xref: /linux-6.15/include/linux/skbuff.h (revision eb2bce7f)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21 
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31 
32 #define HAVE_ALLOC_SKB		/* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
34 
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X)	\
44 	(((X) - sizeof(struct skb_shared_info)) & \
45 	 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* A. Checksumming of received packets by device.
52  *
53  *	NONE: device failed to checksum this packet.
54  *		skb->csum is undefined.
55  *
56  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
57  *		skb->csum is undefined.
58  *	      It is bad option, but, unfortunately, many of vendors do this.
59  *	      Apparently with secret goal to sell you new device, when you
60  *	      will add new protocol to your host. F.e. IPv6. 8)
61  *
62  *	COMPLETE: the most generic way. Device supplied checksum of _all_
63  *	    the packet as seen by netif_rx in skb->csum.
64  *	    NOTE: Even if device supports only some protocols, but
65  *	    is able to produce some skb->csum, it MUST use COMPLETE,
66  *	    not UNNECESSARY.
67  *
68  * B. Checksumming on output.
69  *
70  *	NONE: skb is checksummed by protocol or csum is not required.
71  *
72  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
73  *	from skb->transport_header to the end and to record the checksum
74  *	at skb->transport_header + skb->csum.
75  *
76  *	Device must show its capabilities in dev->features, set
77  *	at device setup time.
78  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
79  *			  everything.
80  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
81  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
82  *			  TCP/UDP over IPv4. Sigh. Vendors like this
83  *			  way by an unknown reason. Though, see comment above
84  *			  about CHECKSUM_UNNECESSARY. 8)
85  *
86  *	Any questions? No questions, good. 		--ANK
87  */
88 
89 struct net_device;
90 struct scatterlist;
91 
92 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
93 struct nf_conntrack {
94 	atomic_t use;
95 };
96 #endif
97 
98 #ifdef CONFIG_BRIDGE_NETFILTER
99 struct nf_bridge_info {
100 	atomic_t use;
101 	struct net_device *physindev;
102 	struct net_device *physoutdev;
103 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
104 	struct net_device *netoutdev;
105 #endif
106 	unsigned int mask;
107 	unsigned long data[32 / sizeof(unsigned long)];
108 };
109 #endif
110 
111 struct sk_buff_head {
112 	/* These two members must be first. */
113 	struct sk_buff	*next;
114 	struct sk_buff	*prev;
115 
116 	__u32		qlen;
117 	spinlock_t	lock;
118 };
119 
120 struct sk_buff;
121 
122 /* To allow 64K frame to be packed as single skb without frag_list */
123 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
124 
125 typedef struct skb_frag_struct skb_frag_t;
126 
127 struct skb_frag_struct {
128 	struct page *page;
129 	__u16 page_offset;
130 	__u16 size;
131 };
132 
133 /* This data is invariant across clones and lives at
134  * the end of the header data, ie. at skb->end.
135  */
136 struct skb_shared_info {
137 	atomic_t	dataref;
138 	unsigned short	nr_frags;
139 	unsigned short	gso_size;
140 	/* Warning: this field is not always filled in (UFO)! */
141 	unsigned short	gso_segs;
142 	unsigned short  gso_type;
143 	__be32          ip6_frag_id;
144 	struct sk_buff	*frag_list;
145 	skb_frag_t	frags[MAX_SKB_FRAGS];
146 };
147 
148 /* We divide dataref into two halves.  The higher 16 bits hold references
149  * to the payload part of skb->data.  The lower 16 bits hold references to
150  * the entire skb->data.  It is up to the users of the skb to agree on
151  * where the payload starts.
152  *
153  * All users must obey the rule that the skb->data reference count must be
154  * greater than or equal to the payload reference count.
155  *
156  * Holding a reference to the payload part means that the user does not
157  * care about modifications to the header part of skb->data.
158  */
159 #define SKB_DATAREF_SHIFT 16
160 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
161 
162 
163 enum {
164 	SKB_FCLONE_UNAVAILABLE,
165 	SKB_FCLONE_ORIG,
166 	SKB_FCLONE_CLONE,
167 };
168 
169 enum {
170 	SKB_GSO_TCPV4 = 1 << 0,
171 	SKB_GSO_UDP = 1 << 1,
172 
173 	/* This indicates the skb is from an untrusted source. */
174 	SKB_GSO_DODGY = 1 << 2,
175 
176 	/* This indicates the tcp segment has CWR set. */
177 	SKB_GSO_TCP_ECN = 1 << 3,
178 
179 	SKB_GSO_TCPV6 = 1 << 4,
180 };
181 
182 #if BITS_PER_LONG > 32
183 #define NET_SKBUFF_DATA_USES_OFFSET 1
184 #endif
185 
186 #ifdef NET_SKBUFF_DATA_USES_OFFSET
187 typedef unsigned int sk_buff_data_t;
188 #else
189 typedef unsigned char *sk_buff_data_t;
190 #endif
191 
192 /**
193  *	struct sk_buff - socket buffer
194  *	@next: Next buffer in list
195  *	@prev: Previous buffer in list
196  *	@sk: Socket we are owned by
197  *	@tstamp: Time we arrived
198  *	@dev: Device we arrived on/are leaving by
199  *	@iif: ifindex of device we arrived on
200  *	@transport_header: Transport layer header
201  *	@network_header: Network layer header
202  *	@mac_header: Link layer header
203  *	@dst: destination entry
204  *	@sp: the security path, used for xfrm
205  *	@cb: Control buffer. Free for use by every layer. Put private vars here
206  *	@len: Length of actual data
207  *	@data_len: Data length
208  *	@mac_len: Length of link layer header
209  *	@csum: Checksum (must include start/offset pair)
210  *	@csum_start: Offset from skb->head where checksumming should start
211  *	@csum_offset: Offset from csum_start where checksum should be stored
212  *	@local_df: allow local fragmentation
213  *	@cloned: Head may be cloned (check refcnt to be sure)
214  *	@nohdr: Payload reference only, must not modify header
215  *	@pkt_type: Packet class
216  *	@fclone: skbuff clone status
217  *	@ip_summed: Driver fed us an IP checksum
218  *	@priority: Packet queueing priority
219  *	@users: User count - see {datagram,tcp}.c
220  *	@protocol: Packet protocol from driver
221  *	@truesize: Buffer size
222  *	@head: Head of buffer
223  *	@data: Data head pointer
224  *	@tail: Tail pointer
225  *	@end: End pointer
226  *	@destructor: Destruct function
227  *	@mark: Generic packet mark
228  *	@nfct: Associated connection, if any
229  *	@ipvs_property: skbuff is owned by ipvs
230  *	@nfctinfo: Relationship of this skb to the connection
231  *	@nfct_reasm: netfilter conntrack re-assembly pointer
232  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
233  *	@tc_index: Traffic control index
234  *	@tc_verd: traffic control verdict
235  *	@dma_cookie: a cookie to one of several possible DMA operations
236  *		done by skb DMA functions
237  *	@secmark: security marking
238  */
239 
240 struct sk_buff {
241 	/* These two members must be first. */
242 	struct sk_buff		*next;
243 	struct sk_buff		*prev;
244 
245 	struct sock		*sk;
246 	ktime_t			tstamp;
247 	struct net_device	*dev;
248 	int			iif;
249 	/* 4 byte hole on 64 bit*/
250 
251 	struct  dst_entry	*dst;
252 	struct	sec_path	*sp;
253 
254 	/*
255 	 * This is the control buffer. It is free to use for every
256 	 * layer. Please put your private variables there. If you
257 	 * want to keep them across layers you have to do a skb_clone()
258 	 * first. This is owned by whoever has the skb queued ATM.
