xref: /linux-6.15/include/linux/skbuff.h (revision e9e8bcb8)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list. Since
126  * GRO uses frags we allocate at least 16 regardless of page size.
127  */
128 #if (65536/PAGE_SIZE + 2) < 16
129 #define MAX_SKB_FRAGS 16UL
130 #else
131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132 #endif
133 
134 typedef struct skb_frag_struct skb_frag_t;
135 
136 struct skb_frag_struct {
137 	struct page *page;
138 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
139 	__u32 page_offset;
140 	__u32 size;
141 #else
142 	__u16 page_offset;
143 	__u16 size;
144 #endif
145 };
146 
147 #define HAVE_HW_TIME_STAMP
148 
149 /**
150  * struct skb_shared_hwtstamps - hardware time stamps
151  * @hwtstamp:	hardware time stamp transformed into duration
152  *		since arbitrary point in time
153  * @syststamp:	hwtstamp transformed to system time base
154  *
155  * Software time stamps generated by ktime_get_real() are stored in
156  * skb->tstamp. The relation between the different kinds of time
157  * stamps is as follows:
158  *
159  * syststamp and tstamp can be compared against each other in
160  * arbitrary combinations.  The accuracy of a
161  * syststamp/tstamp/"syststamp from other device" comparison is
162  * limited by the accuracy of the transformation into system time
163  * base. This depends on the device driver and its underlying
164  * hardware.
165  *
166  * hwtstamps can only be compared against other hwtstamps from
167  * the same device.
168  *
169  * This structure is attached to packets as part of the
170  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
171  */
172 struct skb_shared_hwtstamps {
173 	ktime_t	hwtstamp;
174 	ktime_t	syststamp;
175 };
176 
177 /* Definitions for tx_flags in struct skb_shared_info */
178 enum {
179 	/* generate hardware time stamp */
180 	SKBTX_HW_TSTAMP = 1 << 0,
181 
182 	/* generate software time stamp */
183 	SKBTX_SW_TSTAMP = 1 << 1,
184 
185 	/* device driver is going to provide hardware time stamp */
186 	SKBTX_IN_PROGRESS = 1 << 2,
187 
188 	/* ensure the originating sk reference is available on driver level */
189 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
190 };
191 
192 /* This data is invariant across clones and lives at
193  * the end of the header data, ie. at skb->end.
194  */
195 struct skb_shared_info {
196 	unsigned short	nr_frags;
197 	unsigned short	gso_size;
198 	/* Warning: this field is not always filled in (UFO)! */
199 	unsigned short	gso_segs;
200 	unsigned short  gso_type;
201 	__be32          ip6_frag_id;
202 	__u8		tx_flags;
203 	struct sk_buff	*frag_list;
204 	struct skb_shared_hwtstamps hwtstamps;
205 
206 	/*
207 	 * Warning : all fields before dataref are cleared in __alloc_skb()
208 	 */
209 	atomic_t	dataref;
210 
211 	/* Intermediate layers must ensure that destructor_arg
212 	 * remains valid until skb destructor */
213 	void *		destructor_arg;
214 	/* must be last field, see pskb_expand_head() */
215 	skb_frag_t	frags[MAX_SKB_FRAGS];
216 };
217 
218 /* We divide dataref into two halves.  The higher 16 bits hold references
219  * to the payload part of skb->data.  The lower 16 bits hold references to
220  * the entire skb->data.  A clone of a headerless skb holds the length of
221  * the header in skb->hdr_len.
222  *
223  * All users must obey the rule that the skb->data reference count must be
224  * greater than or equal to the payload reference count.
225  *
226  * Holding a reference to the payload part means that the user does not
227  * care about modifications to the header part of skb->data.
228  */
229 #define SKB_DATAREF_SHIFT 16
230 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
231 
232 
233 enum {
234 	SKB_FCLONE_UNAVAILABLE,
235 	SKB_FCLONE_ORIG,
236 	SKB_FCLONE_CLONE,
237 };
238 
239 enum {
240 	SKB_GSO_TCPV4 = 1 << 0,
241 	SKB_GSO_UDP = 1 << 1,
242 
243 	/* This indicates the skb is from an untrusted source. */
244 	SKB_GSO_DODGY = 1 << 2,
245 
246 	/* This indicates the tcp segment has CWR set. */
247 	SKB_GSO_TCP_ECN = 1 << 3,
248 
249 	SKB_GSO_TCPV6 = 1 << 4,
250 
251 	SKB_GSO_FCOE = 1 << 5,
252 };
253 
254 #if BITS_PER_LONG > 32
255 #define NET_SKBUFF_DATA_USES_OFFSET 1
256 #endif
257 
258 #ifdef NET_SKBUFF_DATA_USES_OFFSET
259 typedef unsigned int sk_buff_data_t;
260 #else
261 typedef unsigned char *sk_buff_data_t;
262 #endif
263 
264 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
265     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
266 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
267 #endif
268 
269 /**
270  *	struct sk_buff - socket buffer
271  *	@next: Next buffer in list
272  *	@prev: Previous buffer in list
273  *	@sk: Socket we are owned by
274  *	@tstamp: Time we arrived
275  *	@dev: Device we arrived on/are leaving by
276  *	@transport_header: Transport layer header
277  *	@network_header: Network layer header
278  *	@mac_header: Link layer header
279  *	@_skb_refdst: destination entry (with norefcount bit)
280  *	@sp: the security path, used for xfrm
281  *	@cb: Control buffer. Free for use by every layer. Put private vars here
282  *	@len: Length of actual data
283  *	@data_len: Data length
284  *	@mac_len: Length of link layer header
285  *	@hdr_len: writable header length of cloned skb
286  *	@csum: Checksum (must include start/offset pair)
287  *	@csum_start: Offset from skb->head where checksumming should start
288  *	@csum_offset: Offset from csum_start where checksum should be stored
289  *	@local_df: allow local fragmentation
290  *	@cloned: Head may be cloned (check refcnt to be sure)
291  *	@nohdr: Payload reference only, must not modify header
292  *	@pkt_type: Packet class
293  *	@fclone: skbuff clone status
294  *	@ip_summed: Driver fed us an IP checksum
295  *	@priority: Packet queueing priority
296  *	@users: User count - see {datagram,tcp}.c
297  *	@protocol: Packet protocol from driver
298  *	@truesize: Buffer size
299  *	@head: Head of buffer
300  *	@data: Data head pointer
301  *	@tail: Tail pointer
302  *	@end: End pointer
303  *	@destructor: Destruct function
304  *	@mark: Generic packet mark
305  *	@nfct: Associated connection, if any
306  *	@ipvs_property: skbuff is owned by ipvs
307  *	@peeked: this packet has been seen already, so stats have been
308  *		done for it, don't do them again
309  *	@nf_trace: netfilter packet trace flag
310  *	@nfctinfo: Relationship of this skb to the connection
311  *	@nfct_reasm: netfilter conntrack re-assembly pointer
312  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
313  *	@skb_iif: ifindex of device we arrived on
314  *	@rxhash: the packet hash computed on receive
315  *	@queue_mapping: Queue mapping for multiqueue devices
316  *	@tc_index: Traffic control index
317  *	@tc_verd: traffic control verdict
318  *	@ndisc_nodetype: router type (from link layer)
319  *	@dma_cookie: a cookie to one of several possible DMA operations
320  *		done by skb DMA functions
321  *	@secmark: security marking
322  *	@vlan_tci: vlan tag control information
323  */
324 
325 struct sk_buff {
326 	/* These two members must be first. */
327 	struct sk_buff		*next;
328 	struct sk_buff		*prev;
329 
330 	ktime_t			tstamp;
331 
332 	struct sock		*sk;
333 	struct net_device	*dev;
334 
335 	/*
336 	 * This is the control buffer. It is free to use for every
337 	 * layer. Please put your private variables there. If you
338 	 * want to keep them across layers you have to do a skb_clone()
339 	 * first. This is owned by whoever has the skb queued ATM.
