1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <[email protected]> 7 * Florian La Roche, <[email protected]> 8 */ 9 10 #ifndef _LINUX_SKBUFF_H 11 #define _LINUX_SKBUFF_H 12 13 #include <linux/kernel.h> 14 #include <linux/compiler.h> 15 #include <linux/time.h> 16 #include <linux/bug.h> 17 #include <linux/bvec.h> 18 #include <linux/cache.h> 19 #include <linux/rbtree.h> 20 #include <linux/socket.h> 21 #include <linux/refcount.h> 22 23 #include <linux/atomic.h> 24 #include <asm/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/net.h> 27 #include <linux/textsearch.h> 28 #include <net/checksum.h> 29 #include <linux/rcupdate.h> 30 #include <linux/hrtimer.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/netdev_features.h> 33 #include <linux/sched.h> 34 #include <linux/sched/clock.h> 35 #include <net/flow_dissector.h> 36 #include <linux/splice.h> 37 #include <linux/in6.h> 38 #include <linux/if_packet.h> 39 #include <linux/llist.h> 40 #include <net/flow.h> 41 #include <net/page_pool.h> 42 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 43 #include <linux/netfilter/nf_conntrack_common.h> 44 #endif 45 #include <net/net_debug.h> 46 #include <net/dropreason.h> 47 48 /** 49 * DOC: skb checksums 50 * 51 * The interface for checksum offload between the stack and networking drivers 52 * is as follows... 53 * 54 * IP checksum related features 55 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 56 * 57 * Drivers advertise checksum offload capabilities in the features of a device. 58 * From the stack's point of view these are capabilities offered by the driver. 59 * A driver typically only advertises features that it is capable of offloading 60 * to its device. 61 * 62 * .. flat-table:: Checksum related device features 63 * :widths: 1 10 64 * 65 * * - %NETIF_F_HW_CSUM 66 * - The driver (or its device) is able to compute one 67 * IP (one's complement) checksum for any combination 68 * of protocols or protocol layering. The checksum is 69 * computed and set in a packet per the CHECKSUM_PARTIAL 70 * interface (see below). 71 * 72 * * - %NETIF_F_IP_CSUM 73 * - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv4. These are specifically 75 * unencapsulated packets of the form IPv4|TCP or 76 * IPv4|UDP where the Protocol field in the IPv4 header 77 * is TCP or UDP. The IPv4 header may contain IP options. 78 * This feature cannot be set in features for a device 79 * with NETIF_F_HW_CSUM also set. This feature is being 80 * DEPRECATED (see below). 81 * 82 * * - %NETIF_F_IPV6_CSUM 83 * - Driver (device) is only able to checksum plain 84 * TCP or UDP packets over IPv6. These are specifically 85 * unencapsulated packets of the form IPv6|TCP or 86 * IPv6|UDP where the Next Header field in the IPv6 87 * header is either TCP or UDP. IPv6 extension headers 88 * are not supported with this feature. This feature 89 * cannot be set in features for a device with 90 * NETIF_F_HW_CSUM also set. This feature is being 91 * DEPRECATED (see below). 92 * 93 * * - %NETIF_F_RXCSUM 94 * - Driver (device) performs receive checksum offload. 95 * This flag is only used to disable the RX checksum 96 * feature for a device. The stack will accept receive 97 * checksum indication in packets received on a device 98 * regardless of whether NETIF_F_RXCSUM is set. 99 * 100 * Checksumming of received packets by device 101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 * 103 * Indication of checksum verification is set in &sk_buff.ip_summed. 104 * Possible values are: 105 * 106 * - %CHECKSUM_NONE 107 * 108 * Device did not checksum this packet e.g. due to lack of capabilities. 109 * The packet contains full (though not verified) checksum in packet but 110 * not in skb->csum. Thus, skb->csum is undefined in this case. 111 * 112 * - %CHECKSUM_UNNECESSARY 113 * 114 * The hardware you're dealing with doesn't calculate the full checksum 115 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 116 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 117 * if their checksums are okay. &sk_buff.csum is still undefined in this case 118 * though. A driver or device must never modify the checksum field in the 119 * packet even if checksum is verified. 120 * 121 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 122 * 123 * - TCP: IPv6 and IPv4. 124 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 125 * zero UDP checksum for either IPv4 or IPv6, the networking stack 126 * may perform further validation in this case. 127 * - GRE: only if the checksum is present in the header. 128 * - SCTP: indicates the CRC in SCTP header has been validated. 129 * - FCOE: indicates the CRC in FC frame has been validated. 130 * 131 * &sk_buff.csum_level indicates the number of consecutive checksums found in 132 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 133 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 134 * and a device is able to verify the checksums for UDP (possibly zero), 135 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 136 * two. If the device were only able to verify the UDP checksum and not 137 * GRE, either because it doesn't support GRE checksum or because GRE 138 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 139 * not considered in this case). 140 * 141 * - %CHECKSUM_COMPLETE 142 * 143 * This is the most generic way. The device supplied checksum of the _whole_ 144 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 145 * hardware doesn't need to parse L3/L4 headers to implement this. 146 * 147 * Notes: 148 * 149 * - Even if device supports only some protocols, but is able to produce 150 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 151 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 152 * 153 * - %CHECKSUM_PARTIAL 154 * 155 * A checksum is set up to be offloaded to a device as described in the 156 * output description for CHECKSUM_PARTIAL. This may occur on a packet 157 * received directly from another Linux OS, e.g., a virtualized Linux kernel 158 * on the same host, or it may be set in the input path in GRO or remote 159 * checksum offload. For the purposes of checksum verification, the checksum 160 * referred to by skb->csum_start + skb->csum_offset and any preceding 161 * checksums in the packet are considered verified. Any checksums in the 162 * packet that are after the checksum being offloaded are not considered to 163 * be verified. 164 * 165 * Checksumming on transmit for non-GSO 166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 167 * 168 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 169 * Values are: 170 * 171 * - %CHECKSUM_PARTIAL 172 * 173 * The driver is required to checksum the packet as seen by hard_start_xmit() 174 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 175 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 176 * A driver may verify that the 177 * csum_start and csum_offset values are valid values given the length and 178 * offset of the packet, but it should not attempt to validate that the 179 * checksum refers to a legitimate transport layer checksum -- it is the 180 * purview of the stack to validate that csum_start and csum_offset are set 181 * correctly. 182 * 183 * When the stack requests checksum offload for a packet, the driver MUST 184 * ensure that the checksum is set correctly. A driver can either offload the 185 * checksum calculation to the device, or call skb_checksum_help (in the case 186 * that the device does not support offload for a particular checksum). 187 * 188 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 189 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 190 * checksum offload capability. 191 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 192 * on network device checksumming capabilities: if a packet does not match 193 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 194 * &sk_buff.csum_not_inet, see :ref:`crc`) 195 * is called to resolve the checksum. 196 * 197 * - %CHECKSUM_NONE 198 * 199 * The skb was already checksummed by the protocol, or a checksum is not 200 * required. 201 * 202 * - %CHECKSUM_UNNECESSARY 203 * 204 * This has the same meaning as CHECKSUM_NONE for checksum offload on 205 * output. 206 * 207 * - %CHECKSUM_COMPLETE 208 * 209 * Not used in checksum output. If a driver observes a packet with this value 210 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 211 * 212 * .. _crc: 213 * 214 * Non-IP checksum (CRC) offloads 215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 216 * 217 * .. flat-table:: 218 * :widths: 1 10 219 * 220 * * - %NETIF_F_SCTP_CRC 221 * - This feature indicates that a device is capable of 222 * offloading the SCTP CRC in a packet. To perform this offload the stack 223 * will set csum_start and csum_offset accordingly, set ip_summed to 224 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 225 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 226 * A driver that supports both IP checksum offload and SCTP CRC32c offload 227 * must verify which offload is configured for a packet by testing the 228 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 229 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 230 * 231 * * - %NETIF_F_FCOE_CRC 232 * - This feature indicates that a device is capable of offloading the FCOE 233 * CRC in a packet. To perform this offload the stack will set ip_summed 234 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 235 * accordingly. Note that there is no indication in the skbuff that the 236 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 237 * both IP checksum offload and FCOE CRC offload must verify which offload 238 * is configured for a packet, presumably by inspecting packet headers. 239 * 240 * Checksumming on output with GSO 241 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 242 * 243 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 244 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 245 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 246 * part of the GSO operation is implied. If a checksum is being offloaded 247 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 248 * csum_offset are set to refer to the outermost checksum being offloaded 249 * (two offloaded checksums are possible with UDP encapsulation). 250 */ 251 252 /* Don't change this without changing skb_csum_unnecessary! */ 253 #define CHECKSUM_NONE 0 254 #define CHECKSUM_UNNECESSARY 1 255 #define CHECKSUM_COMPLETE 2 256 #define CHECKSUM_PARTIAL 3 257 258 /* Maximum value in skb->csum_level */ 259 #define SKB_MAX_CSUM_LEVEL 3 260 261 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 262 #define SKB_WITH_OVERHEAD(X) \ 263 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 264 #define SKB_MAX_ORDER(X, ORDER) \ 265 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 266 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 267 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 268 269 /* return minimum truesize of one skb containing X bytes of data */ 270 #define SKB_TRUESIZE(X) ((X) + \ 271 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 273 274 struct ahash_request; 275 struct net_device; 276 struct scatterlist; 277 struct pipe_inode_info; 278 struct iov_iter; 279 struct napi_struct; 280 struct bpf_prog; 281 union bpf_attr; 282 struct skb_ext; 283 284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 285 struct nf_bridge_info { 286 enum { 287 BRNF_PROTO_UNCHANGED, 288 BRNF_PROTO_8021Q, 289 BRNF_PROTO_PPPOE 290 } orig_proto:8; 291 u8 pkt_otherhost:1; 292 u8 in_prerouting:1; 293 u8 bridged_dnat:1; 294 __u16 frag_max_size; 295 struct net_device *physindev; 296 297 /* always valid & non-NULL from FORWARD on, for physdev match */ 298 struct net_device *physoutdev; 299 union { 300 /* prerouting: detect dnat in orig/reply direction */ 301 __be32 ipv4_daddr; 302 struct in6_addr ipv6_daddr; 303 304 /* after prerouting + nat detected: store original source 305 * mac since neigh resolution overwrites it, only used while 306 * skb is out in neigh layer. 307 */ 308 char neigh_header[8]; 309 }; 310 }; 311 #endif 312 313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 314 /* Chain in tc_skb_ext will be used to share the tc chain with 315 * ovs recirc_id. It will be set to the current chain by tc 316 * and read by ovs to recirc_id. 317 */ 318 struct tc_skb_ext { 319 __u32 chain; 320 __u16 mru; 321 __u16 zone; 322 u8 post_ct:1; 323 u8 post_ct_snat:1; 324 u8 post_ct_dnat:1; 325 }; 326 #endif 327 328 struct sk_buff_head { 329 /* These two members must be first to match sk_buff. */ 330 struct_group_tagged(sk_buff_list, list, 331 struct sk_buff *next; 332 struct sk_buff *prev; 333 ); 334 335 __u32 qlen; 336 spinlock_t lock; 337 }; 338 339 struct sk_buff; 340 341 /* To allow 64K frame to be packed as single skb without frag_list we 342 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 343 * buffers which do not start on a page boundary. 344 * 345 * Since GRO uses frags we allocate at least 16 regardless of page 346 * size. 347 */ 348 #if (65536/PAGE_SIZE + 1) < 16 349 #define MAX_SKB_FRAGS 16UL 350 #else 351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 352 #endif 353 extern int sysctl_max_skb_frags; 354 355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 356 * segment using its current segmentation instead. 357 */ 358 #define GSO_BY_FRAGS 0xFFFF 359 360 typedef struct bio_vec skb_frag_t; 361 362 /** 363 * skb_frag_size() - Returns the size of a skb fragment 364 * @frag: skb fragment 365 */ 366 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 367 { 368 return frag->bv_len; 369 } 370 371 /** 372 * skb_frag_size_set() - Sets the size of a skb fragment 373 * @frag: skb fragment 374 * @size: size of fragment 375 */ 376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 377 { 378 frag->bv_len = size; 379 } 380 381 /** 382 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 383 * @frag: skb fragment 384 * @delta: value to add 385 */ 386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 387 { 388 frag->bv_len += delta; 389 } 390 391 /** 392 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 393 * @frag: skb fragment 394 * @delta: value to subtract 395 */ 396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 397 { 398 frag->bv_len -= delta; 399 } 400 401 /** 402 * skb_frag_must_loop - Test if %p is a high memory page 403 * @p: fragment's page 404 */ 405 static inline bool skb_frag_must_loop(struct page *p) 406 { 407 #if defined(CONFIG_HIGHMEM) 408 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 409 return true; 410 #endif 411 return false; 412 } 413 414 /** 415 * skb_frag_foreach_page - loop over pages in a fragment 416 * 417 * @f: skb frag to operate on 418 * @f_off: offset from start of f->bv_page 419 * @f_len: length from f_off to loop over 420 * @p: (temp var) current page 421 * @p_off: (temp var) offset from start of current page, 422 * non-zero only on first page. 423 * @p_len: (temp var) length in current page, 424 * < PAGE_SIZE only on first and last page. 425 * @copied: (temp var) length so far, excluding current p_len. 426 * 427 * A fragment can hold a compound page, in which case per-page 428 * operations, notably kmap_atomic, must be called for each 429 * regular page. 430 */ 431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 432 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 433 p_off = (f_off) & (PAGE_SIZE - 1), \ 434 p_len = skb_frag_must_loop(p) ? \ 435 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 436 copied = 0; \ 437 copied < f_len; \ 438 copied += p_len, p++, p_off = 0, \ 439 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 440 441 #define HAVE_HW_TIME_STAMP 442 443 /** 444 * struct skb_shared_hwtstamps - hardware time stamps 445 * @hwtstamp: hardware time stamp transformed into duration 446 * since arbitrary point in time 447 * @netdev_data: address/cookie of network device driver used as 448 * reference to actual hardware time stamp 449 * 450 * Software time stamps generated by ktime_get_real() are stored in 451 * skb->tstamp. 452 * 453 * hwtstamps can only be compared against other hwtstamps from 454 * the same device. 455 * 456 * This structure is attached to packets as part of the 457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 458 */ 459 struct skb_shared_hwtstamps { 460 union { 461 ktime_t hwtstamp; 462 void *netdev_data; 463 }; 464 }; 465 466 /* Definitions for tx_flags in struct skb_shared_info */ 467 enum { 468 /* generate hardware time stamp */ 469 SKBTX_HW_TSTAMP = 1 << 0, 470 471 /* generate software time stamp when queueing packet to NIC */ 472 SKBTX_SW_TSTAMP = 1 << 1, 473 474 /* device driver is going to provide hardware time stamp */ 475 SKBTX_IN_PROGRESS = 1 << 2, 476 477 /* generate hardware time stamp based on cycles if supported */ 478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 479 480 /* generate wifi status information (where possible) */ 481 SKBTX_WIFI_STATUS = 1 << 4, 482 483 /* determine hardware time stamp based on time or cycles */ 484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 485 486 /* generate software time stamp when entering packet scheduling */ 487 SKBTX_SCHED_TSTAMP = 1 << 6, 488 }; 489 490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 491 SKBTX_SCHED_TSTAMP) 492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 493 SKBTX_HW_TSTAMP_USE_CYCLES | \ 494 SKBTX_ANY_SW_TSTAMP) 495 496 /* Definitions for flags in struct skb_shared_info */ 497 enum { 498 /* use zcopy routines */ 499 SKBFL_ZEROCOPY_ENABLE = BIT(0), 500 501 /* This indicates at least one fragment might be overwritten 502 * (as in vmsplice(), sendfile() ...) 503 * If we need to compute a TX checksum, we'll need to copy 504 * all frags to avoid possible bad checksum 505 */ 506 SKBFL_SHARED_FRAG = BIT(1), 507 508 /* segment contains only zerocopy data and should not be 509 * charged to the kernel memory. 510 */ 511 SKBFL_PURE_ZEROCOPY = BIT(2), 512 513 SKBFL_DONT_ORPHAN = BIT(3), 514 515 /* page references are managed by the ubuf_info, so it's safe to 516 * use frags only up until ubuf_info is released 517 */ 518 SKBFL_MANAGED_FRAG_REFS = BIT(4), 519 }; 520 521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 522 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 524 525 /* 526 * The callback notifies userspace to release buffers when skb DMA is done in 527 * lower device, the skb last reference should be 0 when calling this. 528 * The zerocopy_success argument is true if zero copy transmit occurred, 529 * false on data copy or out of memory error caused by data copy attempt. 530 * The ctx field is used to track device context. 531 * The desc field is used to track userspace buffer index. 