259 	 */
260 	char			cb[48];
261 
262 	unsigned int		len,
263 				data_len,
264 				mac_len;
265 	union {
266 		__wsum		csum;
267 		struct {
268 			__u16	csum_start;
269 			__u16	csum_offset;
270 		};
271 	};
272 	__u32			priority;
273 	__u8			local_df:1,
274 				cloned:1,
275 				ip_summed:2,
276 				nohdr:1,
277 				nfctinfo:3;
278 	__u8			pkt_type:3,
279 				fclone:2,
280 				ipvs_property:1;
281 	__be16			protocol;
282 
283 	void			(*destructor)(struct sk_buff *skb);
284 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
285 	struct nf_conntrack	*nfct;
286 	struct sk_buff		*nfct_reasm;
287 #endif
288 #ifdef CONFIG_BRIDGE_NETFILTER
289 	struct nf_bridge_info	*nf_bridge;
290 #endif
291 #ifdef CONFIG_NET_SCHED
292 	__u16			tc_index;	/* traffic control index */
293 #ifdef CONFIG_NET_CLS_ACT
294 	__u16			tc_verd;	/* traffic control verdict */
295 #endif
296 #endif
297 #ifdef CONFIG_NET_DMA
298 	dma_cookie_t		dma_cookie;
299 #endif
300 #ifdef CONFIG_NETWORK_SECMARK
301 	__u32			secmark;
302 #endif
303 
304 	__u32			mark;
305 
306 	sk_buff_data_t		transport_header;
307 	sk_buff_data_t		network_header;
308 	sk_buff_data_t		mac_header;
309 	/* These elements must be at the end, see alloc_skb() for details.  */
310 	sk_buff_data_t		tail;
311 	sk_buff_data_t		end;
312 	unsigned char		*head,
313 				*data;
314 	unsigned int		truesize;
315 	atomic_t		users;
316 };
317 
318 #ifdef __KERNEL__
319 /*
320  *	Handling routines are only of interest to the kernel
321  */
322 #include <linux/slab.h>
323 
324 #include <asm/system.h>
325 
326 extern void kfree_skb(struct sk_buff *skb);
327 extern void	       __kfree_skb(struct sk_buff *skb);
328 extern struct sk_buff *__alloc_skb(unsigned int size,
329 				   gfp_t priority, int fclone, int node);
330 static inline struct sk_buff *alloc_skb(unsigned int size,
331 					gfp_t priority)
332 {
333 	return __alloc_skb(size, priority, 0, -1);
334 }
335 
336 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
337 					       gfp_t priority)
338 {
339 	return __alloc_skb(size, priority, 1, -1);
340 }
341 
342 extern void	       kfree_skbmem(struct sk_buff *skb);
343 extern struct sk_buff *skb_clone(struct sk_buff *skb,
344 				 gfp_t priority);
345 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
346 				gfp_t priority);
347 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
348 				 gfp_t gfp_mask);
349 extern int	       pskb_expand_head(struct sk_buff *skb,
350 					int nhead, int ntail,
351 					gfp_t gfp_mask);
352 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
353 					    unsigned int headroom);
354 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
355 				       int newheadroom, int newtailroom,
356 				       gfp_t priority);
357 extern int	       skb_to_sgvec(struct sk_buff *skb,
358 				    struct scatterlist *sg, int offset,
359 				    int len);
360 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
361 				    struct sk_buff **trailer);
362 extern int	       skb_pad(struct sk_buff *skb, int pad);
363 #define dev_kfree_skb(a)	kfree_skb(a)
364 extern void	      skb_over_panic(struct sk_buff *skb, int len,
365 				     void *here);
366 extern void	      skb_under_panic(struct sk_buff *skb, int len,
367 				      void *here);
368 extern void	      skb_truesize_bug(struct sk_buff *skb);
369 
370 static inline void skb_truesize_check(struct sk_buff *skb)
371 {
372 	if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
373 		skb_truesize_bug(skb);
374 }
375 
376 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
377 			int getfrag(void *from, char *to, int offset,
378 			int len,int odd, struct sk_buff *skb),
379 			void *from, int length);
380 
381 struct skb_seq_state
382 {
383 	__u32		lower_offset;
384 	__u32		upper_offset;
385 	__u32		frag_idx;
386 	__u32		stepped_offset;
387 	struct sk_buff	*root_skb;
388 	struct sk_buff	*cur_skb;
389 	__u8		*frag_data;
390 };
391 
392 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
393 					   unsigned int from, unsigned int to,
394 					   struct skb_seq_state *st);
395 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
396 				   struct skb_seq_state *st);
397 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
398 
399 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
400 				    unsigned int to, struct ts_config *config,
401 				    struct ts_state *state);
402 
403 #ifdef NET_SKBUFF_DATA_USES_OFFSET
404 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
405 {
406 	return skb->head + skb->end;
407 }
408 #else
409 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
410 {
411 	return skb->end;
412 }
413 #endif
414 
415 /* Internal */
416 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
417 
418 /**
419  *	skb_queue_empty - check if a queue is empty
420  *	@list: queue head
421  *
422  *	Returns true if the queue is empty, false otherwise.