340 	 */
341 	char			cb[48] __aligned(8);
342 
343 	unsigned long		_skb_refdst;
344 #ifdef CONFIG_XFRM
345 	struct	sec_path	*sp;
346 #endif
347 	unsigned int		len,
348 				data_len;
349 	__u16			mac_len,
350 				hdr_len;
351 	union {
352 		__wsum		csum;
353 		struct {
354 			__u16	csum_start;
355 			__u16	csum_offset;
356 		};
357 	};
358 	__u32			priority;
359 	kmemcheck_bitfield_begin(flags1);
360 	__u8			local_df:1,
361 				cloned:1,
362 				ip_summed:2,
363 				nohdr:1,
364 				nfctinfo:3;
365 	__u8			pkt_type:3,
366 				fclone:2,
367 				ipvs_property:1,
368 				peeked:1,
369 				nf_trace:1;
370 	kmemcheck_bitfield_end(flags1);
371 	__be16			protocol;
372 
373 	void			(*destructor)(struct sk_buff *skb);
374 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
375 	struct nf_conntrack	*nfct;
376 #endif
377 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
378 	struct sk_buff		*nfct_reasm;
379 #endif
380 #ifdef CONFIG_BRIDGE_NETFILTER
381 	struct nf_bridge_info	*nf_bridge;
382 #endif
383 
384 	int			skb_iif;
385 #ifdef CONFIG_NET_SCHED
386 	__u16			tc_index;	/* traffic control index */
387 #ifdef CONFIG_NET_CLS_ACT
388 	__u16			tc_verd;	/* traffic control verdict */
389 #endif
390 #endif
391 
392 	__u32			rxhash;
393 
394 	__u16			queue_mapping;
395 	kmemcheck_bitfield_begin(flags2);
396 #ifdef CONFIG_IPV6_NDISC_NODETYPE
397 	__u8			ndisc_nodetype:2;
398 #endif
399 	__u8			ooo_okay:1;
400 	kmemcheck_bitfield_end(flags2);
401 
402 	/* 0/13 bit hole */
403 
404 #ifdef CONFIG_NET_DMA
405 	dma_cookie_t		dma_cookie;
406 #endif
407 #ifdef CONFIG_NETWORK_SECMARK
408 	__u32			secmark;
409 #endif
410 	union {
411 		__u32		mark;
412 		__u32		dropcount;
413 	};
414 
415 	__u16			vlan_tci;
416 
417 	sk_buff_data_t		transport_header;
418 	sk_buff_data_t		network_header;
419 	sk_buff_data_t		mac_header;
420 	/* These elements must be at the end, see alloc_skb() for details.  */
421 	sk_buff_data_t		tail;
422 	sk_buff_data_t		end;
423 	unsigned char		*head,
424 				*data;
425 	unsigned int		truesize;
426 	atomic_t		users;
427 };
428 
429 #ifdef __KERNEL__
430 /*
431  *	Handling routines are only of interest to the kernel
432  */
433 #include <linux/slab.h>
434 
435 #include <asm/system.h>
436 
437 /*
438  * skb might have a dst pointer attached, refcounted or not.
439  * _skb_refdst low order bit is set if refcount was _not_ taken
440  */
441 #define SKB_DST_NOREF	1UL
442 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
443 
444 /**
445  * skb_dst - returns skb dst_entry
446  * @skb: buffer
447  *
448  * Returns skb dst_entry, regardless of reference taken or not.
449  */
450 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
451 {
452 	/* If refdst was not refcounted, check we still are in a
453 	 * rcu_read_lock section
454 	 */
455 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
456 		!rcu_read_lock_held() &&
457 		!rcu_read_lock_bh_held());
458 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
459 }
460 
461 /**
462  * skb_dst_set - sets skb dst
463  * @skb: buffer
464  * @dst: dst entry
465  *
466  * Sets skb dst, assuming a reference was taken on dst and should
467  * be released by skb_dst_drop()
468  */
469 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
470 {
471 	skb->_skb_refdst = (unsigned long)dst;
472 }
473 
474 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
475 
476 /**
477  * skb_dst_is_noref - Test if skb dst isn't refcounted
478  * @skb: buffer
479  */
480 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
481 {
482 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
483 }
484 
485 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
486 {
487 	return (struct rtable *)skb_dst(skb);
488 }
489 
490 extern void kfree_skb(struct sk_buff *skb);
491 extern void consume_skb(struct sk_buff *skb);
492 extern void	       __kfree_skb(struct sk_buff *skb);
493 extern struct sk_buff *__alloc_skb(unsigned int size,
494 				   gfp_t priority, int fclone, int node);
495 static inline struct sk_buff *alloc_skb(unsigned int size,
496 					gfp_t priority)
497 {
498 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
499 }
500 
501 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
502 					       gfp_t priority)
503 {
504 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
505 }
506 
507 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
508 
509 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
510 extern struct sk_buff *skb_clone(struct sk_buff *skb,
511 				 gfp_t priority);
512 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
513 				gfp_t priority);
514 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
515 				 gfp_t gfp_mask);
516 extern int	       pskb_expand_head(struct sk_buff *skb,
517 					int nhead, int ntail,
518 					gfp_t gfp_mask);
519 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
520 					    unsigned int headroom);
521 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
522 				       int newheadroom, int newtailroom,
523 				       gfp_t priority);
524 extern int	       skb_to_sgvec(struct sk_buff *skb,
525 				    struct scatterlist *sg, int offset,
526 				    int len);
527 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
528 				    struct sk_buff **trailer);
529 extern int	       skb_pad(struct sk_buff *skb, int pad);
530 #define dev_kfree_skb(a)	consume_skb(a)
531 
532 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
533 			int getfrag(void *from, char *to, int offset,
534 			int len,int odd, struct sk_buff *skb),
535 			void *from, int length);
536 
537 struct skb_seq_state {
538 	__u32		lower_offset;
539 	__u32		upper_offset;
540 	__u32		frag_idx;
541 	__u32		stepped_offset;
542 	struct sk_buff	*root_skb;
543 	struct sk_buff	*cur_skb;
544 	__u8		*frag_data;
545 };
546 
547 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
548 					   unsigned int from, unsigned int to,
549 					   struct skb_seq_state *st);
550 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
551 				   struct skb_seq_state *st);
552 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
553 
554 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
555 				    unsigned int to, struct ts_config *config,
556 				    struct ts_state *state);
557 
558 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
559 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
560 {
561 	if (!skb->rxhash)
562 		skb->rxhash = __skb_get_rxhash(skb);
563 
564 	return skb->rxhash;
565 }
566 
567 #ifdef NET_SKBUFF_DATA_USES_OFFSET
568 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
569 {
570 	return skb->head + skb->end;
571 }
572 #else
573 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
574 {
575 	return skb->end;
576 }
577 #endif
578 
579 /* Internal */
580 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
581 
582 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
583 {
584 	return &skb_shinfo(skb)->hwtstamps;
585 }
586 
587 /**
588  *	skb_queue_empty - check if a queue is empty
589  *	@list: queue head
590  *
591  *	Returns true if the queue is empty, false otherwise.
592  */
593 static inline int skb_queue_empty(const struct sk_buff_head *list)
594 {
595 	return list->next == (struct sk_buff *)list;
596 }
597 
598 /**
599  *	skb_queue_is_last - check if skb is the last entry in the queue
600  *	@list: queue head
601  *	@skb: buffer
602  *
603  *	Returns true if @skb is the last buffer on the list.
