xref: /linux-6.15/include/linux/skbuff.h (revision e7d163f7)
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <[email protected]>
6  *		Florian La Roche, <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 
33 #define HAVE_ALLOC_SKB		/* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
35 #define SLAB_SKB 		/* Slabified skbuffs 	   */
36 
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_HW 1
39 #define CHECKSUM_UNNECESSARY 2
40 
41 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
42 				 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
44 				  sizeof(struct skb_shared_info)) & \
45 				  ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
48 
49 /* A. Checksumming of received packets by device.
50  *
51  *	NONE: device failed to checksum this packet.
52  *		skb->csum is undefined.
53  *
54  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
55  *		skb->csum is undefined.
56  *	      It is bad option, but, unfortunately, many of vendors do this.
57  *	      Apparently with secret goal to sell you new device, when you
58  *	      will add new protocol to your host. F.e. IPv6. 8)
59  *
60  *	HW: the most generic way. Device supplied checksum of _all_
61  *	    the packet as seen by netif_rx in skb->csum.
62  *	    NOTE: Even if device supports only some protocols, but
63  *	    is able to produce some skb->csum, it MUST use HW,
64  *	    not UNNECESSARY.
65  *
66  * B. Checksumming on output.
67  *
68  *	NONE: skb is checksummed by protocol or csum is not required.
69  *
70  *	HW: device is required to csum packet as seen by hard_start_xmit
71  *	from skb->h.raw to the end and to record the checksum
72  *	at skb->h.raw+skb->csum.
73  *
74  *	Device must show its capabilities in dev->features, set
75  *	at device setup time.
76  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
77  *			  everything.
78  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
79  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80  *			  TCP/UDP over IPv4. Sigh. Vendors like this
81  *			  way by an unknown reason. Though, see comment above
82  *			  about CHECKSUM_UNNECESSARY. 8)
83  *
84  *	Any questions? No questions, good. 		--ANK
85  */
86 
87 struct net_device;
88 
89 #ifdef CONFIG_NETFILTER
90 struct nf_conntrack {
91 	atomic_t use;
92 	void (*destroy)(struct nf_conntrack *);
93 };
94 
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
97 	atomic_t use;
98 	struct net_device *physindev;
99 	struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 	struct net_device *netoutdev;
102 #endif
103 	unsigned int mask;
104 	unsigned long data[32 / sizeof(unsigned long)];
105 };
106 #endif
107 
108 #endif
109 
110 struct sk_buff_head {
111 	/* These two members must be first. */
112 	struct sk_buff	*next;
113 	struct sk_buff	*prev;
114 
115 	__u32		qlen;
116 	spinlock_t	lock;
117 };
118 
119 struct sk_buff;
120 
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123 
124 typedef struct skb_frag_struct skb_frag_t;
125 
126 struct skb_frag_struct {
127 	struct page *page;
128 	__u16 page_offset;
129 	__u16 size;
130 };
131 
132 /* This data is invariant across clones and lives at
133  * the end of the header data, ie. at skb->end.
134  */
135 struct skb_shared_info {
136 	atomic_t	dataref;
137 	unsigned int	nr_frags;
138 	unsigned short	tso_size;
139 	unsigned short	tso_segs;
140 	struct sk_buff	*frag_list;
141 	skb_frag_t	frags[MAX_SKB_FRAGS];
142 };
143 
144 /* We divide dataref into two halves.  The higher 16 bits hold references
145  * to the payload part of skb->data.  The lower 16 bits hold references to
146  * the entire skb->data.  It is up to the users of the skb to agree on
147  * where the payload starts.
148  *
149  * All users must obey the rule that the skb->data reference count must be
150  * greater than or equal to the payload reference count.
151  *
152  * Holding a reference to the payload part means that the user does not
153  * care about modifications to the header part of skb->data.
