xref: /linux-6.15/include/linux/skbuff.h (revision e978aa7d)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list. Since
126  * GRO uses frags we allocate at least 16 regardless of page size.
127  */
128 #if (65536/PAGE_SIZE + 2) < 16
129 #define MAX_SKB_FRAGS 16UL
130 #else
131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132 #endif
133 
134 typedef struct skb_frag_struct skb_frag_t;
135 
136 struct skb_frag_struct {
137 	struct page *page;
138 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
139 	__u32 page_offset;
140 	__u32 size;
141 #else
142 	__u16 page_offset;
143 	__u16 size;
144 #endif
145 };
146 
147 #define HAVE_HW_TIME_STAMP
148 
149 /**
150  * struct skb_shared_hwtstamps - hardware time stamps
151  * @hwtstamp:	hardware time stamp transformed into duration
152  *		since arbitrary point in time
153  * @syststamp:	hwtstamp transformed to system time base
154  *
155  * Software time stamps generated by ktime_get_real() are stored in
156  * skb->tstamp. The relation between the different kinds of time
157  * stamps is as follows:
158  *
159  * syststamp and tstamp can be compared against each other in
160  * arbitrary combinations.  The accuracy of a
161  * syststamp/tstamp/"syststamp from other device" comparison is
162  * limited by the accuracy of the transformation into system time
163  * base. This depends on the device driver and its underlying
164  * hardware.
165  *
166  * hwtstamps can only be compared against other hwtstamps from
167  * the same device.
168  *
169  * This structure is attached to packets as part of the
170  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
171  */
172 struct skb_shared_hwtstamps {
173 	ktime_t	hwtstamp;
174 	ktime_t	syststamp;
175 };
176 
177 /* Definitions for tx_flags in struct skb_shared_info */
178 enum {
179 	/* generate hardware time stamp */
180 	SKBTX_HW_TSTAMP = 1 << 0,
181 
182 	/* generate software time stamp */
183 	SKBTX_SW_TSTAMP = 1 << 1,
184 
185 	/* device driver is going to provide hardware time stamp */
186 	SKBTX_IN_PROGRESS = 1 << 2,
187 
188 	/* ensure the originating sk reference is available on driver level */
189 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
190 
191 	/* device driver supports TX zero-copy buffers */
192 	SKBTX_DEV_ZEROCOPY = 1 << 4,
193 };
194 
195 /*
196  * The callback notifies userspace to release buffers when skb DMA is done in
197  * lower device, the skb last reference should be 0 when calling this.
198  * The desc is used to track userspace buffer index.
199  */
200 struct ubuf_info {
201 	void (*callback)(void *);
202 	void *arg;
203 	unsigned long desc;
204 };
205 
206 /* This data is invariant across clones and lives at
207  * the end of the header data, ie. at skb->end.
208  */
209 struct skb_shared_info {
210 	unsigned short	nr_frags;
211 	unsigned short	gso_size;
212 	/* Warning: this field is not always filled in (UFO)! */
213 	unsigned short	gso_segs;
214 	unsigned short  gso_type;
215 	__be32          ip6_frag_id;
216 	__u8		tx_flags;
217 	struct sk_buff	*frag_list;
218 	struct skb_shared_hwtstamps hwtstamps;
219 
220 	/*
221 	 * Warning : all fields before dataref are cleared in __alloc_skb()
222 	 */
223 	atomic_t	dataref;
224 
225 	/* Intermediate layers must ensure that destructor_arg
226 	 * remains valid until skb destructor */
227 	void *		destructor_arg;
228 
229 	/* must be last field, see pskb_expand_head() */
230 	skb_frag_t	frags[MAX_SKB_FRAGS];
231 };
232 
233 /* We divide dataref into two halves.  The higher 16 bits hold references
234  * to the payload part of skb->data.  The lower 16 bits hold references to
235  * the entire skb->data.  A clone of a headerless skb holds the length of
236  * the header in skb->hdr_len.
237  *
238  * All users must obey the rule that the skb->data reference count must be
239  * greater than or equal to the payload reference count.
240  *
241  * Holding a reference to the payload part means that the user does not
242  * care about modifications to the header part of skb->data.
243  */
244 #define SKB_DATAREF_SHIFT 16
245 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
246 
247 
248 enum {
249 	SKB_FCLONE_UNAVAILABLE,
250 	SKB_FCLONE_ORIG,
251 	SKB_FCLONE_CLONE,
252 };
253 
254 enum {
255 	SKB_GSO_TCPV4 = 1 << 0,
256 	SKB_GSO_UDP = 1 << 1,
257 
258 	/* This indicates the skb is from an untrusted source. */
259 	SKB_GSO_DODGY = 1 << 2,
260 
261 	/* This indicates the tcp segment has CWR set. */
262 	SKB_GSO_TCP_ECN = 1 << 3,
263 
264 	SKB_GSO_TCPV6 = 1 << 4,
265 
266 	SKB_GSO_FCOE = 1 << 5,
267 };
268 
269 #if BITS_PER_LONG > 32
270 #define NET_SKBUFF_DATA_USES_OFFSET 1
271 #endif
272 
273 #ifdef NET_SKBUFF_DATA_USES_OFFSET
274 typedef unsigned int sk_buff_data_t;
275 #else
276 typedef unsigned char *sk_buff_data_t;
277 #endif
278 
279 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
280     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
281 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
282 #endif
283 
284 /**
285  *	struct sk_buff - socket buffer
286  *	@next: Next buffer in list
287  *	@prev: Previous buffer in list
288  *	@tstamp: Time we arrived
289  *	@sk: Socket we are owned by
290  *	@dev: Device we arrived on/are leaving by
291  *	@cb: Control buffer. Free for use by every layer. Put private vars here
292  *	@_skb_refdst: destination entry (with norefcount bit)
293  *	@sp: the security path, used for xfrm
294  *	@len: Length of actual data
295  *	@data_len: Data length
296  *	@mac_len: Length of link layer header
297  *	@hdr_len: writable header length of cloned skb
298  *	@csum: Checksum (must include start/offset pair)
299  *	@csum_start: Offset from skb->head where checksumming should start
300  *	@csum_offset: Offset from csum_start where checksum should be stored
301  *	@priority: Packet queueing priority
302  *	@local_df: allow local fragmentation
303  *	@cloned: Head may be cloned (check refcnt to be sure)
304  *	@ip_summed: Driver fed us an IP checksum
305  *	@nohdr: Payload reference only, must not modify header
306  *	@nfctinfo: Relationship of this skb to the connection
307  *	@pkt_type: Packet class
308  *	@fclone: skbuff clone status
309  *	@ipvs_property: skbuff is owned by ipvs
310  *	@peeked: this packet has been seen already, so stats have been
311  *		done for it, don't do them again
312  *	@nf_trace: netfilter packet trace flag
313  *	@protocol: Packet protocol from driver
314  *	@destructor: Destruct function
315  *	@nfct: Associated connection, if any
316  *	@nfct_reasm: netfilter conntrack re-assembly pointer
317  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
318  *	@skb_iif: ifindex of device we arrived on
319  *	@tc_index: Traffic control index
320  *	@tc_verd: traffic control verdict
321  *	@rxhash: the packet hash computed on receive
322  *	@queue_mapping: Queue mapping for multiqueue devices
323  *	@ndisc_nodetype: router type (from link layer)
324  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
325  *	@dma_cookie: a cookie to one of several possible DMA operations
326  *		done by skb DMA functions
327  *	@secmark: security marking
328  *	@mark: Generic packet mark
329  *	@dropcount: total number of sk_receive_queue overflows
330  *	@vlan_tci: vlan tag control information
331  *	@transport_header: Transport layer header
332  *	@network_header: Network layer header
333  *	@mac_header: Link layer header
334  *	@tail: Tail pointer
335  *	@end: End pointer
336  *	@head: Head of buffer
337  *	@data: Data head pointer
338  *	@truesize: Buffer size
339  *	@users: User count - see {datagram,tcp}.c
340  */
341 
342 struct sk_buff {
343 	/* These two members must be first. */
344 	struct sk_buff		*next;
345 	struct sk_buff		*prev;
346 
347 	ktime_t			tstamp;
348 
349 	struct sock		*sk;
350 	struct net_device	*dev;
351 
352 	/*
353 	 * This is the control buffer. It is free to use for every
354 	 * layer. Please put your private variables there. If you
355 	 * want to keep them across layers you have to do a skb_clone()
356 	 * first. This is owned by whoever has the skb queued ATM.