604  */
605 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
606 				     const struct sk_buff *skb)
607 {
608 	return skb->next == (struct sk_buff *)list;
609 }
610 
611 /**
612  *	skb_queue_is_first - check if skb is the first entry in the queue
613  *	@list: queue head
614  *	@skb: buffer
615  *
616  *	Returns true if @skb is the first buffer on the list.
617  */
618 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
619 				      const struct sk_buff *skb)
620 {
621 	return skb->prev == (struct sk_buff *)list;
622 }
623 
624 /**
625  *	skb_queue_next - return the next packet in the queue
626  *	@list: queue head
627  *	@skb: current buffer
628  *
629  *	Return the next packet in @list after @skb.  It is only valid to
630  *	call this if skb_queue_is_last() evaluates to false.
631  */
632 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
633 					     const struct sk_buff *skb)
634 {
635 	/* This BUG_ON may seem severe, but if we just return then we
636 	 * are going to dereference garbage.
637 	 */
638 	BUG_ON(skb_queue_is_last(list, skb));
639 	return skb->next;
640 }
641 
642 /**
643  *	skb_queue_prev - return the prev packet in the queue
644  *	@list: queue head
645  *	@skb: current buffer
646  *
647  *	Return the prev packet in @list before @skb.  It is only valid to
648  *	call this if skb_queue_is_first() evaluates to false.
649  */
650 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
651 					     const struct sk_buff *skb)
652 {
653 	/* This BUG_ON may seem severe, but if we just return then we
654 	 * are going to dereference garbage.
655 	 */
656 	BUG_ON(skb_queue_is_first(list, skb));
657 	return skb->prev;
658 }
659 
660 /**
661  *	skb_get - reference buffer
662  *	@skb: buffer to reference
663  *
664  *	Makes another reference to a socket buffer and returns a pointer
665  *	to the buffer.
666  */
667 static inline struct sk_buff *skb_get(struct sk_buff *skb)
668 {
669 	atomic_inc(&skb->users);
670 	return skb;
671 }
672 
673 /*
674  * If users == 1, we are the only owner and are can avoid redundant
675  * atomic change.
676  */
677 
678 /**
679  *	skb_cloned - is the buffer a clone
680  *	@skb: buffer to check
681  *
682  *	Returns true if the buffer was generated with skb_clone() and is
683  *	one of multiple shared copies of the buffer. Cloned buffers are
684  *	shared data so must not be written to under normal circumstances.
685  */
686 static inline int skb_cloned(const struct sk_buff *skb)
687 {
688 	return skb->cloned &&
689 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
690 }
691 
692 /**
693  *	skb_header_cloned - is the header a clone
694  *	@skb: buffer to check
695  *
696  *	Returns true if modifying the header part of the buffer requires
697  *	the data to be copied.
698  */
699 static inline int skb_header_cloned(const struct sk_buff *skb)
700 {
701 	int dataref;
702 
703 	if (!skb->cloned)
704 		return 0;
705 
706 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
707 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
708 	return dataref != 1;
709 }
710 
711 /**
712  *	skb_header_release - release reference to header
713  *	@skb: buffer to operate on
714  *
715  *	Drop a reference to the header part of the buffer.  This is done
716  *	by acquiring a payload reference.  You must not read from the header
717  *	part of skb->data after this.
718  */
719 static inline void skb_header_release(struct sk_buff *skb)
720 {
721 	BUG_ON(skb->nohdr);
722 	skb->nohdr = 1;
723 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
724 }
725 
726 /**
727  *	skb_shared - is the buffer shared
728  *	@skb: buffer to check
729  *
730  *	Returns true if more than one person has a reference to this
731  *	buffer.
732  */
733 static inline int skb_shared(const struct sk_buff *skb)
734 {
735 	return atomic_read(&skb->users) != 1;
736 }
737 
738 /**
739  *	skb_share_check - check if buffer is shared and if so clone it
740  *	@skb: buffer to check
741  *	@pri: priority for memory allocation
742  *
743  *	If the buffer is shared the buffer is cloned and the old copy
744  *	drops a reference. A new clone with a single reference is returned.
745  *	If the buffer is not shared the original buffer is returned. When
746  *	being called from interrupt status or with spinlocks held pri must
747  *	be GFP_ATOMIC.
748  *
749  *	NULL is returned on a memory allocation failure.
750  */
751 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
752 					      gfp_t pri)
753 {
754 	might_sleep_if(pri & __GFP_WAIT);
755 	if (skb_shared(skb)) {
756 		struct sk_buff *nskb = skb_clone(skb, pri);
757 		kfree_skb(skb);
758 		skb = nskb;
759 	}
760 	return skb;
761 }
762 
763 /*
764  *	Copy shared buffers into a new sk_buff. We effectively do COW on
765  *	packets to handle cases where we have a local reader and forward
766  *	and a couple of other messy ones. The normal one is tcpdumping
767  *	a packet thats being forwarded.
768  */
769 
770 /**
771  *	skb_unshare - make a copy of a shared buffer
772  *	@skb: buffer to check
773  *	@pri: priority for memory allocation
774  *
775  *	If the socket buffer is a clone then this function creates a new
776  *	copy of the data, drops a reference count on the old copy and returns
777  *	the new copy with the reference count at 1. If the buffer is not a clone
778  *	the original buffer is returned. When called with a spinlock held or
779  *	from interrupt state @pri must be %GFP_ATOMIC
780  *
781  *	%NULL is returned on a memory allocation failure.
782  */
783 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
784 					  gfp_t pri)
785 {
786 	might_sleep_if(pri & __GFP_WAIT);
787 	if (skb_cloned(skb)) {
788 		struct sk_buff *nskb = skb_copy(skb, pri);
789 		kfree_skb(skb);	/* Free our shared copy */
790 		skb = nskb;
791 	}
792 	return skb;
793 }
794 
795 /**
796  *	skb_peek - peek at the head of an &sk_buff_head
797  *	@list_: list to peek at
798  *
799  *	Peek an &sk_buff. Unlike most other operations you _MUST_
800  *	be careful with this one. A peek leaves the buffer on the
801  *	list and someone else may run off with it. You must hold
802  *	the appropriate locks or have a private queue to do this.
803  *
804  *	Returns %NULL for an empty list or a pointer to the head element.
805  *	The reference count is not incremented and the reference is therefore
806  *	volatile. Use with caution.
807  */
808 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
809 {
810 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
811 	if (list == (struct sk_buff *)list_)
812 		list = NULL;
813 	return list;
814 }
815 
816 /**
817  *	skb_peek_tail - peek at the tail of an &sk_buff_head
818  *	@list_: list to peek at
819  *
820  *	Peek an &sk_buff. Unlike most other operations you _MUST_
821  *	be careful with this one. A peek leaves the buffer on the
822  *	list and someone else may run off with it. You must hold
823  *	the appropriate locks or have a private queue to do this.
824  *
825  *	Returns %NULL for an empty list or a pointer to the tail element.
826  *	The reference count is not incremented and the reference is therefore
827  *	volatile. Use with caution.
828  */
829 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
830 {
831 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
832 	if (list == (struct sk_buff *)list_)
833 		list = NULL;
834 	return list;
835 }
836 
837 /**
838  *	skb_queue_len	- get queue length
839  *	@list_: list to measure
840  *
841  *	Return the length of an &sk_buff queue.
842  */
843 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
844 {
845 	return list_->qlen;
846 }
847 
848 /**
849  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
850  *	@list: queue to initialize
851  *
852  *	This initializes only the list and queue length aspects of
853  *	an sk_buff_head object.  This allows to initialize the list
854  *	aspects of an sk_buff_head without reinitializing things like
855  *	the spinlock.  It can also be used for on-stack sk_buff_head
856  *	objects where the spinlock is known to not be used.
