xref: /linux-6.15/include/linux/skbuff.h (revision e8fa600e)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41 
42 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
43 				 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X)	\
45 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) +						\
53 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
54 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 
56 /* A. Checksumming of received packets by device.
57  *
58  *	NONE: device failed to checksum this packet.
59  *		skb->csum is undefined.
60  *
61  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
62  *		skb->csum is undefined.
63  *	      It is bad option, but, unfortunately, many of vendors do this.
64  *	      Apparently with secret goal to sell you new device, when you
65  *	      will add new protocol to your host. F.e. IPv6. 8)
66  *
67  *	COMPLETE: the most generic way. Device supplied checksum of _all_
68  *	    the packet as seen by netif_rx in skb->csum.
69  *	    NOTE: Even if device supports only some protocols, but
70  *	    is able to produce some skb->csum, it MUST use COMPLETE,
71  *	    not UNNECESSARY.
72  *
73  *	PARTIAL: identical to the case for output below.  This may occur
74  *	    on a packet received directly from another Linux OS, e.g.,
75  *	    a virtualised Linux kernel on the same host.  The packet can
76  *	    be treated in the same way as UNNECESSARY except that on
77  *	    output (i.e., forwarding) the checksum must be filled in
78  *	    by the OS or the hardware.
79  *
80  * B. Checksumming on output.
81  *
82  *	NONE: skb is checksummed by protocol or csum is not required.
83  *
84  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
85  *	from skb->csum_start to the end and to record the checksum
86  *	at skb->csum_start + skb->csum_offset.
87  *
88  *	Device must show its capabilities in dev->features, set
89  *	at device setup time.
90  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
91  *			  everything.
92  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93  *			  TCP/UDP over IPv4. Sigh. Vendors like this
94  *			  way by an unknown reason. Though, see comment above
95  *			  about CHECKSUM_UNNECESSARY. 8)
96  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97  *
98  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99  *	that do not want net to perform the checksum calculation should use
100  *	this flag in their outgoing skbs.
101  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
102  *			  offload. Correspondingly, the FCoE protocol driver
103  *			  stack should use CHECKSUM_UNNECESSARY.
104  *
105  *	Any questions? No questions, good. 		--ANK
106  */
107 
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111 
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 	atomic_t use;
115 };
116 #endif
117 
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 	atomic_t		use;
121 	unsigned int		mask;
122 	struct net_device	*physindev;
123 	struct net_device	*physoutdev;
124 	unsigned long		data[32 / sizeof(unsigned long)];
125 };
126 #endif
127 
128 struct sk_buff_head {
129 	/* These two members must be first. */
130 	struct sk_buff	*next;
131 	struct sk_buff	*prev;
132 
133 	__u32		qlen;
134 	spinlock_t	lock;
135 };
136 
137 struct sk_buff;
138 
139 /* To allow 64K frame to be packed as single skb without frag_list we
140  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141  * buffers which do not start on a page boundary.
142  *
143  * Since GRO uses frags we allocate at least 16 regardless of page
144  * size.
145  */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151 
152 typedef struct skb_frag_struct skb_frag_t;
153 
154 struct skb_frag_struct {
155 	struct {
156 		struct page *p;
157 	} page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 	__u32 page_offset;
160 	__u32 size;
161 #else
162 	__u16 page_offset;
163 	__u16 size;
164 #endif
165 };
166 
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 	return frag->size;
170 }
171 
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 	frag->size = size;
175 }
176 
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 	frag->size += delta;
180 }
181 
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 	frag->size -= delta;
185 }
186 
187 #define HAVE_HW_TIME_STAMP
188 
189 /**
190  * struct skb_shared_hwtstamps - hardware time stamps
191  * @hwtstamp:	hardware time stamp transformed into duration
192  *		since arbitrary point in time
193  * @syststamp:	hwtstamp transformed to system time base
194  *
195  * Software time stamps generated by ktime_get_real() are stored in
196  * skb->tstamp. The relation between the different kinds of time
197  * stamps is as follows:
198  *
199  * syststamp and tstamp can be compared against each other in
200  * arbitrary combinations.  The accuracy of a
201  * syststamp/tstamp/"syststamp from other device" comparison is
202  * limited by the accuracy of the transformation into system time
203  * base. This depends on the device driver and its underlying
204  * hardware.
205  *
206  * hwtstamps can only be compared against other hwtstamps from
207  * the same device.
208  *
209  * This structure is attached to packets as part of the
210  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211  */
212 struct skb_shared_hwtstamps {
213 	ktime_t	hwtstamp;
214 	ktime_t	syststamp;
215 };
216 
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 	/* generate hardware time stamp */
220 	SKBTX_HW_TSTAMP = 1 << 0,
221 
222 	/* generate software time stamp */
223 	SKBTX_SW_TSTAMP = 1 << 1,
224 
225 	/* device driver is going to provide hardware time stamp */
226 	SKBTX_IN_PROGRESS = 1 << 2,
227 
228 	/* device driver supports TX zero-copy buffers */
229 	SKBTX_DEV_ZEROCOPY = 1 << 3,
230 
231 	/* generate wifi status information (where possible) */
232 	SKBTX_WIFI_STATUS = 1 << 4,
233 };
234 
235 /*
236  * The callback notifies userspace to release buffers when skb DMA is done in
237  * lower device, the skb last reference should be 0 when calling this.
238  * The ctx field is used to track device context.
239  * The desc field is used to track userspace buffer index.
240  */
241 struct ubuf_info {
242 	void (*callback)(struct ubuf_info *);
243 	void *ctx;
244 	unsigned long desc;
245 };
246 
247 /* This data is invariant across clones and lives at
248  * the end of the header data, ie. at skb->end.
249  */
250 struct skb_shared_info {
251 	unsigned char	nr_frags;
252 	__u8		tx_flags;
253 	unsigned short	gso_size;
254 	/* Warning: this field is not always filled in (UFO)! */
255 	unsigned short	gso_segs;
256 	unsigned short  gso_type;
257 	struct sk_buff	*frag_list;
258 	struct skb_shared_hwtstamps hwtstamps;
259 	__be32          ip6_frag_id;
260 
261 	/*
262 	 * Warning : all fields before dataref are cleared in __alloc_skb()
263 	 */
264 	atomic_t	dataref;
265 
266 	/* Intermediate layers must ensure that destructor_arg
267 	 * remains valid until skb destructor */
268 	void *		destructor_arg;
269 
270 	/* must be last field, see pskb_expand_head() */
271 	skb_frag_t	frags[MAX_SKB_FRAGS];
272 };
273 
274 /* We divide dataref into two halves.  The higher 16 bits hold references
275  * to the payload part of skb->data.  The lower 16 bits hold references to
276  * the entire skb->data.  A clone of a headerless skb holds the length of
277  * the header in skb->hdr_len.
278  *
279  * All users must obey the rule that the skb->data reference count must be
280  * greater than or equal to the payload reference count.
281  *
282  * Holding a reference to the payload part means that the user does not
283  * care about modifications to the header part of skb->data.
284  */
285 #define SKB_DATAREF_SHIFT 16
286 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
287 
288 
289 enum {
290 	SKB_FCLONE_UNAVAILABLE,
291 	SKB_FCLONE_ORIG,
292 	SKB_FCLONE_CLONE,
293 };
294 
295 enum {
296 	SKB_GSO_TCPV4 = 1 << 0,
297 	SKB_GSO_UDP = 1 << 1,
298 
299 	/* This indicates the skb is from an untrusted source. */
300 	SKB_GSO_DODGY = 1 << 2,
301 
302 	/* This indicates the tcp segment has CWR set. */
303 	SKB_GSO_TCP_ECN = 1 << 3,
304 
305 	SKB_GSO_TCPV6 = 1 << 4,
306 
307 	SKB_GSO_FCOE = 1 << 5,
308 };
309 
310 #if BITS_PER_LONG > 32
311 #define NET_SKBUFF_DATA_USES_OFFSET 1
312 #endif
313 
314 #ifdef NET_SKBUFF_DATA_USES_OFFSET
315 typedef unsigned int sk_buff_data_t;
316 #else
317 typedef unsigned char *sk_buff_data_t;
318 #endif
319 
320 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
321     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
322 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
323 #endif
324 
325 /**
326  *	struct sk_buff - socket buffer
327  *	@next: Next buffer in list
328  *	@prev: Previous buffer in list
329  *	@tstamp: Time we arrived
330  *	@sk: Socket we are owned by
331  *	@dev: Device we arrived on/are leaving by
332  *	@cb: Control buffer. Free for use by every layer. Put private vars here
333  *	@_skb_refdst: destination entry (with norefcount bit)
334  *	@sp: the security path, used for xfrm
335  *	@len: Length of actual data
336  *	@data_len: Data length
337  *	@mac_len: Length of link layer header
338  *	@hdr_len: writable header length of cloned skb
339  *	@csum: Checksum (must include start/offset pair)
340  *	@csum_start: Offset from skb->head where checksumming should start
341  *	@csum_offset: Offset from csum_start where checksum should be stored
342  *	@priority: Packet queueing priority
343  *	@local_df: allow local fragmentation
344  *	@cloned: Head may be cloned (check refcnt to be sure)
345  *	@ip_summed: Driver fed us an IP checksum
346  *	@nohdr: Payload reference only, must not modify header
347  *	@nfctinfo: Relationship of this skb to the connection
348  *	@pkt_type: Packet class
349  *	@fclone: skbuff clone status
350  *	@ipvs_property: skbuff is owned by ipvs
351  *	@peeked: this packet has been seen already, so stats have been
352  *		done for it, don't do them again
353  *	@nf_trace: netfilter packet trace flag
354  *	@protocol: Packet protocol from driver
355  *	@destructor: Destruct function
356  *	@nfct: Associated connection, if any
357  *	@nfct_reasm: netfilter conntrack re-assembly pointer
358  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
359  *	@skb_iif: ifindex of device we arrived on
360  *	@tc_index: Traffic control index
361  *	@tc_verd: traffic control verdict
362  *	@rxhash: the packet hash computed on receive
363  *	@queue_mapping: Queue mapping for multiqueue devices
364  *	@ndisc_nodetype: router type (from link layer)
365  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
366  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
367  *		ports.