154  */
155 #define SKB_DATAREF_SHIFT 16
156 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
157 
158 /**
159  *	struct sk_buff - socket buffer
160  *	@next: Next buffer in list
161  *	@prev: Previous buffer in list
162  *	@list: List we are on
163  *	@sk: Socket we are owned by
164  *	@stamp: Time we arrived
165  *	@dev: Device we arrived on/are leaving by
166  *	@input_dev: Device we arrived on
167  *      @real_dev: The real device we are using
168  *	@h: Transport layer header
169  *	@nh: Network layer header
170  *	@mac: Link layer header
171  *	@dst: destination entry
172  *	@sp: the security path, used for xfrm
173  *	@cb: Control buffer. Free for use by every layer. Put private vars here
174  *	@len: Length of actual data
175  *	@data_len: Data length
176  *	@mac_len: Length of link layer header
177  *	@csum: Checksum
178  *	@local_df: allow local fragmentation
179  *	@cloned: Head may be cloned (check refcnt to be sure)
180  *	@nohdr: Payload reference only, must not modify header
181  *	@pkt_type: Packet class
182  *	@ip_summed: Driver fed us an IP checksum
183  *	@priority: Packet queueing priority
184  *	@users: User count - see {datagram,tcp}.c
185  *	@protocol: Packet protocol from driver
186  *	@security: Security level of packet
187  *	@truesize: Buffer size
188  *	@head: Head of buffer
189  *	@data: Data head pointer
190  *	@tail: Tail pointer
191  *	@end: End pointer
192  *	@destructor: Destruct function
193  *	@nfmark: Can be used for communication between hooks
194  *	@nfcache: Cache info
195  *	@nfct: Associated connection, if any
196  *	@nfctinfo: Relationship of this skb to the connection
197  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
198  *      @private: Data which is private to the HIPPI implementation
199  *	@tc_index: Traffic control index
200  *	@tc_verd: traffic control verdict
201  *	@tc_classid: traffic control classid
202  */
203 
204 struct sk_buff {
205 	/* These two members must be first. */
206 	struct sk_buff		*next;
207 	struct sk_buff		*prev;
208 
209 	struct sk_buff_head	*list;
210 	struct sock		*sk;
211 	struct timeval		stamp;
212 	struct net_device	*dev;
213 	struct net_device	*input_dev;
214 	struct net_device	*real_dev;
215 
216 	union {
217 		struct tcphdr	*th;
218 		struct udphdr	*uh;
219 		struct icmphdr	*icmph;
220 		struct igmphdr	*igmph;
221 		struct iphdr	*ipiph;
222 		struct ipv6hdr	*ipv6h;
223 		unsigned char	*raw;
224 	} h;
225 
226 	union {
227 		struct iphdr	*iph;
228 		struct ipv6hdr	*ipv6h;
229 		struct arphdr	*arph;
230 		unsigned char	*raw;
231 	} nh;
232 
233 	union {
234 	  	unsigned char 	*raw;
235 	} mac;
236 
237 	struct  dst_entry	*dst;
238 	struct	sec_path	*sp;
239 
240 	/*
241 	 * This is the control buffer. It is free to use for every
242 	 * layer. Please put your private variables there. If you
243 	 * want to keep them across layers you have to do a skb_clone()
244 	 * first. This is owned by whoever has the skb queued ATM.
245 	 */
246 	char			cb[40];
247 
248 	unsigned int		len,
249 				data_len,
250 				mac_len,
251 				csum;
252 	unsigned char		local_df,
253 				cloned:1,
254 				nohdr:1,
255 				pkt_type,
256 				ip_summed;
257 	__u32			priority;
258 	unsigned short		protocol,
259 				security;
260 
261 	void			(*destructor)(struct sk_buff *skb);
262 #ifdef CONFIG_NETFILTER
263         unsigned long		nfmark;
264 	__u32			nfcache;
265 	__u32			nfctinfo;
266 	struct nf_conntrack	*nfct;
267 #ifdef CONFIG_BRIDGE_NETFILTER
268 	struct nf_bridge_info	*nf_bridge;
269 #endif
270 #endif /* CONFIG_NETFILTER */
271 #if defined(CONFIG_HIPPI)
272 	union {
273 		__u32		ifield;
274 	} private;
275 #endif
276 #ifdef CONFIG_NET_SCHED
277        __u32			tc_index;        /* traffic control index */
278 #ifdef CONFIG_NET_CLS_ACT
279 	__u32           tc_verd;               /* traffic control verdict */
280 	__u32           tc_classid;            /* traffic control classid */
281 #endif
282 
283 #endif
284 
285 
286 	/* These elements must be at the end, see alloc_skb() for details.  */
287 	unsigned int		truesize;
288 	atomic_t		users;
289 	unsigned char		*head,
290 				*data,
291 				*tail,
292 				*end;
293 };
294 
295 #ifdef __KERNEL__
296 /*
297  *	Handling routines are only of interest to the kernel
298  */
299 #include <linux/slab.h>
300 
301 #include <asm/system.h>
302 
303 extern void	       __kfree_skb(struct sk_buff *skb);
304 extern struct sk_buff *alloc_skb(unsigned int size, int priority);
305 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
306 					    unsigned int size, int priority);
307 extern void	       kfree_skbmem(struct sk_buff *skb);
308 extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority);
309 extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority);
310 extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask);
311 extern int	       pskb_expand_head(struct sk_buff *skb,
312 					int nhead, int ntail, int gfp_mask);
313 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
314 					    unsigned int headroom);
315 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
316 				       int newheadroom, int newtailroom,
317 				       int priority);
318 extern struct sk_buff *		skb_pad(struct sk_buff *skb, int pad);
319 #define dev_kfree_skb(a)	kfree_skb(a)
320 extern void	      skb_over_panic(struct sk_buff *skb, int len,
321 				     void *here);
322 extern void	      skb_under_panic(struct sk_buff *skb, int len,
323 				      void *here);
324 
325 struct skb_seq_state
326 {
327 	__u32		lower_offset;
328 	__u32		upper_offset;
329 	__u32		frag_idx;
330 	__u32		stepped_offset;
331 	struct sk_buff	*root_skb;
332 	struct sk_buff	*cur_skb;
333 	__u8		*frag_data;
334 };
335 
336 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
337 					   unsigned int from, unsigned int to,
338 					   struct skb_seq_state *st);
339 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
340 				   struct skb_seq_state *st);
341 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
342 
343 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
344 				    unsigned int to, struct ts_config *config,
345 				    struct ts_state *state);
346 
347 /* Internal */
348 #define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
349 
350 /**
351  *	skb_queue_empty - check if a queue is empty
352  *	@list: queue head
353  *
354  *	Returns true if the queue is empty, false otherwise.