857  */
858 static inline void __skb_queue_head_init(struct sk_buff_head *list)
859 {
860 	list->prev = list->next = (struct sk_buff *)list;
861 	list->qlen = 0;
862 }
863 
864 /*
865  * This function creates a split out lock class for each invocation;
866  * this is needed for now since a whole lot of users of the skb-queue
867  * infrastructure in drivers have different locking usage (in hardirq)
868  * than the networking core (in softirq only). In the long run either the
869  * network layer or drivers should need annotation to consolidate the
870  * main types of usage into 3 classes.
871  */
872 static inline void skb_queue_head_init(struct sk_buff_head *list)
873 {
874 	spin_lock_init(&list->lock);
875 	__skb_queue_head_init(list);
876 }
877 
878 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
879 		struct lock_class_key *class)
880 {
881 	skb_queue_head_init(list);
882 	lockdep_set_class(&list->lock, class);
883 }
884 
885 /*
886  *	Insert an sk_buff on a list.
887  *
888  *	The "__skb_xxxx()" functions are the non-atomic ones that
889  *	can only be called with interrupts disabled.
890  */
891 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
892 static inline void __skb_insert(struct sk_buff *newsk,
893 				struct sk_buff *prev, struct sk_buff *next,
894 				struct sk_buff_head *list)
895 {
896 	newsk->next = next;
897 	newsk->prev = prev;
898 	next->prev  = prev->next = newsk;
899 	list->qlen++;
900 }
901 
902 static inline void __skb_queue_splice(const struct sk_buff_head *list,
903 				      struct sk_buff *prev,
904 				      struct sk_buff *next)
905 {
906 	struct sk_buff *first = list->next;
907 	struct sk_buff *last = list->prev;
908 
909 	first->prev = prev;
910 	prev->next = first;
911 
912 	last->next = next;
913 	next->prev = last;
914 }
915 
916 /**
917  *	skb_queue_splice - join two skb lists, this is designed for stacks
918  *	@list: the new list to add
919  *	@head: the place to add it in the first list
920  */
921 static inline void skb_queue_splice(const struct sk_buff_head *list,
922 				    struct sk_buff_head *head)
923 {
924 	if (!skb_queue_empty(list)) {
925 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
926 		head->qlen += list->qlen;
927 	}
928 }
929 
930 /**
931  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
932  *	@list: the new list to add
933  *	@head: the place to add it in the first list
934  *
935  *	The list at @list is reinitialised
936  */
937 static inline void skb_queue_splice_init(struct sk_buff_head *list,
938 					 struct sk_buff_head *head)
939 {
940 	if (!skb_queue_empty(list)) {
941 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
942 		head->qlen += list->qlen;
943 		__skb_queue_head_init(list);
944 	}
945 }
946 
947 /**
948  *	skb_queue_splice_tail - join two skb lists, each list being a queue
949  *	@list: the new list to add
950  *	@head: the place to add it in the first list
951  */
952 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
953 					 struct sk_buff_head *head)
954 {
955 	if (!skb_queue_empty(list)) {
956 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
957 		head->qlen += list->qlen;
958 	}
959 }
960 
961 /**
962  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
963  *	@list: the new list to add
964  *	@head: the place to add it in the first list
965  *
966  *	Each of the lists is a queue.
967  *	The list at @list is reinitialised
968  */
969 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
970 					      struct sk_buff_head *head)
971 {
972 	if (!skb_queue_empty(list)) {
973 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
974 		head->qlen += list->qlen;
975 		__skb_queue_head_init(list);
976 	}
977 }
978 
979 /**
980  *	__skb_queue_after - queue a buffer at the list head
981  *	@list: list to use
982  *	@prev: place after this buffer
983  *	@newsk: buffer to queue
984  *
985  *	Queue a buffer int the middle of a list. This function takes no locks
986  *	and you must therefore hold required locks before calling it.
987  *
988  *	A buffer cannot be placed on two lists at the same time.
989  */
990 static inline void __skb_queue_after(struct sk_buff_head *list,
991 				     struct sk_buff *prev,
992 				     struct sk_buff *newsk)
993 {
994 	__skb_insert(newsk, prev, prev->next, list);
995 }
996 
997 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
998 		       struct sk_buff_head *list);
999 
1000 static inline void __skb_queue_before(struct sk_buff_head *list,
1001 				      struct sk_buff *next,
1002 				      struct sk_buff *newsk)
1003 {
1004 	__skb_insert(newsk, next->prev, next, list);
1005 }
1006 
1007 /**
1008  *	__skb_queue_head - queue a buffer at the list head
1009  *	@list: list to use
1010  *	@newsk: buffer to queue
1011  *
1012  *	Queue a buffer at the start of a list. This function takes no locks
1013  *	and you must therefore hold required locks before calling it.
1014  *
1015  *	A buffer cannot be placed on two lists at the same time.
1016  */
1017 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1018 static inline void __skb_queue_head(struct sk_buff_head *list,
1019 				    struct sk_buff *newsk)
1020 {
1021 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1022 }
1023 
1024 /**
1025  *	__skb_queue_tail - queue a buffer at the list tail
1026  *	@list: list to use
1027  *	@newsk: buffer to queue
1028  *
1029  *	Queue a buffer at the end of a list. This function takes no locks
1030  *	and you must therefore hold required locks before calling it.
1031  *
1032  *	A buffer cannot be placed on two lists at the same time.
1033  */
1034 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1035 static inline void __skb_queue_tail(struct sk_buff_head *list,
1036 				   struct sk_buff *newsk)
1037 {
1038 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1039 }
1040 
1041 /*
1042  * remove sk_buff from list. _Must_ be called atomically, and with
1043  * the list known..
1044  */
1045 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1046 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1047 {
1048 	struct sk_buff *next, *prev;
1049 
1050 	list->qlen--;
1051 	next	   = skb->next;
1052 	prev	   = skb->prev;
1053 	skb->next  = skb->prev = NULL;
1054 	next->prev = prev;
1055 	prev->next = next;
1056 }
1057 
1058 /**
1059  *	__skb_dequeue - remove from the head of the queue
1060  *	@list: list to dequeue from
1061  *
1062  *	Remove the head of the list. This function does not take any locks
1063  *	so must be used with appropriate locks held only. The head item is
1064  *	returned or %NULL if the list is empty.
1065  */
1066 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1067 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1068 {
1069 	struct sk_buff *skb = skb_peek(list);
1070 	if (skb)
1071 		__skb_unlink(skb, list);
1072 	return skb;
1073 }
1074 
1075 /**
1076  *	__skb_dequeue_tail - remove from the tail of the queue
1077  *	@list: list to dequeue from
1078  *
1079  *	Remove the tail of the list. This function does not take any locks
1080  *	so must be used with appropriate locks held only. The tail item is
1081  *	returned or %NULL if the list is empty.