532 */ 533 struct ubuf_info { 534 void (*callback)(struct sk_buff *, struct ubuf_info *, 535 bool zerocopy_success); 536 union { 537 struct { 538 unsigned long desc; 539 void *ctx; 540 }; 541 struct { 542 u32 id; 543 u16 len; 544 u16 zerocopy:1; 545 u32 bytelen; 546 }; 547 }; 548 refcount_t refcnt; 549 u8 flags; 550 551 struct mmpin { 552 struct user_struct *user; 553 unsigned int num_pg; 554 } mmp; 555 }; 556 557 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 558 559 int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 560 void mm_unaccount_pinned_pages(struct mmpin *mmp); 561 562 /* This data is invariant across clones and lives at 563 * the end of the header data, ie. at skb->end. 564 */ 565 struct skb_shared_info { 566 __u8 flags; 567 __u8 meta_len; 568 __u8 nr_frags; 569 __u8 tx_flags; 570 unsigned short gso_size; 571 /* Warning: this field is not always filled in (UFO)! */ 572 unsigned short gso_segs; 573 struct sk_buff *frag_list; 574 struct skb_shared_hwtstamps hwtstamps; 575 unsigned int gso_type; 576 u32 tskey; 577 578 /* 579 * Warning : all fields before dataref are cleared in __alloc_skb() 580 */ 581 atomic_t dataref; 582 unsigned int xdp_frags_size; 583 584 /* Intermediate layers must ensure that destructor_arg 585 * remains valid until skb destructor */ 586 void * destructor_arg; 587 588 /* must be last field, see pskb_expand_head() */ 589 skb_frag_t frags[MAX_SKB_FRAGS]; 590 }; 591 592 /** 593 * DOC: dataref and headerless skbs 594 * 595 * Transport layers send out clones of payload skbs they hold for 596 * retransmissions. To allow lower layers of the stack to prepend their headers 597 * we split &skb_shared_info.dataref into two halves. 598 * The lower 16 bits count the overall number of references. 599 * The higher 16 bits indicate how many of the references are payload-only. 600 * skb_header_cloned() checks if skb is allowed to add / write the headers. 601 * 602 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 603 * (via __skb_header_release()). Any clone created from marked skb will get 604 * &sk_buff.hdr_len populated with the available headroom. 605 * If there's the only clone in existence it's able to modify the headroom 606 * at will. The sequence of calls inside the transport layer is:: 607 * 608 * <alloc skb> 609 * skb_reserve() 610 * __skb_header_release() 611 * skb_clone() 612 * // send the clone down the stack 613 * 614 * This is not a very generic construct and it depends on the transport layers 615 * doing the right thing. In practice there's usually only one payload-only skb. 616 * Having multiple payload-only skbs with different lengths of hdr_len is not 617 * possible. The payload-only skbs should never leave their owner. 618 */ 619 #define SKB_DATAREF_SHIFT 16 620 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 621 622 623 enum { 624 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 625 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 626 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 627 }; 628 629 enum { 630 SKB_GSO_TCPV4 = 1 << 0, 631 632 /* This indicates the skb is from an untrusted source. */ 633 SKB_GSO_DODGY = 1 << 1, 634 635 /* This indicates the tcp segment has CWR set. */ 636 SKB_GSO_TCP_ECN = 1 << 2, 637 638 SKB_GSO_TCP_FIXEDID = 1 << 3, 639 640 SKB_GSO_TCPV6 = 1 << 4, 641 642 SKB_GSO_FCOE = 1 << 5, 643 644 SKB_GSO_GRE = 1 << 6, 645 646 SKB_GSO_GRE_CSUM = 1 << 7, 647 648 SKB_GSO_IPXIP4 = 1 << 8, 649 650 SKB_GSO_IPXIP6 = 1 << 9, 651 652 SKB_GSO_UDP_TUNNEL = 1 << 10, 653 654 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 655 656 SKB_GSO_PARTIAL = 1 << 12, 657 658 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 659 660 SKB_GSO_SCTP = 1 << 14, 661 662 SKB_GSO_ESP = 1 << 15, 663 664 SKB_GSO_UDP = 1 << 16, 665 666 SKB_GSO_UDP_L4 = 1 << 17, 667 668 SKB_GSO_FRAGLIST = 1 << 18, 669 }; 670 671 #if BITS_PER_LONG > 32 672 #define NET_SKBUFF_DATA_USES_OFFSET 1 673 #endif 674 675 #ifdef NET_SKBUFF_DATA_USES_OFFSET 676 typedef unsigned int sk_buff_data_t; 677 #else 678 typedef unsigned char *sk_buff_data_t; 679 #endif 680 681 /** 682 * DOC: Basic sk_buff geometry 683 * 684 * struct sk_buff itself is a metadata structure and does not hold any packet 685 * data. All the data is held in associated buffers. 686 * 687 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 688 * into two parts: 689 * 690 * - data buffer, containing headers and sometimes payload; 691 * this is the part of the skb operated on by the common helpers 692 * such as skb_put() or skb_pull(); 693 * - shared info (struct skb_shared_info) which holds an array of pointers 694 * to read-only data in the (page, offset, length) format. 695 * 696 * Optionally &skb_shared_info.frag_list may point to another skb. 697 * 698 * Basic diagram may look like this:: 699 * 700 * --------------- 701 * | sk_buff | 702 * --------------- 703 * ,--------------------------- + head 704 * / ,----------------- + data 705 * / / ,----------- + tail 706 * | | | , + end 707 * | | | | 708 * v v v v 709 * ----------------------------------------------- 710 * | headroom | data | tailroom | skb_shared_info | 711 * ----------------------------------------------- 712 * + [page frag] 713 * + [page frag] 714 * + [page frag] 715 * + [page frag] --------- 716 * + frag_list --> | sk_buff | 717 * --------- 718 * 719 */ 720 721 /** 722 * struct sk_buff - socket buffer 723 * @next: Next buffer in list 724 * @prev: Previous buffer in list 725 * @tstamp: Time we arrived/left 726 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 727 * for retransmit timer 728 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 729 * @list: queue head 730 * @ll_node: anchor in an llist (eg socket defer_list) 731 * @sk: Socket we are owned by 732 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 733 * fragmentation management 734 * @dev: Device we arrived on/are leaving by 735 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 736 * @cb: Control buffer. Free for use by every layer. Put private vars here 737 * @_skb_refdst: destination entry (with norefcount bit) 738 * @sp: the security path, used for xfrm 739 * @len: Length of actual data 740 * @data_len: Data length 741 * @mac_len: Length of link layer header 742 * @hdr_len: writable header length of cloned skb 743 * @csum: Checksum (must include start/offset pair) 744 * @csum_start: Offset from skb->head where checksumming should start 745 * @csum_offset: Offset from csum_start where checksum should be stored 746 * @priority: Packet queueing priority 747 * @ignore_df: allow local fragmentation 748 * @cloned: Head may be cloned (check refcnt to be sure) 749 * @ip_summed: Driver fed us an IP checksum 750 * @nohdr: Payload reference only, must not modify header 751 * @pkt_type: Packet class 752 * @fclone: skbuff clone status 753 * @ipvs_property: skbuff is owned by ipvs 754 * @inner_protocol_type: whether the inner protocol is 755 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 756 * @remcsum_offload: remote checksum offload is enabled 757 * @offload_fwd_mark: Packet was L2-forwarded in hardware 758 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 759 * @tc_skip_classify: do not classify packet. set by IFB device 760 * @tc_at_ingress: used within tc_classify to distinguish in/egress 761 * @redirected: packet was redirected by packet classifier 762 * @from_ingress: packet was redirected from the ingress path 763 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 764 * @peeked: this packet has been seen already, so stats have been 765 * done for it, don't do them again 766 * @nf_trace: netfilter packet trace flag 767 * @protocol: Packet protocol from driver 768 * @destructor: Destruct function 769 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 770 * @_sk_redir: socket redirection information for skmsg 771 * @_nfct: Associated connection, if any (with nfctinfo bits) 772 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 773 * @skb_iif: ifindex of device we arrived on 774 * @tc_index: Traffic control index 775 * @hash: the packet hash 776 * @queue_mapping: Queue mapping for multiqueue devices 777 * @head_frag: skb was allocated from page fragments, 778 * not allocated by kmalloc() or vmalloc(). 779 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 780 * @pp_recycle: mark the packet for recycling instead of freeing (implies 781 * page_pool support on driver) 782 * @active_extensions: active extensions (skb_ext_id types) 783 * @ndisc_nodetype: router type (from link layer) 784 * @ooo_okay: allow the mapping of a socket to a queue to be changed 785 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 786 * ports. 787 * @sw_hash: indicates hash was computed in software stack 788 * @wifi_acked_valid: wifi_acked was set 789 * @wifi_acked: whether frame was acked on wifi or not 790 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 791 * @encapsulation: indicates the inner headers in the skbuff are valid 792 * @encap_hdr_csum: software checksum is needed 793 * @csum_valid: checksum is already valid 794 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 795 * @csum_complete_sw: checksum was completed by software 796 * @csum_level: indicates the number of consecutive checksums found in 797 * the packet minus one that have been verified as 798 * CHECKSUM_UNNECESSARY (max 3) 799 * @dst_pending_confirm: need to confirm neighbour 800 * @decrypted: Decrypted SKB 801 * @slow_gro: state present at GRO time, slower prepare step required 802 * @mono_delivery_time: When set, skb->tstamp has the 803 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 804 * skb->tstamp has the (rcv) timestamp at ingress and 805 * delivery_time at egress. 806 * @napi_id: id of the NAPI struct this skb came from 807 * @sender_cpu: (aka @napi_id) source CPU in XPS 808 * @alloc_cpu: CPU which did the skb allocation. 809 * @secmark: security marking 810 * @mark: Generic packet mark 811 * @reserved_tailroom: (aka @mark) number of bytes of free space available 812 * at the tail of an sk_buff 813 * @vlan_present: VLAN tag is present 814 * @vlan_proto: vlan encapsulation protocol 815 * @vlan_tci: vlan tag control information 816 * @inner_protocol: Protocol (encapsulation) 817 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 818 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 819 * @inner_transport_header: Inner transport layer header (encapsulation) 820 * @inner_network_header: Network layer header (encapsulation) 821 * @inner_mac_header: Link layer header (encapsulation) 822 * @transport_header: Transport layer header 823 * @network_header: Network layer header 824 * @mac_header: Link layer header 825 * @kcov_handle: KCOV remote handle for remote coverage collection 826 * @tail: Tail pointer 827 * @end: End pointer 828 * @head: Head of buffer 829 * @data: Data head pointer 830 * @truesize: Buffer size 831 * @users: User count - see {datagram,tcp}.c 832 * @extensions: allocated extensions, valid if active_extensions is nonzero 833 */ 834 835 struct sk_buff { 836 union { 837 struct { 838 /* These two members must be first to match sk_buff_head. */ 839 struct sk_buff *next; 840 struct sk_buff *prev; 841 842 union { 843 struct net_device *dev; 844 /* Some protocols might use this space to store information, 845 * while device pointer would be NULL. 846 * UDP receive path is one user. 847 */ 848 unsigned long dev_scratch; 849 }; 850 }; 851 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 852 struct list_head list; 853 struct llist_node ll_node; 854 }; 855 856 union { 857 struct sock *sk; 858 int ip_defrag_offset; 859 }; 860 861 union { 862 ktime_t tstamp; 863 u64 skb_mstamp_ns; /* earliest departure time */ 864 }; 865 /* 866 * This is the control buffer. It is free to use for every 867 * layer. Please put your private variables there. If you 868 * want to keep them across layers you have to do a skb_clone() 869 * first. This is owned by whoever has the skb queued ATM. 870 */ 871 char cb[48] __aligned(8); 872 873 union { 874 struct { 875 unsigned long _skb_refdst; 876 void (*destructor)(struct sk_buff *skb); 877 }; 878 struct list_head tcp_tsorted_anchor; 879 #ifdef CONFIG_NET_SOCK_MSG 880 unsigned long _sk_redir; 881 #endif 882 }; 883 884 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 885 unsigned long _nfct; 886 #endif 887 unsigned int len, 888 data_len; 889 __u16 mac_len, 890 hdr_len; 891 892 /* Following fields are _not_ copied in __copy_skb_header() 893 * Note that queue_mapping is here mostly to fill a hole. 894 */ 895 __u16 queue_mapping; 896 897 /* if you move cloned around you also must adapt those constants */ 898 #ifdef __BIG_ENDIAN_BITFIELD 899 #define CLONED_MASK (1 << 7) 900 #else 901 #define CLONED_MASK 1 902 #endif 903 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 904 905 /* private: */ 906 __u8 __cloned_offset[0]; 907 /* public: */ 908 __u8 cloned:1, 909 nohdr:1, 910 fclone:2, 911 peeked:1, 912 head_frag:1, 913 pfmemalloc:1, 914 pp_recycle:1; /* page_pool recycle indicator */ 915 #ifdef CONFIG_SKB_EXTENSIONS 916 __u8 active_extensions; 917 #endif 918 919 /* Fields enclosed in headers group are copied 920 * using a single memcpy() in __copy_skb_header() 921 */ 922 struct_group(headers, 923 924 /* private: */ 925 __u8 __pkt_type_offset[0]; 926 /* public: */ 927 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 928 __u8 ignore_df:1; 929 __u8 nf_trace:1; 930 __u8 ip_summed:2; 931 __u8 ooo_okay:1; 932 933 __u8 l4_hash:1; 934 __u8 sw_hash:1; 935 __u8 wifi_acked_valid:1; 936 __u8 wifi_acked:1; 937 __u8 no_fcs:1; 938 /* Indicates the inner headers are valid in the skbuff. */ 939 __u8 encapsulation:1; 940 __u8 encap_hdr_csum:1; 941 __u8 csum_valid:1; 942 943 /* private: */ 944 __u8 __pkt_vlan_present_offset[0]; 945 /* public: */ 946 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 947 __u8 csum_complete_sw:1; 948 __u8 csum_level:2; 949 __u8 dst_pending_confirm:1; 950 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 951 #ifdef CONFIG_NET_CLS_ACT 952 __u8 tc_skip_classify:1; 953 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 954 #endif 955 #ifdef CONFIG_IPV6_NDISC_NODETYPE 956 __u8 ndisc_nodetype:2; 957 #endif 958 959 __u8 ipvs_property:1; 960 __u8 inner_protocol_type:1; 961 __u8 remcsum_offload:1; 962 #ifdef CONFIG_NET_SWITCHDEV 963 __u8 offload_fwd_mark:1; 964 __u8 offload_l3_fwd_mark:1; 965 #endif 966 __u8 redirected:1; 967 #ifdef CONFIG_NET_REDIRECT 968 __u8 from_ingress:1; 969 #endif 970 #ifdef CONFIG_NETFILTER_SKIP_EGRESS 971 __u8 nf_skip_egress:1; 972 #endif 973 #ifdef CONFIG_TLS_DEVICE 974 __u8 decrypted:1; 975 #endif 976 __u8 slow_gro:1; 977 __u8 csum_not_inet:1; 978 979 #ifdef CONFIG_NET_SCHED 980 __u16 tc_index; /* traffic control index */ 981 #endif 982 983 union { 984 __wsum csum; 985 struct { 986 __u16 csum_start; 987 __u16 csum_offset; 988 }; 989 }; 990 __u32 priority; 991 int skb_iif; 992 __u32 hash; 993 __be16 vlan_proto; 994 __u16 vlan_tci; 995 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 996 union { 997 unsigned int napi_id; 998 unsigned int sender_cpu; 999 }; 1000 #endif 1001 u16 alloc_cpu; 1002 #ifdef CONFIG_NETWORK_SECMARK 1003 __u32 secmark; 1004 #endif 1005 1006 union { 1007 __u32 mark; 1008 __u32 reserved_tailroom; 1009 }; 1010 1011 union { 1012 __be16 inner_protocol; 1013 __u8 inner_ipproto; 1014 }; 1015 1016 __u16 inner_transport_header; 1017 __u16 inner_network_header; 1018 __u16 inner_mac_header; 1019 1020 __be16 protocol; 1021 __u16 transport_header; 1022 __u16 network_header; 1023 __u16 mac_header; 1024 1025 #ifdef CONFIG_KCOV 1026 u64 kcov_handle; 1027 #endif 1028 1029 ); /* end headers group */ 1030 1031 /* These elements must be at the end, see alloc_skb() for details. */ 1032 sk_buff_data_t tail; 1033 sk_buff_data_t end; 1034 unsigned char *head, 1035 *data; 1036 unsigned int truesize; 1037 refcount_t users; 1038 1039 #ifdef CONFIG_SKB_EXTENSIONS 1040 /* only useable after checking ->active_extensions != 0 */ 1041 struct skb_ext *extensions; 1042 #endif 1043 }; 1044 1045 /* if you move pkt_type around you also must adapt those constants */ 1046 #ifdef __BIG_ENDIAN_BITFIELD 1047 #define PKT_TYPE_MAX (7 << 5) 1048 #else 1049 #define PKT_TYPE_MAX 7 1050 #endif 1051 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1052 1053 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time 1054 * around, you also must adapt these constants. 1055 */ 1056 #ifdef __BIG_ENDIAN_BITFIELD 1057 #define PKT_VLAN_PRESENT_BIT 7 1058 #define TC_AT_INGRESS_MASK (1 << 0) 1059 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1060 #else 1061 #define PKT_VLAN_PRESENT_BIT 0 1062 #define TC_AT_INGRESS_MASK (1 << 7) 1063 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1064 #endif 1065 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1066 1067 #ifdef __KERNEL__ 1068 /* 1069 * Handling routines are only of interest to the kernel 1070 */ 1071 1072 #define SKB_ALLOC_FCLONE 0x01 1073 #define SKB_ALLOC_RX 0x02 1074 #define SKB_ALLOC_NAPI 0x04 1075 1076 /** 1077 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1078 * @skb: buffer 1079 */ 1080 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1081 { 1082 return unlikely(skb->pfmemalloc); 1083 } 1084 1085 /* 1086 * skb might have a dst pointer attached, refcounted or not. 1087 * _skb_refdst low order bit is set if refcount was _not_ taken 1088 */ 1089 #define SKB_DST_NOREF 1UL 1090 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1091 1092 /** 1093 * skb_dst - returns skb dst_entry 1094 * @skb: buffer 1095 * 1096 * Returns skb dst_entry, regardless of reference taken or not. 1097 */ 1098 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1099 { 1100 /* If refdst was not refcounted, check we still are in a 1101 * rcu_read_lock section 1102 */ 1103 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1104 !rcu_read_lock_held() && 1105 !rcu_read_lock_bh_held()); 1106 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1107 } 1108 1109 /** 1110 * skb_dst_set - sets skb dst 1111 * @skb: buffer 1112 * @dst: dst entry 1113 * 1114 * Sets skb dst, assuming a reference was taken on dst and should 1115 * be released by skb_dst_drop() 1116 */ 1117 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1118 { 1119 skb->slow_gro |= !!dst; 1120 skb->_skb_refdst = (unsigned long)dst; 1121 } 1122 1123 /** 1124 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1125 * @skb: buffer 1126 * @dst: dst entry 1127 * 1128 * Sets skb dst, assuming a reference was not taken on dst. 1129 * If dst entry is cached, we do not take reference and dst_release 1130 * will be avoided by refdst_drop. If dst entry is not cached, we take 1131 * reference, so that last dst_release can destroy the dst immediately. 