368  *	@wifi_acked_valid: wifi_acked was set
369  *	@wifi_acked: whether frame was acked on wifi or not
370  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
371  *	@dma_cookie: a cookie to one of several possible DMA operations
372  *		done by skb DMA functions
373  *	@secmark: security marking
374  *	@mark: Generic packet mark
375  *	@dropcount: total number of sk_receive_queue overflows
376  *	@vlan_tci: vlan tag control information
377  *	@transport_header: Transport layer header
378  *	@network_header: Network layer header
379  *	@mac_header: Link layer header
380  *	@tail: Tail pointer
381  *	@end: End pointer
382  *	@head: Head of buffer
383  *	@data: Data head pointer
384  *	@truesize: Buffer size
385  *	@users: User count - see {datagram,tcp}.c
386  */
387 
388 struct sk_buff {
389 	/* These two members must be first. */
390 	struct sk_buff		*next;
391 	struct sk_buff		*prev;
392 
393 	ktime_t			tstamp;
394 
395 	struct sock		*sk;
396 	struct net_device	*dev;
397 
398 	/*
399 	 * This is the control buffer. It is free to use for every
400 	 * layer. Please put your private variables there. If you
401 	 * want to keep them across layers you have to do a skb_clone()
402 	 * first. This is owned by whoever has the skb queued ATM.
403 	 */
404 	char			cb[48] __aligned(8);
405 
406 	unsigned long		_skb_refdst;
407 #ifdef CONFIG_XFRM
408 	struct	sec_path	*sp;
409 #endif
410 	unsigned int		len,
411 				data_len;
412 	__u16			mac_len,
413 				hdr_len;
414 	union {
415 		__wsum		csum;
416 		struct {
417 			__u16	csum_start;
418 			__u16	csum_offset;
419 		};
420 	};
421 	__u32			priority;
422 	kmemcheck_bitfield_begin(flags1);
423 	__u8			local_df:1,
424 				cloned:1,
425 				ip_summed:2,
426 				nohdr:1,
427 				nfctinfo:3;
428 	__u8			pkt_type:3,
429 				fclone:2,
430 				ipvs_property:1,
431 				peeked:1,
432 				nf_trace:1;
433 	kmemcheck_bitfield_end(flags1);
434 	__be16			protocol;
435 
436 	void			(*destructor)(struct sk_buff *skb);
437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
438 	struct nf_conntrack	*nfct;
439 #endif
440 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
441 	struct sk_buff		*nfct_reasm;
442 #endif
443 #ifdef CONFIG_BRIDGE_NETFILTER
444 	struct nf_bridge_info	*nf_bridge;
445 #endif
446 
447 	int			skb_iif;
448 
449 	__u32			rxhash;
450 
451 	__u16			vlan_tci;
452 
453 #ifdef CONFIG_NET_SCHED
454 	__u16			tc_index;	/* traffic control index */
455 #ifdef CONFIG_NET_CLS_ACT
456 	__u16			tc_verd;	/* traffic control verdict */
457 #endif
458 #endif
459 
460 	__u16			queue_mapping;
461 	kmemcheck_bitfield_begin(flags2);
462 #ifdef CONFIG_IPV6_NDISC_NODETYPE
463 	__u8			ndisc_nodetype:2;
464 #endif
465 	__u8			pfmemalloc:1;
466 	__u8			ooo_okay:1;
467 	__u8			l4_rxhash:1;
468 	__u8			wifi_acked_valid:1;
469 	__u8			wifi_acked:1;
470 	__u8			no_fcs:1;
471 	__u8			head_frag:1;
472 	/* 8/10 bit hole (depending on ndisc_nodetype presence) */
473 	kmemcheck_bitfield_end(flags2);
474 
475 #ifdef CONFIG_NET_DMA
476 	dma_cookie_t		dma_cookie;
477 #endif
478 #ifdef CONFIG_NETWORK_SECMARK
479 	__u32			secmark;
480 #endif
481 	union {
482 		__u32		mark;
483 		__u32		dropcount;
484 		__u32		avail_size;
485 	};
486 
487 	sk_buff_data_t		transport_header;
488 	sk_buff_data_t		network_header;
489 	sk_buff_data_t		mac_header;
490 	/* These elements must be at the end, see alloc_skb() for details.  */
491 	sk_buff_data_t		tail;
492 	sk_buff_data_t		end;
493 	unsigned char		*head,
494 				*data;
495 	unsigned int		truesize;
496 	atomic_t		users;
497 };
498 
499 #ifdef __KERNEL__
500 /*
501  *	Handling routines are only of interest to the kernel
502  */
503 #include <linux/slab.h>
504 
505 
506 #define SKB_ALLOC_FCLONE	0x01
507 #define SKB_ALLOC_RX		0x02
508 
509 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
510 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
511 {
512 	return unlikely(skb->pfmemalloc);
513 }
514 
515 /*
516  * skb might have a dst pointer attached, refcounted or not.
517  * _skb_refdst low order bit is set if refcount was _not_ taken
518  */
519 #define SKB_DST_NOREF	1UL
520 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
521 
522 /**
523  * skb_dst - returns skb dst_entry
524  * @skb: buffer
525  *
526  * Returns skb dst_entry, regardless of reference taken or not.
527  */
528 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
529 {
530 	/* If refdst was not refcounted, check we still are in a
531 	 * rcu_read_lock section
532 	 */
533 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
534 		!rcu_read_lock_held() &&
535 		!rcu_read_lock_bh_held());
536 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
537 }
538 
539 /**
540  * skb_dst_set - sets skb dst
541  * @skb: buffer
542  * @dst: dst entry
543  *
544  * Sets skb dst, assuming a reference was taken on dst and should
545  * be released by skb_dst_drop()
546  */
547 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
548 {
549 	skb->_skb_refdst = (unsigned long)dst;
550 }
551 
552 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
553 
554 /**
555  * skb_dst_is_noref - Test if skb dst isn't refcounted
556  * @skb: buffer
557  */
558 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
559 {
560 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
561 }
562 
563 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
564 {
565 	return (struct rtable *)skb_dst(skb);
566 }
567 
568 extern void kfree_skb(struct sk_buff *skb);
569 extern void consume_skb(struct sk_buff *skb);
570 extern void	       __kfree_skb(struct sk_buff *skb);
571 extern struct kmem_cache *skbuff_head_cache;
572 
573 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
574 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
575 			     bool *fragstolen, int *delta_truesize);
576 
577 extern struct sk_buff *__alloc_skb(unsigned int size,
578 				   gfp_t priority, int flags, int node);
579 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
580 static inline struct sk_buff *alloc_skb(unsigned int size,
581 					gfp_t priority)
582 {
583 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
584 }
585 
586 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
587 					       gfp_t priority)
588 {
589 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
590 }
591 
592 extern void skb_recycle(struct sk_buff *skb);
593 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
594 
595 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
596 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
597 extern struct sk_buff *skb_clone(struct sk_buff *skb,
598 				 gfp_t priority);
599 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
600 				gfp_t priority);
601 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
602 				 int headroom, gfp_t gfp_mask);
603 
604 extern int	       pskb_expand_head(struct sk_buff *skb,
605 					int nhead, int ntail,
606 					gfp_t gfp_mask);
607 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
608 					    unsigned int headroom);
609 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
610 				       int newheadroom, int newtailroom,
611 				       gfp_t priority);
612 extern int	       skb_to_sgvec(struct sk_buff *skb,
613 				    struct scatterlist *sg, int offset,
614 				    int len);
615 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
616 				    struct sk_buff **trailer);
617 extern int	       skb_pad(struct sk_buff *skb, int pad);
618 #define dev_kfree_skb(a)	consume_skb(a)
619 
620 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
621 			int getfrag(void *from, char *to, int offset,
622 			int len,int odd, struct sk_buff *skb),
623 			void *from, int length);
624 
625 struct skb_seq_state {
626 	__u32		lower_offset;
627 	__u32		upper_offset;
628 	__u32		frag_idx;
629 	__u32		stepped_offset;
630 	struct sk_buff	*root_skb;
631 	struct sk_buff	*cur_skb;
632 	__u8		*frag_data;
633 };
634 
635 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
636 					   unsigned int from, unsigned int to,
637 					   struct skb_seq_state *st);
638 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
639 				   struct skb_seq_state *st);
640 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
641 
642 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
643 				    unsigned int to, struct ts_config *config,
644 				    struct ts_state *state);
645 
646 extern void __skb_get_rxhash(struct sk_buff *skb);
647 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
648 {
649 	if (!skb->rxhash)
650 		__skb_get_rxhash(skb);
651 
652 	return skb->rxhash;
653 }
654 
655 #ifdef NET_SKBUFF_DATA_USES_OFFSET
656 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
657 {
658 	return skb->head + skb->end;
659 }
660 
661 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
662 {
663 	return skb->end;
664 }
665 #else
666 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
667 {
668 	return skb->end;
669 }
670 
671 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
672 {
673 	return skb->end - skb->head;
674 }
675 #endif
676 
677 /* Internal */
678 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
679 
680 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
681 {
682 	return &skb_shinfo(skb)->hwtstamps;
683 }
684 
685 /**
686  *	skb_queue_empty - check if a queue is empty
687  *	@list: queue head
688  *
689  *	Returns true if the queue is empty, false otherwise.