423  */
424 static inline int skb_queue_empty(const struct sk_buff_head *list)
425 {
426 	return list->next == (struct sk_buff *)list;
427 }
428 
429 /**
430  *	skb_get - reference buffer
431  *	@skb: buffer to reference
432  *
433  *	Makes another reference to a socket buffer and returns a pointer
434  *	to the buffer.
435  */
436 static inline struct sk_buff *skb_get(struct sk_buff *skb)
437 {
438 	atomic_inc(&skb->users);
439 	return skb;
440 }
441 
442 /*
443  * If users == 1, we are the only owner and are can avoid redundant
444  * atomic change.
445  */
446 
447 /**
448  *	skb_cloned - is the buffer a clone
449  *	@skb: buffer to check
450  *
451  *	Returns true if the buffer was generated with skb_clone() and is
452  *	one of multiple shared copies of the buffer. Cloned buffers are
453  *	shared data so must not be written to under normal circumstances.
454  */
455 static inline int skb_cloned(const struct sk_buff *skb)
456 {
457 	return skb->cloned &&
458 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
459 }
460 
461 /**
462  *	skb_header_cloned - is the header a clone
463  *	@skb: buffer to check
464  *
465  *	Returns true if modifying the header part of the buffer requires
466  *	the data to be copied.
467  */
468 static inline int skb_header_cloned(const struct sk_buff *skb)
469 {
470 	int dataref;
471 
472 	if (!skb->cloned)
473 		return 0;
474 
475 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
476 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
477 	return dataref != 1;
478 }
479 
480 /**
481  *	skb_header_release - release reference to header
482  *	@skb: buffer to operate on
483  *
484  *	Drop a reference to the header part of the buffer.  This is done
485  *	by acquiring a payload reference.  You must not read from the header
486  *	part of skb->data after this.
487  */
488 static inline void skb_header_release(struct sk_buff *skb)
489 {
490 	BUG_ON(skb->nohdr);
491 	skb->nohdr = 1;
492 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
493 }
494 
495 /**
496  *	skb_shared - is the buffer shared
497  *	@skb: buffer to check
498  *
499  *	Returns true if more than one person has a reference to this
500  *	buffer.
501  */
502 static inline int skb_shared(const struct sk_buff *skb)
503 {
504 	return atomic_read(&skb->users) != 1;
505 }
506 
507 /**
508  *	skb_share_check - check if buffer is shared and if so clone it
509  *	@skb: buffer to check
510  *	@pri: priority for memory allocation
511  *
512  *	If the buffer is shared the buffer is cloned and the old copy
513  *	drops a reference. A new clone with a single reference is returned.
514  *	If the buffer is not shared the original buffer is returned. When
515  *	being called from interrupt status or with spinlocks held pri must
516  *	be GFP_ATOMIC.
517  *
518  *	NULL is returned on a memory allocation failure.
519  */
520 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
521 					      gfp_t pri)
522 {
523 	might_sleep_if(pri & __GFP_WAIT);
524 	if (skb_shared(skb)) {
525 		struct sk_buff *nskb = skb_clone(skb, pri);
526 		kfree_skb(skb);
527 		skb = nskb;
528 	}
529 	return skb;
530 }
531 
532 /*
533  *	Copy shared buffers into a new sk_buff. We effectively do COW on
534  *	packets to handle cases where we have a local reader and forward
535  *	and a couple of other messy ones. The normal one is tcpdumping
536  *	a packet thats being forwarded.
537  */
538 
539 /**
540  *	skb_unshare - make a copy of a shared buffer
541  *	@skb: buffer to check
542  *	@pri: priority for memory allocation
543  *
544  *	If the socket buffer is a clone then this function creates a new
545  *	copy of the data, drops a reference count on the old copy and returns
546  *	the new copy with the reference count at 1. If the buffer is not a clone
547  *	the original buffer is returned. When called with a spinlock held or
548  *	from interrupt state @pri must be %GFP_ATOMIC
549  *
550  *	%NULL is returned on a memory allocation failure.
551  */
552 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
553 					  gfp_t pri)
554 {
555 	might_sleep_if(pri & __GFP_WAIT);
556 	if (skb_cloned(skb)) {
557 		struct sk_buff *nskb = skb_copy(skb, pri);
558 		kfree_skb(skb);	/* Free our shared copy */
559 		skb = nskb;
560 	}
561 	return skb;
562 }
563 
564 /**
565  *	skb_peek
566  *	@list_: list to peek at
567  *
568  *	Peek an &sk_buff. Unlike most other operations you _MUST_
569  *	be careful with this one. A peek leaves the buffer on the
570  *	list and someone else may run off with it. You must hold
571  *	the appropriate locks or have a private queue to do this.
572  *
573  *	Returns %NULL for an empty list or a pointer to the head element.
574  *	The reference count is not incremented and the reference is therefore
575  *	volatile. Use with caution.
576  */
577 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
578 {
579 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
580 	if (list == (struct sk_buff *)list_)
581 		list = NULL;
582 	return list;
583 }
584 
585 /**
586  *	skb_peek_tail
587  *	@list_: list to peek at
588  *
589  *	Peek an &sk_buff. Unlike most other operations you _MUST_
590  *	be careful with this one. A peek leaves the buffer on the
591  *	list and someone else may run off with it. You must hold
592  *	the appropriate locks or have a private queue to do this.
593  *
594  *	Returns %NULL for an empty list or a pointer to the tail element.
595  *	The reference count is not incremented and the reference is therefore
596  *	volatile. Use with caution.
597  */
598 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
599 {
600 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
601 	if (list == (struct sk_buff *)list_)
602 		list = NULL;
603 	return list;
604 }
605 
606 /**
607  *	skb_queue_len	- get queue length
608  *	@list_: list to measure
609  *
610  *	Return the length of an &sk_buff queue.