1132 */ 1133 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1134 { 1135 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1136 skb->slow_gro |= !!dst; 1137 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1138 } 1139 1140 /** 1141 * skb_dst_is_noref - Test if skb dst isn't refcounted 1142 * @skb: buffer 1143 */ 1144 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1145 { 1146 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1147 } 1148 1149 /** 1150 * skb_rtable - Returns the skb &rtable 1151 * @skb: buffer 1152 */ 1153 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1154 { 1155 return (struct rtable *)skb_dst(skb); 1156 } 1157 1158 /* For mangling skb->pkt_type from user space side from applications 1159 * such as nft, tc, etc, we only allow a conservative subset of 1160 * possible pkt_types to be set. 1161 */ 1162 static inline bool skb_pkt_type_ok(u32 ptype) 1163 { 1164 return ptype <= PACKET_OTHERHOST; 1165 } 1166 1167 /** 1168 * skb_napi_id - Returns the skb's NAPI id 1169 * @skb: buffer 1170 */ 1171 static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1172 { 1173 #ifdef CONFIG_NET_RX_BUSY_POLL 1174 return skb->napi_id; 1175 #else 1176 return 0; 1177 #endif 1178 } 1179 1180 /** 1181 * skb_unref - decrement the skb's reference count 1182 * @skb: buffer 1183 * 1184 * Returns true if we can free the skb. 1185 */ 1186 static inline bool skb_unref(struct sk_buff *skb) 1187 { 1188 if (unlikely(!skb)) 1189 return false; 1190 if (likely(refcount_read(&skb->users) == 1)) 1191 smp_rmb(); 1192 else if (likely(!refcount_dec_and_test(&skb->users))) 1193 return false; 1194 1195 return true; 1196 } 1197 1198 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1199 1200 /** 1201 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1202 * @skb: buffer to free 1203 */ 1204 static inline void kfree_skb(struct sk_buff *skb) 1205 { 1206 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1207 } 1208 1209 void skb_release_head_state(struct sk_buff *skb); 1210 void kfree_skb_list_reason(struct sk_buff *segs, 1211 enum skb_drop_reason reason); 1212 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1213 void skb_tx_error(struct sk_buff *skb); 1214 1215 static inline void kfree_skb_list(struct sk_buff *segs) 1216 { 1217 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1218 } 1219 1220 #ifdef CONFIG_TRACEPOINTS 1221 void consume_skb(struct sk_buff *skb); 1222 #else 1223 static inline void consume_skb(struct sk_buff *skb) 1224 { 1225 return kfree_skb(skb); 1226 } 1227 #endif 1228 1229 void __consume_stateless_skb(struct sk_buff *skb); 1230 void __kfree_skb(struct sk_buff *skb); 1231 extern struct kmem_cache *skbuff_head_cache; 1232 1233 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1234 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1235 bool *fragstolen, int *delta_truesize); 1236 1237 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1238 int node); 1239 struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1240 struct sk_buff *build_skb(void *data, unsigned int frag_size); 1241 struct sk_buff *build_skb_around(struct sk_buff *skb, 1242 void *data, unsigned int frag_size); 1243 void skb_attempt_defer_free(struct sk_buff *skb); 1244 1245 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1246 1247 /** 1248 * alloc_skb - allocate a network buffer 1249 * @size: size to allocate 1250 * @priority: allocation mask 1251 * 1252 * This function is a convenient wrapper around __alloc_skb(). 1253 */ 1254 static inline struct sk_buff *alloc_skb(unsigned int size, 1255 gfp_t priority) 1256 { 1257 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1258 } 1259 1260 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1261 unsigned long data_len, 1262 int max_page_order, 1263 int *errcode, 1264 gfp_t gfp_mask); 1265 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1266 1267 /* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1268 struct sk_buff_fclones { 1269 struct sk_buff skb1; 1270 1271 struct sk_buff skb2; 1272 1273 refcount_t fclone_ref; 1274 }; 1275 1276 /** 1277 * skb_fclone_busy - check if fclone is busy 1278 * @sk: socket 1279 * @skb: buffer 1280 * 1281 * Returns true if skb is a fast clone, and its clone is not freed. 1282 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1283 * so we also check that this didnt happen. 1284 */ 1285 static inline bool skb_fclone_busy(const struct sock *sk, 1286 const struct sk_buff *skb) 1287 { 1288 const struct sk_buff_fclones *fclones; 1289 1290 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1291 1292 return skb->fclone == SKB_FCLONE_ORIG && 1293 refcount_read(&fclones->fclone_ref) > 1 && 1294 READ_ONCE(fclones->skb2.sk) == sk; 1295 } 1296 1297 /** 1298 * alloc_skb_fclone - allocate a network buffer from fclone cache 1299 * @size: size to allocate 1300 * @priority: allocation mask 1301 * 1302 * This function is a convenient wrapper around __alloc_skb(). 1303 */ 1304 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1305 gfp_t priority) 1306 { 1307 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1308 } 1309 1310 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1311 void skb_headers_offset_update(struct sk_buff *skb, int off); 1312 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1313 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1314 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1315 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1316 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1317 gfp_t gfp_mask, bool fclone); 1318 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1319 gfp_t gfp_mask) 1320 { 1321 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1322 } 1323 1324 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1325 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1326 unsigned int headroom); 1327 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1328 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1329 int newtailroom, gfp_t priority); 1330 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1331 int offset, int len); 1332 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1333 int offset, int len); 1334 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1335 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1336 1337 /** 1338 * skb_pad - zero pad the tail of an skb 1339 * @skb: buffer to pad 1340 * @pad: space to pad 1341 * 1342 * Ensure that a buffer is followed by a padding area that is zero 1343 * filled. Used by network drivers which may DMA or transfer data 1344 * beyond the buffer end onto the wire. 1345 * 1346 * May return error in out of memory cases. The skb is freed on error. 1347 */ 1348 static inline int skb_pad(struct sk_buff *skb, int pad) 1349 { 1350 return __skb_pad(skb, pad, true); 1351 } 1352 #define dev_kfree_skb(a) consume_skb(a) 1353 1354 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1355 int offset, size_t size); 1356 1357 struct skb_seq_state { 1358 __u32 lower_offset; 1359 __u32 upper_offset; 1360 __u32 frag_idx; 1361 __u32 stepped_offset; 1362 struct sk_buff *root_skb; 1363 struct sk_buff *cur_skb; 1364 __u8 *frag_data; 1365 __u32 frag_off; 1366 }; 1367 1368 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1369 unsigned int to, struct skb_seq_state *st); 1370 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1371 struct skb_seq_state *st); 1372 void skb_abort_seq_read(struct skb_seq_state *st); 1373 1374 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1375 unsigned int to, struct ts_config *config); 1376 1377 /* 1378 * Packet hash types specify the type of hash in skb_set_hash. 1379 * 1380 * Hash types refer to the protocol layer addresses which are used to 1381 * construct a packet's hash. The hashes are used to differentiate or identify 1382 * flows of the protocol layer for the hash type. Hash types are either 1383 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1384 * 1385 * Properties of hashes: 1386 * 1387 * 1) Two packets in different flows have different hash values 1388 * 2) Two packets in the same flow should have the same hash value 1389 * 1390 * A hash at a higher layer is considered to be more specific. A driver should 1391 * set the most specific hash possible. 1392 * 1393 * A driver cannot indicate a more specific hash than the layer at which a hash 1394 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1395 * 1396 * A driver may indicate a hash level which is less specific than the 1397 * actual layer the hash was computed on. For instance, a hash computed 1398 * at L4 may be considered an L3 hash. This should only be done if the 1399 * driver can't unambiguously determine that the HW computed the hash at 1400 * the higher layer. Note that the "should" in the second property above 1401 * permits this. 1402 */ 1403 enum pkt_hash_types { 1404 PKT_HASH_TYPE_NONE, /* Undefined type */ 1405 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1406 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1407 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1408 }; 1409 1410 static inline void skb_clear_hash(struct sk_buff *skb) 1411 { 1412 skb->hash = 0; 1413 skb->sw_hash = 0; 1414 skb->l4_hash = 0; 1415 } 1416 1417 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1418 { 1419 if (!skb->l4_hash) 1420 skb_clear_hash(skb); 1421 } 1422 1423 static inline void 1424 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1425 { 1426 skb->l4_hash = is_l4; 1427 skb->sw_hash = is_sw; 1428 skb->hash = hash; 1429 } 1430 1431 static inline void 1432 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1433 { 1434 /* Used by drivers to set hash from HW */ 1435 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1436 } 1437 1438 static inline void 1439 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1440 { 1441 __skb_set_hash(skb, hash, true, is_l4); 1442 } 1443 1444 void __skb_get_hash(struct sk_buff *skb); 1445 u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1446 u32 skb_get_poff(const struct sk_buff *skb); 1447 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1448 const struct flow_keys_basic *keys, int hlen); 1449 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1450 const void *data, int hlen_proto); 1451 1452 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1453 int thoff, u8 ip_proto) 1454 { 1455 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1456 } 1457 1458 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1459 const struct flow_dissector_key *key, 1460 unsigned int key_count); 1461 1462 struct bpf_flow_dissector; 1463 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1464 __be16 proto, int nhoff, int hlen, unsigned int flags); 1465 1466 bool __skb_flow_dissect(const struct net *net, 1467 const struct sk_buff *skb, 1468 struct flow_dissector *flow_dissector, 1469 void *target_container, const void *data, 1470 __be16 proto, int nhoff, int hlen, unsigned int flags); 1471 1472 static inline bool skb_flow_dissect(const struct sk_buff *skb, 1473 struct flow_dissector *flow_dissector, 1474 void *target_container, unsigned int flags) 1475 { 1476 return __skb_flow_dissect(NULL, skb, flow_dissector, 1477 target_container, NULL, 0, 0, 0, flags); 1478 } 1479 1480 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1481 struct flow_keys *flow, 1482 unsigned int flags) 1483 { 1484 memset(flow, 0, sizeof(*flow)); 1485 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1486 flow, NULL, 0, 0, 0, flags); 1487 } 1488 1489 static inline bool 1490 skb_flow_dissect_flow_keys_basic(const struct net *net, 1491 const struct sk_buff *skb, 1492 struct flow_keys_basic *flow, 1493 const void *data, __be16 proto, 1494 int nhoff, int hlen, unsigned int flags) 1495 { 1496 memset(flow, 0, sizeof(*flow)); 1497 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1498 data, proto, nhoff, hlen, flags); 1499 } 1500 1501 void skb_flow_dissect_meta(const struct sk_buff *skb, 1502 struct flow_dissector *flow_dissector, 1503 void *target_container); 1504 1505 /* Gets a skb connection tracking info, ctinfo map should be a 1506 * map of mapsize to translate enum ip_conntrack_info states 1507 * to user states. 1508 */ 1509 void 1510 skb_flow_dissect_ct(const struct sk_buff *skb, 1511 struct flow_dissector *flow_dissector, 1512 void *target_container, 1513 u16 *ctinfo_map, size_t mapsize, 1514 bool post_ct, u16 zone); 1515 void 1516 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1517 struct flow_dissector *flow_dissector, 1518 void *target_container); 1519 1520 void skb_flow_dissect_hash(const struct sk_buff *skb, 1521 struct flow_dissector *flow_dissector, 1522 void *target_container); 1523 1524 static inline __u32 skb_get_hash(struct sk_buff *skb) 1525 { 1526 if (!skb->l4_hash && !skb->sw_hash) 1527 __skb_get_hash(skb); 1528 1529 return skb->hash; 1530 } 1531 1532 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1533 { 1534 if (!skb->l4_hash && !skb->sw_hash) { 1535 struct flow_keys keys; 1536 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1537 1538 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1539 } 1540 1541 return skb->hash; 1542 } 1543 1544 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1545 const siphash_key_t *perturb); 1546 1547 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1548 { 1549 return skb->hash; 1550 } 1551 1552 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1553 { 1554 to->hash = from->hash; 1555 to->sw_hash = from->sw_hash; 1556 to->l4_hash = from->l4_hash; 1557 }; 1558 1559 static inline void skb_copy_decrypted(struct sk_buff *to, 1560 const struct sk_buff *from) 1561 { 1562 #ifdef CONFIG_TLS_DEVICE 1563 to->decrypted = from->decrypted; 1564 #endif 1565 } 1566 1567 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1568 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1569 { 1570 return skb->head + skb->end; 1571 } 1572 1573 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1574 { 1575 return skb->end; 1576 } 1577 1578 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1579 { 1580 skb->end = offset; 1581 } 1582 #else 1583 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1584 { 1585 return skb->end; 1586 } 1587 1588 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1589 { 1590 return skb->end - skb->head; 1591 } 1592 1593 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1594 { 1595 skb->end = skb->head + offset; 1596 } 1597 #endif 1598 1599 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1600 struct ubuf_info *uarg); 1601 1602 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1603 1604 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1605 bool success); 1606 1607 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1608 struct sk_buff *skb, struct iov_iter *from, 1609 size_t length); 1610 1611 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1612 struct msghdr *msg, int len) 1613 { 1614 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1615 } 1616 1617 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1618 struct msghdr *msg, int len, 1619 struct ubuf_info *uarg); 1620 1621 /* Internal */ 1622 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1623 1624 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1625 { 1626 return &skb_shinfo(skb)->hwtstamps; 1627 } 1628 1629 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1630 { 1631 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1632 1633 return is_zcopy ? skb_uarg(skb) : NULL; 1634 } 1635 1636 static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1637 { 1638 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1639 } 1640 1641 static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1642 { 1643 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1644 } 1645 1646 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1647 const struct sk_buff *skb2) 1648 { 1649 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1650 } 1651 1652 static inline void net_zcopy_get(struct ubuf_info *uarg) 1653 { 1654 refcount_inc(&uarg->refcnt); 1655 } 1656 1657 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1658 { 1659 skb_shinfo(skb)->destructor_arg = uarg; 1660 skb_shinfo(skb)->flags |= uarg->flags; 1661 } 1662 1663 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1664 bool *have_ref) 1665 { 1666 if (skb && uarg && !skb_zcopy(skb)) { 1667 if (unlikely(have_ref && *have_ref)) 1668 *have_ref = false; 1669 else 1670 net_zcopy_get(uarg); 1671 skb_zcopy_init(skb, uarg); 1672 } 1673 } 1674 1675 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1676 { 1677 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1678 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1679 } 1680 1681 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1682 { 1683 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1684 } 1685 1686 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1687 { 1688 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1689 } 1690 1691 static inline void net_zcopy_put(struct ubuf_info *uarg) 1692 { 1693 if (uarg) 1694 uarg->callback(NULL, uarg, true); 1695 } 1696 1697 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1698 { 1699 if (uarg) { 1700 if (uarg->callback == msg_zerocopy_callback) 1701 msg_zerocopy_put_abort(uarg, have_uref); 1702 else if (have_uref) 1703 net_zcopy_put(uarg); 1704 } 1705 } 1706 1707 /* Release a reference on a zerocopy structure */ 1708 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1709 { 1710 struct ubuf_info *uarg = skb_zcopy(skb); 1711 1712 if (uarg) { 1713 if (!skb_zcopy_is_nouarg(skb)) 1714 uarg->callback(skb, uarg, zerocopy_success); 1715 1716 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1717 } 1718 } 1719 1720 void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1721 1722 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1723 { 1724 if (unlikely(skb_zcopy_managed(skb))) 1725 __skb_zcopy_downgrade_managed(skb); 1726 } 1727 1728 static inline void skb_mark_not_on_list(struct sk_buff *skb) 1729 { 1730 skb->next = NULL; 1731 } 1732 1733 /* Iterate through singly-linked GSO fragments of an skb. */ 1734 #define skb_list_walk_safe(first, skb, next_skb) \ 1735 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1736 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1737 1738 static inline void skb_list_del_init(struct sk_buff *skb) 1739 { 1740 __list_del_entry(&skb->list); 1741 skb_mark_not_on_list(skb); 1742 } 1743 1744 /** 1745 * skb_queue_empty - check if a queue is empty 1746 * @list: queue head 1747 * 1748 * Returns true if the queue is empty, false otherwise. 1749 */ 1750 static inline int skb_queue_empty(const struct sk_buff_head *list) 1751 { 1752 return list->next == (const struct sk_buff *) list; 1753 } 1754 1755 /** 1756 * skb_queue_empty_lockless - check if a queue is empty 1757 * @list: queue head 1758 * 1759 * Returns true if the queue is empty, false otherwise. 1760 * This variant can be used in lockless contexts. 1761 */ 1762 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1763 { 1764 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1765 } 1766 1767 1768 /** 1769 * skb_queue_is_last - check if skb is the last entry in the queue 1770 * @list: queue head 1771 * @skb: buffer 1772 * 1773 * Returns true if @skb is the last buffer on the list. 1774 */ 1775 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1776 const struct sk_buff *skb) 1777 { 1778 return skb->next == (const struct sk_buff *) list; 1779 } 1780 1781 /** 1782 * skb_queue_is_first - check if skb is the first entry in the queue 1783 * @list: queue head 1784 * @skb: buffer 1785 * 1786 * Returns true if @skb is the first buffer on the list. 1787 */ 1788 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1789 const struct sk_buff *skb) 1790 { 1791 return skb->prev == (const struct sk_buff *) list; 1792 } 1793 1794 /** 1795 * skb_queue_next - return the next packet in the queue 1796 * @list: queue head 1797 * @skb: current buffer 1798 * 1799 * Return the next packet in @list after @skb. It is only valid to 1800 * call this if skb_queue_is_last() evaluates to false. 1801 */ 1802 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1803 const struct sk_buff *skb) 1804 { 1805 /* This BUG_ON may seem severe, but if we just return then we 1806 * are going to dereference garbage. 1807 */ 1808 BUG_ON(skb_queue_is_last(list, skb)); 1809 return skb->next; 1810 } 1811 1812 /** 1813 * skb_queue_prev - return the prev packet in the queue 1814 * @list: queue head 1815 * @skb: current buffer 1816 * 1817 * Return the prev packet in @list before @skb. It is only valid to 1818 * call this if skb_queue_is_first() evaluates to false. 1819 */ 1820 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1821 const struct sk_buff *skb) 1822 { 1823 /* This BUG_ON may seem severe, but if we just return then we 1824 * are going to dereference garbage. 