690  */
691 static inline int skb_queue_empty(const struct sk_buff_head *list)
692 {
693 	return list->next == (struct sk_buff *)list;
694 }
695 
696 /**
697  *	skb_queue_is_last - check if skb is the last entry in the queue
698  *	@list: queue head
699  *	@skb: buffer
700  *
701  *	Returns true if @skb is the last buffer on the list.
702  */
703 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
704 				     const struct sk_buff *skb)
705 {
706 	return skb->next == (struct sk_buff *)list;
707 }
708 
709 /**
710  *	skb_queue_is_first - check if skb is the first entry in the queue
711  *	@list: queue head
712  *	@skb: buffer
713  *
714  *	Returns true if @skb is the first buffer on the list.
715  */
716 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
717 				      const struct sk_buff *skb)
718 {
719 	return skb->prev == (struct sk_buff *)list;
720 }
721 
722 /**
723  *	skb_queue_next - return the next packet in the queue
724  *	@list: queue head
725  *	@skb: current buffer
726  *
727  *	Return the next packet in @list after @skb.  It is only valid to
728  *	call this if skb_queue_is_last() evaluates to false.
729  */
730 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
731 					     const struct sk_buff *skb)
732 {
733 	/* This BUG_ON may seem severe, but if we just return then we
734 	 * are going to dereference garbage.
735 	 */
736 	BUG_ON(skb_queue_is_last(list, skb));
737 	return skb->next;
738 }
739 
740 /**
741  *	skb_queue_prev - return the prev packet in the queue
742  *	@list: queue head
743  *	@skb: current buffer
744  *
745  *	Return the prev packet in @list before @skb.  It is only valid to
746  *	call this if skb_queue_is_first() evaluates to false.
747  */
748 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
749 					     const struct sk_buff *skb)
750 {
751 	/* This BUG_ON may seem severe, but if we just return then we
752 	 * are going to dereference garbage.
753 	 */
754 	BUG_ON(skb_queue_is_first(list, skb));
755 	return skb->prev;
756 }
757 
758 /**
759  *	skb_get - reference buffer
760  *	@skb: buffer to reference
761  *
762  *	Makes another reference to a socket buffer and returns a pointer
763  *	to the buffer.
764  */
765 static inline struct sk_buff *skb_get(struct sk_buff *skb)
766 {
767 	atomic_inc(&skb->users);
768 	return skb;
769 }
770 
771 /*
772  * If users == 1, we are the only owner and are can avoid redundant
773  * atomic change.
774  */
775 
776 /**
777  *	skb_cloned - is the buffer a clone
778  *	@skb: buffer to check
779  *
780  *	Returns true if the buffer was generated with skb_clone() and is
781  *	one of multiple shared copies of the buffer. Cloned buffers are
782  *	shared data so must not be written to under normal circumstances.
783  */
784 static inline int skb_cloned(const struct sk_buff *skb)
785 {
786 	return skb->cloned &&
787 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
788 }
789 
790 /**
791  *	skb_header_cloned - is the header a clone
792  *	@skb: buffer to check
793  *
794  *	Returns true if modifying the header part of the buffer requires
795  *	the data to be copied.
796  */
797 static inline int skb_header_cloned(const struct sk_buff *skb)
798 {
799 	int dataref;
800 
801 	if (!skb->cloned)
802 		return 0;
803 
804 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
805 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
806 	return dataref != 1;
807 }
808 
809 /**
810  *	skb_header_release - release reference to header
811  *	@skb: buffer to operate on
812  *
813  *	Drop a reference to the header part of the buffer.  This is done
814  *	by acquiring a payload reference.  You must not read from the header
815  *	part of skb->data after this.
816  */
817 static inline void skb_header_release(struct sk_buff *skb)
818 {
819 	BUG_ON(skb->nohdr);
820 	skb->nohdr = 1;
821 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
822 }
823 
824 /**
825  *	skb_shared - is the buffer shared
826  *	@skb: buffer to check
827  *
828  *	Returns true if more than one person has a reference to this
829  *	buffer.
830  */
831 static inline int skb_shared(const struct sk_buff *skb)
832 {
833 	return atomic_read(&skb->users) != 1;
834 }
835 
836 /**
837  *	skb_share_check - check if buffer is shared and if so clone it
838  *	@skb: buffer to check
839  *	@pri: priority for memory allocation
840  *
841  *	If the buffer is shared the buffer is cloned and the old copy
842  *	drops a reference. A new clone with a single reference is returned.
843  *	If the buffer is not shared the original buffer is returned. When
844  *	being called from interrupt status or with spinlocks held pri must
845  *	be GFP_ATOMIC.
846  *
847  *	NULL is returned on a memory allocation failure.
848  */
849 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
850 					      gfp_t pri)
851 {
852 	might_sleep_if(pri & __GFP_WAIT);
853 	if (skb_shared(skb)) {
854 		struct sk_buff *nskb = skb_clone(skb, pri);
855 		kfree_skb(skb);
856 		skb = nskb;
857 	}
858 	return skb;
859 }
860 
861 /*
862  *	Copy shared buffers into a new sk_buff. We effectively do COW on
863  *	packets to handle cases where we have a local reader and forward
864  *	and a couple of other messy ones. The normal one is tcpdumping
865  *	a packet thats being forwarded.
866  */
867 
868 /**
869  *	skb_unshare - make a copy of a shared buffer
870  *	@skb: buffer to check
871  *	@pri: priority for memory allocation
872  *
873  *	If the socket buffer is a clone then this function creates a new
874  *	copy of the data, drops a reference count on the old copy and returns
875  *	the new copy with the reference count at 1. If the buffer is not a clone
876  *	the original buffer is returned. When called with a spinlock held or
877  *	from interrupt state @pri must be %GFP_ATOMIC
878  *
879  *	%NULL is returned on a memory allocation failure.
880  */
881 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
882 					  gfp_t pri)
883 {
884 	might_sleep_if(pri & __GFP_WAIT);
885 	if (skb_cloned(skb)) {
886 		struct sk_buff *nskb = skb_copy(skb, pri);
887 		kfree_skb(skb);	/* Free our shared copy */
888 		skb = nskb;
889 	}
890 	return skb;
891 }
892 
893 /**
894  *	skb_peek - peek at the head of an &sk_buff_head
895  *	@list_: list to peek at
896  *
897  *	Peek an &sk_buff. Unlike most other operations you _MUST_
898  *	be careful with this one. A peek leaves the buffer on the
899  *	list and someone else may run off with it. You must hold
900  *	the appropriate locks or have a private queue to do this.
901  *
902  *	Returns %NULL for an empty list or a pointer to the head element.
903  *	The reference count is not incremented and the reference is therefore
904  *	volatile. Use with caution.
905  */
906 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
907 {
908 	struct sk_buff *skb = list_->next;
909 
910 	if (skb == (struct sk_buff *)list_)
911 		skb = NULL;
912 	return skb;
913 }
914 
915 /**
916  *	skb_peek_next - peek skb following the given one from a queue
917  *	@skb: skb to start from
918  *	@list_: list to peek at
919  *
920  *	Returns %NULL when the end of the list is met or a pointer to the
921  *	next element. The reference count is not incremented and the
922  *	reference is therefore volatile. Use with caution.
923  */
924 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
925 		const struct sk_buff_head *list_)
926 {
927 	struct sk_buff *next = skb->next;
928 
929 	if (next == (struct sk_buff *)list_)
930 		next = NULL;
931 	return next;
932 }
933 
934 /**
935  *	skb_peek_tail - peek at the tail of an &sk_buff_head
936  *	@list_: list to peek at
937  *
938  *	Peek an &sk_buff. Unlike most other operations you _MUST_
939  *	be careful with this one. A peek leaves the buffer on the
940  *	list and someone else may run off with it. You must hold
941  *	the appropriate locks or have a private queue to do this.
942  *
943  *	Returns %NULL for an empty list or a pointer to the tail element.
944  *	The reference count is not incremented and the reference is therefore
945  *	volatile. Use with caution.
946  */
947 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
948 {
949 	struct sk_buff *skb = list_->prev;
950 
951 	if (skb == (struct sk_buff *)list_)
952 		skb = NULL;
953 	return skb;
954 
955 }
956 
957 /**
958  *	skb_queue_len	- get queue length
959  *	@list_: list to measure
960  *
961  *	Return the length of an &sk_buff queue.
962  */
963 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
964 {
965 	return list_->qlen;
966 }
967 
968 /**
969  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
970  *	@list: queue to initialize
971  *
972  *	This initializes only the list and queue length aspects of
973  *	an sk_buff_head object.  This allows to initialize the list
974  *	aspects of an sk_buff_head without reinitializing things like
975  *	the spinlock.  It can also be used for on-stack sk_buff_head
976  *	objects where the spinlock is known to not be used.