355  */
356 static inline int skb_queue_empty(const struct sk_buff_head *list)
357 {
358 	return list->next == (struct sk_buff *)list;
359 }
360 
361 /**
362  *	skb_get - reference buffer
363  *	@skb: buffer to reference
364  *
365  *	Makes another reference to a socket buffer and returns a pointer
366  *	to the buffer.
367  */
368 static inline struct sk_buff *skb_get(struct sk_buff *skb)
369 {
370 	atomic_inc(&skb->users);
371 	return skb;
372 }
373 
374 /*
375  * If users == 1, we are the only owner and are can avoid redundant
376  * atomic change.
377  */
378 
379 /**
380  *	kfree_skb - free an sk_buff
381  *	@skb: buffer to free
382  *
383  *	Drop a reference to the buffer and free it if the usage count has
384  *	hit zero.
385  */
386 static inline void kfree_skb(struct sk_buff *skb)
387 {
388 	if (likely(atomic_read(&skb->users) == 1))
389 		smp_rmb();
390 	else if (likely(!atomic_dec_and_test(&skb->users)))
391 		return;
392 	__kfree_skb(skb);
393 }
394 
395 /**
396  *	skb_cloned - is the buffer a clone
397  *	@skb: buffer to check
398  *
399  *	Returns true if the buffer was generated with skb_clone() and is
400  *	one of multiple shared copies of the buffer. Cloned buffers are
401  *	shared data so must not be written to under normal circumstances.
402  */
403 static inline int skb_cloned(const struct sk_buff *skb)
404 {
405 	return skb->cloned &&
406 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
407 }
408 
409 /**
410  *	skb_header_cloned - is the header a clone
411  *	@skb: buffer to check
412  *
413  *	Returns true if modifying the header part of the buffer requires
414  *	the data to be copied.
415  */
416 static inline int skb_header_cloned(const struct sk_buff *skb)
417 {
418 	int dataref;
419 
420 	if (!skb->cloned)
421 		return 0;
422 
423 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
424 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
425 	return dataref != 1;
426 }
427 
428 /**
429  *	skb_header_release - release reference to header
430  *	@skb: buffer to operate on
431  *
432  *	Drop a reference to the header part of the buffer.  This is done
433  *	by acquiring a payload reference.  You must not read from the header
434  *	part of skb->data after this.
435  */
436 static inline void skb_header_release(struct sk_buff *skb)
437 {
438 	BUG_ON(skb->nohdr);
439 	skb->nohdr = 1;
440 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
441 }
442 
443 /**
444  *	skb_shared - is the buffer shared
445  *	@skb: buffer to check
446  *
447  *	Returns true if more than one person has a reference to this
448  *	buffer.
449  */
450 static inline int skb_shared(const struct sk_buff *skb)
451 {
452 	return atomic_read(&skb->users) != 1;
453 }
454 
455 /**
456  *	skb_share_check - check if buffer is shared and if so clone it
457  *	@skb: buffer to check
458  *	@pri: priority for memory allocation
459  *
460  *	If the buffer is shared the buffer is cloned and the old copy
461  *	drops a reference. A new clone with a single reference is returned.
462  *	If the buffer is not shared the original buffer is returned. When
463  *	being called from interrupt status or with spinlocks held pri must
464  *	be GFP_ATOMIC.
465  *
466  *	NULL is returned on a memory allocation failure.