611  */
612 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
613 {
614 	return list_->qlen;
615 }
616 
617 /*
618  * This function creates a split out lock class for each invocation;
619  * this is needed for now since a whole lot of users of the skb-queue
620  * infrastructure in drivers have different locking usage (in hardirq)
621  * than the networking core (in softirq only). In the long run either the
622  * network layer or drivers should need annotation to consolidate the
623  * main types of usage into 3 classes.
624  */
625 static inline void skb_queue_head_init(struct sk_buff_head *list)
626 {
627 	spin_lock_init(&list->lock);
628 	list->prev = list->next = (struct sk_buff *)list;
629 	list->qlen = 0;
630 }
631 
632 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
633 		struct lock_class_key *class)
634 {
635 	skb_queue_head_init(list);
636 	lockdep_set_class(&list->lock, class);
637 }
638 
639 /*
640  *	Insert an sk_buff at the start of a list.
641  *
642  *	The "__skb_xxxx()" functions are the non-atomic ones that
643  *	can only be called with interrupts disabled.
644  */
645 
646 /**
647  *	__skb_queue_after - queue a buffer at the list head
648  *	@list: list to use
649  *	@prev: place after this buffer
650  *	@newsk: buffer to queue
651  *
652  *	Queue a buffer int the middle of a list. This function takes no locks
653  *	and you must therefore hold required locks before calling it.
654  *
655  *	A buffer cannot be placed on two lists at the same time.
656  */
657 static inline void __skb_queue_after(struct sk_buff_head *list,
658 				     struct sk_buff *prev,
659 				     struct sk_buff *newsk)
660 {
661 	struct sk_buff *next;
662 	list->qlen++;
663 
664 	next = prev->next;
665 	newsk->next = next;
666 	newsk->prev = prev;
667 	next->prev  = prev->next = newsk;
668 }
669 
670 /**
671  *	__skb_queue_head - queue a buffer at the list head
672  *	@list: list to use
673  *	@newsk: buffer to queue
674  *
675  *	Queue a buffer at the start of a list. This function takes no locks
676  *	and you must therefore hold required locks before calling it.
677  *
678  *	A buffer cannot be placed on two lists at the same time.
679  */
680 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
681 static inline void __skb_queue_head(struct sk_buff_head *list,
682 				    struct sk_buff *newsk)
683 {
684 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
685 }
686 
687 /**
688  *	__skb_queue_tail - queue a buffer at the list tail
689  *	@list: list to use
690  *	@newsk: buffer to queue
691  *
692  *	Queue a buffer at the end of a list. This function takes no locks
693  *	and you must therefore hold required locks before calling it.
694  *
695  *	A buffer cannot be placed on two lists at the same time.
696  */
697 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
698 static inline void __skb_queue_tail(struct sk_buff_head *list,
699 				   struct sk_buff *newsk)
700 {
701 	struct sk_buff *prev, *next;
702 
703 	list->qlen++;
704 	next = (struct sk_buff *)list;
705 	prev = next->prev;
706 	newsk->next = next;
707 	newsk->prev = prev;
708 	next->prev  = prev->next = newsk;
709 }
710 
711 
712 /**
713  *	__skb_dequeue - remove from the head of the queue
714  *	@list: list to dequeue from
715  *
716  *	Remove the head of the list. This function does not take any locks
717  *	so must be used with appropriate locks held only. The head item is
718  *	returned or %NULL if the list is empty.
719  */
720 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
721 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
722 {
723 	struct sk_buff *next, *prev, *result;
724 
725 	prev = (struct sk_buff *) list;
726 	next = prev->next;
727 	result = NULL;
728 	if (next != prev) {
729 		result	     = next;
730 		next	     = next->next;
731 		list->qlen--;
732 		next->prev   = prev;
733 		prev->next   = next;
734 		result->next = result->prev = NULL;
735 	}
736 	return result;
737 }
738 
739 
740 /*
741  *	Insert a packet on a list.
742  */
743 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
744 static inline void __skb_insert(struct sk_buff *newsk,
745 				struct sk_buff *prev, struct sk_buff *next,
746 				struct sk_buff_head *list)
747 {
748 	newsk->next = next;
749 	newsk->prev = prev;
750 	next->prev  = prev->next = newsk;
751 	list->qlen++;
752 }
753 
754 /*
755  *	Place a packet after a given packet in a list.
756  */
757 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
758 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
759 {
760 	__skb_insert(newsk, old, old->next, list);
761 }
762 
763 /*
764  * remove sk_buff from list. _Must_ be called atomically, and with
765  * the list known..
766  */
767 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
768 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
769 {
770 	struct sk_buff *next, *prev;
771 
772 	list->qlen--;
773 	next	   = skb->next;
774 	prev	   = skb->prev;
775 	skb->next  = skb->prev = NULL;
776 	next->prev = prev;
777 	prev->next = next;
778 }
779 
780 
781 /* XXX: more streamlined implementation */
782 
783 /**
784  *	__skb_dequeue_tail - remove from the tail of the queue
785  *	@list: list to dequeue from
786  *
787  *	Remove the tail of the list. This function does not take any locks
788  *	so must be used with appropriate locks held only. The tail item is
789  *	returned or %NULL if the list is empty.