357 	 */
358 	char			cb[48] __aligned(8);
359 
360 	unsigned long		_skb_refdst;
361 #ifdef CONFIG_XFRM
362 	struct	sec_path	*sp;
363 #endif
364 	unsigned int		len,
365 				data_len;
366 	__u16			mac_len,
367 				hdr_len;
368 	union {
369 		__wsum		csum;
370 		struct {
371 			__u16	csum_start;
372 			__u16	csum_offset;
373 		};
374 	};
375 	__u32			priority;
376 	kmemcheck_bitfield_begin(flags1);
377 	__u8			local_df:1,
378 				cloned:1,
379 				ip_summed:2,
380 				nohdr:1,
381 				nfctinfo:3;
382 	__u8			pkt_type:3,
383 				fclone:2,
384 				ipvs_property:1,
385 				peeked:1,
386 				nf_trace:1;
387 	kmemcheck_bitfield_end(flags1);
388 	__be16			protocol;
389 
390 	void			(*destructor)(struct sk_buff *skb);
391 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
392 	struct nf_conntrack	*nfct;
393 #endif
394 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
395 	struct sk_buff		*nfct_reasm;
396 #endif
397 #ifdef CONFIG_BRIDGE_NETFILTER
398 	struct nf_bridge_info	*nf_bridge;
399 #endif
400 
401 	int			skb_iif;
402 #ifdef CONFIG_NET_SCHED
403 	__u16			tc_index;	/* traffic control index */
404 #ifdef CONFIG_NET_CLS_ACT
405 	__u16			tc_verd;	/* traffic control verdict */
406 #endif
407 #endif
408 
409 	__u32			rxhash;
410 
411 	__u16			queue_mapping;
412 	kmemcheck_bitfield_begin(flags2);
413 #ifdef CONFIG_IPV6_NDISC_NODETYPE
414 	__u8			ndisc_nodetype:2;
415 #endif
416 	__u8			ooo_okay:1;
417 	kmemcheck_bitfield_end(flags2);
418 
419 	/* 0/13 bit hole */
420 
421 #ifdef CONFIG_NET_DMA
422 	dma_cookie_t		dma_cookie;
423 #endif
424 #ifdef CONFIG_NETWORK_SECMARK
425 	__u32			secmark;
426 #endif
427 	union {
428 		__u32		mark;
429 		__u32		dropcount;
430 	};
431 
432 	__u16			vlan_tci;
433 
434 	sk_buff_data_t		transport_header;
435 	sk_buff_data_t		network_header;
436 	sk_buff_data_t		mac_header;
437 	/* These elements must be at the end, see alloc_skb() for details.  */
438 	sk_buff_data_t		tail;
439 	sk_buff_data_t		end;
440 	unsigned char		*head,
441 				*data;
442 	unsigned int		truesize;
443 	atomic_t		users;
444 };
445 
446 #ifdef __KERNEL__
447 /*
448  *	Handling routines are only of interest to the kernel
449  */
450 #include <linux/slab.h>
451 
452 #include <asm/system.h>
453 
454 /*
455  * skb might have a dst pointer attached, refcounted or not.
456  * _skb_refdst low order bit is set if refcount was _not_ taken
457  */
458 #define SKB_DST_NOREF	1UL
459 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
460 
461 /**
462  * skb_dst - returns skb dst_entry
463  * @skb: buffer
464  *
465  * Returns skb dst_entry, regardless of reference taken or not.
466  */
467 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
468 {
469 	/* If refdst was not refcounted, check we still are in a
470 	 * rcu_read_lock section
471 	 */
472 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
473 		!rcu_read_lock_held() &&
474 		!rcu_read_lock_bh_held());
475 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
476 }
477 
478 /**
479  * skb_dst_set - sets skb dst
480  * @skb: buffer
481  * @dst: dst entry
482  *
483  * Sets skb dst, assuming a reference was taken on dst and should
484  * be released by skb_dst_drop()
485  */
486 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
487 {
488 	skb->_skb_refdst = (unsigned long)dst;
489 }
490 
491 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
492 
493 /**
494  * skb_dst_is_noref - Test if skb dst isn't refcounted
495  * @skb: buffer
496  */
497 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
498 {
499 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
500 }
501 
502 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
503 {
504 	return (struct rtable *)skb_dst(skb);
505 }
506 
507 extern void kfree_skb(struct sk_buff *skb);
508 extern void consume_skb(struct sk_buff *skb);
509 extern void	       __kfree_skb(struct sk_buff *skb);
510 extern struct sk_buff *__alloc_skb(unsigned int size,
511 				   gfp_t priority, int fclone, int node);
512 static inline struct sk_buff *alloc_skb(unsigned int size,
513 					gfp_t priority)
514 {
515 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
516 }
517 
518 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
519 					       gfp_t priority)
520 {
521 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
522 }
523 
524 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
525 
526 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
527 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
528 extern struct sk_buff *skb_clone(struct sk_buff *skb,
529 				 gfp_t priority);
530 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
531 				gfp_t priority);
532 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
533 				 gfp_t gfp_mask);
534 extern int	       pskb_expand_head(struct sk_buff *skb,
535 					int nhead, int ntail,
536 					gfp_t gfp_mask);
537 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
538 					    unsigned int headroom);
539 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
540 				       int newheadroom, int newtailroom,
541 				       gfp_t priority);
542 extern int	       skb_to_sgvec(struct sk_buff *skb,
543 				    struct scatterlist *sg, int offset,
544 				    int len);
545 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
546 				    struct sk_buff **trailer);
547 extern int	       skb_pad(struct sk_buff *skb, int pad);
548 #define dev_kfree_skb(a)	consume_skb(a)
549 
550 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
551 			int getfrag(void *from, char *to, int offset,
552 			int len,int odd, struct sk_buff *skb),
553 			void *from, int length);
554 
555 struct skb_seq_state {
556 	__u32		lower_offset;
557 	__u32		upper_offset;
558 	__u32		frag_idx;
559 	__u32		stepped_offset;
560 	struct sk_buff	*root_skb;
561 	struct sk_buff	*cur_skb;
562 	__u8		*frag_data;
563 };
564 
565 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
566 					   unsigned int from, unsigned int to,
567 					   struct skb_seq_state *st);
568 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
569 				   struct skb_seq_state *st);
570 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
571 
572 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
573 				    unsigned int to, struct ts_config *config,
574 				    struct ts_state *state);
575 
576 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
577 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
578 {
579 	if (!skb->rxhash)
580 		skb->rxhash = __skb_get_rxhash(skb);
581 
582 	return skb->rxhash;
583 }
584 
585 #ifdef NET_SKBUFF_DATA_USES_OFFSET
586 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
587 {
588 	return skb->head + skb->end;
589 }
590 #else
591 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
592 {
593 	return skb->end;
594 }
595 #endif
596 
597 /* Internal */
598 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
599 
600 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
601 {
602 	return &skb_shinfo(skb)->hwtstamps;
603 }
604 
605 /**
606  *	skb_queue_empty - check if a queue is empty
607  *	@list: queue head
608  *
609  *	Returns true if the queue is empty, false otherwise.