1825 */ 1826 BUG_ON(skb_queue_is_first(list, skb)); 1827 return skb->prev; 1828 } 1829 1830 /** 1831 * skb_get - reference buffer 1832 * @skb: buffer to reference 1833 * 1834 * Makes another reference to a socket buffer and returns a pointer 1835 * to the buffer. 1836 */ 1837 static inline struct sk_buff *skb_get(struct sk_buff *skb) 1838 { 1839 refcount_inc(&skb->users); 1840 return skb; 1841 } 1842 1843 /* 1844 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1845 */ 1846 1847 /** 1848 * skb_cloned - is the buffer a clone 1849 * @skb: buffer to check 1850 * 1851 * Returns true if the buffer was generated with skb_clone() and is 1852 * one of multiple shared copies of the buffer. Cloned buffers are 1853 * shared data so must not be written to under normal circumstances. 1854 */ 1855 static inline int skb_cloned(const struct sk_buff *skb) 1856 { 1857 return skb->cloned && 1858 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1859 } 1860 1861 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1862 { 1863 might_sleep_if(gfpflags_allow_blocking(pri)); 1864 1865 if (skb_cloned(skb)) 1866 return pskb_expand_head(skb, 0, 0, pri); 1867 1868 return 0; 1869 } 1870 1871 /* This variant of skb_unclone() makes sure skb->truesize 1872 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1873 * 1874 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1875 * when various debugging features are in place. 1876 */ 1877 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1878 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1879 { 1880 might_sleep_if(gfpflags_allow_blocking(pri)); 1881 1882 if (skb_cloned(skb)) 1883 return __skb_unclone_keeptruesize(skb, pri); 1884 return 0; 1885 } 1886 1887 /** 1888 * skb_header_cloned - is the header a clone 1889 * @skb: buffer to check 1890 * 1891 * Returns true if modifying the header part of the buffer requires 1892 * the data to be copied. 1893 */ 1894 static inline int skb_header_cloned(const struct sk_buff *skb) 1895 { 1896 int dataref; 1897 1898 if (!skb->cloned) 1899 return 0; 1900 1901 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1902 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1903 return dataref != 1; 1904 } 1905 1906 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1907 { 1908 might_sleep_if(gfpflags_allow_blocking(pri)); 1909 1910 if (skb_header_cloned(skb)) 1911 return pskb_expand_head(skb, 0, 0, pri); 1912 1913 return 0; 1914 } 1915 1916 /** 1917 * __skb_header_release() - allow clones to use the headroom 1918 * @skb: buffer to operate on 1919 * 1920 * See "DOC: dataref and headerless skbs". 1921 */ 1922 static inline void __skb_header_release(struct sk_buff *skb) 1923 { 1924 skb->nohdr = 1; 1925 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1926 } 1927 1928 1929 /** 1930 * skb_shared - is the buffer shared 1931 * @skb: buffer to check 1932 * 1933 * Returns true if more than one person has a reference to this 1934 * buffer. 1935 */ 1936 static inline int skb_shared(const struct sk_buff *skb) 1937 { 1938 return refcount_read(&skb->users) != 1; 1939 } 1940 1941 /** 1942 * skb_share_check - check if buffer is shared and if so clone it 1943 * @skb: buffer to check 1944 * @pri: priority for memory allocation 1945 * 1946 * If the buffer is shared the buffer is cloned and the old copy 1947 * drops a reference. A new clone with a single reference is returned. 1948 * If the buffer is not shared the original buffer is returned. When 1949 * being called from interrupt status or with spinlocks held pri must 1950 * be GFP_ATOMIC. 1951 * 1952 * NULL is returned on a memory allocation failure. 1953 */ 1954 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1955 { 1956 might_sleep_if(gfpflags_allow_blocking(pri)); 1957 if (skb_shared(skb)) { 1958 struct sk_buff *nskb = skb_clone(skb, pri); 1959 1960 if (likely(nskb)) 1961 consume_skb(skb); 1962 else 1963 kfree_skb(skb); 1964 skb = nskb; 1965 } 1966 return skb; 1967 } 1968 1969 /* 1970 * Copy shared buffers into a new sk_buff. We effectively do COW on 1971 * packets to handle cases where we have a local reader and forward 1972 * and a couple of other messy ones. The normal one is tcpdumping 1973 * a packet thats being forwarded. 1974 */ 1975 1976 /** 1977 * skb_unshare - make a copy of a shared buffer 1978 * @skb: buffer to check 1979 * @pri: priority for memory allocation 1980 * 1981 * If the socket buffer is a clone then this function creates a new 1982 * copy of the data, drops a reference count on the old copy and returns 1983 * the new copy with the reference count at 1. If the buffer is not a clone 1984 * the original buffer is returned. When called with a spinlock held or 1985 * from interrupt state @pri must be %GFP_ATOMIC 1986 * 1987 * %NULL is returned on a memory allocation failure. 1988 */ 1989 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1990 gfp_t pri) 1991 { 1992 might_sleep_if(gfpflags_allow_blocking(pri)); 1993 if (skb_cloned(skb)) { 1994 struct sk_buff *nskb = skb_copy(skb, pri); 1995 1996 /* Free our shared copy */ 1997 if (likely(nskb)) 1998 consume_skb(skb); 1999 else 2000 kfree_skb(skb); 2001 skb = nskb; 2002 } 2003 return skb; 2004 } 2005 2006 /** 2007 * skb_peek - peek at the head of an &sk_buff_head 2008 * @list_: list to peek at 2009 * 2010 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2011 * be careful with this one. A peek leaves the buffer on the 2012 * list and someone else may run off with it. You must hold 2013 * the appropriate locks or have a private queue to do this. 2014 * 2015 * Returns %NULL for an empty list or a pointer to the head element. 2016 * The reference count is not incremented and the reference is therefore 2017 * volatile. Use with caution. 2018 */ 2019 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2020 { 2021 struct sk_buff *skb = list_->next; 2022 2023 if (skb == (struct sk_buff *)list_) 2024 skb = NULL; 2025 return skb; 2026 } 2027 2028 /** 2029 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2030 * @list_: list to peek at 2031 * 2032 * Like skb_peek(), but the caller knows that the list is not empty. 2033 */ 2034 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2035 { 2036 return list_->next; 2037 } 2038 2039 /** 2040 * skb_peek_next - peek skb following the given one from a queue 2041 * @skb: skb to start from 2042 * @list_: list to peek at 2043 * 2044 * Returns %NULL when the end of the list is met or a pointer to the 2045 * next element. The reference count is not incremented and the 2046 * reference is therefore volatile. Use with caution. 2047 */ 2048 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2049 const struct sk_buff_head *list_) 2050 { 2051 struct sk_buff *next = skb->next; 2052 2053 if (next == (struct sk_buff *)list_) 2054 next = NULL; 2055 return next; 2056 } 2057 2058 /** 2059 * skb_peek_tail - peek at the tail of an &sk_buff_head 2060 * @list_: list to peek at 2061 * 2062 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2063 * be careful with this one. A peek leaves the buffer on the 2064 * list and someone else may run off with it. You must hold 2065 * the appropriate locks or have a private queue to do this. 2066 * 2067 * Returns %NULL for an empty list or a pointer to the tail element. 2068 * The reference count is not incremented and the reference is therefore 2069 * volatile. Use with caution. 2070 */ 2071 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2072 { 2073 struct sk_buff *skb = READ_ONCE(list_->prev); 2074 2075 if (skb == (struct sk_buff *)list_) 2076 skb = NULL; 2077 return skb; 2078 2079 } 2080 2081 /** 2082 * skb_queue_len - get queue length 2083 * @list_: list to measure 2084 * 2085 * Return the length of an &sk_buff queue. 2086 */ 2087 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2088 { 2089 return list_->qlen; 2090 } 2091 2092 /** 2093 * skb_queue_len_lockless - get queue length 2094 * @list_: list to measure 2095 * 2096 * Return the length of an &sk_buff queue. 2097 * This variant can be used in lockless contexts. 2098 */ 2099 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2100 { 2101 return READ_ONCE(list_->qlen); 2102 } 2103 2104 /** 2105 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2106 * @list: queue to initialize 2107 * 2108 * This initializes only the list and queue length aspects of 2109 * an sk_buff_head object. This allows to initialize the list 2110 * aspects of an sk_buff_head without reinitializing things like 2111 * the spinlock. It can also be used for on-stack sk_buff_head 2112 * objects where the spinlock is known to not be used. 2113 */ 2114 static inline void __skb_queue_head_init(struct sk_buff_head *list) 2115 { 2116 list->prev = list->next = (struct sk_buff *)list; 2117 list->qlen = 0; 2118 } 2119 2120 /* 2121 * This function creates a split out lock class for each invocation; 2122 * this is needed for now since a whole lot of users of the skb-queue 2123 * infrastructure in drivers have different locking usage (in hardirq) 2124 * than the networking core (in softirq only). In the long run either the 2125 * network layer or drivers should need annotation to consolidate the 2126 * main types of usage into 3 classes. 2127 */ 2128 static inline void skb_queue_head_init(struct sk_buff_head *list) 2129 { 2130 spin_lock_init(&list->lock); 2131 __skb_queue_head_init(list); 2132 } 2133 2134 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2135 struct lock_class_key *class) 2136 { 2137 skb_queue_head_init(list); 2138 lockdep_set_class(&list->lock, class); 2139 } 2140 2141 /* 2142 * Insert an sk_buff on a list. 2143 * 2144 * The "__skb_xxxx()" functions are the non-atomic ones that 2145 * can only be called with interrupts disabled. 2146 */ 2147 static inline void __skb_insert(struct sk_buff *newsk, 2148 struct sk_buff *prev, struct sk_buff *next, 2149 struct sk_buff_head *list) 2150 { 2151 /* See skb_queue_empty_lockless() and skb_peek_tail() 2152 * for the opposite READ_ONCE() 2153 */ 2154 WRITE_ONCE(newsk->next, next); 2155 WRITE_ONCE(newsk->prev, prev); 2156 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2157 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2158 WRITE_ONCE(list->qlen, list->qlen + 1); 2159 } 2160 2161 static inline void __skb_queue_splice(const struct sk_buff_head *list, 2162 struct sk_buff *prev, 2163 struct sk_buff *next) 2164 { 2165 struct sk_buff *first = list->next; 2166 struct sk_buff *last = list->prev; 2167 2168 WRITE_ONCE(first->prev, prev); 2169 WRITE_ONCE(prev->next, first); 2170 2171 WRITE_ONCE(last->next, next); 2172 WRITE_ONCE(next->prev, last); 2173 } 2174 2175 /** 2176 * skb_queue_splice - join two skb lists, this is designed for stacks 2177 * @list: the new list to add 2178 * @head: the place to add it in the first list 2179 */ 2180 static inline void skb_queue_splice(const struct sk_buff_head *list, 2181 struct sk_buff_head *head) 2182 { 2183 if (!skb_queue_empty(list)) { 2184 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2185 head->qlen += list->qlen; 2186 } 2187 } 2188 2189 /** 2190 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2191 * @list: the new list to add 2192 * @head: the place to add it in the first list 2193 * 2194 * The list at @list is reinitialised 2195 */ 2196 static inline void skb_queue_splice_init(struct sk_buff_head *list, 2197 struct sk_buff_head *head) 2198 { 2199 if (!skb_queue_empty(list)) { 2200 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2201 head->qlen += list->qlen; 2202 __skb_queue_head_init(list); 2203 } 2204 } 2205 2206 /** 2207 * skb_queue_splice_tail - join two skb lists, each list being a queue 2208 * @list: the new list to add 2209 * @head: the place to add it in the first list 2210 */ 2211 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2212 struct sk_buff_head *head) 2213 { 2214 if (!skb_queue_empty(list)) { 2215 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2216 head->qlen += list->qlen; 2217 } 2218 } 2219 2220 /** 2221 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2222 * @list: the new list to add 2223 * @head: the place to add it in the first list 2224 * 2225 * Each of the lists is a queue. 2226 * The list at @list is reinitialised 2227 */ 2228 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2229 struct sk_buff_head *head) 2230 { 2231 if (!skb_queue_empty(list)) { 2232 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2233 head->qlen += list->qlen; 2234 __skb_queue_head_init(list); 2235 } 2236 } 2237 2238 /** 2239 * __skb_queue_after - queue a buffer at the list head 2240 * @list: list to use 2241 * @prev: place after this buffer 2242 * @newsk: buffer to queue 2243 * 2244 * Queue a buffer int the middle of a list. This function takes no locks 2245 * and you must therefore hold required locks before calling it. 2246 * 2247 * A buffer cannot be placed on two lists at the same time. 2248 */ 2249 static inline void __skb_queue_after(struct sk_buff_head *list, 2250 struct sk_buff *prev, 2251 struct sk_buff *newsk) 2252 { 2253 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2254 } 2255 2256 void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2257 struct sk_buff_head *list); 2258 2259 static inline void __skb_queue_before(struct sk_buff_head *list, 2260 struct sk_buff *next, 2261 struct sk_buff *newsk) 2262 { 2263 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2264 } 2265 2266 /** 2267 * __skb_queue_head - queue a buffer at the list head 2268 * @list: list to use 2269 * @newsk: buffer to queue 2270 * 2271 * Queue a buffer at the start of a list. This function takes no locks 2272 * and you must therefore hold required locks before calling it. 2273 * 2274 * A buffer cannot be placed on two lists at the same time. 2275 */ 2276 static inline void __skb_queue_head(struct sk_buff_head *list, 2277 struct sk_buff *newsk) 2278 { 2279 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2280 } 2281 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2282 2283 /** 2284 * __skb_queue_tail - queue a buffer at the list tail 2285 * @list: list to use 2286 * @newsk: buffer to queue 2287 * 2288 * Queue a buffer at the end of a list. This function takes no locks 2289 * and you must therefore hold required locks before calling it. 2290 * 2291 * A buffer cannot be placed on two lists at the same time. 2292 */ 2293 static inline void __skb_queue_tail(struct sk_buff_head *list, 2294 struct sk_buff *newsk) 2295 { 2296 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2297 } 2298 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2299 2300 /* 2301 * remove sk_buff from list. _Must_ be called atomically, and with 2302 * the list known.. 2303 */ 2304 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2305 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2306 { 2307 struct sk_buff *next, *prev; 2308 2309 WRITE_ONCE(list->qlen, list->qlen - 1); 2310 next = skb->next; 2311 prev = skb->prev; 2312 skb->next = skb->prev = NULL; 2313 WRITE_ONCE(next->prev, prev); 2314 WRITE_ONCE(prev->next, next); 2315 } 2316 2317 /** 2318 * __skb_dequeue - remove from the head of the queue 2319 * @list: list to dequeue from 2320 * 2321 * Remove the head of the list. This function does not take any locks 2322 * so must be used with appropriate locks held only. The head item is 2323 * returned or %NULL if the list is empty. 2324 */ 2325 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2326 { 2327 struct sk_buff *skb = skb_peek(list); 2328 if (skb) 2329 __skb_unlink(skb, list); 2330 return skb; 2331 } 2332 struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2333 2334 /** 2335 * __skb_dequeue_tail - remove from the tail of the queue 2336 * @list: list to dequeue from 2337 * 2338 * Remove the tail of the list. This function does not take any locks 2339 * so must be used with appropriate locks held only. The tail item is 2340 * returned or %NULL if the list is empty. 2341 */ 2342 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2343 { 2344 struct sk_buff *skb = skb_peek_tail(list); 2345 if (skb) 2346 __skb_unlink(skb, list); 2347 return skb; 2348 } 2349 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2350 2351 2352 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2353 { 2354 return skb->data_len; 2355 } 2356 2357 static inline unsigned int skb_headlen(const struct sk_buff *skb) 2358 { 2359 return skb->len - skb->data_len; 2360 } 2361 2362 static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2363 { 2364 unsigned int i, len = 0; 2365 2366 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2367 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2368 return len; 2369 } 2370 2371 static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2372 { 2373 return skb_headlen(skb) + __skb_pagelen(skb); 2374 } 2375 2376 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2377 int i, struct page *page, 2378 int off, int size) 2379 { 2380 skb_frag_t *frag = &shinfo->frags[i]; 2381 2382 /* 2383 * Propagate page pfmemalloc to the skb if we can. The problem is 2384 * that not all callers have unique ownership of the page but rely 2385 * on page_is_pfmemalloc doing the right thing(tm). 2386 */ 2387 frag->bv_page = page; 2388 frag->bv_offset = off; 2389 skb_frag_size_set(frag, size); 2390 } 2391 2392 /** 2393 * skb_len_add - adds a number to len fields of skb 2394 * @skb: buffer to add len to 2395 * @delta: number of bytes to add 2396 */ 2397 static inline void skb_len_add(struct sk_buff *skb, int delta) 2398 { 2399 skb->len += delta; 2400 skb->data_len += delta; 2401 skb->truesize += delta; 2402 } 2403 2404 /** 2405 * __skb_fill_page_desc - initialise a paged fragment in an skb 2406 * @skb: buffer containing fragment to be initialised 2407 * @i: paged fragment index to initialise 2408 * @page: the page to use for this fragment 2409 * @off: the offset to the data with @page 2410 * @size: the length of the data 2411 * 2412 * Initialises the @i'th fragment of @skb to point to &size bytes at 2413 * offset @off within @page. 2414 * 2415 * Does not take any additional reference on the fragment. 2416 */ 2417 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2418 struct page *page, int off, int size) 2419 { 2420 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2421 page = compound_head(page); 2422 if (page_is_pfmemalloc(page)) 2423 skb->pfmemalloc = true; 2424 } 2425 2426 /** 2427 * skb_fill_page_desc - initialise a paged fragment in an skb 2428 * @skb: buffer containing fragment to be initialised 2429 * @i: paged fragment index to initialise 2430 * @page: the page to use for this fragment 2431 * @off: the offset to the data with @page 2432 * @size: the length of the data 2433 * 2434 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2435 * @skb to point to @size bytes at offset @off within @page. In 2436 * addition updates @skb such that @i is the last fragment. 2437 * 2438 * Does not take any additional reference on the fragment. 