790  */
791 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
792 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
793 {
794 	struct sk_buff *skb = skb_peek_tail(list);
795 	if (skb)
796 		__skb_unlink(skb, list);
797 	return skb;
798 }
799 
800 
801 static inline int skb_is_nonlinear(const struct sk_buff *skb)
802 {
803 	return skb->data_len;
804 }
805 
806 static inline unsigned int skb_headlen(const struct sk_buff *skb)
807 {
808 	return skb->len - skb->data_len;
809 }
810 
811 static inline int skb_pagelen(const struct sk_buff *skb)
812 {
813 	int i, len = 0;
814 
815 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
816 		len += skb_shinfo(skb)->frags[i].size;
817 	return len + skb_headlen(skb);
818 }
819 
820 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
821 				      struct page *page, int off, int size)
822 {
823 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
824 
825 	frag->page		  = page;
826 	frag->page_offset	  = off;
827 	frag->size		  = size;
828 	skb_shinfo(skb)->nr_frags = i + 1;
829 }
830 
831 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
832 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
833 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
834 
835 #ifdef NET_SKBUFF_DATA_USES_OFFSET
836 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
837 {
838 	return skb->head + skb->tail;
839 }
840 
841 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
842 {
843 	skb->tail = skb->data - skb->head;
844 }
845 
846 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
847 {
848 	skb_reset_tail_pointer(skb);
849 	skb->tail += offset;
850 }
851 #else /* NET_SKBUFF_DATA_USES_OFFSET */
852 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
853 {
854 	return skb->tail;
855 }
856 
857 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
858 {
859 	skb->tail = skb->data;
860 }
861 
862 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
863 {
864 	skb->tail = skb->data + offset;
865 }
866 
867 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
868 
869 /*
870  *	Add data to an sk_buff
871  */
872 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
873 {
874 	unsigned char *tmp = skb_tail_pointer(skb);
875 	SKB_LINEAR_ASSERT(skb);
876 	skb->tail += len;
877 	skb->len  += len;
878 	return tmp;
879 }
880 
881 /**
882  *	skb_put - add data to a buffer
883  *	@skb: buffer to use
884  *	@len: amount of data to add
885  *
886  *	This function extends the used data area of the buffer. If this would
887  *	exceed the total buffer size the kernel will panic. A pointer to the
888  *	first byte of the extra data is returned.
889  */
890 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
891 {
892 	unsigned char *tmp = skb_tail_pointer(skb);
893 	SKB_LINEAR_ASSERT(skb);
894 	skb->tail += len;
895 	skb->len  += len;
896 	if (unlikely(skb->tail > skb->end))
897 		skb_over_panic(skb, len, current_text_addr());
898 	return tmp;
899 }
900 
901 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
902 {
903 	skb->data -= len;
904 	skb->len  += len;
905 	return skb->data;
906 }
907 
908 /**
909  *	skb_push - add data to the start of a buffer
910  *	@skb: buffer to use
911  *	@len: amount of data to add
912  *
913  *	This function extends the used data area of the buffer at the buffer
914  *	start. If this would exceed the total buffer headroom the kernel will
915  *	panic. A pointer to the first byte of the extra data is returned.
916  */
917 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
918 {
919 	skb->data -= len;
920 	skb->len  += len;
921 	if (unlikely(skb->data<skb->head))
922 		skb_under_panic(skb, len, current_text_addr());
923 	return skb->data;
924 }
925 
926 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
927 {
928 	skb->len -= len;
929 	BUG_ON(skb->len < skb->data_len);
930 	return skb->data += len;
931 }
932 
933 /**
934  *	skb_pull - remove data from the start of a buffer
935  *	@skb: buffer to use
936  *	@len: amount of data to remove
937  *
938  *	This function removes data from the start of a buffer, returning
939  *	the memory to the headroom. A pointer to the next data in the buffer
940  *	is returned. Once the data has been pulled future pushes will overwrite
941  *	the old data.
942  */
943 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
944 {
945 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
946 }
947 
948 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
949 
950 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
951 {
952 	if (len > skb_headlen(skb) &&
953 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
954 		return NULL;
955 	skb->len -= len;
956 	return skb->data += len;
957 }
958 
959 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
960 {
961 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
962 }
963 
964 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
965 {
966 	if (likely(len <= skb_headlen(skb)))
967 		return 1;
968 	if (unlikely(len > skb->len))
969 		return 0;
970 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
971 }
972 
973 /**
974  *	skb_headroom - bytes at buffer head
975  *	@skb: buffer to check
976  *
977  *	Return the number of bytes of free space at the head of an &sk_buff.
978  */
979 static inline int skb_headroom(const struct sk_buff *skb)
980 {
981 	return skb->data - skb->head;
982 }
983 
984 /**
985  *	skb_tailroom - bytes at buffer end
986  *	@skb: buffer to check
987  *
988  *	Return the number of bytes of free space at the tail of an sk_buff
989  */
990 static inline int skb_tailroom(const struct sk_buff *skb)
991 {
992 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
993 }
994 
995 /**
996  *	skb_reserve - adjust headroom
997  *	@skb: buffer to alter
998  *	@len: bytes to move
999  *
1000  *	Increase the headroom of an empty &sk_buff by reducing the tail
1001  *	room. This is only allowed for an empty buffer.
1002  */
1003 static inline void skb_reserve(struct sk_buff *skb, int len)
1004 {
1005 	skb->data += len;
1006 	skb->tail += len;
1007 }
1008 
1009 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1010 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1011 {
1012 	return skb->head + skb->transport_header;
1013 }
1014 
1015 static inline void skb_reset_transport_header(struct sk_buff *skb)
1016 {
1017 	skb->transport_header = skb->data - skb->head;
1018 }
1019 
1020 static inline void skb_set_transport_header(struct sk_buff *skb,
1021 					    const int offset)
1022 {
1023 	skb_reset_transport_header(skb);
1024 	skb->transport_header += offset;
1025 }
1026 
1027 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1028 {
1029 	return skb->head + skb->network_header;
1030 }
1031 
1032 static inline void skb_reset_network_header(struct sk_buff *skb)
1033 {
1034 	skb->network_header = skb->data - skb->head;
1035 }
1036 
1037 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1038 {
1039 	skb_reset_network_header(skb);
1040 	skb->network_header += offset;
1041 }
1042 
1043 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1044 {
1045 	return skb->head + skb->mac_header;
1046 }
1047 
1048 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1049 {
1050 	return skb->mac_header != ~0U;
1051 }
1052 
1053 static inline void skb_reset_mac_header(struct sk_buff *skb)
1054 {
1055 	skb->mac_header = skb->data - skb->head;
1056 }
1057 
1058 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1059 {
1060 	skb_reset_mac_header(skb);
1061 	skb->mac_header += offset;
1062 }
1063 
1064 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1065 
1066 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1067 {
1068 	return skb->transport_header;
1069 }
1070 
1071 static inline void skb_reset_transport_header(struct sk_buff *skb)
1072 {
1073 	skb->transport_header = skb->data;
1074 }
1075 
1076 static inline void skb_set_transport_header(struct sk_buff *skb,
1077 					    const int offset)
1078 {
1079 	skb->transport_header = skb->data + offset;
1080 }
1081 
1082 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1083 {
1084 	return skb->network_header;
1085 }
1086 
1087 static inline void skb_reset_network_header(struct sk_buff *skb)
1088 {
1089 	skb->network_header = skb->data;
1090 }
1091 
1092 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1093 {
1094 	skb->network_header = skb->data + offset;
1095 }
1096 
1097 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1098 {
1099 	return skb->mac_header;
1100 }
1101 
1102 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1103 {
1104 	return skb->mac_header != NULL;
1105 }
1106 
1107 static inline void skb_reset_mac_header(struct sk_buff *skb)
1108 {
1109 	skb->mac_header = skb->data;
1110 }
1111 
1112 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1113 {
1114 	skb->mac_header = skb->data + offset;
1115 }
1116 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1117 
1118 static inline int skb_transport_offset(const struct sk_buff *skb)
1119 {
1120 	return skb_transport_header(skb) - skb->data;
1121 }
1122 
1123 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1124 {
1125 	return skb->transport_header - skb->network_header;
1126 }
1127 
1128 static inline int skb_network_offset(const struct sk_buff *skb)
1129 {
1130 	return skb_network_header(skb) - skb->data;
1131 }
1132 
1133 /*
1134  * CPUs often take a performance hit when accessing unaligned memory
1135  * locations. The actual performance hit varies, it can be small if the
1136  * hardware handles it or large if we have to take an exception and fix it
1137  * in software.