610  */
611 static inline int skb_queue_empty(const struct sk_buff_head *list)
612 {
613 	return list->next == (struct sk_buff *)list;
614 }
615 
616 /**
617  *	skb_queue_is_last - check if skb is the last entry in the queue
618  *	@list: queue head
619  *	@skb: buffer
620  *
621  *	Returns true if @skb is the last buffer on the list.
622  */
623 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
624 				     const struct sk_buff *skb)
625 {
626 	return skb->next == (struct sk_buff *)list;
627 }
628 
629 /**
630  *	skb_queue_is_first - check if skb is the first entry in the queue
631  *	@list: queue head
632  *	@skb: buffer
633  *
634  *	Returns true if @skb is the first buffer on the list.
635  */
636 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
637 				      const struct sk_buff *skb)
638 {
639 	return skb->prev == (struct sk_buff *)list;
640 }
641 
642 /**
643  *	skb_queue_next - return the next packet in the queue
644  *	@list: queue head
645  *	@skb: current buffer
646  *
647  *	Return the next packet in @list after @skb.  It is only valid to
648  *	call this if skb_queue_is_last() evaluates to false.
649  */
650 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
651 					     const struct sk_buff *skb)
652 {
653 	/* This BUG_ON may seem severe, but if we just return then we
654 	 * are going to dereference garbage.
655 	 */
656 	BUG_ON(skb_queue_is_last(list, skb));
657 	return skb->next;
658 }
659 
660 /**
661  *	skb_queue_prev - return the prev packet in the queue
662  *	@list: queue head
663  *	@skb: current buffer
664  *
665  *	Return the prev packet in @list before @skb.  It is only valid to
666  *	call this if skb_queue_is_first() evaluates to false.
667  */
668 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
669 					     const struct sk_buff *skb)
670 {
671 	/* This BUG_ON may seem severe, but if we just return then we
672 	 * are going to dereference garbage.
673 	 */
674 	BUG_ON(skb_queue_is_first(list, skb));
675 	return skb->prev;
676 }
677 
678 /**
679  *	skb_get - reference buffer
680  *	@skb: buffer to reference
681  *
682  *	Makes another reference to a socket buffer and returns a pointer
683  *	to the buffer.
684  */
685 static inline struct sk_buff *skb_get(struct sk_buff *skb)
686 {
687 	atomic_inc(&skb->users);
688 	return skb;
689 }
690 
691 /*
692  * If users == 1, we are the only owner and are can avoid redundant
693  * atomic change.
694  */
695 
696 /**
697  *	skb_cloned - is the buffer a clone
698  *	@skb: buffer to check
699  *
700  *	Returns true if the buffer was generated with skb_clone() and is
701  *	one of multiple shared copies of the buffer. Cloned buffers are
702  *	shared data so must not be written to under normal circumstances.
703  */
704 static inline int skb_cloned(const struct sk_buff *skb)
705 {
706 	return skb->cloned &&
707 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
708 }
709 
710 /**
711  *	skb_header_cloned - is the header a clone
712  *	@skb: buffer to check
713  *
714  *	Returns true if modifying the header part of the buffer requires
715  *	the data to be copied.
716  */
717 static inline int skb_header_cloned(const struct sk_buff *skb)
718 {
719 	int dataref;
720 
721 	if (!skb->cloned)
722 		return 0;
723 
724 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
725 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
726 	return dataref != 1;
727 }
728 
729 /**
730  *	skb_header_release - release reference to header
731  *	@skb: buffer to operate on
732  *
733  *	Drop a reference to the header part of the buffer.  This is done
734  *	by acquiring a payload reference.  You must not read from the header
735  *	part of skb->data after this.
736  */
737 static inline void skb_header_release(struct sk_buff *skb)
738 {
739 	BUG_ON(skb->nohdr);
740 	skb->nohdr = 1;
741 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
742 }
743 
744 /**
745  *	skb_shared - is the buffer shared
746  *	@skb: buffer to check
747  *
748  *	Returns true if more than one person has a reference to this
749  *	buffer.
750  */
751 static inline int skb_shared(const struct sk_buff *skb)
752 {
753 	return atomic_read(&skb->users) != 1;
754 }
755 
756 /**
757  *	skb_share_check - check if buffer is shared and if so clone it
758  *	@skb: buffer to check
759  *	@pri: priority for memory allocation
760  *
761  *	If the buffer is shared the buffer is cloned and the old copy
762  *	drops a reference. A new clone with a single reference is returned.
763  *	If the buffer is not shared the original buffer is returned. When
764  *	being called from interrupt status or with spinlocks held pri must
765  *	be GFP_ATOMIC.
766  *
767  *	NULL is returned on a memory allocation failure.
768  */
769 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
770 					      gfp_t pri)
771 {
772 	might_sleep_if(pri & __GFP_WAIT);
773 	if (skb_shared(skb)) {
774 		struct sk_buff *nskb = skb_clone(skb, pri);
775 		kfree_skb(skb);
776 		skb = nskb;
777 	}
778 	return skb;
779 }
780 
781 /*
782  *	Copy shared buffers into a new sk_buff. We effectively do COW on
783  *	packets to handle cases where we have a local reader and forward
784  *	and a couple of other messy ones. The normal one is tcpdumping
785  *	a packet thats being forwarded.
786  */
787 
788 /**
789  *	skb_unshare - make a copy of a shared buffer
790  *	@skb: buffer to check
791  *	@pri: priority for memory allocation
792  *
793  *	If the socket buffer is a clone then this function creates a new
794  *	copy of the data, drops a reference count on the old copy and returns
795  *	the new copy with the reference count at 1. If the buffer is not a clone
796  *	the original buffer is returned. When called with a spinlock held or
797  *	from interrupt state @pri must be %GFP_ATOMIC
798  *
799  *	%NULL is returned on a memory allocation failure.
800  */
801 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
802 					  gfp_t pri)
803 {
804 	might_sleep_if(pri & __GFP_WAIT);
805 	if (skb_cloned(skb)) {
806 		struct sk_buff *nskb = skb_copy(skb, pri);
807 		kfree_skb(skb);	/* Free our shared copy */
808 		skb = nskb;
809 	}
810 	return skb;
811 }
812 
813 /**
814  *	skb_peek - peek at the head of an &sk_buff_head
815  *	@list_: list to peek at
816  *
817  *	Peek an &sk_buff. Unlike most other operations you _MUST_
818  *	be careful with this one. A peek leaves the buffer on the
819  *	list and someone else may run off with it. You must hold
820  *	the appropriate locks or have a private queue to do this.
821  *
822  *	Returns %NULL for an empty list or a pointer to the head element.
823  *	The reference count is not incremented and the reference is therefore
824  *	volatile. Use with caution.
825  */
826 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
827 {
828 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
829 	if (list == (struct sk_buff *)list_)
830 		list = NULL;
831 	return list;
832 }
833 
834 /**
835  *	skb_peek_tail - peek at the tail of an &sk_buff_head
836  *	@list_: list to peek at
837  *
838  *	Peek an &sk_buff. Unlike most other operations you _MUST_
839  *	be careful with this one. A peek leaves the buffer on the
840  *	list and someone else may run off with it. You must hold
841  *	the appropriate locks or have a private queue to do this.
842  *
843  *	Returns %NULL for an empty list or a pointer to the tail element.
844  *	The reference count is not incremented and the reference is therefore
845  *	volatile. Use with caution.
846  */
847 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
848 {
849 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
850 	if (list == (struct sk_buff *)list_)
851 		list = NULL;
852 	return list;
853 }
854 
855 /**
856  *	skb_queue_len	- get queue length
857  *	@list_: list to measure
858  *
859  *	Return the length of an &sk_buff queue.
860  */
861 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
862 {
863 	return list_->qlen;
864 }
865 
866 /**
867  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
868  *	@list: queue to initialize
869  *
870  *	This initializes only the list and queue length aspects of
871  *	an sk_buff_head object.  This allows to initialize the list
872  *	aspects of an sk_buff_head without reinitializing things like
873  *	the spinlock.  It can also be used for on-stack sk_buff_head
874  *	objects where the spinlock is known to not be used.