1082  */
1083 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1084 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1085 {
1086 	struct sk_buff *skb = skb_peek_tail(list);
1087 	if (skb)
1088 		__skb_unlink(skb, list);
1089 	return skb;
1090 }
1091 
1092 
1093 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1094 {
1095 	return skb->data_len;
1096 }
1097 
1098 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1099 {
1100 	return skb->len - skb->data_len;
1101 }
1102 
1103 static inline int skb_pagelen(const struct sk_buff *skb)
1104 {
1105 	int i, len = 0;
1106 
1107 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1108 		len += skb_shinfo(skb)->frags[i].size;
1109 	return len + skb_headlen(skb);
1110 }
1111 
1112 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1113 				      struct page *page, int off, int size)
1114 {
1115 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1116 
1117 	frag->page		  = page;
1118 	frag->page_offset	  = off;
1119 	frag->size		  = size;
1120 	skb_shinfo(skb)->nr_frags = i + 1;
1121 }
1122 
1123 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1124 			    int off, int size);
1125 
1126 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1127 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1128 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1129 
1130 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1131 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1132 {
1133 	return skb->head + skb->tail;
1134 }
1135 
1136 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1137 {
1138 	skb->tail = skb->data - skb->head;
1139 }
1140 
1141 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1142 {
1143 	skb_reset_tail_pointer(skb);
1144 	skb->tail += offset;
1145 }
1146 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1147 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1148 {
1149 	return skb->tail;
1150 }
1151 
1152 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1153 {
1154 	skb->tail = skb->data;
1155 }
1156 
1157 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1158 {
1159 	skb->tail = skb->data + offset;
1160 }
1161 
1162 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1163 
1164 /*
1165  *	Add data to an sk_buff
1166  */
1167 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1168 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1169 {
1170 	unsigned char *tmp = skb_tail_pointer(skb);
1171 	SKB_LINEAR_ASSERT(skb);
1172 	skb->tail += len;
1173 	skb->len  += len;
1174 	return tmp;
1175 }
1176 
1177 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1178 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1179 {
1180 	skb->data -= len;
1181 	skb->len  += len;
1182 	return skb->data;
1183 }
1184 
1185 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1186 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1187 {
1188 	skb->len -= len;
1189 	BUG_ON(skb->len < skb->data_len);
1190 	return skb->data += len;
1191 }
1192 
1193 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1194 {
1195 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1196 }
1197 
1198 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1199 
1200 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1201 {
1202 	if (len > skb_headlen(skb) &&
1203 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1204 		return NULL;
1205 	skb->len -= len;
1206 	return skb->data += len;
1207 }
1208 
1209 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1210 {
1211 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1212 }
1213 
1214 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1215 {
1216 	if (likely(len <= skb_headlen(skb)))
1217 		return 1;
1218 	if (unlikely(len > skb->len))
1219 		return 0;
1220 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1221 }
1222 
1223 /**
1224  *	skb_headroom - bytes at buffer head
1225  *	@skb: buffer to check
1226  *
1227  *	Return the number of bytes of free space at the head of an &sk_buff.
1228  */
1229 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1230 {
1231 	return skb->data - skb->head;
1232 }
1233 
1234 /**
1235  *	skb_tailroom - bytes at buffer end
1236  *	@skb: buffer to check
1237  *
1238  *	Return the number of bytes of free space at the tail of an sk_buff
1239  */
1240 static inline int skb_tailroom(const struct sk_buff *skb)
1241 {
1242 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1243 }
1244 
1245 /**
1246  *	skb_reserve - adjust headroom
1247  *	@skb: buffer to alter
1248  *	@len: bytes to move
1249  *
1250  *	Increase the headroom of an empty &sk_buff by reducing the tail
1251  *	room. This is only allowed for an empty buffer.
1252  */
1253 static inline void skb_reserve(struct sk_buff *skb, int len)
1254 {
1255 	skb->data += len;
1256 	skb->tail += len;
1257 }
1258 
1259 static inline void skb_reset_mac_len(struct sk_buff *skb)
1260 {
1261 	skb->mac_len = skb->network_header - skb->mac_header;
1262 }
1263 
1264 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1265 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1266 {
1267 	return skb->head + skb->transport_header;
1268 }
1269 
1270 static inline void skb_reset_transport_header(struct sk_buff *skb)
1271 {
1272 	skb->transport_header = skb->data - skb->head;
1273 }
1274 
1275 static inline void skb_set_transport_header(struct sk_buff *skb,
1276 					    const int offset)
1277 {
1278 	skb_reset_transport_header(skb);
1279 	skb->transport_header += offset;
1280 }
1281 
1282 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1283 {
1284 	return skb->head + skb->network_header;
1285 }
1286 
1287 static inline void skb_reset_network_header(struct sk_buff *skb)
1288 {
1289 	skb->network_header = skb->data - skb->head;
1290 }
1291 
1292 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1293 {
1294 	skb_reset_network_header(skb);
1295 	skb->network_header += offset;
1296 }
1297 
1298 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1299 {
1300 	return skb->head + skb->mac_header;
1301 }
1302 
1303 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1304 {
1305 	return skb->mac_header != ~0U;
1306 }
1307 
1308 static inline void skb_reset_mac_header(struct sk_buff *skb)
1309 {
1310 	skb->mac_header = skb->data - skb->head;
1311 }
1312 
1313 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1314 {
1315 	skb_reset_mac_header(skb);
1316 	skb->mac_header += offset;
1317 }
1318 
1319 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1320 
1321 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1322 {
1323 	return skb->transport_header;
1324 }
1325 
1326 static inline void skb_reset_transport_header(struct sk_buff *skb)
1327 {
1328 	skb->transport_header = skb->data;
1329 }
1330 
1331 static inline void skb_set_transport_header(struct sk_buff *skb,
1332 					    const int offset)
1333 {
1334 	skb->transport_header = skb->data + offset;
1335 }
1336 
1337 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1338 {
1339 	return skb->network_header;
1340 }
1341 
1342 static inline void skb_reset_network_header(struct sk_buff *skb)
1343 {
1344 	skb->network_header = skb->data;
1345 }
1346 
1347 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1348 {
1349 	skb->network_header = skb->data + offset;
1350 }
1351 
1352 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1353 {
1354 	return skb->mac_header;
1355 }
1356 
1357 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1358 {
1359 	return skb->mac_header != NULL;
1360 }
1361 
1362 static inline void skb_reset_mac_header(struct sk_buff *skb)
1363 {
1364 	skb->mac_header = skb->data;
1365 }
1366 
1367 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1368 {
1369 	skb->mac_header = skb->data + offset;
1370 }
1371 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1372 
1373 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1374 {
1375 	return skb->csum_start - skb_headroom(skb);
1376 }
1377 
1378 static inline int skb_transport_offset(const struct sk_buff *skb)
1379 {
1380 	return skb_transport_header(skb) - skb->data;
1381 }
1382 
1383 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1384 {
1385 	return skb->transport_header - skb->network_header;
1386 }
1387 
1388 static inline int skb_network_offset(const struct sk_buff *skb)
1389 {
1390 	return skb_network_header(skb) - skb->data;
1391 }
1392 
1393 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1394 {
1395 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1396 }
1397 
1398 /*
1399  * CPUs often take a performance hit when accessing unaligned memory
1400  * locations. The actual performance hit varies, it can be small if the
1401  * hardware handles it or large if we have to take an exception and fix it
1402  * in software.
1403  *
1404  * Since an ethernet header is 14 bytes network drivers often end up with
1405  * the IP header at an unaligned offset. The IP header can be aligned by
1406  * shifting the start of the packet by 2 bytes. Drivers should do this
1407  * with:
1408  *
1409  * skb_reserve(skb, NET_IP_ALIGN);
1410  *
1411  * The downside to this alignment of the IP header is that the DMA is now
1412  * unaligned. On some architectures the cost of an unaligned DMA is high
1413  * and this cost outweighs the gains made by aligning the IP header.
1414  *
1415  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1416  * to be overridden.
1417  */
1418 #ifndef NET_IP_ALIGN
1419 #define NET_IP_ALIGN	2
1420 #endif
1421 
1422 /*
1423  * The networking layer reserves some headroom in skb data (via
1424  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1425  * the header has to grow. In the default case, if the header has to grow
1426  * 32 bytes or less we avoid the reallocation.
1427  *
1428  * Unfortunately this headroom changes the DMA alignment of the resulting
1429  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1430  * on some architectures. An architecture can override this value,
1431  * perhaps setting it to a cacheline in size (since that will maintain
1432  * cacheline alignment of the DMA). It must be a power of 2.
1433  *
1434  * Various parts of the networking layer expect at least 32 bytes of
1435  * headroom, you should not reduce this.
1436  *
1437  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1438  * to reduce average number of cache lines per packet.