1138  *
1139  * Since an ethernet header is 14 bytes network drivers often end up with
1140  * the IP header at an unaligned offset. The IP header can be aligned by
1141  * shifting the start of the packet by 2 bytes. Drivers should do this
1142  * with:
1143  *
1144  * skb_reserve(NET_IP_ALIGN);
1145  *
1146  * The downside to this alignment of the IP header is that the DMA is now
1147  * unaligned. On some architectures the cost of an unaligned DMA is high
1148  * and this cost outweighs the gains made by aligning the IP header.
1149  *
1150  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1151  * to be overridden.
1152  */
1153 #ifndef NET_IP_ALIGN
1154 #define NET_IP_ALIGN	2
1155 #endif
1156 
1157 /*
1158  * The networking layer reserves some headroom in skb data (via
1159  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1160  * the header has to grow. In the default case, if the header has to grow
1161  * 16 bytes or less we avoid the reallocation.
1162  *
1163  * Unfortunately this headroom changes the DMA alignment of the resulting
1164  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1165  * on some architectures. An architecture can override this value,
1166  * perhaps setting it to a cacheline in size (since that will maintain
1167  * cacheline alignment of the DMA). It must be a power of 2.
1168  *
1169  * Various parts of the networking layer expect at least 16 bytes of
1170  * headroom, you should not reduce this.
1171  */
1172 #ifndef NET_SKB_PAD
1173 #define NET_SKB_PAD	16
1174 #endif
1175 
1176 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1177 
1178 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1179 {
1180 	if (unlikely(skb->data_len)) {
1181 		WARN_ON(1);
1182 		return;
1183 	}
1184 	skb->len = len;
1185 	skb_set_tail_pointer(skb, len);
1186 }
1187 
1188 /**
1189  *	skb_trim - remove end from a buffer
1190  *	@skb: buffer to alter
1191  *	@len: new length
1192  *
1193  *	Cut the length of a buffer down by removing data from the tail. If
1194  *	the buffer is already under the length specified it is not modified.
1195  *	The skb must be linear.
1196  */
1197 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1198 {
1199 	if (skb->len > len)
1200 		__skb_trim(skb, len);
1201 }
1202 
1203 
1204 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1205 {
1206 	if (skb->data_len)
1207 		return ___pskb_trim(skb, len);
1208 	__skb_trim(skb, len);
1209 	return 0;
1210 }
1211 
1212 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1213 {
1214 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1215 }
1216 
1217 /**
1218  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1219  *	@skb: buffer to alter
1220  *	@len: new length
1221  *
1222  *	This is identical to pskb_trim except that the caller knows that
1223  *	the skb is not cloned so we should never get an error due to out-
1224  *	of-memory.
1225  */
1226 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1227 {
1228 	int err = pskb_trim(skb, len);
1229 	BUG_ON(err);
1230 }
1231 
1232 /**
1233  *	skb_orphan - orphan a buffer
1234  *	@skb: buffer to orphan
1235  *
1236  *	If a buffer currently has an owner then we call the owner's
1237  *	destructor function and make the @skb unowned. The buffer continues
1238  *	to exist but is no longer charged to its former owner.
1239  */
1240 static inline void skb_orphan(struct sk_buff *skb)
1241 {
1242 	if (skb->destructor)
1243 		skb->destructor(skb);
1244 	skb->destructor = NULL;
1245 	skb->sk		= NULL;
1246 }
1247 
1248 /**
1249  *	__skb_queue_purge - empty a list
1250  *	@list: list to empty
1251  *
1252  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1253  *	the list and one reference dropped. This function does not take the
1254  *	list lock and the caller must hold the relevant locks to use it.
1255  */
1256 extern void skb_queue_purge(struct sk_buff_head *list);
1257 static inline void __skb_queue_purge(struct sk_buff_head *list)
1258 {
1259 	struct sk_buff *skb;
1260 	while ((skb = __skb_dequeue(list)) != NULL)
1261 		kfree_skb(skb);
1262 }
1263 
1264 /**
1265  *	__dev_alloc_skb - allocate an skbuff for receiving
1266  *	@length: length to allocate
1267  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1268  *
1269  *	Allocate a new &sk_buff and assign it a usage count of one. The
1270  *	buffer has unspecified headroom built in. Users should allocate
1271  *	the headroom they think they need without accounting for the
1272  *	built in space. The built in space is used for optimisations.
1273  *
1274  *	%NULL is returned if there is no free memory.
1275  */
1276 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1277 					      gfp_t gfp_mask)
1278 {
1279 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1280 	if (likely(skb))
1281 		skb_reserve(skb, NET_SKB_PAD);
1282 	return skb;
1283 }
1284 
1285 /**
1286  *	dev_alloc_skb - allocate an skbuff for receiving
1287  *	@length: length to allocate
1288  *
1289  *	Allocate a new &sk_buff and assign it a usage count of one. The
1290  *	buffer has unspecified headroom built in. Users should allocate
1291  *	the headroom they think they need without accounting for the
1292  *	built in space. The built in space is used for optimisations.