875  */
876 static inline void __skb_queue_head_init(struct sk_buff_head *list)
877 {
878 	list->prev = list->next = (struct sk_buff *)list;
879 	list->qlen = 0;
880 }
881 
882 /*
883  * This function creates a split out lock class for each invocation;
884  * this is needed for now since a whole lot of users of the skb-queue
885  * infrastructure in drivers have different locking usage (in hardirq)
886  * than the networking core (in softirq only). In the long run either the
887  * network layer or drivers should need annotation to consolidate the
888  * main types of usage into 3 classes.
889  */
890 static inline void skb_queue_head_init(struct sk_buff_head *list)
891 {
892 	spin_lock_init(&list->lock);
893 	__skb_queue_head_init(list);
894 }
895 
896 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
897 		struct lock_class_key *class)
898 {
899 	skb_queue_head_init(list);
900 	lockdep_set_class(&list->lock, class);
901 }
902 
903 /*
904  *	Insert an sk_buff on a list.
905  *
906  *	The "__skb_xxxx()" functions are the non-atomic ones that
907  *	can only be called with interrupts disabled.
908  */
909 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
910 static inline void __skb_insert(struct sk_buff *newsk,
911 				struct sk_buff *prev, struct sk_buff *next,
912 				struct sk_buff_head *list)
913 {
914 	newsk->next = next;
915 	newsk->prev = prev;
916 	next->prev  = prev->next = newsk;
917 	list->qlen++;
918 }
919 
920 static inline void __skb_queue_splice(const struct sk_buff_head *list,
921 				      struct sk_buff *prev,
922 				      struct sk_buff *next)
923 {
924 	struct sk_buff *first = list->next;
925 	struct sk_buff *last = list->prev;
926 
927 	first->prev = prev;
928 	prev->next = first;
929 
930 	last->next = next;
931 	next->prev = last;
932 }
933 
934 /**
935  *	skb_queue_splice - join two skb lists, this is designed for stacks
936  *	@list: the new list to add
937  *	@head: the place to add it in the first list
938  */
939 static inline void skb_queue_splice(const struct sk_buff_head *list,
940 				    struct sk_buff_head *head)
941 {
942 	if (!skb_queue_empty(list)) {
943 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
944 		head->qlen += list->qlen;
945 	}
946 }
947 
948 /**
949  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
950  *	@list: the new list to add
951  *	@head: the place to add it in the first list
952  *
953  *	The list at @list is reinitialised
954  */
955 static inline void skb_queue_splice_init(struct sk_buff_head *list,
956 					 struct sk_buff_head *head)
957 {
958 	if (!skb_queue_empty(list)) {
959 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
960 		head->qlen += list->qlen;
961 		__skb_queue_head_init(list);
962 	}
963 }
964 
965 /**
966  *	skb_queue_splice_tail - join two skb lists, each list being a queue
967  *	@list: the new list to add
968  *	@head: the place to add it in the first list
969  */
970 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
971 					 struct sk_buff_head *head)
972 {
973 	if (!skb_queue_empty(list)) {
974 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
975 		head->qlen += list->qlen;
976 	}
977 }
978 
979 /**
980  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
981  *	@list: the new list to add
982  *	@head: the place to add it in the first list
983  *
984  *	Each of the lists is a queue.
985  *	The list at @list is reinitialised
986  */
987 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
988 					      struct sk_buff_head *head)
989 {
990 	if (!skb_queue_empty(list)) {
991 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
992 		head->qlen += list->qlen;
993 		__skb_queue_head_init(list);
994 	}
995 }
996 
997 /**
998  *	__skb_queue_after - queue a buffer at the list head
999  *	@list: list to use
1000  *	@prev: place after this buffer
1001  *	@newsk: buffer to queue
1002  *
1003  *	Queue a buffer int the middle of a list. This function takes no locks
1004  *	and you must therefore hold required locks before calling it.
1005  *
1006  *	A buffer cannot be placed on two lists at the same time.
1007  */
1008 static inline void __skb_queue_after(struct sk_buff_head *list,
1009 				     struct sk_buff *prev,
1010 				     struct sk_buff *newsk)
1011 {
1012 	__skb_insert(newsk, prev, prev->next, list);
1013 }
1014 
1015 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1016 		       struct sk_buff_head *list);
1017 
1018 static inline void __skb_queue_before(struct sk_buff_head *list,
1019 				      struct sk_buff *next,
1020 				      struct sk_buff *newsk)
1021 {
1022 	__skb_insert(newsk, next->prev, next, list);
1023 }
1024 
1025 /**
1026  *	__skb_queue_head - queue a buffer at the list head
1027  *	@list: list to use
1028  *	@newsk: buffer to queue
1029  *
1030  *	Queue a buffer at the start of a list. This function takes no locks
1031  *	and you must therefore hold required locks before calling it.
1032  *
1033  *	A buffer cannot be placed on two lists at the same time.
1034  */
1035 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1036 static inline void __skb_queue_head(struct sk_buff_head *list,
1037 				    struct sk_buff *newsk)
1038 {
1039 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1040 }
1041 
1042 /**
1043  *	__skb_queue_tail - queue a buffer at the list tail
1044  *	@list: list to use
1045  *	@newsk: buffer to queue
1046  *
1047  *	Queue a buffer at the end of a list. This function takes no locks
1048  *	and you must therefore hold required locks before calling it.
1049  *
1050  *	A buffer cannot be placed on two lists at the same time.
1051  */
1052 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1053 static inline void __skb_queue_tail(struct sk_buff_head *list,
1054 				   struct sk_buff *newsk)
1055 {
1056 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1057 }
1058 
1059 /*
1060  * remove sk_buff from list. _Must_ be called atomically, and with
1061  * the list known..
1062  */
1063 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1064 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1065 {
1066 	struct sk_buff *next, *prev;
1067 
1068 	list->qlen--;
1069 	next	   = skb->next;
1070 	prev	   = skb->prev;
1071 	skb->next  = skb->prev = NULL;
1072 	next->prev = prev;
1073 	prev->next = next;
1074 }
1075 
1076 /**
1077  *	__skb_dequeue - remove from the head of the queue
1078  *	@list: list to dequeue from
1079  *
1080  *	Remove the head of the list. This function does not take any locks
1081  *	so must be used with appropriate locks held only. The head item is
1082  *	returned or %NULL if the list is empty.
1083  */
1084 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1085 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1086 {
1087 	struct sk_buff *skb = skb_peek(list);
1088 	if (skb)
1089 		__skb_unlink(skb, list);
1090 	return skb;
1091 }
1092 
1093 /**
1094  *	__skb_dequeue_tail - remove from the tail of the queue
1095  *	@list: list to dequeue from
1096  *
1097  *	Remove the tail of the list. This function does not take any locks
1098  *	so must be used with appropriate locks held only. The tail item is
1099  *	returned or %NULL if the list is empty.