1439  * get_rps_cpus() for example only access one 64 bytes aligned block :
1440  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1441  */
1442 #ifndef NET_SKB_PAD
1443 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1444 #endif
1445 
1446 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1447 
1448 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1449 {
1450 	if (unlikely(skb_is_nonlinear(skb))) {
1451 		WARN_ON(1);
1452 		return;
1453 	}
1454 	skb->len = len;
1455 	skb_set_tail_pointer(skb, len);
1456 }
1457 
1458 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1459 
1460 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1461 {
1462 	if (skb->data_len)
1463 		return ___pskb_trim(skb, len);
1464 	__skb_trim(skb, len);
1465 	return 0;
1466 }
1467 
1468 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1469 {
1470 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1471 }
1472 
1473 /**
1474  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1475  *	@skb: buffer to alter
1476  *	@len: new length
1477  *
1478  *	This is identical to pskb_trim except that the caller knows that
1479  *	the skb is not cloned so we should never get an error due to out-
1480  *	of-memory.
1481  */
1482 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1483 {
1484 	int err = pskb_trim(skb, len);
1485 	BUG_ON(err);
1486 }
1487 
1488 /**
1489  *	skb_orphan - orphan a buffer
1490  *	@skb: buffer to orphan
1491  *
1492  *	If a buffer currently has an owner then we call the owner's
1493  *	destructor function and make the @skb unowned. The buffer continues
1494  *	to exist but is no longer charged to its former owner.
1495  */
1496 static inline void skb_orphan(struct sk_buff *skb)
1497 {
1498 	if (skb->destructor)
1499 		skb->destructor(skb);
1500 	skb->destructor = NULL;
1501 	skb->sk		= NULL;
1502 }
1503 
1504 /**
1505  *	__skb_queue_purge - empty a list
1506  *	@list: list to empty
1507  *
1508  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1509  *	the list and one reference dropped. This function does not take the
1510  *	list lock and the caller must hold the relevant locks to use it.
1511  */
1512 extern void skb_queue_purge(struct sk_buff_head *list);
1513 static inline void __skb_queue_purge(struct sk_buff_head *list)
1514 {
1515 	struct sk_buff *skb;
1516 	while ((skb = __skb_dequeue(list)) != NULL)
1517 		kfree_skb(skb);
1518 }
1519 
1520 /**
1521  *	__dev_alloc_skb - allocate an skbuff for receiving
1522  *	@length: length to allocate
1523  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1524  *
1525  *	Allocate a new &sk_buff and assign it a usage count of one. The
1526  *	buffer has unspecified headroom built in. Users should allocate
1527  *	the headroom they think they need without accounting for the
1528  *	built in space. The built in space is used for optimisations.
1529  *
1530  *	%NULL is returned if there is no free memory.
1531  */
1532 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1533 					      gfp_t gfp_mask)
1534 {
1535 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1536 	if (likely(skb))
1537 		skb_reserve(skb, NET_SKB_PAD);
1538 	return skb;
1539 }
1540 
1541 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1542 
1543 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1544 		unsigned int length, gfp_t gfp_mask);
1545 
1546 /**
1547  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1548  *	@dev: network device to receive on
1549  *	@length: length to allocate
1550  *
1551  *	Allocate a new &sk_buff and assign it a usage count of one. The
1552  *	buffer has unspecified headroom built in. Users should allocate
1553  *	the headroom they think they need without accounting for the
1554  *	built in space. The built in space is used for optimisations.
1555  *
1556  *	%NULL is returned if there is no free memory. Although this function
1557  *	allocates memory it can be called from an interrupt.
1558  */
1559 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1560 		unsigned int length)
1561 {
1562 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1563 }
1564 
1565 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1566 		unsigned int length)
1567 {
1568 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1569 
1570 	if (NET_IP_ALIGN && skb)
1571 		skb_reserve(skb, NET_IP_ALIGN);
1572 	return skb;
1573 }
1574 
1575 /**
1576  *	__netdev_alloc_page - allocate a page for ps-rx on a specific device
1577  *	@dev: network device to receive on
1578  *	@gfp_mask: alloc_pages_node mask
1579  *
1580  * 	Allocate a new page. dev currently unused.
1581  *
1582  * 	%NULL is returned if there is no free memory.
1583  */
1584 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1585 {
1586 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1587 }
1588 
1589 /**
1590  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1591  *	@dev: network device to receive on
1592  *
1593  * 	Allocate a new page. dev currently unused.
1594  *
1595  * 	%NULL is returned if there is no free memory.
1596  */
1597 static inline struct page *netdev_alloc_page(struct net_device *dev)
1598 {
1599 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1600 }
1601 
1602 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1603 {
1604 	__free_page(page);
1605 }
1606 
1607 /**
1608  *	skb_clone_writable - is the header of a clone writable
1609  *	@skb: buffer to check
1610  *	@len: length up to which to write
1611  *
1612  *	Returns true if modifying the header part of the cloned buffer
1613  *	does not requires the data to be copied.
1614  */
1615 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1616 {
1617 	return !skb_header_cloned(skb) &&
1618 	       skb_headroom(skb) + len <= skb->hdr_len;
1619 }
1620 
1621 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1622 			    int cloned)
1623 {
1624 	int delta = 0;
1625 
1626 	if (headroom < NET_SKB_PAD)
1627 		headroom = NET_SKB_PAD;
1628 	if (headroom > skb_headroom(skb))
1629 		delta = headroom - skb_headroom(skb);
1630 
1631 	if (delta || cloned)
1632 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1633 					GFP_ATOMIC);
1634 	return 0;
1635 }
1636 
1637 /**
1638  *	skb_cow - copy header of skb when it is required
1639  *	@skb: buffer to cow
1640  *	@headroom: needed headroom
1641  *
1642  *	If the skb passed lacks sufficient headroom or its data part
1643  *	is shared, data is reallocated. If reallocation fails, an error
1644  *	is returned and original skb is not changed.
1645  *
1646  *	The result is skb with writable area skb->head...skb->tail
1647  *	and at least @headroom of space at head.
1648  */
1649 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1650 {
1651 	return __skb_cow(skb, headroom, skb_cloned(skb));
1652 }
1653 
1654 /**
1655  *	skb_cow_head - skb_cow but only making the head writable
1656  *	@skb: buffer to cow
1657  *	@headroom: needed headroom
1658  *
1659  *	This function is identical to skb_cow except that we replace the
1660  *	skb_cloned check by skb_header_cloned.  It should be used when
1661  *	you only need to push on some header and do not need to modify
1662  *	the data.
1663  */
1664 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1665 {
1666 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1667 }
1668 
1669 /**
1670  *	skb_padto	- pad an skbuff up to a minimal size
1671  *	@skb: buffer to pad
1672  *	@len: minimal length
1673  *
1674  *	Pads up a buffer to ensure the trailing bytes exist and are
1675  *	blanked. If the buffer already contains sufficient data it
1676  *	is untouched. Otherwise it is extended. Returns zero on
1677  *	success. The skb is freed on error.
1678  */
1679 
1680 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1681 {
1682 	unsigned int size = skb->len;
1683 	if (likely(size >= len))
1684 		return 0;
1685 	return skb_pad(skb, len - size);
1686 }
1687 
1688 static inline int skb_add_data(struct sk_buff *skb,
1689 			       char __user *from, int copy)
1690 {
1691 	const int off = skb->len;
1692 
1693 	if (skb->ip_summed == CHECKSUM_NONE) {
1694 		int err = 0;
1695 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1696 							    copy, 0, &err);
1697 		if (!err) {
1698 			skb->csum = csum_block_add(skb->csum, csum, off);
1699 			return 0;
1700 		}
1701 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1702 		return 0;
1703 
1704 	__skb_trim(skb, off);
1705 	return -EFAULT;
1706 }
1707 
1708 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1709 				   struct page *page, int off)
1710 {
1711 	if (i) {
1712 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1713 
1714 		return page == frag->page &&
1715 		       off == frag->page_offset + frag->size;
1716 	}
1717 	return 0;
1718 }
1719 
1720 static inline int __skb_linearize(struct sk_buff *skb)
1721 {
1722 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1723 }
1724 
1725 /**
1726  *	skb_linearize - convert paged skb to linear one
1727  *	@skb: buffer to linarize
1728  *
1729  *	If there is no free memory -ENOMEM is returned, otherwise zero
1730  *	is returned and the old skb data released.