977  */
978 static inline void __skb_queue_head_init(struct sk_buff_head *list)
979 {
980 	list->prev = list->next = (struct sk_buff *)list;
981 	list->qlen = 0;
982 }
983 
984 /*
985  * This function creates a split out lock class for each invocation;
986  * this is needed for now since a whole lot of users of the skb-queue
987  * infrastructure in drivers have different locking usage (in hardirq)
988  * than the networking core (in softirq only). In the long run either the
989  * network layer or drivers should need annotation to consolidate the
990  * main types of usage into 3 classes.
991  */
992 static inline void skb_queue_head_init(struct sk_buff_head *list)
993 {
994 	spin_lock_init(&list->lock);
995 	__skb_queue_head_init(list);
996 }
997 
998 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
999 		struct lock_class_key *class)
1000 {
1001 	skb_queue_head_init(list);
1002 	lockdep_set_class(&list->lock, class);
1003 }
1004 
1005 /*
1006  *	Insert an sk_buff on a list.
1007  *
1008  *	The "__skb_xxxx()" functions are the non-atomic ones that
1009  *	can only be called with interrupts disabled.
1010  */
1011 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1012 static inline void __skb_insert(struct sk_buff *newsk,
1013 				struct sk_buff *prev, struct sk_buff *next,
1014 				struct sk_buff_head *list)
1015 {
1016 	newsk->next = next;
1017 	newsk->prev = prev;
1018 	next->prev  = prev->next = newsk;
1019 	list->qlen++;
1020 }
1021 
1022 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1023 				      struct sk_buff *prev,
1024 				      struct sk_buff *next)
1025 {
1026 	struct sk_buff *first = list->next;
1027 	struct sk_buff *last = list->prev;
1028 
1029 	first->prev = prev;
1030 	prev->next = first;
1031 
1032 	last->next = next;
1033 	next->prev = last;
1034 }
1035 
1036 /**
1037  *	skb_queue_splice - join two skb lists, this is designed for stacks
1038  *	@list: the new list to add
1039  *	@head: the place to add it in the first list
1040  */
1041 static inline void skb_queue_splice(const struct sk_buff_head *list,
1042 				    struct sk_buff_head *head)
1043 {
1044 	if (!skb_queue_empty(list)) {
1045 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1046 		head->qlen += list->qlen;
1047 	}
1048 }
1049 
1050 /**
1051  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1052  *	@list: the new list to add
1053  *	@head: the place to add it in the first list
1054  *
1055  *	The list at @list is reinitialised
1056  */
1057 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1058 					 struct sk_buff_head *head)
1059 {
1060 	if (!skb_queue_empty(list)) {
1061 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1062 		head->qlen += list->qlen;
1063 		__skb_queue_head_init(list);
1064 	}
1065 }
1066 
1067 /**
1068  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1069  *	@list: the new list to add
1070  *	@head: the place to add it in the first list
1071  */
1072 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1073 					 struct sk_buff_head *head)
1074 {
1075 	if (!skb_queue_empty(list)) {
1076 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1077 		head->qlen += list->qlen;
1078 	}
1079 }
1080 
1081 /**
1082  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1083  *	@list: the new list to add
1084  *	@head: the place to add it in the first list
1085  *
1086  *	Each of the lists is a queue.
1087  *	The list at @list is reinitialised
1088  */
1089 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1090 					      struct sk_buff_head *head)
1091 {
1092 	if (!skb_queue_empty(list)) {
1093 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1094 		head->qlen += list->qlen;
1095 		__skb_queue_head_init(list);
1096 	}
1097 }
1098 
1099 /**
1100  *	__skb_queue_after - queue a buffer at the list head
1101  *	@list: list to use
1102  *	@prev: place after this buffer
1103  *	@newsk: buffer to queue
1104  *
1105  *	Queue a buffer int the middle of a list. This function takes no locks
1106  *	and you must therefore hold required locks before calling it.
1107  *
1108  *	A buffer cannot be placed on two lists at the same time.
1109  */
1110 static inline void __skb_queue_after(struct sk_buff_head *list,
1111 				     struct sk_buff *prev,
1112 				     struct sk_buff *newsk)
1113 {
1114 	__skb_insert(newsk, prev, prev->next, list);
1115 }
1116 
1117 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1118 		       struct sk_buff_head *list);
1119 
1120 static inline void __skb_queue_before(struct sk_buff_head *list,
1121 				      struct sk_buff *next,
1122 				      struct sk_buff *newsk)
1123 {
1124 	__skb_insert(newsk, next->prev, next, list);
1125 }
1126 
1127 /**
1128  *	__skb_queue_head - queue a buffer at the list head
1129  *	@list: list to use
1130  *	@newsk: buffer to queue
1131  *
1132  *	Queue a buffer at the start of a list. This function takes no locks
1133  *	and you must therefore hold required locks before calling it.
1134  *
1135  *	A buffer cannot be placed on two lists at the same time.
1136  */
1137 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1138 static inline void __skb_queue_head(struct sk_buff_head *list,
1139 				    struct sk_buff *newsk)
1140 {
1141 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1142 }
1143 
1144 /**
1145  *	__skb_queue_tail - queue a buffer at the list tail
1146  *	@list: list to use
1147  *	@newsk: buffer to queue
1148  *
1149  *	Queue a buffer at the end of a list. This function takes no locks
1150  *	and you must therefore hold required locks before calling it.
1151  *
1152  *	A buffer cannot be placed on two lists at the same time.
1153  */
1154 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1155 static inline void __skb_queue_tail(struct sk_buff_head *list,
1156 				   struct sk_buff *newsk)
1157 {
1158 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1159 }
1160 
1161 /*
1162  * remove sk_buff from list. _Must_ be called atomically, and with
1163  * the list known..
1164  */
1165 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1166 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1167 {
1168 	struct sk_buff *next, *prev;
1169 
1170 	list->qlen--;
1171 	next	   = skb->next;
1172 	prev	   = skb->prev;
1173 	skb->next  = skb->prev = NULL;
1174 	next->prev = prev;
1175 	prev->next = next;
1176 }
1177 
1178 /**
1179  *	__skb_dequeue - remove from the head of the queue
1180  *	@list: list to dequeue from
1181  *
1182  *	Remove the head of the list. This function does not take any locks
1183  *	so must be used with appropriate locks held only. The head item is
1184  *	returned or %NULL if the list is empty.
1185  */
1186 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1187 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1188 {
1189 	struct sk_buff *skb = skb_peek(list);
1190 	if (skb)
1191 		__skb_unlink(skb, list);
1192 	return skb;
1193 }
1194 
1195 /**
1196  *	__skb_dequeue_tail - remove from the tail of the queue
1197  *	@list: list to dequeue from
1198  *
1199  *	Remove the tail of the list. This function does not take any locks
1200  *	so must be used with appropriate locks held only. The tail item is
1201  *	returned or %NULL if the list is empty.
1202  */
1203 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1204 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1205 {
1206 	struct sk_buff *skb = skb_peek_tail(list);
1207 	if (skb)
1208 		__skb_unlink(skb, list);
1209 	return skb;
1210 }
1211 
1212 
1213 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1214 {
1215 	return skb->data_len;
1216 }
1217 
1218 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1219 {
1220 	return skb->len - skb->data_len;
1221 }
1222 
1223 static inline int skb_pagelen(const struct sk_buff *skb)
1224 {
1225 	int i, len = 0;
1226 
1227 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1228 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1229 	return len + skb_headlen(skb);
1230 }
1231 
1232 /**
1233  * __skb_fill_page_desc - initialise a paged fragment in an skb
1234  * @skb: buffer containing fragment to be initialised
1235  * @i: paged fragment index to initialise
1236  * @page: the page to use for this fragment
1237  * @off: the offset to the data with @page
1238  * @size: the length of the data
1239  *
1240  * Initialises the @i'th fragment of @skb to point to &size bytes at
1241  * offset @off within @page.
1242  *
1243  * Does not take any additional reference on the fragment.
1244  */
1245 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1246 					struct page *page, int off, int size)
1247 {
1248 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1249 
1250 	/*
1251 	 * Propagate page->pfmemalloc to the skb if we can. The problem is
1252 	 * that not all callers have unique ownership of the page. If
1253 	 * pfmemalloc is set, we check the mapping as a mapping implies
1254 	 * page->index is set (index and pfmemalloc share space).
1255 	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1256 	 * do not lose pfmemalloc information as the pages would not be
1257 	 * allocated using __GFP_MEMALLOC.
1258 	 */
1259 	if (page->pfmemalloc && !page->mapping)
1260 		skb->pfmemalloc	= true;
1261 	frag->page.p		  = page;
1262 	frag->page_offset	  = off;
1263 	skb_frag_size_set(frag, size);
1264 }
1265 
1266 /**
1267  * skb_fill_page_desc - initialise a paged fragment in an skb
1268  * @skb: buffer containing fragment to be initialised
1269  * @i: paged fragment index to initialise
1270  * @page: the page to use for this fragment
1271  * @off: the offset to the data with @page
1272  * @size: the length of the data
1273  *
1274  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1275  * @skb to point to &size bytes at offset @off within @page. In
1276  * addition updates @skb such that @i is the last fragment.
1277  *
1278  * Does not take any additional reference on the fragment.