1100  */
1101 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1102 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1103 {
1104 	struct sk_buff *skb = skb_peek_tail(list);
1105 	if (skb)
1106 		__skb_unlink(skb, list);
1107 	return skb;
1108 }
1109 
1110 
1111 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1112 {
1113 	return skb->data_len;
1114 }
1115 
1116 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1117 {
1118 	return skb->len - skb->data_len;
1119 }
1120 
1121 static inline int skb_pagelen(const struct sk_buff *skb)
1122 {
1123 	int i, len = 0;
1124 
1125 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1126 		len += skb_shinfo(skb)->frags[i].size;
1127 	return len + skb_headlen(skb);
1128 }
1129 
1130 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1131 				      struct page *page, int off, int size)
1132 {
1133 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1134 
1135 	frag->page		  = page;
1136 	frag->page_offset	  = off;
1137 	frag->size		  = size;
1138 	skb_shinfo(skb)->nr_frags = i + 1;
1139 }
1140 
1141 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1142 			    int off, int size);
1143 
1144 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1145 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1146 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1147 
1148 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1149 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1150 {
1151 	return skb->head + skb->tail;
1152 }
1153 
1154 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1155 {
1156 	skb->tail = skb->data - skb->head;
1157 }
1158 
1159 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1160 {
1161 	skb_reset_tail_pointer(skb);
1162 	skb->tail += offset;
1163 }
1164 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1165 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1166 {
1167 	return skb->tail;
1168 }
1169 
1170 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1171 {
1172 	skb->tail = skb->data;
1173 }
1174 
1175 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1176 {
1177 	skb->tail = skb->data + offset;
1178 }
1179 
1180 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1181 
1182 /*
1183  *	Add data to an sk_buff
1184  */
1185 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1186 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1187 {
1188 	unsigned char *tmp = skb_tail_pointer(skb);
1189 	SKB_LINEAR_ASSERT(skb);
1190 	skb->tail += len;
1191 	skb->len  += len;
1192 	return tmp;
1193 }
1194 
1195 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1196 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1197 {
1198 	skb->data -= len;
1199 	skb->len  += len;
1200 	return skb->data;
1201 }
1202 
1203 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1204 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1205 {
1206 	skb->len -= len;
1207 	BUG_ON(skb->len < skb->data_len);
1208 	return skb->data += len;
1209 }
1210 
1211 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1212 {
1213 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1214 }
1215 
1216 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1217 
1218 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1219 {
1220 	if (len > skb_headlen(skb) &&
1221 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1222 		return NULL;
1223 	skb->len -= len;
1224 	return skb->data += len;
1225 }
1226 
1227 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1228 {
1229 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1230 }
1231 
1232 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1233 {
1234 	if (likely(len <= skb_headlen(skb)))
1235 		return 1;
1236 	if (unlikely(len > skb->len))
1237 		return 0;
1238 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1239 }
1240 
1241 /**
1242  *	skb_headroom - bytes at buffer head
1243  *	@skb: buffer to check
1244  *
1245  *	Return the number of bytes of free space at the head of an &sk_buff.
1246  */
1247 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1248 {
1249 	return skb->data - skb->head;
1250 }
1251 
1252 /**
1253  *	skb_tailroom - bytes at buffer end
1254  *	@skb: buffer to check
1255  *
1256  *	Return the number of bytes of free space at the tail of an sk_buff
1257  */
1258 static inline int skb_tailroom(const struct sk_buff *skb)
1259 {
1260 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1261 }
1262 
1263 /**
1264  *	skb_reserve - adjust headroom
1265  *	@skb: buffer to alter
1266  *	@len: bytes to move
1267  *
1268  *	Increase the headroom of an empty &sk_buff by reducing the tail
1269  *	room. This is only allowed for an empty buffer.
1270  */
1271 static inline void skb_reserve(struct sk_buff *skb, int len)
1272 {
1273 	skb->data += len;
1274 	skb->tail += len;
1275 }
1276 
1277 static inline void skb_reset_mac_len(struct sk_buff *skb)
1278 {
1279 	skb->mac_len = skb->network_header - skb->mac_header;
1280 }
1281 
1282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1283 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1284 {
1285 	return skb->head + skb->transport_header;
1286 }
1287 
1288 static inline void skb_reset_transport_header(struct sk_buff *skb)
1289 {
1290 	skb->transport_header = skb->data - skb->head;
1291 }
1292 
1293 static inline void skb_set_transport_header(struct sk_buff *skb,
1294 					    const int offset)
1295 {
1296 	skb_reset_transport_header(skb);
1297 	skb->transport_header += offset;
1298 }
1299 
1300 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1301 {
1302 	return skb->head + skb->network_header;
1303 }
1304 
1305 static inline void skb_reset_network_header(struct sk_buff *skb)
1306 {
1307 	skb->network_header = skb->data - skb->head;
1308 }
1309 
1310 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1311 {
1312 	skb_reset_network_header(skb);
1313 	skb->network_header += offset;
1314 }
1315 
1316 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1317 {
1318 	return skb->head + skb->mac_header;
1319 }
1320 
1321 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1322 {
1323 	return skb->mac_header != ~0U;
1324 }
1325 
1326 static inline void skb_reset_mac_header(struct sk_buff *skb)
1327 {
1328 	skb->mac_header = skb->data - skb->head;
1329 }
1330 
1331 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1332 {
1333 	skb_reset_mac_header(skb);
1334 	skb->mac_header += offset;
1335 }
1336 
1337 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1338 
1339 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1340 {
1341 	return skb->transport_header;
1342 }
1343 
1344 static inline void skb_reset_transport_header(struct sk_buff *skb)
1345 {
1346 	skb->transport_header = skb->data;
1347 }
1348 
1349 static inline void skb_set_transport_header(struct sk_buff *skb,
1350 					    const int offset)
1351 {
1352 	skb->transport_header = skb->data + offset;
1353 }
1354 
1355 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1356 {
1357 	return skb->network_header;
1358 }
1359 
1360 static inline void skb_reset_network_header(struct sk_buff *skb)
1361 {
1362 	skb->network_header = skb->data;
1363 }
1364 
1365 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1366 {
1367 	skb->network_header = skb->data + offset;
1368 }
1369 
1370 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1371 {
1372 	return skb->mac_header;
1373 }
1374 
1375 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1376 {
1377 	return skb->mac_header != NULL;
1378 }
1379 
1380 static inline void skb_reset_mac_header(struct sk_buff *skb)
1381 {
1382 	skb->mac_header = skb->data;
1383 }
1384 
1385 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1386 {
1387 	skb->mac_header = skb->data + offset;
1388 }
1389 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1390 
1391 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1392 {
1393 	return skb->csum_start - skb_headroom(skb);
1394 }
1395 
1396 static inline int skb_transport_offset(const struct sk_buff *skb)
1397 {
1398 	return skb_transport_header(skb) - skb->data;
1399 }
1400 
1401 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1402 {
1403 	return skb->transport_header - skb->network_header;
1404 }
1405 
1406 static inline int skb_network_offset(const struct sk_buff *skb)
1407 {
1408 	return skb_network_header(skb) - skb->data;
1409 }
1410 
1411 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1412 {
1413 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1414 }
1415 
1416 /*
1417  * CPUs often take a performance hit when accessing unaligned memory
1418  * locations. The actual performance hit varies, it can be small if the
1419  * hardware handles it or large if we have to take an exception and fix it
1420  * in software.
1421  *
1422  * Since an ethernet header is 14 bytes network drivers often end up with
1423  * the IP header at an unaligned offset. The IP header can be aligned by
1424  * shifting the start of the packet by 2 bytes. Drivers should do this
1425  * with:
1426  *
1427  * skb_reserve(skb, NET_IP_ALIGN);
1428  *
1429  * The downside to this alignment of the IP header is that the DMA is now
1430  * unaligned. On some architectures the cost of an unaligned DMA is high
1431  * and this cost outweighs the gains made by aligning the IP header.
1432  *
1433  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1434  * to be overridden.
1435  */
1436 #ifndef NET_IP_ALIGN
1437 #define NET_IP_ALIGN	2
1438 #endif
1439 
1440 /*
1441  * The networking layer reserves some headroom in skb data (via
1442  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1443  * the header has to grow. In the default case, if the header has to grow
1444  * 32 bytes or less we avoid the reallocation.
1445  *
1446  * Unfortunately this headroom changes the DMA alignment of the resulting
1447  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1448  * on some architectures. An architecture can override this value,
1449  * perhaps setting it to a cacheline in size (since that will maintain
1450  * cacheline alignment of the DMA). It must be a power of 2.
1451  *
1452  * Various parts of the networking layer expect at least 32 bytes of
1453  * headroom, you should not reduce this.
1454  *
1455  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1456  * to reduce average number of cache lines per packet.