1731  */
1732 static inline int skb_linearize(struct sk_buff *skb)
1733 {
1734 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1735 }
1736 
1737 /**
1738  *	skb_linearize_cow - make sure skb is linear and writable
1739  *	@skb: buffer to process
1740  *
1741  *	If there is no free memory -ENOMEM is returned, otherwise zero
1742  *	is returned and the old skb data released.
1743  */
1744 static inline int skb_linearize_cow(struct sk_buff *skb)
1745 {
1746 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1747 	       __skb_linearize(skb) : 0;
1748 }
1749 
1750 /**
1751  *	skb_postpull_rcsum - update checksum for received skb after pull
1752  *	@skb: buffer to update
1753  *	@start: start of data before pull
1754  *	@len: length of data pulled
1755  *
1756  *	After doing a pull on a received packet, you need to call this to
1757  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1758  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1759  */
1760 
1761 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1762 				      const void *start, unsigned int len)
1763 {
1764 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1765 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1766 }
1767 
1768 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1769 
1770 /**
1771  *	pskb_trim_rcsum - trim received skb and update checksum
1772  *	@skb: buffer to trim
1773  *	@len: new length
1774  *
1775  *	This is exactly the same as pskb_trim except that it ensures the
1776  *	checksum of received packets are still valid after the operation.
1777  */
1778 
1779 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1780 {
1781 	if (likely(len >= skb->len))
1782 		return 0;
1783 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1784 		skb->ip_summed = CHECKSUM_NONE;
1785 	return __pskb_trim(skb, len);
1786 }
1787 
1788 #define skb_queue_walk(queue, skb) \
1789 		for (skb = (queue)->next;					\
1790 		     skb != (struct sk_buff *)(queue);				\
1791 		     skb = skb->next)
1792 
1793 #define skb_queue_walk_safe(queue, skb, tmp)					\
1794 		for (skb = (queue)->next, tmp = skb->next;			\
1795 		     skb != (struct sk_buff *)(queue);				\
1796 		     skb = tmp, tmp = skb->next)
1797 
1798 #define skb_queue_walk_from(queue, skb)						\
1799 		for (; skb != (struct sk_buff *)(queue);			\
1800 		     skb = skb->next)
1801 
1802 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1803 		for (tmp = skb->next;						\
1804 		     skb != (struct sk_buff *)(queue);				\
1805 		     skb = tmp, tmp = skb->next)
1806 
1807 #define skb_queue_reverse_walk(queue, skb) \
1808 		for (skb = (queue)->prev;					\
1809 		     skb != (struct sk_buff *)(queue);				\
1810 		     skb = skb->prev)
1811 
1812 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
1813 		for (skb = (queue)->prev, tmp = skb->prev;			\
1814 		     skb != (struct sk_buff *)(queue);				\
1815 		     skb = tmp, tmp = skb->prev)
1816 
1817 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
1818 		for (tmp = skb->prev;						\
1819 		     skb != (struct sk_buff *)(queue);				\
1820 		     skb = tmp, tmp = skb->prev)
1821 
1822 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1823 {
1824 	return skb_shinfo(skb)->frag_list != NULL;
1825 }
1826 
1827 static inline void skb_frag_list_init(struct sk_buff *skb)
1828 {
1829 	skb_shinfo(skb)->frag_list = NULL;
1830 }
1831 
1832 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1833 {
1834 	frag->next = skb_shinfo(skb)->frag_list;
1835 	skb_shinfo(skb)->frag_list = frag;
1836 }
1837 
1838 #define skb_walk_frags(skb, iter)	\
1839 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1840 
1841 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1842 					   int *peeked, int *err);
1843 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1844 					 int noblock, int *err);
1845 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1846 				     struct poll_table_struct *wait);
1847 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1848 					       int offset, struct iovec *to,
1849 					       int size);
1850 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1851 							int hlen,
1852 							struct iovec *iov);
1853 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1854 						    int offset,
1855 						    const struct iovec *from,
1856 						    int from_offset,
1857 						    int len);
1858 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1859 						     int offset,
1860 						     const struct iovec *to,
1861 						     int to_offset,
1862 						     int size);
1863 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1864 extern void	       skb_free_datagram_locked(struct sock *sk,
1865 						struct sk_buff *skb);
1866 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1867 					 unsigned int flags);
1868 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1869 				    int len, __wsum csum);
1870 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1871 				     void *to, int len);
1872 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1873 				      const void *from, int len);
1874 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1875 					      int offset, u8 *to, int len,
1876 					      __wsum csum);
1877 extern int             skb_splice_bits(struct sk_buff *skb,
1878 						unsigned int offset,
1879 						struct pipe_inode_info *pipe,
1880 						unsigned int len,
1881 						unsigned int flags);
1882 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1883 extern void	       skb_split(struct sk_buff *skb,
1884 				 struct sk_buff *skb1, const u32 len);
1885 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1886 				 int shiftlen);
1887 
1888 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
1889 
1890 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1891 				       int len, void *buffer)
1892 {
1893 	int hlen = skb_headlen(skb);
1894 
1895 	if (hlen - offset >= len)
1896 		return skb->data + offset;
1897 
1898 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1899 		return NULL;
1900 
1901 	return buffer;
1902 }
1903 
1904 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1905 					     void *to,
1906 					     const unsigned int len)
1907 {
1908 	memcpy(to, skb->data, len);
1909 }
1910 
1911 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1912 						    const int offset, void *to,
1913 						    const unsigned int len)
1914 {
1915 	memcpy(to, skb->data + offset, len);
1916 }
1917 
1918 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1919 					   const void *from,
1920 					   const unsigned int len)
1921 {
1922 	memcpy(skb->data, from, len);
1923 }
1924 
1925 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1926 						  const int offset,
1927 						  const void *from,
1928 						  const unsigned int len)
1929 {
1930 	memcpy(skb->data + offset, from, len);
1931 }
1932 
1933 extern void skb_init(void);
1934 
1935 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1936 {
1937 	return skb->tstamp;
1938 }
1939 
1940 /**
1941  *	skb_get_timestamp - get timestamp from a skb
1942  *	@skb: skb to get stamp from
1943  *	@stamp: pointer to struct timeval to store stamp in
1944  *
1945  *	Timestamps are stored in the skb as offsets to a base timestamp.
1946  *	This function converts the offset back to a struct timeval and stores
1947  *	it in stamp.