2439 */ 2440 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2441 struct page *page, int off, int size) 2442 { 2443 __skb_fill_page_desc(skb, i, page, off, size); 2444 skb_shinfo(skb)->nr_frags = i + 1; 2445 } 2446 2447 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2448 int size, unsigned int truesize); 2449 2450 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2451 unsigned int truesize); 2452 2453 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2454 2455 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2456 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2457 { 2458 return skb->head + skb->tail; 2459 } 2460 2461 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2462 { 2463 skb->tail = skb->data - skb->head; 2464 } 2465 2466 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2467 { 2468 skb_reset_tail_pointer(skb); 2469 skb->tail += offset; 2470 } 2471 2472 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 2473 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2474 { 2475 return skb->tail; 2476 } 2477 2478 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2479 { 2480 skb->tail = skb->data; 2481 } 2482 2483 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2484 { 2485 skb->tail = skb->data + offset; 2486 } 2487 2488 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2489 2490 static inline void skb_assert_len(struct sk_buff *skb) 2491 { 2492 #ifdef CONFIG_DEBUG_NET 2493 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2494 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2495 #endif /* CONFIG_DEBUG_NET */ 2496 } 2497 2498 /* 2499 * Add data to an sk_buff 2500 */ 2501 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2502 void *skb_put(struct sk_buff *skb, unsigned int len); 2503 static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2504 { 2505 void *tmp = skb_tail_pointer(skb); 2506 SKB_LINEAR_ASSERT(skb); 2507 skb->tail += len; 2508 skb->len += len; 2509 return tmp; 2510 } 2511 2512 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2513 { 2514 void *tmp = __skb_put(skb, len); 2515 2516 memset(tmp, 0, len); 2517 return tmp; 2518 } 2519 2520 static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2521 unsigned int len) 2522 { 2523 void *tmp = __skb_put(skb, len); 2524 2525 memcpy(tmp, data, len); 2526 return tmp; 2527 } 2528 2529 static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2530 { 2531 *(u8 *)__skb_put(skb, 1) = val; 2532 } 2533 2534 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2535 { 2536 void *tmp = skb_put(skb, len); 2537 2538 memset(tmp, 0, len); 2539 2540 return tmp; 2541 } 2542 2543 static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2544 unsigned int len) 2545 { 2546 void *tmp = skb_put(skb, len); 2547 2548 memcpy(tmp, data, len); 2549 2550 return tmp; 2551 } 2552 2553 static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2554 { 2555 *(u8 *)skb_put(skb, 1) = val; 2556 } 2557 2558 void *skb_push(struct sk_buff *skb, unsigned int len); 2559 static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2560 { 2561 skb->data -= len; 2562 skb->len += len; 2563 return skb->data; 2564 } 2565 2566 void *skb_pull(struct sk_buff *skb, unsigned int len); 2567 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2568 { 2569 skb->len -= len; 2570 if (unlikely(skb->len < skb->data_len)) { 2571 #if defined(CONFIG_DEBUG_NET) 2572 skb->len += len; 2573 pr_err("__skb_pull(len=%u)\n", len); 2574 skb_dump(KERN_ERR, skb, false); 2575 #endif 2576 BUG(); 2577 } 2578 return skb->data += len; 2579 } 2580 2581 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2582 { 2583 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2584 } 2585 2586 void *skb_pull_data(struct sk_buff *skb, size_t len); 2587 2588 void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2589 2590 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2591 { 2592 if (len > skb_headlen(skb) && 2593 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2594 return NULL; 2595 skb->len -= len; 2596 return skb->data += len; 2597 } 2598 2599 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2600 { 2601 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2602 } 2603 2604 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2605 { 2606 if (likely(len <= skb_headlen(skb))) 2607 return true; 2608 if (unlikely(len > skb->len)) 2609 return false; 2610 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2611 } 2612 2613 void skb_condense(struct sk_buff *skb); 2614 2615 /** 2616 * skb_headroom - bytes at buffer head 2617 * @skb: buffer to check 2618 * 2619 * Return the number of bytes of free space at the head of an &sk_buff. 2620 */ 2621 static inline unsigned int skb_headroom(const struct sk_buff *skb) 2622 { 2623 return skb->data - skb->head; 2624 } 2625 2626 /** 2627 * skb_tailroom - bytes at buffer end 2628 * @skb: buffer to check 2629 * 2630 * Return the number of bytes of free space at the tail of an sk_buff 2631 */ 2632 static inline int skb_tailroom(const struct sk_buff *skb) 2633 { 2634 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2635 } 2636 2637 /** 2638 * skb_availroom - bytes at buffer end 2639 * @skb: buffer to check 2640 * 2641 * Return the number of bytes of free space at the tail of an sk_buff 2642 * allocated by sk_stream_alloc() 2643 */ 2644 static inline int skb_availroom(const struct sk_buff *skb) 2645 { 2646 if (skb_is_nonlinear(skb)) 2647 return 0; 2648 2649 return skb->end - skb->tail - skb->reserved_tailroom; 2650 } 2651 2652 /** 2653 * skb_reserve - adjust headroom 2654 * @skb: buffer to alter 2655 * @len: bytes to move 2656 * 2657 * Increase the headroom of an empty &sk_buff by reducing the tail 2658 * room. This is only allowed for an empty buffer. 2659 */ 2660 static inline void skb_reserve(struct sk_buff *skb, int len) 2661 { 2662 skb->data += len; 2663 skb->tail += len; 2664 } 2665 2666 /** 2667 * skb_tailroom_reserve - adjust reserved_tailroom 2668 * @skb: buffer to alter 2669 * @mtu: maximum amount of headlen permitted 2670 * @needed_tailroom: minimum amount of reserved_tailroom 2671 * 2672 * Set reserved_tailroom so that headlen can be as large as possible but 2673 * not larger than mtu and tailroom cannot be smaller than 2674 * needed_tailroom. 2675 * The required headroom should already have been reserved before using 2676 * this function. 2677 */ 2678 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2679 unsigned int needed_tailroom) 2680 { 2681 SKB_LINEAR_ASSERT(skb); 2682 if (mtu < skb_tailroom(skb) - needed_tailroom) 2683 /* use at most mtu */ 2684 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2685 else 2686 /* use up to all available space */ 2687 skb->reserved_tailroom = needed_tailroom; 2688 } 2689 2690 #define ENCAP_TYPE_ETHER 0 2691 #define ENCAP_TYPE_IPPROTO 1 2692 2693 static inline void skb_set_inner_protocol(struct sk_buff *skb, 2694 __be16 protocol) 2695 { 2696 skb->inner_protocol = protocol; 2697 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2698 } 2699 2700 static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2701 __u8 ipproto) 2702 { 2703 skb->inner_ipproto = ipproto; 2704 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2705 } 2706 2707 static inline void skb_reset_inner_headers(struct sk_buff *skb) 2708 { 2709 skb->inner_mac_header = skb->mac_header; 2710 skb->inner_network_header = skb->network_header; 2711 skb->inner_transport_header = skb->transport_header; 2712 } 2713 2714 static inline void skb_reset_mac_len(struct sk_buff *skb) 2715 { 2716 skb->mac_len = skb->network_header - skb->mac_header; 2717 } 2718 2719 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2720 *skb) 2721 { 2722 return skb->head + skb->inner_transport_header; 2723 } 2724 2725 static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2726 { 2727 return skb_inner_transport_header(skb) - skb->data; 2728 } 2729 2730 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2731 { 2732 skb->inner_transport_header = skb->data - skb->head; 2733 } 2734 2735 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2736 const int offset) 2737 { 2738 skb_reset_inner_transport_header(skb); 2739 skb->inner_transport_header += offset; 2740 } 2741 2742 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2743 { 2744 return skb->head + skb->inner_network_header; 2745 } 2746 2747 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2748 { 2749 skb->inner_network_header = skb->data - skb->head; 2750 } 2751 2752 static inline void skb_set_inner_network_header(struct sk_buff *skb, 2753 const int offset) 2754 { 2755 skb_reset_inner_network_header(skb); 2756 skb->inner_network_header += offset; 2757 } 2758 2759 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2760 { 2761 return skb->head + skb->inner_mac_header; 2762 } 2763 2764 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2765 { 2766 skb->inner_mac_header = skb->data - skb->head; 2767 } 2768 2769 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2770 const int offset) 2771 { 2772 skb_reset_inner_mac_header(skb); 2773 skb->inner_mac_header += offset; 2774 } 2775 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2776 { 2777 return skb->transport_header != (typeof(skb->transport_header))~0U; 2778 } 2779 2780 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2781 { 2782 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2783 return skb->head + skb->transport_header; 2784 } 2785 2786 static inline void skb_reset_transport_header(struct sk_buff *skb) 2787 { 2788 skb->transport_header = skb->data - skb->head; 2789 } 2790 2791 static inline void skb_set_transport_header(struct sk_buff *skb, 2792 const int offset) 2793 { 2794 skb_reset_transport_header(skb); 2795 skb->transport_header += offset; 2796 } 2797 2798 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2799 { 2800 return skb->head + skb->network_header; 2801 } 2802 2803 static inline void skb_reset_network_header(struct sk_buff *skb) 2804 { 2805 skb->network_header = skb->data - skb->head; 2806 } 2807 2808 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2809 { 2810 skb_reset_network_header(skb); 2811 skb->network_header += offset; 2812 } 2813 2814 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2815 { 2816 return skb->mac_header != (typeof(skb->mac_header))~0U; 2817 } 2818 2819 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2820 { 2821 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2822 return skb->head + skb->mac_header; 2823 } 2824 2825 static inline int skb_mac_offset(const struct sk_buff *skb) 2826 { 2827 return skb_mac_header(skb) - skb->data; 2828 } 2829 2830 static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2831 { 2832 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2833 return skb->network_header - skb->mac_header; 2834 } 2835 2836 static inline void skb_unset_mac_header(struct sk_buff *skb) 2837 { 2838 skb->mac_header = (typeof(skb->mac_header))~0U; 2839 } 2840 2841 static inline void skb_reset_mac_header(struct sk_buff *skb) 2842 { 2843 skb->mac_header = skb->data - skb->head; 2844 } 2845 2846 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2847 { 2848 skb_reset_mac_header(skb); 2849 skb->mac_header += offset; 2850 } 2851 2852 static inline void skb_pop_mac_header(struct sk_buff *skb) 2853 { 2854 skb->mac_header = skb->network_header; 2855 } 2856 2857 static inline void skb_probe_transport_header(struct sk_buff *skb) 2858 { 2859 struct flow_keys_basic keys; 2860 2861 if (skb_transport_header_was_set(skb)) 2862 return; 2863 2864 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2865 NULL, 0, 0, 0, 0)) 2866 skb_set_transport_header(skb, keys.control.thoff); 2867 } 2868 2869 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2870 { 2871 if (skb_mac_header_was_set(skb)) { 2872 const unsigned char *old_mac = skb_mac_header(skb); 2873 2874 skb_set_mac_header(skb, -skb->mac_len); 2875 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2876 } 2877 } 2878 2879 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2880 { 2881 return skb->csum_start - skb_headroom(skb); 2882 } 2883 2884 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2885 { 2886 return skb->head + skb->csum_start; 2887 } 2888 2889 static inline int skb_transport_offset(const struct sk_buff *skb) 2890 { 2891 return skb_transport_header(skb) - skb->data; 2892 } 2893 2894 static inline u32 skb_network_header_len(const struct sk_buff *skb) 2895 { 2896 return skb->transport_header - skb->network_header; 2897 } 2898 2899 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2900 { 2901 return skb->inner_transport_header - skb->inner_network_header; 2902 } 2903 2904 static inline int skb_network_offset(const struct sk_buff *skb) 2905 { 2906 return skb_network_header(skb) - skb->data; 2907 } 2908 2909 static inline int skb_inner_network_offset(const struct sk_buff *skb) 2910 { 2911 return skb_inner_network_header(skb) - skb->data; 2912 } 2913 2914 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2915 { 2916 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2917 } 2918 2919 /* 2920 * CPUs often take a performance hit when accessing unaligned memory 2921 * locations. The actual performance hit varies, it can be small if the 2922 * hardware handles it or large if we have to take an exception and fix it 2923 * in software. 2924 * 2925 * Since an ethernet header is 14 bytes network drivers often end up with 2926 * the IP header at an unaligned offset. The IP header can be aligned by 2927 * shifting the start of the packet by 2 bytes. Drivers should do this 2928 * with: 2929 * 2930 * skb_reserve(skb, NET_IP_ALIGN); 2931 * 2932 * The downside to this alignment of the IP header is that the DMA is now 2933 * unaligned. On some architectures the cost of an unaligned DMA is high 2934 * and this cost outweighs the gains made by aligning the IP header. 2935 * 2936 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2937 * to be overridden. 2938 */ 2939 #ifndef NET_IP_ALIGN 2940 #define NET_IP_ALIGN 2 2941 #endif 2942 2943 /* 2944 * The networking layer reserves some headroom in skb data (via 2945 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2946 * the header has to grow. In the default case, if the header has to grow 2947 * 32 bytes or less we avoid the reallocation. 2948 * 2949 * Unfortunately this headroom changes the DMA alignment of the resulting 2950 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2951 * on some architectures. An architecture can override this value, 2952 * perhaps setting it to a cacheline in size (since that will maintain 2953 * cacheline alignment of the DMA). It must be a power of 2. 2954 * 2955 * Various parts of the networking layer expect at least 32 bytes of 2956 * headroom, you should not reduce this. 2957 * 2958 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2959 * to reduce average number of cache lines per packet. 2960 * get_rps_cpu() for example only access one 64 bytes aligned block : 2961 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2962 */ 2963 #ifndef NET_SKB_PAD 2964 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2965 #endif 2966 2967 int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2968 2969 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2970 { 2971 if (WARN_ON(skb_is_nonlinear(skb))) 2972 return; 2973 skb->len = len; 2974 skb_set_tail_pointer(skb, len); 2975 } 2976 2977 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2978 { 2979 __skb_set_length(skb, len); 2980 } 2981 2982 void skb_trim(struct sk_buff *skb, unsigned int len); 2983 2984 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2985 { 2986 if (skb->data_len) 2987 return ___pskb_trim(skb, len); 2988 __skb_trim(skb, len); 2989 return 0; 2990 } 2991 2992 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2993 { 2994 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2995 } 2996 2997 /** 2998 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2999 * @skb: buffer to alter 3000 * @len: new length 3001 * 3002 * This is identical to pskb_trim except that the caller knows that 3003 * the skb is not cloned so we should never get an error due to out- 3004 * of-memory. 3005 */ 3006 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3007 { 3008 int err = pskb_trim(skb, len); 3009 BUG_ON(err); 3010 } 3011 3012 static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3013 { 3014 unsigned int diff = len - skb->len; 3015 3016 if (skb_tailroom(skb) < diff) { 3017 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3018 GFP_ATOMIC); 3019 if (ret) 3020 return ret; 3021 } 3022 __skb_set_length(skb, len); 3023 return 0; 3024 } 3025 3026 /** 3027 * skb_orphan - orphan a buffer 3028 * @skb: buffer to orphan 3029 * 3030 * If a buffer currently has an owner then we call the owner's 3031 * destructor function and make the @skb unowned. The buffer continues 3032 * to exist but is no longer charged to its former owner. 3033 */ 3034 static inline void skb_orphan(struct sk_buff *skb) 3035 { 3036 if (skb->destructor) { 3037 skb->destructor(skb); 3038 skb->destructor = NULL; 3039 skb->sk = NULL; 3040 } else { 3041 BUG_ON(skb->sk); 3042 } 3043 } 3044 3045 /** 3046 * skb_orphan_frags - orphan the frags contained in a buffer 3047 * @skb: buffer to orphan frags from 3048 * @gfp_mask: allocation mask for replacement pages 3049 * 3050 * For each frag in the SKB which needs a destructor (i.e. has an 3051 * owner) create a copy of that frag and release the original 3052 * page by calling the destructor. 3053 */ 3054 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3055 { 3056 if (likely(!skb_zcopy(skb))) 3057 return 0; 3058 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3059 return 0; 3060 return skb_copy_ubufs(skb, gfp_mask); 3061 } 3062 3063 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3064 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3065 { 3066 if (likely(!skb_zcopy(skb))) 3067 return 0; 3068 return skb_copy_ubufs(skb, gfp_mask); 3069 } 3070 3071 /** 3072 * __skb_queue_purge - empty a list 3073 * @list: list to empty 3074 * 3075 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3076 * the list and one reference dropped. This function does not take the 3077 * list lock and the caller must hold the relevant locks to use it. 3078 */ 3079 static inline void __skb_queue_purge(struct sk_buff_head *list) 3080 { 3081 struct sk_buff *skb; 3082 while ((skb = __skb_dequeue(list)) != NULL) 3083 kfree_skb(skb); 3084 } 3085 void skb_queue_purge(struct sk_buff_head *list); 3086 3087 unsigned int skb_rbtree_purge(struct rb_root *root); 3088 3089 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3090 3091 /** 3092 * netdev_alloc_frag - allocate a page fragment 3093 * @fragsz: fragment size 3094 * 3095 * Allocates a frag from a page for receive buffer. 3096 * Uses GFP_ATOMIC allocations. 3097 */ 3098 static inline void *netdev_alloc_frag(unsigned int fragsz) 3099 { 3100 return __netdev_alloc_frag_align(fragsz, ~0u); 3101 } 3102 3103 static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3104 unsigned int align) 3105 { 3106 WARN_ON_ONCE(!is_power_of_2(align)); 3107 return __netdev_alloc_frag_align(fragsz, -align); 3108 } 3109 3110 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3111 gfp_t gfp_mask); 3112 3113 /** 3114 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3115 * @dev: network device to receive on 3116 * @length: length to allocate 3117 * 3118 * Allocate a new &sk_buff and assign it a usage count of one. The 3119 * buffer has unspecified headroom built in. Users should allocate 3120 * the headroom they think they need without accounting for the 3121 * built in space. The built in space is used for optimisations. 3122 * 3123 * %NULL is returned if there is no free memory. Although this function 3124 * allocates memory it can be called from an interrupt. 