1457  * get_rps_cpus() for example only access one 64 bytes aligned block :
1458  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1459  */
1460 #ifndef NET_SKB_PAD
1461 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1462 #endif
1463 
1464 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1465 
1466 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1467 {
1468 	if (unlikely(skb_is_nonlinear(skb))) {
1469 		WARN_ON(1);
1470 		return;
1471 	}
1472 	skb->len = len;
1473 	skb_set_tail_pointer(skb, len);
1474 }
1475 
1476 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1477 
1478 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1479 {
1480 	if (skb->data_len)
1481 		return ___pskb_trim(skb, len);
1482 	__skb_trim(skb, len);
1483 	return 0;
1484 }
1485 
1486 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1487 {
1488 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1489 }
1490 
1491 /**
1492  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1493  *	@skb: buffer to alter
1494  *	@len: new length
1495  *
1496  *	This is identical to pskb_trim except that the caller knows that
1497  *	the skb is not cloned so we should never get an error due to out-
1498  *	of-memory.
1499  */
1500 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1501 {
1502 	int err = pskb_trim(skb, len);
1503 	BUG_ON(err);
1504 }
1505 
1506 /**
1507  *	skb_orphan - orphan a buffer
1508  *	@skb: buffer to orphan
1509  *
1510  *	If a buffer currently has an owner then we call the owner's
1511  *	destructor function and make the @skb unowned. The buffer continues
1512  *	to exist but is no longer charged to its former owner.
1513  */
1514 static inline void skb_orphan(struct sk_buff *skb)
1515 {
1516 	if (skb->destructor)
1517 		skb->destructor(skb);
1518 	skb->destructor = NULL;
1519 	skb->sk		= NULL;
1520 }
1521 
1522 /**
1523  *	__skb_queue_purge - empty a list
1524  *	@list: list to empty
1525  *
1526  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1527  *	the list and one reference dropped. This function does not take the
1528  *	list lock and the caller must hold the relevant locks to use it.
1529  */
1530 extern void skb_queue_purge(struct sk_buff_head *list);
1531 static inline void __skb_queue_purge(struct sk_buff_head *list)
1532 {
1533 	struct sk_buff *skb;
1534 	while ((skb = __skb_dequeue(list)) != NULL)
1535 		kfree_skb(skb);
1536 }
1537 
1538 /**
1539  *	__dev_alloc_skb - allocate an skbuff for receiving
1540  *	@length: length to allocate
1541  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1542  *
1543  *	Allocate a new &sk_buff and assign it a usage count of one. The
1544  *	buffer has unspecified headroom built in. Users should allocate
1545  *	the headroom they think they need without accounting for the
1546  *	built in space. The built in space is used for optimisations.
1547  *
1548  *	%NULL is returned if there is no free memory.
1549  */
1550 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1551 					      gfp_t gfp_mask)
1552 {
1553 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1554 	if (likely(skb))
1555 		skb_reserve(skb, NET_SKB_PAD);
1556 	return skb;
1557 }
1558 
1559 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1560 
1561 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1562 		unsigned int length, gfp_t gfp_mask);
1563 
1564 /**
1565  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1566  *	@dev: network device to receive on
1567  *	@length: length to allocate
1568  *
1569  *	Allocate a new &sk_buff and assign it a usage count of one. The
1570  *	buffer has unspecified headroom built in. Users should allocate
1571  *	the headroom they think they need without accounting for the
1572  *	built in space. The built in space is used for optimisations.
1573  *
1574  *	%NULL is returned if there is no free memory. Although this function
1575  *	allocates memory it can be called from an interrupt.
1576  */
1577 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1578 		unsigned int length)
1579 {
1580 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1581 }
1582 
1583 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1584 		unsigned int length, gfp_t gfp)
1585 {
1586 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1587 
1588 	if (NET_IP_ALIGN && skb)
1589 		skb_reserve(skb, NET_IP_ALIGN);
1590 	return skb;
1591 }
1592 
1593 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1594 		unsigned int length)
1595 {
1596 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1597 }
1598 
1599 /**
1600  *	__netdev_alloc_page - allocate a page for ps-rx on a specific device
1601  *	@dev: network device to receive on
1602  *	@gfp_mask: alloc_pages_node mask
1603  *
1604  * 	Allocate a new page. dev currently unused.
1605  *
1606  * 	%NULL is returned if there is no free memory.
1607  */
1608 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1609 {
1610 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1611 }
1612 
1613 /**
1614  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1615  *	@dev: network device to receive on
1616  *
1617  * 	Allocate a new page. dev currently unused.
1618  *
1619  * 	%NULL is returned if there is no free memory.
1620  */
1621 static inline struct page *netdev_alloc_page(struct net_device *dev)
1622 {
1623 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1624 }
1625 
1626 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1627 {
1628 	__free_page(page);
1629 }
1630 
1631 /**
1632  *	skb_clone_writable - is the header of a clone writable
1633  *	@skb: buffer to check
1634  *	@len: length up to which to write
1635  *
1636  *	Returns true if modifying the header part of the cloned buffer
1637  *	does not requires the data to be copied.
1638  */
1639 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1640 {
1641 	return !skb_header_cloned(skb) &&
1642 	       skb_headroom(skb) + len <= skb->hdr_len;
1643 }
1644 
1645 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1646 			    int cloned)
1647 {
1648 	int delta = 0;
1649 
1650 	if (headroom < NET_SKB_PAD)
1651 		headroom = NET_SKB_PAD;
1652 	if (headroom > skb_headroom(skb))
1653 		delta = headroom - skb_headroom(skb);
1654 
1655 	if (delta || cloned)
1656 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1657 					GFP_ATOMIC);
1658 	return 0;
1659 }
1660 
1661 /**
1662  *	skb_cow - copy header of skb when it is required
1663  *	@skb: buffer to cow
1664  *	@headroom: needed headroom
1665  *
1666  *	If the skb passed lacks sufficient headroom or its data part
1667  *	is shared, data is reallocated. If reallocation fails, an error
1668  *	is returned and original skb is not changed.
1669  *
1670  *	The result is skb with writable area skb->head...skb->tail
1671  *	and at least @headroom of space at head.
1672  */
1673 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1674 {
1675 	return __skb_cow(skb, headroom, skb_cloned(skb));
1676 }
1677 
1678 /**
1679  *	skb_cow_head - skb_cow but only making the head writable
1680  *	@skb: buffer to cow
1681  *	@headroom: needed headroom
1682  *
1683  *	This function is identical to skb_cow except that we replace the
1684  *	skb_cloned check by skb_header_cloned.  It should be used when
1685  *	you only need to push on some header and do not need to modify
1686  *	the data.
1687  */
1688 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1689 {
1690 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1691 }
1692 
1693 /**
1694  *	skb_padto	- pad an skbuff up to a minimal size
1695  *	@skb: buffer to pad
1696  *	@len: minimal length
1697  *
1698  *	Pads up a buffer to ensure the trailing bytes exist and are
1699  *	blanked. If the buffer already contains sufficient data it
1700  *	is untouched. Otherwise it is extended. Returns zero on
1701  *	success. The skb is freed on error.
1702  */
1703 
1704 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1705 {
1706 	unsigned int size = skb->len;
1707 	if (likely(size >= len))
1708 		return 0;
1709 	return skb_pad(skb, len - size);
1710 }
1711 
1712 static inline int skb_add_data(struct sk_buff *skb,
1713 			       char __user *from, int copy)
1714 {
1715 	const int off = skb->len;
1716 
1717 	if (skb->ip_summed == CHECKSUM_NONE) {
1718 		int err = 0;
1719 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1720 							    copy, 0, &err);
1721 		if (!err) {
1722 			skb->csum = csum_block_add(skb->csum, csum, off);
1723 			return 0;
1724 		}
1725 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1726 		return 0;
1727 
1728 	__skb_trim(skb, off);
1729 	return -EFAULT;
1730 }
1731 
1732 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1733 				   struct page *page, int off)
1734 {
1735 	if (i) {
1736 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1737 
1738 		return page == frag->page &&
1739 		       off == frag->page_offset + frag->size;
1740 	}
1741 	return 0;
1742 }
1743 
1744 static inline int __skb_linearize(struct sk_buff *skb)
1745 {
1746 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1747 }
1748 
1749 /**
1750  *	skb_linearize - convert paged skb to linear one
1751  *	@skb: buffer to linarize
1752  *
1753  *	If there is no free memory -ENOMEM is returned, otherwise zero
1754  *	is returned and the old skb data released.