1279  */
1280 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1281 				      struct page *page, int off, int size)
1282 {
1283 	__skb_fill_page_desc(skb, i, page, off, size);
1284 	skb_shinfo(skb)->nr_frags = i + 1;
1285 }
1286 
1287 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1288 			    int off, int size, unsigned int truesize);
1289 
1290 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1291 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1292 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1293 
1294 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1295 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1296 {
1297 	return skb->head + skb->tail;
1298 }
1299 
1300 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1301 {
1302 	skb->tail = skb->data - skb->head;
1303 }
1304 
1305 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1306 {
1307 	skb_reset_tail_pointer(skb);
1308 	skb->tail += offset;
1309 }
1310 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1311 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1312 {
1313 	return skb->tail;
1314 }
1315 
1316 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1317 {
1318 	skb->tail = skb->data;
1319 }
1320 
1321 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1322 {
1323 	skb->tail = skb->data + offset;
1324 }
1325 
1326 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1327 
1328 /*
1329  *	Add data to an sk_buff
1330  */
1331 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1332 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1333 {
1334 	unsigned char *tmp = skb_tail_pointer(skb);
1335 	SKB_LINEAR_ASSERT(skb);
1336 	skb->tail += len;
1337 	skb->len  += len;
1338 	return tmp;
1339 }
1340 
1341 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1342 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1343 {
1344 	skb->data -= len;
1345 	skb->len  += len;
1346 	return skb->data;
1347 }
1348 
1349 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1350 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1351 {
1352 	skb->len -= len;
1353 	BUG_ON(skb->len < skb->data_len);
1354 	return skb->data += len;
1355 }
1356 
1357 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1358 {
1359 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1360 }
1361 
1362 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1363 
1364 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1365 {
1366 	if (len > skb_headlen(skb) &&
1367 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1368 		return NULL;
1369 	skb->len -= len;
1370 	return skb->data += len;
1371 }
1372 
1373 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1374 {
1375 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1376 }
1377 
1378 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1379 {
1380 	if (likely(len <= skb_headlen(skb)))
1381 		return 1;
1382 	if (unlikely(len > skb->len))
1383 		return 0;
1384 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1385 }
1386 
1387 /**
1388  *	skb_headroom - bytes at buffer head
1389  *	@skb: buffer to check
1390  *
1391  *	Return the number of bytes of free space at the head of an &sk_buff.
1392  */
1393 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1394 {
1395 	return skb->data - skb->head;
1396 }
1397 
1398 /**
1399  *	skb_tailroom - bytes at buffer end
1400  *	@skb: buffer to check
1401  *
1402  *	Return the number of bytes of free space at the tail of an sk_buff
1403  */
1404 static inline int skb_tailroom(const struct sk_buff *skb)
1405 {
1406 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1407 }
1408 
1409 /**
1410  *	skb_availroom - bytes at buffer end
1411  *	@skb: buffer to check
1412  *
1413  *	Return the number of bytes of free space at the tail of an sk_buff
1414  *	allocated by sk_stream_alloc()
1415  */
1416 static inline int skb_availroom(const struct sk_buff *skb)
1417 {
1418 	return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1419 }
1420 
1421 /**
1422  *	skb_reserve - adjust headroom
1423  *	@skb: buffer to alter
1424  *	@len: bytes to move
1425  *
1426  *	Increase the headroom of an empty &sk_buff by reducing the tail
1427  *	room. This is only allowed for an empty buffer.
1428  */
1429 static inline void skb_reserve(struct sk_buff *skb, int len)
1430 {
1431 	skb->data += len;
1432 	skb->tail += len;
1433 }
1434 
1435 static inline void skb_reset_mac_len(struct sk_buff *skb)
1436 {
1437 	skb->mac_len = skb->network_header - skb->mac_header;
1438 }
1439 
1440 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1441 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1442 {
1443 	return skb->head + skb->transport_header;
1444 }
1445 
1446 static inline void skb_reset_transport_header(struct sk_buff *skb)
1447 {
1448 	skb->transport_header = skb->data - skb->head;
1449 }
1450 
1451 static inline void skb_set_transport_header(struct sk_buff *skb,
1452 					    const int offset)
1453 {
1454 	skb_reset_transport_header(skb);
1455 	skb->transport_header += offset;
1456 }
1457 
1458 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1459 {
1460 	return skb->head + skb->network_header;
1461 }
1462 
1463 static inline void skb_reset_network_header(struct sk_buff *skb)
1464 {
1465 	skb->network_header = skb->data - skb->head;
1466 }
1467 
1468 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1469 {
1470 	skb_reset_network_header(skb);
1471 	skb->network_header += offset;
1472 }
1473 
1474 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1475 {
1476 	return skb->head + skb->mac_header;
1477 }
1478 
1479 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1480 {
1481 	return skb->mac_header != ~0U;
1482 }
1483 
1484 static inline void skb_reset_mac_header(struct sk_buff *skb)
1485 {
1486 	skb->mac_header = skb->data - skb->head;
1487 }
1488 
1489 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1490 {
1491 	skb_reset_mac_header(skb);
1492 	skb->mac_header += offset;
1493 }
1494 
1495 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1496 
1497 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1498 {
1499 	return skb->transport_header;
1500 }
1501 
1502 static inline void skb_reset_transport_header(struct sk_buff *skb)
1503 {
1504 	skb->transport_header = skb->data;
1505 }
1506 
1507 static inline void skb_set_transport_header(struct sk_buff *skb,
1508 					    const int offset)
1509 {
1510 	skb->transport_header = skb->data + offset;
1511 }
1512 
1513 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1514 {
1515 	return skb->network_header;
1516 }
1517 
1518 static inline void skb_reset_network_header(struct sk_buff *skb)
1519 {
1520 	skb->network_header = skb->data;
1521 }
1522 
1523 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1524 {
1525 	skb->network_header = skb->data + offset;
1526 }
1527 
1528 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1529 {
1530 	return skb->mac_header;
1531 }
1532 
1533 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1534 {
1535 	return skb->mac_header != NULL;
1536 }
1537 
1538 static inline void skb_reset_mac_header(struct sk_buff *skb)
1539 {
1540 	skb->mac_header = skb->data;
1541 }
1542 
1543 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1544 {
1545 	skb->mac_header = skb->data + offset;
1546 }
1547 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1548 
1549 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1550 {
1551 	if (skb_mac_header_was_set(skb)) {
1552 		const unsigned char *old_mac = skb_mac_header(skb);
1553 
1554 		skb_set_mac_header(skb, -skb->mac_len);
1555 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1556 	}
1557 }
1558 
1559 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1560 {
1561 	return skb->csum_start - skb_headroom(skb);
1562 }
1563 
1564 static inline int skb_transport_offset(const struct sk_buff *skb)
1565 {
1566 	return skb_transport_header(skb) - skb->data;
1567 }
1568 
1569 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1570 {
1571 	return skb->transport_header - skb->network_header;
1572 }
1573 
1574 static inline int skb_network_offset(const struct sk_buff *skb)
1575 {
1576 	return skb_network_header(skb) - skb->data;
1577 }
1578 
1579 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1580 {
1581 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1582 }
1583 
1584 /*
1585  * CPUs often take a performance hit when accessing unaligned memory
1586  * locations. The actual performance hit varies, it can be small if the
1587  * hardware handles it or large if we have to take an exception and fix it
1588  * in software.
1589  *
1590  * Since an ethernet header is 14 bytes network drivers often end up with
1591  * the IP header at an unaligned offset. The IP header can be aligned by
1592  * shifting the start of the packet by 2 bytes. Drivers should do this
1593  * with:
1594  *
1595  * skb_reserve(skb, NET_IP_ALIGN);
1596  *
1597  * The downside to this alignment of the IP header is that the DMA is now
1598  * unaligned. On some architectures the cost of an unaligned DMA is high
1599  * and this cost outweighs the gains made by aligning the IP header.
1600  *
1601  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1602  * to be overridden.
1603  */
1604 #ifndef NET_IP_ALIGN
1605 #define NET_IP_ALIGN	2
1606 #endif
1607 
1608 /*
1609  * The networking layer reserves some headroom in skb data (via
1610  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1611  * the header has to grow. In the default case, if the header has to grow
1612  * 32 bytes or less we avoid the reallocation.
1613  *
1614  * Unfortunately this headroom changes the DMA alignment of the resulting
1615  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1616  * on some architectures. An architecture can override this value,
1617  * perhaps setting it to a cacheline in size (since that will maintain
1618  * cacheline alignment of the DMA). It must be a power of 2.
1619  *
1620  * Various parts of the networking layer expect at least 32 bytes of
1621  * headroom, you should not reduce this.
1622  *
1623  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1624  * to reduce average number of cache lines per packet.
1625  * get_rps_cpus() for example only access one 64 bytes aligned block :
1626  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1627  */
1628 #ifndef NET_SKB_PAD
1629 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1630 #endif
1631 
1632 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1633 
1634 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1635 {
1636 	if (unlikely(skb_is_nonlinear(skb))) {
1637 		WARN_ON(1);
1638 		return;
1639 	}
1640 	skb->len = len;
1641 	skb_set_tail_pointer(skb, len);
1642 }
1643 
1644 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1645 
1646 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1647 {
1648 	if (skb->data_len)
1649 		return ___pskb_trim(skb, len);
1650 	__skb_trim(skb, len);
1651 	return 0;
1652 }
1653 
1654 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1655 {
1656 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1657 }
1658 
1659 /**
1660  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1661  *	@skb: buffer to alter
1662  *	@len: new length
1663  *
1664  *	This is identical to pskb_trim except that the caller knows that
1665  *	the skb is not cloned so we should never get an error due to out-
1666  *	of-memory.