467  */
468 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
469 {
470 	might_sleep_if(pri & __GFP_WAIT);
471 	if (skb_shared(skb)) {
472 		struct sk_buff *nskb = skb_clone(skb, pri);
473 		kfree_skb(skb);
474 		skb = nskb;
475 	}
476 	return skb;
477 }
478 
479 /*
480  *	Copy shared buffers into a new sk_buff. We effectively do COW on
481  *	packets to handle cases where we have a local reader and forward
482  *	and a couple of other messy ones. The normal one is tcpdumping
483  *	a packet thats being forwarded.
484  */
485 
486 /**
487  *	skb_unshare - make a copy of a shared buffer
488  *	@skb: buffer to check
489  *	@pri: priority for memory allocation
490  *
491  *	If the socket buffer is a clone then this function creates a new
492  *	copy of the data, drops a reference count on the old copy and returns
493  *	the new copy with the reference count at 1. If the buffer is not a clone
494  *	the original buffer is returned. When called with a spinlock held or
495  *	from interrupt state @pri must be %GFP_ATOMIC
496  *
497  *	%NULL is returned on a memory allocation failure.
498  */
499 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
500 {
501 	might_sleep_if(pri & __GFP_WAIT);
502 	if (skb_cloned(skb)) {
503 		struct sk_buff *nskb = skb_copy(skb, pri);
504 		kfree_skb(skb);	/* Free our shared copy */
505 		skb = nskb;
506 	}
507 	return skb;
508 }
509 
510 /**
511  *	skb_peek
512  *	@list_: list to peek at
513  *
514  *	Peek an &sk_buff. Unlike most other operations you _MUST_
515  *	be careful with this one. A peek leaves the buffer on the
516  *	list and someone else may run off with it. You must hold
517  *	the appropriate locks or have a private queue to do this.
518  *
519  *	Returns %NULL for an empty list or a pointer to the head element.
520  *	The reference count is not incremented and the reference is therefore
521  *	volatile. Use with caution.
522  */
523 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
524 {
525 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
526 	if (list == (struct sk_buff *)list_)
527 		list = NULL;
528 	return list;
529 }
530 
531 /**
532  *	skb_peek_tail
533  *	@list_: list to peek at
534  *
535  *	Peek an &sk_buff. Unlike most other operations you _MUST_
536  *	be careful with this one. A peek leaves the buffer on the
537  *	list and someone else may run off with it. You must hold
538  *	the appropriate locks or have a private queue to do this.
539  *
540  *	Returns %NULL for an empty list or a pointer to the tail element.
541  *	The reference count is not incremented and the reference is therefore
542  *	volatile. Use with caution.
543  */
544 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
545 {
546 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
547 	if (list == (struct sk_buff *)list_)
548 		list = NULL;
549 	return list;
550 }
551 
552 /**
553  *	skb_queue_len	- get queue length
554  *	@list_: list to measure
555  *
556  *	Return the length of an &sk_buff queue.
557  */
558 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
559 {
560 	return list_->qlen;
561 }
562 
563 static inline void skb_queue_head_init(struct sk_buff_head *list)
564 {
565 	spin_lock_init(&list->lock);
566 	list->prev = list->next = (struct sk_buff *)list;
567 	list->qlen = 0;
568 }
569 
570 /*
571  *	Insert an sk_buff at the start of a list.
572  *
573  *	The "__skb_xxxx()" functions are the non-atomic ones that
574  *	can only be called with interrupts disabled.
575  */
576 
577 /**
578  *	__skb_queue_head - queue a buffer at the list head
579  *	@list: list to use
580  *	@newsk: buffer to queue
581  *
582  *	Queue a buffer at the start of a list. This function takes no locks
583  *	and you must therefore hold required locks before calling it.
584  *
585  *	A buffer cannot be placed on two lists at the same time.
586  */
587 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
588 static inline void __skb_queue_head(struct sk_buff_head *list,
589 				    struct sk_buff *newsk)
590 {
591 	struct sk_buff *prev, *next;
592 
593 	newsk->list = list;
594 	list->qlen++;
595 	prev = (struct sk_buff *)list;
596 	next = prev->next;
597 	newsk->next = next;
598 	newsk->prev = prev;
599 	next->prev  = prev->next = newsk;
600 }
601 
602 /**
603  *	__skb_queue_tail - queue a buffer at the list tail
604  *	@list: list to use
605  *	@newsk: buffer to queue
606  *
607  *	Queue a buffer at the end of a list. This function takes no locks
608  *	and you must therefore hold required locks before calling it.
609  *
610  *	A buffer cannot be placed on two lists at the same time.