1755  */
1756 static inline int skb_linearize(struct sk_buff *skb)
1757 {
1758 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1759 }
1760 
1761 /**
1762  *	skb_linearize_cow - make sure skb is linear and writable
1763  *	@skb: buffer to process
1764  *
1765  *	If there is no free memory -ENOMEM is returned, otherwise zero
1766  *	is returned and the old skb data released.
1767  */
1768 static inline int skb_linearize_cow(struct sk_buff *skb)
1769 {
1770 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1771 	       __skb_linearize(skb) : 0;
1772 }
1773 
1774 /**
1775  *	skb_postpull_rcsum - update checksum for received skb after pull
1776  *	@skb: buffer to update
1777  *	@start: start of data before pull
1778  *	@len: length of data pulled
1779  *
1780  *	After doing a pull on a received packet, you need to call this to
1781  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1782  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1783  */
1784 
1785 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1786 				      const void *start, unsigned int len)
1787 {
1788 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1789 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1790 }
1791 
1792 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1793 
1794 /**
1795  *	pskb_trim_rcsum - trim received skb and update checksum
1796  *	@skb: buffer to trim
1797  *	@len: new length
1798  *
1799  *	This is exactly the same as pskb_trim except that it ensures the
1800  *	checksum of received packets are still valid after the operation.
1801  */
1802 
1803 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1804 {
1805 	if (likely(len >= skb->len))
1806 		return 0;
1807 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1808 		skb->ip_summed = CHECKSUM_NONE;
1809 	return __pskb_trim(skb, len);
1810 }
1811 
1812 #define skb_queue_walk(queue, skb) \
1813 		for (skb = (queue)->next;					\
1814 		     skb != (struct sk_buff *)(queue);				\
1815 		     skb = skb->next)
1816 
1817 #define skb_queue_walk_safe(queue, skb, tmp)					\
1818 		for (skb = (queue)->next, tmp = skb->next;			\
1819 		     skb != (struct sk_buff *)(queue);				\
1820 		     skb = tmp, tmp = skb->next)
1821 
1822 #define skb_queue_walk_from(queue, skb)						\
1823 		for (; skb != (struct sk_buff *)(queue);			\
1824 		     skb = skb->next)
1825 
1826 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1827 		for (tmp = skb->next;						\
1828 		     skb != (struct sk_buff *)(queue);				\
1829 		     skb = tmp, tmp = skb->next)
1830 
1831 #define skb_queue_reverse_walk(queue, skb) \
1832 		for (skb = (queue)->prev;					\
1833 		     skb != (struct sk_buff *)(queue);				\
1834 		     skb = skb->prev)
1835 
1836 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
1837 		for (skb = (queue)->prev, tmp = skb->prev;			\
1838 		     skb != (struct sk_buff *)(queue);				\
1839 		     skb = tmp, tmp = skb->prev)
1840 
1841 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
1842 		for (tmp = skb->prev;						\
1843 		     skb != (struct sk_buff *)(queue);				\
1844 		     skb = tmp, tmp = skb->prev)
1845 
1846 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1847 {
1848 	return skb_shinfo(skb)->frag_list != NULL;
1849 }
1850 
1851 static inline void skb_frag_list_init(struct sk_buff *skb)
1852 {
1853 	skb_shinfo(skb)->frag_list = NULL;
1854 }
1855 
1856 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1857 {
1858 	frag->next = skb_shinfo(skb)->frag_list;
1859 	skb_shinfo(skb)->frag_list = frag;
1860 }
1861 
1862 #define skb_walk_frags(skb, iter)	\
1863 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1864 
1865 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1866 					   int *peeked, int *err);
1867 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1868 					 int noblock, int *err);
1869 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1870 				     struct poll_table_struct *wait);
1871 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1872 					       int offset, struct iovec *to,
1873 					       int size);
1874 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1875 							int hlen,
1876 							struct iovec *iov);
1877 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1878 						    int offset,
1879 						    const struct iovec *from,
1880 						    int from_offset,
1881 						    int len);
1882 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1883 						     int offset,
1884 						     const struct iovec *to,
1885 						     int to_offset,
1886 						     int size);
1887 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1888 extern void	       skb_free_datagram_locked(struct sock *sk,
1889 						struct sk_buff *skb);
1890 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1891 					 unsigned int flags);
1892 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1893 				    int len, __wsum csum);
1894 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1895 				     void *to, int len);
1896 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1897 				      const void *from, int len);
1898 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1899 					      int offset, u8 *to, int len,
1900 					      __wsum csum);
1901 extern int             skb_splice_bits(struct sk_buff *skb,
1902 						unsigned int offset,
1903 						struct pipe_inode_info *pipe,
1904 						unsigned int len,
1905 						unsigned int flags);
1906 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1907 extern void	       skb_split(struct sk_buff *skb,
1908 				 struct sk_buff *skb1, const u32 len);
1909 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1910 				 int shiftlen);
1911 
1912 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
1913 
1914 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1915 				       int len, void *buffer)
1916 {
1917 	int hlen = skb_headlen(skb);
1918 
1919 	if (hlen - offset >= len)
1920 		return skb->data + offset;
1921 
1922 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1923 		return NULL;
1924 
1925 	return buffer;
1926 }
1927 
1928 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1929 					     void *to,
1930 					     const unsigned int len)
1931 {
1932 	memcpy(to, skb->data, len);
1933 }
1934 
1935 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1936 						    const int offset, void *to,
1937 						    const unsigned int len)
1938 {
1939 	memcpy(to, skb->data + offset, len);
1940 }
1941 
1942 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1943 					   const void *from,
1944 					   const unsigned int len)
1945 {
1946 	memcpy(skb->data, from, len);
1947 }
1948 
1949 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1950 						  const int offset,
1951 						  const void *from,
1952 						  const unsigned int len)
1953 {
1954 	memcpy(skb->data + offset, from, len);
1955 }
1956 
1957 extern void skb_init(void);
1958 
1959 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1960 {
1961 	return skb->tstamp;
1962 }
1963 
1964 /**
1965  *	skb_get_timestamp - get timestamp from a skb
1966  *	@skb: skb to get stamp from
1967  *	@stamp: pointer to struct timeval to store stamp in
1968  *
1969  *	Timestamps are stored in the skb as offsets to a base timestamp.
1970  *	This function converts the offset back to a struct timeval and stores
1971  *	it in stamp.