1667  */
1668 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1669 {
1670 	int err = pskb_trim(skb, len);
1671 	BUG_ON(err);
1672 }
1673 
1674 /**
1675  *	skb_orphan - orphan a buffer
1676  *	@skb: buffer to orphan
1677  *
1678  *	If a buffer currently has an owner then we call the owner's
1679  *	destructor function and make the @skb unowned. The buffer continues
1680  *	to exist but is no longer charged to its former owner.
1681  */
1682 static inline void skb_orphan(struct sk_buff *skb)
1683 {
1684 	if (skb->destructor)
1685 		skb->destructor(skb);
1686 	skb->destructor = NULL;
1687 	skb->sk		= NULL;
1688 }
1689 
1690 /**
1691  *	skb_orphan_frags - orphan the frags contained in a buffer
1692  *	@skb: buffer to orphan frags from
1693  *	@gfp_mask: allocation mask for replacement pages
1694  *
1695  *	For each frag in the SKB which needs a destructor (i.e. has an
1696  *	owner) create a copy of that frag and release the original
1697  *	page by calling the destructor.
1698  */
1699 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1700 {
1701 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1702 		return 0;
1703 	return skb_copy_ubufs(skb, gfp_mask);
1704 }
1705 
1706 /**
1707  *	__skb_queue_purge - empty a list
1708  *	@list: list to empty
1709  *
1710  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1711  *	the list and one reference dropped. This function does not take the
1712  *	list lock and the caller must hold the relevant locks to use it.
1713  */
1714 extern void skb_queue_purge(struct sk_buff_head *list);
1715 static inline void __skb_queue_purge(struct sk_buff_head *list)
1716 {
1717 	struct sk_buff *skb;
1718 	while ((skb = __skb_dequeue(list)) != NULL)
1719 		kfree_skb(skb);
1720 }
1721 
1722 extern void *netdev_alloc_frag(unsigned int fragsz);
1723 
1724 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1725 					  unsigned int length,
1726 					  gfp_t gfp_mask);
1727 
1728 /**
1729  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1730  *	@dev: network device to receive on
1731  *	@length: length to allocate
1732  *
1733  *	Allocate a new &sk_buff and assign it a usage count of one. The
1734  *	buffer has unspecified headroom built in. Users should allocate
1735  *	the headroom they think they need without accounting for the
1736  *	built in space. The built in space is used for optimisations.
1737  *
1738  *	%NULL is returned if there is no free memory. Although this function
1739  *	allocates memory it can be called from an interrupt.
1740  */
1741 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1742 					       unsigned int length)
1743 {
1744 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1745 }
1746 
1747 /* legacy helper around __netdev_alloc_skb() */
1748 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1749 					      gfp_t gfp_mask)
1750 {
1751 	return __netdev_alloc_skb(NULL, length, gfp_mask);
1752 }
1753 
1754 /* legacy helper around netdev_alloc_skb() */
1755 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1756 {
1757 	return netdev_alloc_skb(NULL, length);
1758 }
1759 
1760 
1761 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1762 		unsigned int length, gfp_t gfp)
1763 {
1764 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1765 
1766 	if (NET_IP_ALIGN && skb)
1767 		skb_reserve(skb, NET_IP_ALIGN);
1768 	return skb;
1769 }
1770 
1771 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1772 		unsigned int length)
1773 {
1774 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1775 }
1776 
1777 /*
1778  *	__skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
1779  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1780  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1781  *	@order: size of the allocation
1782  *
1783  * 	Allocate a new page.
1784  *
1785  * 	%NULL is returned if there is no free memory.
1786 */
1787 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1788 					      struct sk_buff *skb,
1789 					      unsigned int order)
1790 {
1791 	struct page *page;
1792 
1793 	gfp_mask |= __GFP_COLD;
1794 
1795 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1796 		gfp_mask |= __GFP_MEMALLOC;
1797 
1798 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1799 	if (skb && page && page->pfmemalloc)
1800 		skb->pfmemalloc = true;
1801 
1802 	return page;
1803 }
1804 
1805 /**
1806  *	__skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1807  *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1808  *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1809  *
1810  * 	Allocate a new page.
1811  *
1812  * 	%NULL is returned if there is no free memory.
1813  */
1814 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1815 					     struct sk_buff *skb)
1816 {
1817 	return __skb_alloc_pages(gfp_mask, skb, 0);
1818 }
1819 
1820 /**
1821  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1822  *	@page: The page that was allocated from skb_alloc_page
1823  *	@skb: The skb that may need pfmemalloc set
1824  */
1825 static inline void skb_propagate_pfmemalloc(struct page *page,
1826 					     struct sk_buff *skb)
1827 {
1828 	if (page && page->pfmemalloc)
1829 		skb->pfmemalloc = true;
1830 }
1831 
1832 /**
1833  * skb_frag_page - retrieve the page refered to by a paged fragment
1834  * @frag: the paged fragment
1835  *
1836  * Returns the &struct page associated with @frag.
1837  */
1838 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1839 {
1840 	return frag->page.p;
1841 }
1842 
1843 /**
1844  * __skb_frag_ref - take an addition reference on a paged fragment.
1845  * @frag: the paged fragment
1846  *
1847  * Takes an additional reference on the paged fragment @frag.
1848  */
1849 static inline void __skb_frag_ref(skb_frag_t *frag)
1850 {
1851 	get_page(skb_frag_page(frag));
1852 }
1853 
1854 /**
1855  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1856  * @skb: the buffer
1857  * @f: the fragment offset.
1858  *
1859  * Takes an additional reference on the @f'th paged fragment of @skb.
1860  */
1861 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1862 {
1863 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1864 }
1865 
1866 /**
1867  * __skb_frag_unref - release a reference on a paged fragment.
1868  * @frag: the paged fragment
1869  *
1870  * Releases a reference on the paged fragment @frag.
1871  */
1872 static inline void __skb_frag_unref(skb_frag_t *frag)
1873 {
1874 	put_page(skb_frag_page(frag));
1875 }
1876 
1877 /**
1878  * skb_frag_unref - release a reference on a paged fragment of an skb.
1879  * @skb: the buffer
1880  * @f: the fragment offset
1881  *
1882  * Releases a reference on the @f'th paged fragment of @skb.
1883  */
1884 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1885 {
1886 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1887 }
1888 
1889 /**
1890  * skb_frag_address - gets the address of the data contained in a paged fragment
1891  * @frag: the paged fragment buffer
1892  *
1893  * Returns the address of the data within @frag. The page must already
1894  * be mapped.
1895  */
1896 static inline void *skb_frag_address(const skb_frag_t *frag)
1897 {
1898 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1899 }
1900 
1901 /**
1902  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1903  * @frag: the paged fragment buffer
1904  *
1905  * Returns the address of the data within @frag. Checks that the page
1906  * is mapped and returns %NULL otherwise.
1907  */
1908 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1909 {
1910 	void *ptr = page_address(skb_frag_page(frag));
1911 	if (unlikely(!ptr))
1912 		return NULL;
1913 
1914 	return ptr + frag->page_offset;
1915 }
1916 
1917 /**
1918  * __skb_frag_set_page - sets the page contained in a paged fragment
1919  * @frag: the paged fragment
1920  * @page: the page to set
1921  *
1922  * Sets the fragment @frag to contain @page.
1923  */
1924 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1925 {
1926 	frag->page.p = page;
1927 }
1928 
1929 /**
1930  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1931  * @skb: the buffer
1932  * @f: the fragment offset
1933  * @page: the page to set
1934  *
1935  * Sets the @f'th fragment of @skb to contain @page.
1936  */
1937 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1938 				     struct page *page)
1939 {
1940 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1941 }
1942 
1943 /**
1944  * skb_frag_dma_map - maps a paged fragment via the DMA API
1945  * @dev: the device to map the fragment to
1946  * @frag: the paged fragment to map
1947  * @offset: the offset within the fragment (starting at the
1948  *          fragment's own offset)
1949  * @size: the number of bytes to map
1950  * @dir: the direction of the mapping (%PCI_DMA_*)
1951  *
1952  * Maps the page associated with @frag to @device.
1953  */
1954 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1955 					  const skb_frag_t *frag,
1956 					  size_t offset, size_t size,
1957 					  enum dma_data_direction dir)
1958 {
1959 	return dma_map_page(dev, skb_frag_page(frag),
1960 			    frag->page_offset + offset, size, dir);
1961 }
1962 
1963 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1964 					gfp_t gfp_mask)
1965 {
1966 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1967 }
1968 
1969 /**
1970  *	skb_clone_writable - is the header of a clone writable
1971  *	@skb: buffer to check
1972  *	@len: length up to which to write
1973  *
1974  *	Returns true if modifying the header part of the cloned buffer
1975  *	does not requires the data to be copied.
1976  */
1977 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1978 {
1979 	return !skb_header_cloned(skb) &&
1980 	       skb_headroom(skb) + len <= skb->hdr_len;
1981 }
1982 
1983 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1984 			    int cloned)
1985 {
1986 	int delta = 0;
1987 
1988 	if (headroom > skb_headroom(skb))
1989 		delta = headroom - skb_headroom(skb);
1990 
1991 	if (delta || cloned)
1992 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1993 					GFP_ATOMIC);
1994 	return 0;
1995 }
1996 
1997 /**
1998  *	skb_cow - copy header of skb when it is required
1999  *	@skb: buffer to cow
2000  *	@headroom: needed headroom
2001  *
2002  *	If the skb passed lacks sufficient headroom or its data part
2003  *	is shared, data is reallocated. If reallocation fails, an error
2004  *	is returned and original skb is not changed.