3125 */ 3126 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3127 unsigned int length) 3128 { 3129 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3130 } 3131 3132 /* legacy helper around __netdev_alloc_skb() */ 3133 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3134 gfp_t gfp_mask) 3135 { 3136 return __netdev_alloc_skb(NULL, length, gfp_mask); 3137 } 3138 3139 /* legacy helper around netdev_alloc_skb() */ 3140 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3141 { 3142 return netdev_alloc_skb(NULL, length); 3143 } 3144 3145 3146 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3147 unsigned int length, gfp_t gfp) 3148 { 3149 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3150 3151 if (NET_IP_ALIGN && skb) 3152 skb_reserve(skb, NET_IP_ALIGN); 3153 return skb; 3154 } 3155 3156 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3157 unsigned int length) 3158 { 3159 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3160 } 3161 3162 static inline void skb_free_frag(void *addr) 3163 { 3164 page_frag_free(addr); 3165 } 3166 3167 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3168 3169 static inline void *napi_alloc_frag(unsigned int fragsz) 3170 { 3171 return __napi_alloc_frag_align(fragsz, ~0u); 3172 } 3173 3174 static inline void *napi_alloc_frag_align(unsigned int fragsz, 3175 unsigned int align) 3176 { 3177 WARN_ON_ONCE(!is_power_of_2(align)); 3178 return __napi_alloc_frag_align(fragsz, -align); 3179 } 3180 3181 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3182 unsigned int length, gfp_t gfp_mask); 3183 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3184 unsigned int length) 3185 { 3186 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3187 } 3188 void napi_consume_skb(struct sk_buff *skb, int budget); 3189 3190 void napi_skb_free_stolen_head(struct sk_buff *skb); 3191 void __kfree_skb_defer(struct sk_buff *skb); 3192 3193 /** 3194 * __dev_alloc_pages - allocate page for network Rx 3195 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3196 * @order: size of the allocation 3197 * 3198 * Allocate a new page. 3199 * 3200 * %NULL is returned if there is no free memory. 3201 */ 3202 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3203 unsigned int order) 3204 { 3205 /* This piece of code contains several assumptions. 3206 * 1. This is for device Rx, therefor a cold page is preferred. 3207 * 2. The expectation is the user wants a compound page. 3208 * 3. If requesting a order 0 page it will not be compound 3209 * due to the check to see if order has a value in prep_new_page 3210 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3211 * code in gfp_to_alloc_flags that should be enforcing this. 3212 */ 3213 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3214 3215 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3216 } 3217 3218 static inline struct page *dev_alloc_pages(unsigned int order) 3219 { 3220 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3221 } 3222 3223 /** 3224 * __dev_alloc_page - allocate a page for network Rx 3225 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3226 * 3227 * Allocate a new page. 3228 * 3229 * %NULL is returned if there is no free memory. 3230 */ 3231 static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3232 { 3233 return __dev_alloc_pages(gfp_mask, 0); 3234 } 3235 3236 static inline struct page *dev_alloc_page(void) 3237 { 3238 return dev_alloc_pages(0); 3239 } 3240 3241 /** 3242 * dev_page_is_reusable - check whether a page can be reused for network Rx 3243 * @page: the page to test 3244 * 3245 * A page shouldn't be considered for reusing/recycling if it was allocated 3246 * under memory pressure or at a distant memory node. 3247 * 3248 * Returns false if this page should be returned to page allocator, true 3249 * otherwise. 3250 */ 3251 static inline bool dev_page_is_reusable(const struct page *page) 3252 { 3253 return likely(page_to_nid(page) == numa_mem_id() && 3254 !page_is_pfmemalloc(page)); 3255 } 3256 3257 /** 3258 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3259 * @page: The page that was allocated from skb_alloc_page 3260 * @skb: The skb that may need pfmemalloc set 3261 */ 3262 static inline void skb_propagate_pfmemalloc(const struct page *page, 3263 struct sk_buff *skb) 3264 { 3265 if (page_is_pfmemalloc(page)) 3266 skb->pfmemalloc = true; 3267 } 3268 3269 /** 3270 * skb_frag_off() - Returns the offset of a skb fragment 3271 * @frag: the paged fragment 3272 */ 3273 static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3274 { 3275 return frag->bv_offset; 3276 } 3277 3278 /** 3279 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3280 * @frag: skb fragment 3281 * @delta: value to add 3282 */ 3283 static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3284 { 3285 frag->bv_offset += delta; 3286 } 3287 3288 /** 3289 * skb_frag_off_set() - Sets the offset of a skb fragment 3290 * @frag: skb fragment 3291 * @offset: offset of fragment 3292 */ 3293 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3294 { 3295 frag->bv_offset = offset; 3296 } 3297 3298 /** 3299 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3300 * @fragto: skb fragment where offset is set 3301 * @fragfrom: skb fragment offset is copied from 3302 */ 3303 static inline void skb_frag_off_copy(skb_frag_t *fragto, 3304 const skb_frag_t *fragfrom) 3305 { 3306 fragto->bv_offset = fragfrom->bv_offset; 3307 } 3308 3309 /** 3310 * skb_frag_page - retrieve the page referred to by a paged fragment 3311 * @frag: the paged fragment 3312 * 3313 * Returns the &struct page associated with @frag. 3314 */ 3315 static inline struct page *skb_frag_page(const skb_frag_t *frag) 3316 { 3317 return frag->bv_page; 3318 } 3319 3320 /** 3321 * __skb_frag_ref - take an addition reference on a paged fragment. 3322 * @frag: the paged fragment 3323 * 3324 * Takes an additional reference on the paged fragment @frag. 3325 */ 3326 static inline void __skb_frag_ref(skb_frag_t *frag) 3327 { 3328 get_page(skb_frag_page(frag)); 3329 } 3330 3331 /** 3332 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3333 * @skb: the buffer 3334 * @f: the fragment offset. 3335 * 3336 * Takes an additional reference on the @f'th paged fragment of @skb. 3337 */ 3338 static inline void skb_frag_ref(struct sk_buff *skb, int f) 3339 { 3340 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3341 } 3342 3343 /** 3344 * __skb_frag_unref - release a reference on a paged fragment. 3345 * @frag: the paged fragment 3346 * @recycle: recycle the page if allocated via page_pool 3347 * 3348 * Releases a reference on the paged fragment @frag 3349 * or recycles the page via the page_pool API. 3350 */ 3351 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3352 { 3353 struct page *page = skb_frag_page(frag); 3354 3355 #ifdef CONFIG_PAGE_POOL 3356 if (recycle && page_pool_return_skb_page(page)) 3357 return; 3358 #endif 3359 put_page(page); 3360 } 3361 3362 /** 3363 * skb_frag_unref - release a reference on a paged fragment of an skb. 3364 * @skb: the buffer 3365 * @f: the fragment offset 3366 * 3367 * Releases a reference on the @f'th paged fragment of @skb. 3368 */ 3369 static inline void skb_frag_unref(struct sk_buff *skb, int f) 3370 { 3371 struct skb_shared_info *shinfo = skb_shinfo(skb); 3372 3373 if (!skb_zcopy_managed(skb)) 3374 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3375 } 3376 3377 /** 3378 * skb_frag_address - gets the address of the data contained in a paged fragment 3379 * @frag: the paged fragment buffer 3380 * 3381 * Returns the address of the data within @frag. The page must already 3382 * be mapped. 3383 */ 3384 static inline void *skb_frag_address(const skb_frag_t *frag) 3385 { 3386 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3387 } 3388 3389 /** 3390 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3391 * @frag: the paged fragment buffer 3392 * 3393 * Returns the address of the data within @frag. Checks that the page 3394 * is mapped and returns %NULL otherwise. 3395 */ 3396 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3397 { 3398 void *ptr = page_address(skb_frag_page(frag)); 3399 if (unlikely(!ptr)) 3400 return NULL; 3401 3402 return ptr + skb_frag_off(frag); 3403 } 3404 3405 /** 3406 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3407 * @fragto: skb fragment where page is set 3408 * @fragfrom: skb fragment page is copied from 3409 */ 3410 static inline void skb_frag_page_copy(skb_frag_t *fragto, 3411 const skb_frag_t *fragfrom) 3412 { 3413 fragto->bv_page = fragfrom->bv_page; 3414 } 3415 3416 /** 3417 * __skb_frag_set_page - sets the page contained in a paged fragment 3418 * @frag: the paged fragment 3419 * @page: the page to set 3420 * 3421 * Sets the fragment @frag to contain @page. 3422 */ 3423 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3424 { 3425 frag->bv_page = page; 3426 } 3427 3428 /** 3429 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3430 * @skb: the buffer 3431 * @f: the fragment offset 3432 * @page: the page to set 3433 * 3434 * Sets the @f'th fragment of @skb to contain @page. 3435 */ 3436 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3437 struct page *page) 3438 { 3439 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3440 } 3441 3442 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3443 3444 /** 3445 * skb_frag_dma_map - maps a paged fragment via the DMA API 3446 * @dev: the device to map the fragment to 3447 * @frag: the paged fragment to map 3448 * @offset: the offset within the fragment (starting at the 3449 * fragment's own offset) 3450 * @size: the number of bytes to map 3451 * @dir: the direction of the mapping (``PCI_DMA_*``) 3452 * 3453 * Maps the page associated with @frag to @device. 3454 */ 3455 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3456 const skb_frag_t *frag, 3457 size_t offset, size_t size, 3458 enum dma_data_direction dir) 3459 { 3460 return dma_map_page(dev, skb_frag_page(frag), 3461 skb_frag_off(frag) + offset, size, dir); 3462 } 3463 3464 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3465 gfp_t gfp_mask) 3466 { 3467 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3468 } 3469 3470 3471 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3472 gfp_t gfp_mask) 3473 { 3474 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3475 } 3476 3477 3478 /** 3479 * skb_clone_writable - is the header of a clone writable 3480 * @skb: buffer to check 3481 * @len: length up to which to write 3482 * 3483 * Returns true if modifying the header part of the cloned buffer 3484 * does not requires the data to be copied. 3485 */ 3486 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3487 { 3488 return !skb_header_cloned(skb) && 3489 skb_headroom(skb) + len <= skb->hdr_len; 3490 } 3491 3492 static inline int skb_try_make_writable(struct sk_buff *skb, 3493 unsigned int write_len) 3494 { 3495 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3496 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3497 } 3498 3499 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3500 int cloned) 3501 { 3502 int delta = 0; 3503 3504 if (headroom > skb_headroom(skb)) 3505 delta = headroom - skb_headroom(skb); 3506 3507 if (delta || cloned) 3508 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3509 GFP_ATOMIC); 3510 return 0; 3511 } 3512 3513 /** 3514 * skb_cow - copy header of skb when it is required 3515 * @skb: buffer to cow 3516 * @headroom: needed headroom 3517 * 3518 * If the skb passed lacks sufficient headroom or its data part 3519 * is shared, data is reallocated. If reallocation fails, an error 3520 * is returned and original skb is not changed. 3521 * 3522 * The result is skb with writable area skb->head...skb->tail 3523 * and at least @headroom of space at head. 3524 */ 3525 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3526 { 3527 return __skb_cow(skb, headroom, skb_cloned(skb)); 3528 } 3529 3530 /** 3531 * skb_cow_head - skb_cow but only making the head writable 3532 * @skb: buffer to cow 3533 * @headroom: needed headroom 3534 * 3535 * This function is identical to skb_cow except that we replace the 3536 * skb_cloned check by skb_header_cloned. It should be used when 3537 * you only need to push on some header and do not need to modify 3538 * the data. 3539 */ 3540 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3541 { 3542 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3543 } 3544 3545 /** 3546 * skb_padto - pad an skbuff up to a minimal size 3547 * @skb: buffer to pad 3548 * @len: minimal length 3549 * 3550 * Pads up a buffer to ensure the trailing bytes exist and are 3551 * blanked. If the buffer already contains sufficient data it 3552 * is untouched. Otherwise it is extended. Returns zero on 3553 * success. The skb is freed on error. 3554 */ 3555 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3556 { 3557 unsigned int size = skb->len; 3558 if (likely(size >= len)) 3559 return 0; 3560 return skb_pad(skb, len - size); 3561 } 3562 3563 /** 3564 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3565 * @skb: buffer to pad 3566 * @len: minimal length 3567 * @free_on_error: free buffer on error 3568 * 3569 * Pads up a buffer to ensure the trailing bytes exist and are 3570 * blanked. If the buffer already contains sufficient data it 3571 * is untouched. Otherwise it is extended. Returns zero on 3572 * success. The skb is freed on error if @free_on_error is true. 3573 */ 3574 static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3575 unsigned int len, 3576 bool free_on_error) 3577 { 3578 unsigned int size = skb->len; 3579 3580 if (unlikely(size < len)) { 3581 len -= size; 3582 if (__skb_pad(skb, len, free_on_error)) 3583 return -ENOMEM; 3584 __skb_put(skb, len); 3585 } 3586 return 0; 3587 } 3588 3589 /** 3590 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3591 * @skb: buffer to pad 3592 * @len: minimal length 3593 * 3594 * Pads up a buffer to ensure the trailing bytes exist and are 3595 * blanked. If the buffer already contains sufficient data it 3596 * is untouched. Otherwise it is extended. Returns zero on 3597 * success. The skb is freed on error. 3598 */ 3599 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3600 { 3601 return __skb_put_padto(skb, len, true); 3602 } 3603 3604 static inline int skb_add_data(struct sk_buff *skb, 3605 struct iov_iter *from, int copy) 3606 { 3607 const int off = skb->len; 3608 3609 if (skb->ip_summed == CHECKSUM_NONE) { 3610 __wsum csum = 0; 3611 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3612 &csum, from)) { 3613 skb->csum = csum_block_add(skb->csum, csum, off); 3614 return 0; 3615 } 3616 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3617 return 0; 3618 3619 __skb_trim(skb, off); 3620 return -EFAULT; 3621 } 3622 3623 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3624 const struct page *page, int off) 3625 { 3626 if (skb_zcopy(skb)) 3627 return false; 3628 if (i) { 3629 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3630 3631 return page == skb_frag_page(frag) && 3632 off == skb_frag_off(frag) + skb_frag_size(frag); 3633 } 3634 return false; 3635 } 3636 3637 static inline int __skb_linearize(struct sk_buff *skb) 3638 { 3639 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3640 } 3641 3642 /** 3643 * skb_linearize - convert paged skb to linear one 3644 * @skb: buffer to linarize 3645 * 3646 * If there is no free memory -ENOMEM is returned, otherwise zero 3647 * is returned and the old skb data released. 3648 */ 3649 static inline int skb_linearize(struct sk_buff *skb) 3650 { 3651 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3652 } 3653 3654 /** 3655 * skb_has_shared_frag - can any frag be overwritten 3656 * @skb: buffer to test 3657 * 3658 * Return true if the skb has at least one frag that might be modified 3659 * by an external entity (as in vmsplice()/sendfile()) 3660 */ 3661 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3662 { 3663 return skb_is_nonlinear(skb) && 3664 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3665 } 3666 3667 /** 3668 * skb_linearize_cow - make sure skb is linear and writable 3669 * @skb: buffer to process 3670 * 3671 * If there is no free memory -ENOMEM is returned, otherwise zero 3672 * is returned and the old skb data released. 3673 */ 3674 static inline int skb_linearize_cow(struct sk_buff *skb) 3675 { 3676 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3677 __skb_linearize(skb) : 0; 3678 } 3679 3680 static __always_inline void 3681 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3682 unsigned int off) 3683 { 3684 if (skb->ip_summed == CHECKSUM_COMPLETE) 3685 skb->csum = csum_block_sub(skb->csum, 3686 csum_partial(start, len, 0), off); 3687 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3688 skb_checksum_start_offset(skb) < 0) 3689 skb->ip_summed = CHECKSUM_NONE; 3690 } 3691 3692 /** 3693 * skb_postpull_rcsum - update checksum for received skb after pull 3694 * @skb: buffer to update 3695 * @start: start of data before pull 3696 * @len: length of data pulled 3697 * 3698 * After doing a pull on a received packet, you need to call this to 3699 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3700 * CHECKSUM_NONE so that it can be recomputed from scratch. 3701 */ 3702 static inline void skb_postpull_rcsum(struct sk_buff *skb, 3703 const void *start, unsigned int len) 3704 { 3705 if (skb->ip_summed == CHECKSUM_COMPLETE) 3706 skb->csum = wsum_negate(csum_partial(start, len, 3707 wsum_negate(skb->csum))); 3708 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3709 skb_checksum_start_offset(skb) < 0) 3710 skb->ip_summed = CHECKSUM_NONE; 3711 } 3712 3713 static __always_inline void 3714 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3715 unsigned int off) 3716 { 3717 if (skb->ip_summed == CHECKSUM_COMPLETE) 3718 skb->csum = csum_block_add(skb->csum, 3719 csum_partial(start, len, 0), off); 3720 } 3721 3722 /** 3723 * skb_postpush_rcsum - update checksum for received skb after push 3724 * @skb: buffer to update 3725 * @start: start of data after push 3726 * @len: length of data pushed 3727 * 3728 * After doing a push on a received packet, you need to call this to 3729 * update the CHECKSUM_COMPLETE checksum. 3730 */ 3731 static inline void skb_postpush_rcsum(struct sk_buff *skb, 3732 const void *start, unsigned int len) 3733 { 3734 __skb_postpush_rcsum(skb, start, len, 0); 3735 } 3736 3737 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3738 3739 /** 3740 * skb_push_rcsum - push skb and update receive checksum 3741 * @skb: buffer to update 3742 * @len: length of data pulled 3743 * 3744 * This function performs an skb_push on the packet and updates 3745 * the CHECKSUM_COMPLETE checksum. It should be used on 3746 * receive path processing instead of skb_push unless you know 3747 * that the checksum difference is zero (e.g., a valid IP header) 3748 * or you are setting ip_summed to CHECKSUM_NONE. 3749 */ 3750 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3751 { 3752 skb_push(skb, len); 3753 skb_postpush_rcsum(skb, skb->data, len); 3754 return skb->data; 3755 } 3756 3757 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3758 /** 3759 * pskb_trim_rcsum - trim received skb and update checksum 3760 * @skb: buffer to trim 3761 * @len: new length 3762 * 3763 * This is exactly the same as pskb_trim except that it ensures the 3764 * checksum of received packets are still valid after the operation. 