611  */
612 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
613 static inline void __skb_queue_tail(struct sk_buff_head *list,
614 				   struct sk_buff *newsk)
615 {
616 	struct sk_buff *prev, *next;
617 
618 	newsk->list = list;
619 	list->qlen++;
620 	next = (struct sk_buff *)list;
621 	prev = next->prev;
622 	newsk->next = next;
623 	newsk->prev = prev;
624 	next->prev  = prev->next = newsk;
625 }
626 
627 
628 /**
629  *	__skb_dequeue - remove from the head of the queue
630  *	@list: list to dequeue from
631  *
632  *	Remove the head of the list. This function does not take any locks
633  *	so must be used with appropriate locks held only. The head item is
634  *	returned or %NULL if the list is empty.
635  */
636 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
637 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
638 {
639 	struct sk_buff *next, *prev, *result;
640 
641 	prev = (struct sk_buff *) list;
642 	next = prev->next;
643 	result = NULL;
644 	if (next != prev) {
645 		result	     = next;
646 		next	     = next->next;
647 		list->qlen--;
648 		next->prev   = prev;
649 		prev->next   = next;
650 		result->next = result->prev = NULL;
651 		result->list = NULL;
652 	}
653 	return result;
654 }
655 
656 
657 /*
658  *	Insert a packet on a list.
659  */
660 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk);
661 static inline void __skb_insert(struct sk_buff *newsk,
662 				struct sk_buff *prev, struct sk_buff *next,
663 				struct sk_buff_head *list)
664 {
665 	newsk->next = next;
666 	newsk->prev = prev;
667 	next->prev  = prev->next = newsk;
668 	newsk->list = list;
669 	list->qlen++;
670 }
671 
672 /*
673  *	Place a packet after a given packet in a list.
674  */
675 extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk);
676 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
677 {
678 	__skb_insert(newsk, old, old->next, old->list);
679 }
680 
681 /*
682  * remove sk_buff from list. _Must_ be called atomically, and with
683  * the list known..
684  */
685 extern void	   skb_unlink(struct sk_buff *skb);
686 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
687 {
688 	struct sk_buff *next, *prev;
689 
690 	list->qlen--;
691 	next	   = skb->next;
692 	prev	   = skb->prev;
693 	skb->next  = skb->prev = NULL;
694 	skb->list  = NULL;
695 	next->prev = prev;
696 	prev->next = next;
697 }
698 
699 
700 /* XXX: more streamlined implementation */
701 
702 /**
703  *	__skb_dequeue_tail - remove from the tail of the queue
704  *	@list: list to dequeue from
705  *
706  *	Remove the tail of the list. This function does not take any locks
707  *	so must be used with appropriate locks held only. The tail item is
708  *	returned or %NULL if the list is empty.
709  */
710 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
711 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
712 {
713 	struct sk_buff *skb = skb_peek_tail(list);
714 	if (skb)
715 		__skb_unlink(skb, list);
716 	return skb;
717 }
718 
719 
720 static inline int skb_is_nonlinear(const struct sk_buff *skb)
721 {
722 	return skb->data_len;
723 }
724 
725 static inline unsigned int skb_headlen(const struct sk_buff *skb)
726 {
727 	return skb->len - skb->data_len;
728 }
729 
730 static inline int skb_pagelen(const struct sk_buff *skb)
731 {
732 	int i, len = 0;
733 
734 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
735 		len += skb_shinfo(skb)->frags[i].size;
736 	return len + skb_headlen(skb);
737 }
738 
739 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
740 				      struct page *page, int off, int size)
741 {
742 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
743 
744 	frag->page		  = page;
745 	frag->page_offset	  = off;
746 	frag->size		  = size;
747 	skb_shinfo(skb)->nr_frags = i + 1;
748 }
749 
750 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
751 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
752 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
753 
754 /*
755  *	Add data to an sk_buff
756  */
757 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
758 {
759 	unsigned char *tmp = skb->tail;
760 	SKB_LINEAR_ASSERT(skb);
761 	skb->tail += len;
762 	skb->len  += len;
763 	return tmp;
764 }
765 
766 /**
767  *	skb_put - add data to a buffer
768  *	@skb: buffer to use
769  *	@len: amount of data to add
770  *
771  *	This function extends the used data area of the buffer. If this would
772  *	exceed the total buffer size the kernel will panic. A pointer to the
773  *	first byte of the extra data is returned.