2005  *
2006  *	The result is skb with writable area skb->head...skb->tail
2007  *	and at least @headroom of space at head.
2008  */
2009 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2010 {
2011 	return __skb_cow(skb, headroom, skb_cloned(skb));
2012 }
2013 
2014 /**
2015  *	skb_cow_head - skb_cow but only making the head writable
2016  *	@skb: buffer to cow
2017  *	@headroom: needed headroom
2018  *
2019  *	This function is identical to skb_cow except that we replace the
2020  *	skb_cloned check by skb_header_cloned.  It should be used when
2021  *	you only need to push on some header and do not need to modify
2022  *	the data.
2023  */
2024 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2025 {
2026 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2027 }
2028 
2029 /**
2030  *	skb_padto	- pad an skbuff up to a minimal size
2031  *	@skb: buffer to pad
2032  *	@len: minimal length
2033  *
2034  *	Pads up a buffer to ensure the trailing bytes exist and are
2035  *	blanked. If the buffer already contains sufficient data it
2036  *	is untouched. Otherwise it is extended. Returns zero on
2037  *	success. The skb is freed on error.
2038  */
2039 
2040 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2041 {
2042 	unsigned int size = skb->len;
2043 	if (likely(size >= len))
2044 		return 0;
2045 	return skb_pad(skb, len - size);
2046 }
2047 
2048 static inline int skb_add_data(struct sk_buff *skb,
2049 			       char __user *from, int copy)
2050 {
2051 	const int off = skb->len;
2052 
2053 	if (skb->ip_summed == CHECKSUM_NONE) {
2054 		int err = 0;
2055 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2056 							    copy, 0, &err);
2057 		if (!err) {
2058 			skb->csum = csum_block_add(skb->csum, csum, off);
2059 			return 0;
2060 		}
2061 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
2062 		return 0;
2063 
2064 	__skb_trim(skb, off);
2065 	return -EFAULT;
2066 }
2067 
2068 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2069 				    const struct page *page, int off)
2070 {
2071 	if (i) {
2072 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2073 
2074 		return page == skb_frag_page(frag) &&
2075 		       off == frag->page_offset + skb_frag_size(frag);
2076 	}
2077 	return false;
2078 }
2079 
2080 static inline int __skb_linearize(struct sk_buff *skb)
2081 {
2082 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2083 }
2084 
2085 /**
2086  *	skb_linearize - convert paged skb to linear one
2087  *	@skb: buffer to linarize
2088  *
2089  *	If there is no free memory -ENOMEM is returned, otherwise zero
2090  *	is returned and the old skb data released.
2091  */
2092 static inline int skb_linearize(struct sk_buff *skb)
2093 {
2094 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2095 }
2096 
2097 /**
2098  *	skb_linearize_cow - make sure skb is linear and writable
2099  *	@skb: buffer to process
2100  *
2101  *	If there is no free memory -ENOMEM is returned, otherwise zero
2102  *	is returned and the old skb data released.
2103  */
2104 static inline int skb_linearize_cow(struct sk_buff *skb)
2105 {
2106 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2107 	       __skb_linearize(skb) : 0;
2108 }
2109 
2110 /**
2111  *	skb_postpull_rcsum - update checksum for received skb after pull
2112  *	@skb: buffer to update
2113  *	@start: start of data before pull
2114  *	@len: length of data pulled
2115  *
2116  *	After doing a pull on a received packet, you need to call this to
2117  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2118  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2119  */
2120 
2121 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2122 				      const void *start, unsigned int len)
2123 {
2124 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2125 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2126 }
2127 
2128 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2129 
2130 /**
2131  *	pskb_trim_rcsum - trim received skb and update checksum
2132  *	@skb: buffer to trim
2133  *	@len: new length
2134  *
2135  *	This is exactly the same as pskb_trim except that it ensures the
2136  *	checksum of received packets are still valid after the operation.
2137  */
2138 
2139 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2140 {
2141 	if (likely(len >= skb->len))
2142 		return 0;
2143 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2144 		skb->ip_summed = CHECKSUM_NONE;
2145 	return __pskb_trim(skb, len);
2146 }
2147 
2148 #define skb_queue_walk(queue, skb) \
2149 		for (skb = (queue)->next;					\
2150 		     skb != (struct sk_buff *)(queue);				\
2151 		     skb = skb->next)
2152 
2153 #define skb_queue_walk_safe(queue, skb, tmp)					\
2154 		for (skb = (queue)->next, tmp = skb->next;			\
2155 		     skb != (struct sk_buff *)(queue);				\
2156 		     skb = tmp, tmp = skb->next)
2157 
2158 #define skb_queue_walk_from(queue, skb)						\
2159 		for (; skb != (struct sk_buff *)(queue);			\
2160 		     skb = skb->next)
2161 
2162 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2163 		for (tmp = skb->next;						\
2164 		     skb != (struct sk_buff *)(queue);				\
2165 		     skb = tmp, tmp = skb->next)
2166 
2167 #define skb_queue_reverse_walk(queue, skb) \
2168 		for (skb = (queue)->prev;					\
2169 		     skb != (struct sk_buff *)(queue);				\
2170 		     skb = skb->prev)
2171 
2172 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2173 		for (skb = (queue)->prev, tmp = skb->prev;			\
2174 		     skb != (struct sk_buff *)(queue);				\
2175 		     skb = tmp, tmp = skb->prev)
2176 
2177 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2178 		for (tmp = skb->prev;						\
2179 		     skb != (struct sk_buff *)(queue);				\
2180 		     skb = tmp, tmp = skb->prev)
2181 
2182 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2183 {
2184 	return skb_shinfo(skb)->frag_list != NULL;
2185 }
2186 
2187 static inline void skb_frag_list_init(struct sk_buff *skb)
2188 {
2189 	skb_shinfo(skb)->frag_list = NULL;
2190 }
2191 
2192 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2193 {
2194 	frag->next = skb_shinfo(skb)->frag_list;
2195 	skb_shinfo(skb)->frag_list = frag;
2196 }
2197 
2198 #define skb_walk_frags(skb, iter)	\
2199 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2200 
2201 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2202 					   int *peeked, int *off, int *err);
2203 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2204 					 int noblock, int *err);
2205 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2206 				     struct poll_table_struct *wait);
2207 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2208 					       int offset, struct iovec *to,
2209 					       int size);
2210 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2211 							int hlen,
2212 							struct iovec *iov);
2213 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2214 						    int offset,
2215 						    const struct iovec *from,
2216 						    int from_offset,
2217 						    int len);
2218 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2219 						     int offset,
2220 						     const struct iovec *to,
2221 						     int to_offset,
2222 						     int size);
2223 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2224 extern void	       skb_free_datagram_locked(struct sock *sk,
2225 						struct sk_buff *skb);
2226 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2227 					 unsigned int flags);
2228 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2229 				    int len, __wsum csum);
2230 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2231 				     void *to, int len);
2232 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2233 				      const void *from, int len);
2234 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2235 					      int offset, u8 *to, int len,
2236 					      __wsum csum);
2237 extern int             skb_splice_bits(struct sk_buff *skb,
2238 						unsigned int offset,
2239 						struct pipe_inode_info *pipe,
2240 						unsigned int len,
2241 						unsigned int flags);
2242 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2243 extern void	       skb_split(struct sk_buff *skb,
2244 				 struct sk_buff *skb1, const u32 len);
2245 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2246 				 int shiftlen);
2247 
2248 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2249 				   netdev_features_t features);
2250 
2251 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2252 				       int len, void *buffer)
2253 {
2254 	int hlen = skb_headlen(skb);
2255 
2256 	if (hlen - offset >= len)
2257 		return skb->data + offset;
2258 
2259 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2260 		return NULL;
2261 
2262 	return buffer;
2263 }
2264 
2265 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2266 					     void *to,
2267 					     const unsigned int len)
2268 {
2269 	memcpy(to, skb->data, len);
2270 }
2271 
2272 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2273 						    const int offset, void *to,
2274 						    const unsigned int len)
2275 {
2276 	memcpy(to, skb->data + offset, len);
2277 }
2278 
2279 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2280 					   const void *from,
2281 					   const unsigned int len)
2282 {
2283 	memcpy(skb->data, from, len);
2284 }
2285 
2286 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2287 						  const int offset,
2288 						  const void *from,
2289 						  const unsigned int len)
2290 {
2291 	memcpy(skb->data + offset, from, len);
2292 }
2293 
2294 extern void skb_init(void);
2295 
2296 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2297 {
2298 	return skb->tstamp;
2299 }
2300 
2301 /**
2302  *	skb_get_timestamp - get timestamp from a skb
2303  *	@skb: skb to get stamp from
2304  *	@stamp: pointer to struct timeval to store stamp in
2305  *
2306  *	Timestamps are stored in the skb as offsets to a base timestamp.
2307  *	This function converts the offset back to a struct timeval and stores
2308  *	it in stamp.