1972  */
1973 static inline void skb_get_timestamp(const struct sk_buff *skb,
1974 				     struct timeval *stamp)
1975 {
1976 	*stamp = ktime_to_timeval(skb->tstamp);
1977 }
1978 
1979 static inline void skb_get_timestampns(const struct sk_buff *skb,
1980 				       struct timespec *stamp)
1981 {
1982 	*stamp = ktime_to_timespec(skb->tstamp);
1983 }
1984 
1985 static inline void __net_timestamp(struct sk_buff *skb)
1986 {
1987 	skb->tstamp = ktime_get_real();
1988 }
1989 
1990 static inline ktime_t net_timedelta(ktime_t t)
1991 {
1992 	return ktime_sub(ktime_get_real(), t);
1993 }
1994 
1995 static inline ktime_t net_invalid_timestamp(void)
1996 {
1997 	return ktime_set(0, 0);
1998 }
1999 
2000 extern void skb_timestamping_init(void);
2001 
2002 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2003 
2004 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2005 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2006 
2007 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2008 
2009 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2010 {
2011 }
2012 
2013 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2014 {
2015 	return false;
2016 }
2017 
2018 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2019 
2020 /**
2021  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2022  *
2023  * @skb: clone of the the original outgoing packet
2024  * @hwtstamps: hardware time stamps
2025  *
2026  */
2027 void skb_complete_tx_timestamp(struct sk_buff *skb,
2028 			       struct skb_shared_hwtstamps *hwtstamps);
2029 
2030 /**
2031  * skb_tstamp_tx - queue clone of skb with send time stamps
2032  * @orig_skb:	the original outgoing packet
2033  * @hwtstamps:	hardware time stamps, may be NULL if not available
2034  *
2035  * If the skb has a socket associated, then this function clones the
2036  * skb (thus sharing the actual data and optional structures), stores
2037  * the optional hardware time stamping information (if non NULL) or
2038  * generates a software time stamp (otherwise), then queues the clone
2039  * to the error queue of the socket.  Errors are silently ignored.
2040  */
2041 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2042 			struct skb_shared_hwtstamps *hwtstamps);
2043 
2044 static inline void sw_tx_timestamp(struct sk_buff *skb)
2045 {
2046 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2047 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2048 		skb_tstamp_tx(skb, NULL);
2049 }
2050 
2051 /**
2052  * skb_tx_timestamp() - Driver hook for transmit timestamping
2053  *
2054  * Ethernet MAC Drivers should call this function in their hard_xmit()
2055  * function immediately before giving the sk_buff to the MAC hardware.
2056  *
2057  * @skb: A socket buffer.
2058  */
2059 static inline void skb_tx_timestamp(struct sk_buff *skb)
2060 {
2061 	skb_clone_tx_timestamp(skb);
2062 	sw_tx_timestamp(skb);
2063 }
2064 
2065 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2066 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2067 
2068 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2069 {
2070 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2071 }
2072 
2073 /**
2074  *	skb_checksum_complete - Calculate checksum of an entire packet
2075  *	@skb: packet to process
2076  *
2077  *	This function calculates the checksum over the entire packet plus
2078  *	the value of skb->csum.  The latter can be used to supply the
2079  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2080  *	checksum.
2081  *
2082  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2083  *	this function can be used to verify that checksum on received
2084  *	packets.  In that case the function should return zero if the
2085  *	checksum is correct.  In particular, this function will return zero
2086  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2087  *	hardware has already verified the correctness of the checksum.
2088  */
2089 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2090 {
2091 	return skb_csum_unnecessary(skb) ?
2092 	       0 : __skb_checksum_complete(skb);
2093 }
2094 
2095 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2096 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2097 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2098 {
2099 	if (nfct && atomic_dec_and_test(&nfct->use))
2100 		nf_conntrack_destroy(nfct);
2101 }
2102 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2103 {
2104 	if (nfct)
2105 		atomic_inc(&nfct->use);
2106 }
2107 #endif
2108 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2109 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2110 {
2111 	if (skb)
2112 		atomic_inc(&skb->users);
2113 }
2114 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2115 {
2116 	if (skb)
2117 		kfree_skb(skb);
2118 }
2119 #endif
2120 #ifdef CONFIG_BRIDGE_NETFILTER
2121 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2122 {
2123 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2124 		kfree(nf_bridge);
2125 }
2126 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2127 {
2128 	if (nf_bridge)
2129 		atomic_inc(&nf_bridge->use);
2130 }
2131 #endif /* CONFIG_BRIDGE_NETFILTER */
2132 static inline void nf_reset(struct sk_buff *skb)
2133 {
2134 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2135 	nf_conntrack_put(skb->nfct);
2136 	skb->nfct = NULL;
2137 #endif
2138 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2139 	nf_conntrack_put_reasm(skb->nfct_reasm);
2140 	skb->nfct_reasm = NULL;
2141 #endif
2142 #ifdef CONFIG_BRIDGE_NETFILTER
2143 	nf_bridge_put(skb->nf_bridge);
2144 	skb->nf_bridge = NULL;
2145 #endif
2146 }
2147 
2148 /* Note: This doesn't put any conntrack and bridge info in dst. */
2149 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2150 {
2151 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2152 	dst->nfct = src->nfct;
2153 	nf_conntrack_get(src->nfct);
2154 	dst->nfctinfo = src->nfctinfo;
2155 #endif
2156 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2157 	dst->nfct_reasm = src->nfct_reasm;
2158 	nf_conntrack_get_reasm(src->nfct_reasm);
2159 #endif
2160 #ifdef CONFIG_BRIDGE_NETFILTER
2161 	dst->nf_bridge  = src->nf_bridge;
2162 	nf_bridge_get(src->nf_bridge);
2163 #endif
2164 }
2165 
2166 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2167 {
2168 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2169 	nf_conntrack_put(dst->nfct);
2170 #endif
2171 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2172 	nf_conntrack_put_reasm(dst->nfct_reasm);
2173 #endif
2174 #ifdef CONFIG_BRIDGE_NETFILTER
2175 	nf_bridge_put(dst->nf_bridge);
2176 #endif
2177 	__nf_copy(dst, src);
2178 }
2179 
2180 #ifdef CONFIG_NETWORK_SECMARK
2181 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2182 {
2183 	to->secmark = from->secmark;
2184 }
2185 
2186 static inline void skb_init_secmark(struct sk_buff *skb)
2187 {
2188 	skb->secmark = 0;
2189 }
2190 #else
2191 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2192 { }
2193 
2194 static inline void skb_init_secmark(struct sk_buff *skb)
2195 { }
2196 #endif
2197 
2198 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2199 {
2200 	skb->queue_mapping = queue_mapping;
2201 }
2202 
2203 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2204 {
2205 	return skb->queue_mapping;
2206 }
2207 
2208 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2209 {
2210 	to->queue_mapping = from->queue_mapping;
2211 }
2212 
2213 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2214 {
2215 	skb->queue_mapping = rx_queue + 1;
2216 }
2217 
2218 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2219 {
2220 	return skb->queue_mapping - 1;
2221 }
2222 
2223 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2224 {
2225 	return skb->queue_mapping != 0;
2226 }
2227 
2228 extern u16 __skb_tx_hash(const struct net_device *dev,
2229 			 const struct sk_buff *skb,
2230 			 unsigned int num_tx_queues);
2231 
2232 #ifdef CONFIG_XFRM
2233 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2234 {
2235 	return skb->sp;
2236 }
2237 #else
2238 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2239 {
2240 	return NULL;
2241 }
2242 #endif
2243 
2244 static inline int skb_is_gso(const struct sk_buff *skb)
2245 {
2246 	return skb_shinfo(skb)->gso_size;
2247 }
2248 
2249 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2250 {
2251 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2252 }
2253 
2254 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2255 
2256 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2257 {
2258 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2259 	 * wanted then gso_type will be set. */
2260 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2261 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2262 	    unlikely(shinfo->gso_type == 0)) {
2263 		__skb_warn_lro_forwarding(skb);
2264 		return true;
2265 	}
2266 	return false;
2267 }
2268 
2269 static inline void skb_forward_csum(struct sk_buff *skb)
2270 {
2271 	/* Unfortunately we don't support this one.  Any brave souls? */
2272 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2273 		skb->ip_summed = CHECKSUM_NONE;
2274 }
2275 
2276 /**
2277  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2278  * @skb: skb to check
2279  *
2280  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2281  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2282  * use this helper, to document places where we make this assertion.
2283  */
2284 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2285 {
2286 #ifdef DEBUG
2287 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2288 #endif
2289 }
2290 
2291 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2292 
2293 #endif	/* __KERNEL__ */
2294 #endif	/* _LINUX_SKBUFF_H */
2295