774  */
775 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
776 {
777 	unsigned char *tmp = skb->tail;
778 	SKB_LINEAR_ASSERT(skb);
779 	skb->tail += len;
780 	skb->len  += len;
781 	if (unlikely(skb->tail>skb->end))
782 		skb_over_panic(skb, len, current_text_addr());
783 	return tmp;
784 }
785 
786 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
787 {
788 	skb->data -= len;
789 	skb->len  += len;
790 	return skb->data;
791 }
792 
793 /**
794  *	skb_push - add data to the start of a buffer
795  *	@skb: buffer to use
796  *	@len: amount of data to add
797  *
798  *	This function extends the used data area of the buffer at the buffer
799  *	start. If this would exceed the total buffer headroom the kernel will
800  *	panic. A pointer to the first byte of the extra data is returned.
801  */
802 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
803 {
804 	skb->data -= len;
805 	skb->len  += len;
806 	if (unlikely(skb->data<skb->head))
807 		skb_under_panic(skb, len, current_text_addr());
808 	return skb->data;
809 }
810 
811 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
812 {
813 	skb->len -= len;
814 	BUG_ON(skb->len < skb->data_len);
815 	return skb->data += len;
816 }
817 
818 /**
819  *	skb_pull - remove data from the start of a buffer
820  *	@skb: buffer to use
821  *	@len: amount of data to remove
822  *
823  *	This function removes data from the start of a buffer, returning
824  *	the memory to the headroom. A pointer to the next data in the buffer
825  *	is returned. Once the data has been pulled future pushes will overwrite
826  *	the old data.
827  */
828 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
829 {
830 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
831 }
832 
833 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
834 
835 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
836 {
837 	if (len > skb_headlen(skb) &&
838 	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
839 		return NULL;
840 	skb->len -= len;
841 	return skb->data += len;
842 }
843 
844 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
845 {
846 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
847 }
848 
849 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
850 {
851 	if (likely(len <= skb_headlen(skb)))
852 		return 1;
853 	if (unlikely(len > skb->len))
854 		return 0;
855 	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
856 }
857 
858 /**
859  *	skb_headroom - bytes at buffer head
860  *	@skb: buffer to check
861  *
862  *	Return the number of bytes of free space at the head of an &sk_buff.
863  */
864 static inline int skb_headroom(const struct sk_buff *skb)
865 {
866 	return skb->data - skb->head;
867 }
868 
869 /**
870  *	skb_tailroom - bytes at buffer end
871  *	@skb: buffer to check
872  *
873  *	Return the number of bytes of free space at the tail of an sk_buff
874  */
875 static inline int skb_tailroom(const struct sk_buff *skb)
876 {
877 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
878 }
879 
880 /**
881  *	skb_reserve - adjust headroom
882  *	@skb: buffer to alter
883  *	@len: bytes to move
884  *
885  *	Increase the headroom of an empty &sk_buff by reducing the tail
886  *	room. This is only allowed for an empty buffer.
887  */
888 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
889 {
890 	skb->data += len;
891 	skb->tail += len;
892 }
893 
894 /*
895  * CPUs often take a performance hit when accessing unaligned memory
896  * locations. The actual performance hit varies, it can be small if the
897  * hardware handles it or large if we have to take an exception and fix it
898  * in software.
899  *
900  * Since an ethernet header is 14 bytes network drivers often end up with
901  * the IP header at an unaligned offset. The IP header can be aligned by
902  * shifting the start of the packet by 2 bytes. Drivers should do this
903  * with:
904  *
905  * skb_reserve(NET_IP_ALIGN);
906  *
907  * The downside to this alignment of the IP header is that the DMA is now
908  * unaligned. On some architectures the cost of an unaligned DMA is high
909  * and this cost outweighs the gains made by aligning the IP header.
910  *
911  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
912  * to be overridden.
913  */
914 #ifndef NET_IP_ALIGN
915 #define NET_IP_ALIGN	2
916 #endif
917 
918 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
919 
920 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
921 {
922 	if (!skb->data_len) {
923 		skb->len  = len;
924 		skb->tail = skb->data + len;
925 	} else
926 		___pskb_trim(skb, len, 0);
927 }
928 
929 /**
930  *	skb_trim - remove end from a buffer
931  *	@skb: buffer to alter
932  *	@len: new length
933  *
934  *	Cut the length of a buffer down by removing data from the tail. If
935  *	the buffer is already under the length specified it is not modified.
936  */
937 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
938 {
939 	if (skb->len > len)
940 		__skb_trim(skb, len);
941 }
942 
943 
944 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
945 {
946 	if (!skb->data_len) {
947 		skb->len  = len;
948 		skb->tail = skb->data+len;
949 		return 0;
950 	}
951 	return ___pskb_trim(skb, len, 1);
952 }
953 
954 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
955 {
956 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
957 }
958 
959 /**
960  *	skb_orphan - orphan a buffer
961  *	@skb: buffer to orphan
962  *
963  *	If a buffer currently has an owner then we call the owner's
964  *	destructor function and make the @skb unowned. The buffer continues
965  *	to exist but is no longer charged to its former owner.