1293  *
1294  *	%NULL is returned if there is no free memory. Although this function
1295  *	allocates memory it can be called from an interrupt.
1296  */
1297 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1298 {
1299 	return __dev_alloc_skb(length, GFP_ATOMIC);
1300 }
1301 
1302 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1303 		unsigned int length, gfp_t gfp_mask);
1304 
1305 /**
1306  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1307  *	@dev: network device to receive on
1308  *	@length: length to allocate
1309  *
1310  *	Allocate a new &sk_buff and assign it a usage count of one. The
1311  *	buffer has unspecified headroom built in. Users should allocate
1312  *	the headroom they think they need without accounting for the
1313  *	built in space. The built in space is used for optimisations.
1314  *
1315  *	%NULL is returned if there is no free memory. Although this function
1316  *	allocates memory it can be called from an interrupt.
1317  */
1318 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1319 		unsigned int length)
1320 {
1321 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1322 }
1323 
1324 /**
1325  *	skb_cow - copy header of skb when it is required
1326  *	@skb: buffer to cow
1327  *	@headroom: needed headroom
1328  *
1329  *	If the skb passed lacks sufficient headroom or its data part
1330  *	is shared, data is reallocated. If reallocation fails, an error
1331  *	is returned and original skb is not changed.
1332  *
1333  *	The result is skb with writable area skb->head...skb->tail
1334  *	and at least @headroom of space at head.
1335  */
1336 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1337 {
1338 	int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1339 			skb_headroom(skb);
1340 
1341 	if (delta < 0)
1342 		delta = 0;
1343 
1344 	if (delta || skb_cloned(skb))
1345 		return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1346 				~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1347 	return 0;
1348 }
1349 
1350 /**
1351  *	skb_padto	- pad an skbuff up to a minimal size
1352  *	@skb: buffer to pad
1353  *	@len: minimal length
1354  *
1355  *	Pads up a buffer to ensure the trailing bytes exist and are
1356  *	blanked. If the buffer already contains sufficient data it
1357  *	is untouched. Otherwise it is extended. Returns zero on
1358  *	success. The skb is freed on error.
1359  */
1360 
1361 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1362 {
1363 	unsigned int size = skb->len;
1364 	if (likely(size >= len))
1365 		return 0;
1366 	return skb_pad(skb, len-size);
1367 }
1368 
1369 static inline int skb_add_data(struct sk_buff *skb,
1370 			       char __user *from, int copy)
1371 {
1372 	const int off = skb->len;
1373 
1374 	if (skb->ip_summed == CHECKSUM_NONE) {
1375 		int err = 0;
1376 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1377 							    copy, 0, &err);
1378 		if (!err) {
1379 			skb->csum = csum_block_add(skb->csum, csum, off);
1380 			return 0;
1381 		}
1382 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1383 		return 0;
1384 
1385 	__skb_trim(skb, off);
1386 	return -EFAULT;
1387 }
1388 
1389 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1390 				   struct page *page, int off)
1391 {
1392 	if (i) {
1393 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1394 
1395 		return page == frag->page &&
1396 		       off == frag->page_offset + frag->size;
1397 	}
1398 	return 0;
1399 }
1400 
1401 static inline int __skb_linearize(struct sk_buff *skb)
1402 {
1403 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1404 }
1405 
1406 /**
1407  *	skb_linearize - convert paged skb to linear one
1408  *	@skb: buffer to linarize
1409  *
1410  *	If there is no free memory -ENOMEM is returned, otherwise zero
1411  *	is returned and the old skb data released.
1412  */
1413 static inline int skb_linearize(struct sk_buff *skb)
1414 {
1415 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1416 }
1417 
1418 /**
1419  *	skb_linearize_cow - make sure skb is linear and writable
1420  *	@skb: buffer to process
1421  *
1422  *	If there is no free memory -ENOMEM is returned, otherwise zero
1423  *	is returned and the old skb data released.
1424  */
1425 static inline int skb_linearize_cow(struct sk_buff *skb)
1426 {
1427 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1428 	       __skb_linearize(skb) : 0;
1429 }
1430 
1431 /**
1432  *	skb_postpull_rcsum - update checksum for received skb after pull
1433  *	@skb: buffer to update
1434  *	@start: start of data before pull
1435  *	@len: length of data pulled
1436  *
1437  *	After doing a pull on a received packet, you need to call this to
1438  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1439  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1440  */
1441 
1442 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1443 				      const void *start, unsigned int len)
1444 {
1445 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1446 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1447 }
1448 
1449 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1450 
1451 /**
1452  *	pskb_trim_rcsum - trim received skb and update checksum
1453  *	@skb: buffer to trim
1454  *	@len: new length
1455  *
1456  *	This is exactly the same as pskb_trim except that it ensures the
1457  *	checksum of received packets are still valid after the operation.