3765 * It can change skb pointers. 3766 */ 3767 3768 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3769 { 3770 if (likely(len >= skb->len)) 3771 return 0; 3772 return pskb_trim_rcsum_slow(skb, len); 3773 } 3774 3775 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3776 { 3777 if (skb->ip_summed == CHECKSUM_COMPLETE) 3778 skb->ip_summed = CHECKSUM_NONE; 3779 __skb_trim(skb, len); 3780 return 0; 3781 } 3782 3783 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3784 { 3785 if (skb->ip_summed == CHECKSUM_COMPLETE) 3786 skb->ip_summed = CHECKSUM_NONE; 3787 return __skb_grow(skb, len); 3788 } 3789 3790 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3791 #define skb_rb_first(root) rb_to_skb(rb_first(root)) 3792 #define skb_rb_last(root) rb_to_skb(rb_last(root)) 3793 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3794 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3795 3796 #define skb_queue_walk(queue, skb) \ 3797 for (skb = (queue)->next; \ 3798 skb != (struct sk_buff *)(queue); \ 3799 skb = skb->next) 3800 3801 #define skb_queue_walk_safe(queue, skb, tmp) \ 3802 for (skb = (queue)->next, tmp = skb->next; \ 3803 skb != (struct sk_buff *)(queue); \ 3804 skb = tmp, tmp = skb->next) 3805 3806 #define skb_queue_walk_from(queue, skb) \ 3807 for (; skb != (struct sk_buff *)(queue); \ 3808 skb = skb->next) 3809 3810 #define skb_rbtree_walk(skb, root) \ 3811 for (skb = skb_rb_first(root); skb != NULL; \ 3812 skb = skb_rb_next(skb)) 3813 3814 #define skb_rbtree_walk_from(skb) \ 3815 for (; skb != NULL; \ 3816 skb = skb_rb_next(skb)) 3817 3818 #define skb_rbtree_walk_from_safe(skb, tmp) \ 3819 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3820 skb = tmp) 3821 3822 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 3823 for (tmp = skb->next; \ 3824 skb != (struct sk_buff *)(queue); \ 3825 skb = tmp, tmp = skb->next) 3826 3827 #define skb_queue_reverse_walk(queue, skb) \ 3828 for (skb = (queue)->prev; \ 3829 skb != (struct sk_buff *)(queue); \ 3830 skb = skb->prev) 3831 3832 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3833 for (skb = (queue)->prev, tmp = skb->prev; \ 3834 skb != (struct sk_buff *)(queue); \ 3835 skb = tmp, tmp = skb->prev) 3836 3837 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3838 for (tmp = skb->prev; \ 3839 skb != (struct sk_buff *)(queue); \ 3840 skb = tmp, tmp = skb->prev) 3841 3842 static inline bool skb_has_frag_list(const struct sk_buff *skb) 3843 { 3844 return skb_shinfo(skb)->frag_list != NULL; 3845 } 3846 3847 static inline void skb_frag_list_init(struct sk_buff *skb) 3848 { 3849 skb_shinfo(skb)->frag_list = NULL; 3850 } 3851 3852 #define skb_walk_frags(skb, iter) \ 3853 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3854 3855 3856 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3857 int *err, long *timeo_p, 3858 const struct sk_buff *skb); 3859 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3860 struct sk_buff_head *queue, 3861 unsigned int flags, 3862 int *off, int *err, 3863 struct sk_buff **last); 3864 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3865 struct sk_buff_head *queue, 3866 unsigned int flags, int *off, int *err, 3867 struct sk_buff **last); 3868 struct sk_buff *__skb_recv_datagram(struct sock *sk, 3869 struct sk_buff_head *sk_queue, 3870 unsigned int flags, int *off, int *err); 3871 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3872 __poll_t datagram_poll(struct file *file, struct socket *sock, 3873 struct poll_table_struct *wait); 3874 int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3875 struct iov_iter *to, int size); 3876 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3877 struct msghdr *msg, int size) 3878 { 3879 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3880 } 3881 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3882 struct msghdr *msg); 3883 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3884 struct iov_iter *to, int len, 3885 struct ahash_request *hash); 3886 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3887 struct iov_iter *from, int len); 3888 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3889 void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3890 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3891 static inline void skb_free_datagram_locked(struct sock *sk, 3892 struct sk_buff *skb) 3893 { 3894 __skb_free_datagram_locked(sk, skb, 0); 3895 } 3896 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3897 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3898 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3899 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3900 int len); 3901 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3902 struct pipe_inode_info *pipe, unsigned int len, 3903 unsigned int flags); 3904 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3905 int len); 3906 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3907 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3908 unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3909 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3910 int len, int hlen); 3911 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3912 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3913 void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3914 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3915 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3916 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3917 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3918 unsigned int offset); 3919 struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3920 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3921 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3922 int skb_vlan_pop(struct sk_buff *skb); 3923 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3924 int skb_eth_pop(struct sk_buff *skb); 3925 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3926 const unsigned char *src); 3927 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3928 int mac_len, bool ethernet); 3929 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3930 bool ethernet); 3931 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3932 int skb_mpls_dec_ttl(struct sk_buff *skb); 3933 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3934 gfp_t gfp); 3935 3936 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3937 { 3938 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3939 } 3940 3941 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3942 { 3943 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3944 } 3945 3946 struct skb_checksum_ops { 3947 __wsum (*update)(const void *mem, int len, __wsum wsum); 3948 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3949 }; 3950 3951 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3952 3953 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3954 __wsum csum, const struct skb_checksum_ops *ops); 3955 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3956 __wsum csum); 3957 3958 static inline void * __must_check 3959 __skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3960 const void *data, int hlen, void *buffer) 3961 { 3962 if (likely(hlen - offset >= len)) 3963 return (void *)data + offset; 3964 3965 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3966 return NULL; 3967 3968 return buffer; 3969 } 3970 3971 static inline void * __must_check 3972 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3973 { 3974 return __skb_header_pointer(skb, offset, len, skb->data, 3975 skb_headlen(skb), buffer); 3976 } 3977 3978 /** 3979 * skb_needs_linearize - check if we need to linearize a given skb 3980 * depending on the given device features. 3981 * @skb: socket buffer to check 3982 * @features: net device features 3983 * 3984 * Returns true if either: 3985 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3986 * 2. skb is fragmented and the device does not support SG. 3987 */ 3988 static inline bool skb_needs_linearize(struct sk_buff *skb, 3989 netdev_features_t features) 3990 { 3991 return skb_is_nonlinear(skb) && 3992 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3993 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3994 } 3995 3996 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3997 void *to, 3998 const unsigned int len) 3999 { 4000 memcpy(to, skb->data, len); 4001 } 4002 4003 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4004 const int offset, void *to, 4005 const unsigned int len) 4006 { 4007 memcpy(to, skb->data + offset, len); 4008 } 4009 4010 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4011 const void *from, 4012 const unsigned int len) 4013 { 4014 memcpy(skb->data, from, len); 4015 } 4016 4017 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4018 const int offset, 4019 const void *from, 4020 const unsigned int len) 4021 { 4022 memcpy(skb->data + offset, from, len); 4023 } 4024 4025 void skb_init(void); 4026 4027 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4028 { 4029 return skb->tstamp; 4030 } 4031 4032 /** 4033 * skb_get_timestamp - get timestamp from a skb 4034 * @skb: skb to get stamp from 4035 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4036 * 4037 * Timestamps are stored in the skb as offsets to a base timestamp. 4038 * This function converts the offset back to a struct timeval and stores 4039 * it in stamp. 4040 */ 4041 static inline void skb_get_timestamp(const struct sk_buff *skb, 4042 struct __kernel_old_timeval *stamp) 4043 { 4044 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4045 } 4046 4047 static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4048 struct __kernel_sock_timeval *stamp) 4049 { 4050 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4051 4052 stamp->tv_sec = ts.tv_sec; 4053 stamp->tv_usec = ts.tv_nsec / 1000; 4054 } 4055 4056 static inline void skb_get_timestampns(const struct sk_buff *skb, 4057 struct __kernel_old_timespec *stamp) 4058 { 4059 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4060 4061 stamp->tv_sec = ts.tv_sec; 4062 stamp->tv_nsec = ts.tv_nsec; 4063 } 4064 4065 static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4066 struct __kernel_timespec *stamp) 4067 { 4068 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4069 4070 stamp->tv_sec = ts.tv_sec; 4071 stamp->tv_nsec = ts.tv_nsec; 4072 } 4073 4074 static inline void __net_timestamp(struct sk_buff *skb) 4075 { 4076 skb->tstamp = ktime_get_real(); 4077 skb->mono_delivery_time = 0; 4078 } 4079 4080 static inline ktime_t net_timedelta(ktime_t t) 4081 { 4082 return ktime_sub(ktime_get_real(), t); 4083 } 4084 4085 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4086 bool mono) 4087 { 4088 skb->tstamp = kt; 4089 skb->mono_delivery_time = kt && mono; 4090 } 4091 4092 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4093 4094 /* It is used in the ingress path to clear the delivery_time. 4095 * If needed, set the skb->tstamp to the (rcv) timestamp. 4096 */ 4097 static inline void skb_clear_delivery_time(struct sk_buff *skb) 4098 { 4099 if (skb->mono_delivery_time) { 4100 skb->mono_delivery_time = 0; 4101 if (static_branch_unlikely(&netstamp_needed_key)) 4102 skb->tstamp = ktime_get_real(); 4103 else 4104 skb->tstamp = 0; 4105 } 4106 } 4107 4108 static inline void skb_clear_tstamp(struct sk_buff *skb) 4109 { 4110 if (skb->mono_delivery_time) 4111 return; 4112 4113 skb->tstamp = 0; 4114 } 4115 4116 static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4117 { 4118 if (skb->mono_delivery_time) 4119 return 0; 4120 4121 return skb->tstamp; 4122 } 4123 4124 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4125 { 4126 if (!skb->mono_delivery_time && skb->tstamp) 4127 return skb->tstamp; 4128 4129 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4130 return ktime_get_real(); 4131 4132 return 0; 4133 } 4134 4135 static inline u8 skb_metadata_len(const struct sk_buff *skb) 4136 { 4137 return skb_shinfo(skb)->meta_len; 4138 } 4139 4140 static inline void *skb_metadata_end(const struct sk_buff *skb) 4141 { 4142 return skb_mac_header(skb); 4143 } 4144 4145 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4146 const struct sk_buff *skb_b, 4147 u8 meta_len) 4148 { 4149 const void *a = skb_metadata_end(skb_a); 4150 const void *b = skb_metadata_end(skb_b); 4151 /* Using more efficient varaiant than plain call to memcmp(). */ 4152 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4153 u64 diffs = 0; 4154 4155 switch (meta_len) { 4156 #define __it(x, op) (x -= sizeof(u##op)) 4157 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4158 case 32: diffs |= __it_diff(a, b, 64); 4159 fallthrough; 4160 case 24: diffs |= __it_diff(a, b, 64); 4161 fallthrough; 4162 case 16: diffs |= __it_diff(a, b, 64); 4163 fallthrough; 4164 case 8: diffs |= __it_diff(a, b, 64); 4165 break; 4166 case 28: diffs |= __it_diff(a, b, 64); 4167 fallthrough; 4168 case 20: diffs |= __it_diff(a, b, 64); 4169 fallthrough; 4170 case 12: diffs |= __it_diff(a, b, 64); 4171 fallthrough; 4172 case 4: diffs |= __it_diff(a, b, 32); 4173 break; 4174 } 4175 return diffs; 4176 #else 4177 return memcmp(a - meta_len, b - meta_len, meta_len); 4178 #endif 4179 } 4180 4181 static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4182 const struct sk_buff *skb_b) 4183 { 4184 u8 len_a = skb_metadata_len(skb_a); 4185 u8 len_b = skb_metadata_len(skb_b); 4186 4187 if (!(len_a | len_b)) 4188 return false; 4189 4190 return len_a != len_b ? 4191 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4192 } 4193 4194 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4195 { 4196 skb_shinfo(skb)->meta_len = meta_len; 4197 } 4198 4199 static inline void skb_metadata_clear(struct sk_buff *skb) 4200 { 4201 skb_metadata_set(skb, 0); 4202 } 4203 4204 struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4205 4206 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4207 4208 void skb_clone_tx_timestamp(struct sk_buff *skb); 4209 bool skb_defer_rx_timestamp(struct sk_buff *skb); 4210 4211 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4212 4213 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4214 { 4215 } 4216 4217 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4218 { 4219 return false; 4220 } 4221 4222 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4223 4224 /** 4225 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4226 * 4227 * PHY drivers may accept clones of transmitted packets for 4228 * timestamping via their phy_driver.txtstamp method. These drivers 4229 * must call this function to return the skb back to the stack with a 4230 * timestamp. 4231 * 4232 * @skb: clone of the original outgoing packet 4233 * @hwtstamps: hardware time stamps 4234 * 4235 */ 4236 void skb_complete_tx_timestamp(struct sk_buff *skb, 4237 struct skb_shared_hwtstamps *hwtstamps); 4238 4239 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4240 struct skb_shared_hwtstamps *hwtstamps, 4241 struct sock *sk, int tstype); 4242 4243 /** 4244 * skb_tstamp_tx - queue clone of skb with send time stamps 4245 * @orig_skb: the original outgoing packet 4246 * @hwtstamps: hardware time stamps, may be NULL if not available 4247 * 4248 * If the skb has a socket associated, then this function clones the 4249 * skb (thus sharing the actual data and optional structures), stores 4250 * the optional hardware time stamping information (if non NULL) or 4251 * generates a software time stamp (otherwise), then queues the clone 4252 * to the error queue of the socket. Errors are silently ignored. 4253 */ 4254 void skb_tstamp_tx(struct sk_buff *orig_skb, 4255 struct skb_shared_hwtstamps *hwtstamps); 4256 4257 /** 4258 * skb_tx_timestamp() - Driver hook for transmit timestamping 4259 * 4260 * Ethernet MAC Drivers should call this function in their hard_xmit() 4261 * function immediately before giving the sk_buff to the MAC hardware. 4262 * 4263 * Specifically, one should make absolutely sure that this function is 4264 * called before TX completion of this packet can trigger. Otherwise 4265 * the packet could potentially already be freed. 4266 * 4267 * @skb: A socket buffer. 4268 */ 4269 static inline void skb_tx_timestamp(struct sk_buff *skb) 4270 { 4271 skb_clone_tx_timestamp(skb); 4272 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4273 skb_tstamp_tx(skb, NULL); 4274 } 4275 4276 /** 4277 * skb_complete_wifi_ack - deliver skb with wifi status 4278 * 4279 * @skb: the original outgoing packet 4280 * @acked: ack status 4281 * 4282 */ 4283 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4284 4285 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4286 __sum16 __skb_checksum_complete(struct sk_buff *skb); 4287 4288 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4289 { 4290 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4291 skb->csum_valid || 4292 (skb->ip_summed == CHECKSUM_PARTIAL && 4293 skb_checksum_start_offset(skb) >= 0)); 4294 } 4295 4296 /** 4297 * skb_checksum_complete - Calculate checksum of an entire packet 4298 * @skb: packet to process 4299 * 4300 * This function calculates the checksum over the entire packet plus 4301 * the value of skb->csum. The latter can be used to supply the 4302 * checksum of a pseudo header as used by TCP/UDP. It returns the 4303 * checksum. 4304 * 4305 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4306 * this function can be used to verify that checksum on received 4307 * packets. In that case the function should return zero if the 4308 * checksum is correct. In particular, this function will return zero 4309 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4310 * hardware has already verified the correctness of the checksum. 4311 */ 4312 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4313 { 4314 return skb_csum_unnecessary(skb) ? 4315 0 : __skb_checksum_complete(skb); 4316 } 4317 4318 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4319 { 4320 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4321 if (skb->csum_level == 0) 4322 skb->ip_summed = CHECKSUM_NONE; 4323 else 4324 skb->csum_level--; 4325 } 4326 } 4327 4328 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4329 { 4330 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4331 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4332 skb->csum_level++; 4333 } else if (skb->ip_summed == CHECKSUM_NONE) { 4334 skb->ip_summed = CHECKSUM_UNNECESSARY; 4335 skb->csum_level = 0; 4336 } 4337 } 4338 4339 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4340 { 4341 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4342 skb->ip_summed = CHECKSUM_NONE; 4343 skb->csum_level = 0; 4344 } 4345 } 4346 4347 /* Check if we need to perform checksum complete validation. 4348 * 4349 * Returns true if checksum complete is needed, false otherwise 4350 * (either checksum is unnecessary or zero checksum is allowed). 4351 */ 4352 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4353 bool zero_okay, 4354 __sum16 check) 4355 { 4356 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4357 skb->csum_valid = 1; 4358 __skb_decr_checksum_unnecessary(skb); 4359 return false; 4360 } 4361 4362 return true; 4363 } 4364 4365 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4366 * in checksum_init. 4367 */ 4368 #define CHECKSUM_BREAK 76 4369 4370 /* Unset checksum-complete 4371 * 4372 * Unset checksum complete can be done when packet is being modified 4373 * (uncompressed for instance) and checksum-complete value is 4374 * invalidated. 