1948  */
1949 static inline void skb_get_timestamp(const struct sk_buff *skb,
1950 				     struct timeval *stamp)
1951 {
1952 	*stamp = ktime_to_timeval(skb->tstamp);
1953 }
1954 
1955 static inline void skb_get_timestampns(const struct sk_buff *skb,
1956 				       struct timespec *stamp)
1957 {
1958 	*stamp = ktime_to_timespec(skb->tstamp);
1959 }
1960 
1961 static inline void __net_timestamp(struct sk_buff *skb)
1962 {
1963 	skb->tstamp = ktime_get_real();
1964 }
1965 
1966 static inline ktime_t net_timedelta(ktime_t t)
1967 {
1968 	return ktime_sub(ktime_get_real(), t);
1969 }
1970 
1971 static inline ktime_t net_invalid_timestamp(void)
1972 {
1973 	return ktime_set(0, 0);
1974 }
1975 
1976 extern void skb_timestamping_init(void);
1977 
1978 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1979 
1980 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1981 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1982 
1983 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1984 
1985 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1986 {
1987 }
1988 
1989 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1990 {
1991 	return false;
1992 }
1993 
1994 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1995 
1996 /**
1997  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1998  *
1999  * @skb: clone of the the original outgoing packet
2000  * @hwtstamps: hardware time stamps
2001  *
2002  */
2003 void skb_complete_tx_timestamp(struct sk_buff *skb,
2004 			       struct skb_shared_hwtstamps *hwtstamps);
2005 
2006 /**
2007  * skb_tstamp_tx - queue clone of skb with send time stamps
2008  * @orig_skb:	the original outgoing packet
2009  * @hwtstamps:	hardware time stamps, may be NULL if not available
2010  *
2011  * If the skb has a socket associated, then this function clones the
2012  * skb (thus sharing the actual data and optional structures), stores
2013  * the optional hardware time stamping information (if non NULL) or
2014  * generates a software time stamp (otherwise), then queues the clone
2015  * to the error queue of the socket.  Errors are silently ignored.
2016  */
2017 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2018 			struct skb_shared_hwtstamps *hwtstamps);
2019 
2020 static inline void sw_tx_timestamp(struct sk_buff *skb)
2021 {
2022 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2023 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2024 		skb_tstamp_tx(skb, NULL);
2025 }
2026 
2027 /**
2028  * skb_tx_timestamp() - Driver hook for transmit timestamping
2029  *
2030  * Ethernet MAC Drivers should call this function in their hard_xmit()
2031  * function as soon as possible after giving the sk_buff to the MAC
2032  * hardware, but before freeing the sk_buff.
2033  *
2034  * @skb: A socket buffer.
2035  */
2036 static inline void skb_tx_timestamp(struct sk_buff *skb)
2037 {
2038 	skb_clone_tx_timestamp(skb);
2039 	sw_tx_timestamp(skb);
2040 }
2041 
2042 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2043 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2044 
2045 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2046 {
2047 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2048 }
2049 
2050 /**
2051  *	skb_checksum_complete - Calculate checksum of an entire packet
2052  *	@skb: packet to process
2053  *
2054  *	This function calculates the checksum over the entire packet plus
2055  *	the value of skb->csum.  The latter can be used to supply the
2056  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2057  *	checksum.
2058  *
2059  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2060  *	this function can be used to verify that checksum on received
2061  *	packets.  In that case the function should return zero if the
2062  *	checksum is correct.  In particular, this function will return zero
2063  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2064  *	hardware has already verified the correctness of the checksum.
2065  */
2066 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2067 {
2068 	return skb_csum_unnecessary(skb) ?
2069 	       0 : __skb_checksum_complete(skb);
2070 }
2071 
2072 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2073 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2074 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2075 {
2076 	if (nfct && atomic_dec_and_test(&nfct->use))
2077 		nf_conntrack_destroy(nfct);
2078 }
2079 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2080 {
2081 	if (nfct)
2082 		atomic_inc(&nfct->use);
2083 }
2084 #endif
2085 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2086 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2087 {
2088 	if (skb)
2089 		atomic_inc(&skb->users);
2090 }
2091 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2092 {
2093 	if (skb)
2094 		kfree_skb(skb);
2095 }
2096 #endif
2097 #ifdef CONFIG_BRIDGE_NETFILTER
2098 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2099 {
2100 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2101 		kfree(nf_bridge);
2102 }
2103 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2104 {
2105 	if (nf_bridge)
2106 		atomic_inc(&nf_bridge->use);
2107 }
2108 #endif /* CONFIG_BRIDGE_NETFILTER */
2109 static inline void nf_reset(struct sk_buff *skb)
2110 {
2111 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2112 	nf_conntrack_put(skb->nfct);
2113 	skb->nfct = NULL;
2114 #endif
2115 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2116 	nf_conntrack_put_reasm(skb->nfct_reasm);
2117 	skb->nfct_reasm = NULL;
2118 #endif
2119 #ifdef CONFIG_BRIDGE_NETFILTER
2120 	nf_bridge_put(skb->nf_bridge);
2121 	skb->nf_bridge = NULL;
2122 #endif
2123 }
2124 
2125 /* Note: This doesn't put any conntrack and bridge info in dst. */
2126 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2127 {
2128 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2129 	dst->nfct = src->nfct;
2130 	nf_conntrack_get(src->nfct);
2131 	dst->nfctinfo = src->nfctinfo;
2132 #endif
2133 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2134 	dst->nfct_reasm = src->nfct_reasm;
2135 	nf_conntrack_get_reasm(src->nfct_reasm);
2136 #endif
2137 #ifdef CONFIG_BRIDGE_NETFILTER
2138 	dst->nf_bridge  = src->nf_bridge;
2139 	nf_bridge_get(src->nf_bridge);
2140 #endif
2141 }
2142 
2143 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2144 {
2145 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2146 	nf_conntrack_put(dst->nfct);
2147 #endif
2148 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2149 	nf_conntrack_put_reasm(dst->nfct_reasm);
2150 #endif
2151 #ifdef CONFIG_BRIDGE_NETFILTER
2152 	nf_bridge_put(dst->nf_bridge);
2153 #endif
2154 	__nf_copy(dst, src);
2155 }
2156 
2157 #ifdef CONFIG_NETWORK_SECMARK
2158 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2159 {
2160 	to->secmark = from->secmark;
2161 }
2162 
2163 static inline void skb_init_secmark(struct sk_buff *skb)
2164 {
2165 	skb->secmark = 0;
2166 }
2167 #else
2168 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2169 { }
2170 
2171 static inline void skb_init_secmark(struct sk_buff *skb)
2172 { }
2173 #endif
2174 
2175 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2176 {
2177 	skb->queue_mapping = queue_mapping;
2178 }
2179 
2180 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2181 {
2182 	return skb->queue_mapping;
2183 }
2184 
2185 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2186 {
2187 	to->queue_mapping = from->queue_mapping;
2188 }
2189 
2190 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2191 {
2192 	skb->queue_mapping = rx_queue + 1;
2193 }
2194 
2195 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2196 {
2197 	return skb->queue_mapping - 1;
2198 }
2199 
2200 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2201 {
2202 	return skb->queue_mapping != 0;
2203 }
2204 
2205 extern u16 __skb_tx_hash(const struct net_device *dev,
2206 			 const struct sk_buff *skb,
2207 			 unsigned int num_tx_queues);
2208 
2209 #ifdef CONFIG_XFRM
2210 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2211 {
2212 	return skb->sp;
2213 }
2214 #else
2215 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2216 {
2217 	return NULL;
2218 }
2219 #endif
2220 
2221 static inline int skb_is_gso(const struct sk_buff *skb)
2222 {
2223 	return skb_shinfo(skb)->gso_size;
2224 }
2225 
2226 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2227 {
2228 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2229 }
2230 
2231 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2232 
2233 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2234 {
2235 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2236 	 * wanted then gso_type will be set. */
2237 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2238 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2239 	    unlikely(shinfo->gso_type == 0)) {
2240 		__skb_warn_lro_forwarding(skb);
2241 		return true;
2242 	}
2243 	return false;
2244 }
2245 
2246 static inline void skb_forward_csum(struct sk_buff *skb)
2247 {
2248 	/* Unfortunately we don't support this one.  Any brave souls? */
2249 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2250 		skb->ip_summed = CHECKSUM_NONE;
2251 }
2252 
2253 /**
2254  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2255  * @skb: skb to check
2256  *
2257  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2258  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2259  * use this helper, to document places where we make this assertion.
2260  */
2261 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2262 {
2263 #ifdef DEBUG
2264 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2265 #endif
2266 }
2267 
2268 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2269 #endif	/* __KERNEL__ */
2270 #endif	/* _LINUX_SKBUFF_H */
2271