966  */
967 static inline void skb_orphan(struct sk_buff *skb)
968 {
969 	if (skb->destructor)
970 		skb->destructor(skb);
971 	skb->destructor = NULL;
972 	skb->sk		= NULL;
973 }
974 
975 /**
976  *	__skb_queue_purge - empty a list
977  *	@list: list to empty
978  *
979  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
980  *	the list and one reference dropped. This function does not take the
981  *	list lock and the caller must hold the relevant locks to use it.
982  */
983 extern void skb_queue_purge(struct sk_buff_head *list);
984 static inline void __skb_queue_purge(struct sk_buff_head *list)
985 {
986 	struct sk_buff *skb;
987 	while ((skb = __skb_dequeue(list)) != NULL)
988 		kfree_skb(skb);
989 }
990 
991 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
992 /**
993  *	__dev_alloc_skb - allocate an skbuff for sending
994  *	@length: length to allocate
995  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
996  *
997  *	Allocate a new &sk_buff and assign it a usage count of one. The
998  *	buffer has unspecified headroom built in. Users should allocate
999  *	the headroom they think they need without accounting for the
1000  *	built in space. The built in space is used for optimisations.
1001  *
1002  *	%NULL is returned in there is no free memory.
1003  */
1004 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1005 					      int gfp_mask)
1006 {
1007 	struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1008 	if (likely(skb))
1009 		skb_reserve(skb, 16);
1010 	return skb;
1011 }
1012 #else
1013 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1014 #endif
1015 
1016 /**
1017  *	dev_alloc_skb - allocate an skbuff for sending
1018  *	@length: length to allocate
1019  *
1020  *	Allocate a new &sk_buff and assign it a usage count of one. The
1021  *	buffer has unspecified headroom built in. Users should allocate
1022  *	the headroom they think they need without accounting for the
1023  *	built in space. The built in space is used for optimisations.
1024  *
1025  *	%NULL is returned in there is no free memory. Although this function
1026  *	allocates memory it can be called from an interrupt.
1027  */
1028 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1029 {
1030 	return __dev_alloc_skb(length, GFP_ATOMIC);
1031 }
1032 
1033 /**
1034  *	skb_cow - copy header of skb when it is required
1035  *	@skb: buffer to cow
1036  *	@headroom: needed headroom
1037  *
1038  *	If the skb passed lacks sufficient headroom or its data part
1039  *	is shared, data is reallocated. If reallocation fails, an error
1040  *	is returned and original skb is not changed.
1041  *
1042  *	The result is skb with writable area skb->head...skb->tail
1043  *	and at least @headroom of space at head.
1044  */
1045 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1046 {
1047 	int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1048 
1049 	if (delta < 0)
1050 		delta = 0;
1051 
1052 	if (delta || skb_cloned(skb))
1053 		return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1054 	return 0;
1055 }
1056 
1057 /**
1058  *	skb_padto	- pad an skbuff up to a minimal size
1059  *	@skb: buffer to pad
1060  *	@len: minimal length
1061  *
1062  *	Pads up a buffer to ensure the trailing bytes exist and are
1063  *	blanked. If the buffer already contains sufficient data it
1064  *	is untouched. Returns the buffer, which may be a replacement
1065  *	for the original, or NULL for out of memory - in which case
1066  *	the original buffer is still freed.
1067  */
1068 
1069 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1070 {
1071 	unsigned int size = skb->len;
1072 	if (likely(size >= len))
1073 		return skb;
1074 	return skb_pad(skb, len-size);
1075 }
1076 
1077 static inline int skb_add_data(struct sk_buff *skb,
1078 			       char __user *from, int copy)
1079 {
1080 	const int off = skb->len;
1081 
1082 	if (skb->ip_summed == CHECKSUM_NONE) {
1083 		int err = 0;
1084 		unsigned int csum = csum_and_copy_from_user(from,
1085 							    skb_put(skb, copy),
1086 							    copy, 0, &err);
1087 		if (!err) {
1088 			skb->csum = csum_block_add(skb->csum, csum, off);
1089 			return 0;
1090 		}
1091 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1092 		return 0;
1093 
1094 	__skb_trim(skb, off);
1095 	return -EFAULT;
1096 }
1097 
1098 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1099 				   struct page *page, int off)
1100 {
1101 	if (i) {
1102 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1103 
1104 		return page == frag->page &&
1105 		       off == frag->page_offset + frag->size;
1106 	}
1107 	return 0;
1108 }
1109 
1110 /**
1111  *	skb_linearize - convert paged skb to linear one
1112  *	@skb: buffer to linarize
1113  *	@gfp: allocation mode
1114  *
1115  *	If there is no free memory -ENOMEM is returned, otherwise zero
1116  *	is returned and the old skb data released.