2309  */
2310 static inline void skb_get_timestamp(const struct sk_buff *skb,
2311 				     struct timeval *stamp)
2312 {
2313 	*stamp = ktime_to_timeval(skb->tstamp);
2314 }
2315 
2316 static inline void skb_get_timestampns(const struct sk_buff *skb,
2317 				       struct timespec *stamp)
2318 {
2319 	*stamp = ktime_to_timespec(skb->tstamp);
2320 }
2321 
2322 static inline void __net_timestamp(struct sk_buff *skb)
2323 {
2324 	skb->tstamp = ktime_get_real();
2325 }
2326 
2327 static inline ktime_t net_timedelta(ktime_t t)
2328 {
2329 	return ktime_sub(ktime_get_real(), t);
2330 }
2331 
2332 static inline ktime_t net_invalid_timestamp(void)
2333 {
2334 	return ktime_set(0, 0);
2335 }
2336 
2337 extern void skb_timestamping_init(void);
2338 
2339 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2340 
2341 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2342 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2343 
2344 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2345 
2346 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2347 {
2348 }
2349 
2350 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2351 {
2352 	return false;
2353 }
2354 
2355 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2356 
2357 /**
2358  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2359  *
2360  * PHY drivers may accept clones of transmitted packets for
2361  * timestamping via their phy_driver.txtstamp method. These drivers
2362  * must call this function to return the skb back to the stack, with
2363  * or without a timestamp.
2364  *
2365  * @skb: clone of the the original outgoing packet
2366  * @hwtstamps: hardware time stamps, may be NULL if not available
2367  *
2368  */
2369 void skb_complete_tx_timestamp(struct sk_buff *skb,
2370 			       struct skb_shared_hwtstamps *hwtstamps);
2371 
2372 /**
2373  * skb_tstamp_tx - queue clone of skb with send time stamps
2374  * @orig_skb:	the original outgoing packet
2375  * @hwtstamps:	hardware time stamps, may be NULL if not available
2376  *
2377  * If the skb has a socket associated, then this function clones the
2378  * skb (thus sharing the actual data and optional structures), stores
2379  * the optional hardware time stamping information (if non NULL) or
2380  * generates a software time stamp (otherwise), then queues the clone
2381  * to the error queue of the socket.  Errors are silently ignored.
2382  */
2383 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2384 			struct skb_shared_hwtstamps *hwtstamps);
2385 
2386 static inline void sw_tx_timestamp(struct sk_buff *skb)
2387 {
2388 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2389 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2390 		skb_tstamp_tx(skb, NULL);
2391 }
2392 
2393 /**
2394  * skb_tx_timestamp() - Driver hook for transmit timestamping
2395  *
2396  * Ethernet MAC Drivers should call this function in their hard_xmit()
2397  * function immediately before giving the sk_buff to the MAC hardware.
2398  *
2399  * @skb: A socket buffer.
2400  */
2401 static inline void skb_tx_timestamp(struct sk_buff *skb)
2402 {
2403 	skb_clone_tx_timestamp(skb);
2404 	sw_tx_timestamp(skb);
2405 }
2406 
2407 /**
2408  * skb_complete_wifi_ack - deliver skb with wifi status
2409  *
2410  * @skb: the original outgoing packet
2411  * @acked: ack status
2412  *
2413  */
2414 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2415 
2416 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2417 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2418 
2419 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2420 {
2421 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2422 }
2423 
2424 /**
2425  *	skb_checksum_complete - Calculate checksum of an entire packet
2426  *	@skb: packet to process
2427  *
2428  *	This function calculates the checksum over the entire packet plus
2429  *	the value of skb->csum.  The latter can be used to supply the
2430  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2431  *	checksum.
2432  *
2433  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2434  *	this function can be used to verify that checksum on received
2435  *	packets.  In that case the function should return zero if the
2436  *	checksum is correct.  In particular, this function will return zero
2437  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2438  *	hardware has already verified the correctness of the checksum.
2439  */
2440 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2441 {
2442 	return skb_csum_unnecessary(skb) ?
2443 	       0 : __skb_checksum_complete(skb);
2444 }
2445 
2446 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2447 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2448 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2449 {
2450 	if (nfct && atomic_dec_and_test(&nfct->use))
2451 		nf_conntrack_destroy(nfct);
2452 }
2453 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2454 {
2455 	if (nfct)
2456 		atomic_inc(&nfct->use);
2457 }
2458 #endif
2459 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2460 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2461 {
2462 	if (skb)
2463 		atomic_inc(&skb->users);
2464 }
2465 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2466 {
2467 	if (skb)
2468 		kfree_skb(skb);
2469 }
2470 #endif
2471 #ifdef CONFIG_BRIDGE_NETFILTER
2472 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2473 {
2474 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2475 		kfree(nf_bridge);
2476 }
2477 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2478 {
2479 	if (nf_bridge)
2480 		atomic_inc(&nf_bridge->use);
2481 }
2482 #endif /* CONFIG_BRIDGE_NETFILTER */
2483 static inline void nf_reset(struct sk_buff *skb)
2484 {
2485 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2486 	nf_conntrack_put(skb->nfct);
2487 	skb->nfct = NULL;
2488 #endif
2489 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2490 	nf_conntrack_put_reasm(skb->nfct_reasm);
2491 	skb->nfct_reasm = NULL;
2492 #endif
2493 #ifdef CONFIG_BRIDGE_NETFILTER
2494 	nf_bridge_put(skb->nf_bridge);
2495 	skb->nf_bridge = NULL;
2496 #endif
2497 }
2498 
2499 /* Note: This doesn't put any conntrack and bridge info in dst. */
2500 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2501 {
2502 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2503 	dst->nfct = src->nfct;
2504 	nf_conntrack_get(src->nfct);
2505 	dst->nfctinfo = src->nfctinfo;
2506 #endif
2507 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2508 	dst->nfct_reasm = src->nfct_reasm;
2509 	nf_conntrack_get_reasm(src->nfct_reasm);
2510 #endif
2511 #ifdef CONFIG_BRIDGE_NETFILTER
2512 	dst->nf_bridge  = src->nf_bridge;
2513 	nf_bridge_get(src->nf_bridge);
2514 #endif
2515 }
2516 
2517 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2518 {
2519 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2520 	nf_conntrack_put(dst->nfct);
2521 #endif
2522 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2523 	nf_conntrack_put_reasm(dst->nfct_reasm);
2524 #endif
2525 #ifdef CONFIG_BRIDGE_NETFILTER
2526 	nf_bridge_put(dst->nf_bridge);
2527 #endif
2528 	__nf_copy(dst, src);
2529 }
2530 
2531 #ifdef CONFIG_NETWORK_SECMARK
2532 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2533 {
2534 	to->secmark = from->secmark;
2535 }
2536 
2537 static inline void skb_init_secmark(struct sk_buff *skb)
2538 {
2539 	skb->secmark = 0;
2540 }
2541 #else
2542 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2543 { }
2544 
2545 static inline void skb_init_secmark(struct sk_buff *skb)
2546 { }
2547 #endif
2548 
2549 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2550 {
2551 	skb->queue_mapping = queue_mapping;
2552 }
2553 
2554 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2555 {
2556 	return skb->queue_mapping;
2557 }
2558 
2559 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2560 {
2561 	to->queue_mapping = from->queue_mapping;
2562 }
2563 
2564 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2565 {
2566 	skb->queue_mapping = rx_queue + 1;
2567 }
2568 
2569 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2570 {
2571 	return skb->queue_mapping - 1;
2572 }
2573 
2574 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2575 {
2576 	return skb->queue_mapping != 0;
2577 }
2578 
2579 extern u16 __skb_tx_hash(const struct net_device *dev,
2580 			 const struct sk_buff *skb,
2581 			 unsigned int num_tx_queues);
2582 
2583 #ifdef CONFIG_XFRM
2584 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2585 {
2586 	return skb->sp;
2587 }
2588 #else
2589 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2590 {
2591 	return NULL;
2592 }
2593 #endif
2594 
2595 static inline bool skb_is_gso(const struct sk_buff *skb)
2596 {
2597 	return skb_shinfo(skb)->gso_size;
2598 }
2599 
2600 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2601 {
2602 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2603 }
2604 
2605 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2606 
2607 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2608 {
2609 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2610 	 * wanted then gso_type will be set. */
2611 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2612 
2613 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2614 	    unlikely(shinfo->gso_type == 0)) {
2615 		__skb_warn_lro_forwarding(skb);
2616 		return true;
2617 	}
2618 	return false;
2619 }
2620 
2621 static inline void skb_forward_csum(struct sk_buff *skb)
2622 {
2623 	/* Unfortunately we don't support this one.  Any brave souls? */
2624 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2625 		skb->ip_summed = CHECKSUM_NONE;
2626 }
2627 
2628 /**
2629  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2630  * @skb: skb to check
2631  *
2632  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2633  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2634  * use this helper, to document places where we make this assertion.
2635  */
2636 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2637 {
2638 #ifdef DEBUG
2639 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2640 #endif
2641 }
2642 
2643 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2644 
2645 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2646 {
2647 	if (irqs_disabled())
2648 		return false;
2649 
2650 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2651 		return false;
2652 
2653 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2654 		return false;
2655 
2656 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2657 	if (skb_end_offset(skb) < skb_size)
2658 		return false;
2659 
2660 	if (skb_shared(skb) || skb_cloned(skb))
2661 		return false;
2662 
2663 	return true;
2664 }
2665 
2666 /**
2667  * skb_head_is_locked - Determine if the skb->head is locked down
2668  * @skb: skb to check
2669  *
2670  * The head on skbs build around a head frag can be removed if they are
2671  * not cloned.  This function returns true if the skb head is locked down
2672  * due to either being allocated via kmalloc, or by being a clone with
2673  * multiple references to the head.
2674  */
2675 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2676 {
2677 	return !skb->head_frag || skb_cloned(skb);
2678 }
2679 #endif	/* __KERNEL__ */
2680 #endif	/* _LINUX_SKBUFF_H */
2681