skb_is_gso(const struct sk_buff *skb)
4922 {
4923 	return skb_shinfo(skb)->gso_size;
4924 }
4925 
4926 /* Note: Should be called only if skb_is_gso(skb) is true */
4927 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4928 {
4929 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4930 }
4931 
4932 /* Note: Should be called only if skb_is_gso(skb) is true */
4933 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4934 {
4935 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4936 }
4937 
4938 /* Note: Should be called only if skb_is_gso(skb) is true */
4939 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4940 {
4941 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4942 }
4943 
4944 static inline void skb_gso_reset(struct sk_buff *skb)
4945 {
4946 	skb_shinfo(skb)->gso_size = 0;
4947 	skb_shinfo(skb)->gso_segs = 0;
4948 	skb_shinfo(skb)->gso_type = 0;
4949 }
4950 
4951 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4952 					 u16 increment)
4953 {
4954 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4955 		return;
4956 	shinfo->gso_size += increment;
4957 }
4958 
4959 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4960 					 u16 decrement)
4961 {
4962 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4963 		return;
4964 	shinfo->gso_size -= decrement;
4965 }
4966 
4967 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4968 
4969 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4970 {
4971 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4972 	 * wanted then gso_type will be set. */
4973 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4974 
4975 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4976 	    unlikely(shinfo->gso_type == 0)) {
4977 		__skb_warn_lro_forwarding(skb);
4978 		return true;
4979 	}
4980 	return false;
4981 }
4982 
4983 static inline void skb_forward_csum(struct sk_buff *skb)
4984 {
4985 	/* Unfortunately we don't support this one.  Any brave souls? */
4986 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4987 		skb->ip_summed = CHECKSUM_NONE;
4988 }
4989 
4990 /**
4991  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4992  * @skb: skb to check
4993  *
4994  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4995  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4996  * use this helper, to document places where we make this assertion.
4997  */
4998 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4999 {
5000 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5001 }
5002 
5003 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5004 
5005 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5006 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5007 				     unsigned int transport_len,
5008 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5009 
5010 /**
5011  * skb_head_is_locked - Determine if the skb->head is locked down
5012  * @skb: skb to check
5013  *
5014  * The head on skbs build around a head frag can be removed if they are
5015  * not cloned.  This function returns true if the skb head is locked down
5016  * due to either being allocated via kmalloc, or by being a clone with
5017  * multiple references to the head.
5018  */
5019 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5020 {
5021 	return !skb->head_frag || skb_cloned(skb);
5022 }
5023 
5024 /* Local Checksum Offload.
5025  * Compute outer checksum based on the assumption that the
5026  * inner checksum will be offloaded later.
5027  * See Documentation/networking/checksum-offloads.rst for
5028  * explanation of how this works.
5029  * Fill in outer checksum adjustment (e.g. with sum of outer
5030  * pseudo-header) before calling.
5031  * Also ensure that inner checksum is in linear data area.
5032  */
5033 static inline __wsum lco_csum(struct sk_buff *skb)
5034 {
5035 	unsigned char *csum_start = skb_checksum_start(skb);
5036 	unsigned char *l4_hdr = skb_transport_header(skb);
5037 	__wsum partial;
5038 
5039 	/* Start with complement of inner checksum adjustment */
5040 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5041 						    skb->csum_offset));
5042 
5043 	/* Add in checksum of our headers (incl. outer checksum
5044 	 * adjustment filled in by caller) and return result.
5045 	 */
5046 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5047 }
5048 
5049 static inline bool skb_is_redirected(const struct sk_buff *skb)
5050 {
5051 	return skb->redirected;
5052 }
5053 
5054 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5055 {
5056 	skb->redirected = 1;
5057 #ifdef CONFIG_NET_REDIRECT
5058 	skb->from_ingress = from_ingress;
5059 	if (skb->from_ingress)
5060 		skb_clear_tstamp(skb);
5061 #endif
5062 }
5063 
5064 static inline void skb_reset_redirect(struct sk_buff *skb)
5065 {
5066 	skb->redirected = 0;
5067 }
5068 
5069 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5070 					      bool from_ingress)
5071 {
5072 	skb->redirected = 1;
5073 #ifdef CONFIG_NET_REDIRECT
5074 	skb->from_ingress = from_ingress;
5075 #endif
5076 }
5077 
5078 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5079 {
5080 #if IS_ENABLED(CONFIG_IP_SCTP)
5081 	return skb->csum_not_inet;
5082 #else
5083 	return 0;
5084 #endif
5085 }
5086 
5087 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5088 {
5089 	skb->ip_summed = CHECKSUM_NONE;
5090 #if IS_ENABLED(CONFIG_IP_SCTP)
5091 	skb->csum_not_inet = 0;
5092 #endif
5093 }
5094 
5095 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5096 				       const u64 kcov_handle)
5097 {
5098 #ifdef CONFIG_KCOV
5099 	skb->kcov_handle = kcov_handle;
5100 #endif
5101 }
5102 
5103 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5104 {
5105 #ifdef CONFIG_KCOV
5106 	return skb->kcov_handle;
5107 #else
5108 	return 0;
5109 #endif
5110 }
5111 
5112 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5113 {
5114 #ifdef CONFIG_PAGE_POOL
5115 	skb->pp_recycle = 1;
5116 #endif
5117 }
5118 
5119 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5120 			     ssize_t maxsize, gfp_t gfp);
5121 
5122 #endif	/* __KERNEL__ */
5123 #endif	/* _LINUX_SKBUFF_H */
5124