1117  */
1118 extern int __skb_linearize(struct sk_buff *skb, int gfp);
1119 static inline int skb_linearize(struct sk_buff *skb, int gfp)
1120 {
1121 	return __skb_linearize(skb, gfp);
1122 }
1123 
1124 /**
1125  *	skb_postpull_rcsum - update checksum for received skb after pull
1126  *	@skb: buffer to update
1127  *	@start: start of data before pull
1128  *	@len: length of data pulled
1129  *
1130  *	After doing a pull on a received packet, you need to call this to
1131  *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1132  *	so that it can be recomputed from scratch.
1133  */
1134 
1135 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1136 					 const void *start, int len)
1137 {
1138 	if (skb->ip_summed == CHECKSUM_HW)
1139 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1140 }
1141 
1142 /**
1143  *	pskb_trim_rcsum - trim received skb and update checksum
1144  *	@skb: buffer to trim
1145  *	@len: new length
1146  *
1147  *	This is exactly the same as pskb_trim except that it ensures the
1148  *	checksum of received packets are still valid after the operation.
1149  */
1150 
1151 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1152 {
1153 	if (len >= skb->len)
1154 		return 0;
1155 	if (skb->ip_summed == CHECKSUM_HW)
1156 		skb->ip_summed = CHECKSUM_NONE;
1157 	return __pskb_trim(skb, len);
1158 }
1159 
1160 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1161 {
1162 #ifdef CONFIG_HIGHMEM
1163 	BUG_ON(in_irq());
1164 
1165 	local_bh_disable();
1166 #endif
1167 	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1168 }
1169 
1170 static inline void kunmap_skb_frag(void *vaddr)
1171 {
1172 	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1173 #ifdef CONFIG_HIGHMEM
1174 	local_bh_enable();
1175 #endif
1176 }
1177 
1178 #define skb_queue_walk(queue, skb) \
1179 		for (skb = (queue)->next;					\
1180 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1181 		     skb = skb->next)
1182 
1183 
1184 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1185 					 int noblock, int *err);
1186 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1187 				     struct poll_table_struct *wait);
1188 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1189 					       int offset, struct iovec *to,
1190 					       int size);
1191 extern int	       skb_copy_and_csum_datagram_iovec(const
1192 							struct sk_buff *skb,
1193 							int hlen,
1194 							struct iovec *iov);
1195 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1196 extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1197 				    int len, unsigned int csum);
1198 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1199 				     void *to, int len);
1200 extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1201 				      void *from, int len);
1202 extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1203 					      int offset, u8 *to, int len,
1204 					      unsigned int csum);
1205 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1206 extern void	       skb_split(struct sk_buff *skb,
1207 				 struct sk_buff *skb1, const u32 len);
1208 
1209 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1210 				       int len, void *buffer)
1211 {
1212 	int hlen = skb_headlen(skb);
1213 
1214 	if (offset + len <= hlen)
1215 		return skb->data + offset;
1216 
1217 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1218 		return NULL;
1219 
1220 	return buffer;
1221 }
1222 
1223 extern void skb_init(void);
1224 extern void skb_add_mtu(int mtu);
1225 
1226 #ifdef CONFIG_NETFILTER
1227 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1228 {
1229 	if (nfct && atomic_dec_and_test(&nfct->use))
1230 		nfct->destroy(nfct);
1231 }
1232 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1233 {
1234 	if (nfct)
1235 		atomic_inc(&nfct->use);
1236 }
1237 static inline void nf_reset(struct sk_buff *skb)
1238 {
1239 	nf_conntrack_put(skb->nfct);
1240 	skb->nfct = NULL;
1241 }
1242 
1243 #ifdef CONFIG_BRIDGE_NETFILTER
1244 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1245 {
1246 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1247 		kfree(nf_bridge);
1248 }
1249 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1250 {
1251 	if (nf_bridge)
1252 		atomic_inc(&nf_bridge->use);
1253 }
1254 #endif /* CONFIG_BRIDGE_NETFILTER */
1255 #else /* CONFIG_NETFILTER */
1256 static inline void nf_reset(struct sk_buff *skb) {}
1257 #endif /* CONFIG_NETFILTER */
1258 
1259 #endif	/* __KERNEL__ */
1260 #endif	/* _LINUX_SKBUFF_H */
1261