1458  */
1459 
1460 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1461 {
1462 	if (likely(len >= skb->len))
1463 		return 0;
1464 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1465 		skb->ip_summed = CHECKSUM_NONE;
1466 	return __pskb_trim(skb, len);
1467 }
1468 
1469 #define skb_queue_walk(queue, skb) \
1470 		for (skb = (queue)->next;					\
1471 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1472 		     skb = skb->next)
1473 
1474 #define skb_queue_walk_safe(queue, skb, tmp)					\
1475 		for (skb = (queue)->next, tmp = skb->next;			\
1476 		     skb != (struct sk_buff *)(queue);				\
1477 		     skb = tmp, tmp = skb->next)
1478 
1479 #define skb_queue_reverse_walk(queue, skb) \
1480 		for (skb = (queue)->prev;					\
1481 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1482 		     skb = skb->prev)
1483 
1484 
1485 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1486 					 int noblock, int *err);
1487 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1488 				     struct poll_table_struct *wait);
1489 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1490 					       int offset, struct iovec *to,
1491 					       int size);
1492 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1493 							int hlen,
1494 							struct iovec *iov);
1495 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1496 extern void	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1497 					 unsigned int flags);
1498 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1499 				    int len, __wsum csum);
1500 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1501 				     void *to, int len);
1502 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1503 				      const void *from, int len);
1504 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1505 					      int offset, u8 *to, int len,
1506 					      __wsum csum);
1507 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1508 extern void	       skb_split(struct sk_buff *skb,
1509 				 struct sk_buff *skb1, const u32 len);
1510 
1511 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1512 
1513 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1514 				       int len, void *buffer)
1515 {
1516 	int hlen = skb_headlen(skb);
1517 
1518 	if (hlen - offset >= len)
1519 		return skb->data + offset;
1520 
1521 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1522 		return NULL;
1523 
1524 	return buffer;
1525 }
1526 
1527 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1528 					     void *to,
1529 					     const unsigned int len)
1530 {
1531 	memcpy(to, skb->data, len);
1532 }
1533 
1534 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1535 						    const int offset, void *to,
1536 						    const unsigned int len)
1537 {
1538 	memcpy(to, skb->data + offset, len);
1539 }
1540 
1541 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1542 					   const void *from,
1543 					   const unsigned int len)
1544 {
1545 	memcpy(skb->data, from, len);
1546 }
1547 
1548 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1549 						  const int offset,
1550 						  const void *from,
1551 						  const unsigned int len)
1552 {
1553 	memcpy(skb->data + offset, from, len);
1554 }
1555 
1556 extern void skb_init(void);
1557 
1558 /**
1559  *	skb_get_timestamp - get timestamp from a skb
1560  *	@skb: skb to get stamp from
1561  *	@stamp: pointer to struct timeval to store stamp in
1562  *
1563  *	Timestamps are stored in the skb as offsets to a base timestamp.
1564  *	This function converts the offset back to a struct timeval and stores
1565  *	it in stamp.
1566  */
1567 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1568 {
1569 	*stamp = ktime_to_timeval(skb->tstamp);
1570 }
1571 
1572 static inline void __net_timestamp(struct sk_buff *skb)
1573 {
1574 	skb->tstamp = ktime_get_real();
1575 }
1576 
1577 static inline ktime_t net_timedelta(ktime_t t)
1578 {
1579 	return ktime_sub(ktime_get_real(), t);
1580 }
1581 
1582 
1583 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1584 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1585 
1586 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1587 {
1588 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
1589 }
1590 
1591 /**
1592  *	skb_checksum_complete - Calculate checksum of an entire packet
1593  *	@skb: packet to process
1594  *
1595  *	This function calculates the checksum over the entire packet plus
1596  *	the value of skb->csum.  The latter can be used to supply the
1597  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1598  *	checksum.
1599  *
1600  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1601  *	this function can be used to verify that checksum on received
1602  *	packets.  In that case the function should return zero if the
1603  *	checksum is correct.  In particular, this function will return zero
1604  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1605  *	hardware has already verified the correctness of the checksum.
1606  */
1607 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1608 {
1609 	return skb_csum_unnecessary(skb) ?
1610 	       0 : __skb_checksum_complete(skb);
1611 }
1612 
1613 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1614 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1615 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1616 {
1617 	if (nfct && atomic_dec_and_test(&nfct->use))
1618 		nf_conntrack_destroy(nfct);
1619 }
1620 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1621 {
1622 	if (nfct)
1623 		atomic_inc(&nfct->use);
1624 }
1625 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1626 {
1627 	if (skb)
1628 		atomic_inc(&skb->users);
1629 }
1630 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1631 {
1632 	if (skb)
1633 		kfree_skb(skb);
1634 }
1635 #endif
1636 #ifdef CONFIG_BRIDGE_NETFILTER
1637 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1638 {
1639 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1640 		kfree(nf_bridge);
1641 }
1642 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1643 {
1644 	if (nf_bridge)
1645 		atomic_inc(&nf_bridge->use);
1646 }
1647 #endif /* CONFIG_BRIDGE_NETFILTER */
1648 static inline void nf_reset(struct sk_buff *skb)
1649 {
1650 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1651 	nf_conntrack_put(skb->nfct);
1652 	skb->nfct = NULL;
1653 	nf_conntrack_put_reasm(skb->nfct_reasm);
1654 	skb->nfct_reasm = NULL;
1655 #endif
1656 #ifdef CONFIG_BRIDGE_NETFILTER
1657 	nf_bridge_put(skb->nf_bridge);
1658 	skb->nf_bridge = NULL;
1659 #endif
1660 }
1661 
1662 /* Note: This doesn't put any conntrack and bridge info in dst. */
1663 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1664 {
1665 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1666 	dst->nfct = src->nfct;
1667 	nf_conntrack_get(src->nfct);
1668 	dst->nfctinfo = src->nfctinfo;
1669 	dst->nfct_reasm = src->nfct_reasm;
1670 	nf_conntrack_get_reasm(src->nfct_reasm);
1671 #endif
1672 #ifdef CONFIG_BRIDGE_NETFILTER
1673 	dst->nf_bridge  = src->nf_bridge;
1674 	nf_bridge_get(src->nf_bridge);
1675 #endif
1676 }
1677 
1678 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1679 {
1680 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1681 	nf_conntrack_put(dst->nfct);
1682 	nf_conntrack_put_reasm(dst->nfct_reasm);
1683 #endif
1684 #ifdef CONFIG_BRIDGE_NETFILTER
1685 	nf_bridge_put(dst->nf_bridge);
1686 #endif
1687 	__nf_copy(dst, src);
1688 }
1689 
1690 #ifdef CONFIG_NETWORK_SECMARK
1691 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1692 {
1693 	to->secmark = from->secmark;
1694 }
1695 
1696 static inline void skb_init_secmark(struct sk_buff *skb)
1697 {
1698 	skb->secmark = 0;
1699 }
1700 #else
1701 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1702 { }
1703 
1704 static inline void skb_init_secmark(struct sk_buff *skb)
1705 { }
1706 #endif
1707 
1708 static inline int skb_is_gso(const struct sk_buff *skb)
1709 {
1710 	return skb_shinfo(skb)->gso_size;
1711 }
1712 
1713 static inline void skb_forward_csum(struct sk_buff *skb)
1714 {
1715 	/* Unfortunately we don't support this one.  Any brave souls? */
1716 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1717 		skb->ip_summed = CHECKSUM_NONE;
1718 }
1719 
1720 #endif	/* __KERNEL__ */
1721 #endif	/* _LINUX_SKBUFF_H */
1722