4375 */ 4376 static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4377 { 4378 if (skb->ip_summed == CHECKSUM_COMPLETE) 4379 skb->ip_summed = CHECKSUM_NONE; 4380 } 4381 4382 /* Validate (init) checksum based on checksum complete. 4383 * 4384 * Return values: 4385 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4386 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4387 * checksum is stored in skb->csum for use in __skb_checksum_complete 4388 * non-zero: value of invalid checksum 4389 * 4390 */ 4391 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4392 bool complete, 4393 __wsum psum) 4394 { 4395 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4396 if (!csum_fold(csum_add(psum, skb->csum))) { 4397 skb->csum_valid = 1; 4398 return 0; 4399 } 4400 } 4401 4402 skb->csum = psum; 4403 4404 if (complete || skb->len <= CHECKSUM_BREAK) { 4405 __sum16 csum; 4406 4407 csum = __skb_checksum_complete(skb); 4408 skb->csum_valid = !csum; 4409 return csum; 4410 } 4411 4412 return 0; 4413 } 4414 4415 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4416 { 4417 return 0; 4418 } 4419 4420 /* Perform checksum validate (init). Note that this is a macro since we only 4421 * want to calculate the pseudo header which is an input function if necessary. 4422 * First we try to validate without any computation (checksum unnecessary) and 4423 * then calculate based on checksum complete calling the function to compute 4424 * pseudo header. 4425 * 4426 * Return values: 4427 * 0: checksum is validated or try to in skb_checksum_complete 4428 * non-zero: value of invalid checksum 4429 */ 4430 #define __skb_checksum_validate(skb, proto, complete, \ 4431 zero_okay, check, compute_pseudo) \ 4432 ({ \ 4433 __sum16 __ret = 0; \ 4434 skb->csum_valid = 0; \ 4435 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4436 __ret = __skb_checksum_validate_complete(skb, \ 4437 complete, compute_pseudo(skb, proto)); \ 4438 __ret; \ 4439 }) 4440 4441 #define skb_checksum_init(skb, proto, compute_pseudo) \ 4442 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4443 4444 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4445 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4446 4447 #define skb_checksum_validate(skb, proto, compute_pseudo) \ 4448 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4449 4450 #define skb_checksum_validate_zero_check(skb, proto, check, \ 4451 compute_pseudo) \ 4452 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4453 4454 #define skb_checksum_simple_validate(skb) \ 4455 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4456 4457 static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4458 { 4459 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4460 } 4461 4462 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4463 { 4464 skb->csum = ~pseudo; 4465 skb->ip_summed = CHECKSUM_COMPLETE; 4466 } 4467 4468 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4469 do { \ 4470 if (__skb_checksum_convert_check(skb)) \ 4471 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4472 } while (0) 4473 4474 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4475 u16 start, u16 offset) 4476 { 4477 skb->ip_summed = CHECKSUM_PARTIAL; 4478 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4479 skb->csum_offset = offset - start; 4480 } 4481 4482 /* Update skbuf and packet to reflect the remote checksum offload operation. 4483 * When called, ptr indicates the starting point for skb->csum when 4484 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4485 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4486 */ 4487 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4488 int start, int offset, bool nopartial) 4489 { 4490 __wsum delta; 4491 4492 if (!nopartial) { 4493 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4494 return; 4495 } 4496 4497 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4498 __skb_checksum_complete(skb); 4499 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4500 } 4501 4502 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4503 4504 /* Adjust skb->csum since we changed the packet */ 4505 skb->csum = csum_add(skb->csum, delta); 4506 } 4507 4508 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4509 { 4510 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4511 return (void *)(skb->_nfct & NFCT_PTRMASK); 4512 #else 4513 return NULL; 4514 #endif 4515 } 4516 4517 static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4518 { 4519 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4520 return skb->_nfct; 4521 #else 4522 return 0UL; 4523 #endif 4524 } 4525 4526 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4527 { 4528 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 4529 skb->slow_gro |= !!nfct; 4530 skb->_nfct = nfct; 4531 #endif 4532 } 4533 4534 #ifdef CONFIG_SKB_EXTENSIONS 4535 enum skb_ext_id { 4536 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4537 SKB_EXT_BRIDGE_NF, 4538 #endif 4539 #ifdef CONFIG_XFRM 4540 SKB_EXT_SEC_PATH, 4541 #endif 4542 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4543 TC_SKB_EXT, 4544 #endif 4545 #if IS_ENABLED(CONFIG_MPTCP) 4546 SKB_EXT_MPTCP, 4547 #endif 4548 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4549 SKB_EXT_MCTP, 4550 #endif 4551 SKB_EXT_NUM, /* must be last */ 4552 }; 4553 4554 /** 4555 * struct skb_ext - sk_buff extensions 4556 * @refcnt: 1 on allocation, deallocated on 0 4557 * @offset: offset to add to @data to obtain extension address 4558 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4559 * @data: start of extension data, variable sized 4560 * 4561 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4562 * to use 'u8' types while allowing up to 2kb worth of extension data. 4563 */ 4564 struct skb_ext { 4565 refcount_t refcnt; 4566 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4567 u8 chunks; /* same */ 4568 char data[] __aligned(8); 4569 }; 4570 4571 struct skb_ext *__skb_ext_alloc(gfp_t flags); 4572 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4573 struct skb_ext *ext); 4574 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4575 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4576 void __skb_ext_put(struct skb_ext *ext); 4577 4578 static inline void skb_ext_put(struct sk_buff *skb) 4579 { 4580 if (skb->active_extensions) 4581 __skb_ext_put(skb->extensions); 4582 } 4583 4584 static inline void __skb_ext_copy(struct sk_buff *dst, 4585 const struct sk_buff *src) 4586 { 4587 dst->active_extensions = src->active_extensions; 4588 4589 if (src->active_extensions) { 4590 struct skb_ext *ext = src->extensions; 4591 4592 refcount_inc(&ext->refcnt); 4593 dst->extensions = ext; 4594 } 4595 } 4596 4597 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4598 { 4599 skb_ext_put(dst); 4600 __skb_ext_copy(dst, src); 4601 } 4602 4603 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4604 { 4605 return !!ext->offset[i]; 4606 } 4607 4608 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4609 { 4610 return skb->active_extensions & (1 << id); 4611 } 4612 4613 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4614 { 4615 if (skb_ext_exist(skb, id)) 4616 __skb_ext_del(skb, id); 4617 } 4618 4619 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4620 { 4621 if (skb_ext_exist(skb, id)) { 4622 struct skb_ext *ext = skb->extensions; 4623 4624 return (void *)ext + (ext->offset[id] << 3); 4625 } 4626 4627 return NULL; 4628 } 4629 4630 static inline void skb_ext_reset(struct sk_buff *skb) 4631 { 4632 if (unlikely(skb->active_extensions)) { 4633 __skb_ext_put(skb->extensions); 4634 skb->active_extensions = 0; 4635 } 4636 } 4637 4638 static inline bool skb_has_extensions(struct sk_buff *skb) 4639 { 4640 return unlikely(skb->active_extensions); 4641 } 4642 #else 4643 static inline void skb_ext_put(struct sk_buff *skb) {} 4644 static inline void skb_ext_reset(struct sk_buff *skb) {} 4645 static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4646 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4647 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4648 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4649 #endif /* CONFIG_SKB_EXTENSIONS */ 4650 4651 static inline void nf_reset_ct(struct sk_buff *skb) 4652 { 4653 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4654 nf_conntrack_put(skb_nfct(skb)); 4655 skb->_nfct = 0; 4656 #endif 4657 } 4658 4659 static inline void nf_reset_trace(struct sk_buff *skb) 4660 { 4661 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4662 skb->nf_trace = 0; 4663 #endif 4664 } 4665 4666 static inline void ipvs_reset(struct sk_buff *skb) 4667 { 4668 #if IS_ENABLED(CONFIG_IP_VS) 4669 skb->ipvs_property = 0; 4670 #endif 4671 } 4672 4673 /* Note: This doesn't put any conntrack info in dst. */ 4674 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4675 bool copy) 4676 { 4677 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4678 dst->_nfct = src->_nfct; 4679 nf_conntrack_get(skb_nfct(src)); 4680 #endif 4681 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4682 if (copy) 4683 dst->nf_trace = src->nf_trace; 4684 #endif 4685 } 4686 4687 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4688 { 4689 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4690 nf_conntrack_put(skb_nfct(dst)); 4691 #endif 4692 dst->slow_gro = src->slow_gro; 4693 __nf_copy(dst, src, true); 4694 } 4695 4696 #ifdef CONFIG_NETWORK_SECMARK 4697 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4698 { 4699 to->secmark = from->secmark; 4700 } 4701 4702 static inline void skb_init_secmark(struct sk_buff *skb) 4703 { 4704 skb->secmark = 0; 4705 } 4706 #else 4707 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4708 { } 4709 4710 static inline void skb_init_secmark(struct sk_buff *skb) 4711 { } 4712 #endif 4713 4714 static inline int secpath_exists(const struct sk_buff *skb) 4715 { 4716 #ifdef CONFIG_XFRM 4717 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4718 #else 4719 return 0; 4720 #endif 4721 } 4722 4723 static inline bool skb_irq_freeable(const struct sk_buff *skb) 4724 { 4725 return !skb->destructor && 4726 !secpath_exists(skb) && 4727 !skb_nfct(skb) && 4728 !skb->_skb_refdst && 4729 !skb_has_frag_list(skb); 4730 } 4731 4732 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4733 { 4734 skb->queue_mapping = queue_mapping; 4735 } 4736 4737 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4738 { 4739 return skb->queue_mapping; 4740 } 4741 4742 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4743 { 4744 to->queue_mapping = from->queue_mapping; 4745 } 4746 4747 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4748 { 4749 skb->queue_mapping = rx_queue + 1; 4750 } 4751 4752 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4753 { 4754 return skb->queue_mapping - 1; 4755 } 4756 4757 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4758 { 4759 return skb->queue_mapping != 0; 4760 } 4761 4762 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4763 { 4764 skb->dst_pending_confirm = val; 4765 } 4766 4767 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4768 { 4769 return skb->dst_pending_confirm != 0; 4770 } 4771 4772 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4773 { 4774 #ifdef CONFIG_XFRM 4775 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4776 #else 4777 return NULL; 4778 #endif 4779 } 4780 4781 /* Keeps track of mac header offset relative to skb->head. 4782 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4783 * For non-tunnel skb it points to skb_mac_header() and for 4784 * tunnel skb it points to outer mac header. 4785 * Keeps track of level of encapsulation of network headers. 4786 */ 4787 struct skb_gso_cb { 4788 union { 4789 int mac_offset; 4790 int data_offset; 4791 }; 4792 int encap_level; 4793 __wsum csum; 4794 __u16 csum_start; 4795 }; 4796 #define SKB_GSO_CB_OFFSET 32 4797 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4798 4799 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4800 { 4801 return (skb_mac_header(inner_skb) - inner_skb->head) - 4802 SKB_GSO_CB(inner_skb)->mac_offset; 4803 } 4804 4805 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4806 { 4807 int new_headroom, headroom; 4808 int ret; 4809 4810 headroom = skb_headroom(skb); 4811 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4812 if (ret) 4813 return ret; 4814 4815 new_headroom = skb_headroom(skb); 4816 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4817 return 0; 4818 } 4819 4820 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4821 { 4822 /* Do not update partial checksums if remote checksum is enabled. */ 4823 if (skb->remcsum_offload) 4824 return; 4825 4826 SKB_GSO_CB(skb)->csum = res; 4827 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4828 } 4829 4830 /* Compute the checksum for a gso segment. First compute the checksum value 4831 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4832 * then add in skb->csum (checksum from csum_start to end of packet). 4833 * skb->csum and csum_start are then updated to reflect the checksum of the 4834 * resultant packet starting from the transport header-- the resultant checksum 4835 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4836 * header. 4837 */ 4838 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4839 { 4840 unsigned char *csum_start = skb_transport_header(skb); 4841 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4842 __wsum partial = SKB_GSO_CB(skb)->csum; 4843 4844 SKB_GSO_CB(skb)->csum = res; 4845 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4846 4847 return csum_fold(csum_partial(csum_start, plen, partial)); 4848 } 4849 4850 static inline bool skb_is_gso(const struct sk_buff *skb) 4851 { 4852 return skb_shinfo(skb)->gso_size; 4853 } 4854 4855 /* Note: Should be called only if skb_is_gso(skb) is true */ 4856 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4857 { 4858 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4859 } 4860 4861 /* Note: Should be called only if skb_is_gso(skb) is true */ 4862 static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4863 { 4864 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4865 } 4866 4867 /* Note: Should be called only if skb_is_gso(skb) is true */ 4868 static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4869 { 4870 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4871 } 4872 4873 static inline void skb_gso_reset(struct sk_buff *skb) 4874 { 4875 skb_shinfo(skb)->gso_size = 0; 4876 skb_shinfo(skb)->gso_segs = 0; 4877 skb_shinfo(skb)->gso_type = 0; 4878 } 4879 4880 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4881 u16 increment) 4882 { 4883 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4884 return; 4885 shinfo->gso_size += increment; 4886 } 4887 4888 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4889 u16 decrement) 4890 { 4891 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4892 return; 4893 shinfo->gso_size -= decrement; 4894 } 4895 4896 void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4897 4898 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4899 { 4900 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4901 * wanted then gso_type will be set. */ 4902 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4903 4904 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4905 unlikely(shinfo->gso_type == 0)) { 4906 __skb_warn_lro_forwarding(skb); 4907 return true; 4908 } 4909 return false; 4910 } 4911 4912 static inline void skb_forward_csum(struct sk_buff *skb) 4913 { 4914 /* Unfortunately we don't support this one. Any brave souls? */ 4915 if (skb->ip_summed == CHECKSUM_COMPLETE) 4916 skb->ip_summed = CHECKSUM_NONE; 4917 } 4918 4919 /** 4920 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4921 * @skb: skb to check 4922 * 4923 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4924 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4925 * use this helper, to document places where we make this assertion. 4926 */ 4927 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4928 { 4929 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4930 } 4931 4932 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4933 4934 int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4935 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4936 unsigned int transport_len, 4937 __sum16(*skb_chkf)(struct sk_buff *skb)); 4938 4939 /** 4940 * skb_head_is_locked - Determine if the skb->head is locked down 4941 * @skb: skb to check 4942 * 4943 * The head on skbs build around a head frag can be removed if they are 4944 * not cloned. This function returns true if the skb head is locked down 4945 * due to either being allocated via kmalloc, or by being a clone with 4946 * multiple references to the head. 4947 */ 4948 static inline bool skb_head_is_locked(const struct sk_buff *skb) 4949 { 4950 return !skb->head_frag || skb_cloned(skb); 4951 } 4952 4953 /* Local Checksum Offload. 4954 * Compute outer checksum based on the assumption that the 4955 * inner checksum will be offloaded later. 4956 * See Documentation/networking/checksum-offloads.rst for 4957 * explanation of how this works. 4958 * Fill in outer checksum adjustment (e.g. with sum of outer 4959 * pseudo-header) before calling. 4960 * Also ensure that inner checksum is in linear data area. 4961 */ 4962 static inline __wsum lco_csum(struct sk_buff *skb) 4963 { 4964 unsigned char *csum_start = skb_checksum_start(skb); 4965 unsigned char *l4_hdr = skb_transport_header(skb); 4966 __wsum partial; 4967 4968 /* Start with complement of inner checksum adjustment */ 4969 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4970 skb->csum_offset)); 4971 4972 /* Add in checksum of our headers (incl. outer checksum 4973 * adjustment filled in by caller) and return result. 4974 */ 4975 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4976 } 4977 4978 static inline bool skb_is_redirected(const struct sk_buff *skb) 4979 { 4980 return skb->redirected; 4981 } 4982 4983 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4984 { 4985 skb->redirected = 1; 4986 #ifdef CONFIG_NET_REDIRECT 4987 skb->from_ingress = from_ingress; 4988 if (skb->from_ingress) 4989 skb_clear_tstamp(skb); 4990 #endif 4991 } 4992 4993 static inline void skb_reset_redirect(struct sk_buff *skb) 4994 { 4995 skb->redirected = 0; 4996 } 4997 4998 static inline bool skb_csum_is_sctp(struct sk_buff *skb) 4999 { 5000 return skb->csum_not_inet; 5001 } 5002 5003 static inline void skb_set_kcov_handle(struct sk_buff *skb, 5004 const u64 kcov_handle) 5005 { 5006 #ifdef CONFIG_KCOV 5007 skb->kcov_handle = kcov_handle; 5008 #endif 5009 } 5010 5011 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5012 { 5013 #ifdef CONFIG_KCOV 5014 return skb->kcov_handle; 5015 #else 5016 return 0; 5017 #endif 5018 } 5019 5020 #ifdef CONFIG_PAGE_POOL 5021 static inline void skb_mark_for_recycle(struct sk_buff *skb) 5022 { 5023 skb->pp_recycle = 1; 5024 } 5025 #endif 5026 5027 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 5028 { 5029 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 5030 return false; 5031 return page_pool_return_skb_page(virt_to_page(data)); 5032 } 5033 5034 #endif /* __KERNEL__ */ 5035 #endif /* _LINUX_SKBUFF_H */ 5036